1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/TinyPtrVector.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/BlockFrequencyInfo.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/MemoryBuiltins.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ProfileSummaryInfo.h" 60 #include "llvm/Analysis/TargetFolder.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/Analysis/VectorUtils.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Dominators.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GetElementPtrTypeIterator.h" 75 #include "llvm/IR/IRBuilder.h" 76 #include "llvm/IR/InstrTypes.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/Intrinsics.h" 81 #include "llvm/IR/LegacyPassManager.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/PassManager.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/Use.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/IR/ValueHandle.h" 91 #include "llvm/InitializePasses.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/CBindingWrapping.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/DebugCounter.h" 99 #include "llvm/Support/ErrorHandling.h" 100 #include "llvm/Support/KnownBits.h" 101 #include "llvm/Support/raw_ostream.h" 102 #include "llvm/Transforms/InstCombine/InstCombine.h" 103 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 104 #include "llvm/Transforms/Utils/Local.h" 105 #include <algorithm> 106 #include <cassert> 107 #include <cstdint> 108 #include <memory> 109 #include <string> 110 #include <utility> 111 112 using namespace llvm; 113 using namespace llvm::PatternMatch; 114 115 #define DEBUG_TYPE "instcombine" 116 117 STATISTIC(NumWorklistIterations, 118 "Number of instruction combining iterations performed"); 119 120 STATISTIC(NumCombined , "Number of insts combined"); 121 STATISTIC(NumConstProp, "Number of constant folds"); 122 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 123 STATISTIC(NumSunkInst , "Number of instructions sunk"); 124 STATISTIC(NumExpand, "Number of expansions"); 125 STATISTIC(NumFactor , "Number of factorizations"); 126 STATISTIC(NumReassoc , "Number of reassociations"); 127 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 128 "Controls which instructions are visited"); 129 130 // FIXME: these limits eventually should be as low as 2. 131 static constexpr unsigned InstCombineDefaultMaxIterations = 1000; 132 #ifndef NDEBUG 133 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100; 134 #else 135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; 136 #endif 137 138 static cl::opt<bool> 139 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 140 cl::init(true)); 141 142 static cl::opt<unsigned> LimitMaxIterations( 143 "instcombine-max-iterations", 144 cl::desc("Limit the maximum number of instruction combining iterations"), 145 cl::init(InstCombineDefaultMaxIterations)); 146 147 static cl::opt<unsigned> InfiniteLoopDetectionThreshold( 148 "instcombine-infinite-loop-threshold", 149 cl::desc("Number of instruction combining iterations considered an " 150 "infinite loop"), 151 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); 152 153 static cl::opt<unsigned> 154 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 155 cl::desc("Maximum array size considered when doing a combine")); 156 157 // FIXME: Remove this flag when it is no longer necessary to convert 158 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 159 // increases variable availability at the cost of accuracy. Variables that 160 // cannot be promoted by mem2reg or SROA will be described as living in memory 161 // for their entire lifetime. However, passes like DSE and instcombine can 162 // delete stores to the alloca, leading to misleading and inaccurate debug 163 // information. This flag can be removed when those passes are fixed. 164 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 165 cl::Hidden, cl::init(true)); 166 167 Optional<Instruction *> 168 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 169 // Handle target specific intrinsics 170 if (II.getCalledFunction()->isTargetIntrinsic()) { 171 return TTI.instCombineIntrinsic(*this, II); 172 } 173 return None; 174 } 175 176 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 177 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 178 bool &KnownBitsComputed) { 179 // Handle target specific intrinsics 180 if (II.getCalledFunction()->isTargetIntrinsic()) { 181 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, 182 KnownBitsComputed); 183 } 184 return None; 185 } 186 187 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 188 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, 189 APInt &UndefElts3, 190 std::function<void(Instruction *, unsigned, APInt, APInt &)> 191 SimplifyAndSetOp) { 192 // Handle target specific intrinsics 193 if (II.getCalledFunction()->isTargetIntrinsic()) { 194 return TTI.simplifyDemandedVectorEltsIntrinsic( 195 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 196 SimplifyAndSetOp); 197 } 198 return None; 199 } 200 201 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { 202 return llvm::EmitGEPOffset(&Builder, DL, GEP); 203 } 204 205 /// Return true if it is desirable to convert an integer computation from a 206 /// given bit width to a new bit width. 207 /// We don't want to convert from a legal to an illegal type or from a smaller 208 /// to a larger illegal type. A width of '1' is always treated as a legal type 209 /// because i1 is a fundamental type in IR, and there are many specialized 210 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as 211 /// legal to convert to, in order to open up more combining opportunities. 212 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common 213 /// from frontend languages. 214 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 215 unsigned ToWidth) const { 216 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 217 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 218 219 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only 220 // shrink types, to prevent infinite loops. 221 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32)) 222 return true; 223 224 // If this is a legal integer from type, and the result would be an illegal 225 // type, don't do the transformation. 226 if (FromLegal && !ToLegal) 227 return false; 228 229 // Otherwise, if both are illegal, do not increase the size of the result. We 230 // do allow things like i160 -> i64, but not i64 -> i160. 231 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 232 return false; 233 234 return true; 235 } 236 237 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 238 /// We don't want to convert from a legal to an illegal type or from a smaller 239 /// to a larger illegal type. i1 is always treated as a legal type because it is 240 /// a fundamental type in IR, and there are many specialized optimizations for 241 /// i1 types. 242 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 243 // TODO: This could be extended to allow vectors. Datalayout changes might be 244 // needed to properly support that. 245 if (!From->isIntegerTy() || !To->isIntegerTy()) 246 return false; 247 248 unsigned FromWidth = From->getPrimitiveSizeInBits(); 249 unsigned ToWidth = To->getPrimitiveSizeInBits(); 250 return shouldChangeType(FromWidth, ToWidth); 251 } 252 253 // Return true, if No Signed Wrap should be maintained for I. 254 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 255 // where both B and C should be ConstantInts, results in a constant that does 256 // not overflow. This function only handles the Add and Sub opcodes. For 257 // all other opcodes, the function conservatively returns false. 258 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 259 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 260 if (!OBO || !OBO->hasNoSignedWrap()) 261 return false; 262 263 // We reason about Add and Sub Only. 264 Instruction::BinaryOps Opcode = I.getOpcode(); 265 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 266 return false; 267 268 const APInt *BVal, *CVal; 269 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 270 return false; 271 272 bool Overflow = false; 273 if (Opcode == Instruction::Add) 274 (void)BVal->sadd_ov(*CVal, Overflow); 275 else 276 (void)BVal->ssub_ov(*CVal, Overflow); 277 278 return !Overflow; 279 } 280 281 static bool hasNoUnsignedWrap(BinaryOperator &I) { 282 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 283 return OBO && OBO->hasNoUnsignedWrap(); 284 } 285 286 static bool hasNoSignedWrap(BinaryOperator &I) { 287 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 288 return OBO && OBO->hasNoSignedWrap(); 289 } 290 291 /// Conservatively clears subclassOptionalData after a reassociation or 292 /// commutation. We preserve fast-math flags when applicable as they can be 293 /// preserved. 294 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 295 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 296 if (!FPMO) { 297 I.clearSubclassOptionalData(); 298 return; 299 } 300 301 FastMathFlags FMF = I.getFastMathFlags(); 302 I.clearSubclassOptionalData(); 303 I.setFastMathFlags(FMF); 304 } 305 306 /// Combine constant operands of associative operations either before or after a 307 /// cast to eliminate one of the associative operations: 308 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 309 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 310 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 311 InstCombinerImpl &IC) { 312 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 313 if (!Cast || !Cast->hasOneUse()) 314 return false; 315 316 // TODO: Enhance logic for other casts and remove this check. 317 auto CastOpcode = Cast->getOpcode(); 318 if (CastOpcode != Instruction::ZExt) 319 return false; 320 321 // TODO: Enhance logic for other BinOps and remove this check. 322 if (!BinOp1->isBitwiseLogicOp()) 323 return false; 324 325 auto AssocOpcode = BinOp1->getOpcode(); 326 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 327 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 328 return false; 329 330 Constant *C1, *C2; 331 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 332 !match(BinOp2->getOperand(1), m_Constant(C2))) 333 return false; 334 335 // TODO: This assumes a zext cast. 336 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 337 // to the destination type might lose bits. 338 339 // Fold the constants together in the destination type: 340 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 341 Type *DestTy = C1->getType(); 342 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 343 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 344 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 345 IC.replaceOperand(*BinOp1, 1, FoldedC); 346 return true; 347 } 348 349 /// This performs a few simplifications for operators that are associative or 350 /// commutative: 351 /// 352 /// Commutative operators: 353 /// 354 /// 1. Order operands such that they are listed from right (least complex) to 355 /// left (most complex). This puts constants before unary operators before 356 /// binary operators. 357 /// 358 /// Associative operators: 359 /// 360 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 361 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 362 /// 363 /// Associative and commutative operators: 364 /// 365 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 366 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 367 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 368 /// if C1 and C2 are constants. 369 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 370 Instruction::BinaryOps Opcode = I.getOpcode(); 371 bool Changed = false; 372 373 do { 374 // Order operands such that they are listed from right (least complex) to 375 // left (most complex). This puts constants before unary operators before 376 // binary operators. 377 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 378 getComplexity(I.getOperand(1))) 379 Changed = !I.swapOperands(); 380 381 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 382 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 383 384 if (I.isAssociative()) { 385 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 386 if (Op0 && Op0->getOpcode() == Opcode) { 387 Value *A = Op0->getOperand(0); 388 Value *B = Op0->getOperand(1); 389 Value *C = I.getOperand(1); 390 391 // Does "B op C" simplify? 392 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 393 // It simplifies to V. Form "A op V". 394 replaceOperand(I, 0, A); 395 replaceOperand(I, 1, V); 396 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 397 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 398 399 // Conservatively clear all optional flags since they may not be 400 // preserved by the reassociation. Reset nsw/nuw based on the above 401 // analysis. 402 ClearSubclassDataAfterReassociation(I); 403 404 // Note: this is only valid because SimplifyBinOp doesn't look at 405 // the operands to Op0. 406 if (IsNUW) 407 I.setHasNoUnsignedWrap(true); 408 409 if (IsNSW) 410 I.setHasNoSignedWrap(true); 411 412 Changed = true; 413 ++NumReassoc; 414 continue; 415 } 416 } 417 418 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 419 if (Op1 && Op1->getOpcode() == Opcode) { 420 Value *A = I.getOperand(0); 421 Value *B = Op1->getOperand(0); 422 Value *C = Op1->getOperand(1); 423 424 // Does "A op B" simplify? 425 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 426 // It simplifies to V. Form "V op C". 427 replaceOperand(I, 0, V); 428 replaceOperand(I, 1, C); 429 // Conservatively clear the optional flags, since they may not be 430 // preserved by the reassociation. 431 ClearSubclassDataAfterReassociation(I); 432 Changed = true; 433 ++NumReassoc; 434 continue; 435 } 436 } 437 } 438 439 if (I.isAssociative() && I.isCommutative()) { 440 if (simplifyAssocCastAssoc(&I, *this)) { 441 Changed = true; 442 ++NumReassoc; 443 continue; 444 } 445 446 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 447 if (Op0 && Op0->getOpcode() == Opcode) { 448 Value *A = Op0->getOperand(0); 449 Value *B = Op0->getOperand(1); 450 Value *C = I.getOperand(1); 451 452 // Does "C op A" simplify? 453 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 454 // It simplifies to V. Form "V op B". 455 replaceOperand(I, 0, V); 456 replaceOperand(I, 1, B); 457 // Conservatively clear the optional flags, since they may not be 458 // preserved by the reassociation. 459 ClearSubclassDataAfterReassociation(I); 460 Changed = true; 461 ++NumReassoc; 462 continue; 463 } 464 } 465 466 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 467 if (Op1 && Op1->getOpcode() == Opcode) { 468 Value *A = I.getOperand(0); 469 Value *B = Op1->getOperand(0); 470 Value *C = Op1->getOperand(1); 471 472 // Does "C op A" simplify? 473 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 474 // It simplifies to V. Form "B op V". 475 replaceOperand(I, 0, B); 476 replaceOperand(I, 1, V); 477 // Conservatively clear the optional flags, since they may not be 478 // preserved by the reassociation. 479 ClearSubclassDataAfterReassociation(I); 480 Changed = true; 481 ++NumReassoc; 482 continue; 483 } 484 } 485 486 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 487 // if C1 and C2 are constants. 488 Value *A, *B; 489 Constant *C1, *C2; 490 if (Op0 && Op1 && 491 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 492 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 493 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 494 bool IsNUW = hasNoUnsignedWrap(I) && 495 hasNoUnsignedWrap(*Op0) && 496 hasNoUnsignedWrap(*Op1); 497 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 498 BinaryOperator::CreateNUW(Opcode, A, B) : 499 BinaryOperator::Create(Opcode, A, B); 500 501 if (isa<FPMathOperator>(NewBO)) { 502 FastMathFlags Flags = I.getFastMathFlags(); 503 Flags &= Op0->getFastMathFlags(); 504 Flags &= Op1->getFastMathFlags(); 505 NewBO->setFastMathFlags(Flags); 506 } 507 InsertNewInstWith(NewBO, I); 508 NewBO->takeName(Op1); 509 replaceOperand(I, 0, NewBO); 510 replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2)); 511 // Conservatively clear the optional flags, since they may not be 512 // preserved by the reassociation. 513 ClearSubclassDataAfterReassociation(I); 514 if (IsNUW) 515 I.setHasNoUnsignedWrap(true); 516 517 Changed = true; 518 continue; 519 } 520 } 521 522 // No further simplifications. 523 return Changed; 524 } while (true); 525 } 526 527 /// Return whether "X LOp (Y ROp Z)" is always equal to 528 /// "(X LOp Y) ROp (X LOp Z)". 529 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 530 Instruction::BinaryOps ROp) { 531 // X & (Y | Z) <--> (X & Y) | (X & Z) 532 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 533 if (LOp == Instruction::And) 534 return ROp == Instruction::Or || ROp == Instruction::Xor; 535 536 // X | (Y & Z) <--> (X | Y) & (X | Z) 537 if (LOp == Instruction::Or) 538 return ROp == Instruction::And; 539 540 // X * (Y + Z) <--> (X * Y) + (X * Z) 541 // X * (Y - Z) <--> (X * Y) - (X * Z) 542 if (LOp == Instruction::Mul) 543 return ROp == Instruction::Add || ROp == Instruction::Sub; 544 545 return false; 546 } 547 548 /// Return whether "(X LOp Y) ROp Z" is always equal to 549 /// "(X ROp Z) LOp (Y ROp Z)". 550 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 551 Instruction::BinaryOps ROp) { 552 if (Instruction::isCommutative(ROp)) 553 return leftDistributesOverRight(ROp, LOp); 554 555 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 556 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 557 558 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 559 // but this requires knowing that the addition does not overflow and other 560 // such subtleties. 561 } 562 563 /// This function returns identity value for given opcode, which can be used to 564 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 565 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 566 if (isa<Constant>(V)) 567 return nullptr; 568 569 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 570 } 571 572 /// This function predicates factorization using distributive laws. By default, 573 /// it just returns the 'Op' inputs. But for special-cases like 574 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 575 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 576 /// allow more factorization opportunities. 577 static Instruction::BinaryOps 578 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 579 Value *&LHS, Value *&RHS) { 580 assert(Op && "Expected a binary operator"); 581 LHS = Op->getOperand(0); 582 RHS = Op->getOperand(1); 583 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 584 Constant *C; 585 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 586 // X << C --> X * (1 << C) 587 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 588 return Instruction::Mul; 589 } 590 // TODO: We can add other conversions e.g. shr => div etc. 591 } 592 return Op->getOpcode(); 593 } 594 595 /// This tries to simplify binary operations by factorizing out common terms 596 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 597 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I, 598 Instruction::BinaryOps InnerOpcode, 599 Value *A, Value *B, Value *C, 600 Value *D) { 601 assert(A && B && C && D && "All values must be provided"); 602 603 Value *V = nullptr; 604 Value *SimplifiedInst = nullptr; 605 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 606 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 607 608 // Does "X op' Y" always equal "Y op' X"? 609 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 610 611 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 612 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 613 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 614 // commutative case, "(A op' B) op (C op' A)"? 615 if (A == C || (InnerCommutative && A == D)) { 616 if (A != C) 617 std::swap(C, D); 618 // Consider forming "A op' (B op D)". 619 // If "B op D" simplifies then it can be formed with no cost. 620 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 621 // If "B op D" doesn't simplify then only go on if both of the existing 622 // operations "A op' B" and "C op' D" will be zapped as no longer used. 623 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 624 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 625 if (V) { 626 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 627 } 628 } 629 630 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 631 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 632 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 633 // commutative case, "(A op' B) op (B op' D)"? 634 if (B == D || (InnerCommutative && B == C)) { 635 if (B != D) 636 std::swap(C, D); 637 // Consider forming "(A op C) op' B". 638 // If "A op C" simplifies then it can be formed with no cost. 639 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 640 641 // If "A op C" doesn't simplify then only go on if both of the existing 642 // operations "A op' B" and "C op' D" will be zapped as no longer used. 643 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 644 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 645 if (V) { 646 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 647 } 648 } 649 650 if (SimplifiedInst) { 651 ++NumFactor; 652 SimplifiedInst->takeName(&I); 653 654 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 655 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 656 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 657 bool HasNSW = false; 658 bool HasNUW = false; 659 if (isa<OverflowingBinaryOperator>(&I)) { 660 HasNSW = I.hasNoSignedWrap(); 661 HasNUW = I.hasNoUnsignedWrap(); 662 } 663 664 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 665 HasNSW &= LOBO->hasNoSignedWrap(); 666 HasNUW &= LOBO->hasNoUnsignedWrap(); 667 } 668 669 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 670 HasNSW &= ROBO->hasNoSignedWrap(); 671 HasNUW &= ROBO->hasNoUnsignedWrap(); 672 } 673 674 if (TopLevelOpcode == Instruction::Add && 675 InnerOpcode == Instruction::Mul) { 676 // We can propagate 'nsw' if we know that 677 // %Y = mul nsw i16 %X, C 678 // %Z = add nsw i16 %Y, %X 679 // => 680 // %Z = mul nsw i16 %X, C+1 681 // 682 // iff C+1 isn't INT_MIN 683 const APInt *CInt; 684 if (match(V, m_APInt(CInt))) { 685 if (!CInt->isMinSignedValue()) 686 BO->setHasNoSignedWrap(HasNSW); 687 } 688 689 // nuw can be propagated with any constant or nuw value. 690 BO->setHasNoUnsignedWrap(HasNUW); 691 } 692 } 693 } 694 } 695 return SimplifiedInst; 696 } 697 698 /// This tries to simplify binary operations which some other binary operation 699 /// distributes over either by factorizing out common terms 700 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 701 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 702 /// Returns the simplified value, or null if it didn't simplify. 703 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 704 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 705 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 706 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 707 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 708 709 { 710 // Factorization. 711 Value *A, *B, *C, *D; 712 Instruction::BinaryOps LHSOpcode, RHSOpcode; 713 if (Op0) 714 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 715 if (Op1) 716 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 717 718 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 719 // a common term. 720 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 721 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 722 return V; 723 724 // The instruction has the form "(A op' B) op (C)". Try to factorize common 725 // term. 726 if (Op0) 727 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 728 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 729 return V; 730 731 // The instruction has the form "(B) op (C op' D)". Try to factorize common 732 // term. 733 if (Op1) 734 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 735 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 736 return V; 737 } 738 739 // Expansion. 740 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 741 // The instruction has the form "(A op' B) op C". See if expanding it out 742 // to "(A op C) op' (B op C)" results in simplifications. 743 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 744 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 745 746 // Disable the use of undef because it's not safe to distribute undef. 747 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 748 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 749 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 750 751 // Do "A op C" and "B op C" both simplify? 752 if (L && R) { 753 // They do! Return "L op' R". 754 ++NumExpand; 755 C = Builder.CreateBinOp(InnerOpcode, L, R); 756 C->takeName(&I); 757 return C; 758 } 759 760 // Does "A op C" simplify to the identity value for the inner opcode? 761 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 762 // They do! Return "B op C". 763 ++NumExpand; 764 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 765 C->takeName(&I); 766 return C; 767 } 768 769 // Does "B op C" simplify to the identity value for the inner opcode? 770 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 771 // They do! Return "A op C". 772 ++NumExpand; 773 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 774 C->takeName(&I); 775 return C; 776 } 777 } 778 779 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 780 // The instruction has the form "A op (B op' C)". See if expanding it out 781 // to "(A op B) op' (A op C)" results in simplifications. 782 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 783 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 784 785 // Disable the use of undef because it's not safe to distribute undef. 786 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 787 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 788 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 789 790 // Do "A op B" and "A op C" both simplify? 791 if (L && R) { 792 // They do! Return "L op' R". 793 ++NumExpand; 794 A = Builder.CreateBinOp(InnerOpcode, L, R); 795 A->takeName(&I); 796 return A; 797 } 798 799 // Does "A op B" simplify to the identity value for the inner opcode? 800 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 801 // They do! Return "A op C". 802 ++NumExpand; 803 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 804 A->takeName(&I); 805 return A; 806 } 807 808 // Does "A op C" simplify to the identity value for the inner opcode? 809 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 810 // They do! Return "A op B". 811 ++NumExpand; 812 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 813 A->takeName(&I); 814 return A; 815 } 816 } 817 818 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 819 } 820 821 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 822 Value *LHS, 823 Value *RHS) { 824 Value *A, *B, *C, *D, *E, *F; 825 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 826 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 827 if (!LHSIsSelect && !RHSIsSelect) 828 return nullptr; 829 830 FastMathFlags FMF; 831 BuilderTy::FastMathFlagGuard Guard(Builder); 832 if (isa<FPMathOperator>(&I)) { 833 FMF = I.getFastMathFlags(); 834 Builder.setFastMathFlags(FMF); 835 } 836 837 Instruction::BinaryOps Opcode = I.getOpcode(); 838 SimplifyQuery Q = SQ.getWithInstruction(&I); 839 840 Value *Cond, *True = nullptr, *False = nullptr; 841 if (LHSIsSelect && RHSIsSelect && A == D) { 842 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 843 Cond = A; 844 True = SimplifyBinOp(Opcode, B, E, FMF, Q); 845 False = SimplifyBinOp(Opcode, C, F, FMF, Q); 846 847 if (LHS->hasOneUse() && RHS->hasOneUse()) { 848 if (False && !True) 849 True = Builder.CreateBinOp(Opcode, B, E); 850 else if (True && !False) 851 False = Builder.CreateBinOp(Opcode, C, F); 852 } 853 } else if (LHSIsSelect && LHS->hasOneUse()) { 854 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 855 Cond = A; 856 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q); 857 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q); 858 } else if (RHSIsSelect && RHS->hasOneUse()) { 859 // X op (D ? E : F) -> D ? (X op E) : (X op F) 860 Cond = D; 861 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q); 862 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q); 863 } 864 865 if (!True || !False) 866 return nullptr; 867 868 Value *SI = Builder.CreateSelect(Cond, True, False); 869 SI->takeName(&I); 870 return SI; 871 } 872 873 /// Freely adapt every user of V as-if V was changed to !V. 874 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 875 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) { 876 for (User *U : I->users()) { 877 switch (cast<Instruction>(U)->getOpcode()) { 878 case Instruction::Select: { 879 auto *SI = cast<SelectInst>(U); 880 SI->swapValues(); 881 SI->swapProfMetadata(); 882 break; 883 } 884 case Instruction::Br: 885 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 886 break; 887 case Instruction::Xor: 888 replaceInstUsesWith(cast<Instruction>(*U), I); 889 break; 890 default: 891 llvm_unreachable("Got unexpected user - out of sync with " 892 "canFreelyInvertAllUsersOf() ?"); 893 } 894 } 895 } 896 897 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 898 /// constant zero (which is the 'negate' form). 899 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 900 Value *NegV; 901 if (match(V, m_Neg(m_Value(NegV)))) 902 return NegV; 903 904 // Constants can be considered to be negated values if they can be folded. 905 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 906 return ConstantExpr::getNeg(C); 907 908 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 909 if (C->getType()->getElementType()->isIntegerTy()) 910 return ConstantExpr::getNeg(C); 911 912 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 913 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 914 Constant *Elt = CV->getAggregateElement(i); 915 if (!Elt) 916 return nullptr; 917 918 if (isa<UndefValue>(Elt)) 919 continue; 920 921 if (!isa<ConstantInt>(Elt)) 922 return nullptr; 923 } 924 return ConstantExpr::getNeg(CV); 925 } 926 927 // Negate integer vector splats. 928 if (auto *CV = dyn_cast<Constant>(V)) 929 if (CV->getType()->isVectorTy() && 930 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 931 return ConstantExpr::getNeg(CV); 932 933 return nullptr; 934 } 935 936 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 937 InstCombiner::BuilderTy &Builder) { 938 if (auto *Cast = dyn_cast<CastInst>(&I)) 939 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 940 941 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 942 943 // Figure out if the constant is the left or the right argument. 944 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 945 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 946 947 if (auto *SOC = dyn_cast<Constant>(SO)) { 948 if (ConstIsRHS) 949 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 950 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 951 } 952 953 Value *Op0 = SO, *Op1 = ConstOperand; 954 if (!ConstIsRHS) 955 std::swap(Op0, Op1); 956 957 auto *BO = cast<BinaryOperator>(&I); 958 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 959 SO->getName() + ".op"); 960 auto *FPInst = dyn_cast<Instruction>(RI); 961 if (FPInst && isa<FPMathOperator>(FPInst)) 962 FPInst->copyFastMathFlags(BO); 963 return RI; 964 } 965 966 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, 967 SelectInst *SI) { 968 // Don't modify shared select instructions. 969 if (!SI->hasOneUse()) 970 return nullptr; 971 972 Value *TV = SI->getTrueValue(); 973 Value *FV = SI->getFalseValue(); 974 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 975 return nullptr; 976 977 // Bool selects with constant operands can be folded to logical ops. 978 if (SI->getType()->isIntOrIntVectorTy(1)) 979 return nullptr; 980 981 // If it's a bitcast involving vectors, make sure it has the same number of 982 // elements on both sides. 983 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 984 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 985 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 986 987 // Verify that either both or neither are vectors. 988 if ((SrcTy == nullptr) != (DestTy == nullptr)) 989 return nullptr; 990 991 // If vectors, verify that they have the same number of elements. 992 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) 993 return nullptr; 994 } 995 996 // Test if a CmpInst instruction is used exclusively by a select as 997 // part of a minimum or maximum operation. If so, refrain from doing 998 // any other folding. This helps out other analyses which understand 999 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 1000 // and CodeGen. And in this case, at least one of the comparison 1001 // operands has at least one user besides the compare (the select), 1002 // which would often largely negate the benefit of folding anyway. 1003 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 1004 if (CI->hasOneUse()) { 1005 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 1006 1007 // FIXME: This is a hack to avoid infinite looping with min/max patterns. 1008 // We have to ensure that vector constants that only differ with 1009 // undef elements are treated as equivalent. 1010 auto areLooselyEqual = [](Value *A, Value *B) { 1011 if (A == B) 1012 return true; 1013 1014 // Test for vector constants. 1015 Constant *ConstA, *ConstB; 1016 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB))) 1017 return false; 1018 1019 // TODO: Deal with FP constants? 1020 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType()) 1021 return false; 1022 1023 // Compare for equality including undefs as equal. 1024 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB); 1025 const APInt *C; 1026 return match(Cmp, m_APIntAllowUndef(C)) && C->isOneValue(); 1027 }; 1028 1029 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) || 1030 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1))) 1031 return nullptr; 1032 } 1033 } 1034 1035 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 1036 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 1037 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 1038 } 1039 1040 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 1041 InstCombiner::BuilderTy &Builder) { 1042 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 1043 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 1044 1045 if (auto *InC = dyn_cast<Constant>(InV)) { 1046 if (ConstIsRHS) 1047 return ConstantExpr::get(I->getOpcode(), InC, C); 1048 return ConstantExpr::get(I->getOpcode(), C, InC); 1049 } 1050 1051 Value *Op0 = InV, *Op1 = C; 1052 if (!ConstIsRHS) 1053 std::swap(Op0, Op1); 1054 1055 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo"); 1056 auto *FPInst = dyn_cast<Instruction>(RI); 1057 if (FPInst && isa<FPMathOperator>(FPInst)) 1058 FPInst->copyFastMathFlags(I); 1059 return RI; 1060 } 1061 1062 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { 1063 unsigned NumPHIValues = PN->getNumIncomingValues(); 1064 if (NumPHIValues == 0) 1065 return nullptr; 1066 1067 // We normally only transform phis with a single use. However, if a PHI has 1068 // multiple uses and they are all the same operation, we can fold *all* of the 1069 // uses into the PHI. 1070 if (!PN->hasOneUse()) { 1071 // Walk the use list for the instruction, comparing them to I. 1072 for (User *U : PN->users()) { 1073 Instruction *UI = cast<Instruction>(U); 1074 if (UI != &I && !I.isIdenticalTo(UI)) 1075 return nullptr; 1076 } 1077 // Otherwise, we can replace *all* users with the new PHI we form. 1078 } 1079 1080 // Check to see if all of the operands of the PHI are simple constants 1081 // (constantint/constantfp/undef). If there is one non-constant value, 1082 // remember the BB it is in. If there is more than one or if *it* is a PHI, 1083 // bail out. We don't do arbitrary constant expressions here because moving 1084 // their computation can be expensive without a cost model. 1085 BasicBlock *NonConstBB = nullptr; 1086 for (unsigned i = 0; i != NumPHIValues; ++i) { 1087 Value *InVal = PN->getIncomingValue(i); 1088 // If I is a freeze instruction, count undef as a non-constant. 1089 if (match(InVal, m_ImmConstant()) && 1090 (!isa<FreezeInst>(I) || isGuaranteedNotToBeUndefOrPoison(InVal))) 1091 continue; 1092 1093 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 1094 if (NonConstBB) return nullptr; // More than one non-const value. 1095 1096 NonConstBB = PN->getIncomingBlock(i); 1097 1098 // If the InVal is an invoke at the end of the pred block, then we can't 1099 // insert a computation after it without breaking the edge. 1100 if (isa<InvokeInst>(InVal)) 1101 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 1102 return nullptr; 1103 1104 // If the incoming non-constant value is in I's block, we will remove one 1105 // instruction, but insert another equivalent one, leading to infinite 1106 // instcombine. 1107 if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI)) 1108 return nullptr; 1109 } 1110 1111 // If there is exactly one non-constant value, we can insert a copy of the 1112 // operation in that block. However, if this is a critical edge, we would be 1113 // inserting the computation on some other paths (e.g. inside a loop). Only 1114 // do this if the pred block is unconditionally branching into the phi block. 1115 // Also, make sure that the pred block is not dead code. 1116 if (NonConstBB != nullptr) { 1117 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1118 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB)) 1119 return nullptr; 1120 } 1121 1122 // Okay, we can do the transformation: create the new PHI node. 1123 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1124 InsertNewInstBefore(NewPN, *PN); 1125 NewPN->takeName(PN); 1126 1127 // If we are going to have to insert a new computation, do so right before the 1128 // predecessor's terminator. 1129 if (NonConstBB) 1130 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1131 1132 // Next, add all of the operands to the PHI. 1133 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1134 // We only currently try to fold the condition of a select when it is a phi, 1135 // not the true/false values. 1136 Value *TrueV = SI->getTrueValue(); 1137 Value *FalseV = SI->getFalseValue(); 1138 BasicBlock *PhiTransBB = PN->getParent(); 1139 for (unsigned i = 0; i != NumPHIValues; ++i) { 1140 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1141 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1142 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1143 Value *InV = nullptr; 1144 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1145 // even if currently isNullValue gives false. 1146 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1147 // For vector constants, we cannot use isNullValue to fold into 1148 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1149 // elements in the vector, we will incorrectly fold InC to 1150 // `TrueVInPred`. 1151 if (InC && isa<ConstantInt>(InC)) 1152 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1153 else { 1154 // Generate the select in the same block as PN's current incoming block. 1155 // Note: ThisBB need not be the NonConstBB because vector constants 1156 // which are constants by definition are handled here. 1157 // FIXME: This can lead to an increase in IR generation because we might 1158 // generate selects for vector constant phi operand, that could not be 1159 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1160 // non-vector phis, this transformation was always profitable because 1161 // the select would be generated exactly once in the NonConstBB. 1162 Builder.SetInsertPoint(ThisBB->getTerminator()); 1163 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1164 FalseVInPred, "phi.sel"); 1165 } 1166 NewPN->addIncoming(InV, ThisBB); 1167 } 1168 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1169 Constant *C = cast<Constant>(I.getOperand(1)); 1170 for (unsigned i = 0; i != NumPHIValues; ++i) { 1171 Value *InV = nullptr; 1172 if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1173 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1174 else 1175 InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i), 1176 C, "phi.cmp"); 1177 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1178 } 1179 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1180 for (unsigned i = 0; i != NumPHIValues; ++i) { 1181 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1182 Builder); 1183 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1184 } 1185 } else if (isa<FreezeInst>(&I)) { 1186 for (unsigned i = 0; i != NumPHIValues; ++i) { 1187 Value *InV; 1188 if (NonConstBB == PN->getIncomingBlock(i)) 1189 InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr"); 1190 else 1191 InV = PN->getIncomingValue(i); 1192 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1193 } 1194 } else { 1195 CastInst *CI = cast<CastInst>(&I); 1196 Type *RetTy = CI->getType(); 1197 for (unsigned i = 0; i != NumPHIValues; ++i) { 1198 Value *InV; 1199 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1200 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1201 else 1202 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1203 I.getType(), "phi.cast"); 1204 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1205 } 1206 } 1207 1208 for (User *U : make_early_inc_range(PN->users())) { 1209 Instruction *User = cast<Instruction>(U); 1210 if (User == &I) continue; 1211 replaceInstUsesWith(*User, NewPN); 1212 eraseInstFromFunction(*User); 1213 } 1214 return replaceInstUsesWith(I, NewPN); 1215 } 1216 1217 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1218 if (!isa<Constant>(I.getOperand(1))) 1219 return nullptr; 1220 1221 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1222 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1223 return NewSel; 1224 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1225 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1226 return NewPhi; 1227 } 1228 return nullptr; 1229 } 1230 1231 /// Given a pointer type and a constant offset, determine whether or not there 1232 /// is a sequence of GEP indices into the pointed type that will land us at the 1233 /// specified offset. If so, fill them into NewIndices and return the resultant 1234 /// element type, otherwise return null. 1235 Type * 1236 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 1237 SmallVectorImpl<Value *> &NewIndices) { 1238 Type *Ty = PtrTy->getElementType(); 1239 if (!Ty->isSized()) 1240 return nullptr; 1241 1242 // Start with the index over the outer type. Note that the type size 1243 // might be zero (even if the offset isn't zero) if the indexed type 1244 // is something like [0 x {int, int}] 1245 Type *IndexTy = DL.getIndexType(PtrTy); 1246 int64_t FirstIdx = 0; 1247 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 1248 FirstIdx = Offset/TySize; 1249 Offset -= FirstIdx*TySize; 1250 1251 // Handle hosts where % returns negative instead of values [0..TySize). 1252 if (Offset < 0) { 1253 --FirstIdx; 1254 Offset += TySize; 1255 assert(Offset >= 0); 1256 } 1257 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 1258 } 1259 1260 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx)); 1261 1262 // Index into the types. If we fail, set OrigBase to null. 1263 while (Offset) { 1264 // Indexing into tail padding between struct/array elements. 1265 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1266 return nullptr; 1267 1268 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1269 const StructLayout *SL = DL.getStructLayout(STy); 1270 assert(Offset < (int64_t)SL->getSizeInBytes() && 1271 "Offset must stay within the indexed type"); 1272 1273 unsigned Elt = SL->getElementContainingOffset(Offset); 1274 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1275 Elt)); 1276 1277 Offset -= SL->getElementOffset(Elt); 1278 Ty = STy->getElementType(Elt); 1279 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1280 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1281 assert(EltSize && "Cannot index into a zero-sized array"); 1282 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize)); 1283 Offset %= EltSize; 1284 Ty = AT->getElementType(); 1285 } else { 1286 // Otherwise, we can't index into the middle of this atomic type, bail. 1287 return nullptr; 1288 } 1289 } 1290 1291 return Ty; 1292 } 1293 1294 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1295 // If this GEP has only 0 indices, it is the same pointer as 1296 // Src. If Src is not a trivial GEP too, don't combine 1297 // the indices. 1298 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1299 !Src.hasOneUse()) 1300 return false; 1301 return true; 1302 } 1303 1304 /// Return a value X such that Val = X * Scale, or null if none. 1305 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1306 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1307 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1308 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1309 Scale.getBitWidth() && "Scale not compatible with value!"); 1310 1311 // If Val is zero or Scale is one then Val = Val * Scale. 1312 if (match(Val, m_Zero()) || Scale == 1) { 1313 NoSignedWrap = true; 1314 return Val; 1315 } 1316 1317 // If Scale is zero then it does not divide Val. 1318 if (Scale.isMinValue()) 1319 return nullptr; 1320 1321 // Look through chains of multiplications, searching for a constant that is 1322 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1323 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1324 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1325 // down from Val: 1326 // 1327 // Val = M1 * X || Analysis starts here and works down 1328 // M1 = M2 * Y || Doesn't descend into terms with more 1329 // M2 = Z * 4 \/ than one use 1330 // 1331 // Then to modify a term at the bottom: 1332 // 1333 // Val = M1 * X 1334 // M1 = Z * Y || Replaced M2 with Z 1335 // 1336 // Then to work back up correcting nsw flags. 1337 1338 // Op - the term we are currently analyzing. Starts at Val then drills down. 1339 // Replaced with its descaled value before exiting from the drill down loop. 1340 Value *Op = Val; 1341 1342 // Parent - initially null, but after drilling down notes where Op came from. 1343 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1344 // 0'th operand of Val. 1345 std::pair<Instruction *, unsigned> Parent; 1346 1347 // Set if the transform requires a descaling at deeper levels that doesn't 1348 // overflow. 1349 bool RequireNoSignedWrap = false; 1350 1351 // Log base 2 of the scale. Negative if not a power of 2. 1352 int32_t logScale = Scale.exactLogBase2(); 1353 1354 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1355 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1356 // If Op is a constant divisible by Scale then descale to the quotient. 1357 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1358 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1359 if (!Remainder.isMinValue()) 1360 // Not divisible by Scale. 1361 return nullptr; 1362 // Replace with the quotient in the parent. 1363 Op = ConstantInt::get(CI->getType(), Quotient); 1364 NoSignedWrap = true; 1365 break; 1366 } 1367 1368 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1369 if (BO->getOpcode() == Instruction::Mul) { 1370 // Multiplication. 1371 NoSignedWrap = BO->hasNoSignedWrap(); 1372 if (RequireNoSignedWrap && !NoSignedWrap) 1373 return nullptr; 1374 1375 // There are three cases for multiplication: multiplication by exactly 1376 // the scale, multiplication by a constant different to the scale, and 1377 // multiplication by something else. 1378 Value *LHS = BO->getOperand(0); 1379 Value *RHS = BO->getOperand(1); 1380 1381 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1382 // Multiplication by a constant. 1383 if (CI->getValue() == Scale) { 1384 // Multiplication by exactly the scale, replace the multiplication 1385 // by its left-hand side in the parent. 1386 Op = LHS; 1387 break; 1388 } 1389 1390 // Otherwise drill down into the constant. 1391 if (!Op->hasOneUse()) 1392 return nullptr; 1393 1394 Parent = std::make_pair(BO, 1); 1395 continue; 1396 } 1397 1398 // Multiplication by something else. Drill down into the left-hand side 1399 // since that's where the reassociate pass puts the good stuff. 1400 if (!Op->hasOneUse()) 1401 return nullptr; 1402 1403 Parent = std::make_pair(BO, 0); 1404 continue; 1405 } 1406 1407 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1408 isa<ConstantInt>(BO->getOperand(1))) { 1409 // Multiplication by a power of 2. 1410 NoSignedWrap = BO->hasNoSignedWrap(); 1411 if (RequireNoSignedWrap && !NoSignedWrap) 1412 return nullptr; 1413 1414 Value *LHS = BO->getOperand(0); 1415 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1416 getLimitedValue(Scale.getBitWidth()); 1417 // Op = LHS << Amt. 1418 1419 if (Amt == logScale) { 1420 // Multiplication by exactly the scale, replace the multiplication 1421 // by its left-hand side in the parent. 1422 Op = LHS; 1423 break; 1424 } 1425 if (Amt < logScale || !Op->hasOneUse()) 1426 return nullptr; 1427 1428 // Multiplication by more than the scale. Reduce the multiplying amount 1429 // by the scale in the parent. 1430 Parent = std::make_pair(BO, 1); 1431 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1432 break; 1433 } 1434 } 1435 1436 if (!Op->hasOneUse()) 1437 return nullptr; 1438 1439 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1440 if (Cast->getOpcode() == Instruction::SExt) { 1441 // Op is sign-extended from a smaller type, descale in the smaller type. 1442 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1443 APInt SmallScale = Scale.trunc(SmallSize); 1444 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1445 // descale Op as (sext Y) * Scale. In order to have 1446 // sext (Y * SmallScale) = (sext Y) * Scale 1447 // some conditions need to hold however: SmallScale must sign-extend to 1448 // Scale and the multiplication Y * SmallScale should not overflow. 1449 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1450 // SmallScale does not sign-extend to Scale. 1451 return nullptr; 1452 assert(SmallScale.exactLogBase2() == logScale); 1453 // Require that Y * SmallScale must not overflow. 1454 RequireNoSignedWrap = true; 1455 1456 // Drill down through the cast. 1457 Parent = std::make_pair(Cast, 0); 1458 Scale = SmallScale; 1459 continue; 1460 } 1461 1462 if (Cast->getOpcode() == Instruction::Trunc) { 1463 // Op is truncated from a larger type, descale in the larger type. 1464 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1465 // trunc (Y * sext Scale) = (trunc Y) * Scale 1466 // always holds. However (trunc Y) * Scale may overflow even if 1467 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1468 // from this point up in the expression (see later). 1469 if (RequireNoSignedWrap) 1470 return nullptr; 1471 1472 // Drill down through the cast. 1473 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1474 Parent = std::make_pair(Cast, 0); 1475 Scale = Scale.sext(LargeSize); 1476 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1477 logScale = -1; 1478 assert(Scale.exactLogBase2() == logScale); 1479 continue; 1480 } 1481 } 1482 1483 // Unsupported expression, bail out. 1484 return nullptr; 1485 } 1486 1487 // If Op is zero then Val = Op * Scale. 1488 if (match(Op, m_Zero())) { 1489 NoSignedWrap = true; 1490 return Op; 1491 } 1492 1493 // We know that we can successfully descale, so from here on we can safely 1494 // modify the IR. Op holds the descaled version of the deepest term in the 1495 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1496 // not to overflow. 1497 1498 if (!Parent.first) 1499 // The expression only had one term. 1500 return Op; 1501 1502 // Rewrite the parent using the descaled version of its operand. 1503 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1504 assert(Op != Parent.first->getOperand(Parent.second) && 1505 "Descaling was a no-op?"); 1506 replaceOperand(*Parent.first, Parent.second, Op); 1507 Worklist.push(Parent.first); 1508 1509 // Now work back up the expression correcting nsw flags. The logic is based 1510 // on the following observation: if X * Y is known not to overflow as a signed 1511 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1512 // then X * Z will not overflow as a signed multiplication either. As we work 1513 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1514 // current level has strictly smaller absolute value than the original. 1515 Instruction *Ancestor = Parent.first; 1516 do { 1517 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1518 // If the multiplication wasn't nsw then we can't say anything about the 1519 // value of the descaled multiplication, and we have to clear nsw flags 1520 // from this point on up. 1521 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1522 NoSignedWrap &= OpNoSignedWrap; 1523 if (NoSignedWrap != OpNoSignedWrap) { 1524 BO->setHasNoSignedWrap(NoSignedWrap); 1525 Worklist.push(Ancestor); 1526 } 1527 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1528 // The fact that the descaled input to the trunc has smaller absolute 1529 // value than the original input doesn't tell us anything useful about 1530 // the absolute values of the truncations. 1531 NoSignedWrap = false; 1532 } 1533 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1534 "Failed to keep proper track of nsw flags while drilling down?"); 1535 1536 if (Ancestor == Val) 1537 // Got to the top, all done! 1538 return Val; 1539 1540 // Move up one level in the expression. 1541 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1542 Ancestor = Ancestor->user_back(); 1543 } while (true); 1544 } 1545 1546 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 1547 if (!isa<VectorType>(Inst.getType())) 1548 return nullptr; 1549 1550 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1551 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1552 assert(cast<VectorType>(LHS->getType())->getElementCount() == 1553 cast<VectorType>(Inst.getType())->getElementCount()); 1554 assert(cast<VectorType>(RHS->getType())->getElementCount() == 1555 cast<VectorType>(Inst.getType())->getElementCount()); 1556 1557 // If both operands of the binop are vector concatenations, then perform the 1558 // narrow binop on each pair of the source operands followed by concatenation 1559 // of the results. 1560 Value *L0, *L1, *R0, *R1; 1561 ArrayRef<int> Mask; 1562 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 1563 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 1564 LHS->hasOneUse() && RHS->hasOneUse() && 1565 cast<ShuffleVectorInst>(LHS)->isConcat() && 1566 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1567 // This transform does not have the speculative execution constraint as 1568 // below because the shuffle is a concatenation. The new binops are 1569 // operating on exactly the same elements as the existing binop. 1570 // TODO: We could ease the mask requirement to allow different undef lanes, 1571 // but that requires an analysis of the binop-with-undef output value. 1572 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1573 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1574 BO->copyIRFlags(&Inst); 1575 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1576 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1577 BO->copyIRFlags(&Inst); 1578 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1579 } 1580 1581 // It may not be safe to reorder shuffles and things like div, urem, etc. 1582 // because we may trap when executing those ops on unknown vector elements. 1583 // See PR20059. 1584 if (!isSafeToSpeculativelyExecute(&Inst)) 1585 return nullptr; 1586 1587 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 1588 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1589 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1590 BO->copyIRFlags(&Inst); 1591 return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M); 1592 }; 1593 1594 // If both arguments of the binary operation are shuffles that use the same 1595 // mask and shuffle within a single vector, move the shuffle after the binop. 1596 Value *V1, *V2; 1597 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) && 1598 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) && 1599 V1->getType() == V2->getType() && 1600 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1601 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1602 return createBinOpShuffle(V1, V2, Mask); 1603 } 1604 1605 // If both arguments of a commutative binop are select-shuffles that use the 1606 // same mask with commuted operands, the shuffles are unnecessary. 1607 if (Inst.isCommutative() && 1608 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 1609 match(RHS, 1610 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 1611 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1612 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1613 // TODO: Allow shuffles that contain undefs in the mask? 1614 // That is legal, but it reduces undef knowledge. 1615 // TODO: Allow arbitrary shuffles by shuffling after binop? 1616 // That might be legal, but we have to deal with poison. 1617 if (LShuf->isSelect() && 1618 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) && 1619 RShuf->isSelect() && 1620 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) { 1621 // Example: 1622 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1623 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1624 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1625 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1626 NewBO->copyIRFlags(&Inst); 1627 return NewBO; 1628 } 1629 } 1630 1631 // If one argument is a shuffle within one vector and the other is a constant, 1632 // try moving the shuffle after the binary operation. This canonicalization 1633 // intends to move shuffles closer to other shuffles and binops closer to 1634 // other binops, so they can be folded. It may also enable demanded elements 1635 // transforms. 1636 Constant *C; 1637 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 1638 if (InstVTy && 1639 match(&Inst, 1640 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))), 1641 m_ImmConstant(C))) && 1642 cast<FixedVectorType>(V1->getType())->getNumElements() <= 1643 InstVTy->getNumElements()) { 1644 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 1645 "Shuffle should not change scalar type"); 1646 1647 // Find constant NewC that has property: 1648 // shuffle(NewC, ShMask) = C 1649 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1650 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1651 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1652 bool ConstOp1 = isa<Constant>(RHS); 1653 ArrayRef<int> ShMask = Mask; 1654 unsigned SrcVecNumElts = 1655 cast<FixedVectorType>(V1->getType())->getNumElements(); 1656 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1657 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1658 bool MayChange = true; 1659 unsigned NumElts = InstVTy->getNumElements(); 1660 for (unsigned I = 0; I < NumElts; ++I) { 1661 Constant *CElt = C->getAggregateElement(I); 1662 if (ShMask[I] >= 0) { 1663 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1664 Constant *NewCElt = NewVecC[ShMask[I]]; 1665 // Bail out if: 1666 // 1. The constant vector contains a constant expression. 1667 // 2. The shuffle needs an element of the constant vector that can't 1668 // be mapped to a new constant vector. 1669 // 3. This is a widening shuffle that copies elements of V1 into the 1670 // extended elements (extending with undef is allowed). 1671 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1672 I >= SrcVecNumElts) { 1673 MayChange = false; 1674 break; 1675 } 1676 NewVecC[ShMask[I]] = CElt; 1677 } 1678 // If this is a widening shuffle, we must be able to extend with undef 1679 // elements. If the original binop does not produce an undef in the high 1680 // lanes, then this transform is not safe. 1681 // Similarly for undef lanes due to the shuffle mask, we can only 1682 // transform binops that preserve undef. 1683 // TODO: We could shuffle those non-undef constant values into the 1684 // result by using a constant vector (rather than an undef vector) 1685 // as operand 1 of the new binop, but that might be too aggressive 1686 // for target-independent shuffle creation. 1687 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1688 Constant *MaybeUndef = 1689 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1690 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1691 if (!match(MaybeUndef, m_Undef())) { 1692 MayChange = false; 1693 break; 1694 } 1695 } 1696 } 1697 if (MayChange) { 1698 Constant *NewC = ConstantVector::get(NewVecC); 1699 // It may not be safe to execute a binop on a vector with undef elements 1700 // because the entire instruction can be folded to undef or create poison 1701 // that did not exist in the original code. 1702 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1703 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1704 1705 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1706 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1707 Value *NewLHS = ConstOp1 ? V1 : NewC; 1708 Value *NewRHS = ConstOp1 ? NewC : V1; 1709 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1710 } 1711 } 1712 1713 // Try to reassociate to sink a splat shuffle after a binary operation. 1714 if (Inst.isAssociative() && Inst.isCommutative()) { 1715 // Canonicalize shuffle operand as LHS. 1716 if (isa<ShuffleVectorInst>(RHS)) 1717 std::swap(LHS, RHS); 1718 1719 Value *X; 1720 ArrayRef<int> MaskC; 1721 int SplatIndex; 1722 BinaryOperator *BO; 1723 if (!match(LHS, 1724 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 1725 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || 1726 X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) || 1727 BO->getOpcode() != Opcode) 1728 return nullptr; 1729 1730 // FIXME: This may not be safe if the analysis allows undef elements. By 1731 // moving 'Y' before the splat shuffle, we are implicitly assuming 1732 // that it is not undef/poison at the splat index. 1733 Value *Y, *OtherOp; 1734 if (isSplatValue(BO->getOperand(0), SplatIndex)) { 1735 Y = BO->getOperand(0); 1736 OtherOp = BO->getOperand(1); 1737 } else if (isSplatValue(BO->getOperand(1), SplatIndex)) { 1738 Y = BO->getOperand(1); 1739 OtherOp = BO->getOperand(0); 1740 } else { 1741 return nullptr; 1742 } 1743 1744 // X and Y are splatted values, so perform the binary operation on those 1745 // values followed by a splat followed by the 2nd binary operation: 1746 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 1747 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 1748 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 1749 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 1750 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 1751 1752 // Intersect FMF on both new binops. Other (poison-generating) flags are 1753 // dropped to be safe. 1754 if (isa<FPMathOperator>(R)) { 1755 R->copyFastMathFlags(&Inst); 1756 R->andIRFlags(BO); 1757 } 1758 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 1759 NewInstBO->copyIRFlags(R); 1760 return R; 1761 } 1762 1763 return nullptr; 1764 } 1765 1766 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1767 /// of a value. This requires a potentially expensive known bits check to make 1768 /// sure the narrow op does not overflow. 1769 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 1770 // We need at least one extended operand. 1771 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1772 1773 // If this is a sub, we swap the operands since we always want an extension 1774 // on the RHS. The LHS can be an extension or a constant. 1775 if (BO.getOpcode() == Instruction::Sub) 1776 std::swap(Op0, Op1); 1777 1778 Value *X; 1779 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1780 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1781 return nullptr; 1782 1783 // If both operands are the same extension from the same source type and we 1784 // can eliminate at least one (hasOneUse), this might work. 1785 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1786 Value *Y; 1787 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1788 cast<Operator>(Op1)->getOpcode() == CastOpc && 1789 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1790 // If that did not match, see if we have a suitable constant operand. 1791 // Truncating and extending must produce the same constant. 1792 Constant *WideC; 1793 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1794 return nullptr; 1795 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1796 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1797 return nullptr; 1798 Y = NarrowC; 1799 } 1800 1801 // Swap back now that we found our operands. 1802 if (BO.getOpcode() == Instruction::Sub) 1803 std::swap(X, Y); 1804 1805 // Both operands have narrow versions. Last step: the math must not overflow 1806 // in the narrow width. 1807 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1808 return nullptr; 1809 1810 // bo (ext X), (ext Y) --> ext (bo X, Y) 1811 // bo (ext X), C --> ext (bo X, C') 1812 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1813 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1814 if (IsSext) 1815 NewBinOp->setHasNoSignedWrap(); 1816 else 1817 NewBinOp->setHasNoUnsignedWrap(); 1818 } 1819 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1820 } 1821 1822 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 1823 // At least one GEP must be inbounds. 1824 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 1825 return false; 1826 1827 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 1828 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 1829 } 1830 1831 /// Thread a GEP operation with constant indices through the constant true/false 1832 /// arms of a select. 1833 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 1834 InstCombiner::BuilderTy &Builder) { 1835 if (!GEP.hasAllConstantIndices()) 1836 return nullptr; 1837 1838 Instruction *Sel; 1839 Value *Cond; 1840 Constant *TrueC, *FalseC; 1841 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 1842 !match(Sel, 1843 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 1844 return nullptr; 1845 1846 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 1847 // Propagate 'inbounds' and metadata from existing instructions. 1848 // Note: using IRBuilder to create the constants for efficiency. 1849 SmallVector<Value *, 4> IndexC(GEP.indices()); 1850 bool IsInBounds = GEP.isInBounds(); 1851 Type *Ty = GEP.getSourceElementType(); 1852 Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC) 1853 : Builder.CreateGEP(Ty, TrueC, IndexC); 1854 Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC) 1855 : Builder.CreateGEP(Ty, FalseC, IndexC); 1856 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 1857 } 1858 1859 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1860 SmallVector<Value *, 8> Ops(GEP.operands()); 1861 Type *GEPType = GEP.getType(); 1862 Type *GEPEltType = GEP.getSourceElementType(); 1863 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType); 1864 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP))) 1865 return replaceInstUsesWith(GEP, V); 1866 1867 // For vector geps, use the generic demanded vector support. 1868 // Skip if GEP return type is scalable. The number of elements is unknown at 1869 // compile-time. 1870 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 1871 auto VWidth = GEPFVTy->getNumElements(); 1872 APInt UndefElts(VWidth, 0); 1873 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1874 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 1875 UndefElts)) { 1876 if (V != &GEP) 1877 return replaceInstUsesWith(GEP, V); 1878 return &GEP; 1879 } 1880 1881 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 1882 // possible (decide on canonical form for pointer broadcast), 3) exploit 1883 // undef elements to decrease demanded bits 1884 } 1885 1886 Value *PtrOp = GEP.getOperand(0); 1887 1888 // Eliminate unneeded casts for indices, and replace indices which displace 1889 // by multiples of a zero size type with zero. 1890 bool MadeChange = false; 1891 1892 // Index width may not be the same width as pointer width. 1893 // Data layout chooses the right type based on supported integer types. 1894 Type *NewScalarIndexTy = 1895 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 1896 1897 gep_type_iterator GTI = gep_type_begin(GEP); 1898 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1899 ++I, ++GTI) { 1900 // Skip indices into struct types. 1901 if (GTI.isStruct()) 1902 continue; 1903 1904 Type *IndexTy = (*I)->getType(); 1905 Type *NewIndexType = 1906 IndexTy->isVectorTy() 1907 ? VectorType::get(NewScalarIndexTy, 1908 cast<VectorType>(IndexTy)->getElementCount()) 1909 : NewScalarIndexTy; 1910 1911 // If the element type has zero size then any index over it is equivalent 1912 // to an index of zero, so replace it with zero if it is not zero already. 1913 Type *EltTy = GTI.getIndexedType(); 1914 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 1915 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 1916 *I = Constant::getNullValue(NewIndexType); 1917 MadeChange = true; 1918 } 1919 1920 if (IndexTy != NewIndexType) { 1921 // If we are using a wider index than needed for this platform, shrink 1922 // it to what we need. If narrower, sign-extend it to what we need. 1923 // This explicit cast can make subsequent optimizations more obvious. 1924 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1925 MadeChange = true; 1926 } 1927 } 1928 if (MadeChange) 1929 return &GEP; 1930 1931 // Check to see if the inputs to the PHI node are getelementptr instructions. 1932 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 1933 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1934 if (!Op1) 1935 return nullptr; 1936 1937 // Don't fold a GEP into itself through a PHI node. This can only happen 1938 // through the back-edge of a loop. Folding a GEP into itself means that 1939 // the value of the previous iteration needs to be stored in the meantime, 1940 // thus requiring an additional register variable to be live, but not 1941 // actually achieving anything (the GEP still needs to be executed once per 1942 // loop iteration). 1943 if (Op1 == &GEP) 1944 return nullptr; 1945 1946 int DI = -1; 1947 1948 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1949 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 1950 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1951 return nullptr; 1952 1953 // As for Op1 above, don't try to fold a GEP into itself. 1954 if (Op2 == &GEP) 1955 return nullptr; 1956 1957 // Keep track of the type as we walk the GEP. 1958 Type *CurTy = nullptr; 1959 1960 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1961 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1962 return nullptr; 1963 1964 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1965 if (DI == -1) { 1966 // We have not seen any differences yet in the GEPs feeding the 1967 // PHI yet, so we record this one if it is allowed to be a 1968 // variable. 1969 1970 // The first two arguments can vary for any GEP, the rest have to be 1971 // static for struct slots 1972 if (J > 1) { 1973 assert(CurTy && "No current type?"); 1974 if (CurTy->isStructTy()) 1975 return nullptr; 1976 } 1977 1978 DI = J; 1979 } else { 1980 // The GEP is different by more than one input. While this could be 1981 // extended to support GEPs that vary by more than one variable it 1982 // doesn't make sense since it greatly increases the complexity and 1983 // would result in an R+R+R addressing mode which no backend 1984 // directly supports and would need to be broken into several 1985 // simpler instructions anyway. 1986 return nullptr; 1987 } 1988 } 1989 1990 // Sink down a layer of the type for the next iteration. 1991 if (J > 0) { 1992 if (J == 1) { 1993 CurTy = Op1->getSourceElementType(); 1994 } else { 1995 CurTy = 1996 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 1997 } 1998 } 1999 } 2000 } 2001 2002 // If not all GEPs are identical we'll have to create a new PHI node. 2003 // Check that the old PHI node has only one use so that it will get 2004 // removed. 2005 if (DI != -1 && !PN->hasOneUse()) 2006 return nullptr; 2007 2008 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 2009 if (DI == -1) { 2010 // All the GEPs feeding the PHI are identical. Clone one down into our 2011 // BB so that it can be merged with the current GEP. 2012 } else { 2013 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 2014 // into the current block so it can be merged, and create a new PHI to 2015 // set that index. 2016 PHINode *NewPN; 2017 { 2018 IRBuilderBase::InsertPointGuard Guard(Builder); 2019 Builder.SetInsertPoint(PN); 2020 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 2021 PN->getNumOperands()); 2022 } 2023 2024 for (auto &I : PN->operands()) 2025 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 2026 PN->getIncomingBlock(I)); 2027 2028 NewGEP->setOperand(DI, NewPN); 2029 } 2030 2031 GEP.getParent()->getInstList().insert( 2032 GEP.getParent()->getFirstInsertionPt(), NewGEP); 2033 replaceOperand(GEP, 0, NewGEP); 2034 PtrOp = NewGEP; 2035 } 2036 2037 // Combine Indices - If the source pointer to this getelementptr instruction 2038 // is a getelementptr instruction, combine the indices of the two 2039 // getelementptr instructions into a single instruction. 2040 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { 2041 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 2042 return nullptr; 2043 2044 // Try to reassociate loop invariant GEP chains to enable LICM. 2045 if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 2046 Src->hasOneUse()) { 2047 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 2048 Value *GO1 = GEP.getOperand(1); 2049 Value *SO1 = Src->getOperand(1); 2050 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 2051 // invariant: this breaks the dependence between GEPs and allows LICM 2052 // to hoist the invariant part out of the loop. 2053 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 2054 // We have to be careful here. 2055 // We have something like: 2056 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 2057 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 2058 // If we just swap idx & idx2 then we could inadvertantly 2059 // change %src from a vector to a scalar, or vice versa. 2060 // Cases: 2061 // 1) %base a scalar & idx a scalar & idx2 a vector 2062 // => Swapping idx & idx2 turns %src into a vector type. 2063 // 2) %base a scalar & idx a vector & idx2 a scalar 2064 // => Swapping idx & idx2 turns %src in a scalar type 2065 // 3) %base, %idx, and %idx2 are scalars 2066 // => %src & %gep are scalars 2067 // => swapping idx & idx2 is safe 2068 // 4) %base a vector 2069 // => %src is a vector 2070 // => swapping idx & idx2 is safe. 2071 auto *SO0 = Src->getOperand(0); 2072 auto *SO0Ty = SO0->getType(); 2073 if (!isa<VectorType>(GEPType) || // case 3 2074 isa<VectorType>(SO0Ty)) { // case 4 2075 Src->setOperand(1, GO1); 2076 GEP.setOperand(1, SO1); 2077 return &GEP; 2078 } else { 2079 // Case 1 or 2 2080 // -- have to recreate %src & %gep 2081 // put NewSrc at same location as %src 2082 Builder.SetInsertPoint(cast<Instruction>(PtrOp)); 2083 auto *NewSrc = cast<GetElementPtrInst>( 2084 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName())); 2085 NewSrc->setIsInBounds(Src->isInBounds()); 2086 auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1}); 2087 NewGEP->setIsInBounds(GEP.isInBounds()); 2088 return NewGEP; 2089 } 2090 } 2091 } 2092 } 2093 2094 // Note that if our source is a gep chain itself then we wait for that 2095 // chain to be resolved before we perform this transformation. This 2096 // avoids us creating a TON of code in some cases. 2097 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 2098 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 2099 return nullptr; // Wait until our source is folded to completion. 2100 2101 SmallVector<Value*, 8> Indices; 2102 2103 // Find out whether the last index in the source GEP is a sequential idx. 2104 bool EndsWithSequential = false; 2105 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 2106 I != E; ++I) 2107 EndsWithSequential = I.isSequential(); 2108 2109 // Can we combine the two pointer arithmetics offsets? 2110 if (EndsWithSequential) { 2111 // Replace: gep (gep %P, long B), long A, ... 2112 // With: T = long A+B; gep %P, T, ... 2113 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 2114 Value *GO1 = GEP.getOperand(1); 2115 2116 // If they aren't the same type, then the input hasn't been processed 2117 // by the loop above yet (which canonicalizes sequential index types to 2118 // intptr_t). Just avoid transforming this until the input has been 2119 // normalized. 2120 if (SO1->getType() != GO1->getType()) 2121 return nullptr; 2122 2123 Value *Sum = 2124 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 2125 // Only do the combine when we are sure the cost after the 2126 // merge is never more than that before the merge. 2127 if (Sum == nullptr) 2128 return nullptr; 2129 2130 // Update the GEP in place if possible. 2131 if (Src->getNumOperands() == 2) { 2132 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 2133 replaceOperand(GEP, 0, Src->getOperand(0)); 2134 replaceOperand(GEP, 1, Sum); 2135 return &GEP; 2136 } 2137 Indices.append(Src->op_begin()+1, Src->op_end()-1); 2138 Indices.push_back(Sum); 2139 Indices.append(GEP.op_begin()+2, GEP.op_end()); 2140 } else if (isa<Constant>(*GEP.idx_begin()) && 2141 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2142 Src->getNumOperands() != 1) { 2143 // Otherwise we can do the fold if the first index of the GEP is a zero 2144 Indices.append(Src->op_begin()+1, Src->op_end()); 2145 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2146 } 2147 2148 if (!Indices.empty()) 2149 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2150 ? GetElementPtrInst::CreateInBounds( 2151 Src->getSourceElementType(), Src->getOperand(0), Indices, 2152 GEP.getName()) 2153 : GetElementPtrInst::Create(Src->getSourceElementType(), 2154 Src->getOperand(0), Indices, 2155 GEP.getName()); 2156 } 2157 2158 // Skip if GEP source element type is scalable. The type alloc size is unknown 2159 // at compile-time. 2160 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { 2161 unsigned AS = GEP.getPointerAddressSpace(); 2162 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 2163 DL.getIndexSizeInBits(AS)) { 2164 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2165 2166 bool Matched = false; 2167 uint64_t C; 2168 Value *V = nullptr; 2169 if (TyAllocSize == 1) { 2170 V = GEP.getOperand(1); 2171 Matched = true; 2172 } else if (match(GEP.getOperand(1), 2173 m_AShr(m_Value(V), m_ConstantInt(C)))) { 2174 if (TyAllocSize == 1ULL << C) 2175 Matched = true; 2176 } else if (match(GEP.getOperand(1), 2177 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 2178 if (TyAllocSize == C) 2179 Matched = true; 2180 } 2181 2182 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but 2183 // only if both point to the same underlying object (otherwise provenance 2184 // is not necessarily retained). 2185 Value *Y; 2186 Value *X = GEP.getOperand(0); 2187 if (Matched && 2188 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 2189 getUnderlyingObject(X) == getUnderlyingObject(Y)) 2190 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 2191 } 2192 } 2193 2194 // We do not handle pointer-vector geps here. 2195 if (GEPType->isVectorTy()) 2196 return nullptr; 2197 2198 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 2199 Value *StrippedPtr = PtrOp->stripPointerCasts(); 2200 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 2201 2202 if (StrippedPtr != PtrOp) { 2203 bool HasZeroPointerIndex = false; 2204 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType(); 2205 2206 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 2207 HasZeroPointerIndex = C->isZero(); 2208 2209 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2210 // into : GEP [10 x i8]* X, i32 0, ... 2211 // 2212 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2213 // into : GEP i8* X, ... 2214 // 2215 // This occurs when the program declares an array extern like "int X[];" 2216 if (HasZeroPointerIndex) { 2217 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2218 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2219 if (CATy->getElementType() == StrippedPtrEltTy) { 2220 // -> GEP i8* X, ... 2221 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices())); 2222 GetElementPtrInst *Res = GetElementPtrInst::Create( 2223 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2224 Res->setIsInBounds(GEP.isInBounds()); 2225 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2226 return Res; 2227 // Insert Res, and create an addrspacecast. 2228 // e.g., 2229 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2230 // -> 2231 // %0 = GEP i8 addrspace(1)* X, ... 2232 // addrspacecast i8 addrspace(1)* %0 to i8* 2233 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2234 } 2235 2236 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2237 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2238 if (CATy->getElementType() == XATy->getElementType()) { 2239 // -> GEP [10 x i8]* X, i32 0, ... 2240 // At this point, we know that the cast source type is a pointer 2241 // to an array of the same type as the destination pointer 2242 // array. Because the array type is never stepped over (there 2243 // is a leading zero) we can fold the cast into this GEP. 2244 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2245 GEP.setSourceElementType(XATy); 2246 return replaceOperand(GEP, 0, StrippedPtr); 2247 } 2248 // Cannot replace the base pointer directly because StrippedPtr's 2249 // address space is different. Instead, create a new GEP followed by 2250 // an addrspacecast. 2251 // e.g., 2252 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2253 // i32 0, ... 2254 // -> 2255 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2256 // addrspacecast i8 addrspace(1)* %0 to i8* 2257 SmallVector<Value *, 8> Idx(GEP.indices()); 2258 Value *NewGEP = 2259 GEP.isInBounds() 2260 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2261 Idx, GEP.getName()) 2262 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2263 GEP.getName()); 2264 return new AddrSpaceCastInst(NewGEP, GEPType); 2265 } 2266 } 2267 } 2268 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) { 2269 // Skip if GEP source element type is scalable. The type alloc size is 2270 // unknown at compile-time. 2271 // Transform things like: %t = getelementptr i32* 2272 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2 2273 // x i32]* %str, i32 0, i32 %V; bitcast 2274 if (StrippedPtrEltTy->isArrayTy() && 2275 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2276 DL.getTypeAllocSize(GEPEltType)) { 2277 Type *IdxType = DL.getIndexType(GEPType); 2278 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 2279 Value *NewGEP = 2280 GEP.isInBounds() 2281 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2282 GEP.getName()) 2283 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2284 GEP.getName()); 2285 2286 // V and GEP are both pointer types --> BitCast 2287 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2288 } 2289 2290 // Transform things like: 2291 // %V = mul i64 %N, 4 2292 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2293 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2294 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2295 // Check that changing the type amounts to dividing the index by a scale 2296 // factor. 2297 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2298 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize(); 2299 if (ResSize && SrcSize % ResSize == 0) { 2300 Value *Idx = GEP.getOperand(1); 2301 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2302 uint64_t Scale = SrcSize / ResSize; 2303 2304 // Earlier transforms ensure that the index has the right type 2305 // according to Data Layout, which considerably simplifies the 2306 // logic by eliminating implicit casts. 2307 assert(Idx->getType() == DL.getIndexType(GEPType) && 2308 "Index type does not match the Data Layout preferences"); 2309 2310 bool NSW; 2311 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2312 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2313 // If the multiplication NewIdx * Scale may overflow then the new 2314 // GEP may not be "inbounds". 2315 Value *NewGEP = 2316 GEP.isInBounds() && NSW 2317 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2318 NewIdx, GEP.getName()) 2319 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2320 GEP.getName()); 2321 2322 // The NewGEP must be pointer typed, so must the old one -> BitCast 2323 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2324 GEPType); 2325 } 2326 } 2327 } 2328 2329 // Similarly, transform things like: 2330 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2331 // (where tmp = 8*tmp2) into: 2332 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2333 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2334 StrippedPtrEltTy->isArrayTy()) { 2335 // Check that changing to the array element type amounts to dividing the 2336 // index by a scale factor. 2337 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2338 uint64_t ArrayEltSize = 2339 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) 2340 .getFixedSize(); 2341 if (ResSize && ArrayEltSize % ResSize == 0) { 2342 Value *Idx = GEP.getOperand(1); 2343 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2344 uint64_t Scale = ArrayEltSize / ResSize; 2345 2346 // Earlier transforms ensure that the index has the right type 2347 // according to the Data Layout, which considerably simplifies 2348 // the logic by eliminating implicit casts. 2349 assert(Idx->getType() == DL.getIndexType(GEPType) && 2350 "Index type does not match the Data Layout preferences"); 2351 2352 bool NSW; 2353 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2354 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2355 // If the multiplication NewIdx * Scale may overflow then the new 2356 // GEP may not be "inbounds". 2357 Type *IndTy = DL.getIndexType(GEPType); 2358 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2359 2360 Value *NewGEP = 2361 GEP.isInBounds() && NSW 2362 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2363 Off, GEP.getName()) 2364 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2365 GEP.getName()); 2366 // The NewGEP must be pointer typed, so must the old one -> BitCast 2367 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2368 GEPType); 2369 } 2370 } 2371 } 2372 } 2373 } 2374 2375 // addrspacecast between types is canonicalized as a bitcast, then an 2376 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2377 // through the addrspacecast. 2378 Value *ASCStrippedPtrOp = PtrOp; 2379 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2380 // X = bitcast A addrspace(1)* to B addrspace(1)* 2381 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2382 // Z = gep Y, <...constant indices...> 2383 // Into an addrspacecasted GEP of the struct. 2384 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2385 ASCStrippedPtrOp = BC; 2386 } 2387 2388 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 2389 Value *SrcOp = BCI->getOperand(0); 2390 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2391 Type *SrcEltType = SrcType->getElementType(); 2392 2393 // GEP directly using the source operand if this GEP is accessing an element 2394 // of a bitcasted pointer to vector or array of the same dimensions: 2395 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2396 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2397 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, 2398 const DataLayout &DL) { 2399 auto *VecVTy = cast<FixedVectorType>(VecTy); 2400 return ArrTy->getArrayElementType() == VecVTy->getElementType() && 2401 ArrTy->getArrayNumElements() == VecVTy->getNumElements() && 2402 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); 2403 }; 2404 if (GEP.getNumOperands() == 3 && 2405 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) && 2406 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || 2407 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() && 2408 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { 2409 2410 // Create a new GEP here, as using `setOperand()` followed by 2411 // `setSourceElementType()` won't actually update the type of the 2412 // existing GEP Value. Causing issues if this Value is accessed when 2413 // constructing an AddrSpaceCastInst 2414 Value *NGEP = 2415 GEP.isInBounds() 2416 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}) 2417 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}); 2418 NGEP->takeName(&GEP); 2419 2420 // Preserve GEP address space to satisfy users 2421 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2422 return new AddrSpaceCastInst(NGEP, GEPType); 2423 2424 return replaceInstUsesWith(GEP, NGEP); 2425 } 2426 2427 // See if we can simplify: 2428 // X = bitcast A* to B* 2429 // Y = gep X, <...constant indices...> 2430 // into a gep of the original struct. This is important for SROA and alias 2431 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2432 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 2433 APInt Offset(OffsetBits, 0); 2434 2435 // If the bitcast argument is an allocation, The bitcast is for convertion 2436 // to actual type of allocation. Removing such bitcasts, results in having 2437 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of 2438 // struct or array hierarchy. 2439 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have 2440 // a better chance to succeed. 2441 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) && 2442 !isAllocationFn(SrcOp, &TLI)) { 2443 // If this GEP instruction doesn't move the pointer, just replace the GEP 2444 // with a bitcast of the real input to the dest type. 2445 if (!Offset) { 2446 // If the bitcast is of an allocation, and the allocation will be 2447 // converted to match the type of the cast, don't touch this. 2448 if (isa<AllocaInst>(SrcOp)) { 2449 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2450 if (Instruction *I = visitBitCast(*BCI)) { 2451 if (I != BCI) { 2452 I->takeName(BCI); 2453 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2454 replaceInstUsesWith(*BCI, I); 2455 } 2456 return &GEP; 2457 } 2458 } 2459 2460 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2461 return new AddrSpaceCastInst(SrcOp, GEPType); 2462 return new BitCastInst(SrcOp, GEPType); 2463 } 2464 2465 // Otherwise, if the offset is non-zero, we need to find out if there is a 2466 // field at Offset in 'A's type. If so, we can pull the cast through the 2467 // GEP. 2468 SmallVector<Value*, 8> NewIndices; 2469 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2470 Value *NGEP = 2471 GEP.isInBounds() 2472 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) 2473 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); 2474 2475 if (NGEP->getType() == GEPType) 2476 return replaceInstUsesWith(GEP, NGEP); 2477 NGEP->takeName(&GEP); 2478 2479 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2480 return new AddrSpaceCastInst(NGEP, GEPType); 2481 return new BitCastInst(NGEP, GEPType); 2482 } 2483 } 2484 } 2485 2486 if (!GEP.isInBounds()) { 2487 unsigned IdxWidth = 2488 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2489 APInt BasePtrOffset(IdxWidth, 0); 2490 Value *UnderlyingPtrOp = 2491 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2492 BasePtrOffset); 2493 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2494 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2495 BasePtrOffset.isNonNegative()) { 2496 APInt AllocSize( 2497 IdxWidth, 2498 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize()); 2499 if (BasePtrOffset.ule(AllocSize)) { 2500 return GetElementPtrInst::CreateInBounds( 2501 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1), 2502 GEP.getName()); 2503 } 2504 } 2505 } 2506 } 2507 2508 if (Instruction *R = foldSelectGEP(GEP, Builder)) 2509 return R; 2510 2511 return nullptr; 2512 } 2513 2514 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 2515 Instruction *AI) { 2516 if (isa<ConstantPointerNull>(V)) 2517 return true; 2518 if (auto *LI = dyn_cast<LoadInst>(V)) 2519 return isa<GlobalVariable>(LI->getPointerOperand()); 2520 // Two distinct allocations will never be equal. 2521 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2522 // through bitcasts of V can cause 2523 // the result statement below to be true, even when AI and V (ex: 2524 // i8* ->i32* ->i8* of AI) are the same allocations. 2525 return isAllocLikeFn(V, TLI) && V != AI; 2526 } 2527 2528 static bool isAllocSiteRemovable(Instruction *AI, 2529 SmallVectorImpl<WeakTrackingVH> &Users, 2530 const TargetLibraryInfo *TLI) { 2531 SmallVector<Instruction*, 4> Worklist; 2532 Worklist.push_back(AI); 2533 2534 do { 2535 Instruction *PI = Worklist.pop_back_val(); 2536 for (User *U : PI->users()) { 2537 Instruction *I = cast<Instruction>(U); 2538 switch (I->getOpcode()) { 2539 default: 2540 // Give up the moment we see something we can't handle. 2541 return false; 2542 2543 case Instruction::AddrSpaceCast: 2544 case Instruction::BitCast: 2545 case Instruction::GetElementPtr: 2546 Users.emplace_back(I); 2547 Worklist.push_back(I); 2548 continue; 2549 2550 case Instruction::ICmp: { 2551 ICmpInst *ICI = cast<ICmpInst>(I); 2552 // We can fold eq/ne comparisons with null to false/true, respectively. 2553 // We also fold comparisons in some conditions provided the alloc has 2554 // not escaped (see isNeverEqualToUnescapedAlloc). 2555 if (!ICI->isEquality()) 2556 return false; 2557 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2558 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2559 return false; 2560 Users.emplace_back(I); 2561 continue; 2562 } 2563 2564 case Instruction::Call: 2565 // Ignore no-op and store intrinsics. 2566 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2567 switch (II->getIntrinsicID()) { 2568 default: 2569 return false; 2570 2571 case Intrinsic::memmove: 2572 case Intrinsic::memcpy: 2573 case Intrinsic::memset: { 2574 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2575 if (MI->isVolatile() || MI->getRawDest() != PI) 2576 return false; 2577 LLVM_FALLTHROUGH; 2578 } 2579 case Intrinsic::assume: 2580 case Intrinsic::invariant_start: 2581 case Intrinsic::invariant_end: 2582 case Intrinsic::lifetime_start: 2583 case Intrinsic::lifetime_end: 2584 case Intrinsic::objectsize: 2585 Users.emplace_back(I); 2586 continue; 2587 } 2588 } 2589 2590 if (isFreeCall(I, TLI)) { 2591 Users.emplace_back(I); 2592 continue; 2593 } 2594 return false; 2595 2596 case Instruction::Store: { 2597 StoreInst *SI = cast<StoreInst>(I); 2598 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2599 return false; 2600 Users.emplace_back(I); 2601 continue; 2602 } 2603 } 2604 llvm_unreachable("missing a return?"); 2605 } 2606 } while (!Worklist.empty()); 2607 return true; 2608 } 2609 2610 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 2611 // If we have a malloc call which is only used in any amount of comparisons to 2612 // null and free calls, delete the calls and replace the comparisons with true 2613 // or false as appropriate. 2614 2615 // This is based on the principle that we can substitute our own allocation 2616 // function (which will never return null) rather than knowledge of the 2617 // specific function being called. In some sense this can change the permitted 2618 // outputs of a program (when we convert a malloc to an alloca, the fact that 2619 // the allocation is now on the stack is potentially visible, for example), 2620 // but we believe in a permissible manner. 2621 SmallVector<WeakTrackingVH, 64> Users; 2622 2623 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2624 // before each store. 2625 SmallVector<DbgVariableIntrinsic *, 8> DVIs; 2626 std::unique_ptr<DIBuilder> DIB; 2627 if (isa<AllocaInst>(MI)) { 2628 findDbgUsers(DVIs, &MI); 2629 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2630 } 2631 2632 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2633 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2634 // Lowering all @llvm.objectsize calls first because they may 2635 // use a bitcast/GEP of the alloca we are removing. 2636 if (!Users[i]) 2637 continue; 2638 2639 Instruction *I = cast<Instruction>(&*Users[i]); 2640 2641 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2642 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2643 Value *Result = 2644 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); 2645 replaceInstUsesWith(*I, Result); 2646 eraseInstFromFunction(*I); 2647 Users[i] = nullptr; // Skip examining in the next loop. 2648 } 2649 } 2650 } 2651 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2652 if (!Users[i]) 2653 continue; 2654 2655 Instruction *I = cast<Instruction>(&*Users[i]); 2656 2657 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2658 replaceInstUsesWith(*C, 2659 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2660 C->isFalseWhenEqual())); 2661 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2662 for (auto *DVI : DVIs) 2663 if (DVI->isAddressOfVariable()) 2664 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 2665 } else { 2666 // Casts, GEP, or anything else: we're about to delete this instruction, 2667 // so it can not have any valid uses. 2668 replaceInstUsesWith(*I, UndefValue::get(I->getType())); 2669 } 2670 eraseInstFromFunction(*I); 2671 } 2672 2673 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2674 // Replace invoke with a NOP intrinsic to maintain the original CFG 2675 Module *M = II->getModule(); 2676 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2677 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2678 None, "", II->getParent()); 2679 } 2680 2681 // Remove debug intrinsics which describe the value contained within the 2682 // alloca. In addition to removing dbg.{declare,addr} which simply point to 2683 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 2684 // 2685 // ``` 2686 // define void @foo(i32 %0) { 2687 // %a = alloca i32 ; Deleted. 2688 // store i32 %0, i32* %a 2689 // dbg.value(i32 %0, "arg0") ; Not deleted. 2690 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 2691 // call void @trivially_inlinable_no_op(i32* %a) 2692 // ret void 2693 // } 2694 // ``` 2695 // 2696 // This may not be required if we stop describing the contents of allocas 2697 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 2698 // the LowerDbgDeclare utility. 2699 // 2700 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 2701 // "arg0" dbg.value may be stale after the call. However, failing to remove 2702 // the DW_OP_deref dbg.value causes large gaps in location coverage. 2703 for (auto *DVI : DVIs) 2704 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 2705 DVI->eraseFromParent(); 2706 2707 return eraseInstFromFunction(MI); 2708 } 2709 return nullptr; 2710 } 2711 2712 /// Move the call to free before a NULL test. 2713 /// 2714 /// Check if this free is accessed after its argument has been test 2715 /// against NULL (property 0). 2716 /// If yes, it is legal to move this call in its predecessor block. 2717 /// 2718 /// The move is performed only if the block containing the call to free 2719 /// will be removed, i.e.: 2720 /// 1. it has only one predecessor P, and P has two successors 2721 /// 2. it contains the call, noops, and an unconditional branch 2722 /// 3. its successor is the same as its predecessor's successor 2723 /// 2724 /// The profitability is out-of concern here and this function should 2725 /// be called only if the caller knows this transformation would be 2726 /// profitable (e.g., for code size). 2727 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2728 const DataLayout &DL) { 2729 Value *Op = FI.getArgOperand(0); 2730 BasicBlock *FreeInstrBB = FI.getParent(); 2731 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2732 2733 // Validate part of constraint #1: Only one predecessor 2734 // FIXME: We can extend the number of predecessor, but in that case, we 2735 // would duplicate the call to free in each predecessor and it may 2736 // not be profitable even for code size. 2737 if (!PredBB) 2738 return nullptr; 2739 2740 // Validate constraint #2: Does this block contains only the call to 2741 // free, noops, and an unconditional branch? 2742 BasicBlock *SuccBB; 2743 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2744 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2745 return nullptr; 2746 2747 // If there are only 2 instructions in the block, at this point, 2748 // this is the call to free and unconditional. 2749 // If there are more than 2 instructions, check that they are noops 2750 // i.e., they won't hurt the performance of the generated code. 2751 if (FreeInstrBB->size() != 2) { 2752 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 2753 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2754 continue; 2755 auto *Cast = dyn_cast<CastInst>(&Inst); 2756 if (!Cast || !Cast->isNoopCast(DL)) 2757 return nullptr; 2758 } 2759 } 2760 // Validate the rest of constraint #1 by matching on the pred branch. 2761 Instruction *TI = PredBB->getTerminator(); 2762 BasicBlock *TrueBB, *FalseBB; 2763 ICmpInst::Predicate Pred; 2764 if (!match(TI, m_Br(m_ICmp(Pred, 2765 m_CombineOr(m_Specific(Op), 2766 m_Specific(Op->stripPointerCasts())), 2767 m_Zero()), 2768 TrueBB, FalseBB))) 2769 return nullptr; 2770 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2771 return nullptr; 2772 2773 // Validate constraint #3: Ensure the null case just falls through. 2774 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2775 return nullptr; 2776 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2777 "Broken CFG: missing edge from predecessor to successor"); 2778 2779 // At this point, we know that everything in FreeInstrBB can be moved 2780 // before TI. 2781 for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end(); 2782 It != End;) { 2783 Instruction &Instr = *It++; 2784 if (&Instr == FreeInstrBBTerminator) 2785 break; 2786 Instr.moveBefore(TI); 2787 } 2788 assert(FreeInstrBB->size() == 1 && 2789 "Only the branch instruction should remain"); 2790 return &FI; 2791 } 2792 2793 Instruction *InstCombinerImpl::visitFree(CallInst &FI) { 2794 Value *Op = FI.getArgOperand(0); 2795 2796 // free undef -> unreachable. 2797 if (isa<UndefValue>(Op)) { 2798 // Leave a marker since we can't modify the CFG here. 2799 CreateNonTerminatorUnreachable(&FI); 2800 return eraseInstFromFunction(FI); 2801 } 2802 2803 // If we have 'free null' delete the instruction. This can happen in stl code 2804 // when lots of inlining happens. 2805 if (isa<ConstantPointerNull>(Op)) 2806 return eraseInstFromFunction(FI); 2807 2808 // If we optimize for code size, try to move the call to free before the null 2809 // test so that simplify cfg can remove the empty block and dead code 2810 // elimination the branch. I.e., helps to turn something like: 2811 // if (foo) free(foo); 2812 // into 2813 // free(foo); 2814 // 2815 // Note that we can only do this for 'free' and not for any flavor of 2816 // 'operator delete'; there is no 'operator delete' symbol for which we are 2817 // permitted to invent a call, even if we're passing in a null pointer. 2818 if (MinimizeSize) { 2819 LibFunc Func; 2820 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 2821 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 2822 return I; 2823 } 2824 2825 return nullptr; 2826 } 2827 2828 static bool isMustTailCall(Value *V) { 2829 if (auto *CI = dyn_cast<CallInst>(V)) 2830 return CI->isMustTailCall(); 2831 return false; 2832 } 2833 2834 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 2835 if (RI.getNumOperands() == 0) // ret void 2836 return nullptr; 2837 2838 Value *ResultOp = RI.getOperand(0); 2839 Type *VTy = ResultOp->getType(); 2840 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp)) 2841 return nullptr; 2842 2843 // Don't replace result of musttail calls. 2844 if (isMustTailCall(ResultOp)) 2845 return nullptr; 2846 2847 // There might be assume intrinsics dominating this return that completely 2848 // determine the value. If so, constant fold it. 2849 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2850 if (Known.isConstant()) 2851 return replaceOperand(RI, 0, 2852 Constant::getIntegerValue(VTy, Known.getConstant())); 2853 2854 return nullptr; 2855 } 2856 2857 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 2858 // Try to remove the previous instruction if it must lead to unreachable. 2859 // This includes instructions like stores and "llvm.assume" that may not get 2860 // removed by simple dead code elimination. 2861 Instruction *Prev = I.getPrevNonDebugInstruction(); 2862 if (Prev && !Prev->isEHPad() && 2863 isGuaranteedToTransferExecutionToSuccessor(Prev)) { 2864 // Temporarily disable removal of volatile stores preceding unreachable, 2865 // pending a potential LangRef change permitting volatile stores to trap. 2866 // TODO: Either remove this code, or properly integrate the check into 2867 // isGuaranteedToTransferExecutionToSuccessor(). 2868 if (auto *SI = dyn_cast<StoreInst>(Prev)) 2869 if (SI->isVolatile()) 2870 return nullptr; 2871 2872 // A value may still have uses before we process it here (for example, in 2873 // another unreachable block), so convert those to undef. 2874 replaceInstUsesWith(*Prev, UndefValue::get(Prev->getType())); 2875 eraseInstFromFunction(*Prev); 2876 return &I; 2877 } 2878 return nullptr; 2879 } 2880 2881 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 2882 assert(BI.isUnconditional() && "Only for unconditional branches."); 2883 2884 // If this store is the second-to-last instruction in the basic block 2885 // (excluding debug info and bitcasts of pointers) and if the block ends with 2886 // an unconditional branch, try to move the store to the successor block. 2887 2888 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 2889 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 2890 return isa<DbgInfoIntrinsic>(BBI) || 2891 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 2892 }; 2893 2894 BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 2895 do { 2896 if (BBI != FirstInstr) 2897 --BBI; 2898 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 2899 2900 return dyn_cast<StoreInst>(BBI); 2901 }; 2902 2903 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 2904 if (mergeStoreIntoSuccessor(*SI)) 2905 return &BI; 2906 2907 return nullptr; 2908 } 2909 2910 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 2911 if (BI.isUnconditional()) 2912 return visitUnconditionalBranchInst(BI); 2913 2914 // Change br (not X), label True, label False to: br X, label False, True 2915 Value *X = nullptr; 2916 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 2917 !isa<Constant>(X)) { 2918 // Swap Destinations and condition... 2919 BI.swapSuccessors(); 2920 return replaceOperand(BI, 0, X); 2921 } 2922 2923 // If the condition is irrelevant, remove the use so that other 2924 // transforms on the condition become more effective. 2925 if (!isa<ConstantInt>(BI.getCondition()) && 2926 BI.getSuccessor(0) == BI.getSuccessor(1)) 2927 return replaceOperand( 2928 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType())); 2929 2930 // Canonicalize, for example, fcmp_one -> fcmp_oeq. 2931 CmpInst::Predicate Pred; 2932 if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())), 2933 m_BasicBlock(), m_BasicBlock())) && 2934 !isCanonicalPredicate(Pred)) { 2935 // Swap destinations and condition. 2936 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 2937 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2938 BI.swapSuccessors(); 2939 Worklist.push(Cond); 2940 return &BI; 2941 } 2942 2943 return nullptr; 2944 } 2945 2946 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 2947 Value *Cond = SI.getCondition(); 2948 Value *Op0; 2949 ConstantInt *AddRHS; 2950 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 2951 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2952 for (auto Case : SI.cases()) { 2953 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 2954 assert(isa<ConstantInt>(NewCase) && 2955 "Result of expression should be constant"); 2956 Case.setValue(cast<ConstantInt>(NewCase)); 2957 } 2958 return replaceOperand(SI, 0, Op0); 2959 } 2960 2961 KnownBits Known = computeKnownBits(Cond, 0, &SI); 2962 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 2963 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 2964 2965 // Compute the number of leading bits we can ignore. 2966 // TODO: A better way to determine this would use ComputeNumSignBits(). 2967 for (auto &C : SI.cases()) { 2968 LeadingKnownZeros = std::min( 2969 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2970 LeadingKnownOnes = std::min( 2971 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2972 } 2973 2974 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 2975 2976 // Shrink the condition operand if the new type is smaller than the old type. 2977 // But do not shrink to a non-standard type, because backend can't generate 2978 // good code for that yet. 2979 // TODO: We can make it aggressive again after fixing PR39569. 2980 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 2981 shouldChangeType(Known.getBitWidth(), NewWidth)) { 2982 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2983 Builder.SetInsertPoint(&SI); 2984 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 2985 2986 for (auto Case : SI.cases()) { 2987 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 2988 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 2989 } 2990 return replaceOperand(SI, 0, NewCond); 2991 } 2992 2993 return nullptr; 2994 } 2995 2996 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 2997 Value *Agg = EV.getAggregateOperand(); 2998 2999 if (!EV.hasIndices()) 3000 return replaceInstUsesWith(EV, Agg); 3001 3002 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 3003 SQ.getWithInstruction(&EV))) 3004 return replaceInstUsesWith(EV, V); 3005 3006 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 3007 // We're extracting from an insertvalue instruction, compare the indices 3008 const unsigned *exti, *exte, *insi, *inse; 3009 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 3010 exte = EV.idx_end(), inse = IV->idx_end(); 3011 exti != exte && insi != inse; 3012 ++exti, ++insi) { 3013 if (*insi != *exti) 3014 // The insert and extract both reference distinctly different elements. 3015 // This means the extract is not influenced by the insert, and we can 3016 // replace the aggregate operand of the extract with the aggregate 3017 // operand of the insert. i.e., replace 3018 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3019 // %E = extractvalue { i32, { i32 } } %I, 0 3020 // with 3021 // %E = extractvalue { i32, { i32 } } %A, 0 3022 return ExtractValueInst::Create(IV->getAggregateOperand(), 3023 EV.getIndices()); 3024 } 3025 if (exti == exte && insi == inse) 3026 // Both iterators are at the end: Index lists are identical. Replace 3027 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3028 // %C = extractvalue { i32, { i32 } } %B, 1, 0 3029 // with "i32 42" 3030 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 3031 if (exti == exte) { 3032 // The extract list is a prefix of the insert list. i.e. replace 3033 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3034 // %E = extractvalue { i32, { i32 } } %I, 1 3035 // with 3036 // %X = extractvalue { i32, { i32 } } %A, 1 3037 // %E = insertvalue { i32 } %X, i32 42, 0 3038 // by switching the order of the insert and extract (though the 3039 // insertvalue should be left in, since it may have other uses). 3040 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 3041 EV.getIndices()); 3042 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 3043 makeArrayRef(insi, inse)); 3044 } 3045 if (insi == inse) 3046 // The insert list is a prefix of the extract list 3047 // We can simply remove the common indices from the extract and make it 3048 // operate on the inserted value instead of the insertvalue result. 3049 // i.e., replace 3050 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3051 // %E = extractvalue { i32, { i32 } } %I, 1, 0 3052 // with 3053 // %E extractvalue { i32 } { i32 42 }, 0 3054 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 3055 makeArrayRef(exti, exte)); 3056 } 3057 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 3058 // We're extracting from an overflow intrinsic, see if we're the only user, 3059 // which allows us to simplify multiple result intrinsics to simpler 3060 // things that just get one value. 3061 if (WO->hasOneUse()) { 3062 // Check if we're grabbing only the result of a 'with overflow' intrinsic 3063 // and replace it with a traditional binary instruction. 3064 if (*EV.idx_begin() == 0) { 3065 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 3066 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 3067 replaceInstUsesWith(*WO, UndefValue::get(WO->getType())); 3068 eraseInstFromFunction(*WO); 3069 return BinaryOperator::Create(BinOp, LHS, RHS); 3070 } 3071 3072 // If the normal result of the add is dead, and the RHS is a constant, 3073 // we can transform this into a range comparison. 3074 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 3075 if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow) 3076 if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS())) 3077 return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(), 3078 ConstantExpr::getNot(CI)); 3079 } 3080 } 3081 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 3082 // If the (non-volatile) load only has one use, we can rewrite this to a 3083 // load from a GEP. This reduces the size of the load. If a load is used 3084 // only by extractvalue instructions then this either must have been 3085 // optimized before, or it is a struct with padding, in which case we 3086 // don't want to do the transformation as it loses padding knowledge. 3087 if (L->isSimple() && L->hasOneUse()) { 3088 // extractvalue has integer indices, getelementptr has Value*s. Convert. 3089 SmallVector<Value*, 4> Indices; 3090 // Prefix an i32 0 since we need the first element. 3091 Indices.push_back(Builder.getInt32(0)); 3092 for (unsigned Idx : EV.indices()) 3093 Indices.push_back(Builder.getInt32(Idx)); 3094 3095 // We need to insert these at the location of the old load, not at that of 3096 // the extractvalue. 3097 Builder.SetInsertPoint(L); 3098 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 3099 L->getPointerOperand(), Indices); 3100 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 3101 // Whatever aliasing information we had for the orignal load must also 3102 // hold for the smaller load, so propagate the annotations. 3103 AAMDNodes Nodes; 3104 L->getAAMetadata(Nodes); 3105 NL->setAAMetadata(Nodes); 3106 // Returning the load directly will cause the main loop to insert it in 3107 // the wrong spot, so use replaceInstUsesWith(). 3108 return replaceInstUsesWith(EV, NL); 3109 } 3110 // We could simplify extracts from other values. Note that nested extracts may 3111 // already be simplified implicitly by the above: extract (extract (insert) ) 3112 // will be translated into extract ( insert ( extract ) ) first and then just 3113 // the value inserted, if appropriate. Similarly for extracts from single-use 3114 // loads: extract (extract (load)) will be translated to extract (load (gep)) 3115 // and if again single-use then via load (gep (gep)) to load (gep). 3116 // However, double extracts from e.g. function arguments or return values 3117 // aren't handled yet. 3118 return nullptr; 3119 } 3120 3121 /// Return 'true' if the given typeinfo will match anything. 3122 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 3123 switch (Personality) { 3124 case EHPersonality::GNU_C: 3125 case EHPersonality::GNU_C_SjLj: 3126 case EHPersonality::Rust: 3127 // The GCC C EH and Rust personality only exists to support cleanups, so 3128 // it's not clear what the semantics of catch clauses are. 3129 return false; 3130 case EHPersonality::Unknown: 3131 return false; 3132 case EHPersonality::GNU_Ada: 3133 // While __gnat_all_others_value will match any Ada exception, it doesn't 3134 // match foreign exceptions (or didn't, before gcc-4.7). 3135 return false; 3136 case EHPersonality::GNU_CXX: 3137 case EHPersonality::GNU_CXX_SjLj: 3138 case EHPersonality::GNU_ObjC: 3139 case EHPersonality::MSVC_X86SEH: 3140 case EHPersonality::MSVC_TableSEH: 3141 case EHPersonality::MSVC_CXX: 3142 case EHPersonality::CoreCLR: 3143 case EHPersonality::Wasm_CXX: 3144 case EHPersonality::XL_CXX: 3145 return TypeInfo->isNullValue(); 3146 } 3147 llvm_unreachable("invalid enum"); 3148 } 3149 3150 static bool shorter_filter(const Value *LHS, const Value *RHS) { 3151 return 3152 cast<ArrayType>(LHS->getType())->getNumElements() 3153 < 3154 cast<ArrayType>(RHS->getType())->getNumElements(); 3155 } 3156 3157 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 3158 // The logic here should be correct for any real-world personality function. 3159 // However if that turns out not to be true, the offending logic can always 3160 // be conditioned on the personality function, like the catch-all logic is. 3161 EHPersonality Personality = 3162 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 3163 3164 // Simplify the list of clauses, eg by removing repeated catch clauses 3165 // (these are often created by inlining). 3166 bool MakeNewInstruction = false; // If true, recreate using the following: 3167 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 3168 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 3169 3170 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 3171 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 3172 bool isLastClause = i + 1 == e; 3173 if (LI.isCatch(i)) { 3174 // A catch clause. 3175 Constant *CatchClause = LI.getClause(i); 3176 Constant *TypeInfo = CatchClause->stripPointerCasts(); 3177 3178 // If we already saw this clause, there is no point in having a second 3179 // copy of it. 3180 if (AlreadyCaught.insert(TypeInfo).second) { 3181 // This catch clause was not already seen. 3182 NewClauses.push_back(CatchClause); 3183 } else { 3184 // Repeated catch clause - drop the redundant copy. 3185 MakeNewInstruction = true; 3186 } 3187 3188 // If this is a catch-all then there is no point in keeping any following 3189 // clauses or marking the landingpad as having a cleanup. 3190 if (isCatchAll(Personality, TypeInfo)) { 3191 if (!isLastClause) 3192 MakeNewInstruction = true; 3193 CleanupFlag = false; 3194 break; 3195 } 3196 } else { 3197 // A filter clause. If any of the filter elements were already caught 3198 // then they can be dropped from the filter. It is tempting to try to 3199 // exploit the filter further by saying that any typeinfo that does not 3200 // occur in the filter can't be caught later (and thus can be dropped). 3201 // However this would be wrong, since typeinfos can match without being 3202 // equal (for example if one represents a C++ class, and the other some 3203 // class derived from it). 3204 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 3205 Constant *FilterClause = LI.getClause(i); 3206 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 3207 unsigned NumTypeInfos = FilterType->getNumElements(); 3208 3209 // An empty filter catches everything, so there is no point in keeping any 3210 // following clauses or marking the landingpad as having a cleanup. By 3211 // dealing with this case here the following code is made a bit simpler. 3212 if (!NumTypeInfos) { 3213 NewClauses.push_back(FilterClause); 3214 if (!isLastClause) 3215 MakeNewInstruction = true; 3216 CleanupFlag = false; 3217 break; 3218 } 3219 3220 bool MakeNewFilter = false; // If true, make a new filter. 3221 SmallVector<Constant *, 16> NewFilterElts; // New elements. 3222 if (isa<ConstantAggregateZero>(FilterClause)) { 3223 // Not an empty filter - it contains at least one null typeinfo. 3224 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 3225 Constant *TypeInfo = 3226 Constant::getNullValue(FilterType->getElementType()); 3227 // If this typeinfo is a catch-all then the filter can never match. 3228 if (isCatchAll(Personality, TypeInfo)) { 3229 // Throw the filter away. 3230 MakeNewInstruction = true; 3231 continue; 3232 } 3233 3234 // There is no point in having multiple copies of this typeinfo, so 3235 // discard all but the first copy if there is more than one. 3236 NewFilterElts.push_back(TypeInfo); 3237 if (NumTypeInfos > 1) 3238 MakeNewFilter = true; 3239 } else { 3240 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 3241 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 3242 NewFilterElts.reserve(NumTypeInfos); 3243 3244 // Remove any filter elements that were already caught or that already 3245 // occurred in the filter. While there, see if any of the elements are 3246 // catch-alls. If so, the filter can be discarded. 3247 bool SawCatchAll = false; 3248 for (unsigned j = 0; j != NumTypeInfos; ++j) { 3249 Constant *Elt = Filter->getOperand(j); 3250 Constant *TypeInfo = Elt->stripPointerCasts(); 3251 if (isCatchAll(Personality, TypeInfo)) { 3252 // This element is a catch-all. Bail out, noting this fact. 3253 SawCatchAll = true; 3254 break; 3255 } 3256 3257 // Even if we've seen a type in a catch clause, we don't want to 3258 // remove it from the filter. An unexpected type handler may be 3259 // set up for a call site which throws an exception of the same 3260 // type caught. In order for the exception thrown by the unexpected 3261 // handler to propagate correctly, the filter must be correctly 3262 // described for the call site. 3263 // 3264 // Example: 3265 // 3266 // void unexpected() { throw 1;} 3267 // void foo() throw (int) { 3268 // std::set_unexpected(unexpected); 3269 // try { 3270 // throw 2.0; 3271 // } catch (int i) {} 3272 // } 3273 3274 // There is no point in having multiple copies of the same typeinfo in 3275 // a filter, so only add it if we didn't already. 3276 if (SeenInFilter.insert(TypeInfo).second) 3277 NewFilterElts.push_back(cast<Constant>(Elt)); 3278 } 3279 // A filter containing a catch-all cannot match anything by definition. 3280 if (SawCatchAll) { 3281 // Throw the filter away. 3282 MakeNewInstruction = true; 3283 continue; 3284 } 3285 3286 // If we dropped something from the filter, make a new one. 3287 if (NewFilterElts.size() < NumTypeInfos) 3288 MakeNewFilter = true; 3289 } 3290 if (MakeNewFilter) { 3291 FilterType = ArrayType::get(FilterType->getElementType(), 3292 NewFilterElts.size()); 3293 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 3294 MakeNewInstruction = true; 3295 } 3296 3297 NewClauses.push_back(FilterClause); 3298 3299 // If the new filter is empty then it will catch everything so there is 3300 // no point in keeping any following clauses or marking the landingpad 3301 // as having a cleanup. The case of the original filter being empty was 3302 // already handled above. 3303 if (MakeNewFilter && !NewFilterElts.size()) { 3304 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3305 CleanupFlag = false; 3306 break; 3307 } 3308 } 3309 } 3310 3311 // If several filters occur in a row then reorder them so that the shortest 3312 // filters come first (those with the smallest number of elements). This is 3313 // advantageous because shorter filters are more likely to match, speeding up 3314 // unwinding, but mostly because it increases the effectiveness of the other 3315 // filter optimizations below. 3316 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3317 unsigned j; 3318 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3319 for (j = i; j != e; ++j) 3320 if (!isa<ArrayType>(NewClauses[j]->getType())) 3321 break; 3322 3323 // Check whether the filters are already sorted by length. We need to know 3324 // if sorting them is actually going to do anything so that we only make a 3325 // new landingpad instruction if it does. 3326 for (unsigned k = i; k + 1 < j; ++k) 3327 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3328 // Not sorted, so sort the filters now. Doing an unstable sort would be 3329 // correct too but reordering filters pointlessly might confuse users. 3330 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3331 shorter_filter); 3332 MakeNewInstruction = true; 3333 break; 3334 } 3335 3336 // Look for the next batch of filters. 3337 i = j + 1; 3338 } 3339 3340 // If typeinfos matched if and only if equal, then the elements of a filter L 3341 // that occurs later than a filter F could be replaced by the intersection of 3342 // the elements of F and L. In reality two typeinfos can match without being 3343 // equal (for example if one represents a C++ class, and the other some class 3344 // derived from it) so it would be wrong to perform this transform in general. 3345 // However the transform is correct and useful if F is a subset of L. In that 3346 // case L can be replaced by F, and thus removed altogether since repeating a 3347 // filter is pointless. So here we look at all pairs of filters F and L where 3348 // L follows F in the list of clauses, and remove L if every element of F is 3349 // an element of L. This can occur when inlining C++ functions with exception 3350 // specifications. 3351 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3352 // Examine each filter in turn. 3353 Value *Filter = NewClauses[i]; 3354 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3355 if (!FTy) 3356 // Not a filter - skip it. 3357 continue; 3358 unsigned FElts = FTy->getNumElements(); 3359 // Examine each filter following this one. Doing this backwards means that 3360 // we don't have to worry about filters disappearing under us when removed. 3361 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3362 Value *LFilter = NewClauses[j]; 3363 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3364 if (!LTy) 3365 // Not a filter - skip it. 3366 continue; 3367 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3368 // an element of LFilter, then discard LFilter. 3369 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3370 // If Filter is empty then it is a subset of LFilter. 3371 if (!FElts) { 3372 // Discard LFilter. 3373 NewClauses.erase(J); 3374 MakeNewInstruction = true; 3375 // Move on to the next filter. 3376 continue; 3377 } 3378 unsigned LElts = LTy->getNumElements(); 3379 // If Filter is longer than LFilter then it cannot be a subset of it. 3380 if (FElts > LElts) 3381 // Move on to the next filter. 3382 continue; 3383 // At this point we know that LFilter has at least one element. 3384 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3385 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3386 // already know that Filter is not longer than LFilter). 3387 if (isa<ConstantAggregateZero>(Filter)) { 3388 assert(FElts <= LElts && "Should have handled this case earlier!"); 3389 // Discard LFilter. 3390 NewClauses.erase(J); 3391 MakeNewInstruction = true; 3392 } 3393 // Move on to the next filter. 3394 continue; 3395 } 3396 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3397 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3398 // Since Filter is non-empty and contains only zeros, it is a subset of 3399 // LFilter iff LFilter contains a zero. 3400 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3401 for (unsigned l = 0; l != LElts; ++l) 3402 if (LArray->getOperand(l)->isNullValue()) { 3403 // LFilter contains a zero - discard it. 3404 NewClauses.erase(J); 3405 MakeNewInstruction = true; 3406 break; 3407 } 3408 // Move on to the next filter. 3409 continue; 3410 } 3411 // At this point we know that both filters are ConstantArrays. Loop over 3412 // operands to see whether every element of Filter is also an element of 3413 // LFilter. Since filters tend to be short this is probably faster than 3414 // using a method that scales nicely. 3415 ConstantArray *FArray = cast<ConstantArray>(Filter); 3416 bool AllFound = true; 3417 for (unsigned f = 0; f != FElts; ++f) { 3418 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3419 AllFound = false; 3420 for (unsigned l = 0; l != LElts; ++l) { 3421 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3422 if (LTypeInfo == FTypeInfo) { 3423 AllFound = true; 3424 break; 3425 } 3426 } 3427 if (!AllFound) 3428 break; 3429 } 3430 if (AllFound) { 3431 // Discard LFilter. 3432 NewClauses.erase(J); 3433 MakeNewInstruction = true; 3434 } 3435 // Move on to the next filter. 3436 } 3437 } 3438 3439 // If we changed any of the clauses, replace the old landingpad instruction 3440 // with a new one. 3441 if (MakeNewInstruction) { 3442 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3443 NewClauses.size()); 3444 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3445 NLI->addClause(NewClauses[i]); 3446 // A landing pad with no clauses must have the cleanup flag set. It is 3447 // theoretically possible, though highly unlikely, that we eliminated all 3448 // clauses. If so, force the cleanup flag to true. 3449 if (NewClauses.empty()) 3450 CleanupFlag = true; 3451 NLI->setCleanup(CleanupFlag); 3452 return NLI; 3453 } 3454 3455 // Even if none of the clauses changed, we may nonetheless have understood 3456 // that the cleanup flag is pointless. Clear it if so. 3457 if (LI.isCleanup() != CleanupFlag) { 3458 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3459 LI.setCleanup(CleanupFlag); 3460 return &LI; 3461 } 3462 3463 return nullptr; 3464 } 3465 3466 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 3467 Value *Op0 = I.getOperand(0); 3468 3469 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3470 return replaceInstUsesWith(I, V); 3471 3472 // freeze (phi const, x) --> phi const, (freeze x) 3473 if (auto *PN = dyn_cast<PHINode>(Op0)) { 3474 if (Instruction *NV = foldOpIntoPhi(I, PN)) 3475 return NV; 3476 } 3477 3478 if (match(Op0, m_Undef())) { 3479 // If I is freeze(undef), see its uses and fold it to the best constant. 3480 // - or: pick -1 3481 // - select's condition: pick the value that leads to choosing a constant 3482 // - other ops: pick 0 3483 Constant *BestValue = nullptr; 3484 Constant *NullValue = Constant::getNullValue(I.getType()); 3485 for (const auto *U : I.users()) { 3486 Constant *C = NullValue; 3487 3488 if (match(U, m_Or(m_Value(), m_Value()))) 3489 C = Constant::getAllOnesValue(I.getType()); 3490 else if (const auto *SI = dyn_cast<SelectInst>(U)) { 3491 if (SI->getCondition() == &I) { 3492 APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1); 3493 C = Constant::getIntegerValue(I.getType(), CondVal); 3494 } 3495 } 3496 3497 if (!BestValue) 3498 BestValue = C; 3499 else if (BestValue != C) 3500 BestValue = NullValue; 3501 } 3502 3503 return replaceInstUsesWith(I, BestValue); 3504 } 3505 3506 return nullptr; 3507 } 3508 3509 /// Try to move the specified instruction from its current block into the 3510 /// beginning of DestBlock, which can only happen if it's safe to move the 3511 /// instruction past all of the instructions between it and the end of its 3512 /// block. 3513 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 3514 assert(I->getSingleUndroppableUse() && "Invariants didn't hold!"); 3515 BasicBlock *SrcBlock = I->getParent(); 3516 3517 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3518 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 3519 I->isTerminator()) 3520 return false; 3521 3522 // Do not sink static or dynamic alloca instructions. Static allocas must 3523 // remain in the entry block, and dynamic allocas must not be sunk in between 3524 // a stacksave / stackrestore pair, which would incorrectly shorten its 3525 // lifetime. 3526 if (isa<AllocaInst>(I)) 3527 return false; 3528 3529 // Do not sink into catchswitch blocks. 3530 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 3531 return false; 3532 3533 // Do not sink convergent call instructions. 3534 if (auto *CI = dyn_cast<CallInst>(I)) { 3535 if (CI->isConvergent()) 3536 return false; 3537 } 3538 // We can only sink load instructions if there is nothing between the load and 3539 // the end of block that could change the value. 3540 if (I->mayReadFromMemory()) { 3541 // We don't want to do any sophisticated alias analysis, so we only check 3542 // the instructions after I in I's parent block if we try to sink to its 3543 // successor block. 3544 if (DestBlock->getUniquePredecessor() != I->getParent()) 3545 return false; 3546 for (BasicBlock::iterator Scan = I->getIterator(), 3547 E = I->getParent()->end(); 3548 Scan != E; ++Scan) 3549 if (Scan->mayWriteToMemory()) 3550 return false; 3551 } 3552 3553 I->dropDroppableUses([DestBlock](const Use *U) { 3554 if (auto *I = dyn_cast<Instruction>(U->getUser())) 3555 return I->getParent() != DestBlock; 3556 return true; 3557 }); 3558 /// FIXME: We could remove droppable uses that are not dominated by 3559 /// the new position. 3560 3561 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 3562 I->moveBefore(&*InsertPos); 3563 ++NumSunkInst; 3564 3565 // Also sink all related debug uses from the source basic block. Otherwise we 3566 // get debug use before the def. Attempt to salvage debug uses first, to 3567 // maximise the range variables have location for. If we cannot salvage, then 3568 // mark the location undef: we know it was supposed to receive a new location 3569 // here, but that computation has been sunk. 3570 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 3571 findDbgUsers(DbgUsers, I); 3572 // Process the sinking DbgUsers in reverse order, as we only want to clone the 3573 // last appearing debug intrinsic for each given variable. 3574 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 3575 for (DbgVariableIntrinsic *DVI : DbgUsers) 3576 if (DVI->getParent() == SrcBlock) 3577 DbgUsersToSink.push_back(DVI); 3578 llvm::sort(DbgUsersToSink, 3579 [](auto *A, auto *B) { return B->comesBefore(A); }); 3580 3581 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 3582 SmallSet<DebugVariable, 4> SunkVariables; 3583 for (auto User : DbgUsersToSink) { 3584 // A dbg.declare instruction should not be cloned, since there can only be 3585 // one per variable fragment. It should be left in the original place 3586 // because the sunk instruction is not an alloca (otherwise we could not be 3587 // here). 3588 if (isa<DbgDeclareInst>(User)) 3589 continue; 3590 3591 DebugVariable DbgUserVariable = 3592 DebugVariable(User->getVariable(), User->getExpression(), 3593 User->getDebugLoc()->getInlinedAt()); 3594 3595 if (!SunkVariables.insert(DbgUserVariable).second) 3596 continue; 3597 3598 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 3599 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 3600 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 3601 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 3602 } 3603 3604 // Perform salvaging without the clones, then sink the clones. 3605 if (!DIIClones.empty()) { 3606 salvageDebugInfoForDbgValues(*I, DbgUsers); 3607 // The clones are in reverse order of original appearance, reverse again to 3608 // maintain the original order. 3609 for (auto &DIIClone : llvm::reverse(DIIClones)) { 3610 DIIClone->insertBefore(&*InsertPos); 3611 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 3612 } 3613 } 3614 3615 return true; 3616 } 3617 3618 bool InstCombinerImpl::run() { 3619 while (!Worklist.isEmpty()) { 3620 // Walk deferred instructions in reverse order, and push them to the 3621 // worklist, which means they'll end up popped from the worklist in-order. 3622 while (Instruction *I = Worklist.popDeferred()) { 3623 // Check to see if we can DCE the instruction. We do this already here to 3624 // reduce the number of uses and thus allow other folds to trigger. 3625 // Note that eraseInstFromFunction() may push additional instructions on 3626 // the deferred worklist, so this will DCE whole instruction chains. 3627 if (isInstructionTriviallyDead(I, &TLI)) { 3628 eraseInstFromFunction(*I); 3629 ++NumDeadInst; 3630 continue; 3631 } 3632 3633 Worklist.push(I); 3634 } 3635 3636 Instruction *I = Worklist.removeOne(); 3637 if (I == nullptr) continue; // skip null values. 3638 3639 // Check to see if we can DCE the instruction. 3640 if (isInstructionTriviallyDead(I, &TLI)) { 3641 eraseInstFromFunction(*I); 3642 ++NumDeadInst; 3643 continue; 3644 } 3645 3646 if (!DebugCounter::shouldExecute(VisitCounter)) 3647 continue; 3648 3649 // Instruction isn't dead, see if we can constant propagate it. 3650 if (!I->use_empty() && 3651 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 3652 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 3653 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 3654 << '\n'); 3655 3656 // Add operands to the worklist. 3657 replaceInstUsesWith(*I, C); 3658 ++NumConstProp; 3659 if (isInstructionTriviallyDead(I, &TLI)) 3660 eraseInstFromFunction(*I); 3661 MadeIRChange = true; 3662 continue; 3663 } 3664 } 3665 3666 // See if we can trivially sink this instruction to its user if we can 3667 // prove that the successor is not executed more frequently than our block. 3668 if (EnableCodeSinking) 3669 if (Use *SingleUse = I->getSingleUndroppableUse()) { 3670 BasicBlock *BB = I->getParent(); 3671 Instruction *UserInst = cast<Instruction>(SingleUse->getUser()); 3672 BasicBlock *UserParent; 3673 3674 // Get the block the use occurs in. 3675 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 3676 UserParent = PN->getIncomingBlock(*SingleUse); 3677 else 3678 UserParent = UserInst->getParent(); 3679 3680 // Try sinking to another block. If that block is unreachable, then do 3681 // not bother. SimplifyCFG should handle it. 3682 if (UserParent != BB && DT.isReachableFromEntry(UserParent)) { 3683 // See if the user is one of our successors that has only one 3684 // predecessor, so that we don't have to split the critical edge. 3685 bool ShouldSink = UserParent->getUniquePredecessor() == BB; 3686 // Another option where we can sink is a block that ends with a 3687 // terminator that does not pass control to other block (such as 3688 // return or unreachable). In this case: 3689 // - I dominates the User (by SSA form); 3690 // - the User will be executed at most once. 3691 // So sinking I down to User is always profitable or neutral. 3692 if (!ShouldSink) { 3693 auto *Term = UserParent->getTerminator(); 3694 ShouldSink = isa<ReturnInst>(Term) || isa<UnreachableInst>(Term); 3695 } 3696 if (ShouldSink) { 3697 assert(DT.dominates(BB, UserParent) && 3698 "Dominance relation broken?"); 3699 // Okay, the CFG is simple enough, try to sink this instruction. 3700 if (TryToSinkInstruction(I, UserParent)) { 3701 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3702 MadeIRChange = true; 3703 // We'll add uses of the sunk instruction below, but since sinking 3704 // can expose opportunities for it's *operands* add them to the 3705 // worklist 3706 for (Use &U : I->operands()) 3707 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3708 Worklist.push(OpI); 3709 } 3710 } 3711 } 3712 } 3713 3714 // Now that we have an instruction, try combining it to simplify it. 3715 Builder.SetInsertPoint(I); 3716 Builder.CollectMetadataToCopy( 3717 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 3718 3719 #ifndef NDEBUG 3720 std::string OrigI; 3721 #endif 3722 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 3723 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 3724 3725 if (Instruction *Result = visit(*I)) { 3726 ++NumCombined; 3727 // Should we replace the old instruction with a new one? 3728 if (Result != I) { 3729 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 3730 << " New = " << *Result << '\n'); 3731 3732 Result->copyMetadata(*I, 3733 {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 3734 // Everything uses the new instruction now. 3735 I->replaceAllUsesWith(Result); 3736 3737 // Move the name to the new instruction first. 3738 Result->takeName(I); 3739 3740 // Insert the new instruction into the basic block... 3741 BasicBlock *InstParent = I->getParent(); 3742 BasicBlock::iterator InsertPos = I->getIterator(); 3743 3744 // Are we replace a PHI with something that isn't a PHI, or vice versa? 3745 if (isa<PHINode>(Result) != isa<PHINode>(I)) { 3746 // We need to fix up the insertion point. 3747 if (isa<PHINode>(I)) // PHI -> Non-PHI 3748 InsertPos = InstParent->getFirstInsertionPt(); 3749 else // Non-PHI -> PHI 3750 InsertPos = InstParent->getFirstNonPHI()->getIterator(); 3751 } 3752 3753 InstParent->getInstList().insert(InsertPos, Result); 3754 3755 // Push the new instruction and any users onto the worklist. 3756 Worklist.pushUsersToWorkList(*Result); 3757 Worklist.push(Result); 3758 3759 eraseInstFromFunction(*I); 3760 } else { 3761 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3762 << " New = " << *I << '\n'); 3763 3764 // If the instruction was modified, it's possible that it is now dead. 3765 // if so, remove it. 3766 if (isInstructionTriviallyDead(I, &TLI)) { 3767 eraseInstFromFunction(*I); 3768 } else { 3769 Worklist.pushUsersToWorkList(*I); 3770 Worklist.push(I); 3771 } 3772 } 3773 MadeIRChange = true; 3774 } 3775 } 3776 3777 Worklist.zap(); 3778 return MadeIRChange; 3779 } 3780 3781 // Track the scopes used by !alias.scope and !noalias. In a function, a 3782 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 3783 // by both sets. If not, the declaration of the scope can be safely omitted. 3784 // The MDNode of the scope can be omitted as well for the instructions that are 3785 // part of this function. We do not do that at this point, as this might become 3786 // too time consuming to do. 3787 class AliasScopeTracker { 3788 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 3789 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 3790 3791 public: 3792 void analyse(Instruction *I) { 3793 // This seems to be faster than checking 'mayReadOrWriteMemory()'. 3794 if (!I->hasMetadataOtherThanDebugLoc()) 3795 return; 3796 3797 auto Track = [](Metadata *ScopeList, auto &Container) { 3798 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 3799 if (!MDScopeList || !Container.insert(MDScopeList).second) 3800 return; 3801 for (auto &MDOperand : MDScopeList->operands()) 3802 if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 3803 Container.insert(MDScope); 3804 }; 3805 3806 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 3807 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 3808 } 3809 3810 bool isNoAliasScopeDeclDead(Instruction *Inst) { 3811 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 3812 if (!Decl) 3813 return false; 3814 3815 assert(Decl->use_empty() && 3816 "llvm.experimental.noalias.scope.decl in use ?"); 3817 const MDNode *MDSL = Decl->getScopeList(); 3818 assert(MDSL->getNumOperands() == 1 && 3819 "llvm.experimental.noalias.scope should refer to a single scope"); 3820 auto &MDOperand = MDSL->getOperand(0); 3821 if (auto *MD = dyn_cast<MDNode>(MDOperand)) 3822 return !UsedAliasScopesAndLists.contains(MD) || 3823 !UsedNoAliasScopesAndLists.contains(MD); 3824 3825 // Not an MDNode ? throw away. 3826 return true; 3827 } 3828 }; 3829 3830 /// Populate the IC worklist from a function, by walking it in depth-first 3831 /// order and adding all reachable code to the worklist. 3832 /// 3833 /// This has a couple of tricks to make the code faster and more powerful. In 3834 /// particular, we constant fold and DCE instructions as we go, to avoid adding 3835 /// them to the worklist (this significantly speeds up instcombine on code where 3836 /// many instructions are dead or constant). Additionally, if we find a branch 3837 /// whose condition is a known constant, we only visit the reachable successors. 3838 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 3839 const TargetLibraryInfo *TLI, 3840 InstCombineWorklist &ICWorklist) { 3841 bool MadeIRChange = false; 3842 SmallPtrSet<BasicBlock *, 32> Visited; 3843 SmallVector<BasicBlock*, 256> Worklist; 3844 Worklist.push_back(&F.front()); 3845 3846 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 3847 DenseMap<Constant *, Constant *> FoldedConstants; 3848 AliasScopeTracker SeenAliasScopes; 3849 3850 do { 3851 BasicBlock *BB = Worklist.pop_back_val(); 3852 3853 // We have now visited this block! If we've already been here, ignore it. 3854 if (!Visited.insert(BB).second) 3855 continue; 3856 3857 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 3858 Instruction *Inst = &*BBI++; 3859 3860 // ConstantProp instruction if trivially constant. 3861 if (!Inst->use_empty() && 3862 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 3863 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 3864 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst 3865 << '\n'); 3866 Inst->replaceAllUsesWith(C); 3867 ++NumConstProp; 3868 if (isInstructionTriviallyDead(Inst, TLI)) 3869 Inst->eraseFromParent(); 3870 MadeIRChange = true; 3871 continue; 3872 } 3873 3874 // See if we can constant fold its operands. 3875 for (Use &U : Inst->operands()) { 3876 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 3877 continue; 3878 3879 auto *C = cast<Constant>(U); 3880 Constant *&FoldRes = FoldedConstants[C]; 3881 if (!FoldRes) 3882 FoldRes = ConstantFoldConstant(C, DL, TLI); 3883 3884 if (FoldRes != C) { 3885 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst 3886 << "\n Old = " << *C 3887 << "\n New = " << *FoldRes << '\n'); 3888 U = FoldRes; 3889 MadeIRChange = true; 3890 } 3891 } 3892 3893 // Skip processing debug and pseudo intrinsics in InstCombine. Processing 3894 // these call instructions consumes non-trivial amount of time and 3895 // provides no value for the optimization. 3896 if (!Inst->isDebugOrPseudoInst()) { 3897 InstrsForInstCombineWorklist.push_back(Inst); 3898 SeenAliasScopes.analyse(Inst); 3899 } 3900 } 3901 3902 // Recursively visit successors. If this is a branch or switch on a 3903 // constant, only visit the reachable successor. 3904 Instruction *TI = BB->getTerminator(); 3905 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3906 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 3907 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 3908 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 3909 Worklist.push_back(ReachableBB); 3910 continue; 3911 } 3912 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3913 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 3914 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 3915 continue; 3916 } 3917 } 3918 3919 append_range(Worklist, successors(TI)); 3920 } while (!Worklist.empty()); 3921 3922 // Remove instructions inside unreachable blocks. This prevents the 3923 // instcombine code from having to deal with some bad special cases, and 3924 // reduces use counts of instructions. 3925 for (BasicBlock &BB : F) { 3926 if (Visited.count(&BB)) 3927 continue; 3928 3929 unsigned NumDeadInstInBB; 3930 unsigned NumDeadDbgInstInBB; 3931 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 3932 removeAllNonTerminatorAndEHPadInstructions(&BB); 3933 3934 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 3935 NumDeadInst += NumDeadInstInBB; 3936 } 3937 3938 // Once we've found all of the instructions to add to instcombine's worklist, 3939 // add them in reverse order. This way instcombine will visit from the top 3940 // of the function down. This jives well with the way that it adds all uses 3941 // of instructions to the worklist after doing a transformation, thus avoiding 3942 // some N^2 behavior in pathological cases. 3943 ICWorklist.reserve(InstrsForInstCombineWorklist.size()); 3944 for (Instruction *Inst : reverse(InstrsForInstCombineWorklist)) { 3945 // DCE instruction if trivially dead. As we iterate in reverse program 3946 // order here, we will clean up whole chains of dead instructions. 3947 if (isInstructionTriviallyDead(Inst, TLI) || 3948 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 3949 ++NumDeadInst; 3950 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 3951 salvageDebugInfo(*Inst); 3952 Inst->eraseFromParent(); 3953 MadeIRChange = true; 3954 continue; 3955 } 3956 3957 ICWorklist.push(Inst); 3958 } 3959 3960 return MadeIRChange; 3961 } 3962 3963 static bool combineInstructionsOverFunction( 3964 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, 3965 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 3966 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 3967 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) { 3968 auto &DL = F.getParent()->getDataLayout(); 3969 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 3970 3971 /// Builder - This is an IRBuilder that automatically inserts new 3972 /// instructions into the worklist when they are created. 3973 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 3974 F.getContext(), TargetFolder(DL), 3975 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 3976 Worklist.add(I); 3977 if (auto *Assume = dyn_cast<AssumeInst>(I)) 3978 AC.registerAssumption(Assume); 3979 })); 3980 3981 // Lower dbg.declare intrinsics otherwise their value may be clobbered 3982 // by instcombiner. 3983 bool MadeIRChange = false; 3984 if (ShouldLowerDbgDeclare) 3985 MadeIRChange = LowerDbgDeclare(F); 3986 3987 // Iterate while there is work to do. 3988 unsigned Iteration = 0; 3989 while (true) { 3990 ++NumWorklistIterations; 3991 ++Iteration; 3992 3993 if (Iteration > InfiniteLoopDetectionThreshold) { 3994 report_fatal_error( 3995 "Instruction Combining seems stuck in an infinite loop after " + 3996 Twine(InfiniteLoopDetectionThreshold) + " iterations."); 3997 } 3998 3999 if (Iteration > MaxIterations) { 4000 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 4001 << " on " << F.getName() 4002 << " reached; stopping before reaching a fixpoint\n"); 4003 break; 4004 } 4005 4006 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 4007 << F.getName() << "\n"); 4008 4009 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 4010 4011 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 4012 ORE, BFI, PSI, DL, LI); 4013 IC.MaxArraySizeForCombine = MaxArraySize; 4014 4015 if (!IC.run()) 4016 break; 4017 4018 MadeIRChange = true; 4019 } 4020 4021 return MadeIRChange; 4022 } 4023 4024 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {} 4025 4026 InstCombinePass::InstCombinePass(unsigned MaxIterations) 4027 : MaxIterations(MaxIterations) {} 4028 4029 PreservedAnalyses InstCombinePass::run(Function &F, 4030 FunctionAnalysisManager &AM) { 4031 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4032 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4033 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4034 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4035 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 4036 4037 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 4038 4039 auto *AA = &AM.getResult<AAManager>(F); 4040 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 4041 ProfileSummaryInfo *PSI = 4042 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 4043 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 4044 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 4045 4046 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4047 BFI, PSI, MaxIterations, LI)) 4048 // No changes, all analyses are preserved. 4049 return PreservedAnalyses::all(); 4050 4051 // Mark all the analyses that instcombine updates as preserved. 4052 PreservedAnalyses PA; 4053 PA.preserveSet<CFGAnalyses>(); 4054 return PA; 4055 } 4056 4057 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 4058 AU.setPreservesCFG(); 4059 AU.addRequired<AAResultsWrapperPass>(); 4060 AU.addRequired<AssumptionCacheTracker>(); 4061 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4062 AU.addRequired<TargetTransformInfoWrapperPass>(); 4063 AU.addRequired<DominatorTreeWrapperPass>(); 4064 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4065 AU.addPreserved<DominatorTreeWrapperPass>(); 4066 AU.addPreserved<AAResultsWrapperPass>(); 4067 AU.addPreserved<BasicAAWrapperPass>(); 4068 AU.addPreserved<GlobalsAAWrapperPass>(); 4069 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 4070 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 4071 } 4072 4073 bool InstructionCombiningPass::runOnFunction(Function &F) { 4074 if (skipFunction(F)) 4075 return false; 4076 4077 // Required analyses. 4078 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4079 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4080 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 4081 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4082 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4083 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4084 4085 // Optional analyses. 4086 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 4087 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 4088 ProfileSummaryInfo *PSI = 4089 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 4090 BlockFrequencyInfo *BFI = 4091 (PSI && PSI->hasProfileSummary()) ? 4092 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 4093 nullptr; 4094 4095 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4096 BFI, PSI, MaxIterations, LI); 4097 } 4098 4099 char InstructionCombiningPass::ID = 0; 4100 4101 InstructionCombiningPass::InstructionCombiningPass() 4102 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) { 4103 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4104 } 4105 4106 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations) 4107 : FunctionPass(ID), MaxIterations(MaxIterations) { 4108 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4109 } 4110 4111 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 4112 "Combine redundant instructions", false, false) 4113 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4114 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4115 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4116 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4117 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4118 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4119 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 4120 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 4121 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 4122 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 4123 "Combine redundant instructions", false, false) 4124 4125 // Initialization Routines 4126 void llvm::initializeInstCombine(PassRegistry &Registry) { 4127 initializeInstructionCombiningPassPass(Registry); 4128 } 4129 4130 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 4131 initializeInstructionCombiningPassPass(*unwrap(R)); 4132 } 4133 4134 FunctionPass *llvm::createInstructionCombiningPass() { 4135 return new InstructionCombiningPass(); 4136 } 4137 4138 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) { 4139 return new InstructionCombiningPass(MaxIterations); 4140 } 4141 4142 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 4143 unwrap(PM)->add(createInstructionCombiningPass()); 4144 } 4145