1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/TinyPtrVector.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/BlockFrequencyInfo.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/MemoryBuiltins.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ProfileSummaryInfo.h" 60 #include "llvm/Analysis/TargetFolder.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/ValueTracking.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DIBuilder.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Dominators.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/IRBuilder.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/LegacyPassManager.h" 80 #include "llvm/IR/Metadata.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PassManager.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/Use.h" 86 #include "llvm/IR/User.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/IR/ValueHandle.h" 89 #include "llvm/Pass.h" 90 #include "llvm/Support/CBindingWrapping.h" 91 #include "llvm/Support/Casting.h" 92 #include "llvm/Support/CommandLine.h" 93 #include "llvm/Support/Compiler.h" 94 #include "llvm/Support/Debug.h" 95 #include "llvm/Support/DebugCounter.h" 96 #include "llvm/Support/ErrorHandling.h" 97 #include "llvm/Support/KnownBits.h" 98 #include "llvm/Support/raw_ostream.h" 99 #include "llvm/Transforms/InstCombine/InstCombine.h" 100 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 101 #include "llvm/Transforms/Utils/Local.h" 102 #include <algorithm> 103 #include <cassert> 104 #include <cstdint> 105 #include <memory> 106 #include <string> 107 #include <utility> 108 109 using namespace llvm; 110 using namespace llvm::PatternMatch; 111 112 #define DEBUG_TYPE "instcombine" 113 114 STATISTIC(NumCombined , "Number of insts combined"); 115 STATISTIC(NumConstProp, "Number of constant folds"); 116 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 117 STATISTIC(NumSunkInst , "Number of instructions sunk"); 118 STATISTIC(NumExpand, "Number of expansions"); 119 STATISTIC(NumFactor , "Number of factorizations"); 120 STATISTIC(NumReassoc , "Number of reassociations"); 121 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 122 "Controls which instructions are visited"); 123 124 static cl::opt<bool> 125 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 126 cl::init(true)); 127 128 static cl::opt<bool> 129 EnableExpensiveCombines("expensive-combines", 130 cl::desc("Enable expensive instruction combines")); 131 132 static cl::opt<unsigned> 133 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 134 cl::desc("Maximum array size considered when doing a combine")); 135 136 // FIXME: Remove this flag when it is no longer necessary to convert 137 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 138 // increases variable availability at the cost of accuracy. Variables that 139 // cannot be promoted by mem2reg or SROA will be described as living in memory 140 // for their entire lifetime. However, passes like DSE and instcombine can 141 // delete stores to the alloca, leading to misleading and inaccurate debug 142 // information. This flag can be removed when those passes are fixed. 143 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 144 cl::Hidden, cl::init(true)); 145 146 Value *InstCombiner::EmitGEPOffset(User *GEP) { 147 return llvm::EmitGEPOffset(&Builder, DL, GEP); 148 } 149 150 /// Return true if it is desirable to convert an integer computation from a 151 /// given bit width to a new bit width. 152 /// We don't want to convert from a legal to an illegal type or from a smaller 153 /// to a larger illegal type. A width of '1' is always treated as a legal type 154 /// because i1 is a fundamental type in IR, and there are many specialized 155 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as 156 /// legal to convert to, in order to open up more combining opportunities. 157 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common 158 /// from frontend languages. 159 bool InstCombiner::shouldChangeType(unsigned FromWidth, 160 unsigned ToWidth) const { 161 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 162 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 163 164 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only 165 // shrink types, to prevent infinite loops. 166 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32)) 167 return true; 168 169 // If this is a legal integer from type, and the result would be an illegal 170 // type, don't do the transformation. 171 if (FromLegal && !ToLegal) 172 return false; 173 174 // Otherwise, if both are illegal, do not increase the size of the result. We 175 // do allow things like i160 -> i64, but not i64 -> i160. 176 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 177 return false; 178 179 return true; 180 } 181 182 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 183 /// We don't want to convert from a legal to an illegal type or from a smaller 184 /// to a larger illegal type. i1 is always treated as a legal type because it is 185 /// a fundamental type in IR, and there are many specialized optimizations for 186 /// i1 types. 187 bool InstCombiner::shouldChangeType(Type *From, Type *To) const { 188 // TODO: This could be extended to allow vectors. Datalayout changes might be 189 // needed to properly support that. 190 if (!From->isIntegerTy() || !To->isIntegerTy()) 191 return false; 192 193 unsigned FromWidth = From->getPrimitiveSizeInBits(); 194 unsigned ToWidth = To->getPrimitiveSizeInBits(); 195 return shouldChangeType(FromWidth, ToWidth); 196 } 197 198 // Return true, if No Signed Wrap should be maintained for I. 199 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 200 // where both B and C should be ConstantInts, results in a constant that does 201 // not overflow. This function only handles the Add and Sub opcodes. For 202 // all other opcodes, the function conservatively returns false. 203 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 204 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 205 if (!OBO || !OBO->hasNoSignedWrap()) 206 return false; 207 208 // We reason about Add and Sub Only. 209 Instruction::BinaryOps Opcode = I.getOpcode(); 210 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 211 return false; 212 213 const APInt *BVal, *CVal; 214 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 215 return false; 216 217 bool Overflow = false; 218 if (Opcode == Instruction::Add) 219 (void)BVal->sadd_ov(*CVal, Overflow); 220 else 221 (void)BVal->ssub_ov(*CVal, Overflow); 222 223 return !Overflow; 224 } 225 226 static bool hasNoUnsignedWrap(BinaryOperator &I) { 227 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 228 return OBO && OBO->hasNoUnsignedWrap(); 229 } 230 231 static bool hasNoSignedWrap(BinaryOperator &I) { 232 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 233 return OBO && OBO->hasNoSignedWrap(); 234 } 235 236 /// Conservatively clears subclassOptionalData after a reassociation or 237 /// commutation. We preserve fast-math flags when applicable as they can be 238 /// preserved. 239 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 240 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 241 if (!FPMO) { 242 I.clearSubclassOptionalData(); 243 return; 244 } 245 246 FastMathFlags FMF = I.getFastMathFlags(); 247 I.clearSubclassOptionalData(); 248 I.setFastMathFlags(FMF); 249 } 250 251 /// Combine constant operands of associative operations either before or after a 252 /// cast to eliminate one of the associative operations: 253 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 254 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 255 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) { 256 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 257 if (!Cast || !Cast->hasOneUse()) 258 return false; 259 260 // TODO: Enhance logic for other casts and remove this check. 261 auto CastOpcode = Cast->getOpcode(); 262 if (CastOpcode != Instruction::ZExt) 263 return false; 264 265 // TODO: Enhance logic for other BinOps and remove this check. 266 if (!BinOp1->isBitwiseLogicOp()) 267 return false; 268 269 auto AssocOpcode = BinOp1->getOpcode(); 270 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 271 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 272 return false; 273 274 Constant *C1, *C2; 275 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 276 !match(BinOp2->getOperand(1), m_Constant(C2))) 277 return false; 278 279 // TODO: This assumes a zext cast. 280 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 281 // to the destination type might lose bits. 282 283 // Fold the constants together in the destination type: 284 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 285 Type *DestTy = C1->getType(); 286 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 287 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 288 Cast->setOperand(0, BinOp2->getOperand(0)); 289 BinOp1->setOperand(1, FoldedC); 290 return true; 291 } 292 293 /// This performs a few simplifications for operators that are associative or 294 /// commutative: 295 /// 296 /// Commutative operators: 297 /// 298 /// 1. Order operands such that they are listed from right (least complex) to 299 /// left (most complex). This puts constants before unary operators before 300 /// binary operators. 301 /// 302 /// Associative operators: 303 /// 304 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 305 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 306 /// 307 /// Associative and commutative operators: 308 /// 309 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 310 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 311 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 312 /// if C1 and C2 are constants. 313 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 314 Instruction::BinaryOps Opcode = I.getOpcode(); 315 bool Changed = false; 316 317 do { 318 // Order operands such that they are listed from right (least complex) to 319 // left (most complex). This puts constants before unary operators before 320 // binary operators. 321 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 322 getComplexity(I.getOperand(1))) 323 Changed = !I.swapOperands(); 324 325 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 326 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 327 328 if (I.isAssociative()) { 329 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 330 if (Op0 && Op0->getOpcode() == Opcode) { 331 Value *A = Op0->getOperand(0); 332 Value *B = Op0->getOperand(1); 333 Value *C = I.getOperand(1); 334 335 // Does "B op C" simplify? 336 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 337 // It simplifies to V. Form "A op V". 338 I.setOperand(0, A); 339 I.setOperand(1, V); 340 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 341 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 342 343 // Conservatively clear all optional flags since they may not be 344 // preserved by the reassociation. Reset nsw/nuw based on the above 345 // analysis. 346 ClearSubclassDataAfterReassociation(I); 347 348 // Note: this is only valid because SimplifyBinOp doesn't look at 349 // the operands to Op0. 350 if (IsNUW) 351 I.setHasNoUnsignedWrap(true); 352 353 if (IsNSW) 354 I.setHasNoSignedWrap(true); 355 356 Changed = true; 357 ++NumReassoc; 358 continue; 359 } 360 } 361 362 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 363 if (Op1 && Op1->getOpcode() == Opcode) { 364 Value *A = I.getOperand(0); 365 Value *B = Op1->getOperand(0); 366 Value *C = Op1->getOperand(1); 367 368 // Does "A op B" simplify? 369 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 370 // It simplifies to V. Form "V op C". 371 I.setOperand(0, V); 372 I.setOperand(1, C); 373 // Conservatively clear the optional flags, since they may not be 374 // preserved by the reassociation. 375 ClearSubclassDataAfterReassociation(I); 376 Changed = true; 377 ++NumReassoc; 378 continue; 379 } 380 } 381 } 382 383 if (I.isAssociative() && I.isCommutative()) { 384 if (simplifyAssocCastAssoc(&I)) { 385 Changed = true; 386 ++NumReassoc; 387 continue; 388 } 389 390 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 391 if (Op0 && Op0->getOpcode() == Opcode) { 392 Value *A = Op0->getOperand(0); 393 Value *B = Op0->getOperand(1); 394 Value *C = I.getOperand(1); 395 396 // Does "C op A" simplify? 397 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 398 // It simplifies to V. Form "V op B". 399 I.setOperand(0, V); 400 I.setOperand(1, B); 401 // Conservatively clear the optional flags, since they may not be 402 // preserved by the reassociation. 403 ClearSubclassDataAfterReassociation(I); 404 Changed = true; 405 ++NumReassoc; 406 continue; 407 } 408 } 409 410 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 411 if (Op1 && Op1->getOpcode() == Opcode) { 412 Value *A = I.getOperand(0); 413 Value *B = Op1->getOperand(0); 414 Value *C = Op1->getOperand(1); 415 416 // Does "C op A" simplify? 417 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 418 // It simplifies to V. Form "B op V". 419 I.setOperand(0, B); 420 I.setOperand(1, V); 421 // Conservatively clear the optional flags, since they may not be 422 // preserved by the reassociation. 423 ClearSubclassDataAfterReassociation(I); 424 Changed = true; 425 ++NumReassoc; 426 continue; 427 } 428 } 429 430 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 431 // if C1 and C2 are constants. 432 Value *A, *B; 433 Constant *C1, *C2; 434 if (Op0 && Op1 && 435 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 436 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 437 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 438 bool IsNUW = hasNoUnsignedWrap(I) && 439 hasNoUnsignedWrap(*Op0) && 440 hasNoUnsignedWrap(*Op1); 441 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 442 BinaryOperator::CreateNUW(Opcode, A, B) : 443 BinaryOperator::Create(Opcode, A, B); 444 445 if (isa<FPMathOperator>(NewBO)) { 446 FastMathFlags Flags = I.getFastMathFlags(); 447 Flags &= Op0->getFastMathFlags(); 448 Flags &= Op1->getFastMathFlags(); 449 NewBO->setFastMathFlags(Flags); 450 } 451 InsertNewInstWith(NewBO, I); 452 NewBO->takeName(Op1); 453 I.setOperand(0, NewBO); 454 I.setOperand(1, ConstantExpr::get(Opcode, C1, C2)); 455 // Conservatively clear the optional flags, since they may not be 456 // preserved by the reassociation. 457 ClearSubclassDataAfterReassociation(I); 458 if (IsNUW) 459 I.setHasNoUnsignedWrap(true); 460 461 Changed = true; 462 continue; 463 } 464 } 465 466 // No further simplifications. 467 return Changed; 468 } while (true); 469 } 470 471 /// Return whether "X LOp (Y ROp Z)" is always equal to 472 /// "(X LOp Y) ROp (X LOp Z)". 473 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 474 Instruction::BinaryOps ROp) { 475 // X & (Y | Z) <--> (X & Y) | (X & Z) 476 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 477 if (LOp == Instruction::And) 478 return ROp == Instruction::Or || ROp == Instruction::Xor; 479 480 // X | (Y & Z) <--> (X | Y) & (X | Z) 481 if (LOp == Instruction::Or) 482 return ROp == Instruction::And; 483 484 // X * (Y + Z) <--> (X * Y) + (X * Z) 485 // X * (Y - Z) <--> (X * Y) - (X * Z) 486 if (LOp == Instruction::Mul) 487 return ROp == Instruction::Add || ROp == Instruction::Sub; 488 489 return false; 490 } 491 492 /// Return whether "(X LOp Y) ROp Z" is always equal to 493 /// "(X ROp Z) LOp (Y ROp Z)". 494 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 495 Instruction::BinaryOps ROp) { 496 if (Instruction::isCommutative(ROp)) 497 return leftDistributesOverRight(ROp, LOp); 498 499 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 500 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 501 502 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 503 // but this requires knowing that the addition does not overflow and other 504 // such subtleties. 505 } 506 507 /// This function returns identity value for given opcode, which can be used to 508 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 509 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 510 if (isa<Constant>(V)) 511 return nullptr; 512 513 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 514 } 515 516 /// This function predicates factorization using distributive laws. By default, 517 /// it just returns the 'Op' inputs. But for special-cases like 518 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 519 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 520 /// allow more factorization opportunities. 521 static Instruction::BinaryOps 522 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 523 Value *&LHS, Value *&RHS) { 524 assert(Op && "Expected a binary operator"); 525 LHS = Op->getOperand(0); 526 RHS = Op->getOperand(1); 527 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 528 Constant *C; 529 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 530 // X << C --> X * (1 << C) 531 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 532 return Instruction::Mul; 533 } 534 // TODO: We can add other conversions e.g. shr => div etc. 535 } 536 return Op->getOpcode(); 537 } 538 539 /// This tries to simplify binary operations by factorizing out common terms 540 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 541 Value *InstCombiner::tryFactorization(BinaryOperator &I, 542 Instruction::BinaryOps InnerOpcode, 543 Value *A, Value *B, Value *C, Value *D) { 544 assert(A && B && C && D && "All values must be provided"); 545 546 Value *V = nullptr; 547 Value *SimplifiedInst = nullptr; 548 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 549 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 550 551 // Does "X op' Y" always equal "Y op' X"? 552 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 553 554 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 555 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 556 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 557 // commutative case, "(A op' B) op (C op' A)"? 558 if (A == C || (InnerCommutative && A == D)) { 559 if (A != C) 560 std::swap(C, D); 561 // Consider forming "A op' (B op D)". 562 // If "B op D" simplifies then it can be formed with no cost. 563 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 564 // If "B op D" doesn't simplify then only go on if both of the existing 565 // operations "A op' B" and "C op' D" will be zapped as no longer used. 566 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 567 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 568 if (V) { 569 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 570 } 571 } 572 573 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 574 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 575 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 576 // commutative case, "(A op' B) op (B op' D)"? 577 if (B == D || (InnerCommutative && B == C)) { 578 if (B != D) 579 std::swap(C, D); 580 // Consider forming "(A op C) op' B". 581 // If "A op C" simplifies then it can be formed with no cost. 582 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 583 584 // If "A op C" doesn't simplify then only go on if both of the existing 585 // operations "A op' B" and "C op' D" will be zapped as no longer used. 586 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 587 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 588 if (V) { 589 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 590 } 591 } 592 593 if (SimplifiedInst) { 594 ++NumFactor; 595 SimplifiedInst->takeName(&I); 596 597 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 598 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 599 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 600 bool HasNSW = false; 601 bool HasNUW = false; 602 if (isa<OverflowingBinaryOperator>(&I)) { 603 HasNSW = I.hasNoSignedWrap(); 604 HasNUW = I.hasNoUnsignedWrap(); 605 } 606 607 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 608 HasNSW &= LOBO->hasNoSignedWrap(); 609 HasNUW &= LOBO->hasNoUnsignedWrap(); 610 } 611 612 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 613 HasNSW &= ROBO->hasNoSignedWrap(); 614 HasNUW &= ROBO->hasNoUnsignedWrap(); 615 } 616 617 if (TopLevelOpcode == Instruction::Add && 618 InnerOpcode == Instruction::Mul) { 619 // We can propagate 'nsw' if we know that 620 // %Y = mul nsw i16 %X, C 621 // %Z = add nsw i16 %Y, %X 622 // => 623 // %Z = mul nsw i16 %X, C+1 624 // 625 // iff C+1 isn't INT_MIN 626 const APInt *CInt; 627 if (match(V, m_APInt(CInt))) { 628 if (!CInt->isMinSignedValue()) 629 BO->setHasNoSignedWrap(HasNSW); 630 } 631 632 // nuw can be propagated with any constant or nuw value. 633 BO->setHasNoUnsignedWrap(HasNUW); 634 } 635 } 636 } 637 } 638 return SimplifiedInst; 639 } 640 641 /// This tries to simplify binary operations which some other binary operation 642 /// distributes over either by factorizing out common terms 643 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 644 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 645 /// Returns the simplified value, or null if it didn't simplify. 646 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 647 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 648 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 649 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 650 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 651 652 { 653 // Factorization. 654 Value *A, *B, *C, *D; 655 Instruction::BinaryOps LHSOpcode, RHSOpcode; 656 if (Op0) 657 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 658 if (Op1) 659 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 660 661 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 662 // a common term. 663 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 664 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 665 return V; 666 667 // The instruction has the form "(A op' B) op (C)". Try to factorize common 668 // term. 669 if (Op0) 670 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 671 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 672 return V; 673 674 // The instruction has the form "(B) op (C op' D)". Try to factorize common 675 // term. 676 if (Op1) 677 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 678 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 679 return V; 680 } 681 682 // Expansion. 683 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 684 // The instruction has the form "(A op' B) op C". See if expanding it out 685 // to "(A op C) op' (B op C)" results in simplifications. 686 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 687 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 688 689 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 690 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I)); 691 692 // Do "A op C" and "B op C" both simplify? 693 if (L && R) { 694 // They do! Return "L op' R". 695 ++NumExpand; 696 C = Builder.CreateBinOp(InnerOpcode, L, R); 697 C->takeName(&I); 698 return C; 699 } 700 701 // Does "A op C" simplify to the identity value for the inner opcode? 702 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 703 // They do! Return "B op C". 704 ++NumExpand; 705 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 706 C->takeName(&I); 707 return C; 708 } 709 710 // Does "B op C" simplify to the identity value for the inner opcode? 711 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 712 // They do! Return "A op C". 713 ++NumExpand; 714 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 715 C->takeName(&I); 716 return C; 717 } 718 } 719 720 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 721 // The instruction has the form "A op (B op' C)". See if expanding it out 722 // to "(A op B) op' (A op C)" results in simplifications. 723 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 724 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 725 726 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I)); 727 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 728 729 // Do "A op B" and "A op C" both simplify? 730 if (L && R) { 731 // They do! Return "L op' R". 732 ++NumExpand; 733 A = Builder.CreateBinOp(InnerOpcode, L, R); 734 A->takeName(&I); 735 return A; 736 } 737 738 // Does "A op B" simplify to the identity value for the inner opcode? 739 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 740 // They do! Return "A op C". 741 ++NumExpand; 742 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 743 A->takeName(&I); 744 return A; 745 } 746 747 // Does "A op C" simplify to the identity value for the inner opcode? 748 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 749 // They do! Return "A op B". 750 ++NumExpand; 751 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 752 A->takeName(&I); 753 return A; 754 } 755 } 756 757 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 758 } 759 760 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 761 Value *LHS, Value *RHS) { 762 Instruction::BinaryOps Opcode = I.getOpcode(); 763 // (op (select (a, b, c)), (select (a, d, e))) -> (select (a, (op b, d), (op 764 // c, e))) 765 Value *A, *B, *C, *D, *E; 766 Value *SI = nullptr; 767 if (match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))) && 768 match(RHS, m_Select(m_Specific(A), m_Value(D), m_Value(E)))) { 769 bool SelectsHaveOneUse = LHS->hasOneUse() && RHS->hasOneUse(); 770 771 FastMathFlags FMF; 772 BuilderTy::FastMathFlagGuard Guard(Builder); 773 if (isa<FPMathOperator>(&I)) { 774 FMF = I.getFastMathFlags(); 775 Builder.setFastMathFlags(FMF); 776 } 777 778 Value *V1 = SimplifyBinOp(Opcode, C, E, FMF, SQ.getWithInstruction(&I)); 779 Value *V2 = SimplifyBinOp(Opcode, B, D, FMF, SQ.getWithInstruction(&I)); 780 if (V1 && V2) 781 SI = Builder.CreateSelect(A, V2, V1); 782 else if (V2 && SelectsHaveOneUse) 783 SI = Builder.CreateSelect(A, V2, Builder.CreateBinOp(Opcode, C, E)); 784 else if (V1 && SelectsHaveOneUse) 785 SI = Builder.CreateSelect(A, Builder.CreateBinOp(Opcode, B, D), V1); 786 787 if (SI) 788 SI->takeName(&I); 789 } 790 791 return SI; 792 } 793 794 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 795 /// constant zero (which is the 'negate' form). 796 Value *InstCombiner::dyn_castNegVal(Value *V) const { 797 Value *NegV; 798 if (match(V, m_Neg(m_Value(NegV)))) 799 return NegV; 800 801 // Constants can be considered to be negated values if they can be folded. 802 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 803 return ConstantExpr::getNeg(C); 804 805 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 806 if (C->getType()->getElementType()->isIntegerTy()) 807 return ConstantExpr::getNeg(C); 808 809 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 810 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 811 Constant *Elt = CV->getAggregateElement(i); 812 if (!Elt) 813 return nullptr; 814 815 if (isa<UndefValue>(Elt)) 816 continue; 817 818 if (!isa<ConstantInt>(Elt)) 819 return nullptr; 820 } 821 return ConstantExpr::getNeg(CV); 822 } 823 824 return nullptr; 825 } 826 827 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 828 InstCombiner::BuilderTy &Builder) { 829 if (auto *Cast = dyn_cast<CastInst>(&I)) 830 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 831 832 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 833 834 // Figure out if the constant is the left or the right argument. 835 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 836 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 837 838 if (auto *SOC = dyn_cast<Constant>(SO)) { 839 if (ConstIsRHS) 840 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 841 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 842 } 843 844 Value *Op0 = SO, *Op1 = ConstOperand; 845 if (!ConstIsRHS) 846 std::swap(Op0, Op1); 847 848 auto *BO = cast<BinaryOperator>(&I); 849 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 850 SO->getName() + ".op"); 851 auto *FPInst = dyn_cast<Instruction>(RI); 852 if (FPInst && isa<FPMathOperator>(FPInst)) 853 FPInst->copyFastMathFlags(BO); 854 return RI; 855 } 856 857 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 858 // Don't modify shared select instructions. 859 if (!SI->hasOneUse()) 860 return nullptr; 861 862 Value *TV = SI->getTrueValue(); 863 Value *FV = SI->getFalseValue(); 864 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 865 return nullptr; 866 867 // Bool selects with constant operands can be folded to logical ops. 868 if (SI->getType()->isIntOrIntVectorTy(1)) 869 return nullptr; 870 871 // If it's a bitcast involving vectors, make sure it has the same number of 872 // elements on both sides. 873 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 874 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 875 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 876 877 // Verify that either both or neither are vectors. 878 if ((SrcTy == nullptr) != (DestTy == nullptr)) 879 return nullptr; 880 881 // If vectors, verify that they have the same number of elements. 882 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 883 return nullptr; 884 } 885 886 // Test if a CmpInst instruction is used exclusively by a select as 887 // part of a minimum or maximum operation. If so, refrain from doing 888 // any other folding. This helps out other analyses which understand 889 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 890 // and CodeGen. And in this case, at least one of the comparison 891 // operands has at least one user besides the compare (the select), 892 // which would often largely negate the benefit of folding anyway. 893 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 894 if (CI->hasOneUse()) { 895 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 896 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 897 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 898 return nullptr; 899 } 900 } 901 902 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 903 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 904 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 905 } 906 907 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 908 InstCombiner::BuilderTy &Builder) { 909 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 910 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 911 912 if (auto *InC = dyn_cast<Constant>(InV)) { 913 if (ConstIsRHS) 914 return ConstantExpr::get(I->getOpcode(), InC, C); 915 return ConstantExpr::get(I->getOpcode(), C, InC); 916 } 917 918 Value *Op0 = InV, *Op1 = C; 919 if (!ConstIsRHS) 920 std::swap(Op0, Op1); 921 922 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp"); 923 auto *FPInst = dyn_cast<Instruction>(RI); 924 if (FPInst && isa<FPMathOperator>(FPInst)) 925 FPInst->copyFastMathFlags(I); 926 return RI; 927 } 928 929 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) { 930 unsigned NumPHIValues = PN->getNumIncomingValues(); 931 if (NumPHIValues == 0) 932 return nullptr; 933 934 // We normally only transform phis with a single use. However, if a PHI has 935 // multiple uses and they are all the same operation, we can fold *all* of the 936 // uses into the PHI. 937 if (!PN->hasOneUse()) { 938 // Walk the use list for the instruction, comparing them to I. 939 for (User *U : PN->users()) { 940 Instruction *UI = cast<Instruction>(U); 941 if (UI != &I && !I.isIdenticalTo(UI)) 942 return nullptr; 943 } 944 // Otherwise, we can replace *all* users with the new PHI we form. 945 } 946 947 // Check to see if all of the operands of the PHI are simple constants 948 // (constantint/constantfp/undef). If there is one non-constant value, 949 // remember the BB it is in. If there is more than one or if *it* is a PHI, 950 // bail out. We don't do arbitrary constant expressions here because moving 951 // their computation can be expensive without a cost model. 952 BasicBlock *NonConstBB = nullptr; 953 for (unsigned i = 0; i != NumPHIValues; ++i) { 954 Value *InVal = PN->getIncomingValue(i); 955 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 956 continue; 957 958 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 959 if (NonConstBB) return nullptr; // More than one non-const value. 960 961 NonConstBB = PN->getIncomingBlock(i); 962 963 // If the InVal is an invoke at the end of the pred block, then we can't 964 // insert a computation after it without breaking the edge. 965 if (isa<InvokeInst>(InVal)) 966 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 967 return nullptr; 968 969 // If the incoming non-constant value is in I's block, we will remove one 970 // instruction, but insert another equivalent one, leading to infinite 971 // instcombine. 972 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI)) 973 return nullptr; 974 } 975 976 // If there is exactly one non-constant value, we can insert a copy of the 977 // operation in that block. However, if this is a critical edge, we would be 978 // inserting the computation on some other paths (e.g. inside a loop). Only 979 // do this if the pred block is unconditionally branching into the phi block. 980 if (NonConstBB != nullptr) { 981 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 982 if (!BI || !BI->isUnconditional()) return nullptr; 983 } 984 985 // Okay, we can do the transformation: create the new PHI node. 986 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 987 InsertNewInstBefore(NewPN, *PN); 988 NewPN->takeName(PN); 989 990 // If we are going to have to insert a new computation, do so right before the 991 // predecessor's terminator. 992 if (NonConstBB) 993 Builder.SetInsertPoint(NonConstBB->getTerminator()); 994 995 // Next, add all of the operands to the PHI. 996 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 997 // We only currently try to fold the condition of a select when it is a phi, 998 // not the true/false values. 999 Value *TrueV = SI->getTrueValue(); 1000 Value *FalseV = SI->getFalseValue(); 1001 BasicBlock *PhiTransBB = PN->getParent(); 1002 for (unsigned i = 0; i != NumPHIValues; ++i) { 1003 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1004 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1005 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1006 Value *InV = nullptr; 1007 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1008 // even if currently isNullValue gives false. 1009 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1010 // For vector constants, we cannot use isNullValue to fold into 1011 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1012 // elements in the vector, we will incorrectly fold InC to 1013 // `TrueVInPred`. 1014 if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC)) 1015 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1016 else { 1017 // Generate the select in the same block as PN's current incoming block. 1018 // Note: ThisBB need not be the NonConstBB because vector constants 1019 // which are constants by definition are handled here. 1020 // FIXME: This can lead to an increase in IR generation because we might 1021 // generate selects for vector constant phi operand, that could not be 1022 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1023 // non-vector phis, this transformation was always profitable because 1024 // the select would be generated exactly once in the NonConstBB. 1025 Builder.SetInsertPoint(ThisBB->getTerminator()); 1026 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1027 FalseVInPred, "phitmp"); 1028 } 1029 NewPN->addIncoming(InV, ThisBB); 1030 } 1031 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1032 Constant *C = cast<Constant>(I.getOperand(1)); 1033 for (unsigned i = 0; i != NumPHIValues; ++i) { 1034 Value *InV = nullptr; 1035 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1036 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1037 else if (isa<ICmpInst>(CI)) 1038 InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 1039 C, "phitmp"); 1040 else 1041 InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 1042 C, "phitmp"); 1043 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1044 } 1045 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1046 for (unsigned i = 0; i != NumPHIValues; ++i) { 1047 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1048 Builder); 1049 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1050 } 1051 } else { 1052 CastInst *CI = cast<CastInst>(&I); 1053 Type *RetTy = CI->getType(); 1054 for (unsigned i = 0; i != NumPHIValues; ++i) { 1055 Value *InV; 1056 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1057 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1058 else 1059 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1060 I.getType(), "phitmp"); 1061 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1062 } 1063 } 1064 1065 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1066 Instruction *User = cast<Instruction>(*UI++); 1067 if (User == &I) continue; 1068 replaceInstUsesWith(*User, NewPN); 1069 eraseInstFromFunction(*User); 1070 } 1071 return replaceInstUsesWith(I, NewPN); 1072 } 1073 1074 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1075 if (!isa<Constant>(I.getOperand(1))) 1076 return nullptr; 1077 1078 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1079 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1080 return NewSel; 1081 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1082 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1083 return NewPhi; 1084 } 1085 return nullptr; 1086 } 1087 1088 /// Given a pointer type and a constant offset, determine whether or not there 1089 /// is a sequence of GEP indices into the pointed type that will land us at the 1090 /// specified offset. If so, fill them into NewIndices and return the resultant 1091 /// element type, otherwise return null. 1092 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 1093 SmallVectorImpl<Value *> &NewIndices) { 1094 Type *Ty = PtrTy->getElementType(); 1095 if (!Ty->isSized()) 1096 return nullptr; 1097 1098 // Start with the index over the outer type. Note that the type size 1099 // might be zero (even if the offset isn't zero) if the indexed type 1100 // is something like [0 x {int, int}] 1101 Type *IndexTy = DL.getIndexType(PtrTy); 1102 int64_t FirstIdx = 0; 1103 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 1104 FirstIdx = Offset/TySize; 1105 Offset -= FirstIdx*TySize; 1106 1107 // Handle hosts where % returns negative instead of values [0..TySize). 1108 if (Offset < 0) { 1109 --FirstIdx; 1110 Offset += TySize; 1111 assert(Offset >= 0); 1112 } 1113 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 1114 } 1115 1116 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx)); 1117 1118 // Index into the types. If we fail, set OrigBase to null. 1119 while (Offset) { 1120 // Indexing into tail padding between struct/array elements. 1121 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1122 return nullptr; 1123 1124 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1125 const StructLayout *SL = DL.getStructLayout(STy); 1126 assert(Offset < (int64_t)SL->getSizeInBytes() && 1127 "Offset must stay within the indexed type"); 1128 1129 unsigned Elt = SL->getElementContainingOffset(Offset); 1130 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1131 Elt)); 1132 1133 Offset -= SL->getElementOffset(Elt); 1134 Ty = STy->getElementType(Elt); 1135 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1136 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1137 assert(EltSize && "Cannot index into a zero-sized array"); 1138 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize)); 1139 Offset %= EltSize; 1140 Ty = AT->getElementType(); 1141 } else { 1142 // Otherwise, we can't index into the middle of this atomic type, bail. 1143 return nullptr; 1144 } 1145 } 1146 1147 return Ty; 1148 } 1149 1150 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1151 // If this GEP has only 0 indices, it is the same pointer as 1152 // Src. If Src is not a trivial GEP too, don't combine 1153 // the indices. 1154 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1155 !Src.hasOneUse()) 1156 return false; 1157 return true; 1158 } 1159 1160 /// Return a value X such that Val = X * Scale, or null if none. 1161 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1162 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1163 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1164 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1165 Scale.getBitWidth() && "Scale not compatible with value!"); 1166 1167 // If Val is zero or Scale is one then Val = Val * Scale. 1168 if (match(Val, m_Zero()) || Scale == 1) { 1169 NoSignedWrap = true; 1170 return Val; 1171 } 1172 1173 // If Scale is zero then it does not divide Val. 1174 if (Scale.isMinValue()) 1175 return nullptr; 1176 1177 // Look through chains of multiplications, searching for a constant that is 1178 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1179 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1180 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1181 // down from Val: 1182 // 1183 // Val = M1 * X || Analysis starts here and works down 1184 // M1 = M2 * Y || Doesn't descend into terms with more 1185 // M2 = Z * 4 \/ than one use 1186 // 1187 // Then to modify a term at the bottom: 1188 // 1189 // Val = M1 * X 1190 // M1 = Z * Y || Replaced M2 with Z 1191 // 1192 // Then to work back up correcting nsw flags. 1193 1194 // Op - the term we are currently analyzing. Starts at Val then drills down. 1195 // Replaced with its descaled value before exiting from the drill down loop. 1196 Value *Op = Val; 1197 1198 // Parent - initially null, but after drilling down notes where Op came from. 1199 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1200 // 0'th operand of Val. 1201 std::pair<Instruction *, unsigned> Parent; 1202 1203 // Set if the transform requires a descaling at deeper levels that doesn't 1204 // overflow. 1205 bool RequireNoSignedWrap = false; 1206 1207 // Log base 2 of the scale. Negative if not a power of 2. 1208 int32_t logScale = Scale.exactLogBase2(); 1209 1210 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1211 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1212 // If Op is a constant divisible by Scale then descale to the quotient. 1213 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1214 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1215 if (!Remainder.isMinValue()) 1216 // Not divisible by Scale. 1217 return nullptr; 1218 // Replace with the quotient in the parent. 1219 Op = ConstantInt::get(CI->getType(), Quotient); 1220 NoSignedWrap = true; 1221 break; 1222 } 1223 1224 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1225 if (BO->getOpcode() == Instruction::Mul) { 1226 // Multiplication. 1227 NoSignedWrap = BO->hasNoSignedWrap(); 1228 if (RequireNoSignedWrap && !NoSignedWrap) 1229 return nullptr; 1230 1231 // There are three cases for multiplication: multiplication by exactly 1232 // the scale, multiplication by a constant different to the scale, and 1233 // multiplication by something else. 1234 Value *LHS = BO->getOperand(0); 1235 Value *RHS = BO->getOperand(1); 1236 1237 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1238 // Multiplication by a constant. 1239 if (CI->getValue() == Scale) { 1240 // Multiplication by exactly the scale, replace the multiplication 1241 // by its left-hand side in the parent. 1242 Op = LHS; 1243 break; 1244 } 1245 1246 // Otherwise drill down into the constant. 1247 if (!Op->hasOneUse()) 1248 return nullptr; 1249 1250 Parent = std::make_pair(BO, 1); 1251 continue; 1252 } 1253 1254 // Multiplication by something else. Drill down into the left-hand side 1255 // since that's where the reassociate pass puts the good stuff. 1256 if (!Op->hasOneUse()) 1257 return nullptr; 1258 1259 Parent = std::make_pair(BO, 0); 1260 continue; 1261 } 1262 1263 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1264 isa<ConstantInt>(BO->getOperand(1))) { 1265 // Multiplication by a power of 2. 1266 NoSignedWrap = BO->hasNoSignedWrap(); 1267 if (RequireNoSignedWrap && !NoSignedWrap) 1268 return nullptr; 1269 1270 Value *LHS = BO->getOperand(0); 1271 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1272 getLimitedValue(Scale.getBitWidth()); 1273 // Op = LHS << Amt. 1274 1275 if (Amt == logScale) { 1276 // Multiplication by exactly the scale, replace the multiplication 1277 // by its left-hand side in the parent. 1278 Op = LHS; 1279 break; 1280 } 1281 if (Amt < logScale || !Op->hasOneUse()) 1282 return nullptr; 1283 1284 // Multiplication by more than the scale. Reduce the multiplying amount 1285 // by the scale in the parent. 1286 Parent = std::make_pair(BO, 1); 1287 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1288 break; 1289 } 1290 } 1291 1292 if (!Op->hasOneUse()) 1293 return nullptr; 1294 1295 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1296 if (Cast->getOpcode() == Instruction::SExt) { 1297 // Op is sign-extended from a smaller type, descale in the smaller type. 1298 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1299 APInt SmallScale = Scale.trunc(SmallSize); 1300 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1301 // descale Op as (sext Y) * Scale. In order to have 1302 // sext (Y * SmallScale) = (sext Y) * Scale 1303 // some conditions need to hold however: SmallScale must sign-extend to 1304 // Scale and the multiplication Y * SmallScale should not overflow. 1305 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1306 // SmallScale does not sign-extend to Scale. 1307 return nullptr; 1308 assert(SmallScale.exactLogBase2() == logScale); 1309 // Require that Y * SmallScale must not overflow. 1310 RequireNoSignedWrap = true; 1311 1312 // Drill down through the cast. 1313 Parent = std::make_pair(Cast, 0); 1314 Scale = SmallScale; 1315 continue; 1316 } 1317 1318 if (Cast->getOpcode() == Instruction::Trunc) { 1319 // Op is truncated from a larger type, descale in the larger type. 1320 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1321 // trunc (Y * sext Scale) = (trunc Y) * Scale 1322 // always holds. However (trunc Y) * Scale may overflow even if 1323 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1324 // from this point up in the expression (see later). 1325 if (RequireNoSignedWrap) 1326 return nullptr; 1327 1328 // Drill down through the cast. 1329 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1330 Parent = std::make_pair(Cast, 0); 1331 Scale = Scale.sext(LargeSize); 1332 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1333 logScale = -1; 1334 assert(Scale.exactLogBase2() == logScale); 1335 continue; 1336 } 1337 } 1338 1339 // Unsupported expression, bail out. 1340 return nullptr; 1341 } 1342 1343 // If Op is zero then Val = Op * Scale. 1344 if (match(Op, m_Zero())) { 1345 NoSignedWrap = true; 1346 return Op; 1347 } 1348 1349 // We know that we can successfully descale, so from here on we can safely 1350 // modify the IR. Op holds the descaled version of the deepest term in the 1351 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1352 // not to overflow. 1353 1354 if (!Parent.first) 1355 // The expression only had one term. 1356 return Op; 1357 1358 // Rewrite the parent using the descaled version of its operand. 1359 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1360 assert(Op != Parent.first->getOperand(Parent.second) && 1361 "Descaling was a no-op?"); 1362 Parent.first->setOperand(Parent.second, Op); 1363 Worklist.Add(Parent.first); 1364 1365 // Now work back up the expression correcting nsw flags. The logic is based 1366 // on the following observation: if X * Y is known not to overflow as a signed 1367 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1368 // then X * Z will not overflow as a signed multiplication either. As we work 1369 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1370 // current level has strictly smaller absolute value than the original. 1371 Instruction *Ancestor = Parent.first; 1372 do { 1373 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1374 // If the multiplication wasn't nsw then we can't say anything about the 1375 // value of the descaled multiplication, and we have to clear nsw flags 1376 // from this point on up. 1377 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1378 NoSignedWrap &= OpNoSignedWrap; 1379 if (NoSignedWrap != OpNoSignedWrap) { 1380 BO->setHasNoSignedWrap(NoSignedWrap); 1381 Worklist.Add(Ancestor); 1382 } 1383 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1384 // The fact that the descaled input to the trunc has smaller absolute 1385 // value than the original input doesn't tell us anything useful about 1386 // the absolute values of the truncations. 1387 NoSignedWrap = false; 1388 } 1389 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1390 "Failed to keep proper track of nsw flags while drilling down?"); 1391 1392 if (Ancestor == Val) 1393 // Got to the top, all done! 1394 return Val; 1395 1396 // Move up one level in the expression. 1397 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1398 Ancestor = Ancestor->user_back(); 1399 } while (true); 1400 } 1401 1402 Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) { 1403 if (!Inst.getType()->isVectorTy()) return nullptr; 1404 1405 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1406 unsigned NumElts = cast<VectorType>(Inst.getType())->getNumElements(); 1407 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1408 assert(cast<VectorType>(LHS->getType())->getNumElements() == NumElts); 1409 assert(cast<VectorType>(RHS->getType())->getNumElements() == NumElts); 1410 1411 // If both operands of the binop are vector concatenations, then perform the 1412 // narrow binop on each pair of the source operands followed by concatenation 1413 // of the results. 1414 Value *L0, *L1, *R0, *R1; 1415 Constant *Mask; 1416 if (match(LHS, m_ShuffleVector(m_Value(L0), m_Value(L1), m_Constant(Mask))) && 1417 match(RHS, m_ShuffleVector(m_Value(R0), m_Value(R1), m_Specific(Mask))) && 1418 LHS->hasOneUse() && RHS->hasOneUse() && 1419 cast<ShuffleVectorInst>(LHS)->isConcat() && 1420 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1421 // This transform does not have the speculative execution constraint as 1422 // below because the shuffle is a concatenation. The new binops are 1423 // operating on exactly the same elements as the existing binop. 1424 // TODO: We could ease the mask requirement to allow different undef lanes, 1425 // but that requires an analysis of the binop-with-undef output value. 1426 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1427 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1428 BO->copyIRFlags(&Inst); 1429 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1430 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1431 BO->copyIRFlags(&Inst); 1432 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1433 } 1434 1435 // It may not be safe to reorder shuffles and things like div, urem, etc. 1436 // because we may trap when executing those ops on unknown vector elements. 1437 // See PR20059. 1438 if (!isSafeToSpeculativelyExecute(&Inst)) 1439 return nullptr; 1440 1441 auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) { 1442 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1443 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1444 BO->copyIRFlags(&Inst); 1445 return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M); 1446 }; 1447 1448 // If both arguments of the binary operation are shuffles that use the same 1449 // mask and shuffle within a single vector, move the shuffle after the binop. 1450 Value *V1, *V2; 1451 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) && 1452 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) && 1453 V1->getType() == V2->getType() && 1454 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1455 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1456 return createBinOpShuffle(V1, V2, Mask); 1457 } 1458 1459 // If both arguments of a commutative binop are select-shuffles that use the 1460 // same mask with commuted operands, the shuffles are unnecessary. 1461 if (Inst.isCommutative() && 1462 match(LHS, m_ShuffleVector(m_Value(V1), m_Value(V2), m_Constant(Mask))) && 1463 match(RHS, m_ShuffleVector(m_Specific(V2), m_Specific(V1), 1464 m_Specific(Mask)))) { 1465 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1466 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1467 // TODO: Allow shuffles that contain undefs in the mask? 1468 // That is legal, but it reduces undef knowledge. 1469 // TODO: Allow arbitrary shuffles by shuffling after binop? 1470 // That might be legal, but we have to deal with poison. 1471 if (LShuf->isSelect() && !LShuf->getMask()->containsUndefElement() && 1472 RShuf->isSelect() && !RShuf->getMask()->containsUndefElement()) { 1473 // Example: 1474 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1475 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1476 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1477 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1478 NewBO->copyIRFlags(&Inst); 1479 return NewBO; 1480 } 1481 } 1482 1483 // If one argument is a shuffle within one vector and the other is a constant, 1484 // try moving the shuffle after the binary operation. This canonicalization 1485 // intends to move shuffles closer to other shuffles and binops closer to 1486 // other binops, so they can be folded. It may also enable demanded elements 1487 // transforms. 1488 Constant *C; 1489 if (match(&Inst, m_c_BinOp( 1490 m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))), 1491 m_Constant(C))) && 1492 V1->getType()->getVectorNumElements() <= NumElts) { 1493 assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() && 1494 "Shuffle should not change scalar type"); 1495 1496 // Find constant NewC that has property: 1497 // shuffle(NewC, ShMask) = C 1498 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1499 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1500 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1501 bool ConstOp1 = isa<Constant>(RHS); 1502 SmallVector<int, 16> ShMask; 1503 ShuffleVectorInst::getShuffleMask(Mask, ShMask); 1504 unsigned SrcVecNumElts = V1->getType()->getVectorNumElements(); 1505 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1506 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1507 bool MayChange = true; 1508 for (unsigned I = 0; I < NumElts; ++I) { 1509 Constant *CElt = C->getAggregateElement(I); 1510 if (ShMask[I] >= 0) { 1511 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1512 Constant *NewCElt = NewVecC[ShMask[I]]; 1513 // Bail out if: 1514 // 1. The constant vector contains a constant expression. 1515 // 2. The shuffle needs an element of the constant vector that can't 1516 // be mapped to a new constant vector. 1517 // 3. This is a widening shuffle that copies elements of V1 into the 1518 // extended elements (extending with undef is allowed). 1519 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1520 I >= SrcVecNumElts) { 1521 MayChange = false; 1522 break; 1523 } 1524 NewVecC[ShMask[I]] = CElt; 1525 } 1526 // If this is a widening shuffle, we must be able to extend with undef 1527 // elements. If the original binop does not produce an undef in the high 1528 // lanes, then this transform is not safe. 1529 // TODO: We could shuffle those non-undef constant values into the 1530 // result by using a constant vector (rather than an undef vector) 1531 // as operand 1 of the new binop, but that might be too aggressive 1532 // for target-independent shuffle creation. 1533 if (I >= SrcVecNumElts) { 1534 Constant *MaybeUndef = 1535 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1536 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1537 if (!isa<UndefValue>(MaybeUndef)) { 1538 MayChange = false; 1539 break; 1540 } 1541 } 1542 } 1543 if (MayChange) { 1544 Constant *NewC = ConstantVector::get(NewVecC); 1545 // It may not be safe to execute a binop on a vector with undef elements 1546 // because the entire instruction can be folded to undef or create poison 1547 // that did not exist in the original code. 1548 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1549 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1550 1551 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1552 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1553 Value *NewLHS = ConstOp1 ? V1 : NewC; 1554 Value *NewRHS = ConstOp1 ? NewC : V1; 1555 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1556 } 1557 } 1558 1559 return nullptr; 1560 } 1561 1562 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1563 /// of a value. This requires a potentially expensive known bits check to make 1564 /// sure the narrow op does not overflow. 1565 Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) { 1566 // We need at least one extended operand. 1567 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1568 1569 // If this is a sub, we swap the operands since we always want an extension 1570 // on the RHS. The LHS can be an extension or a constant. 1571 if (BO.getOpcode() == Instruction::Sub) 1572 std::swap(Op0, Op1); 1573 1574 Value *X; 1575 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1576 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1577 return nullptr; 1578 1579 // If both operands are the same extension from the same source type and we 1580 // can eliminate at least one (hasOneUse), this might work. 1581 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1582 Value *Y; 1583 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1584 cast<Operator>(Op1)->getOpcode() == CastOpc && 1585 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1586 // If that did not match, see if we have a suitable constant operand. 1587 // Truncating and extending must produce the same constant. 1588 Constant *WideC; 1589 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1590 return nullptr; 1591 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1592 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1593 return nullptr; 1594 Y = NarrowC; 1595 } 1596 1597 // Swap back now that we found our operands. 1598 if (BO.getOpcode() == Instruction::Sub) 1599 std::swap(X, Y); 1600 1601 // Both operands have narrow versions. Last step: the math must not overflow 1602 // in the narrow width. 1603 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1604 return nullptr; 1605 1606 // bo (ext X), (ext Y) --> ext (bo X, Y) 1607 // bo (ext X), C --> ext (bo X, C') 1608 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1609 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1610 if (IsSext) 1611 NewBinOp->setHasNoSignedWrap(); 1612 else 1613 NewBinOp->setHasNoUnsignedWrap(); 1614 } 1615 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1616 } 1617 1618 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1619 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1620 Type *GEPType = GEP.getType(); 1621 Type *GEPEltType = GEP.getSourceElementType(); 1622 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP))) 1623 return replaceInstUsesWith(GEP, V); 1624 1625 // For vector geps, use the generic demanded vector support. 1626 if (GEP.getType()->isVectorTy()) { 1627 auto VWidth = GEP.getType()->getVectorNumElements(); 1628 APInt UndefElts(VWidth, 0); 1629 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1630 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 1631 UndefElts)) { 1632 if (V != &GEP) 1633 return replaceInstUsesWith(GEP, V); 1634 return &GEP; 1635 } 1636 1637 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 1638 // possible (decide on canonical form for pointer broadcast), 3) exploit 1639 // undef elements to decrease demanded bits 1640 } 1641 1642 Value *PtrOp = GEP.getOperand(0); 1643 1644 // Eliminate unneeded casts for indices, and replace indices which displace 1645 // by multiples of a zero size type with zero. 1646 bool MadeChange = false; 1647 1648 // Index width may not be the same width as pointer width. 1649 // Data layout chooses the right type based on supported integer types. 1650 Type *NewScalarIndexTy = 1651 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 1652 1653 gep_type_iterator GTI = gep_type_begin(GEP); 1654 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1655 ++I, ++GTI) { 1656 // Skip indices into struct types. 1657 if (GTI.isStruct()) 1658 continue; 1659 1660 Type *IndexTy = (*I)->getType(); 1661 Type *NewIndexType = 1662 IndexTy->isVectorTy() 1663 ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements()) 1664 : NewScalarIndexTy; 1665 1666 // If the element type has zero size then any index over it is equivalent 1667 // to an index of zero, so replace it with zero if it is not zero already. 1668 Type *EltTy = GTI.getIndexedType(); 1669 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0) 1670 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 1671 *I = Constant::getNullValue(NewIndexType); 1672 MadeChange = true; 1673 } 1674 1675 if (IndexTy != NewIndexType) { 1676 // If we are using a wider index than needed for this platform, shrink 1677 // it to what we need. If narrower, sign-extend it to what we need. 1678 // This explicit cast can make subsequent optimizations more obvious. 1679 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1680 MadeChange = true; 1681 } 1682 } 1683 if (MadeChange) 1684 return &GEP; 1685 1686 // Check to see if the inputs to the PHI node are getelementptr instructions. 1687 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 1688 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1689 if (!Op1) 1690 return nullptr; 1691 1692 // Don't fold a GEP into itself through a PHI node. This can only happen 1693 // through the back-edge of a loop. Folding a GEP into itself means that 1694 // the value of the previous iteration needs to be stored in the meantime, 1695 // thus requiring an additional register variable to be live, but not 1696 // actually achieving anything (the GEP still needs to be executed once per 1697 // loop iteration). 1698 if (Op1 == &GEP) 1699 return nullptr; 1700 1701 int DI = -1; 1702 1703 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1704 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 1705 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1706 return nullptr; 1707 1708 // As for Op1 above, don't try to fold a GEP into itself. 1709 if (Op2 == &GEP) 1710 return nullptr; 1711 1712 // Keep track of the type as we walk the GEP. 1713 Type *CurTy = nullptr; 1714 1715 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1716 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1717 return nullptr; 1718 1719 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1720 if (DI == -1) { 1721 // We have not seen any differences yet in the GEPs feeding the 1722 // PHI yet, so we record this one if it is allowed to be a 1723 // variable. 1724 1725 // The first two arguments can vary for any GEP, the rest have to be 1726 // static for struct slots 1727 if (J > 1) { 1728 assert(CurTy && "No current type?"); 1729 if (CurTy->isStructTy()) 1730 return nullptr; 1731 } 1732 1733 DI = J; 1734 } else { 1735 // The GEP is different by more than one input. While this could be 1736 // extended to support GEPs that vary by more than one variable it 1737 // doesn't make sense since it greatly increases the complexity and 1738 // would result in an R+R+R addressing mode which no backend 1739 // directly supports and would need to be broken into several 1740 // simpler instructions anyway. 1741 return nullptr; 1742 } 1743 } 1744 1745 // Sink down a layer of the type for the next iteration. 1746 if (J > 0) { 1747 if (J == 1) { 1748 CurTy = Op1->getSourceElementType(); 1749 } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) { 1750 CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); 1751 } else { 1752 CurTy = nullptr; 1753 } 1754 } 1755 } 1756 } 1757 1758 // If not all GEPs are identical we'll have to create a new PHI node. 1759 // Check that the old PHI node has only one use so that it will get 1760 // removed. 1761 if (DI != -1 && !PN->hasOneUse()) 1762 return nullptr; 1763 1764 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1765 if (DI == -1) { 1766 // All the GEPs feeding the PHI are identical. Clone one down into our 1767 // BB so that it can be merged with the current GEP. 1768 GEP.getParent()->getInstList().insert( 1769 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1770 } else { 1771 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1772 // into the current block so it can be merged, and create a new PHI to 1773 // set that index. 1774 PHINode *NewPN; 1775 { 1776 IRBuilderBase::InsertPointGuard Guard(Builder); 1777 Builder.SetInsertPoint(PN); 1778 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 1779 PN->getNumOperands()); 1780 } 1781 1782 for (auto &I : PN->operands()) 1783 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1784 PN->getIncomingBlock(I)); 1785 1786 NewGEP->setOperand(DI, NewPN); 1787 GEP.getParent()->getInstList().insert( 1788 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1789 NewGEP->setOperand(DI, NewPN); 1790 } 1791 1792 GEP.setOperand(0, NewGEP); 1793 PtrOp = NewGEP; 1794 } 1795 1796 // Combine Indices - If the source pointer to this getelementptr instruction 1797 // is a getelementptr instruction, combine the indices of the two 1798 // getelementptr instructions into a single instruction. 1799 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { 1800 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1801 return nullptr; 1802 1803 // Try to reassociate loop invariant GEP chains to enable LICM. 1804 if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1805 Src->hasOneUse()) { 1806 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1807 Value *GO1 = GEP.getOperand(1); 1808 Value *SO1 = Src->getOperand(1); 1809 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1810 // invariant: this breaks the dependence between GEPs and allows LICM 1811 // to hoist the invariant part out of the loop. 1812 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1813 // We have to be careful here. 1814 // We have something like: 1815 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 1816 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 1817 // If we just swap idx & idx2 then we could inadvertantly 1818 // change %src from a vector to a scalar, or vice versa. 1819 // Cases: 1820 // 1) %base a scalar & idx a scalar & idx2 a vector 1821 // => Swapping idx & idx2 turns %src into a vector type. 1822 // 2) %base a scalar & idx a vector & idx2 a scalar 1823 // => Swapping idx & idx2 turns %src in a scalar type 1824 // 3) %base, %idx, and %idx2 are scalars 1825 // => %src & %gep are scalars 1826 // => swapping idx & idx2 is safe 1827 // 4) %base a vector 1828 // => %src is a vector 1829 // => swapping idx & idx2 is safe. 1830 auto *SO0 = Src->getOperand(0); 1831 auto *SO0Ty = SO0->getType(); 1832 if (!isa<VectorType>(GEPType) || // case 3 1833 isa<VectorType>(SO0Ty)) { // case 4 1834 Src->setOperand(1, GO1); 1835 GEP.setOperand(1, SO1); 1836 return &GEP; 1837 } else { 1838 // Case 1 or 2 1839 // -- have to recreate %src & %gep 1840 // put NewSrc at same location as %src 1841 Builder.SetInsertPoint(cast<Instruction>(PtrOp)); 1842 auto *NewSrc = cast<GetElementPtrInst>( 1843 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName())); 1844 NewSrc->setIsInBounds(Src->isInBounds()); 1845 auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1}); 1846 NewGEP->setIsInBounds(GEP.isInBounds()); 1847 return NewGEP; 1848 } 1849 } 1850 } 1851 } 1852 1853 // Note that if our source is a gep chain itself then we wait for that 1854 // chain to be resolved before we perform this transformation. This 1855 // avoids us creating a TON of code in some cases. 1856 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 1857 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1858 return nullptr; // Wait until our source is folded to completion. 1859 1860 SmallVector<Value*, 8> Indices; 1861 1862 // Find out whether the last index in the source GEP is a sequential idx. 1863 bool EndsWithSequential = false; 1864 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1865 I != E; ++I) 1866 EndsWithSequential = I.isSequential(); 1867 1868 // Can we combine the two pointer arithmetics offsets? 1869 if (EndsWithSequential) { 1870 // Replace: gep (gep %P, long B), long A, ... 1871 // With: T = long A+B; gep %P, T, ... 1872 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1873 Value *GO1 = GEP.getOperand(1); 1874 1875 // If they aren't the same type, then the input hasn't been processed 1876 // by the loop above yet (which canonicalizes sequential index types to 1877 // intptr_t). Just avoid transforming this until the input has been 1878 // normalized. 1879 if (SO1->getType() != GO1->getType()) 1880 return nullptr; 1881 1882 Value *Sum = 1883 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 1884 // Only do the combine when we are sure the cost after the 1885 // merge is never more than that before the merge. 1886 if (Sum == nullptr) 1887 return nullptr; 1888 1889 // Update the GEP in place if possible. 1890 if (Src->getNumOperands() == 2) { 1891 GEP.setOperand(0, Src->getOperand(0)); 1892 GEP.setOperand(1, Sum); 1893 return &GEP; 1894 } 1895 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1896 Indices.push_back(Sum); 1897 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1898 } else if (isa<Constant>(*GEP.idx_begin()) && 1899 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1900 Src->getNumOperands() != 1) { 1901 // Otherwise we can do the fold if the first index of the GEP is a zero 1902 Indices.append(Src->op_begin()+1, Src->op_end()); 1903 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1904 } 1905 1906 if (!Indices.empty()) 1907 return GEP.isInBounds() && Src->isInBounds() 1908 ? GetElementPtrInst::CreateInBounds( 1909 Src->getSourceElementType(), Src->getOperand(0), Indices, 1910 GEP.getName()) 1911 : GetElementPtrInst::Create(Src->getSourceElementType(), 1912 Src->getOperand(0), Indices, 1913 GEP.getName()); 1914 } 1915 1916 if (GEP.getNumIndices() == 1) { 1917 unsigned AS = GEP.getPointerAddressSpace(); 1918 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 1919 DL.getIndexSizeInBits(AS)) { 1920 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType); 1921 1922 bool Matched = false; 1923 uint64_t C; 1924 Value *V = nullptr; 1925 if (TyAllocSize == 1) { 1926 V = GEP.getOperand(1); 1927 Matched = true; 1928 } else if (match(GEP.getOperand(1), 1929 m_AShr(m_Value(V), m_ConstantInt(C)))) { 1930 if (TyAllocSize == 1ULL << C) 1931 Matched = true; 1932 } else if (match(GEP.getOperand(1), 1933 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 1934 if (TyAllocSize == C) 1935 Matched = true; 1936 } 1937 1938 if (Matched) { 1939 // Canonicalize (gep i8* X, -(ptrtoint Y)) 1940 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) 1941 // The GEP pattern is emitted by the SCEV expander for certain kinds of 1942 // pointer arithmetic. 1943 if (match(V, m_Neg(m_PtrToInt(m_Value())))) { 1944 Operator *Index = cast<Operator>(V); 1945 Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType()); 1946 Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1)); 1947 return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType); 1948 } 1949 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) 1950 // to (bitcast Y) 1951 Value *Y; 1952 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), 1953 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) 1954 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 1955 } 1956 } 1957 } 1958 1959 // We do not handle pointer-vector geps here. 1960 if (GEPType->isVectorTy()) 1961 return nullptr; 1962 1963 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 1964 Value *StrippedPtr = PtrOp->stripPointerCasts(); 1965 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 1966 1967 if (StrippedPtr != PtrOp) { 1968 bool HasZeroPointerIndex = false; 1969 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType(); 1970 1971 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 1972 HasZeroPointerIndex = C->isZero(); 1973 1974 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 1975 // into : GEP [10 x i8]* X, i32 0, ... 1976 // 1977 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 1978 // into : GEP i8* X, ... 1979 // 1980 // This occurs when the program declares an array extern like "int X[];" 1981 if (HasZeroPointerIndex) { 1982 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 1983 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 1984 if (CATy->getElementType() == StrippedPtrEltTy) { 1985 // -> GEP i8* X, ... 1986 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 1987 GetElementPtrInst *Res = GetElementPtrInst::Create( 1988 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 1989 Res->setIsInBounds(GEP.isInBounds()); 1990 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 1991 return Res; 1992 // Insert Res, and create an addrspacecast. 1993 // e.g., 1994 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 1995 // -> 1996 // %0 = GEP i8 addrspace(1)* X, ... 1997 // addrspacecast i8 addrspace(1)* %0 to i8* 1998 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 1999 } 2000 2001 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2002 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2003 if (CATy->getElementType() == XATy->getElementType()) { 2004 // -> GEP [10 x i8]* X, i32 0, ... 2005 // At this point, we know that the cast source type is a pointer 2006 // to an array of the same type as the destination pointer 2007 // array. Because the array type is never stepped over (there 2008 // is a leading zero) we can fold the cast into this GEP. 2009 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2010 GEP.setOperand(0, StrippedPtr); 2011 GEP.setSourceElementType(XATy); 2012 return &GEP; 2013 } 2014 // Cannot replace the base pointer directly because StrippedPtr's 2015 // address space is different. Instead, create a new GEP followed by 2016 // an addrspacecast. 2017 // e.g., 2018 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2019 // i32 0, ... 2020 // -> 2021 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2022 // addrspacecast i8 addrspace(1)* %0 to i8* 2023 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 2024 Value *NewGEP = 2025 GEP.isInBounds() 2026 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2027 Idx, GEP.getName()) 2028 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2029 GEP.getName()); 2030 return new AddrSpaceCastInst(NewGEP, GEPType); 2031 } 2032 } 2033 } 2034 } else if (GEP.getNumOperands() == 2) { 2035 // Transform things like: 2036 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 2037 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 2038 if (StrippedPtrEltTy->isArrayTy() && 2039 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2040 DL.getTypeAllocSize(GEPEltType)) { 2041 Type *IdxType = DL.getIndexType(GEPType); 2042 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 2043 Value *NewGEP = 2044 GEP.isInBounds() 2045 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2046 GEP.getName()) 2047 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2048 GEP.getName()); 2049 2050 // V and GEP are both pointer types --> BitCast 2051 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2052 } 2053 2054 // Transform things like: 2055 // %V = mul i64 %N, 4 2056 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2057 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2058 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2059 // Check that changing the type amounts to dividing the index by a scale 2060 // factor. 2061 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 2062 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy); 2063 if (ResSize && SrcSize % ResSize == 0) { 2064 Value *Idx = GEP.getOperand(1); 2065 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2066 uint64_t Scale = SrcSize / ResSize; 2067 2068 // Earlier transforms ensure that the index has the right type 2069 // according to Data Layout, which considerably simplifies the 2070 // logic by eliminating implicit casts. 2071 assert(Idx->getType() == DL.getIndexType(GEPType) && 2072 "Index type does not match the Data Layout preferences"); 2073 2074 bool NSW; 2075 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2076 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2077 // If the multiplication NewIdx * Scale may overflow then the new 2078 // GEP may not be "inbounds". 2079 Value *NewGEP = 2080 GEP.isInBounds() && NSW 2081 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2082 NewIdx, GEP.getName()) 2083 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2084 GEP.getName()); 2085 2086 // The NewGEP must be pointer typed, so must the old one -> BitCast 2087 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2088 GEPType); 2089 } 2090 } 2091 } 2092 2093 // Similarly, transform things like: 2094 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2095 // (where tmp = 8*tmp2) into: 2096 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2097 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2098 StrippedPtrEltTy->isArrayTy()) { 2099 // Check that changing to the array element type amounts to dividing the 2100 // index by a scale factor. 2101 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 2102 uint64_t ArrayEltSize = 2103 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()); 2104 if (ResSize && ArrayEltSize % ResSize == 0) { 2105 Value *Idx = GEP.getOperand(1); 2106 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2107 uint64_t Scale = ArrayEltSize / ResSize; 2108 2109 // Earlier transforms ensure that the index has the right type 2110 // according to the Data Layout, which considerably simplifies 2111 // the logic by eliminating implicit casts. 2112 assert(Idx->getType() == DL.getIndexType(GEPType) && 2113 "Index type does not match the Data Layout preferences"); 2114 2115 bool NSW; 2116 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2117 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2118 // If the multiplication NewIdx * Scale may overflow then the new 2119 // GEP may not be "inbounds". 2120 Type *IndTy = DL.getIndexType(GEPType); 2121 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2122 2123 Value *NewGEP = 2124 GEP.isInBounds() && NSW 2125 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2126 Off, GEP.getName()) 2127 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2128 GEP.getName()); 2129 // The NewGEP must be pointer typed, so must the old one -> BitCast 2130 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2131 GEPType); 2132 } 2133 } 2134 } 2135 } 2136 } 2137 2138 // addrspacecast between types is canonicalized as a bitcast, then an 2139 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2140 // through the addrspacecast. 2141 Value *ASCStrippedPtrOp = PtrOp; 2142 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2143 // X = bitcast A addrspace(1)* to B addrspace(1)* 2144 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2145 // Z = gep Y, <...constant indices...> 2146 // Into an addrspacecasted GEP of the struct. 2147 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2148 ASCStrippedPtrOp = BC; 2149 } 2150 2151 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 2152 Value *SrcOp = BCI->getOperand(0); 2153 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2154 Type *SrcEltType = SrcType->getElementType(); 2155 2156 // GEP directly using the source operand if this GEP is accessing an element 2157 // of a bitcasted pointer to vector or array of the same dimensions: 2158 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2159 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2160 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy) { 2161 return ArrTy->getArrayElementType() == VecTy->getVectorElementType() && 2162 ArrTy->getArrayNumElements() == VecTy->getVectorNumElements(); 2163 }; 2164 if (GEP.getNumOperands() == 3 && 2165 ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() && 2166 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType)) || 2167 (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() && 2168 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType)))) { 2169 2170 // Create a new GEP here, as using `setOperand()` followed by 2171 // `setSourceElementType()` won't actually update the type of the 2172 // existing GEP Value. Causing issues if this Value is accessed when 2173 // constructing an AddrSpaceCastInst 2174 Value *NGEP = 2175 GEP.isInBounds() 2176 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}) 2177 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}); 2178 NGEP->takeName(&GEP); 2179 2180 // Preserve GEP address space to satisfy users 2181 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2182 return new AddrSpaceCastInst(NGEP, GEPType); 2183 2184 return replaceInstUsesWith(GEP, NGEP); 2185 } 2186 2187 // See if we can simplify: 2188 // X = bitcast A* to B* 2189 // Y = gep X, <...constant indices...> 2190 // into a gep of the original struct. This is important for SROA and alias 2191 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2192 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 2193 APInt Offset(OffsetBits, 0); 2194 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) { 2195 // If this GEP instruction doesn't move the pointer, just replace the GEP 2196 // with a bitcast of the real input to the dest type. 2197 if (!Offset) { 2198 // If the bitcast is of an allocation, and the allocation will be 2199 // converted to match the type of the cast, don't touch this. 2200 if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) { 2201 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2202 if (Instruction *I = visitBitCast(*BCI)) { 2203 if (I != BCI) { 2204 I->takeName(BCI); 2205 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2206 replaceInstUsesWith(*BCI, I); 2207 } 2208 return &GEP; 2209 } 2210 } 2211 2212 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2213 return new AddrSpaceCastInst(SrcOp, GEPType); 2214 return new BitCastInst(SrcOp, GEPType); 2215 } 2216 2217 // Otherwise, if the offset is non-zero, we need to find out if there is a 2218 // field at Offset in 'A's type. If so, we can pull the cast through the 2219 // GEP. 2220 SmallVector<Value*, 8> NewIndices; 2221 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2222 Value *NGEP = 2223 GEP.isInBounds() 2224 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) 2225 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); 2226 2227 if (NGEP->getType() == GEPType) 2228 return replaceInstUsesWith(GEP, NGEP); 2229 NGEP->takeName(&GEP); 2230 2231 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2232 return new AddrSpaceCastInst(NGEP, GEPType); 2233 return new BitCastInst(NGEP, GEPType); 2234 } 2235 } 2236 } 2237 2238 if (!GEP.isInBounds()) { 2239 unsigned IdxWidth = 2240 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2241 APInt BasePtrOffset(IdxWidth, 0); 2242 Value *UnderlyingPtrOp = 2243 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2244 BasePtrOffset); 2245 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2246 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2247 BasePtrOffset.isNonNegative()) { 2248 APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType())); 2249 if (BasePtrOffset.ule(AllocSize)) { 2250 return GetElementPtrInst::CreateInBounds( 2251 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1), 2252 GEP.getName()); 2253 } 2254 } 2255 } 2256 } 2257 2258 return nullptr; 2259 } 2260 2261 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 2262 Instruction *AI) { 2263 if (isa<ConstantPointerNull>(V)) 2264 return true; 2265 if (auto *LI = dyn_cast<LoadInst>(V)) 2266 return isa<GlobalVariable>(LI->getPointerOperand()); 2267 // Two distinct allocations will never be equal. 2268 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2269 // through bitcasts of V can cause 2270 // the result statement below to be true, even when AI and V (ex: 2271 // i8* ->i32* ->i8* of AI) are the same allocations. 2272 return isAllocLikeFn(V, TLI) && V != AI; 2273 } 2274 2275 static bool isAllocSiteRemovable(Instruction *AI, 2276 SmallVectorImpl<WeakTrackingVH> &Users, 2277 const TargetLibraryInfo *TLI) { 2278 SmallVector<Instruction*, 4> Worklist; 2279 Worklist.push_back(AI); 2280 2281 do { 2282 Instruction *PI = Worklist.pop_back_val(); 2283 for (User *U : PI->users()) { 2284 Instruction *I = cast<Instruction>(U); 2285 switch (I->getOpcode()) { 2286 default: 2287 // Give up the moment we see something we can't handle. 2288 return false; 2289 2290 case Instruction::AddrSpaceCast: 2291 case Instruction::BitCast: 2292 case Instruction::GetElementPtr: 2293 Users.emplace_back(I); 2294 Worklist.push_back(I); 2295 continue; 2296 2297 case Instruction::ICmp: { 2298 ICmpInst *ICI = cast<ICmpInst>(I); 2299 // We can fold eq/ne comparisons with null to false/true, respectively. 2300 // We also fold comparisons in some conditions provided the alloc has 2301 // not escaped (see isNeverEqualToUnescapedAlloc). 2302 if (!ICI->isEquality()) 2303 return false; 2304 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2305 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2306 return false; 2307 Users.emplace_back(I); 2308 continue; 2309 } 2310 2311 case Instruction::Call: 2312 // Ignore no-op and store intrinsics. 2313 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2314 switch (II->getIntrinsicID()) { 2315 default: 2316 return false; 2317 2318 case Intrinsic::memmove: 2319 case Intrinsic::memcpy: 2320 case Intrinsic::memset: { 2321 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2322 if (MI->isVolatile() || MI->getRawDest() != PI) 2323 return false; 2324 LLVM_FALLTHROUGH; 2325 } 2326 case Intrinsic::invariant_start: 2327 case Intrinsic::invariant_end: 2328 case Intrinsic::lifetime_start: 2329 case Intrinsic::lifetime_end: 2330 case Intrinsic::objectsize: 2331 Users.emplace_back(I); 2332 continue; 2333 } 2334 } 2335 2336 if (isFreeCall(I, TLI)) { 2337 Users.emplace_back(I); 2338 continue; 2339 } 2340 return false; 2341 2342 case Instruction::Store: { 2343 StoreInst *SI = cast<StoreInst>(I); 2344 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2345 return false; 2346 Users.emplace_back(I); 2347 continue; 2348 } 2349 } 2350 llvm_unreachable("missing a return?"); 2351 } 2352 } while (!Worklist.empty()); 2353 return true; 2354 } 2355 2356 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 2357 // If we have a malloc call which is only used in any amount of comparisons to 2358 // null and free calls, delete the calls and replace the comparisons with true 2359 // or false as appropriate. 2360 2361 // This is based on the principle that we can substitute our own allocation 2362 // function (which will never return null) rather than knowledge of the 2363 // specific function being called. In some sense this can change the permitted 2364 // outputs of a program (when we convert a malloc to an alloca, the fact that 2365 // the allocation is now on the stack is potentially visible, for example), 2366 // but we believe in a permissible manner. 2367 SmallVector<WeakTrackingVH, 64> Users; 2368 2369 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2370 // before each store. 2371 TinyPtrVector<DbgVariableIntrinsic *> DIIs; 2372 std::unique_ptr<DIBuilder> DIB; 2373 if (isa<AllocaInst>(MI)) { 2374 DIIs = FindDbgAddrUses(&MI); 2375 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2376 } 2377 2378 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2379 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2380 // Lowering all @llvm.objectsize calls first because they may 2381 // use a bitcast/GEP of the alloca we are removing. 2382 if (!Users[i]) 2383 continue; 2384 2385 Instruction *I = cast<Instruction>(&*Users[i]); 2386 2387 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2388 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2389 Value *Result = 2390 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); 2391 replaceInstUsesWith(*I, Result); 2392 eraseInstFromFunction(*I); 2393 Users[i] = nullptr; // Skip examining in the next loop. 2394 } 2395 } 2396 } 2397 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2398 if (!Users[i]) 2399 continue; 2400 2401 Instruction *I = cast<Instruction>(&*Users[i]); 2402 2403 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2404 replaceInstUsesWith(*C, 2405 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2406 C->isFalseWhenEqual())); 2407 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) || 2408 isa<AddrSpaceCastInst>(I)) { 2409 replaceInstUsesWith(*I, UndefValue::get(I->getType())); 2410 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2411 for (auto *DII : DIIs) 2412 ConvertDebugDeclareToDebugValue(DII, SI, *DIB); 2413 } 2414 eraseInstFromFunction(*I); 2415 } 2416 2417 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2418 // Replace invoke with a NOP intrinsic to maintain the original CFG 2419 Module *M = II->getModule(); 2420 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2421 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2422 None, "", II->getParent()); 2423 } 2424 2425 for (auto *DII : DIIs) 2426 eraseInstFromFunction(*DII); 2427 2428 return eraseInstFromFunction(MI); 2429 } 2430 return nullptr; 2431 } 2432 2433 /// Move the call to free before a NULL test. 2434 /// 2435 /// Check if this free is accessed after its argument has been test 2436 /// against NULL (property 0). 2437 /// If yes, it is legal to move this call in its predecessor block. 2438 /// 2439 /// The move is performed only if the block containing the call to free 2440 /// will be removed, i.e.: 2441 /// 1. it has only one predecessor P, and P has two successors 2442 /// 2. it contains the call, noops, and an unconditional branch 2443 /// 3. its successor is the same as its predecessor's successor 2444 /// 2445 /// The profitability is out-of concern here and this function should 2446 /// be called only if the caller knows this transformation would be 2447 /// profitable (e.g., for code size). 2448 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2449 const DataLayout &DL) { 2450 Value *Op = FI.getArgOperand(0); 2451 BasicBlock *FreeInstrBB = FI.getParent(); 2452 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2453 2454 // Validate part of constraint #1: Only one predecessor 2455 // FIXME: We can extend the number of predecessor, but in that case, we 2456 // would duplicate the call to free in each predecessor and it may 2457 // not be profitable even for code size. 2458 if (!PredBB) 2459 return nullptr; 2460 2461 // Validate constraint #2: Does this block contains only the call to 2462 // free, noops, and an unconditional branch? 2463 BasicBlock *SuccBB; 2464 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2465 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2466 return nullptr; 2467 2468 // If there are only 2 instructions in the block, at this point, 2469 // this is the call to free and unconditional. 2470 // If there are more than 2 instructions, check that they are noops 2471 // i.e., they won't hurt the performance of the generated code. 2472 if (FreeInstrBB->size() != 2) { 2473 for (const Instruction &Inst : *FreeInstrBB) { 2474 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2475 continue; 2476 auto *Cast = dyn_cast<CastInst>(&Inst); 2477 if (!Cast || !Cast->isNoopCast(DL)) 2478 return nullptr; 2479 } 2480 } 2481 // Validate the rest of constraint #1 by matching on the pred branch. 2482 Instruction *TI = PredBB->getTerminator(); 2483 BasicBlock *TrueBB, *FalseBB; 2484 ICmpInst::Predicate Pred; 2485 if (!match(TI, m_Br(m_ICmp(Pred, 2486 m_CombineOr(m_Specific(Op), 2487 m_Specific(Op->stripPointerCasts())), 2488 m_Zero()), 2489 TrueBB, FalseBB))) 2490 return nullptr; 2491 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2492 return nullptr; 2493 2494 // Validate constraint #3: Ensure the null case just falls through. 2495 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2496 return nullptr; 2497 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2498 "Broken CFG: missing edge from predecessor to successor"); 2499 2500 // At this point, we know that everything in FreeInstrBB can be moved 2501 // before TI. 2502 for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end(); 2503 It != End;) { 2504 Instruction &Instr = *It++; 2505 if (&Instr == FreeInstrBBTerminator) 2506 break; 2507 Instr.moveBefore(TI); 2508 } 2509 assert(FreeInstrBB->size() == 1 && 2510 "Only the branch instruction should remain"); 2511 return &FI; 2512 } 2513 2514 Instruction *InstCombiner::visitFree(CallInst &FI) { 2515 Value *Op = FI.getArgOperand(0); 2516 2517 // free undef -> unreachable. 2518 if (isa<UndefValue>(Op)) { 2519 // Leave a marker since we can't modify the CFG here. 2520 CreateNonTerminatorUnreachable(&FI); 2521 return eraseInstFromFunction(FI); 2522 } 2523 2524 // If we have 'free null' delete the instruction. This can happen in stl code 2525 // when lots of inlining happens. 2526 if (isa<ConstantPointerNull>(Op)) 2527 return eraseInstFromFunction(FI); 2528 2529 // If we optimize for code size, try to move the call to free before the null 2530 // test so that simplify cfg can remove the empty block and dead code 2531 // elimination the branch. I.e., helps to turn something like: 2532 // if (foo) free(foo); 2533 // into 2534 // free(foo); 2535 if (MinimizeSize) 2536 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 2537 return I; 2538 2539 return nullptr; 2540 } 2541 2542 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { 2543 if (RI.getNumOperands() == 0) // ret void 2544 return nullptr; 2545 2546 Value *ResultOp = RI.getOperand(0); 2547 Type *VTy = ResultOp->getType(); 2548 if (!VTy->isIntegerTy()) 2549 return nullptr; 2550 2551 // There might be assume intrinsics dominating this return that completely 2552 // determine the value. If so, constant fold it. 2553 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2554 if (Known.isConstant()) 2555 RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant())); 2556 2557 return nullptr; 2558 } 2559 2560 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 2561 // Change br (not X), label True, label False to: br X, label False, True 2562 Value *X = nullptr; 2563 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 2564 !isa<Constant>(X)) { 2565 // Swap Destinations and condition... 2566 BI.setCondition(X); 2567 BI.swapSuccessors(); 2568 return &BI; 2569 } 2570 2571 // If the condition is irrelevant, remove the use so that other 2572 // transforms on the condition become more effective. 2573 if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) && 2574 BI.getSuccessor(0) == BI.getSuccessor(1)) { 2575 BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType())); 2576 return &BI; 2577 } 2578 2579 // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq. 2580 CmpInst::Predicate Pred; 2581 if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), 2582 m_BasicBlock(), m_BasicBlock())) && 2583 !isCanonicalPredicate(Pred)) { 2584 // Swap destinations and condition. 2585 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 2586 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2587 BI.swapSuccessors(); 2588 Worklist.Add(Cond); 2589 return &BI; 2590 } 2591 2592 return nullptr; 2593 } 2594 2595 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 2596 Value *Cond = SI.getCondition(); 2597 Value *Op0; 2598 ConstantInt *AddRHS; 2599 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 2600 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2601 for (auto Case : SI.cases()) { 2602 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 2603 assert(isa<ConstantInt>(NewCase) && 2604 "Result of expression should be constant"); 2605 Case.setValue(cast<ConstantInt>(NewCase)); 2606 } 2607 SI.setCondition(Op0); 2608 return &SI; 2609 } 2610 2611 KnownBits Known = computeKnownBits(Cond, 0, &SI); 2612 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 2613 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 2614 2615 // Compute the number of leading bits we can ignore. 2616 // TODO: A better way to determine this would use ComputeNumSignBits(). 2617 for (auto &C : SI.cases()) { 2618 LeadingKnownZeros = std::min( 2619 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2620 LeadingKnownOnes = std::min( 2621 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2622 } 2623 2624 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 2625 2626 // Shrink the condition operand if the new type is smaller than the old type. 2627 // But do not shrink to a non-standard type, because backend can't generate 2628 // good code for that yet. 2629 // TODO: We can make it aggressive again after fixing PR39569. 2630 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 2631 shouldChangeType(Known.getBitWidth(), NewWidth)) { 2632 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2633 Builder.SetInsertPoint(&SI); 2634 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 2635 SI.setCondition(NewCond); 2636 2637 for (auto Case : SI.cases()) { 2638 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 2639 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 2640 } 2641 return &SI; 2642 } 2643 2644 return nullptr; 2645 } 2646 2647 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 2648 Value *Agg = EV.getAggregateOperand(); 2649 2650 if (!EV.hasIndices()) 2651 return replaceInstUsesWith(EV, Agg); 2652 2653 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 2654 SQ.getWithInstruction(&EV))) 2655 return replaceInstUsesWith(EV, V); 2656 2657 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 2658 // We're extracting from an insertvalue instruction, compare the indices 2659 const unsigned *exti, *exte, *insi, *inse; 2660 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 2661 exte = EV.idx_end(), inse = IV->idx_end(); 2662 exti != exte && insi != inse; 2663 ++exti, ++insi) { 2664 if (*insi != *exti) 2665 // The insert and extract both reference distinctly different elements. 2666 // This means the extract is not influenced by the insert, and we can 2667 // replace the aggregate operand of the extract with the aggregate 2668 // operand of the insert. i.e., replace 2669 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2670 // %E = extractvalue { i32, { i32 } } %I, 0 2671 // with 2672 // %E = extractvalue { i32, { i32 } } %A, 0 2673 return ExtractValueInst::Create(IV->getAggregateOperand(), 2674 EV.getIndices()); 2675 } 2676 if (exti == exte && insi == inse) 2677 // Both iterators are at the end: Index lists are identical. Replace 2678 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2679 // %C = extractvalue { i32, { i32 } } %B, 1, 0 2680 // with "i32 42" 2681 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 2682 if (exti == exte) { 2683 // The extract list is a prefix of the insert list. i.e. replace 2684 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2685 // %E = extractvalue { i32, { i32 } } %I, 1 2686 // with 2687 // %X = extractvalue { i32, { i32 } } %A, 1 2688 // %E = insertvalue { i32 } %X, i32 42, 0 2689 // by switching the order of the insert and extract (though the 2690 // insertvalue should be left in, since it may have other uses). 2691 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 2692 EV.getIndices()); 2693 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 2694 makeArrayRef(insi, inse)); 2695 } 2696 if (insi == inse) 2697 // The insert list is a prefix of the extract list 2698 // We can simply remove the common indices from the extract and make it 2699 // operate on the inserted value instead of the insertvalue result. 2700 // i.e., replace 2701 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2702 // %E = extractvalue { i32, { i32 } } %I, 1, 0 2703 // with 2704 // %E extractvalue { i32 } { i32 42 }, 0 2705 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 2706 makeArrayRef(exti, exte)); 2707 } 2708 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 2709 // We're extracting from an overflow intrinsic, see if we're the only user, 2710 // which allows us to simplify multiple result intrinsics to simpler 2711 // things that just get one value. 2712 if (WO->hasOneUse()) { 2713 // Check if we're grabbing only the result of a 'with overflow' intrinsic 2714 // and replace it with a traditional binary instruction. 2715 if (*EV.idx_begin() == 0) { 2716 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 2717 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 2718 replaceInstUsesWith(*WO, UndefValue::get(WO->getType())); 2719 eraseInstFromFunction(*WO); 2720 return BinaryOperator::Create(BinOp, LHS, RHS); 2721 } 2722 2723 // If the normal result of the add is dead, and the RHS is a constant, 2724 // we can transform this into a range comparison. 2725 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 2726 if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow) 2727 if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS())) 2728 return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(), 2729 ConstantExpr::getNot(CI)); 2730 } 2731 } 2732 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2733 // If the (non-volatile) load only has one use, we can rewrite this to a 2734 // load from a GEP. This reduces the size of the load. If a load is used 2735 // only by extractvalue instructions then this either must have been 2736 // optimized before, or it is a struct with padding, in which case we 2737 // don't want to do the transformation as it loses padding knowledge. 2738 if (L->isSimple() && L->hasOneUse()) { 2739 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2740 SmallVector<Value*, 4> Indices; 2741 // Prefix an i32 0 since we need the first element. 2742 Indices.push_back(Builder.getInt32(0)); 2743 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2744 I != E; ++I) 2745 Indices.push_back(Builder.getInt32(*I)); 2746 2747 // We need to insert these at the location of the old load, not at that of 2748 // the extractvalue. 2749 Builder.SetInsertPoint(L); 2750 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 2751 L->getPointerOperand(), Indices); 2752 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 2753 // Whatever aliasing information we had for the orignal load must also 2754 // hold for the smaller load, so propagate the annotations. 2755 AAMDNodes Nodes; 2756 L->getAAMetadata(Nodes); 2757 NL->setAAMetadata(Nodes); 2758 // Returning the load directly will cause the main loop to insert it in 2759 // the wrong spot, so use replaceInstUsesWith(). 2760 return replaceInstUsesWith(EV, NL); 2761 } 2762 // We could simplify extracts from other values. Note that nested extracts may 2763 // already be simplified implicitly by the above: extract (extract (insert) ) 2764 // will be translated into extract ( insert ( extract ) ) first and then just 2765 // the value inserted, if appropriate. Similarly for extracts from single-use 2766 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2767 // and if again single-use then via load (gep (gep)) to load (gep). 2768 // However, double extracts from e.g. function arguments or return values 2769 // aren't handled yet. 2770 return nullptr; 2771 } 2772 2773 /// Return 'true' if the given typeinfo will match anything. 2774 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 2775 switch (Personality) { 2776 case EHPersonality::GNU_C: 2777 case EHPersonality::GNU_C_SjLj: 2778 case EHPersonality::Rust: 2779 // The GCC C EH and Rust personality only exists to support cleanups, so 2780 // it's not clear what the semantics of catch clauses are. 2781 return false; 2782 case EHPersonality::Unknown: 2783 return false; 2784 case EHPersonality::GNU_Ada: 2785 // While __gnat_all_others_value will match any Ada exception, it doesn't 2786 // match foreign exceptions (or didn't, before gcc-4.7). 2787 return false; 2788 case EHPersonality::GNU_CXX: 2789 case EHPersonality::GNU_CXX_SjLj: 2790 case EHPersonality::GNU_ObjC: 2791 case EHPersonality::MSVC_X86SEH: 2792 case EHPersonality::MSVC_Win64SEH: 2793 case EHPersonality::MSVC_CXX: 2794 case EHPersonality::CoreCLR: 2795 case EHPersonality::Wasm_CXX: 2796 return TypeInfo->isNullValue(); 2797 } 2798 llvm_unreachable("invalid enum"); 2799 } 2800 2801 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2802 return 2803 cast<ArrayType>(LHS->getType())->getNumElements() 2804 < 2805 cast<ArrayType>(RHS->getType())->getNumElements(); 2806 } 2807 2808 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2809 // The logic here should be correct for any real-world personality function. 2810 // However if that turns out not to be true, the offending logic can always 2811 // be conditioned on the personality function, like the catch-all logic is. 2812 EHPersonality Personality = 2813 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 2814 2815 // Simplify the list of clauses, eg by removing repeated catch clauses 2816 // (these are often created by inlining). 2817 bool MakeNewInstruction = false; // If true, recreate using the following: 2818 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2819 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2820 2821 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 2822 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 2823 bool isLastClause = i + 1 == e; 2824 if (LI.isCatch(i)) { 2825 // A catch clause. 2826 Constant *CatchClause = LI.getClause(i); 2827 Constant *TypeInfo = CatchClause->stripPointerCasts(); 2828 2829 // If we already saw this clause, there is no point in having a second 2830 // copy of it. 2831 if (AlreadyCaught.insert(TypeInfo).second) { 2832 // This catch clause was not already seen. 2833 NewClauses.push_back(CatchClause); 2834 } else { 2835 // Repeated catch clause - drop the redundant copy. 2836 MakeNewInstruction = true; 2837 } 2838 2839 // If this is a catch-all then there is no point in keeping any following 2840 // clauses or marking the landingpad as having a cleanup. 2841 if (isCatchAll(Personality, TypeInfo)) { 2842 if (!isLastClause) 2843 MakeNewInstruction = true; 2844 CleanupFlag = false; 2845 break; 2846 } 2847 } else { 2848 // A filter clause. If any of the filter elements were already caught 2849 // then they can be dropped from the filter. It is tempting to try to 2850 // exploit the filter further by saying that any typeinfo that does not 2851 // occur in the filter can't be caught later (and thus can be dropped). 2852 // However this would be wrong, since typeinfos can match without being 2853 // equal (for example if one represents a C++ class, and the other some 2854 // class derived from it). 2855 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 2856 Constant *FilterClause = LI.getClause(i); 2857 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 2858 unsigned NumTypeInfos = FilterType->getNumElements(); 2859 2860 // An empty filter catches everything, so there is no point in keeping any 2861 // following clauses or marking the landingpad as having a cleanup. By 2862 // dealing with this case here the following code is made a bit simpler. 2863 if (!NumTypeInfos) { 2864 NewClauses.push_back(FilterClause); 2865 if (!isLastClause) 2866 MakeNewInstruction = true; 2867 CleanupFlag = false; 2868 break; 2869 } 2870 2871 bool MakeNewFilter = false; // If true, make a new filter. 2872 SmallVector<Constant *, 16> NewFilterElts; // New elements. 2873 if (isa<ConstantAggregateZero>(FilterClause)) { 2874 // Not an empty filter - it contains at least one null typeinfo. 2875 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 2876 Constant *TypeInfo = 2877 Constant::getNullValue(FilterType->getElementType()); 2878 // If this typeinfo is a catch-all then the filter can never match. 2879 if (isCatchAll(Personality, TypeInfo)) { 2880 // Throw the filter away. 2881 MakeNewInstruction = true; 2882 continue; 2883 } 2884 2885 // There is no point in having multiple copies of this typeinfo, so 2886 // discard all but the first copy if there is more than one. 2887 NewFilterElts.push_back(TypeInfo); 2888 if (NumTypeInfos > 1) 2889 MakeNewFilter = true; 2890 } else { 2891 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 2892 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 2893 NewFilterElts.reserve(NumTypeInfos); 2894 2895 // Remove any filter elements that were already caught or that already 2896 // occurred in the filter. While there, see if any of the elements are 2897 // catch-alls. If so, the filter can be discarded. 2898 bool SawCatchAll = false; 2899 for (unsigned j = 0; j != NumTypeInfos; ++j) { 2900 Constant *Elt = Filter->getOperand(j); 2901 Constant *TypeInfo = Elt->stripPointerCasts(); 2902 if (isCatchAll(Personality, TypeInfo)) { 2903 // This element is a catch-all. Bail out, noting this fact. 2904 SawCatchAll = true; 2905 break; 2906 } 2907 2908 // Even if we've seen a type in a catch clause, we don't want to 2909 // remove it from the filter. An unexpected type handler may be 2910 // set up for a call site which throws an exception of the same 2911 // type caught. In order for the exception thrown by the unexpected 2912 // handler to propagate correctly, the filter must be correctly 2913 // described for the call site. 2914 // 2915 // Example: 2916 // 2917 // void unexpected() { throw 1;} 2918 // void foo() throw (int) { 2919 // std::set_unexpected(unexpected); 2920 // try { 2921 // throw 2.0; 2922 // } catch (int i) {} 2923 // } 2924 2925 // There is no point in having multiple copies of the same typeinfo in 2926 // a filter, so only add it if we didn't already. 2927 if (SeenInFilter.insert(TypeInfo).second) 2928 NewFilterElts.push_back(cast<Constant>(Elt)); 2929 } 2930 // A filter containing a catch-all cannot match anything by definition. 2931 if (SawCatchAll) { 2932 // Throw the filter away. 2933 MakeNewInstruction = true; 2934 continue; 2935 } 2936 2937 // If we dropped something from the filter, make a new one. 2938 if (NewFilterElts.size() < NumTypeInfos) 2939 MakeNewFilter = true; 2940 } 2941 if (MakeNewFilter) { 2942 FilterType = ArrayType::get(FilterType->getElementType(), 2943 NewFilterElts.size()); 2944 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 2945 MakeNewInstruction = true; 2946 } 2947 2948 NewClauses.push_back(FilterClause); 2949 2950 // If the new filter is empty then it will catch everything so there is 2951 // no point in keeping any following clauses or marking the landingpad 2952 // as having a cleanup. The case of the original filter being empty was 2953 // already handled above. 2954 if (MakeNewFilter && !NewFilterElts.size()) { 2955 assert(MakeNewInstruction && "New filter but not a new instruction!"); 2956 CleanupFlag = false; 2957 break; 2958 } 2959 } 2960 } 2961 2962 // If several filters occur in a row then reorder them so that the shortest 2963 // filters come first (those with the smallest number of elements). This is 2964 // advantageous because shorter filters are more likely to match, speeding up 2965 // unwinding, but mostly because it increases the effectiveness of the other 2966 // filter optimizations below. 2967 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 2968 unsigned j; 2969 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 2970 for (j = i; j != e; ++j) 2971 if (!isa<ArrayType>(NewClauses[j]->getType())) 2972 break; 2973 2974 // Check whether the filters are already sorted by length. We need to know 2975 // if sorting them is actually going to do anything so that we only make a 2976 // new landingpad instruction if it does. 2977 for (unsigned k = i; k + 1 < j; ++k) 2978 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 2979 // Not sorted, so sort the filters now. Doing an unstable sort would be 2980 // correct too but reordering filters pointlessly might confuse users. 2981 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 2982 shorter_filter); 2983 MakeNewInstruction = true; 2984 break; 2985 } 2986 2987 // Look for the next batch of filters. 2988 i = j + 1; 2989 } 2990 2991 // If typeinfos matched if and only if equal, then the elements of a filter L 2992 // that occurs later than a filter F could be replaced by the intersection of 2993 // the elements of F and L. In reality two typeinfos can match without being 2994 // equal (for example if one represents a C++ class, and the other some class 2995 // derived from it) so it would be wrong to perform this transform in general. 2996 // However the transform is correct and useful if F is a subset of L. In that 2997 // case L can be replaced by F, and thus removed altogether since repeating a 2998 // filter is pointless. So here we look at all pairs of filters F and L where 2999 // L follows F in the list of clauses, and remove L if every element of F is 3000 // an element of L. This can occur when inlining C++ functions with exception 3001 // specifications. 3002 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3003 // Examine each filter in turn. 3004 Value *Filter = NewClauses[i]; 3005 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3006 if (!FTy) 3007 // Not a filter - skip it. 3008 continue; 3009 unsigned FElts = FTy->getNumElements(); 3010 // Examine each filter following this one. Doing this backwards means that 3011 // we don't have to worry about filters disappearing under us when removed. 3012 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3013 Value *LFilter = NewClauses[j]; 3014 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3015 if (!LTy) 3016 // Not a filter - skip it. 3017 continue; 3018 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3019 // an element of LFilter, then discard LFilter. 3020 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3021 // If Filter is empty then it is a subset of LFilter. 3022 if (!FElts) { 3023 // Discard LFilter. 3024 NewClauses.erase(J); 3025 MakeNewInstruction = true; 3026 // Move on to the next filter. 3027 continue; 3028 } 3029 unsigned LElts = LTy->getNumElements(); 3030 // If Filter is longer than LFilter then it cannot be a subset of it. 3031 if (FElts > LElts) 3032 // Move on to the next filter. 3033 continue; 3034 // At this point we know that LFilter has at least one element. 3035 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3036 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3037 // already know that Filter is not longer than LFilter). 3038 if (isa<ConstantAggregateZero>(Filter)) { 3039 assert(FElts <= LElts && "Should have handled this case earlier!"); 3040 // Discard LFilter. 3041 NewClauses.erase(J); 3042 MakeNewInstruction = true; 3043 } 3044 // Move on to the next filter. 3045 continue; 3046 } 3047 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3048 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3049 // Since Filter is non-empty and contains only zeros, it is a subset of 3050 // LFilter iff LFilter contains a zero. 3051 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3052 for (unsigned l = 0; l != LElts; ++l) 3053 if (LArray->getOperand(l)->isNullValue()) { 3054 // LFilter contains a zero - discard it. 3055 NewClauses.erase(J); 3056 MakeNewInstruction = true; 3057 break; 3058 } 3059 // Move on to the next filter. 3060 continue; 3061 } 3062 // At this point we know that both filters are ConstantArrays. Loop over 3063 // operands to see whether every element of Filter is also an element of 3064 // LFilter. Since filters tend to be short this is probably faster than 3065 // using a method that scales nicely. 3066 ConstantArray *FArray = cast<ConstantArray>(Filter); 3067 bool AllFound = true; 3068 for (unsigned f = 0; f != FElts; ++f) { 3069 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3070 AllFound = false; 3071 for (unsigned l = 0; l != LElts; ++l) { 3072 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3073 if (LTypeInfo == FTypeInfo) { 3074 AllFound = true; 3075 break; 3076 } 3077 } 3078 if (!AllFound) 3079 break; 3080 } 3081 if (AllFound) { 3082 // Discard LFilter. 3083 NewClauses.erase(J); 3084 MakeNewInstruction = true; 3085 } 3086 // Move on to the next filter. 3087 } 3088 } 3089 3090 // If we changed any of the clauses, replace the old landingpad instruction 3091 // with a new one. 3092 if (MakeNewInstruction) { 3093 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3094 NewClauses.size()); 3095 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3096 NLI->addClause(NewClauses[i]); 3097 // A landing pad with no clauses must have the cleanup flag set. It is 3098 // theoretically possible, though highly unlikely, that we eliminated all 3099 // clauses. If so, force the cleanup flag to true. 3100 if (NewClauses.empty()) 3101 CleanupFlag = true; 3102 NLI->setCleanup(CleanupFlag); 3103 return NLI; 3104 } 3105 3106 // Even if none of the clauses changed, we may nonetheless have understood 3107 // that the cleanup flag is pointless. Clear it if so. 3108 if (LI.isCleanup() != CleanupFlag) { 3109 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3110 LI.setCleanup(CleanupFlag); 3111 return &LI; 3112 } 3113 3114 return nullptr; 3115 } 3116 3117 /// Try to move the specified instruction from its current block into the 3118 /// beginning of DestBlock, which can only happen if it's safe to move the 3119 /// instruction past all of the instructions between it and the end of its 3120 /// block. 3121 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock, 3122 InstCombiner::BuilderTy &Builder) { 3123 assert(I->hasOneUse() && "Invariants didn't hold!"); 3124 BasicBlock *SrcBlock = I->getParent(); 3125 3126 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3127 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 3128 I->isTerminator()) 3129 return false; 3130 3131 // Do not sink static or dynamic alloca instructions. Static allocas must 3132 // remain in the entry block, and dynamic allocas must not be sunk in between 3133 // a stacksave / stackrestore pair, which would incorrectly shorten its 3134 // lifetime. 3135 if (isa<AllocaInst>(I)) 3136 return false; 3137 3138 // Do not sink into catchswitch blocks. 3139 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 3140 return false; 3141 3142 // Do not sink convergent call instructions. 3143 if (auto *CI = dyn_cast<CallInst>(I)) { 3144 if (CI->isConvergent()) 3145 return false; 3146 } 3147 // We can only sink load instructions if there is nothing between the load and 3148 // the end of block that could change the value. 3149 if (I->mayReadFromMemory()) { 3150 for (BasicBlock::iterator Scan = I->getIterator(), 3151 E = I->getParent()->end(); 3152 Scan != E; ++Scan) 3153 if (Scan->mayWriteToMemory()) 3154 return false; 3155 } 3156 3157 // If this instruction was providing nonnull guarantees insert assumptions for 3158 // nonnull call site arguments. 3159 if (auto CS = dyn_cast<CallBase>(I)) { 3160 for (unsigned Idx = 0; Idx != CS->getNumArgOperands(); Idx++) 3161 if (CS->paramHasAttr(Idx, Attribute::NonNull) || 3162 (CS->paramHasAttr(Idx, Attribute::Dereferenceable) && 3163 !llvm::NullPointerIsDefined(CS->getFunction(), 3164 CS->getArgOperand(Idx) 3165 ->getType() 3166 ->getPointerAddressSpace()))) { 3167 Value *V = CS->getArgOperand(Idx); 3168 3169 Builder.SetInsertPoint(I->getParent(), I->getIterator()); 3170 Builder.CreateAssumption(Builder.CreateIsNotNull(V)); 3171 } 3172 } 3173 3174 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 3175 I->moveBefore(&*InsertPos); 3176 ++NumSunkInst; 3177 3178 // Also sink all related debug uses from the source basic block. Otherwise we 3179 // get debug use before the def. Attempt to salvage debug uses first, to 3180 // maximise the range variables have location for. If we cannot salvage, then 3181 // mark the location undef: we know it was supposed to receive a new location 3182 // here, but that computation has been sunk. 3183 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 3184 findDbgUsers(DbgUsers, I); 3185 for (auto *DII : reverse(DbgUsers)) { 3186 if (DII->getParent() == SrcBlock) { 3187 if (isa<DbgDeclareInst>(DII)) { 3188 // A dbg.declare instruction should not be cloned, since there can only be 3189 // one per variable fragment. It should be left in the original place since 3190 // sunk instruction is not an alloca(otherwise we could not be here). 3191 // But we need to update arguments of dbg.declare instruction, so that it 3192 // would not point into sunk instruction. 3193 if (!isa<CastInst>(I)) 3194 continue; // dbg.declare points at something it shouldn't 3195 3196 DII->setOperand( 3197 0, MetadataAsValue::get(I->getContext(), 3198 ValueAsMetadata::get(I->getOperand(0)))); 3199 continue; 3200 } 3201 3202 // dbg.value is in the same basic block as the sunk inst, see if we can 3203 // salvage it. Clone a new copy of the instruction: on success we need 3204 // both salvaged and unsalvaged copies. 3205 SmallVector<DbgVariableIntrinsic *, 1> TmpUser{ 3206 cast<DbgVariableIntrinsic>(DII->clone())}; 3207 3208 if (!salvageDebugInfoForDbgValues(*I, TmpUser)) { 3209 // We are unable to salvage: sink the cloned dbg.value, and mark the 3210 // original as undef, terminating any earlier variable location. 3211 LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n'); 3212 TmpUser[0]->insertBefore(&*InsertPos); 3213 Value *Undef = UndefValue::get(I->getType()); 3214 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 3215 ValueAsMetadata::get(Undef))); 3216 } else { 3217 // We successfully salvaged: place the salvaged dbg.value in the 3218 // original location, and move the unmodified dbg.value to sink with 3219 // the sunk inst. 3220 TmpUser[0]->insertBefore(DII); 3221 DII->moveBefore(&*InsertPos); 3222 } 3223 } 3224 } 3225 return true; 3226 } 3227 3228 bool InstCombiner::run() { 3229 while (!Worklist.isEmpty()) { 3230 Instruction *I = Worklist.RemoveOne(); 3231 if (I == nullptr) continue; // skip null values. 3232 3233 // Check to see if we can DCE the instruction. 3234 if (isInstructionTriviallyDead(I, &TLI)) { 3235 LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); 3236 eraseInstFromFunction(*I); 3237 ++NumDeadInst; 3238 MadeIRChange = true; 3239 continue; 3240 } 3241 3242 if (!DebugCounter::shouldExecute(VisitCounter)) 3243 continue; 3244 3245 // Instruction isn't dead, see if we can constant propagate it. 3246 if (!I->use_empty() && 3247 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 3248 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 3249 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 3250 << '\n'); 3251 3252 // Add operands to the worklist. 3253 replaceInstUsesWith(*I, C); 3254 ++NumConstProp; 3255 if (isInstructionTriviallyDead(I, &TLI)) 3256 eraseInstFromFunction(*I); 3257 MadeIRChange = true; 3258 continue; 3259 } 3260 } 3261 3262 // In general, it is possible for computeKnownBits to determine all bits in 3263 // a value even when the operands are not all constants. 3264 Type *Ty = I->getType(); 3265 if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) { 3266 KnownBits Known = computeKnownBits(I, /*Depth*/0, I); 3267 if (Known.isConstant()) { 3268 Constant *C = ConstantInt::get(Ty, Known.getConstant()); 3269 LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C 3270 << " from: " << *I << '\n'); 3271 3272 // Add operands to the worklist. 3273 replaceInstUsesWith(*I, C); 3274 ++NumConstProp; 3275 if (isInstructionTriviallyDead(I, &TLI)) 3276 eraseInstFromFunction(*I); 3277 MadeIRChange = true; 3278 continue; 3279 } 3280 } 3281 3282 // See if we can trivially sink this instruction to a successor basic block. 3283 if (EnableCodeSinking && I->hasOneUse()) { 3284 BasicBlock *BB = I->getParent(); 3285 Instruction *UserInst = cast<Instruction>(*I->user_begin()); 3286 BasicBlock *UserParent; 3287 3288 // Get the block the use occurs in. 3289 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 3290 UserParent = PN->getIncomingBlock(*I->use_begin()); 3291 else 3292 UserParent = UserInst->getParent(); 3293 3294 if (UserParent != BB) { 3295 bool UserIsSuccessor = false; 3296 // See if the user is one of our successors. 3297 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 3298 if (*SI == UserParent) { 3299 UserIsSuccessor = true; 3300 break; 3301 } 3302 3303 // If the user is one of our immediate successors, and if that successor 3304 // only has us as a predecessors (we'd have to split the critical edge 3305 // otherwise), we can keep going. 3306 if (UserIsSuccessor && UserParent->getUniquePredecessor()) { 3307 // Okay, the CFG is simple enough, try to sink this instruction. 3308 if (TryToSinkInstruction(I, UserParent, Builder)) { 3309 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3310 MadeIRChange = true; 3311 // We'll add uses of the sunk instruction below, but since sinking 3312 // can expose opportunities for it's *operands* add them to the 3313 // worklist 3314 for (Use &U : I->operands()) 3315 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3316 Worklist.Add(OpI); 3317 } 3318 } 3319 } 3320 } 3321 3322 // Now that we have an instruction, try combining it to simplify it. 3323 Builder.SetInsertPoint(I); 3324 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 3325 3326 #ifndef NDEBUG 3327 std::string OrigI; 3328 #endif 3329 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 3330 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 3331 3332 if (Instruction *Result = visit(*I)) { 3333 ++NumCombined; 3334 // Should we replace the old instruction with a new one? 3335 if (Result != I) { 3336 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 3337 << " New = " << *Result << '\n'); 3338 3339 if (I->getDebugLoc()) 3340 Result->setDebugLoc(I->getDebugLoc()); 3341 // Everything uses the new instruction now. 3342 I->replaceAllUsesWith(Result); 3343 3344 // Move the name to the new instruction first. 3345 Result->takeName(I); 3346 3347 // Push the new instruction and any users onto the worklist. 3348 Worklist.AddUsersToWorkList(*Result); 3349 Worklist.Add(Result); 3350 3351 // Insert the new instruction into the basic block... 3352 BasicBlock *InstParent = I->getParent(); 3353 BasicBlock::iterator InsertPos = I->getIterator(); 3354 3355 // If we replace a PHI with something that isn't a PHI, fix up the 3356 // insertion point. 3357 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 3358 InsertPos = InstParent->getFirstInsertionPt(); 3359 3360 InstParent->getInstList().insert(InsertPos, Result); 3361 3362 eraseInstFromFunction(*I); 3363 } else { 3364 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3365 << " New = " << *I << '\n'); 3366 3367 // If the instruction was modified, it's possible that it is now dead. 3368 // if so, remove it. 3369 if (isInstructionTriviallyDead(I, &TLI)) { 3370 eraseInstFromFunction(*I); 3371 } else { 3372 Worklist.AddUsersToWorkList(*I); 3373 Worklist.Add(I); 3374 } 3375 } 3376 MadeIRChange = true; 3377 } 3378 } 3379 3380 Worklist.Zap(); 3381 return MadeIRChange; 3382 } 3383 3384 /// Walk the function in depth-first order, adding all reachable code to the 3385 /// worklist. 3386 /// 3387 /// This has a couple of tricks to make the code faster and more powerful. In 3388 /// particular, we constant fold and DCE instructions as we go, to avoid adding 3389 /// them to the worklist (this significantly speeds up instcombine on code where 3390 /// many instructions are dead or constant). Additionally, if we find a branch 3391 /// whose condition is a known constant, we only visit the reachable successors. 3392 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, 3393 SmallPtrSetImpl<BasicBlock *> &Visited, 3394 InstCombineWorklist &ICWorklist, 3395 const TargetLibraryInfo *TLI) { 3396 bool MadeIRChange = false; 3397 SmallVector<BasicBlock*, 256> Worklist; 3398 Worklist.push_back(BB); 3399 3400 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 3401 DenseMap<Constant *, Constant *> FoldedConstants; 3402 3403 do { 3404 BB = Worklist.pop_back_val(); 3405 3406 // We have now visited this block! If we've already been here, ignore it. 3407 if (!Visited.insert(BB).second) 3408 continue; 3409 3410 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 3411 Instruction *Inst = &*BBI++; 3412 3413 // DCE instruction if trivially dead. 3414 if (isInstructionTriviallyDead(Inst, TLI)) { 3415 ++NumDeadInst; 3416 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 3417 if (!salvageDebugInfo(*Inst)) 3418 replaceDbgUsesWithUndef(Inst); 3419 Inst->eraseFromParent(); 3420 MadeIRChange = true; 3421 continue; 3422 } 3423 3424 // ConstantProp instruction if trivially constant. 3425 if (!Inst->use_empty() && 3426 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 3427 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 3428 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst 3429 << '\n'); 3430 Inst->replaceAllUsesWith(C); 3431 ++NumConstProp; 3432 if (isInstructionTriviallyDead(Inst, TLI)) 3433 Inst->eraseFromParent(); 3434 MadeIRChange = true; 3435 continue; 3436 } 3437 3438 // See if we can constant fold its operands. 3439 for (Use &U : Inst->operands()) { 3440 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 3441 continue; 3442 3443 auto *C = cast<Constant>(U); 3444 Constant *&FoldRes = FoldedConstants[C]; 3445 if (!FoldRes) 3446 FoldRes = ConstantFoldConstant(C, DL, TLI); 3447 if (!FoldRes) 3448 FoldRes = C; 3449 3450 if (FoldRes != C) { 3451 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst 3452 << "\n Old = " << *C 3453 << "\n New = " << *FoldRes << '\n'); 3454 U = FoldRes; 3455 MadeIRChange = true; 3456 } 3457 } 3458 3459 // Skip processing debug intrinsics in InstCombine. Processing these call instructions 3460 // consumes non-trivial amount of time and provides no value for the optimization. 3461 if (!isa<DbgInfoIntrinsic>(Inst)) 3462 InstrsForInstCombineWorklist.push_back(Inst); 3463 } 3464 3465 // Recursively visit successors. If this is a branch or switch on a 3466 // constant, only visit the reachable successor. 3467 Instruction *TI = BB->getTerminator(); 3468 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3469 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 3470 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 3471 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 3472 Worklist.push_back(ReachableBB); 3473 continue; 3474 } 3475 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3476 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 3477 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 3478 continue; 3479 } 3480 } 3481 3482 for (BasicBlock *SuccBB : successors(TI)) 3483 Worklist.push_back(SuccBB); 3484 } while (!Worklist.empty()); 3485 3486 // Once we've found all of the instructions to add to instcombine's worklist, 3487 // add them in reverse order. This way instcombine will visit from the top 3488 // of the function down. This jives well with the way that it adds all uses 3489 // of instructions to the worklist after doing a transformation, thus avoiding 3490 // some N^2 behavior in pathological cases. 3491 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist); 3492 3493 return MadeIRChange; 3494 } 3495 3496 /// Populate the IC worklist from a function, and prune any dead basic 3497 /// blocks discovered in the process. 3498 /// 3499 /// This also does basic constant propagation and other forward fixing to make 3500 /// the combiner itself run much faster. 3501 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 3502 TargetLibraryInfo *TLI, 3503 InstCombineWorklist &ICWorklist) { 3504 bool MadeIRChange = false; 3505 3506 // Do a depth-first traversal of the function, populate the worklist with 3507 // the reachable instructions. Ignore blocks that are not reachable. Keep 3508 // track of which blocks we visit. 3509 SmallPtrSet<BasicBlock *, 32> Visited; 3510 MadeIRChange |= 3511 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI); 3512 3513 // Do a quick scan over the function. If we find any blocks that are 3514 // unreachable, remove any instructions inside of them. This prevents 3515 // the instcombine code from having to deal with some bad special cases. 3516 for (BasicBlock &BB : F) { 3517 if (Visited.count(&BB)) 3518 continue; 3519 3520 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB); 3521 MadeIRChange |= NumDeadInstInBB > 0; 3522 NumDeadInst += NumDeadInstInBB; 3523 } 3524 3525 return MadeIRChange; 3526 } 3527 3528 static bool combineInstructionsOverFunction( 3529 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, 3530 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, 3531 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 3532 ProfileSummaryInfo *PSI, bool ExpensiveCombines = true, 3533 LoopInfo *LI = nullptr) { 3534 auto &DL = F.getParent()->getDataLayout(); 3535 ExpensiveCombines |= EnableExpensiveCombines; 3536 3537 /// Builder - This is an IRBuilder that automatically inserts new 3538 /// instructions into the worklist when they are created. 3539 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 3540 F.getContext(), TargetFolder(DL), 3541 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 3542 Worklist.Add(I); 3543 if (match(I, m_Intrinsic<Intrinsic::assume>())) 3544 AC.registerAssumption(cast<CallInst>(I)); 3545 })); 3546 3547 // Lower dbg.declare intrinsics otherwise their value may be clobbered 3548 // by instcombiner. 3549 bool MadeIRChange = false; 3550 if (ShouldLowerDbgDeclare) 3551 MadeIRChange = LowerDbgDeclare(F); 3552 3553 // Iterate while there is work to do. 3554 int Iteration = 0; 3555 while (true) { 3556 ++Iteration; 3557 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 3558 << F.getName() << "\n"); 3559 3560 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 3561 3562 InstCombiner IC(Worklist, Builder, F.hasMinSize(), ExpensiveCombines, AA, 3563 AC, TLI, DT, ORE, BFI, PSI, DL, LI); 3564 IC.MaxArraySizeForCombine = MaxArraySize; 3565 3566 if (!IC.run()) 3567 break; 3568 } 3569 3570 return MadeIRChange || Iteration > 1; 3571 } 3572 3573 PreservedAnalyses InstCombinePass::run(Function &F, 3574 FunctionAnalysisManager &AM) { 3575 auto &AC = AM.getResult<AssumptionAnalysis>(F); 3576 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 3577 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 3578 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3579 3580 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 3581 3582 auto *AA = &AM.getResult<AAManager>(F); 3583 const ModuleAnalysisManager &MAM = 3584 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 3585 ProfileSummaryInfo *PSI = 3586 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 3587 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 3588 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 3589 3590 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, 3591 BFI, PSI, ExpensiveCombines, LI)) 3592 // No changes, all analyses are preserved. 3593 return PreservedAnalyses::all(); 3594 3595 // Mark all the analyses that instcombine updates as preserved. 3596 PreservedAnalyses PA; 3597 PA.preserveSet<CFGAnalyses>(); 3598 PA.preserve<AAManager>(); 3599 PA.preserve<BasicAA>(); 3600 PA.preserve<GlobalsAA>(); 3601 return PA; 3602 } 3603 3604 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 3605 AU.setPreservesCFG(); 3606 AU.addRequired<AAResultsWrapperPass>(); 3607 AU.addRequired<AssumptionCacheTracker>(); 3608 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3609 AU.addRequired<DominatorTreeWrapperPass>(); 3610 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3611 AU.addPreserved<DominatorTreeWrapperPass>(); 3612 AU.addPreserved<AAResultsWrapperPass>(); 3613 AU.addPreserved<BasicAAWrapperPass>(); 3614 AU.addPreserved<GlobalsAAWrapperPass>(); 3615 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 3616 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 3617 } 3618 3619 bool InstructionCombiningPass::runOnFunction(Function &F) { 3620 if (skipFunction(F)) 3621 return false; 3622 3623 // Required analyses. 3624 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3625 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3626 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 3627 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3628 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 3629 3630 // Optional analyses. 3631 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3632 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 3633 ProfileSummaryInfo *PSI = 3634 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 3635 BlockFrequencyInfo *BFI = 3636 (PSI && PSI->hasProfileSummary()) ? 3637 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 3638 nullptr; 3639 3640 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, 3641 BFI, PSI, ExpensiveCombines, LI); 3642 } 3643 3644 char InstructionCombiningPass::ID = 0; 3645 3646 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 3647 "Combine redundant instructions", false, false) 3648 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3649 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3650 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3651 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3652 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3653 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3654 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 3655 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 3656 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 3657 "Combine redundant instructions", false, false) 3658 3659 // Initialization Routines 3660 void llvm::initializeInstCombine(PassRegistry &Registry) { 3661 initializeInstructionCombiningPassPass(Registry); 3662 } 3663 3664 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 3665 initializeInstructionCombiningPassPass(*unwrap(R)); 3666 } 3667 3668 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) { 3669 return new InstructionCombiningPass(ExpensiveCombines); 3670 } 3671 3672 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 3673 unwrap(PM)->add(createInstructionCombiningPass()); 3674 } 3675