1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/TinyPtrVector.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/BlockFrequencyInfo.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/MemoryBuiltins.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ProfileSummaryInfo.h" 60 #include "llvm/Analysis/TargetFolder.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/Utils/Local.h" 64 #include "llvm/Analysis/ValueTracking.h" 65 #include "llvm/Analysis/VectorUtils.h" 66 #include "llvm/IR/BasicBlock.h" 67 #include "llvm/IR/CFG.h" 68 #include "llvm/IR/Constant.h" 69 #include "llvm/IR/Constants.h" 70 #include "llvm/IR/DIBuilder.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfo.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/IR/GetElementPtrTypeIterator.h" 77 #include "llvm/IR/IRBuilder.h" 78 #include "llvm/IR/InstrTypes.h" 79 #include "llvm/IR/Instruction.h" 80 #include "llvm/IR/Instructions.h" 81 #include "llvm/IR/IntrinsicInst.h" 82 #include "llvm/IR/Intrinsics.h" 83 #include "llvm/IR/LegacyPassManager.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PassManager.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/IR/Type.h" 89 #include "llvm/IR/Use.h" 90 #include "llvm/IR/User.h" 91 #include "llvm/IR/Value.h" 92 #include "llvm/IR/ValueHandle.h" 93 #include "llvm/InitializePasses.h" 94 #include "llvm/Pass.h" 95 #include "llvm/Support/CBindingWrapping.h" 96 #include "llvm/Support/Casting.h" 97 #include "llvm/Support/CommandLine.h" 98 #include "llvm/Support/Compiler.h" 99 #include "llvm/Support/Debug.h" 100 #include "llvm/Support/DebugCounter.h" 101 #include "llvm/Support/ErrorHandling.h" 102 #include "llvm/Support/KnownBits.h" 103 #include "llvm/Support/raw_ostream.h" 104 #include "llvm/Transforms/InstCombine/InstCombine.h" 105 #include "llvm/Transforms/Utils/Local.h" 106 #include <algorithm> 107 #include <cassert> 108 #include <cstdint> 109 #include <memory> 110 #include <string> 111 #include <utility> 112 113 #define DEBUG_TYPE "instcombine" 114 #include "llvm/Transforms/Utils/InstructionWorklist.h" 115 116 using namespace llvm; 117 using namespace llvm::PatternMatch; 118 119 STATISTIC(NumWorklistIterations, 120 "Number of instruction combining iterations performed"); 121 122 STATISTIC(NumCombined , "Number of insts combined"); 123 STATISTIC(NumConstProp, "Number of constant folds"); 124 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 125 STATISTIC(NumSunkInst , "Number of instructions sunk"); 126 STATISTIC(NumExpand, "Number of expansions"); 127 STATISTIC(NumFactor , "Number of factorizations"); 128 STATISTIC(NumReassoc , "Number of reassociations"); 129 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 130 "Controls which instructions are visited"); 131 132 // FIXME: these limits eventually should be as low as 2. 133 static constexpr unsigned InstCombineDefaultMaxIterations = 1000; 134 #ifndef NDEBUG 135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100; 136 #else 137 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; 138 #endif 139 140 static cl::opt<bool> 141 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 142 cl::init(true)); 143 144 static cl::opt<unsigned> LimitMaxIterations( 145 "instcombine-max-iterations", 146 cl::desc("Limit the maximum number of instruction combining iterations"), 147 cl::init(InstCombineDefaultMaxIterations)); 148 149 static cl::opt<unsigned> InfiniteLoopDetectionThreshold( 150 "instcombine-infinite-loop-threshold", 151 cl::desc("Number of instruction combining iterations considered an " 152 "infinite loop"), 153 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); 154 155 static cl::opt<unsigned> 156 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 157 cl::desc("Maximum array size considered when doing a combine")); 158 159 // FIXME: Remove this flag when it is no longer necessary to convert 160 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 161 // increases variable availability at the cost of accuracy. Variables that 162 // cannot be promoted by mem2reg or SROA will be described as living in memory 163 // for their entire lifetime. However, passes like DSE and instcombine can 164 // delete stores to the alloca, leading to misleading and inaccurate debug 165 // information. This flag can be removed when those passes are fixed. 166 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 167 cl::Hidden, cl::init(true)); 168 169 Optional<Instruction *> 170 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 171 // Handle target specific intrinsics 172 if (II.getCalledFunction()->isTargetIntrinsic()) { 173 return TTI.instCombineIntrinsic(*this, II); 174 } 175 return None; 176 } 177 178 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 179 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 180 bool &KnownBitsComputed) { 181 // Handle target specific intrinsics 182 if (II.getCalledFunction()->isTargetIntrinsic()) { 183 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, 184 KnownBitsComputed); 185 } 186 return None; 187 } 188 189 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 190 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, 191 APInt &UndefElts3, 192 std::function<void(Instruction *, unsigned, APInt, APInt &)> 193 SimplifyAndSetOp) { 194 // Handle target specific intrinsics 195 if (II.getCalledFunction()->isTargetIntrinsic()) { 196 return TTI.simplifyDemandedVectorEltsIntrinsic( 197 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 198 SimplifyAndSetOp); 199 } 200 return None; 201 } 202 203 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { 204 return llvm::EmitGEPOffset(&Builder, DL, GEP); 205 } 206 207 /// Legal integers and common types are considered desirable. This is used to 208 /// avoid creating instructions with types that may not be supported well by the 209 /// the backend. 210 /// NOTE: This treats i8, i16 and i32 specially because they are common 211 /// types in frontend languages. 212 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { 213 switch (BitWidth) { 214 case 8: 215 case 16: 216 case 32: 217 return true; 218 default: 219 return DL.isLegalInteger(BitWidth); 220 } 221 } 222 223 /// Return true if it is desirable to convert an integer computation from a 224 /// given bit width to a new bit width. 225 /// We don't want to convert from a legal to an illegal type or from a smaller 226 /// to a larger illegal type. A width of '1' is always treated as a desirable 227 /// type because i1 is a fundamental type in IR, and there are many specialized 228 /// optimizations for i1 types. Common/desirable widths are equally treated as 229 /// legal to convert to, in order to open up more combining opportunities. 230 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 231 unsigned ToWidth) const { 232 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 233 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 234 235 // Convert to desirable widths even if they are not legal types. 236 // Only shrink types, to prevent infinite loops. 237 if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) 238 return true; 239 240 // If this is a legal integer from type, and the result would be an illegal 241 // type, don't do the transformation. 242 if (FromLegal && !ToLegal) 243 return false; 244 245 // Otherwise, if both are illegal, do not increase the size of the result. We 246 // do allow things like i160 -> i64, but not i64 -> i160. 247 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 248 return false; 249 250 return true; 251 } 252 253 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 254 /// We don't want to convert from a legal to an illegal type or from a smaller 255 /// to a larger illegal type. i1 is always treated as a legal type because it is 256 /// a fundamental type in IR, and there are many specialized optimizations for 257 /// i1 types. 258 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 259 // TODO: This could be extended to allow vectors. Datalayout changes might be 260 // needed to properly support that. 261 if (!From->isIntegerTy() || !To->isIntegerTy()) 262 return false; 263 264 unsigned FromWidth = From->getPrimitiveSizeInBits(); 265 unsigned ToWidth = To->getPrimitiveSizeInBits(); 266 return shouldChangeType(FromWidth, ToWidth); 267 } 268 269 // Return true, if No Signed Wrap should be maintained for I. 270 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 271 // where both B and C should be ConstantInts, results in a constant that does 272 // not overflow. This function only handles the Add and Sub opcodes. For 273 // all other opcodes, the function conservatively returns false. 274 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 275 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 276 if (!OBO || !OBO->hasNoSignedWrap()) 277 return false; 278 279 // We reason about Add and Sub Only. 280 Instruction::BinaryOps Opcode = I.getOpcode(); 281 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 282 return false; 283 284 const APInt *BVal, *CVal; 285 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 286 return false; 287 288 bool Overflow = false; 289 if (Opcode == Instruction::Add) 290 (void)BVal->sadd_ov(*CVal, Overflow); 291 else 292 (void)BVal->ssub_ov(*CVal, Overflow); 293 294 return !Overflow; 295 } 296 297 static bool hasNoUnsignedWrap(BinaryOperator &I) { 298 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 299 return OBO && OBO->hasNoUnsignedWrap(); 300 } 301 302 static bool hasNoSignedWrap(BinaryOperator &I) { 303 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 304 return OBO && OBO->hasNoSignedWrap(); 305 } 306 307 /// Conservatively clears subclassOptionalData after a reassociation or 308 /// commutation. We preserve fast-math flags when applicable as they can be 309 /// preserved. 310 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 311 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 312 if (!FPMO) { 313 I.clearSubclassOptionalData(); 314 return; 315 } 316 317 FastMathFlags FMF = I.getFastMathFlags(); 318 I.clearSubclassOptionalData(); 319 I.setFastMathFlags(FMF); 320 } 321 322 /// Combine constant operands of associative operations either before or after a 323 /// cast to eliminate one of the associative operations: 324 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 325 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 326 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 327 InstCombinerImpl &IC) { 328 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 329 if (!Cast || !Cast->hasOneUse()) 330 return false; 331 332 // TODO: Enhance logic for other casts and remove this check. 333 auto CastOpcode = Cast->getOpcode(); 334 if (CastOpcode != Instruction::ZExt) 335 return false; 336 337 // TODO: Enhance logic for other BinOps and remove this check. 338 if (!BinOp1->isBitwiseLogicOp()) 339 return false; 340 341 auto AssocOpcode = BinOp1->getOpcode(); 342 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 343 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 344 return false; 345 346 Constant *C1, *C2; 347 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 348 !match(BinOp2->getOperand(1), m_Constant(C2))) 349 return false; 350 351 // TODO: This assumes a zext cast. 352 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 353 // to the destination type might lose bits. 354 355 // Fold the constants together in the destination type: 356 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 357 Type *DestTy = C1->getType(); 358 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 359 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 360 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 361 IC.replaceOperand(*BinOp1, 1, FoldedC); 362 return true; 363 } 364 365 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast. 366 // inttoptr ( ptrtoint (x) ) --> x 367 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { 368 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); 369 if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) == 370 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { 371 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); 372 Type *CastTy = IntToPtr->getDestTy(); 373 if (PtrToInt && 374 CastTy->getPointerAddressSpace() == 375 PtrToInt->getSrcTy()->getPointerAddressSpace() && 376 DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) == 377 DL.getTypeSizeInBits(PtrToInt->getDestTy())) { 378 return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy, 379 "", PtrToInt); 380 } 381 } 382 return nullptr; 383 } 384 385 /// This performs a few simplifications for operators that are associative or 386 /// commutative: 387 /// 388 /// Commutative operators: 389 /// 390 /// 1. Order operands such that they are listed from right (least complex) to 391 /// left (most complex). This puts constants before unary operators before 392 /// binary operators. 393 /// 394 /// Associative operators: 395 /// 396 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 397 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 398 /// 399 /// Associative and commutative operators: 400 /// 401 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 402 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 403 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 404 /// if C1 and C2 are constants. 405 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 406 Instruction::BinaryOps Opcode = I.getOpcode(); 407 bool Changed = false; 408 409 do { 410 // Order operands such that they are listed from right (least complex) to 411 // left (most complex). This puts constants before unary operators before 412 // binary operators. 413 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 414 getComplexity(I.getOperand(1))) 415 Changed = !I.swapOperands(); 416 417 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 418 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 419 420 if (I.isAssociative()) { 421 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 422 if (Op0 && Op0->getOpcode() == Opcode) { 423 Value *A = Op0->getOperand(0); 424 Value *B = Op0->getOperand(1); 425 Value *C = I.getOperand(1); 426 427 // Does "B op C" simplify? 428 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 429 // It simplifies to V. Form "A op V". 430 replaceOperand(I, 0, A); 431 replaceOperand(I, 1, V); 432 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 433 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 434 435 // Conservatively clear all optional flags since they may not be 436 // preserved by the reassociation. Reset nsw/nuw based on the above 437 // analysis. 438 ClearSubclassDataAfterReassociation(I); 439 440 // Note: this is only valid because SimplifyBinOp doesn't look at 441 // the operands to Op0. 442 if (IsNUW) 443 I.setHasNoUnsignedWrap(true); 444 445 if (IsNSW) 446 I.setHasNoSignedWrap(true); 447 448 Changed = true; 449 ++NumReassoc; 450 continue; 451 } 452 } 453 454 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 455 if (Op1 && Op1->getOpcode() == Opcode) { 456 Value *A = I.getOperand(0); 457 Value *B = Op1->getOperand(0); 458 Value *C = Op1->getOperand(1); 459 460 // Does "A op B" simplify? 461 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 462 // It simplifies to V. Form "V op C". 463 replaceOperand(I, 0, V); 464 replaceOperand(I, 1, C); 465 // Conservatively clear the optional flags, since they may not be 466 // preserved by the reassociation. 467 ClearSubclassDataAfterReassociation(I); 468 Changed = true; 469 ++NumReassoc; 470 continue; 471 } 472 } 473 } 474 475 if (I.isAssociative() && I.isCommutative()) { 476 if (simplifyAssocCastAssoc(&I, *this)) { 477 Changed = true; 478 ++NumReassoc; 479 continue; 480 } 481 482 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 483 if (Op0 && Op0->getOpcode() == Opcode) { 484 Value *A = Op0->getOperand(0); 485 Value *B = Op0->getOperand(1); 486 Value *C = I.getOperand(1); 487 488 // Does "C op A" simplify? 489 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 490 // It simplifies to V. Form "V op B". 491 replaceOperand(I, 0, V); 492 replaceOperand(I, 1, B); 493 // Conservatively clear the optional flags, since they may not be 494 // preserved by the reassociation. 495 ClearSubclassDataAfterReassociation(I); 496 Changed = true; 497 ++NumReassoc; 498 continue; 499 } 500 } 501 502 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 503 if (Op1 && Op1->getOpcode() == Opcode) { 504 Value *A = I.getOperand(0); 505 Value *B = Op1->getOperand(0); 506 Value *C = Op1->getOperand(1); 507 508 // Does "C op A" simplify? 509 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 510 // It simplifies to V. Form "B op V". 511 replaceOperand(I, 0, B); 512 replaceOperand(I, 1, V); 513 // Conservatively clear the optional flags, since they may not be 514 // preserved by the reassociation. 515 ClearSubclassDataAfterReassociation(I); 516 Changed = true; 517 ++NumReassoc; 518 continue; 519 } 520 } 521 522 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 523 // if C1 and C2 are constants. 524 Value *A, *B; 525 Constant *C1, *C2; 526 if (Op0 && Op1 && 527 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 528 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 529 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 530 bool IsNUW = hasNoUnsignedWrap(I) && 531 hasNoUnsignedWrap(*Op0) && 532 hasNoUnsignedWrap(*Op1); 533 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 534 BinaryOperator::CreateNUW(Opcode, A, B) : 535 BinaryOperator::Create(Opcode, A, B); 536 537 if (isa<FPMathOperator>(NewBO)) { 538 FastMathFlags Flags = I.getFastMathFlags(); 539 Flags &= Op0->getFastMathFlags(); 540 Flags &= Op1->getFastMathFlags(); 541 NewBO->setFastMathFlags(Flags); 542 } 543 InsertNewInstWith(NewBO, I); 544 NewBO->takeName(Op1); 545 replaceOperand(I, 0, NewBO); 546 replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2)); 547 // Conservatively clear the optional flags, since they may not be 548 // preserved by the reassociation. 549 ClearSubclassDataAfterReassociation(I); 550 if (IsNUW) 551 I.setHasNoUnsignedWrap(true); 552 553 Changed = true; 554 continue; 555 } 556 } 557 558 // No further simplifications. 559 return Changed; 560 } while (true); 561 } 562 563 /// Return whether "X LOp (Y ROp Z)" is always equal to 564 /// "(X LOp Y) ROp (X LOp Z)". 565 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 566 Instruction::BinaryOps ROp) { 567 // X & (Y | Z) <--> (X & Y) | (X & Z) 568 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 569 if (LOp == Instruction::And) 570 return ROp == Instruction::Or || ROp == Instruction::Xor; 571 572 // X | (Y & Z) <--> (X | Y) & (X | Z) 573 if (LOp == Instruction::Or) 574 return ROp == Instruction::And; 575 576 // X * (Y + Z) <--> (X * Y) + (X * Z) 577 // X * (Y - Z) <--> (X * Y) - (X * Z) 578 if (LOp == Instruction::Mul) 579 return ROp == Instruction::Add || ROp == Instruction::Sub; 580 581 return false; 582 } 583 584 /// Return whether "(X LOp Y) ROp Z" is always equal to 585 /// "(X ROp Z) LOp (Y ROp Z)". 586 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 587 Instruction::BinaryOps ROp) { 588 if (Instruction::isCommutative(ROp)) 589 return leftDistributesOverRight(ROp, LOp); 590 591 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 592 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 593 594 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 595 // but this requires knowing that the addition does not overflow and other 596 // such subtleties. 597 } 598 599 /// This function returns identity value for given opcode, which can be used to 600 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 601 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 602 if (isa<Constant>(V)) 603 return nullptr; 604 605 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 606 } 607 608 /// This function predicates factorization using distributive laws. By default, 609 /// it just returns the 'Op' inputs. But for special-cases like 610 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 611 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 612 /// allow more factorization opportunities. 613 static Instruction::BinaryOps 614 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 615 Value *&LHS, Value *&RHS) { 616 assert(Op && "Expected a binary operator"); 617 LHS = Op->getOperand(0); 618 RHS = Op->getOperand(1); 619 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 620 Constant *C; 621 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 622 // X << C --> X * (1 << C) 623 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 624 return Instruction::Mul; 625 } 626 // TODO: We can add other conversions e.g. shr => div etc. 627 } 628 return Op->getOpcode(); 629 } 630 631 /// This tries to simplify binary operations by factorizing out common terms 632 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 633 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I, 634 Instruction::BinaryOps InnerOpcode, 635 Value *A, Value *B, Value *C, 636 Value *D) { 637 assert(A && B && C && D && "All values must be provided"); 638 639 Value *V = nullptr; 640 Value *SimplifiedInst = nullptr; 641 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 642 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 643 644 // Does "X op' Y" always equal "Y op' X"? 645 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 646 647 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 648 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 649 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 650 // commutative case, "(A op' B) op (C op' A)"? 651 if (A == C || (InnerCommutative && A == D)) { 652 if (A != C) 653 std::swap(C, D); 654 // Consider forming "A op' (B op D)". 655 // If "B op D" simplifies then it can be formed with no cost. 656 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 657 // If "B op D" doesn't simplify then only go on if both of the existing 658 // operations "A op' B" and "C op' D" will be zapped as no longer used. 659 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 660 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 661 if (V) { 662 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 663 } 664 } 665 666 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 667 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 668 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 669 // commutative case, "(A op' B) op (B op' D)"? 670 if (B == D || (InnerCommutative && B == C)) { 671 if (B != D) 672 std::swap(C, D); 673 // Consider forming "(A op C) op' B". 674 // If "A op C" simplifies then it can be formed with no cost. 675 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 676 677 // If "A op C" doesn't simplify then only go on if both of the existing 678 // operations "A op' B" and "C op' D" will be zapped as no longer used. 679 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 680 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 681 if (V) { 682 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 683 } 684 } 685 686 if (SimplifiedInst) { 687 ++NumFactor; 688 SimplifiedInst->takeName(&I); 689 690 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 691 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 692 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 693 bool HasNSW = false; 694 bool HasNUW = false; 695 if (isa<OverflowingBinaryOperator>(&I)) { 696 HasNSW = I.hasNoSignedWrap(); 697 HasNUW = I.hasNoUnsignedWrap(); 698 } 699 700 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 701 HasNSW &= LOBO->hasNoSignedWrap(); 702 HasNUW &= LOBO->hasNoUnsignedWrap(); 703 } 704 705 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 706 HasNSW &= ROBO->hasNoSignedWrap(); 707 HasNUW &= ROBO->hasNoUnsignedWrap(); 708 } 709 710 if (TopLevelOpcode == Instruction::Add && 711 InnerOpcode == Instruction::Mul) { 712 // We can propagate 'nsw' if we know that 713 // %Y = mul nsw i16 %X, C 714 // %Z = add nsw i16 %Y, %X 715 // => 716 // %Z = mul nsw i16 %X, C+1 717 // 718 // iff C+1 isn't INT_MIN 719 const APInt *CInt; 720 if (match(V, m_APInt(CInt))) { 721 if (!CInt->isMinSignedValue()) 722 BO->setHasNoSignedWrap(HasNSW); 723 } 724 725 // nuw can be propagated with any constant or nuw value. 726 BO->setHasNoUnsignedWrap(HasNUW); 727 } 728 } 729 } 730 } 731 return SimplifiedInst; 732 } 733 734 /// This tries to simplify binary operations which some other binary operation 735 /// distributes over either by factorizing out common terms 736 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 737 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 738 /// Returns the simplified value, or null if it didn't simplify. 739 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 740 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 741 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 742 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 743 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 744 745 { 746 // Factorization. 747 Value *A, *B, *C, *D; 748 Instruction::BinaryOps LHSOpcode, RHSOpcode; 749 if (Op0) 750 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 751 if (Op1) 752 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 753 754 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 755 // a common term. 756 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 757 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 758 return V; 759 760 // The instruction has the form "(A op' B) op (C)". Try to factorize common 761 // term. 762 if (Op0) 763 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 764 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 765 return V; 766 767 // The instruction has the form "(B) op (C op' D)". Try to factorize common 768 // term. 769 if (Op1) 770 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 771 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 772 return V; 773 } 774 775 // Expansion. 776 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 777 // The instruction has the form "(A op' B) op C". See if expanding it out 778 // to "(A op C) op' (B op C)" results in simplifications. 779 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 780 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 781 782 // Disable the use of undef because it's not safe to distribute undef. 783 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 784 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 785 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 786 787 // Do "A op C" and "B op C" both simplify? 788 if (L && R) { 789 // They do! Return "L op' R". 790 ++NumExpand; 791 C = Builder.CreateBinOp(InnerOpcode, L, R); 792 C->takeName(&I); 793 return C; 794 } 795 796 // Does "A op C" simplify to the identity value for the inner opcode? 797 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 798 // They do! Return "B op C". 799 ++NumExpand; 800 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 801 C->takeName(&I); 802 return C; 803 } 804 805 // Does "B op C" simplify to the identity value for the inner opcode? 806 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 807 // They do! Return "A op C". 808 ++NumExpand; 809 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 810 C->takeName(&I); 811 return C; 812 } 813 } 814 815 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 816 // The instruction has the form "A op (B op' C)". See if expanding it out 817 // to "(A op B) op' (A op C)" results in simplifications. 818 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 819 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 820 821 // Disable the use of undef because it's not safe to distribute undef. 822 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 823 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 824 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 825 826 // Do "A op B" and "A op C" both simplify? 827 if (L && R) { 828 // They do! Return "L op' R". 829 ++NumExpand; 830 A = Builder.CreateBinOp(InnerOpcode, L, R); 831 A->takeName(&I); 832 return A; 833 } 834 835 // Does "A op B" simplify to the identity value for the inner opcode? 836 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 837 // They do! Return "A op C". 838 ++NumExpand; 839 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 840 A->takeName(&I); 841 return A; 842 } 843 844 // Does "A op C" simplify to the identity value for the inner opcode? 845 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 846 // They do! Return "A op B". 847 ++NumExpand; 848 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 849 A->takeName(&I); 850 return A; 851 } 852 } 853 854 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 855 } 856 857 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 858 Value *LHS, 859 Value *RHS) { 860 Value *A, *B, *C, *D, *E, *F; 861 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 862 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 863 if (!LHSIsSelect && !RHSIsSelect) 864 return nullptr; 865 866 FastMathFlags FMF; 867 BuilderTy::FastMathFlagGuard Guard(Builder); 868 if (isa<FPMathOperator>(&I)) { 869 FMF = I.getFastMathFlags(); 870 Builder.setFastMathFlags(FMF); 871 } 872 873 Instruction::BinaryOps Opcode = I.getOpcode(); 874 SimplifyQuery Q = SQ.getWithInstruction(&I); 875 876 Value *Cond, *True = nullptr, *False = nullptr; 877 if (LHSIsSelect && RHSIsSelect && A == D) { 878 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 879 Cond = A; 880 True = SimplifyBinOp(Opcode, B, E, FMF, Q); 881 False = SimplifyBinOp(Opcode, C, F, FMF, Q); 882 883 if (LHS->hasOneUse() && RHS->hasOneUse()) { 884 if (False && !True) 885 True = Builder.CreateBinOp(Opcode, B, E); 886 else if (True && !False) 887 False = Builder.CreateBinOp(Opcode, C, F); 888 } 889 } else if (LHSIsSelect && LHS->hasOneUse()) { 890 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 891 Cond = A; 892 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q); 893 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q); 894 } else if (RHSIsSelect && RHS->hasOneUse()) { 895 // X op (D ? E : F) -> D ? (X op E) : (X op F) 896 Cond = D; 897 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q); 898 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q); 899 } 900 901 if (!True || !False) 902 return nullptr; 903 904 Value *SI = Builder.CreateSelect(Cond, True, False); 905 SI->takeName(&I); 906 return SI; 907 } 908 909 /// Freely adapt every user of V as-if V was changed to !V. 910 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 911 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) { 912 for (User *U : I->users()) { 913 switch (cast<Instruction>(U)->getOpcode()) { 914 case Instruction::Select: { 915 auto *SI = cast<SelectInst>(U); 916 SI->swapValues(); 917 SI->swapProfMetadata(); 918 break; 919 } 920 case Instruction::Br: 921 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 922 break; 923 case Instruction::Xor: 924 replaceInstUsesWith(cast<Instruction>(*U), I); 925 break; 926 default: 927 llvm_unreachable("Got unexpected user - out of sync with " 928 "canFreelyInvertAllUsersOf() ?"); 929 } 930 } 931 } 932 933 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 934 /// constant zero (which is the 'negate' form). 935 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 936 Value *NegV; 937 if (match(V, m_Neg(m_Value(NegV)))) 938 return NegV; 939 940 // Constants can be considered to be negated values if they can be folded. 941 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 942 return ConstantExpr::getNeg(C); 943 944 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 945 if (C->getType()->getElementType()->isIntegerTy()) 946 return ConstantExpr::getNeg(C); 947 948 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 949 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 950 Constant *Elt = CV->getAggregateElement(i); 951 if (!Elt) 952 return nullptr; 953 954 if (isa<UndefValue>(Elt)) 955 continue; 956 957 if (!isa<ConstantInt>(Elt)) 958 return nullptr; 959 } 960 return ConstantExpr::getNeg(CV); 961 } 962 963 // Negate integer vector splats. 964 if (auto *CV = dyn_cast<Constant>(V)) 965 if (CV->getType()->isVectorTy() && 966 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 967 return ConstantExpr::getNeg(CV); 968 969 return nullptr; 970 } 971 972 /// A binop with a constant operand and a sign-extended boolean operand may be 973 /// converted into a select of constants by applying the binary operation to 974 /// the constant with the two possible values of the extended boolean (0 or -1). 975 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) { 976 // TODO: Handle non-commutative binop (constant is operand 0). 977 // TODO: Handle zext. 978 // TODO: Peek through 'not' of cast. 979 Value *BO0 = BO.getOperand(0); 980 Value *BO1 = BO.getOperand(1); 981 Value *X; 982 Constant *C; 983 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) || 984 !X->getType()->isIntOrIntVectorTy(1)) 985 return nullptr; 986 987 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C) 988 Constant *Ones = ConstantInt::getAllOnesValue(BO.getType()); 989 Constant *Zero = ConstantInt::getNullValue(BO.getType()); 990 Constant *TVal = ConstantExpr::get(BO.getOpcode(), Ones, C); 991 Constant *FVal = ConstantExpr::get(BO.getOpcode(), Zero, C); 992 return SelectInst::Create(X, TVal, FVal); 993 } 994 995 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 996 InstCombiner::BuilderTy &Builder) { 997 if (auto *Cast = dyn_cast<CastInst>(&I)) 998 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 999 1000 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1001 assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) && 1002 "Expected constant-foldable intrinsic"); 1003 Intrinsic::ID IID = II->getIntrinsicID(); 1004 if (II->arg_size() == 1) 1005 return Builder.CreateUnaryIntrinsic(IID, SO); 1006 1007 // This works for real binary ops like min/max (where we always expect the 1008 // constant operand to be canonicalized as op1) and unary ops with a bonus 1009 // constant argument like ctlz/cttz. 1010 // TODO: Handle non-commutative binary intrinsics as below for binops. 1011 assert(II->arg_size() == 2 && "Expected binary intrinsic"); 1012 assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand"); 1013 return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1)); 1014 } 1015 1016 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 1017 1018 // Figure out if the constant is the left or the right argument. 1019 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 1020 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 1021 1022 if (auto *SOC = dyn_cast<Constant>(SO)) { 1023 if (ConstIsRHS) 1024 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 1025 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 1026 } 1027 1028 Value *Op0 = SO, *Op1 = ConstOperand; 1029 if (!ConstIsRHS) 1030 std::swap(Op0, Op1); 1031 1032 Value *NewBO = Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), Op0, 1033 Op1, SO->getName() + ".op"); 1034 if (auto *NewBOI = dyn_cast<Instruction>(NewBO)) 1035 NewBOI->copyIRFlags(&I); 1036 return NewBO; 1037 } 1038 1039 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, 1040 SelectInst *SI) { 1041 // Don't modify shared select instructions. 1042 if (!SI->hasOneUse()) 1043 return nullptr; 1044 1045 Value *TV = SI->getTrueValue(); 1046 Value *FV = SI->getFalseValue(); 1047 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 1048 return nullptr; 1049 1050 // Bool selects with constant operands can be folded to logical ops. 1051 if (SI->getType()->isIntOrIntVectorTy(1)) 1052 return nullptr; 1053 1054 // If it's a bitcast involving vectors, make sure it has the same number of 1055 // elements on both sides. 1056 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 1057 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 1058 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 1059 1060 // Verify that either both or neither are vectors. 1061 if ((SrcTy == nullptr) != (DestTy == nullptr)) 1062 return nullptr; 1063 1064 // If vectors, verify that they have the same number of elements. 1065 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) 1066 return nullptr; 1067 } 1068 1069 // Test if a CmpInst instruction is used exclusively by a select as 1070 // part of a minimum or maximum operation. If so, refrain from doing 1071 // any other folding. This helps out other analyses which understand 1072 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 1073 // and CodeGen. And in this case, at least one of the comparison 1074 // operands has at least one user besides the compare (the select), 1075 // which would often largely negate the benefit of folding anyway. 1076 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 1077 if (CI->hasOneUse()) { 1078 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 1079 1080 // FIXME: This is a hack to avoid infinite looping with min/max patterns. 1081 // We have to ensure that vector constants that only differ with 1082 // undef elements are treated as equivalent. 1083 auto areLooselyEqual = [](Value *A, Value *B) { 1084 if (A == B) 1085 return true; 1086 1087 // Test for vector constants. 1088 Constant *ConstA, *ConstB; 1089 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB))) 1090 return false; 1091 1092 // TODO: Deal with FP constants? 1093 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType()) 1094 return false; 1095 1096 // Compare for equality including undefs as equal. 1097 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB); 1098 const APInt *C; 1099 return match(Cmp, m_APIntAllowUndef(C)) && C->isOne(); 1100 }; 1101 1102 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) || 1103 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1))) 1104 return nullptr; 1105 } 1106 } 1107 1108 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 1109 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 1110 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 1111 } 1112 1113 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 1114 InstCombiner::BuilderTy &Builder) { 1115 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 1116 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 1117 1118 if (auto *InC = dyn_cast<Constant>(InV)) { 1119 if (ConstIsRHS) 1120 return ConstantExpr::get(I->getOpcode(), InC, C); 1121 return ConstantExpr::get(I->getOpcode(), C, InC); 1122 } 1123 1124 Value *Op0 = InV, *Op1 = C; 1125 if (!ConstIsRHS) 1126 std::swap(Op0, Op1); 1127 1128 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo"); 1129 auto *FPInst = dyn_cast<Instruction>(RI); 1130 if (FPInst && isa<FPMathOperator>(FPInst)) 1131 FPInst->copyFastMathFlags(I); 1132 return RI; 1133 } 1134 1135 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { 1136 unsigned NumPHIValues = PN->getNumIncomingValues(); 1137 if (NumPHIValues == 0) 1138 return nullptr; 1139 1140 // We normally only transform phis with a single use. However, if a PHI has 1141 // multiple uses and they are all the same operation, we can fold *all* of the 1142 // uses into the PHI. 1143 if (!PN->hasOneUse()) { 1144 // Walk the use list for the instruction, comparing them to I. 1145 for (User *U : PN->users()) { 1146 Instruction *UI = cast<Instruction>(U); 1147 if (UI != &I && !I.isIdenticalTo(UI)) 1148 return nullptr; 1149 } 1150 // Otherwise, we can replace *all* users with the new PHI we form. 1151 } 1152 1153 // Check to see if all of the operands of the PHI are simple constants 1154 // (constantint/constantfp/undef). If there is one non-constant value, 1155 // remember the BB it is in. If there is more than one or if *it* is a PHI, 1156 // bail out. We don't do arbitrary constant expressions here because moving 1157 // their computation can be expensive without a cost model. 1158 BasicBlock *NonConstBB = nullptr; 1159 for (unsigned i = 0; i != NumPHIValues; ++i) { 1160 Value *InVal = PN->getIncomingValue(i); 1161 // For non-freeze, require constant operand 1162 // For freeze, require non-undef, non-poison operand 1163 if (!isa<FreezeInst>(I) && match(InVal, m_ImmConstant())) 1164 continue; 1165 if (isa<FreezeInst>(I) && isGuaranteedNotToBeUndefOrPoison(InVal)) 1166 continue; 1167 1168 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 1169 if (NonConstBB) return nullptr; // More than one non-const value. 1170 1171 NonConstBB = PN->getIncomingBlock(i); 1172 1173 // If the InVal is an invoke at the end of the pred block, then we can't 1174 // insert a computation after it without breaking the edge. 1175 if (isa<InvokeInst>(InVal)) 1176 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 1177 return nullptr; 1178 1179 // If the incoming non-constant value is in I's block, we will remove one 1180 // instruction, but insert another equivalent one, leading to infinite 1181 // instcombine. 1182 if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI)) 1183 return nullptr; 1184 } 1185 1186 // If there is exactly one non-constant value, we can insert a copy of the 1187 // operation in that block. However, if this is a critical edge, we would be 1188 // inserting the computation on some other paths (e.g. inside a loop). Only 1189 // do this if the pred block is unconditionally branching into the phi block. 1190 // Also, make sure that the pred block is not dead code. 1191 if (NonConstBB != nullptr) { 1192 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1193 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB)) 1194 return nullptr; 1195 } 1196 1197 // Okay, we can do the transformation: create the new PHI node. 1198 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1199 InsertNewInstBefore(NewPN, *PN); 1200 NewPN->takeName(PN); 1201 1202 // If we are going to have to insert a new computation, do so right before the 1203 // predecessor's terminator. 1204 if (NonConstBB) 1205 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1206 1207 // Next, add all of the operands to the PHI. 1208 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1209 // We only currently try to fold the condition of a select when it is a phi, 1210 // not the true/false values. 1211 Value *TrueV = SI->getTrueValue(); 1212 Value *FalseV = SI->getFalseValue(); 1213 BasicBlock *PhiTransBB = PN->getParent(); 1214 for (unsigned i = 0; i != NumPHIValues; ++i) { 1215 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1216 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1217 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1218 Value *InV = nullptr; 1219 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1220 // even if currently isNullValue gives false. 1221 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1222 // For vector constants, we cannot use isNullValue to fold into 1223 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1224 // elements in the vector, we will incorrectly fold InC to 1225 // `TrueVInPred`. 1226 if (InC && isa<ConstantInt>(InC)) 1227 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1228 else { 1229 // Generate the select in the same block as PN's current incoming block. 1230 // Note: ThisBB need not be the NonConstBB because vector constants 1231 // which are constants by definition are handled here. 1232 // FIXME: This can lead to an increase in IR generation because we might 1233 // generate selects for vector constant phi operand, that could not be 1234 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1235 // non-vector phis, this transformation was always profitable because 1236 // the select would be generated exactly once in the NonConstBB. 1237 Builder.SetInsertPoint(ThisBB->getTerminator()); 1238 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1239 FalseVInPred, "phi.sel"); 1240 } 1241 NewPN->addIncoming(InV, ThisBB); 1242 } 1243 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1244 Constant *C = cast<Constant>(I.getOperand(1)); 1245 for (unsigned i = 0; i != NumPHIValues; ++i) { 1246 Value *InV = nullptr; 1247 if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1248 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1249 else 1250 InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i), 1251 C, "phi.cmp"); 1252 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1253 } 1254 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1255 for (unsigned i = 0; i != NumPHIValues; ++i) { 1256 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1257 Builder); 1258 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1259 } 1260 } else if (isa<FreezeInst>(&I)) { 1261 for (unsigned i = 0; i != NumPHIValues; ++i) { 1262 Value *InV; 1263 if (NonConstBB == PN->getIncomingBlock(i)) 1264 InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr"); 1265 else 1266 InV = PN->getIncomingValue(i); 1267 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1268 } 1269 } else { 1270 CastInst *CI = cast<CastInst>(&I); 1271 Type *RetTy = CI->getType(); 1272 for (unsigned i = 0; i != NumPHIValues; ++i) { 1273 Value *InV; 1274 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1275 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1276 else 1277 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1278 I.getType(), "phi.cast"); 1279 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1280 } 1281 } 1282 1283 for (User *U : make_early_inc_range(PN->users())) { 1284 Instruction *User = cast<Instruction>(U); 1285 if (User == &I) continue; 1286 replaceInstUsesWith(*User, NewPN); 1287 eraseInstFromFunction(*User); 1288 } 1289 return replaceInstUsesWith(I, NewPN); 1290 } 1291 1292 Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) { 1293 // TODO: This should be similar to the incoming values check in foldOpIntoPhi: 1294 // we are guarding against replicating the binop in >1 predecessor. 1295 // This could miss matching a phi with 2 constant incoming values. 1296 auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0)); 1297 auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1)); 1298 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() || 1299 Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2) 1300 return nullptr; 1301 1302 // TODO: Remove the restriction for binop being in the same block as the phis. 1303 if (BO.getParent() != Phi0->getParent() || 1304 BO.getParent() != Phi1->getParent()) 1305 return nullptr; 1306 1307 // Match a pair of incoming constants for one of the predecessor blocks. 1308 BasicBlock *ConstBB, *OtherBB; 1309 Constant *C0, *C1; 1310 if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) { 1311 ConstBB = Phi0->getIncomingBlock(0); 1312 OtherBB = Phi0->getIncomingBlock(1); 1313 } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) { 1314 ConstBB = Phi0->getIncomingBlock(1); 1315 OtherBB = Phi0->getIncomingBlock(0); 1316 } else { 1317 return nullptr; 1318 } 1319 if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1))) 1320 return nullptr; 1321 1322 // The block that we are hoisting to must reach here unconditionally. 1323 // Otherwise, we could be speculatively executing an expensive or 1324 // non-speculative op. 1325 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator()); 1326 if (!PredBlockBranch || PredBlockBranch->isConditional() || 1327 !DT.isReachableFromEntry(OtherBB)) 1328 return nullptr; 1329 1330 // TODO: This check could be tightened to only apply to binops (div/rem) that 1331 // are not safe to speculatively execute. But that could allow hoisting 1332 // potentially expensive instructions (fdiv for example). 1333 for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter) 1334 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter)) 1335 return nullptr; 1336 1337 // Make a new binop in the predecessor block with the non-constant incoming 1338 // values. 1339 Builder.SetInsertPoint(PredBlockBranch); 1340 Value *NewBO = Builder.CreateBinOp(BO.getOpcode(), 1341 Phi0->getIncomingValueForBlock(OtherBB), 1342 Phi1->getIncomingValueForBlock(OtherBB)); 1343 if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO)) 1344 NotFoldedNewBO->copyIRFlags(&BO); 1345 1346 // Fold constants for the predecessor block with constant incoming values. 1347 Constant *NewC = ConstantExpr::get(BO.getOpcode(), C0, C1); 1348 1349 // Replace the binop with a phi of the new values. The old phis are dead. 1350 PHINode *NewPhi = PHINode::Create(BO.getType(), 2); 1351 NewPhi->addIncoming(NewBO, OtherBB); 1352 NewPhi->addIncoming(NewC, ConstBB); 1353 return NewPhi; 1354 } 1355 1356 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1357 if (!isa<Constant>(I.getOperand(1))) 1358 return nullptr; 1359 1360 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1361 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1362 return NewSel; 1363 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1364 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1365 return NewPhi; 1366 } 1367 return nullptr; 1368 } 1369 1370 /// Given a pointer type and a constant offset, determine whether or not there 1371 /// is a sequence of GEP indices into the pointed type that will land us at the 1372 /// specified offset. If so, fill them into NewIndices and return the resultant 1373 /// element type, otherwise return null. 1374 static Type *findElementAtOffset(PointerType *PtrTy, int64_t IntOffset, 1375 SmallVectorImpl<Value *> &NewIndices, 1376 const DataLayout &DL) { 1377 // Only used by visitGEPOfBitcast(), which is skipped for opaque pointers. 1378 Type *Ty = PtrTy->getNonOpaquePointerElementType(); 1379 if (!Ty->isSized()) 1380 return nullptr; 1381 1382 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset); 1383 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset); 1384 if (!Offset.isZero()) 1385 return nullptr; 1386 1387 for (const APInt &Index : Indices) 1388 NewIndices.push_back(ConstantInt::get(PtrTy->getContext(), Index)); 1389 return Ty; 1390 } 1391 1392 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1393 // If this GEP has only 0 indices, it is the same pointer as 1394 // Src. If Src is not a trivial GEP too, don't combine 1395 // the indices. 1396 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1397 !Src.hasOneUse()) 1398 return false; 1399 return true; 1400 } 1401 1402 /// Return a value X such that Val = X * Scale, or null if none. 1403 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1404 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1405 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1406 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1407 Scale.getBitWidth() && "Scale not compatible with value!"); 1408 1409 // If Val is zero or Scale is one then Val = Val * Scale. 1410 if (match(Val, m_Zero()) || Scale == 1) { 1411 NoSignedWrap = true; 1412 return Val; 1413 } 1414 1415 // If Scale is zero then it does not divide Val. 1416 if (Scale.isMinValue()) 1417 return nullptr; 1418 1419 // Look through chains of multiplications, searching for a constant that is 1420 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1421 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1422 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1423 // down from Val: 1424 // 1425 // Val = M1 * X || Analysis starts here and works down 1426 // M1 = M2 * Y || Doesn't descend into terms with more 1427 // M2 = Z * 4 \/ than one use 1428 // 1429 // Then to modify a term at the bottom: 1430 // 1431 // Val = M1 * X 1432 // M1 = Z * Y || Replaced M2 with Z 1433 // 1434 // Then to work back up correcting nsw flags. 1435 1436 // Op - the term we are currently analyzing. Starts at Val then drills down. 1437 // Replaced with its descaled value before exiting from the drill down loop. 1438 Value *Op = Val; 1439 1440 // Parent - initially null, but after drilling down notes where Op came from. 1441 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1442 // 0'th operand of Val. 1443 std::pair<Instruction *, unsigned> Parent; 1444 1445 // Set if the transform requires a descaling at deeper levels that doesn't 1446 // overflow. 1447 bool RequireNoSignedWrap = false; 1448 1449 // Log base 2 of the scale. Negative if not a power of 2. 1450 int32_t logScale = Scale.exactLogBase2(); 1451 1452 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1453 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1454 // If Op is a constant divisible by Scale then descale to the quotient. 1455 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1456 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1457 if (!Remainder.isMinValue()) 1458 // Not divisible by Scale. 1459 return nullptr; 1460 // Replace with the quotient in the parent. 1461 Op = ConstantInt::get(CI->getType(), Quotient); 1462 NoSignedWrap = true; 1463 break; 1464 } 1465 1466 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1467 if (BO->getOpcode() == Instruction::Mul) { 1468 // Multiplication. 1469 NoSignedWrap = BO->hasNoSignedWrap(); 1470 if (RequireNoSignedWrap && !NoSignedWrap) 1471 return nullptr; 1472 1473 // There are three cases for multiplication: multiplication by exactly 1474 // the scale, multiplication by a constant different to the scale, and 1475 // multiplication by something else. 1476 Value *LHS = BO->getOperand(0); 1477 Value *RHS = BO->getOperand(1); 1478 1479 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1480 // Multiplication by a constant. 1481 if (CI->getValue() == Scale) { 1482 // Multiplication by exactly the scale, replace the multiplication 1483 // by its left-hand side in the parent. 1484 Op = LHS; 1485 break; 1486 } 1487 1488 // Otherwise drill down into the constant. 1489 if (!Op->hasOneUse()) 1490 return nullptr; 1491 1492 Parent = std::make_pair(BO, 1); 1493 continue; 1494 } 1495 1496 // Multiplication by something else. Drill down into the left-hand side 1497 // since that's where the reassociate pass puts the good stuff. 1498 if (!Op->hasOneUse()) 1499 return nullptr; 1500 1501 Parent = std::make_pair(BO, 0); 1502 continue; 1503 } 1504 1505 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1506 isa<ConstantInt>(BO->getOperand(1))) { 1507 // Multiplication by a power of 2. 1508 NoSignedWrap = BO->hasNoSignedWrap(); 1509 if (RequireNoSignedWrap && !NoSignedWrap) 1510 return nullptr; 1511 1512 Value *LHS = BO->getOperand(0); 1513 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1514 getLimitedValue(Scale.getBitWidth()); 1515 // Op = LHS << Amt. 1516 1517 if (Amt == logScale) { 1518 // Multiplication by exactly the scale, replace the multiplication 1519 // by its left-hand side in the parent. 1520 Op = LHS; 1521 break; 1522 } 1523 if (Amt < logScale || !Op->hasOneUse()) 1524 return nullptr; 1525 1526 // Multiplication by more than the scale. Reduce the multiplying amount 1527 // by the scale in the parent. 1528 Parent = std::make_pair(BO, 1); 1529 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1530 break; 1531 } 1532 } 1533 1534 if (!Op->hasOneUse()) 1535 return nullptr; 1536 1537 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1538 if (Cast->getOpcode() == Instruction::SExt) { 1539 // Op is sign-extended from a smaller type, descale in the smaller type. 1540 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1541 APInt SmallScale = Scale.trunc(SmallSize); 1542 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1543 // descale Op as (sext Y) * Scale. In order to have 1544 // sext (Y * SmallScale) = (sext Y) * Scale 1545 // some conditions need to hold however: SmallScale must sign-extend to 1546 // Scale and the multiplication Y * SmallScale should not overflow. 1547 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1548 // SmallScale does not sign-extend to Scale. 1549 return nullptr; 1550 assert(SmallScale.exactLogBase2() == logScale); 1551 // Require that Y * SmallScale must not overflow. 1552 RequireNoSignedWrap = true; 1553 1554 // Drill down through the cast. 1555 Parent = std::make_pair(Cast, 0); 1556 Scale = SmallScale; 1557 continue; 1558 } 1559 1560 if (Cast->getOpcode() == Instruction::Trunc) { 1561 // Op is truncated from a larger type, descale in the larger type. 1562 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1563 // trunc (Y * sext Scale) = (trunc Y) * Scale 1564 // always holds. However (trunc Y) * Scale may overflow even if 1565 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1566 // from this point up in the expression (see later). 1567 if (RequireNoSignedWrap) 1568 return nullptr; 1569 1570 // Drill down through the cast. 1571 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1572 Parent = std::make_pair(Cast, 0); 1573 Scale = Scale.sext(LargeSize); 1574 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1575 logScale = -1; 1576 assert(Scale.exactLogBase2() == logScale); 1577 continue; 1578 } 1579 } 1580 1581 // Unsupported expression, bail out. 1582 return nullptr; 1583 } 1584 1585 // If Op is zero then Val = Op * Scale. 1586 if (match(Op, m_Zero())) { 1587 NoSignedWrap = true; 1588 return Op; 1589 } 1590 1591 // We know that we can successfully descale, so from here on we can safely 1592 // modify the IR. Op holds the descaled version of the deepest term in the 1593 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1594 // not to overflow. 1595 1596 if (!Parent.first) 1597 // The expression only had one term. 1598 return Op; 1599 1600 // Rewrite the parent using the descaled version of its operand. 1601 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1602 assert(Op != Parent.first->getOperand(Parent.second) && 1603 "Descaling was a no-op?"); 1604 replaceOperand(*Parent.first, Parent.second, Op); 1605 Worklist.push(Parent.first); 1606 1607 // Now work back up the expression correcting nsw flags. The logic is based 1608 // on the following observation: if X * Y is known not to overflow as a signed 1609 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1610 // then X * Z will not overflow as a signed multiplication either. As we work 1611 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1612 // current level has strictly smaller absolute value than the original. 1613 Instruction *Ancestor = Parent.first; 1614 do { 1615 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1616 // If the multiplication wasn't nsw then we can't say anything about the 1617 // value of the descaled multiplication, and we have to clear nsw flags 1618 // from this point on up. 1619 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1620 NoSignedWrap &= OpNoSignedWrap; 1621 if (NoSignedWrap != OpNoSignedWrap) { 1622 BO->setHasNoSignedWrap(NoSignedWrap); 1623 Worklist.push(Ancestor); 1624 } 1625 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1626 // The fact that the descaled input to the trunc has smaller absolute 1627 // value than the original input doesn't tell us anything useful about 1628 // the absolute values of the truncations. 1629 NoSignedWrap = false; 1630 } 1631 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1632 "Failed to keep proper track of nsw flags while drilling down?"); 1633 1634 if (Ancestor == Val) 1635 // Got to the top, all done! 1636 return Val; 1637 1638 // Move up one level in the expression. 1639 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1640 Ancestor = Ancestor->user_back(); 1641 } while (true); 1642 } 1643 1644 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 1645 if (!isa<VectorType>(Inst.getType())) 1646 return nullptr; 1647 1648 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1649 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1650 assert(cast<VectorType>(LHS->getType())->getElementCount() == 1651 cast<VectorType>(Inst.getType())->getElementCount()); 1652 assert(cast<VectorType>(RHS->getType())->getElementCount() == 1653 cast<VectorType>(Inst.getType())->getElementCount()); 1654 1655 // If both operands of the binop are vector concatenations, then perform the 1656 // narrow binop on each pair of the source operands followed by concatenation 1657 // of the results. 1658 Value *L0, *L1, *R0, *R1; 1659 ArrayRef<int> Mask; 1660 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 1661 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 1662 LHS->hasOneUse() && RHS->hasOneUse() && 1663 cast<ShuffleVectorInst>(LHS)->isConcat() && 1664 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1665 // This transform does not have the speculative execution constraint as 1666 // below because the shuffle is a concatenation. The new binops are 1667 // operating on exactly the same elements as the existing binop. 1668 // TODO: We could ease the mask requirement to allow different undef lanes, 1669 // but that requires an analysis of the binop-with-undef output value. 1670 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1671 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1672 BO->copyIRFlags(&Inst); 1673 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1674 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1675 BO->copyIRFlags(&Inst); 1676 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1677 } 1678 1679 // It may not be safe to reorder shuffles and things like div, urem, etc. 1680 // because we may trap when executing those ops on unknown vector elements. 1681 // See PR20059. 1682 if (!isSafeToSpeculativelyExecute(&Inst)) 1683 return nullptr; 1684 1685 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 1686 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1687 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1688 BO->copyIRFlags(&Inst); 1689 return new ShuffleVectorInst(XY, M); 1690 }; 1691 1692 // If both arguments of the binary operation are shuffles that use the same 1693 // mask and shuffle within a single vector, move the shuffle after the binop. 1694 Value *V1, *V2; 1695 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) && 1696 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) && 1697 V1->getType() == V2->getType() && 1698 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1699 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1700 return createBinOpShuffle(V1, V2, Mask); 1701 } 1702 1703 // If both arguments of a commutative binop are select-shuffles that use the 1704 // same mask with commuted operands, the shuffles are unnecessary. 1705 if (Inst.isCommutative() && 1706 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 1707 match(RHS, 1708 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 1709 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1710 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1711 // TODO: Allow shuffles that contain undefs in the mask? 1712 // That is legal, but it reduces undef knowledge. 1713 // TODO: Allow arbitrary shuffles by shuffling after binop? 1714 // That might be legal, but we have to deal with poison. 1715 if (LShuf->isSelect() && 1716 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) && 1717 RShuf->isSelect() && 1718 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) { 1719 // Example: 1720 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1721 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1722 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1723 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1724 NewBO->copyIRFlags(&Inst); 1725 return NewBO; 1726 } 1727 } 1728 1729 // If one argument is a shuffle within one vector and the other is a constant, 1730 // try moving the shuffle after the binary operation. This canonicalization 1731 // intends to move shuffles closer to other shuffles and binops closer to 1732 // other binops, so they can be folded. It may also enable demanded elements 1733 // transforms. 1734 Constant *C; 1735 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 1736 if (InstVTy && 1737 match(&Inst, 1738 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))), 1739 m_ImmConstant(C))) && 1740 cast<FixedVectorType>(V1->getType())->getNumElements() <= 1741 InstVTy->getNumElements()) { 1742 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 1743 "Shuffle should not change scalar type"); 1744 1745 // Find constant NewC that has property: 1746 // shuffle(NewC, ShMask) = C 1747 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1748 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1749 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1750 bool ConstOp1 = isa<Constant>(RHS); 1751 ArrayRef<int> ShMask = Mask; 1752 unsigned SrcVecNumElts = 1753 cast<FixedVectorType>(V1->getType())->getNumElements(); 1754 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1755 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1756 bool MayChange = true; 1757 unsigned NumElts = InstVTy->getNumElements(); 1758 for (unsigned I = 0; I < NumElts; ++I) { 1759 Constant *CElt = C->getAggregateElement(I); 1760 if (ShMask[I] >= 0) { 1761 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1762 Constant *NewCElt = NewVecC[ShMask[I]]; 1763 // Bail out if: 1764 // 1. The constant vector contains a constant expression. 1765 // 2. The shuffle needs an element of the constant vector that can't 1766 // be mapped to a new constant vector. 1767 // 3. This is a widening shuffle that copies elements of V1 into the 1768 // extended elements (extending with undef is allowed). 1769 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1770 I >= SrcVecNumElts) { 1771 MayChange = false; 1772 break; 1773 } 1774 NewVecC[ShMask[I]] = CElt; 1775 } 1776 // If this is a widening shuffle, we must be able to extend with undef 1777 // elements. If the original binop does not produce an undef in the high 1778 // lanes, then this transform is not safe. 1779 // Similarly for undef lanes due to the shuffle mask, we can only 1780 // transform binops that preserve undef. 1781 // TODO: We could shuffle those non-undef constant values into the 1782 // result by using a constant vector (rather than an undef vector) 1783 // as operand 1 of the new binop, but that might be too aggressive 1784 // for target-independent shuffle creation. 1785 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1786 Constant *MaybeUndef = 1787 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1788 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1789 if (!match(MaybeUndef, m_Undef())) { 1790 MayChange = false; 1791 break; 1792 } 1793 } 1794 } 1795 if (MayChange) { 1796 Constant *NewC = ConstantVector::get(NewVecC); 1797 // It may not be safe to execute a binop on a vector with undef elements 1798 // because the entire instruction can be folded to undef or create poison 1799 // that did not exist in the original code. 1800 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1801 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1802 1803 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1804 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1805 Value *NewLHS = ConstOp1 ? V1 : NewC; 1806 Value *NewRHS = ConstOp1 ? NewC : V1; 1807 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1808 } 1809 } 1810 1811 // Try to reassociate to sink a splat shuffle after a binary operation. 1812 if (Inst.isAssociative() && Inst.isCommutative()) { 1813 // Canonicalize shuffle operand as LHS. 1814 if (isa<ShuffleVectorInst>(RHS)) 1815 std::swap(LHS, RHS); 1816 1817 Value *X; 1818 ArrayRef<int> MaskC; 1819 int SplatIndex; 1820 Value *Y, *OtherOp; 1821 if (!match(LHS, 1822 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 1823 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || 1824 X->getType() != Inst.getType() || 1825 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp))))) 1826 return nullptr; 1827 1828 // FIXME: This may not be safe if the analysis allows undef elements. By 1829 // moving 'Y' before the splat shuffle, we are implicitly assuming 1830 // that it is not undef/poison at the splat index. 1831 if (isSplatValue(OtherOp, SplatIndex)) { 1832 std::swap(Y, OtherOp); 1833 } else if (!isSplatValue(Y, SplatIndex)) { 1834 return nullptr; 1835 } 1836 1837 // X and Y are splatted values, so perform the binary operation on those 1838 // values followed by a splat followed by the 2nd binary operation: 1839 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 1840 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 1841 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 1842 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 1843 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 1844 1845 // Intersect FMF on both new binops. Other (poison-generating) flags are 1846 // dropped to be safe. 1847 if (isa<FPMathOperator>(R)) { 1848 R->copyFastMathFlags(&Inst); 1849 R->andIRFlags(RHS); 1850 } 1851 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 1852 NewInstBO->copyIRFlags(R); 1853 return R; 1854 } 1855 1856 return nullptr; 1857 } 1858 1859 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1860 /// of a value. This requires a potentially expensive known bits check to make 1861 /// sure the narrow op does not overflow. 1862 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 1863 // We need at least one extended operand. 1864 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1865 1866 // If this is a sub, we swap the operands since we always want an extension 1867 // on the RHS. The LHS can be an extension or a constant. 1868 if (BO.getOpcode() == Instruction::Sub) 1869 std::swap(Op0, Op1); 1870 1871 Value *X; 1872 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1873 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1874 return nullptr; 1875 1876 // If both operands are the same extension from the same source type and we 1877 // can eliminate at least one (hasOneUse), this might work. 1878 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1879 Value *Y; 1880 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1881 cast<Operator>(Op1)->getOpcode() == CastOpc && 1882 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1883 // If that did not match, see if we have a suitable constant operand. 1884 // Truncating and extending must produce the same constant. 1885 Constant *WideC; 1886 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1887 return nullptr; 1888 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1889 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1890 return nullptr; 1891 Y = NarrowC; 1892 } 1893 1894 // Swap back now that we found our operands. 1895 if (BO.getOpcode() == Instruction::Sub) 1896 std::swap(X, Y); 1897 1898 // Both operands have narrow versions. Last step: the math must not overflow 1899 // in the narrow width. 1900 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1901 return nullptr; 1902 1903 // bo (ext X), (ext Y) --> ext (bo X, Y) 1904 // bo (ext X), C --> ext (bo X, C') 1905 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1906 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1907 if (IsSext) 1908 NewBinOp->setHasNoSignedWrap(); 1909 else 1910 NewBinOp->setHasNoUnsignedWrap(); 1911 } 1912 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1913 } 1914 1915 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 1916 // At least one GEP must be inbounds. 1917 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 1918 return false; 1919 1920 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 1921 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 1922 } 1923 1924 /// Thread a GEP operation with constant indices through the constant true/false 1925 /// arms of a select. 1926 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 1927 InstCombiner::BuilderTy &Builder) { 1928 if (!GEP.hasAllConstantIndices()) 1929 return nullptr; 1930 1931 Instruction *Sel; 1932 Value *Cond; 1933 Constant *TrueC, *FalseC; 1934 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 1935 !match(Sel, 1936 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 1937 return nullptr; 1938 1939 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 1940 // Propagate 'inbounds' and metadata from existing instructions. 1941 // Note: using IRBuilder to create the constants for efficiency. 1942 SmallVector<Value *, 4> IndexC(GEP.indices()); 1943 bool IsInBounds = GEP.isInBounds(); 1944 Type *Ty = GEP.getSourceElementType(); 1945 Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC) 1946 : Builder.CreateGEP(Ty, TrueC, IndexC); 1947 Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC) 1948 : Builder.CreateGEP(Ty, FalseC, IndexC); 1949 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 1950 } 1951 1952 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP, 1953 GEPOperator *Src) { 1954 // Combine Indices - If the source pointer to this getelementptr instruction 1955 // is a getelementptr instruction with matching element type, combine the 1956 // indices of the two getelementptr instructions into a single instruction. 1957 if (Src->getResultElementType() != GEP.getSourceElementType()) 1958 return nullptr; 1959 1960 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1961 return nullptr; 1962 1963 if (Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1964 Src->hasOneUse()) { 1965 Value *GO1 = GEP.getOperand(1); 1966 Value *SO1 = Src->getOperand(1); 1967 1968 if (LI) { 1969 // Try to reassociate loop invariant GEP chains to enable LICM. 1970 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1971 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1972 // invariant: this breaks the dependence between GEPs and allows LICM 1973 // to hoist the invariant part out of the loop. 1974 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1975 // We have to be careful here. 1976 // We have something like: 1977 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 1978 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 1979 // If we just swap idx & idx2 then we could inadvertantly 1980 // change %src from a vector to a scalar, or vice versa. 1981 // Cases: 1982 // 1) %base a scalar & idx a scalar & idx2 a vector 1983 // => Swapping idx & idx2 turns %src into a vector type. 1984 // 2) %base a scalar & idx a vector & idx2 a scalar 1985 // => Swapping idx & idx2 turns %src in a scalar type 1986 // 3) %base, %idx, and %idx2 are scalars 1987 // => %src & %gep are scalars 1988 // => swapping idx & idx2 is safe 1989 // 4) %base a vector 1990 // => %src is a vector 1991 // => swapping idx & idx2 is safe. 1992 auto *SO0 = Src->getOperand(0); 1993 auto *SO0Ty = SO0->getType(); 1994 if (!isa<VectorType>(GEP.getType()) || // case 3 1995 isa<VectorType>(SO0Ty)) { // case 4 1996 Src->setOperand(1, GO1); 1997 GEP.setOperand(1, SO1); 1998 return &GEP; 1999 } else { 2000 // Case 1 or 2 2001 // -- have to recreate %src & %gep 2002 // put NewSrc at same location as %src 2003 Builder.SetInsertPoint(cast<Instruction>(Src)); 2004 Value *NewSrc = Builder.CreateGEP( 2005 GEP.getSourceElementType(), SO0, GO1, Src->getName()); 2006 // Propagate 'inbounds' if the new source was not constant-folded. 2007 if (auto *NewSrcGEPI = dyn_cast<GetElementPtrInst>(NewSrc)) 2008 NewSrcGEPI->setIsInBounds(Src->isInBounds()); 2009 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 2010 GEP.getSourceElementType(), NewSrc, {SO1}); 2011 NewGEP->setIsInBounds(GEP.isInBounds()); 2012 return NewGEP; 2013 } 2014 } 2015 } 2016 } 2017 } 2018 2019 // Note that if our source is a gep chain itself then we wait for that 2020 // chain to be resolved before we perform this transformation. This 2021 // avoids us creating a TON of code in some cases. 2022 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 2023 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 2024 return nullptr; // Wait until our source is folded to completion. 2025 2026 SmallVector<Value*, 8> Indices; 2027 2028 // Find out whether the last index in the source GEP is a sequential idx. 2029 bool EndsWithSequential = false; 2030 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 2031 I != E; ++I) 2032 EndsWithSequential = I.isSequential(); 2033 2034 // Can we combine the two pointer arithmetics offsets? 2035 if (EndsWithSequential) { 2036 // Replace: gep (gep %P, long B), long A, ... 2037 // With: T = long A+B; gep %P, T, ... 2038 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 2039 Value *GO1 = GEP.getOperand(1); 2040 2041 // If they aren't the same type, then the input hasn't been processed 2042 // by the loop above yet (which canonicalizes sequential index types to 2043 // intptr_t). Just avoid transforming this until the input has been 2044 // normalized. 2045 if (SO1->getType() != GO1->getType()) 2046 return nullptr; 2047 2048 Value *Sum = 2049 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 2050 // Only do the combine when we are sure the cost after the 2051 // merge is never more than that before the merge. 2052 if (Sum == nullptr) 2053 return nullptr; 2054 2055 // Update the GEP in place if possible. 2056 if (Src->getNumOperands() == 2) { 2057 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 2058 replaceOperand(GEP, 0, Src->getOperand(0)); 2059 replaceOperand(GEP, 1, Sum); 2060 return &GEP; 2061 } 2062 Indices.append(Src->op_begin()+1, Src->op_end()-1); 2063 Indices.push_back(Sum); 2064 Indices.append(GEP.op_begin()+2, GEP.op_end()); 2065 } else if (isa<Constant>(*GEP.idx_begin()) && 2066 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2067 Src->getNumOperands() != 1) { 2068 // Otherwise we can do the fold if the first index of the GEP is a zero 2069 Indices.append(Src->op_begin()+1, Src->op_end()); 2070 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2071 } 2072 2073 if (!Indices.empty()) 2074 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2075 ? GetElementPtrInst::CreateInBounds( 2076 Src->getSourceElementType(), Src->getOperand(0), Indices, 2077 GEP.getName()) 2078 : GetElementPtrInst::Create(Src->getSourceElementType(), 2079 Src->getOperand(0), Indices, 2080 GEP.getName()); 2081 2082 return nullptr; 2083 } 2084 2085 // Note that we may have also stripped an address space cast in between. 2086 Instruction *InstCombinerImpl::visitGEPOfBitcast(BitCastInst *BCI, 2087 GetElementPtrInst &GEP) { 2088 // With opaque pointers, there is no pointer element type we can use to 2089 // adjust the GEP type. 2090 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2091 if (SrcType->isOpaque()) 2092 return nullptr; 2093 2094 Type *GEPEltType = GEP.getSourceElementType(); 2095 Type *SrcEltType = SrcType->getNonOpaquePointerElementType(); 2096 Value *SrcOp = BCI->getOperand(0); 2097 2098 // GEP directly using the source operand if this GEP is accessing an element 2099 // of a bitcasted pointer to vector or array of the same dimensions: 2100 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2101 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2102 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, 2103 const DataLayout &DL) { 2104 auto *VecVTy = cast<FixedVectorType>(VecTy); 2105 return ArrTy->getArrayElementType() == VecVTy->getElementType() && 2106 ArrTy->getArrayNumElements() == VecVTy->getNumElements() && 2107 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); 2108 }; 2109 if (GEP.getNumOperands() == 3 && 2110 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) && 2111 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || 2112 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() && 2113 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { 2114 2115 // Create a new GEP here, as using `setOperand()` followed by 2116 // `setSourceElementType()` won't actually update the type of the 2117 // existing GEP Value. Causing issues if this Value is accessed when 2118 // constructing an AddrSpaceCastInst 2119 SmallVector<Value *, 8> Indices(GEP.indices()); 2120 Value *NGEP = GEP.isInBounds() 2121 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, Indices) 2122 : Builder.CreateGEP(SrcEltType, SrcOp, Indices); 2123 NGEP->takeName(&GEP); 2124 2125 // Preserve GEP address space to satisfy users 2126 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2127 return new AddrSpaceCastInst(NGEP, GEP.getType()); 2128 2129 return replaceInstUsesWith(GEP, NGEP); 2130 } 2131 2132 // See if we can simplify: 2133 // X = bitcast A* to B* 2134 // Y = gep X, <...constant indices...> 2135 // into a gep of the original struct. This is important for SROA and alias 2136 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2137 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEP.getType()); 2138 APInt Offset(OffsetBits, 0); 2139 2140 // If the bitcast argument is an allocation, The bitcast is for convertion 2141 // to actual type of allocation. Removing such bitcasts, results in having 2142 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of 2143 // struct or array hierarchy. 2144 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have 2145 // a better chance to succeed. 2146 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) && 2147 !isAllocationFn(SrcOp, &TLI)) { 2148 // If this GEP instruction doesn't move the pointer, just replace the GEP 2149 // with a bitcast of the real input to the dest type. 2150 if (!Offset) { 2151 // If the bitcast is of an allocation, and the allocation will be 2152 // converted to match the type of the cast, don't touch this. 2153 if (isa<AllocaInst>(SrcOp)) { 2154 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2155 if (Instruction *I = visitBitCast(*BCI)) { 2156 if (I != BCI) { 2157 I->takeName(BCI); 2158 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2159 replaceInstUsesWith(*BCI, I); 2160 } 2161 return &GEP; 2162 } 2163 } 2164 2165 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2166 return new AddrSpaceCastInst(SrcOp, GEP.getType()); 2167 return new BitCastInst(SrcOp, GEP.getType()); 2168 } 2169 2170 // Otherwise, if the offset is non-zero, we need to find out if there is a 2171 // field at Offset in 'A's type. If so, we can pull the cast through the 2172 // GEP. 2173 SmallVector<Value*, 8> NewIndices; 2174 if (findElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices, DL)) { 2175 Value *NGEP = 2176 GEP.isInBounds() 2177 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) 2178 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); 2179 2180 if (NGEP->getType() == GEP.getType()) 2181 return replaceInstUsesWith(GEP, NGEP); 2182 NGEP->takeName(&GEP); 2183 2184 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2185 return new AddrSpaceCastInst(NGEP, GEP.getType()); 2186 return new BitCastInst(NGEP, GEP.getType()); 2187 } 2188 } 2189 2190 return nullptr; 2191 } 2192 2193 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 2194 Value *PtrOp = GEP.getOperand(0); 2195 SmallVector<Value *, 8> Indices(GEP.indices()); 2196 Type *GEPType = GEP.getType(); 2197 Type *GEPEltType = GEP.getSourceElementType(); 2198 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType); 2199 if (Value *V = SimplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(), 2200 SQ.getWithInstruction(&GEP))) 2201 return replaceInstUsesWith(GEP, V); 2202 2203 // For vector geps, use the generic demanded vector support. 2204 // Skip if GEP return type is scalable. The number of elements is unknown at 2205 // compile-time. 2206 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 2207 auto VWidth = GEPFVTy->getNumElements(); 2208 APInt UndefElts(VWidth, 0); 2209 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2210 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 2211 UndefElts)) { 2212 if (V != &GEP) 2213 return replaceInstUsesWith(GEP, V); 2214 return &GEP; 2215 } 2216 2217 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 2218 // possible (decide on canonical form for pointer broadcast), 3) exploit 2219 // undef elements to decrease demanded bits 2220 } 2221 2222 // Eliminate unneeded casts for indices, and replace indices which displace 2223 // by multiples of a zero size type with zero. 2224 bool MadeChange = false; 2225 2226 // Index width may not be the same width as pointer width. 2227 // Data layout chooses the right type based on supported integer types. 2228 Type *NewScalarIndexTy = 2229 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 2230 2231 gep_type_iterator GTI = gep_type_begin(GEP); 2232 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 2233 ++I, ++GTI) { 2234 // Skip indices into struct types. 2235 if (GTI.isStruct()) 2236 continue; 2237 2238 Type *IndexTy = (*I)->getType(); 2239 Type *NewIndexType = 2240 IndexTy->isVectorTy() 2241 ? VectorType::get(NewScalarIndexTy, 2242 cast<VectorType>(IndexTy)->getElementCount()) 2243 : NewScalarIndexTy; 2244 2245 // If the element type has zero size then any index over it is equivalent 2246 // to an index of zero, so replace it with zero if it is not zero already. 2247 Type *EltTy = GTI.getIndexedType(); 2248 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 2249 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 2250 *I = Constant::getNullValue(NewIndexType); 2251 MadeChange = true; 2252 } 2253 2254 if (IndexTy != NewIndexType) { 2255 // If we are using a wider index than needed for this platform, shrink 2256 // it to what we need. If narrower, sign-extend it to what we need. 2257 // This explicit cast can make subsequent optimizations more obvious. 2258 *I = Builder.CreateIntCast(*I, NewIndexType, true); 2259 MadeChange = true; 2260 } 2261 } 2262 if (MadeChange) 2263 return &GEP; 2264 2265 // Check to see if the inputs to the PHI node are getelementptr instructions. 2266 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 2267 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 2268 if (!Op1) 2269 return nullptr; 2270 2271 // Don't fold a GEP into itself through a PHI node. This can only happen 2272 // through the back-edge of a loop. Folding a GEP into itself means that 2273 // the value of the previous iteration needs to be stored in the meantime, 2274 // thus requiring an additional register variable to be live, but not 2275 // actually achieving anything (the GEP still needs to be executed once per 2276 // loop iteration). 2277 if (Op1 == &GEP) 2278 return nullptr; 2279 2280 int DI = -1; 2281 2282 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 2283 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 2284 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() || 2285 Op1->getSourceElementType() != Op2->getSourceElementType()) 2286 return nullptr; 2287 2288 // As for Op1 above, don't try to fold a GEP into itself. 2289 if (Op2 == &GEP) 2290 return nullptr; 2291 2292 // Keep track of the type as we walk the GEP. 2293 Type *CurTy = nullptr; 2294 2295 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 2296 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 2297 return nullptr; 2298 2299 if (Op1->getOperand(J) != Op2->getOperand(J)) { 2300 if (DI == -1) { 2301 // We have not seen any differences yet in the GEPs feeding the 2302 // PHI yet, so we record this one if it is allowed to be a 2303 // variable. 2304 2305 // The first two arguments can vary for any GEP, the rest have to be 2306 // static for struct slots 2307 if (J > 1) { 2308 assert(CurTy && "No current type?"); 2309 if (CurTy->isStructTy()) 2310 return nullptr; 2311 } 2312 2313 DI = J; 2314 } else { 2315 // The GEP is different by more than one input. While this could be 2316 // extended to support GEPs that vary by more than one variable it 2317 // doesn't make sense since it greatly increases the complexity and 2318 // would result in an R+R+R addressing mode which no backend 2319 // directly supports and would need to be broken into several 2320 // simpler instructions anyway. 2321 return nullptr; 2322 } 2323 } 2324 2325 // Sink down a layer of the type for the next iteration. 2326 if (J > 0) { 2327 if (J == 1) { 2328 CurTy = Op1->getSourceElementType(); 2329 } else { 2330 CurTy = 2331 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 2332 } 2333 } 2334 } 2335 } 2336 2337 // If not all GEPs are identical we'll have to create a new PHI node. 2338 // Check that the old PHI node has only one use so that it will get 2339 // removed. 2340 if (DI != -1 && !PN->hasOneUse()) 2341 return nullptr; 2342 2343 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 2344 if (DI == -1) { 2345 // All the GEPs feeding the PHI are identical. Clone one down into our 2346 // BB so that it can be merged with the current GEP. 2347 } else { 2348 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 2349 // into the current block so it can be merged, and create a new PHI to 2350 // set that index. 2351 PHINode *NewPN; 2352 { 2353 IRBuilderBase::InsertPointGuard Guard(Builder); 2354 Builder.SetInsertPoint(PN); 2355 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 2356 PN->getNumOperands()); 2357 } 2358 2359 for (auto &I : PN->operands()) 2360 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 2361 PN->getIncomingBlock(I)); 2362 2363 NewGEP->setOperand(DI, NewPN); 2364 } 2365 2366 GEP.getParent()->getInstList().insert( 2367 GEP.getParent()->getFirstInsertionPt(), NewGEP); 2368 replaceOperand(GEP, 0, NewGEP); 2369 PtrOp = NewGEP; 2370 } 2371 2372 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) 2373 if (Instruction *I = visitGEPOfGEP(GEP, Src)) 2374 return I; 2375 2376 // Skip if GEP source element type is scalable. The type alloc size is unknown 2377 // at compile-time. 2378 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { 2379 unsigned AS = GEP.getPointerAddressSpace(); 2380 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 2381 DL.getIndexSizeInBits(AS)) { 2382 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2383 2384 bool Matched = false; 2385 uint64_t C; 2386 Value *V = nullptr; 2387 if (TyAllocSize == 1) { 2388 V = GEP.getOperand(1); 2389 Matched = true; 2390 } else if (match(GEP.getOperand(1), 2391 m_AShr(m_Value(V), m_ConstantInt(C)))) { 2392 if (TyAllocSize == 1ULL << C) 2393 Matched = true; 2394 } else if (match(GEP.getOperand(1), 2395 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 2396 if (TyAllocSize == C) 2397 Matched = true; 2398 } 2399 2400 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but 2401 // only if both point to the same underlying object (otherwise provenance 2402 // is not necessarily retained). 2403 Value *Y; 2404 Value *X = GEP.getOperand(0); 2405 if (Matched && 2406 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 2407 getUnderlyingObject(X) == getUnderlyingObject(Y)) 2408 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 2409 } 2410 } 2411 2412 // We do not handle pointer-vector geps here. 2413 if (GEPType->isVectorTy()) 2414 return nullptr; 2415 2416 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 2417 Value *StrippedPtr = PtrOp->stripPointerCasts(); 2418 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 2419 2420 // TODO: The basic approach of these folds is not compatible with opaque 2421 // pointers, because we can't use bitcasts as a hint for a desirable GEP 2422 // type. Instead, we should perform canonicalization directly on the GEP 2423 // type. For now, skip these. 2424 if (StrippedPtr != PtrOp && !StrippedPtrTy->isOpaque()) { 2425 bool HasZeroPointerIndex = false; 2426 Type *StrippedPtrEltTy = StrippedPtrTy->getNonOpaquePointerElementType(); 2427 2428 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 2429 HasZeroPointerIndex = C->isZero(); 2430 2431 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2432 // into : GEP [10 x i8]* X, i32 0, ... 2433 // 2434 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2435 // into : GEP i8* X, ... 2436 // 2437 // This occurs when the program declares an array extern like "int X[];" 2438 if (HasZeroPointerIndex) { 2439 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2440 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2441 if (CATy->getElementType() == StrippedPtrEltTy) { 2442 // -> GEP i8* X, ... 2443 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices())); 2444 GetElementPtrInst *Res = GetElementPtrInst::Create( 2445 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2446 Res->setIsInBounds(GEP.isInBounds()); 2447 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2448 return Res; 2449 // Insert Res, and create an addrspacecast. 2450 // e.g., 2451 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2452 // -> 2453 // %0 = GEP i8 addrspace(1)* X, ... 2454 // addrspacecast i8 addrspace(1)* %0 to i8* 2455 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2456 } 2457 2458 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2459 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2460 if (CATy->getElementType() == XATy->getElementType()) { 2461 // -> GEP [10 x i8]* X, i32 0, ... 2462 // At this point, we know that the cast source type is a pointer 2463 // to an array of the same type as the destination pointer 2464 // array. Because the array type is never stepped over (there 2465 // is a leading zero) we can fold the cast into this GEP. 2466 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2467 GEP.setSourceElementType(XATy); 2468 return replaceOperand(GEP, 0, StrippedPtr); 2469 } 2470 // Cannot replace the base pointer directly because StrippedPtr's 2471 // address space is different. Instead, create a new GEP followed by 2472 // an addrspacecast. 2473 // e.g., 2474 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2475 // i32 0, ... 2476 // -> 2477 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2478 // addrspacecast i8 addrspace(1)* %0 to i8* 2479 SmallVector<Value *, 8> Idx(GEP.indices()); 2480 Value *NewGEP = 2481 GEP.isInBounds() 2482 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2483 Idx, GEP.getName()) 2484 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2485 GEP.getName()); 2486 return new AddrSpaceCastInst(NewGEP, GEPType); 2487 } 2488 } 2489 } 2490 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) { 2491 // Skip if GEP source element type is scalable. The type alloc size is 2492 // unknown at compile-time. 2493 // Transform things like: %t = getelementptr i32* 2494 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2 2495 // x i32]* %str, i32 0, i32 %V; bitcast 2496 if (StrippedPtrEltTy->isArrayTy() && 2497 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2498 DL.getTypeAllocSize(GEPEltType)) { 2499 Type *IdxType = DL.getIndexType(GEPType); 2500 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 2501 Value *NewGEP = 2502 GEP.isInBounds() 2503 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2504 GEP.getName()) 2505 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2506 GEP.getName()); 2507 2508 // V and GEP are both pointer types --> BitCast 2509 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2510 } 2511 2512 // Transform things like: 2513 // %V = mul i64 %N, 4 2514 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2515 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2516 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2517 // Check that changing the type amounts to dividing the index by a scale 2518 // factor. 2519 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2520 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize(); 2521 if (ResSize && SrcSize % ResSize == 0) { 2522 Value *Idx = GEP.getOperand(1); 2523 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2524 uint64_t Scale = SrcSize / ResSize; 2525 2526 // Earlier transforms ensure that the index has the right type 2527 // according to Data Layout, which considerably simplifies the 2528 // logic by eliminating implicit casts. 2529 assert(Idx->getType() == DL.getIndexType(GEPType) && 2530 "Index type does not match the Data Layout preferences"); 2531 2532 bool NSW; 2533 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2534 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2535 // If the multiplication NewIdx * Scale may overflow then the new 2536 // GEP may not be "inbounds". 2537 Value *NewGEP = 2538 GEP.isInBounds() && NSW 2539 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2540 NewIdx, GEP.getName()) 2541 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2542 GEP.getName()); 2543 2544 // The NewGEP must be pointer typed, so must the old one -> BitCast 2545 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2546 GEPType); 2547 } 2548 } 2549 } 2550 2551 // Similarly, transform things like: 2552 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2553 // (where tmp = 8*tmp2) into: 2554 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2555 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2556 StrippedPtrEltTy->isArrayTy()) { 2557 // Check that changing to the array element type amounts to dividing the 2558 // index by a scale factor. 2559 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2560 uint64_t ArrayEltSize = 2561 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) 2562 .getFixedSize(); 2563 if (ResSize && ArrayEltSize % ResSize == 0) { 2564 Value *Idx = GEP.getOperand(1); 2565 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2566 uint64_t Scale = ArrayEltSize / ResSize; 2567 2568 // Earlier transforms ensure that the index has the right type 2569 // according to the Data Layout, which considerably simplifies 2570 // the logic by eliminating implicit casts. 2571 assert(Idx->getType() == DL.getIndexType(GEPType) && 2572 "Index type does not match the Data Layout preferences"); 2573 2574 bool NSW; 2575 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2576 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2577 // If the multiplication NewIdx * Scale may overflow then the new 2578 // GEP may not be "inbounds". 2579 Type *IndTy = DL.getIndexType(GEPType); 2580 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2581 2582 Value *NewGEP = 2583 GEP.isInBounds() && NSW 2584 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2585 Off, GEP.getName()) 2586 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2587 GEP.getName()); 2588 // The NewGEP must be pointer typed, so must the old one -> BitCast 2589 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2590 GEPType); 2591 } 2592 } 2593 } 2594 } 2595 } 2596 2597 // addrspacecast between types is canonicalized as a bitcast, then an 2598 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2599 // through the addrspacecast. 2600 Value *ASCStrippedPtrOp = PtrOp; 2601 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2602 // X = bitcast A addrspace(1)* to B addrspace(1)* 2603 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2604 // Z = gep Y, <...constant indices...> 2605 // Into an addrspacecasted GEP of the struct. 2606 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2607 ASCStrippedPtrOp = BC; 2608 } 2609 2610 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) 2611 if (Instruction *I = visitGEPOfBitcast(BCI, GEP)) 2612 return I; 2613 2614 if (!GEP.isInBounds()) { 2615 unsigned IdxWidth = 2616 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2617 APInt BasePtrOffset(IdxWidth, 0); 2618 Value *UnderlyingPtrOp = 2619 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2620 BasePtrOffset); 2621 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2622 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2623 BasePtrOffset.isNonNegative()) { 2624 APInt AllocSize( 2625 IdxWidth, 2626 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize()); 2627 if (BasePtrOffset.ule(AllocSize)) { 2628 return GetElementPtrInst::CreateInBounds( 2629 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName()); 2630 } 2631 } 2632 } 2633 } 2634 2635 if (Instruction *R = foldSelectGEP(GEP, Builder)) 2636 return R; 2637 2638 return nullptr; 2639 } 2640 2641 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, 2642 Instruction *AI) { 2643 if (isa<ConstantPointerNull>(V)) 2644 return true; 2645 if (auto *LI = dyn_cast<LoadInst>(V)) 2646 return isa<GlobalVariable>(LI->getPointerOperand()); 2647 // Two distinct allocations will never be equal. 2648 return isAllocLikeFn(V, &TLI) && V != AI; 2649 } 2650 2651 /// Given a call CB which uses an address UsedV, return true if we can prove the 2652 /// call's only possible effect is storing to V. 2653 static bool isRemovableWrite(CallBase &CB, Value *UsedV, 2654 const TargetLibraryInfo &TLI) { 2655 if (!CB.use_empty()) 2656 // TODO: add recursion if returned attribute is present 2657 return false; 2658 2659 if (CB.isTerminator()) 2660 // TODO: remove implementation restriction 2661 return false; 2662 2663 if (!CB.willReturn() || !CB.doesNotThrow()) 2664 return false; 2665 2666 // If the only possible side effect of the call is writing to the alloca, 2667 // and the result isn't used, we can safely remove any reads implied by the 2668 // call including those which might read the alloca itself. 2669 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI); 2670 return Dest && Dest->Ptr == UsedV; 2671 } 2672 2673 static bool isAllocSiteRemovable(Instruction *AI, 2674 SmallVectorImpl<WeakTrackingVH> &Users, 2675 const TargetLibraryInfo &TLI) { 2676 SmallVector<Instruction*, 4> Worklist; 2677 Worklist.push_back(AI); 2678 2679 do { 2680 Instruction *PI = Worklist.pop_back_val(); 2681 for (User *U : PI->users()) { 2682 Instruction *I = cast<Instruction>(U); 2683 switch (I->getOpcode()) { 2684 default: 2685 // Give up the moment we see something we can't handle. 2686 return false; 2687 2688 case Instruction::AddrSpaceCast: 2689 case Instruction::BitCast: 2690 case Instruction::GetElementPtr: 2691 Users.emplace_back(I); 2692 Worklist.push_back(I); 2693 continue; 2694 2695 case Instruction::ICmp: { 2696 ICmpInst *ICI = cast<ICmpInst>(I); 2697 // We can fold eq/ne comparisons with null to false/true, respectively. 2698 // We also fold comparisons in some conditions provided the alloc has 2699 // not escaped (see isNeverEqualToUnescapedAlloc). 2700 if (!ICI->isEquality()) 2701 return false; 2702 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2703 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2704 return false; 2705 Users.emplace_back(I); 2706 continue; 2707 } 2708 2709 case Instruction::Call: 2710 // Ignore no-op and store intrinsics. 2711 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2712 switch (II->getIntrinsicID()) { 2713 default: 2714 return false; 2715 2716 case Intrinsic::memmove: 2717 case Intrinsic::memcpy: 2718 case Intrinsic::memset: { 2719 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2720 if (MI->isVolatile() || MI->getRawDest() != PI) 2721 return false; 2722 LLVM_FALLTHROUGH; 2723 } 2724 case Intrinsic::assume: 2725 case Intrinsic::invariant_start: 2726 case Intrinsic::invariant_end: 2727 case Intrinsic::lifetime_start: 2728 case Intrinsic::lifetime_end: 2729 case Intrinsic::objectsize: 2730 Users.emplace_back(I); 2731 continue; 2732 case Intrinsic::launder_invariant_group: 2733 case Intrinsic::strip_invariant_group: 2734 Users.emplace_back(I); 2735 Worklist.push_back(I); 2736 continue; 2737 } 2738 } 2739 2740 if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) { 2741 Users.emplace_back(I); 2742 continue; 2743 } 2744 2745 if (isFreeCall(I, &TLI)) { 2746 Users.emplace_back(I); 2747 continue; 2748 } 2749 2750 if (isReallocLikeFn(I, &TLI)) { 2751 Users.emplace_back(I); 2752 Worklist.push_back(I); 2753 continue; 2754 } 2755 2756 return false; 2757 2758 case Instruction::Store: { 2759 StoreInst *SI = cast<StoreInst>(I); 2760 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2761 return false; 2762 Users.emplace_back(I); 2763 continue; 2764 } 2765 } 2766 llvm_unreachable("missing a return?"); 2767 } 2768 } while (!Worklist.empty()); 2769 return true; 2770 } 2771 2772 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 2773 assert(isa<AllocaInst>(MI) || isAllocRemovable(&cast<CallBase>(MI), &TLI)); 2774 2775 // If we have a malloc call which is only used in any amount of comparisons to 2776 // null and free calls, delete the calls and replace the comparisons with true 2777 // or false as appropriate. 2778 2779 // This is based on the principle that we can substitute our own allocation 2780 // function (which will never return null) rather than knowledge of the 2781 // specific function being called. In some sense this can change the permitted 2782 // outputs of a program (when we convert a malloc to an alloca, the fact that 2783 // the allocation is now on the stack is potentially visible, for example), 2784 // but we believe in a permissible manner. 2785 SmallVector<WeakTrackingVH, 64> Users; 2786 2787 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2788 // before each store. 2789 SmallVector<DbgVariableIntrinsic *, 8> DVIs; 2790 std::unique_ptr<DIBuilder> DIB; 2791 if (isa<AllocaInst>(MI)) { 2792 findDbgUsers(DVIs, &MI); 2793 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2794 } 2795 2796 if (isAllocSiteRemovable(&MI, Users, TLI)) { 2797 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2798 // Lowering all @llvm.objectsize calls first because they may 2799 // use a bitcast/GEP of the alloca we are removing. 2800 if (!Users[i]) 2801 continue; 2802 2803 Instruction *I = cast<Instruction>(&*Users[i]); 2804 2805 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2806 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2807 Value *Result = 2808 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); 2809 replaceInstUsesWith(*I, Result); 2810 eraseInstFromFunction(*I); 2811 Users[i] = nullptr; // Skip examining in the next loop. 2812 } 2813 } 2814 } 2815 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2816 if (!Users[i]) 2817 continue; 2818 2819 Instruction *I = cast<Instruction>(&*Users[i]); 2820 2821 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2822 replaceInstUsesWith(*C, 2823 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2824 C->isFalseWhenEqual())); 2825 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2826 for (auto *DVI : DVIs) 2827 if (DVI->isAddressOfVariable()) 2828 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 2829 } else { 2830 // Casts, GEP, or anything else: we're about to delete this instruction, 2831 // so it can not have any valid uses. 2832 replaceInstUsesWith(*I, PoisonValue::get(I->getType())); 2833 } 2834 eraseInstFromFunction(*I); 2835 } 2836 2837 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2838 // Replace invoke with a NOP intrinsic to maintain the original CFG 2839 Module *M = II->getModule(); 2840 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2841 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2842 None, "", II->getParent()); 2843 } 2844 2845 // Remove debug intrinsics which describe the value contained within the 2846 // alloca. In addition to removing dbg.{declare,addr} which simply point to 2847 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 2848 // 2849 // ``` 2850 // define void @foo(i32 %0) { 2851 // %a = alloca i32 ; Deleted. 2852 // store i32 %0, i32* %a 2853 // dbg.value(i32 %0, "arg0") ; Not deleted. 2854 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 2855 // call void @trivially_inlinable_no_op(i32* %a) 2856 // ret void 2857 // } 2858 // ``` 2859 // 2860 // This may not be required if we stop describing the contents of allocas 2861 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 2862 // the LowerDbgDeclare utility. 2863 // 2864 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 2865 // "arg0" dbg.value may be stale after the call. However, failing to remove 2866 // the DW_OP_deref dbg.value causes large gaps in location coverage. 2867 for (auto *DVI : DVIs) 2868 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 2869 DVI->eraseFromParent(); 2870 2871 return eraseInstFromFunction(MI); 2872 } 2873 return nullptr; 2874 } 2875 2876 /// Move the call to free before a NULL test. 2877 /// 2878 /// Check if this free is accessed after its argument has been test 2879 /// against NULL (property 0). 2880 /// If yes, it is legal to move this call in its predecessor block. 2881 /// 2882 /// The move is performed only if the block containing the call to free 2883 /// will be removed, i.e.: 2884 /// 1. it has only one predecessor P, and P has two successors 2885 /// 2. it contains the call, noops, and an unconditional branch 2886 /// 3. its successor is the same as its predecessor's successor 2887 /// 2888 /// The profitability is out-of concern here and this function should 2889 /// be called only if the caller knows this transformation would be 2890 /// profitable (e.g., for code size). 2891 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2892 const DataLayout &DL) { 2893 Value *Op = FI.getArgOperand(0); 2894 BasicBlock *FreeInstrBB = FI.getParent(); 2895 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2896 2897 // Validate part of constraint #1: Only one predecessor 2898 // FIXME: We can extend the number of predecessor, but in that case, we 2899 // would duplicate the call to free in each predecessor and it may 2900 // not be profitable even for code size. 2901 if (!PredBB) 2902 return nullptr; 2903 2904 // Validate constraint #2: Does this block contains only the call to 2905 // free, noops, and an unconditional branch? 2906 BasicBlock *SuccBB; 2907 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2908 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2909 return nullptr; 2910 2911 // If there are only 2 instructions in the block, at this point, 2912 // this is the call to free and unconditional. 2913 // If there are more than 2 instructions, check that they are noops 2914 // i.e., they won't hurt the performance of the generated code. 2915 if (FreeInstrBB->size() != 2) { 2916 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 2917 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2918 continue; 2919 auto *Cast = dyn_cast<CastInst>(&Inst); 2920 if (!Cast || !Cast->isNoopCast(DL)) 2921 return nullptr; 2922 } 2923 } 2924 // Validate the rest of constraint #1 by matching on the pred branch. 2925 Instruction *TI = PredBB->getTerminator(); 2926 BasicBlock *TrueBB, *FalseBB; 2927 ICmpInst::Predicate Pred; 2928 if (!match(TI, m_Br(m_ICmp(Pred, 2929 m_CombineOr(m_Specific(Op), 2930 m_Specific(Op->stripPointerCasts())), 2931 m_Zero()), 2932 TrueBB, FalseBB))) 2933 return nullptr; 2934 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2935 return nullptr; 2936 2937 // Validate constraint #3: Ensure the null case just falls through. 2938 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2939 return nullptr; 2940 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2941 "Broken CFG: missing edge from predecessor to successor"); 2942 2943 // At this point, we know that everything in FreeInstrBB can be moved 2944 // before TI. 2945 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) { 2946 if (&Instr == FreeInstrBBTerminator) 2947 break; 2948 Instr.moveBefore(TI); 2949 } 2950 assert(FreeInstrBB->size() == 1 && 2951 "Only the branch instruction should remain"); 2952 2953 // Now that we've moved the call to free before the NULL check, we have to 2954 // remove any attributes on its parameter that imply it's non-null, because 2955 // those attributes might have only been valid because of the NULL check, and 2956 // we can get miscompiles if we keep them. This is conservative if non-null is 2957 // also implied by something other than the NULL check, but it's guaranteed to 2958 // be correct, and the conservativeness won't matter in practice, since the 2959 // attributes are irrelevant for the call to free itself and the pointer 2960 // shouldn't be used after the call. 2961 AttributeList Attrs = FI.getAttributes(); 2962 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull); 2963 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable); 2964 if (Dereferenceable.isValid()) { 2965 uint64_t Bytes = Dereferenceable.getDereferenceableBytes(); 2966 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, 2967 Attribute::Dereferenceable); 2968 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes); 2969 } 2970 FI.setAttributes(Attrs); 2971 2972 return &FI; 2973 } 2974 2975 Instruction *InstCombinerImpl::visitFree(CallInst &FI) { 2976 Value *Op = FI.getArgOperand(0); 2977 2978 // free undef -> unreachable. 2979 if (isa<UndefValue>(Op)) { 2980 // Leave a marker since we can't modify the CFG here. 2981 CreateNonTerminatorUnreachable(&FI); 2982 return eraseInstFromFunction(FI); 2983 } 2984 2985 // If we have 'free null' delete the instruction. This can happen in stl code 2986 // when lots of inlining happens. 2987 if (isa<ConstantPointerNull>(Op)) 2988 return eraseInstFromFunction(FI); 2989 2990 // If we had free(realloc(...)) with no intervening uses, then eliminate the 2991 // realloc() entirely. 2992 if (CallInst *CI = dyn_cast<CallInst>(Op)) { 2993 if (CI->hasOneUse() && isReallocLikeFn(CI, &TLI)) { 2994 return eraseInstFromFunction( 2995 *replaceInstUsesWith(*CI, CI->getOperand(0))); 2996 } 2997 } 2998 2999 // If we optimize for code size, try to move the call to free before the null 3000 // test so that simplify cfg can remove the empty block and dead code 3001 // elimination the branch. I.e., helps to turn something like: 3002 // if (foo) free(foo); 3003 // into 3004 // free(foo); 3005 // 3006 // Note that we can only do this for 'free' and not for any flavor of 3007 // 'operator delete'; there is no 'operator delete' symbol for which we are 3008 // permitted to invent a call, even if we're passing in a null pointer. 3009 if (MinimizeSize) { 3010 LibFunc Func; 3011 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 3012 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 3013 return I; 3014 } 3015 3016 return nullptr; 3017 } 3018 3019 static bool isMustTailCall(Value *V) { 3020 if (auto *CI = dyn_cast<CallInst>(V)) 3021 return CI->isMustTailCall(); 3022 return false; 3023 } 3024 3025 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 3026 if (RI.getNumOperands() == 0) // ret void 3027 return nullptr; 3028 3029 Value *ResultOp = RI.getOperand(0); 3030 Type *VTy = ResultOp->getType(); 3031 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp)) 3032 return nullptr; 3033 3034 // Don't replace result of musttail calls. 3035 if (isMustTailCall(ResultOp)) 3036 return nullptr; 3037 3038 // There might be assume intrinsics dominating this return that completely 3039 // determine the value. If so, constant fold it. 3040 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 3041 if (Known.isConstant()) 3042 return replaceOperand(RI, 0, 3043 Constant::getIntegerValue(VTy, Known.getConstant())); 3044 3045 return nullptr; 3046 } 3047 3048 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! 3049 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 3050 // Try to remove the previous instruction if it must lead to unreachable. 3051 // This includes instructions like stores and "llvm.assume" that may not get 3052 // removed by simple dead code elimination. 3053 while (Instruction *Prev = I.getPrevNonDebugInstruction()) { 3054 // While we theoretically can erase EH, that would result in a block that 3055 // used to start with an EH no longer starting with EH, which is invalid. 3056 // To make it valid, we'd need to fixup predecessors to no longer refer to 3057 // this block, but that changes CFG, which is not allowed in InstCombine. 3058 if (Prev->isEHPad()) 3059 return nullptr; // Can not drop any more instructions. We're done here. 3060 3061 if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) 3062 return nullptr; // Can not drop any more instructions. We're done here. 3063 // Otherwise, this instruction can be freely erased, 3064 // even if it is not side-effect free. 3065 3066 // A value may still have uses before we process it here (for example, in 3067 // another unreachable block), so convert those to poison. 3068 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); 3069 eraseInstFromFunction(*Prev); 3070 } 3071 assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty."); 3072 // FIXME: recurse into unconditional predecessors? 3073 return nullptr; 3074 } 3075 3076 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 3077 assert(BI.isUnconditional() && "Only for unconditional branches."); 3078 3079 // If this store is the second-to-last instruction in the basic block 3080 // (excluding debug info and bitcasts of pointers) and if the block ends with 3081 // an unconditional branch, try to move the store to the successor block. 3082 3083 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 3084 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 3085 return BBI->isDebugOrPseudoInst() || 3086 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 3087 }; 3088 3089 BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 3090 do { 3091 if (BBI != FirstInstr) 3092 --BBI; 3093 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 3094 3095 return dyn_cast<StoreInst>(BBI); 3096 }; 3097 3098 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 3099 if (mergeStoreIntoSuccessor(*SI)) 3100 return &BI; 3101 3102 return nullptr; 3103 } 3104 3105 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 3106 if (BI.isUnconditional()) 3107 return visitUnconditionalBranchInst(BI); 3108 3109 // Change br (not X), label True, label False to: br X, label False, True 3110 Value *X = nullptr; 3111 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 3112 !isa<Constant>(X)) { 3113 // Swap Destinations and condition... 3114 BI.swapSuccessors(); 3115 return replaceOperand(BI, 0, X); 3116 } 3117 3118 // If the condition is irrelevant, remove the use so that other 3119 // transforms on the condition become more effective. 3120 if (!isa<ConstantInt>(BI.getCondition()) && 3121 BI.getSuccessor(0) == BI.getSuccessor(1)) 3122 return replaceOperand( 3123 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType())); 3124 3125 // Canonicalize, for example, fcmp_one -> fcmp_oeq. 3126 CmpInst::Predicate Pred; 3127 if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())), 3128 m_BasicBlock(), m_BasicBlock())) && 3129 !isCanonicalPredicate(Pred)) { 3130 // Swap destinations and condition. 3131 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 3132 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 3133 BI.swapSuccessors(); 3134 Worklist.push(Cond); 3135 return &BI; 3136 } 3137 3138 return nullptr; 3139 } 3140 3141 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 3142 Value *Cond = SI.getCondition(); 3143 Value *Op0; 3144 ConstantInt *AddRHS; 3145 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 3146 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 3147 for (auto Case : SI.cases()) { 3148 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 3149 assert(isa<ConstantInt>(NewCase) && 3150 "Result of expression should be constant"); 3151 Case.setValue(cast<ConstantInt>(NewCase)); 3152 } 3153 return replaceOperand(SI, 0, Op0); 3154 } 3155 3156 KnownBits Known = computeKnownBits(Cond, 0, &SI); 3157 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 3158 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 3159 3160 // Compute the number of leading bits we can ignore. 3161 // TODO: A better way to determine this would use ComputeNumSignBits(). 3162 for (auto &C : SI.cases()) { 3163 LeadingKnownZeros = std::min( 3164 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 3165 LeadingKnownOnes = std::min( 3166 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 3167 } 3168 3169 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 3170 3171 // Shrink the condition operand if the new type is smaller than the old type. 3172 // But do not shrink to a non-standard type, because backend can't generate 3173 // good code for that yet. 3174 // TODO: We can make it aggressive again after fixing PR39569. 3175 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 3176 shouldChangeType(Known.getBitWidth(), NewWidth)) { 3177 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 3178 Builder.SetInsertPoint(&SI); 3179 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 3180 3181 for (auto Case : SI.cases()) { 3182 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3183 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3184 } 3185 return replaceOperand(SI, 0, NewCond); 3186 } 3187 3188 return nullptr; 3189 } 3190 3191 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 3192 Value *Agg = EV.getAggregateOperand(); 3193 3194 if (!EV.hasIndices()) 3195 return replaceInstUsesWith(EV, Agg); 3196 3197 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 3198 SQ.getWithInstruction(&EV))) 3199 return replaceInstUsesWith(EV, V); 3200 3201 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 3202 // We're extracting from an insertvalue instruction, compare the indices 3203 const unsigned *exti, *exte, *insi, *inse; 3204 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 3205 exte = EV.idx_end(), inse = IV->idx_end(); 3206 exti != exte && insi != inse; 3207 ++exti, ++insi) { 3208 if (*insi != *exti) 3209 // The insert and extract both reference distinctly different elements. 3210 // This means the extract is not influenced by the insert, and we can 3211 // replace the aggregate operand of the extract with the aggregate 3212 // operand of the insert. i.e., replace 3213 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3214 // %E = extractvalue { i32, { i32 } } %I, 0 3215 // with 3216 // %E = extractvalue { i32, { i32 } } %A, 0 3217 return ExtractValueInst::Create(IV->getAggregateOperand(), 3218 EV.getIndices()); 3219 } 3220 if (exti == exte && insi == inse) 3221 // Both iterators are at the end: Index lists are identical. Replace 3222 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3223 // %C = extractvalue { i32, { i32 } } %B, 1, 0 3224 // with "i32 42" 3225 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 3226 if (exti == exte) { 3227 // The extract list is a prefix of the insert list. i.e. replace 3228 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3229 // %E = extractvalue { i32, { i32 } } %I, 1 3230 // with 3231 // %X = extractvalue { i32, { i32 } } %A, 1 3232 // %E = insertvalue { i32 } %X, i32 42, 0 3233 // by switching the order of the insert and extract (though the 3234 // insertvalue should be left in, since it may have other uses). 3235 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 3236 EV.getIndices()); 3237 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 3238 makeArrayRef(insi, inse)); 3239 } 3240 if (insi == inse) 3241 // The insert list is a prefix of the extract list 3242 // We can simply remove the common indices from the extract and make it 3243 // operate on the inserted value instead of the insertvalue result. 3244 // i.e., replace 3245 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3246 // %E = extractvalue { i32, { i32 } } %I, 1, 0 3247 // with 3248 // %E extractvalue { i32 } { i32 42 }, 0 3249 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 3250 makeArrayRef(exti, exte)); 3251 } 3252 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 3253 // extractvalue (any_mul_with_overflow X, -1), 0 --> -X 3254 Intrinsic::ID OvID = WO->getIntrinsicID(); 3255 if (*EV.idx_begin() == 0 && 3256 (OvID == Intrinsic::smul_with_overflow || 3257 OvID == Intrinsic::umul_with_overflow) && 3258 match(WO->getArgOperand(1), m_AllOnes())) { 3259 return BinaryOperator::CreateNeg(WO->getArgOperand(0)); 3260 } 3261 3262 // We're extracting from an overflow intrinsic, see if we're the only user, 3263 // which allows us to simplify multiple result intrinsics to simpler 3264 // things that just get one value. 3265 if (WO->hasOneUse()) { 3266 // Check if we're grabbing only the result of a 'with overflow' intrinsic 3267 // and replace it with a traditional binary instruction. 3268 if (*EV.idx_begin() == 0) { 3269 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 3270 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 3271 // Replace the old instruction's uses with poison. 3272 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); 3273 eraseInstFromFunction(*WO); 3274 return BinaryOperator::Create(BinOp, LHS, RHS); 3275 } 3276 3277 assert(*EV.idx_begin() == 1 && 3278 "unexpected extract index for overflow inst"); 3279 3280 // If only the overflow result is used, and the right hand side is a 3281 // constant (or constant splat), we can remove the intrinsic by directly 3282 // checking for overflow. 3283 const APInt *C; 3284 if (match(WO->getRHS(), m_APInt(C))) { 3285 // Compute the no-wrap range for LHS given RHS=C, then construct an 3286 // equivalent icmp, potentially using an offset. 3287 ConstantRange NWR = 3288 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 3289 WO->getNoWrapKind()); 3290 3291 CmpInst::Predicate Pred; 3292 APInt NewRHSC, Offset; 3293 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 3294 auto *OpTy = WO->getRHS()->getType(); 3295 auto *NewLHS = WO->getLHS(); 3296 if (Offset != 0) 3297 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset)); 3298 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, 3299 ConstantInt::get(OpTy, NewRHSC)); 3300 } 3301 } 3302 } 3303 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 3304 // If the (non-volatile) load only has one use, we can rewrite this to a 3305 // load from a GEP. This reduces the size of the load. If a load is used 3306 // only by extractvalue instructions then this either must have been 3307 // optimized before, or it is a struct with padding, in which case we 3308 // don't want to do the transformation as it loses padding knowledge. 3309 if (L->isSimple() && L->hasOneUse()) { 3310 // extractvalue has integer indices, getelementptr has Value*s. Convert. 3311 SmallVector<Value*, 4> Indices; 3312 // Prefix an i32 0 since we need the first element. 3313 Indices.push_back(Builder.getInt32(0)); 3314 for (unsigned Idx : EV.indices()) 3315 Indices.push_back(Builder.getInt32(Idx)); 3316 3317 // We need to insert these at the location of the old load, not at that of 3318 // the extractvalue. 3319 Builder.SetInsertPoint(L); 3320 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 3321 L->getPointerOperand(), Indices); 3322 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 3323 // Whatever aliasing information we had for the orignal load must also 3324 // hold for the smaller load, so propagate the annotations. 3325 NL->setAAMetadata(L->getAAMetadata()); 3326 // Returning the load directly will cause the main loop to insert it in 3327 // the wrong spot, so use replaceInstUsesWith(). 3328 return replaceInstUsesWith(EV, NL); 3329 } 3330 // We could simplify extracts from other values. Note that nested extracts may 3331 // already be simplified implicitly by the above: extract (extract (insert) ) 3332 // will be translated into extract ( insert ( extract ) ) first and then just 3333 // the value inserted, if appropriate. Similarly for extracts from single-use 3334 // loads: extract (extract (load)) will be translated to extract (load (gep)) 3335 // and if again single-use then via load (gep (gep)) to load (gep). 3336 // However, double extracts from e.g. function arguments or return values 3337 // aren't handled yet. 3338 return nullptr; 3339 } 3340 3341 /// Return 'true' if the given typeinfo will match anything. 3342 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 3343 switch (Personality) { 3344 case EHPersonality::GNU_C: 3345 case EHPersonality::GNU_C_SjLj: 3346 case EHPersonality::Rust: 3347 // The GCC C EH and Rust personality only exists to support cleanups, so 3348 // it's not clear what the semantics of catch clauses are. 3349 return false; 3350 case EHPersonality::Unknown: 3351 return false; 3352 case EHPersonality::GNU_Ada: 3353 // While __gnat_all_others_value will match any Ada exception, it doesn't 3354 // match foreign exceptions (or didn't, before gcc-4.7). 3355 return false; 3356 case EHPersonality::GNU_CXX: 3357 case EHPersonality::GNU_CXX_SjLj: 3358 case EHPersonality::GNU_ObjC: 3359 case EHPersonality::MSVC_X86SEH: 3360 case EHPersonality::MSVC_TableSEH: 3361 case EHPersonality::MSVC_CXX: 3362 case EHPersonality::CoreCLR: 3363 case EHPersonality::Wasm_CXX: 3364 case EHPersonality::XL_CXX: 3365 return TypeInfo->isNullValue(); 3366 } 3367 llvm_unreachable("invalid enum"); 3368 } 3369 3370 static bool shorter_filter(const Value *LHS, const Value *RHS) { 3371 return 3372 cast<ArrayType>(LHS->getType())->getNumElements() 3373 < 3374 cast<ArrayType>(RHS->getType())->getNumElements(); 3375 } 3376 3377 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 3378 // The logic here should be correct for any real-world personality function. 3379 // However if that turns out not to be true, the offending logic can always 3380 // be conditioned on the personality function, like the catch-all logic is. 3381 EHPersonality Personality = 3382 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 3383 3384 // Simplify the list of clauses, eg by removing repeated catch clauses 3385 // (these are often created by inlining). 3386 bool MakeNewInstruction = false; // If true, recreate using the following: 3387 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 3388 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 3389 3390 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 3391 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 3392 bool isLastClause = i + 1 == e; 3393 if (LI.isCatch(i)) { 3394 // A catch clause. 3395 Constant *CatchClause = LI.getClause(i); 3396 Constant *TypeInfo = CatchClause->stripPointerCasts(); 3397 3398 // If we already saw this clause, there is no point in having a second 3399 // copy of it. 3400 if (AlreadyCaught.insert(TypeInfo).second) { 3401 // This catch clause was not already seen. 3402 NewClauses.push_back(CatchClause); 3403 } else { 3404 // Repeated catch clause - drop the redundant copy. 3405 MakeNewInstruction = true; 3406 } 3407 3408 // If this is a catch-all then there is no point in keeping any following 3409 // clauses or marking the landingpad as having a cleanup. 3410 if (isCatchAll(Personality, TypeInfo)) { 3411 if (!isLastClause) 3412 MakeNewInstruction = true; 3413 CleanupFlag = false; 3414 break; 3415 } 3416 } else { 3417 // A filter clause. If any of the filter elements were already caught 3418 // then they can be dropped from the filter. It is tempting to try to 3419 // exploit the filter further by saying that any typeinfo that does not 3420 // occur in the filter can't be caught later (and thus can be dropped). 3421 // However this would be wrong, since typeinfos can match without being 3422 // equal (for example if one represents a C++ class, and the other some 3423 // class derived from it). 3424 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 3425 Constant *FilterClause = LI.getClause(i); 3426 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 3427 unsigned NumTypeInfos = FilterType->getNumElements(); 3428 3429 // An empty filter catches everything, so there is no point in keeping any 3430 // following clauses or marking the landingpad as having a cleanup. By 3431 // dealing with this case here the following code is made a bit simpler. 3432 if (!NumTypeInfos) { 3433 NewClauses.push_back(FilterClause); 3434 if (!isLastClause) 3435 MakeNewInstruction = true; 3436 CleanupFlag = false; 3437 break; 3438 } 3439 3440 bool MakeNewFilter = false; // If true, make a new filter. 3441 SmallVector<Constant *, 16> NewFilterElts; // New elements. 3442 if (isa<ConstantAggregateZero>(FilterClause)) { 3443 // Not an empty filter - it contains at least one null typeinfo. 3444 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 3445 Constant *TypeInfo = 3446 Constant::getNullValue(FilterType->getElementType()); 3447 // If this typeinfo is a catch-all then the filter can never match. 3448 if (isCatchAll(Personality, TypeInfo)) { 3449 // Throw the filter away. 3450 MakeNewInstruction = true; 3451 continue; 3452 } 3453 3454 // There is no point in having multiple copies of this typeinfo, so 3455 // discard all but the first copy if there is more than one. 3456 NewFilterElts.push_back(TypeInfo); 3457 if (NumTypeInfos > 1) 3458 MakeNewFilter = true; 3459 } else { 3460 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 3461 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 3462 NewFilterElts.reserve(NumTypeInfos); 3463 3464 // Remove any filter elements that were already caught or that already 3465 // occurred in the filter. While there, see if any of the elements are 3466 // catch-alls. If so, the filter can be discarded. 3467 bool SawCatchAll = false; 3468 for (unsigned j = 0; j != NumTypeInfos; ++j) { 3469 Constant *Elt = Filter->getOperand(j); 3470 Constant *TypeInfo = Elt->stripPointerCasts(); 3471 if (isCatchAll(Personality, TypeInfo)) { 3472 // This element is a catch-all. Bail out, noting this fact. 3473 SawCatchAll = true; 3474 break; 3475 } 3476 3477 // Even if we've seen a type in a catch clause, we don't want to 3478 // remove it from the filter. An unexpected type handler may be 3479 // set up for a call site which throws an exception of the same 3480 // type caught. In order for the exception thrown by the unexpected 3481 // handler to propagate correctly, the filter must be correctly 3482 // described for the call site. 3483 // 3484 // Example: 3485 // 3486 // void unexpected() { throw 1;} 3487 // void foo() throw (int) { 3488 // std::set_unexpected(unexpected); 3489 // try { 3490 // throw 2.0; 3491 // } catch (int i) {} 3492 // } 3493 3494 // There is no point in having multiple copies of the same typeinfo in 3495 // a filter, so only add it if we didn't already. 3496 if (SeenInFilter.insert(TypeInfo).second) 3497 NewFilterElts.push_back(cast<Constant>(Elt)); 3498 } 3499 // A filter containing a catch-all cannot match anything by definition. 3500 if (SawCatchAll) { 3501 // Throw the filter away. 3502 MakeNewInstruction = true; 3503 continue; 3504 } 3505 3506 // If we dropped something from the filter, make a new one. 3507 if (NewFilterElts.size() < NumTypeInfos) 3508 MakeNewFilter = true; 3509 } 3510 if (MakeNewFilter) { 3511 FilterType = ArrayType::get(FilterType->getElementType(), 3512 NewFilterElts.size()); 3513 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 3514 MakeNewInstruction = true; 3515 } 3516 3517 NewClauses.push_back(FilterClause); 3518 3519 // If the new filter is empty then it will catch everything so there is 3520 // no point in keeping any following clauses or marking the landingpad 3521 // as having a cleanup. The case of the original filter being empty was 3522 // already handled above. 3523 if (MakeNewFilter && !NewFilterElts.size()) { 3524 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3525 CleanupFlag = false; 3526 break; 3527 } 3528 } 3529 } 3530 3531 // If several filters occur in a row then reorder them so that the shortest 3532 // filters come first (those with the smallest number of elements). This is 3533 // advantageous because shorter filters are more likely to match, speeding up 3534 // unwinding, but mostly because it increases the effectiveness of the other 3535 // filter optimizations below. 3536 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3537 unsigned j; 3538 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3539 for (j = i; j != e; ++j) 3540 if (!isa<ArrayType>(NewClauses[j]->getType())) 3541 break; 3542 3543 // Check whether the filters are already sorted by length. We need to know 3544 // if sorting them is actually going to do anything so that we only make a 3545 // new landingpad instruction if it does. 3546 for (unsigned k = i; k + 1 < j; ++k) 3547 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3548 // Not sorted, so sort the filters now. Doing an unstable sort would be 3549 // correct too but reordering filters pointlessly might confuse users. 3550 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3551 shorter_filter); 3552 MakeNewInstruction = true; 3553 break; 3554 } 3555 3556 // Look for the next batch of filters. 3557 i = j + 1; 3558 } 3559 3560 // If typeinfos matched if and only if equal, then the elements of a filter L 3561 // that occurs later than a filter F could be replaced by the intersection of 3562 // the elements of F and L. In reality two typeinfos can match without being 3563 // equal (for example if one represents a C++ class, and the other some class 3564 // derived from it) so it would be wrong to perform this transform in general. 3565 // However the transform is correct and useful if F is a subset of L. In that 3566 // case L can be replaced by F, and thus removed altogether since repeating a 3567 // filter is pointless. So here we look at all pairs of filters F and L where 3568 // L follows F in the list of clauses, and remove L if every element of F is 3569 // an element of L. This can occur when inlining C++ functions with exception 3570 // specifications. 3571 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3572 // Examine each filter in turn. 3573 Value *Filter = NewClauses[i]; 3574 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3575 if (!FTy) 3576 // Not a filter - skip it. 3577 continue; 3578 unsigned FElts = FTy->getNumElements(); 3579 // Examine each filter following this one. Doing this backwards means that 3580 // we don't have to worry about filters disappearing under us when removed. 3581 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3582 Value *LFilter = NewClauses[j]; 3583 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3584 if (!LTy) 3585 // Not a filter - skip it. 3586 continue; 3587 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3588 // an element of LFilter, then discard LFilter. 3589 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3590 // If Filter is empty then it is a subset of LFilter. 3591 if (!FElts) { 3592 // Discard LFilter. 3593 NewClauses.erase(J); 3594 MakeNewInstruction = true; 3595 // Move on to the next filter. 3596 continue; 3597 } 3598 unsigned LElts = LTy->getNumElements(); 3599 // If Filter is longer than LFilter then it cannot be a subset of it. 3600 if (FElts > LElts) 3601 // Move on to the next filter. 3602 continue; 3603 // At this point we know that LFilter has at least one element. 3604 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3605 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3606 // already know that Filter is not longer than LFilter). 3607 if (isa<ConstantAggregateZero>(Filter)) { 3608 assert(FElts <= LElts && "Should have handled this case earlier!"); 3609 // Discard LFilter. 3610 NewClauses.erase(J); 3611 MakeNewInstruction = true; 3612 } 3613 // Move on to the next filter. 3614 continue; 3615 } 3616 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3617 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3618 // Since Filter is non-empty and contains only zeros, it is a subset of 3619 // LFilter iff LFilter contains a zero. 3620 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3621 for (unsigned l = 0; l != LElts; ++l) 3622 if (LArray->getOperand(l)->isNullValue()) { 3623 // LFilter contains a zero - discard it. 3624 NewClauses.erase(J); 3625 MakeNewInstruction = true; 3626 break; 3627 } 3628 // Move on to the next filter. 3629 continue; 3630 } 3631 // At this point we know that both filters are ConstantArrays. Loop over 3632 // operands to see whether every element of Filter is also an element of 3633 // LFilter. Since filters tend to be short this is probably faster than 3634 // using a method that scales nicely. 3635 ConstantArray *FArray = cast<ConstantArray>(Filter); 3636 bool AllFound = true; 3637 for (unsigned f = 0; f != FElts; ++f) { 3638 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3639 AllFound = false; 3640 for (unsigned l = 0; l != LElts; ++l) { 3641 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3642 if (LTypeInfo == FTypeInfo) { 3643 AllFound = true; 3644 break; 3645 } 3646 } 3647 if (!AllFound) 3648 break; 3649 } 3650 if (AllFound) { 3651 // Discard LFilter. 3652 NewClauses.erase(J); 3653 MakeNewInstruction = true; 3654 } 3655 // Move on to the next filter. 3656 } 3657 } 3658 3659 // If we changed any of the clauses, replace the old landingpad instruction 3660 // with a new one. 3661 if (MakeNewInstruction) { 3662 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3663 NewClauses.size()); 3664 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3665 NLI->addClause(NewClauses[i]); 3666 // A landing pad with no clauses must have the cleanup flag set. It is 3667 // theoretically possible, though highly unlikely, that we eliminated all 3668 // clauses. If so, force the cleanup flag to true. 3669 if (NewClauses.empty()) 3670 CleanupFlag = true; 3671 NLI->setCleanup(CleanupFlag); 3672 return NLI; 3673 } 3674 3675 // Even if none of the clauses changed, we may nonetheless have understood 3676 // that the cleanup flag is pointless. Clear it if so. 3677 if (LI.isCleanup() != CleanupFlag) { 3678 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3679 LI.setCleanup(CleanupFlag); 3680 return &LI; 3681 } 3682 3683 return nullptr; 3684 } 3685 3686 Value * 3687 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { 3688 // Try to push freeze through instructions that propagate but don't produce 3689 // poison as far as possible. If an operand of freeze follows three 3690 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one 3691 // guaranteed-non-poison operands then push the freeze through to the one 3692 // operand that is not guaranteed non-poison. The actual transform is as 3693 // follows. 3694 // Op1 = ... ; Op1 can be posion 3695 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have 3696 // ; single guaranteed-non-poison operands 3697 // ... = Freeze(Op0) 3698 // => 3699 // Op1 = ... 3700 // Op1.fr = Freeze(Op1) 3701 // ... = Inst(Op1.fr, NonPoisonOps...) 3702 auto *OrigOp = OrigFI.getOperand(0); 3703 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp); 3704 3705 // While we could change the other users of OrigOp to use freeze(OrigOp), that 3706 // potentially reduces their optimization potential, so let's only do this iff 3707 // the OrigOp is only used by the freeze. 3708 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp)) 3709 return nullptr; 3710 3711 // We can't push the freeze through an instruction which can itself create 3712 // poison. If the only source of new poison is flags, we can simply 3713 // strip them (since we know the only use is the freeze and nothing can 3714 // benefit from them.) 3715 if (canCreateUndefOrPoison(cast<Operator>(OrigOp), /*ConsiderFlags*/ false)) 3716 return nullptr; 3717 3718 // If operand is guaranteed not to be poison, there is no need to add freeze 3719 // to the operand. So we first find the operand that is not guaranteed to be 3720 // poison. 3721 Use *MaybePoisonOperand = nullptr; 3722 for (Use &U : OrigOpInst->operands()) { 3723 if (isGuaranteedNotToBeUndefOrPoison(U.get())) 3724 continue; 3725 if (!MaybePoisonOperand) 3726 MaybePoisonOperand = &U; 3727 else 3728 return nullptr; 3729 } 3730 3731 OrigOpInst->dropPoisonGeneratingFlags(); 3732 3733 // If all operands are guaranteed to be non-poison, we can drop freeze. 3734 if (!MaybePoisonOperand) 3735 return OrigOp; 3736 3737 auto *FrozenMaybePoisonOperand = new FreezeInst( 3738 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); 3739 3740 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); 3741 FrozenMaybePoisonOperand->insertBefore(OrigOpInst); 3742 return OrigOp; 3743 } 3744 3745 bool InstCombinerImpl::freezeDominatedUses(FreezeInst &FI) { 3746 Value *Op = FI.getOperand(0); 3747 3748 if (isa<Constant>(Op)) 3749 return false; 3750 3751 bool Changed = false; 3752 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { 3753 bool Dominates = DT.dominates(&FI, U); 3754 Changed |= Dominates; 3755 return Dominates; 3756 }); 3757 3758 return Changed; 3759 } 3760 3761 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 3762 Value *Op0 = I.getOperand(0); 3763 3764 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3765 return replaceInstUsesWith(I, V); 3766 3767 // freeze (phi const, x) --> phi const, (freeze x) 3768 if (auto *PN = dyn_cast<PHINode>(Op0)) { 3769 if (Instruction *NV = foldOpIntoPhi(I, PN)) 3770 return NV; 3771 } 3772 3773 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) 3774 return replaceInstUsesWith(I, NI); 3775 3776 if (match(Op0, m_Undef())) { 3777 // If I is freeze(undef), see its uses and fold it to the best constant. 3778 // - or: pick -1 3779 // - select's condition: pick the value that leads to choosing a constant 3780 // - other ops: pick 0 3781 Constant *BestValue = nullptr; 3782 Constant *NullValue = Constant::getNullValue(I.getType()); 3783 for (const auto *U : I.users()) { 3784 Constant *C = NullValue; 3785 3786 if (match(U, m_Or(m_Value(), m_Value()))) 3787 C = Constant::getAllOnesValue(I.getType()); 3788 else if (const auto *SI = dyn_cast<SelectInst>(U)) { 3789 if (SI->getCondition() == &I) { 3790 APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1); 3791 C = Constant::getIntegerValue(I.getType(), CondVal); 3792 } 3793 } 3794 3795 if (!BestValue) 3796 BestValue = C; 3797 else if (BestValue != C) 3798 BestValue = NullValue; 3799 } 3800 3801 return replaceInstUsesWith(I, BestValue); 3802 } 3803 3804 // Replace all dominated uses of Op to freeze(Op). 3805 if (freezeDominatedUses(I)) 3806 return &I; 3807 3808 return nullptr; 3809 } 3810 3811 /// Check for case where the call writes to an otherwise dead alloca. This 3812 /// shows up for unused out-params in idiomatic C/C++ code. Note that this 3813 /// helper *only* analyzes the write; doesn't check any other legality aspect. 3814 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) { 3815 auto *CB = dyn_cast<CallBase>(I); 3816 if (!CB) 3817 // TODO: handle e.g. store to alloca here - only worth doing if we extend 3818 // to allow reload along used path as described below. Otherwise, this 3819 // is simply a store to a dead allocation which will be removed. 3820 return false; 3821 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI); 3822 if (!Dest) 3823 return false; 3824 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr)); 3825 if (!AI) 3826 // TODO: allow malloc? 3827 return false; 3828 // TODO: allow memory access dominated by move point? Note that since AI 3829 // could have a reference to itself captured by the call, we would need to 3830 // account for cycles in doing so. 3831 SmallVector<const User *> AllocaUsers; 3832 SmallPtrSet<const User *, 4> Visited; 3833 auto pushUsers = [&](const Instruction &I) { 3834 for (const User *U : I.users()) { 3835 if (Visited.insert(U).second) 3836 AllocaUsers.push_back(U); 3837 } 3838 }; 3839 pushUsers(*AI); 3840 while (!AllocaUsers.empty()) { 3841 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val()); 3842 if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) || 3843 isa<AddrSpaceCastInst>(UserI)) { 3844 pushUsers(*UserI); 3845 continue; 3846 } 3847 if (UserI == CB) 3848 continue; 3849 // TODO: support lifetime.start/end here 3850 return false; 3851 } 3852 return true; 3853 } 3854 3855 /// Try to move the specified instruction from its current block into the 3856 /// beginning of DestBlock, which can only happen if it's safe to move the 3857 /// instruction past all of the instructions between it and the end of its 3858 /// block. 3859 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock, 3860 TargetLibraryInfo &TLI) { 3861 assert(I->getUniqueUndroppableUser() && "Invariants didn't hold!"); 3862 BasicBlock *SrcBlock = I->getParent(); 3863 3864 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3865 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || 3866 I->isTerminator()) 3867 return false; 3868 3869 // Do not sink static or dynamic alloca instructions. Static allocas must 3870 // remain in the entry block, and dynamic allocas must not be sunk in between 3871 // a stacksave / stackrestore pair, which would incorrectly shorten its 3872 // lifetime. 3873 if (isa<AllocaInst>(I)) 3874 return false; 3875 3876 // Do not sink into catchswitch blocks. 3877 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 3878 return false; 3879 3880 // Do not sink convergent call instructions. 3881 if (auto *CI = dyn_cast<CallInst>(I)) { 3882 if (CI->isConvergent()) 3883 return false; 3884 } 3885 3886 // Unless we can prove that the memory write isn't visibile except on the 3887 // path we're sinking to, we must bail. 3888 if (I->mayWriteToMemory()) { 3889 if (!SoleWriteToDeadLocal(I, TLI)) 3890 return false; 3891 } 3892 3893 // We can only sink load instructions if there is nothing between the load and 3894 // the end of block that could change the value. 3895 if (I->mayReadFromMemory()) { 3896 // We don't want to do any sophisticated alias analysis, so we only check 3897 // the instructions after I in I's parent block if we try to sink to its 3898 // successor block. 3899 if (DestBlock->getUniquePredecessor() != I->getParent()) 3900 return false; 3901 for (BasicBlock::iterator Scan = std::next(I->getIterator()), 3902 E = I->getParent()->end(); 3903 Scan != E; ++Scan) 3904 if (Scan->mayWriteToMemory()) 3905 return false; 3906 } 3907 3908 I->dropDroppableUses([DestBlock](const Use *U) { 3909 if (auto *I = dyn_cast<Instruction>(U->getUser())) 3910 return I->getParent() != DestBlock; 3911 return true; 3912 }); 3913 /// FIXME: We could remove droppable uses that are not dominated by 3914 /// the new position. 3915 3916 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 3917 I->moveBefore(&*InsertPos); 3918 ++NumSunkInst; 3919 3920 // Also sink all related debug uses from the source basic block. Otherwise we 3921 // get debug use before the def. Attempt to salvage debug uses first, to 3922 // maximise the range variables have location for. If we cannot salvage, then 3923 // mark the location undef: we know it was supposed to receive a new location 3924 // here, but that computation has been sunk. 3925 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 3926 findDbgUsers(DbgUsers, I); 3927 // Process the sinking DbgUsers in reverse order, as we only want to clone the 3928 // last appearing debug intrinsic for each given variable. 3929 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 3930 for (DbgVariableIntrinsic *DVI : DbgUsers) 3931 if (DVI->getParent() == SrcBlock) 3932 DbgUsersToSink.push_back(DVI); 3933 llvm::sort(DbgUsersToSink, 3934 [](auto *A, auto *B) { return B->comesBefore(A); }); 3935 3936 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 3937 SmallSet<DebugVariable, 4> SunkVariables; 3938 for (auto User : DbgUsersToSink) { 3939 // A dbg.declare instruction should not be cloned, since there can only be 3940 // one per variable fragment. It should be left in the original place 3941 // because the sunk instruction is not an alloca (otherwise we could not be 3942 // here). 3943 if (isa<DbgDeclareInst>(User)) 3944 continue; 3945 3946 DebugVariable DbgUserVariable = 3947 DebugVariable(User->getVariable(), User->getExpression(), 3948 User->getDebugLoc()->getInlinedAt()); 3949 3950 if (!SunkVariables.insert(DbgUserVariable).second) 3951 continue; 3952 3953 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 3954 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 3955 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 3956 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 3957 } 3958 3959 // Perform salvaging without the clones, then sink the clones. 3960 if (!DIIClones.empty()) { 3961 salvageDebugInfoForDbgValues(*I, DbgUsers); 3962 // The clones are in reverse order of original appearance, reverse again to 3963 // maintain the original order. 3964 for (auto &DIIClone : llvm::reverse(DIIClones)) { 3965 DIIClone->insertBefore(&*InsertPos); 3966 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 3967 } 3968 } 3969 3970 return true; 3971 } 3972 3973 bool InstCombinerImpl::run() { 3974 while (!Worklist.isEmpty()) { 3975 // Walk deferred instructions in reverse order, and push them to the 3976 // worklist, which means they'll end up popped from the worklist in-order. 3977 while (Instruction *I = Worklist.popDeferred()) { 3978 // Check to see if we can DCE the instruction. We do this already here to 3979 // reduce the number of uses and thus allow other folds to trigger. 3980 // Note that eraseInstFromFunction() may push additional instructions on 3981 // the deferred worklist, so this will DCE whole instruction chains. 3982 if (isInstructionTriviallyDead(I, &TLI)) { 3983 eraseInstFromFunction(*I); 3984 ++NumDeadInst; 3985 continue; 3986 } 3987 3988 Worklist.push(I); 3989 } 3990 3991 Instruction *I = Worklist.removeOne(); 3992 if (I == nullptr) continue; // skip null values. 3993 3994 // Check to see if we can DCE the instruction. 3995 if (isInstructionTriviallyDead(I, &TLI)) { 3996 eraseInstFromFunction(*I); 3997 ++NumDeadInst; 3998 continue; 3999 } 4000 4001 if (!DebugCounter::shouldExecute(VisitCounter)) 4002 continue; 4003 4004 // Instruction isn't dead, see if we can constant propagate it. 4005 if (!I->use_empty() && 4006 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 4007 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 4008 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 4009 << '\n'); 4010 4011 // Add operands to the worklist. 4012 replaceInstUsesWith(*I, C); 4013 ++NumConstProp; 4014 if (isInstructionTriviallyDead(I, &TLI)) 4015 eraseInstFromFunction(*I); 4016 MadeIRChange = true; 4017 continue; 4018 } 4019 } 4020 4021 // See if we can trivially sink this instruction to its user if we can 4022 // prove that the successor is not executed more frequently than our block. 4023 // Return the UserBlock if successful. 4024 auto getOptionalSinkBlockForInst = 4025 [this](Instruction *I) -> Optional<BasicBlock *> { 4026 if (!EnableCodeSinking) 4027 return None; 4028 auto *UserInst = cast_or_null<Instruction>(I->getUniqueUndroppableUser()); 4029 if (!UserInst) 4030 return None; 4031 4032 BasicBlock *BB = I->getParent(); 4033 BasicBlock *UserParent = nullptr; 4034 4035 // Special handling for Phi nodes - get the block the use occurs in. 4036 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) { 4037 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 4038 if (PN->getIncomingValue(i) == I) { 4039 // Bail out if we have uses in different blocks. We don't do any 4040 // sophisticated analysis (i.e finding NearestCommonDominator of these 4041 // use blocks). 4042 if (UserParent && UserParent != PN->getIncomingBlock(i)) 4043 return None; 4044 UserParent = PN->getIncomingBlock(i); 4045 } 4046 } 4047 assert(UserParent && "expected to find user block!"); 4048 } else 4049 UserParent = UserInst->getParent(); 4050 4051 // Try sinking to another block. If that block is unreachable, then do 4052 // not bother. SimplifyCFG should handle it. 4053 if (UserParent == BB || !DT.isReachableFromEntry(UserParent)) 4054 return None; 4055 4056 auto *Term = UserParent->getTerminator(); 4057 // See if the user is one of our successors that has only one 4058 // predecessor, so that we don't have to split the critical edge. 4059 // Another option where we can sink is a block that ends with a 4060 // terminator that does not pass control to other block (such as 4061 // return or unreachable or resume). In this case: 4062 // - I dominates the User (by SSA form); 4063 // - the User will be executed at most once. 4064 // So sinking I down to User is always profitable or neutral. 4065 if (UserParent->getUniquePredecessor() == BB || succ_empty(Term)) { 4066 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?"); 4067 return UserParent; 4068 } 4069 return None; 4070 }; 4071 4072 auto OptBB = getOptionalSinkBlockForInst(I); 4073 if (OptBB) { 4074 auto *UserParent = *OptBB; 4075 // Okay, the CFG is simple enough, try to sink this instruction. 4076 if (TryToSinkInstruction(I, UserParent, TLI)) { 4077 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 4078 MadeIRChange = true; 4079 // We'll add uses of the sunk instruction below, but since 4080 // sinking can expose opportunities for it's *operands* add 4081 // them to the worklist 4082 for (Use &U : I->operands()) 4083 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 4084 Worklist.push(OpI); 4085 } 4086 } 4087 4088 // Now that we have an instruction, try combining it to simplify it. 4089 Builder.SetInsertPoint(I); 4090 Builder.CollectMetadataToCopy( 4091 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4092 4093 #ifndef NDEBUG 4094 std::string OrigI; 4095 #endif 4096 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 4097 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 4098 4099 if (Instruction *Result = visit(*I)) { 4100 ++NumCombined; 4101 // Should we replace the old instruction with a new one? 4102 if (Result != I) { 4103 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 4104 << " New = " << *Result << '\n'); 4105 4106 Result->copyMetadata(*I, 4107 {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4108 // Everything uses the new instruction now. 4109 I->replaceAllUsesWith(Result); 4110 4111 // Move the name to the new instruction first. 4112 Result->takeName(I); 4113 4114 // Insert the new instruction into the basic block... 4115 BasicBlock *InstParent = I->getParent(); 4116 BasicBlock::iterator InsertPos = I->getIterator(); 4117 4118 // Are we replace a PHI with something that isn't a PHI, or vice versa? 4119 if (isa<PHINode>(Result) != isa<PHINode>(I)) { 4120 // We need to fix up the insertion point. 4121 if (isa<PHINode>(I)) // PHI -> Non-PHI 4122 InsertPos = InstParent->getFirstInsertionPt(); 4123 else // Non-PHI -> PHI 4124 InsertPos = InstParent->getFirstNonPHI()->getIterator(); 4125 } 4126 4127 InstParent->getInstList().insert(InsertPos, Result); 4128 4129 // Push the new instruction and any users onto the worklist. 4130 Worklist.pushUsersToWorkList(*Result); 4131 Worklist.push(Result); 4132 4133 eraseInstFromFunction(*I); 4134 } else { 4135 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 4136 << " New = " << *I << '\n'); 4137 4138 // If the instruction was modified, it's possible that it is now dead. 4139 // if so, remove it. 4140 if (isInstructionTriviallyDead(I, &TLI)) { 4141 eraseInstFromFunction(*I); 4142 } else { 4143 Worklist.pushUsersToWorkList(*I); 4144 Worklist.push(I); 4145 } 4146 } 4147 MadeIRChange = true; 4148 } 4149 } 4150 4151 Worklist.zap(); 4152 return MadeIRChange; 4153 } 4154 4155 // Track the scopes used by !alias.scope and !noalias. In a function, a 4156 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 4157 // by both sets. If not, the declaration of the scope can be safely omitted. 4158 // The MDNode of the scope can be omitted as well for the instructions that are 4159 // part of this function. We do not do that at this point, as this might become 4160 // too time consuming to do. 4161 class AliasScopeTracker { 4162 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 4163 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 4164 4165 public: 4166 void analyse(Instruction *I) { 4167 // This seems to be faster than checking 'mayReadOrWriteMemory()'. 4168 if (!I->hasMetadataOtherThanDebugLoc()) 4169 return; 4170 4171 auto Track = [](Metadata *ScopeList, auto &Container) { 4172 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 4173 if (!MDScopeList || !Container.insert(MDScopeList).second) 4174 return; 4175 for (auto &MDOperand : MDScopeList->operands()) 4176 if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 4177 Container.insert(MDScope); 4178 }; 4179 4180 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 4181 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 4182 } 4183 4184 bool isNoAliasScopeDeclDead(Instruction *Inst) { 4185 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 4186 if (!Decl) 4187 return false; 4188 4189 assert(Decl->use_empty() && 4190 "llvm.experimental.noalias.scope.decl in use ?"); 4191 const MDNode *MDSL = Decl->getScopeList(); 4192 assert(MDSL->getNumOperands() == 1 && 4193 "llvm.experimental.noalias.scope should refer to a single scope"); 4194 auto &MDOperand = MDSL->getOperand(0); 4195 if (auto *MD = dyn_cast<MDNode>(MDOperand)) 4196 return !UsedAliasScopesAndLists.contains(MD) || 4197 !UsedNoAliasScopesAndLists.contains(MD); 4198 4199 // Not an MDNode ? throw away. 4200 return true; 4201 } 4202 }; 4203 4204 /// Populate the IC worklist from a function, by walking it in depth-first 4205 /// order and adding all reachable code to the worklist. 4206 /// 4207 /// This has a couple of tricks to make the code faster and more powerful. In 4208 /// particular, we constant fold and DCE instructions as we go, to avoid adding 4209 /// them to the worklist (this significantly speeds up instcombine on code where 4210 /// many instructions are dead or constant). Additionally, if we find a branch 4211 /// whose condition is a known constant, we only visit the reachable successors. 4212 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 4213 const TargetLibraryInfo *TLI, 4214 InstructionWorklist &ICWorklist) { 4215 bool MadeIRChange = false; 4216 SmallPtrSet<BasicBlock *, 32> Visited; 4217 SmallVector<BasicBlock*, 256> Worklist; 4218 Worklist.push_back(&F.front()); 4219 4220 SmallVector<Instruction *, 128> InstrsForInstructionWorklist; 4221 DenseMap<Constant *, Constant *> FoldedConstants; 4222 AliasScopeTracker SeenAliasScopes; 4223 4224 do { 4225 BasicBlock *BB = Worklist.pop_back_val(); 4226 4227 // We have now visited this block! If we've already been here, ignore it. 4228 if (!Visited.insert(BB).second) 4229 continue; 4230 4231 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 4232 // ConstantProp instruction if trivially constant. 4233 if (!Inst.use_empty() && 4234 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0)))) 4235 if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) { 4236 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst 4237 << '\n'); 4238 Inst.replaceAllUsesWith(C); 4239 ++NumConstProp; 4240 if (isInstructionTriviallyDead(&Inst, TLI)) 4241 Inst.eraseFromParent(); 4242 MadeIRChange = true; 4243 continue; 4244 } 4245 4246 // See if we can constant fold its operands. 4247 for (Use &U : Inst.operands()) { 4248 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 4249 continue; 4250 4251 auto *C = cast<Constant>(U); 4252 Constant *&FoldRes = FoldedConstants[C]; 4253 if (!FoldRes) 4254 FoldRes = ConstantFoldConstant(C, DL, TLI); 4255 4256 if (FoldRes != C) { 4257 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst 4258 << "\n Old = " << *C 4259 << "\n New = " << *FoldRes << '\n'); 4260 U = FoldRes; 4261 MadeIRChange = true; 4262 } 4263 } 4264 4265 // Skip processing debug and pseudo intrinsics in InstCombine. Processing 4266 // these call instructions consumes non-trivial amount of time and 4267 // provides no value for the optimization. 4268 if (!Inst.isDebugOrPseudoInst()) { 4269 InstrsForInstructionWorklist.push_back(&Inst); 4270 SeenAliasScopes.analyse(&Inst); 4271 } 4272 } 4273 4274 // Recursively visit successors. If this is a branch or switch on a 4275 // constant, only visit the reachable successor. 4276 Instruction *TI = BB->getTerminator(); 4277 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 4278 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 4279 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 4280 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 4281 Worklist.push_back(ReachableBB); 4282 continue; 4283 } 4284 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 4285 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 4286 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 4287 continue; 4288 } 4289 } 4290 4291 append_range(Worklist, successors(TI)); 4292 } while (!Worklist.empty()); 4293 4294 // Remove instructions inside unreachable blocks. This prevents the 4295 // instcombine code from having to deal with some bad special cases, and 4296 // reduces use counts of instructions. 4297 for (BasicBlock &BB : F) { 4298 if (Visited.count(&BB)) 4299 continue; 4300 4301 unsigned NumDeadInstInBB; 4302 unsigned NumDeadDbgInstInBB; 4303 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 4304 removeAllNonTerminatorAndEHPadInstructions(&BB); 4305 4306 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 4307 NumDeadInst += NumDeadInstInBB; 4308 } 4309 4310 // Once we've found all of the instructions to add to instcombine's worklist, 4311 // add them in reverse order. This way instcombine will visit from the top 4312 // of the function down. This jives well with the way that it adds all uses 4313 // of instructions to the worklist after doing a transformation, thus avoiding 4314 // some N^2 behavior in pathological cases. 4315 ICWorklist.reserve(InstrsForInstructionWorklist.size()); 4316 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) { 4317 // DCE instruction if trivially dead. As we iterate in reverse program 4318 // order here, we will clean up whole chains of dead instructions. 4319 if (isInstructionTriviallyDead(Inst, TLI) || 4320 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 4321 ++NumDeadInst; 4322 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 4323 salvageDebugInfo(*Inst); 4324 Inst->eraseFromParent(); 4325 MadeIRChange = true; 4326 continue; 4327 } 4328 4329 ICWorklist.push(Inst); 4330 } 4331 4332 return MadeIRChange; 4333 } 4334 4335 static bool combineInstructionsOverFunction( 4336 Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, 4337 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 4338 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 4339 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) { 4340 auto &DL = F.getParent()->getDataLayout(); 4341 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 4342 4343 /// Builder - This is an IRBuilder that automatically inserts new 4344 /// instructions into the worklist when they are created. 4345 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 4346 F.getContext(), TargetFolder(DL), 4347 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 4348 Worklist.add(I); 4349 if (auto *Assume = dyn_cast<AssumeInst>(I)) 4350 AC.registerAssumption(Assume); 4351 })); 4352 4353 // Lower dbg.declare intrinsics otherwise their value may be clobbered 4354 // by instcombiner. 4355 bool MadeIRChange = false; 4356 if (ShouldLowerDbgDeclare) 4357 MadeIRChange = LowerDbgDeclare(F); 4358 4359 // Iterate while there is work to do. 4360 unsigned Iteration = 0; 4361 while (true) { 4362 ++NumWorklistIterations; 4363 ++Iteration; 4364 4365 if (Iteration > InfiniteLoopDetectionThreshold) { 4366 report_fatal_error( 4367 "Instruction Combining seems stuck in an infinite loop after " + 4368 Twine(InfiniteLoopDetectionThreshold) + " iterations."); 4369 } 4370 4371 if (Iteration > MaxIterations) { 4372 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 4373 << " on " << F.getName() 4374 << " reached; stopping before reaching a fixpoint\n"); 4375 break; 4376 } 4377 4378 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 4379 << F.getName() << "\n"); 4380 4381 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 4382 4383 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 4384 ORE, BFI, PSI, DL, LI); 4385 IC.MaxArraySizeForCombine = MaxArraySize; 4386 4387 if (!IC.run()) 4388 break; 4389 4390 MadeIRChange = true; 4391 } 4392 4393 return MadeIRChange; 4394 } 4395 4396 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {} 4397 4398 InstCombinePass::InstCombinePass(unsigned MaxIterations) 4399 : MaxIterations(MaxIterations) {} 4400 4401 PreservedAnalyses InstCombinePass::run(Function &F, 4402 FunctionAnalysisManager &AM) { 4403 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4404 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4405 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4406 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4407 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 4408 4409 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 4410 4411 auto *AA = &AM.getResult<AAManager>(F); 4412 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 4413 ProfileSummaryInfo *PSI = 4414 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 4415 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 4416 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 4417 4418 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4419 BFI, PSI, MaxIterations, LI)) 4420 // No changes, all analyses are preserved. 4421 return PreservedAnalyses::all(); 4422 4423 // Mark all the analyses that instcombine updates as preserved. 4424 PreservedAnalyses PA; 4425 PA.preserveSet<CFGAnalyses>(); 4426 return PA; 4427 } 4428 4429 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 4430 AU.setPreservesCFG(); 4431 AU.addRequired<AAResultsWrapperPass>(); 4432 AU.addRequired<AssumptionCacheTracker>(); 4433 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4434 AU.addRequired<TargetTransformInfoWrapperPass>(); 4435 AU.addRequired<DominatorTreeWrapperPass>(); 4436 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4437 AU.addPreserved<DominatorTreeWrapperPass>(); 4438 AU.addPreserved<AAResultsWrapperPass>(); 4439 AU.addPreserved<BasicAAWrapperPass>(); 4440 AU.addPreserved<GlobalsAAWrapperPass>(); 4441 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 4442 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 4443 } 4444 4445 bool InstructionCombiningPass::runOnFunction(Function &F) { 4446 if (skipFunction(F)) 4447 return false; 4448 4449 // Required analyses. 4450 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4451 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4452 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 4453 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4454 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4455 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4456 4457 // Optional analyses. 4458 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 4459 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 4460 ProfileSummaryInfo *PSI = 4461 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 4462 BlockFrequencyInfo *BFI = 4463 (PSI && PSI->hasProfileSummary()) ? 4464 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 4465 nullptr; 4466 4467 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4468 BFI, PSI, MaxIterations, LI); 4469 } 4470 4471 char InstructionCombiningPass::ID = 0; 4472 4473 InstructionCombiningPass::InstructionCombiningPass() 4474 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) { 4475 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4476 } 4477 4478 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations) 4479 : FunctionPass(ID), MaxIterations(MaxIterations) { 4480 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4481 } 4482 4483 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 4484 "Combine redundant instructions", false, false) 4485 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4486 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4487 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4488 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4489 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4490 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4491 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 4492 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 4493 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 4494 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 4495 "Combine redundant instructions", false, false) 4496 4497 // Initialization Routines 4498 void llvm::initializeInstCombine(PassRegistry &Registry) { 4499 initializeInstructionCombiningPassPass(Registry); 4500 } 4501 4502 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 4503 initializeInstructionCombiningPassPass(*unwrap(R)); 4504 } 4505 4506 FunctionPass *llvm::createInstructionCombiningPass() { 4507 return new InstructionCombiningPass(); 4508 } 4509 4510 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) { 4511 return new InstructionCombiningPass(MaxIterations); 4512 } 4513 4514 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 4515 unwrap(PM)->add(createInstructionCombiningPass()); 4516 } 4517