1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // InstructionCombining - Combine instructions to form fewer, simple 11 // instructions. This pass does not modify the CFG. This pass is where 12 // algebraic simplification happens. 13 // 14 // This pass combines things like: 15 // %Y = add i32 %X, 1 16 // %Z = add i32 %Y, 1 17 // into: 18 // %Z = add i32 %X, 2 19 // 20 // This is a simple worklist driven algorithm. 21 // 22 // This pass guarantees that the following canonicalizations are performed on 23 // the program: 24 // 1. If a binary operator has a constant operand, it is moved to the RHS 25 // 2. Bitwise operators with constant operands are always grouped so that 26 // shifts are performed first, then or's, then and's, then xor's. 27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 28 // 4. All cmp instructions on boolean values are replaced with logical ops 29 // 5. add X, X is represented as (X*2) => (X << 1) 30 // 6. Multiplies with a power-of-two constant argument are transformed into 31 // shifts. 32 // ... etc. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/Transforms/Scalar.h" 37 #include "InstCombine.h" 38 #include "llvm-c/Initialization.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/Statistic.h" 41 #include "llvm/ADT/StringSwitch.h" 42 #include "llvm/Analysis/ConstantFolding.h" 43 #include "llvm/Analysis/InstructionSimplify.h" 44 #include "llvm/Analysis/MemoryBuiltins.h" 45 #include "llvm/IR/CFG.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/GetElementPtrTypeIterator.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/PatternMatch.h" 50 #include "llvm/IR/ValueHandle.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Target/TargetLibraryInfo.h" 54 #include "llvm/Transforms/Utils/Local.h" 55 #include <algorithm> 56 #include <climits> 57 using namespace llvm; 58 using namespace llvm::PatternMatch; 59 60 #define DEBUG_TYPE "instcombine" 61 62 STATISTIC(NumCombined , "Number of insts combined"); 63 STATISTIC(NumConstProp, "Number of constant folds"); 64 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 65 STATISTIC(NumSunkInst , "Number of instructions sunk"); 66 STATISTIC(NumExpand, "Number of expansions"); 67 STATISTIC(NumFactor , "Number of factorizations"); 68 STATISTIC(NumReassoc , "Number of reassociations"); 69 70 static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 71 cl::init(false), 72 cl::desc("Enable unsafe double to float " 73 "shrinking for math lib calls")); 74 75 // Initialization Routines 76 void llvm::initializeInstCombine(PassRegistry &Registry) { 77 initializeInstCombinerPass(Registry); 78 } 79 80 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 81 initializeInstCombine(*unwrap(R)); 82 } 83 84 char InstCombiner::ID = 0; 85 INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine", 86 "Combine redundant instructions", false, false) 87 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 88 INITIALIZE_PASS_END(InstCombiner, "instcombine", 89 "Combine redundant instructions", false, false) 90 91 void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const { 92 AU.setPreservesCFG(); 93 AU.addRequired<TargetLibraryInfo>(); 94 } 95 96 97 Value *InstCombiner::EmitGEPOffset(User *GEP) { 98 return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP); 99 } 100 101 /// ShouldChangeType - Return true if it is desirable to convert a computation 102 /// from 'From' to 'To'. We don't want to convert from a legal to an illegal 103 /// type for example, or from a smaller to a larger illegal type. 104 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const { 105 assert(From->isIntegerTy() && To->isIntegerTy()); 106 107 // If we don't have DL, we don't know if the source/dest are legal. 108 if (!DL) return false; 109 110 unsigned FromWidth = From->getPrimitiveSizeInBits(); 111 unsigned ToWidth = To->getPrimitiveSizeInBits(); 112 bool FromLegal = DL->isLegalInteger(FromWidth); 113 bool ToLegal = DL->isLegalInteger(ToWidth); 114 115 // If this is a legal integer from type, and the result would be an illegal 116 // type, don't do the transformation. 117 if (FromLegal && !ToLegal) 118 return false; 119 120 // Otherwise, if both are illegal, do not increase the size of the result. We 121 // do allow things like i160 -> i64, but not i64 -> i160. 122 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 123 return false; 124 125 return true; 126 } 127 128 // Return true, if No Signed Wrap should be maintained for I. 129 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 130 // where both B and C should be ConstantInts, results in a constant that does 131 // not overflow. This function only handles the Add and Sub opcodes. For 132 // all other opcodes, the function conservatively returns false. 133 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 134 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 135 if (!OBO || !OBO->hasNoSignedWrap()) { 136 return false; 137 } 138 139 // We reason about Add and Sub Only. 140 Instruction::BinaryOps Opcode = I.getOpcode(); 141 if (Opcode != Instruction::Add && 142 Opcode != Instruction::Sub) { 143 return false; 144 } 145 146 ConstantInt *CB = dyn_cast<ConstantInt>(B); 147 ConstantInt *CC = dyn_cast<ConstantInt>(C); 148 149 if (!CB || !CC) { 150 return false; 151 } 152 153 const APInt &BVal = CB->getValue(); 154 const APInt &CVal = CC->getValue(); 155 bool Overflow = false; 156 157 if (Opcode == Instruction::Add) { 158 BVal.sadd_ov(CVal, Overflow); 159 } else { 160 BVal.ssub_ov(CVal, Overflow); 161 } 162 163 return !Overflow; 164 } 165 166 /// Conservatively clears subclassOptionalData after a reassociation or 167 /// commutation. We preserve fast-math flags when applicable as they can be 168 /// preserved. 169 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 170 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 171 if (!FPMO) { 172 I.clearSubclassOptionalData(); 173 return; 174 } 175 176 FastMathFlags FMF = I.getFastMathFlags(); 177 I.clearSubclassOptionalData(); 178 I.setFastMathFlags(FMF); 179 } 180 181 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for 182 /// operators which are associative or commutative: 183 // 184 // Commutative operators: 185 // 186 // 1. Order operands such that they are listed from right (least complex) to 187 // left (most complex). This puts constants before unary operators before 188 // binary operators. 189 // 190 // Associative operators: 191 // 192 // 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 193 // 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 194 // 195 // Associative and commutative operators: 196 // 197 // 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 198 // 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 199 // 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 200 // if C1 and C2 are constants. 201 // 202 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 203 Instruction::BinaryOps Opcode = I.getOpcode(); 204 bool Changed = false; 205 206 do { 207 // Order operands such that they are listed from right (least complex) to 208 // left (most complex). This puts constants before unary operators before 209 // binary operators. 210 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 211 getComplexity(I.getOperand(1))) 212 Changed = !I.swapOperands(); 213 214 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 215 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 216 217 if (I.isAssociative()) { 218 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 219 if (Op0 && Op0->getOpcode() == Opcode) { 220 Value *A = Op0->getOperand(0); 221 Value *B = Op0->getOperand(1); 222 Value *C = I.getOperand(1); 223 224 // Does "B op C" simplify? 225 if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) { 226 // It simplifies to V. Form "A op V". 227 I.setOperand(0, A); 228 I.setOperand(1, V); 229 // Conservatively clear the optional flags, since they may not be 230 // preserved by the reassociation. 231 if (MaintainNoSignedWrap(I, B, C) && 232 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { 233 // Note: this is only valid because SimplifyBinOp doesn't look at 234 // the operands to Op0. 235 I.clearSubclassOptionalData(); 236 I.setHasNoSignedWrap(true); 237 } else { 238 ClearSubclassDataAfterReassociation(I); 239 } 240 241 Changed = true; 242 ++NumReassoc; 243 continue; 244 } 245 } 246 247 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 248 if (Op1 && Op1->getOpcode() == Opcode) { 249 Value *A = I.getOperand(0); 250 Value *B = Op1->getOperand(0); 251 Value *C = Op1->getOperand(1); 252 253 // Does "A op B" simplify? 254 if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) { 255 // It simplifies to V. Form "V op C". 256 I.setOperand(0, V); 257 I.setOperand(1, C); 258 // Conservatively clear the optional flags, since they may not be 259 // preserved by the reassociation. 260 ClearSubclassDataAfterReassociation(I); 261 Changed = true; 262 ++NumReassoc; 263 continue; 264 } 265 } 266 } 267 268 if (I.isAssociative() && I.isCommutative()) { 269 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 270 if (Op0 && Op0->getOpcode() == Opcode) { 271 Value *A = Op0->getOperand(0); 272 Value *B = Op0->getOperand(1); 273 Value *C = I.getOperand(1); 274 275 // Does "C op A" simplify? 276 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) { 277 // It simplifies to V. Form "V op B". 278 I.setOperand(0, V); 279 I.setOperand(1, B); 280 // Conservatively clear the optional flags, since they may not be 281 // preserved by the reassociation. 282 ClearSubclassDataAfterReassociation(I); 283 Changed = true; 284 ++NumReassoc; 285 continue; 286 } 287 } 288 289 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 290 if (Op1 && Op1->getOpcode() == Opcode) { 291 Value *A = I.getOperand(0); 292 Value *B = Op1->getOperand(0); 293 Value *C = Op1->getOperand(1); 294 295 // Does "C op A" simplify? 296 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) { 297 // It simplifies to V. Form "B op V". 298 I.setOperand(0, B); 299 I.setOperand(1, V); 300 // Conservatively clear the optional flags, since they may not be 301 // preserved by the reassociation. 302 ClearSubclassDataAfterReassociation(I); 303 Changed = true; 304 ++NumReassoc; 305 continue; 306 } 307 } 308 309 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 310 // if C1 and C2 are constants. 311 if (Op0 && Op1 && 312 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 313 isa<Constant>(Op0->getOperand(1)) && 314 isa<Constant>(Op1->getOperand(1)) && 315 Op0->hasOneUse() && Op1->hasOneUse()) { 316 Value *A = Op0->getOperand(0); 317 Constant *C1 = cast<Constant>(Op0->getOperand(1)); 318 Value *B = Op1->getOperand(0); 319 Constant *C2 = cast<Constant>(Op1->getOperand(1)); 320 321 Constant *Folded = ConstantExpr::get(Opcode, C1, C2); 322 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B); 323 if (isa<FPMathOperator>(New)) { 324 FastMathFlags Flags = I.getFastMathFlags(); 325 Flags &= Op0->getFastMathFlags(); 326 Flags &= Op1->getFastMathFlags(); 327 New->setFastMathFlags(Flags); 328 } 329 InsertNewInstWith(New, I); 330 New->takeName(Op1); 331 I.setOperand(0, New); 332 I.setOperand(1, Folded); 333 // Conservatively clear the optional flags, since they may not be 334 // preserved by the reassociation. 335 ClearSubclassDataAfterReassociation(I); 336 337 Changed = true; 338 continue; 339 } 340 } 341 342 // No further simplifications. 343 return Changed; 344 } while (1); 345 } 346 347 /// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to 348 /// "(X LOp Y) ROp (X LOp Z)". 349 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp, 350 Instruction::BinaryOps ROp) { 351 switch (LOp) { 352 default: 353 return false; 354 355 case Instruction::And: 356 // And distributes over Or and Xor. 357 switch (ROp) { 358 default: 359 return false; 360 case Instruction::Or: 361 case Instruction::Xor: 362 return true; 363 } 364 365 case Instruction::Mul: 366 // Multiplication distributes over addition and subtraction. 367 switch (ROp) { 368 default: 369 return false; 370 case Instruction::Add: 371 case Instruction::Sub: 372 return true; 373 } 374 375 case Instruction::Or: 376 // Or distributes over And. 377 switch (ROp) { 378 default: 379 return false; 380 case Instruction::And: 381 return true; 382 } 383 } 384 } 385 386 /// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to 387 /// "(X ROp Z) LOp (Y ROp Z)". 388 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp, 389 Instruction::BinaryOps ROp) { 390 if (Instruction::isCommutative(ROp)) 391 return LeftDistributesOverRight(ROp, LOp); 392 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 393 // but this requires knowing that the addition does not overflow and other 394 // such subtleties. 395 return false; 396 } 397 398 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations 399 /// which some other binary operation distributes over either by factorizing 400 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this 401 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is 402 /// a win). Returns the simplified value, or null if it didn't simplify. 403 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 404 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 405 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 406 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 407 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op 408 409 // Factorization. 410 if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) { 411 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 412 // a common term. 413 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1); 414 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1); 415 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 416 417 // Does "X op' Y" always equal "Y op' X"? 418 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 419 420 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 421 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 422 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 423 // commutative case, "(A op' B) op (C op' A)"? 424 if (A == C || (InnerCommutative && A == D)) { 425 if (A != C) 426 std::swap(C, D); 427 // Consider forming "A op' (B op D)". 428 // If "B op D" simplifies then it can be formed with no cost. 429 Value *V = SimplifyBinOp(TopLevelOpcode, B, D, DL); 430 // If "B op D" doesn't simplify then only go on if both of the existing 431 // operations "A op' B" and "C op' D" will be zapped as no longer used. 432 if (!V && Op0->hasOneUse() && Op1->hasOneUse()) 433 V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName()); 434 if (V) { 435 ++NumFactor; 436 V = Builder->CreateBinOp(InnerOpcode, A, V); 437 V->takeName(&I); 438 return V; 439 } 440 } 441 442 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 443 if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 444 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 445 // commutative case, "(A op' B) op (B op' D)"? 446 if (B == D || (InnerCommutative && B == C)) { 447 if (B != D) 448 std::swap(C, D); 449 // Consider forming "(A op C) op' B". 450 // If "A op C" simplifies then it can be formed with no cost. 451 Value *V = SimplifyBinOp(TopLevelOpcode, A, C, DL); 452 // If "A op C" doesn't simplify then only go on if both of the existing 453 // operations "A op' B" and "C op' D" will be zapped as no longer used. 454 if (!V && Op0->hasOneUse() && Op1->hasOneUse()) 455 V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName()); 456 if (V) { 457 ++NumFactor; 458 V = Builder->CreateBinOp(InnerOpcode, V, B); 459 V->takeName(&I); 460 return V; 461 } 462 } 463 } 464 465 // Expansion. 466 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 467 // The instruction has the form "(A op' B) op C". See if expanding it out 468 // to "(A op C) op' (B op C)" results in simplifications. 469 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 470 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 471 472 // Do "A op C" and "B op C" both simplify? 473 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL)) 474 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) { 475 // They do! Return "L op' R". 476 ++NumExpand; 477 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 478 if ((L == A && R == B) || 479 (Instruction::isCommutative(InnerOpcode) && L == B && R == A)) 480 return Op0; 481 // Otherwise return "L op' R" if it simplifies. 482 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL)) 483 return V; 484 // Otherwise, create a new instruction. 485 C = Builder->CreateBinOp(InnerOpcode, L, R); 486 C->takeName(&I); 487 return C; 488 } 489 } 490 491 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 492 // The instruction has the form "A op (B op' C)". See if expanding it out 493 // to "(A op B) op' (A op C)" results in simplifications. 494 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 495 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 496 497 // Do "A op B" and "A op C" both simplify? 498 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL)) 499 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) { 500 // They do! Return "L op' R". 501 ++NumExpand; 502 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 503 if ((L == B && R == C) || 504 (Instruction::isCommutative(InnerOpcode) && L == C && R == B)) 505 return Op1; 506 // Otherwise return "L op' R" if it simplifies. 507 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL)) 508 return V; 509 // Otherwise, create a new instruction. 510 A = Builder->CreateBinOp(InnerOpcode, L, R); 511 A->takeName(&I); 512 return A; 513 } 514 } 515 516 return nullptr; 517 } 518 519 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction 520 // if the LHS is a constant zero (which is the 'negate' form). 521 // 522 Value *InstCombiner::dyn_castNegVal(Value *V) const { 523 if (BinaryOperator::isNeg(V)) 524 return BinaryOperator::getNegArgument(V); 525 526 // Constants can be considered to be negated values if they can be folded. 527 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 528 return ConstantExpr::getNeg(C); 529 530 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 531 if (C->getType()->getElementType()->isIntegerTy()) 532 return ConstantExpr::getNeg(C); 533 534 return nullptr; 535 } 536 537 // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the 538 // instruction if the LHS is a constant negative zero (which is the 'negate' 539 // form). 540 // 541 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const { 542 if (BinaryOperator::isFNeg(V, IgnoreZeroSign)) 543 return BinaryOperator::getFNegArgument(V); 544 545 // Constants can be considered to be negated values if they can be folded. 546 if (ConstantFP *C = dyn_cast<ConstantFP>(V)) 547 return ConstantExpr::getFNeg(C); 548 549 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 550 if (C->getType()->getElementType()->isFloatingPointTy()) 551 return ConstantExpr::getFNeg(C); 552 553 return nullptr; 554 } 555 556 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO, 557 InstCombiner *IC) { 558 if (CastInst *CI = dyn_cast<CastInst>(&I)) { 559 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType()); 560 } 561 562 // Figure out if the constant is the left or the right argument. 563 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 564 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 565 566 if (Constant *SOC = dyn_cast<Constant>(SO)) { 567 if (ConstIsRHS) 568 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 569 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 570 } 571 572 Value *Op0 = SO, *Op1 = ConstOperand; 573 if (!ConstIsRHS) 574 std::swap(Op0, Op1); 575 576 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) { 577 Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1, 578 SO->getName()+".op"); 579 Instruction *FPInst = dyn_cast<Instruction>(RI); 580 if (FPInst && isa<FPMathOperator>(FPInst)) 581 FPInst->copyFastMathFlags(BO); 582 return RI; 583 } 584 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I)) 585 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, 586 SO->getName()+".cmp"); 587 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I)) 588 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, 589 SO->getName()+".cmp"); 590 llvm_unreachable("Unknown binary instruction type!"); 591 } 592 593 // FoldOpIntoSelect - Given an instruction with a select as one operand and a 594 // constant as the other operand, try to fold the binary operator into the 595 // select arguments. This also works for Cast instructions, which obviously do 596 // not have a second operand. 597 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 598 // Don't modify shared select instructions 599 if (!SI->hasOneUse()) return nullptr; 600 Value *TV = SI->getOperand(1); 601 Value *FV = SI->getOperand(2); 602 603 if (isa<Constant>(TV) || isa<Constant>(FV)) { 604 // Bool selects with constant operands can be folded to logical ops. 605 if (SI->getType()->isIntegerTy(1)) return nullptr; 606 607 // If it's a bitcast involving vectors, make sure it has the same number of 608 // elements on both sides. 609 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) { 610 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 611 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 612 613 // Verify that either both or neither are vectors. 614 if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr; 615 // If vectors, verify that they have the same number of elements. 616 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 617 return nullptr; 618 } 619 620 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this); 621 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this); 622 623 return SelectInst::Create(SI->getCondition(), 624 SelectTrueVal, SelectFalseVal); 625 } 626 return nullptr; 627 } 628 629 630 /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which 631 /// has a PHI node as operand #0, see if we can fold the instruction into the 632 /// PHI (which is only possible if all operands to the PHI are constants). 633 /// 634 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { 635 PHINode *PN = cast<PHINode>(I.getOperand(0)); 636 unsigned NumPHIValues = PN->getNumIncomingValues(); 637 if (NumPHIValues == 0) 638 return nullptr; 639 640 // We normally only transform phis with a single use. However, if a PHI has 641 // multiple uses and they are all the same operation, we can fold *all* of the 642 // uses into the PHI. 643 if (!PN->hasOneUse()) { 644 // Walk the use list for the instruction, comparing them to I. 645 for (User *U : PN->users()) { 646 Instruction *UI = cast<Instruction>(U); 647 if (UI != &I && !I.isIdenticalTo(UI)) 648 return nullptr; 649 } 650 // Otherwise, we can replace *all* users with the new PHI we form. 651 } 652 653 // Check to see if all of the operands of the PHI are simple constants 654 // (constantint/constantfp/undef). If there is one non-constant value, 655 // remember the BB it is in. If there is more than one or if *it* is a PHI, 656 // bail out. We don't do arbitrary constant expressions here because moving 657 // their computation can be expensive without a cost model. 658 BasicBlock *NonConstBB = nullptr; 659 for (unsigned i = 0; i != NumPHIValues; ++i) { 660 Value *InVal = PN->getIncomingValue(i); 661 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 662 continue; 663 664 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 665 if (NonConstBB) return nullptr; // More than one non-const value. 666 667 NonConstBB = PN->getIncomingBlock(i); 668 669 // If the InVal is an invoke at the end of the pred block, then we can't 670 // insert a computation after it without breaking the edge. 671 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal)) 672 if (II->getParent() == NonConstBB) 673 return nullptr; 674 675 // If the incoming non-constant value is in I's block, we will remove one 676 // instruction, but insert another equivalent one, leading to infinite 677 // instcombine. 678 if (NonConstBB == I.getParent()) 679 return nullptr; 680 } 681 682 // If there is exactly one non-constant value, we can insert a copy of the 683 // operation in that block. However, if this is a critical edge, we would be 684 // inserting the computation one some other paths (e.g. inside a loop). Only 685 // do this if the pred block is unconditionally branching into the phi block. 686 if (NonConstBB != nullptr) { 687 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 688 if (!BI || !BI->isUnconditional()) return nullptr; 689 } 690 691 // Okay, we can do the transformation: create the new PHI node. 692 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 693 InsertNewInstBefore(NewPN, *PN); 694 NewPN->takeName(PN); 695 696 // If we are going to have to insert a new computation, do so right before the 697 // predecessors terminator. 698 if (NonConstBB) 699 Builder->SetInsertPoint(NonConstBB->getTerminator()); 700 701 // Next, add all of the operands to the PHI. 702 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 703 // We only currently try to fold the condition of a select when it is a phi, 704 // not the true/false values. 705 Value *TrueV = SI->getTrueValue(); 706 Value *FalseV = SI->getFalseValue(); 707 BasicBlock *PhiTransBB = PN->getParent(); 708 for (unsigned i = 0; i != NumPHIValues; ++i) { 709 BasicBlock *ThisBB = PN->getIncomingBlock(i); 710 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 711 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 712 Value *InV = nullptr; 713 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 714 // even if currently isNullValue gives false. 715 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 716 if (InC && !isa<ConstantExpr>(InC)) 717 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 718 else 719 InV = Builder->CreateSelect(PN->getIncomingValue(i), 720 TrueVInPred, FalseVInPred, "phitmp"); 721 NewPN->addIncoming(InV, ThisBB); 722 } 723 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 724 Constant *C = cast<Constant>(I.getOperand(1)); 725 for (unsigned i = 0; i != NumPHIValues; ++i) { 726 Value *InV = nullptr; 727 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 728 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 729 else if (isa<ICmpInst>(CI)) 730 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 731 C, "phitmp"); 732 else 733 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 734 C, "phitmp"); 735 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 736 } 737 } else if (I.getNumOperands() == 2) { 738 Constant *C = cast<Constant>(I.getOperand(1)); 739 for (unsigned i = 0; i != NumPHIValues; ++i) { 740 Value *InV = nullptr; 741 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 742 InV = ConstantExpr::get(I.getOpcode(), InC, C); 743 else 744 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 745 PN->getIncomingValue(i), C, "phitmp"); 746 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 747 } 748 } else { 749 CastInst *CI = cast<CastInst>(&I); 750 Type *RetTy = CI->getType(); 751 for (unsigned i = 0; i != NumPHIValues; ++i) { 752 Value *InV; 753 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 754 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 755 else 756 InV = Builder->CreateCast(CI->getOpcode(), 757 PN->getIncomingValue(i), I.getType(), "phitmp"); 758 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 759 } 760 } 761 762 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 763 Instruction *User = cast<Instruction>(*UI++); 764 if (User == &I) continue; 765 ReplaceInstUsesWith(*User, NewPN); 766 EraseInstFromFunction(*User); 767 } 768 return ReplaceInstUsesWith(I, NewPN); 769 } 770 771 /// FindElementAtOffset - Given a pointer type and a constant offset, determine 772 /// whether or not there is a sequence of GEP indices into the pointed type that 773 /// will land us at the specified offset. If so, fill them into NewIndices and 774 /// return the resultant element type, otherwise return null. 775 Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset, 776 SmallVectorImpl<Value*> &NewIndices) { 777 assert(PtrTy->isPtrOrPtrVectorTy()); 778 779 if (!DL) 780 return nullptr; 781 782 Type *Ty = PtrTy->getPointerElementType(); 783 if (!Ty->isSized()) 784 return nullptr; 785 786 // Start with the index over the outer type. Note that the type size 787 // might be zero (even if the offset isn't zero) if the indexed type 788 // is something like [0 x {int, int}] 789 Type *IntPtrTy = DL->getIntPtrType(PtrTy); 790 int64_t FirstIdx = 0; 791 if (int64_t TySize = DL->getTypeAllocSize(Ty)) { 792 FirstIdx = Offset/TySize; 793 Offset -= FirstIdx*TySize; 794 795 // Handle hosts where % returns negative instead of values [0..TySize). 796 if (Offset < 0) { 797 --FirstIdx; 798 Offset += TySize; 799 assert(Offset >= 0); 800 } 801 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 802 } 803 804 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx)); 805 806 // Index into the types. If we fail, set OrigBase to null. 807 while (Offset) { 808 // Indexing into tail padding between struct/array elements. 809 if (uint64_t(Offset*8) >= DL->getTypeSizeInBits(Ty)) 810 return nullptr; 811 812 if (StructType *STy = dyn_cast<StructType>(Ty)) { 813 const StructLayout *SL = DL->getStructLayout(STy); 814 assert(Offset < (int64_t)SL->getSizeInBytes() && 815 "Offset must stay within the indexed type"); 816 817 unsigned Elt = SL->getElementContainingOffset(Offset); 818 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 819 Elt)); 820 821 Offset -= SL->getElementOffset(Elt); 822 Ty = STy->getElementType(Elt); 823 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 824 uint64_t EltSize = DL->getTypeAllocSize(AT->getElementType()); 825 assert(EltSize && "Cannot index into a zero-sized array"); 826 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize)); 827 Offset %= EltSize; 828 Ty = AT->getElementType(); 829 } else { 830 // Otherwise, we can't index into the middle of this atomic type, bail. 831 return nullptr; 832 } 833 } 834 835 return Ty; 836 } 837 838 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 839 // If this GEP has only 0 indices, it is the same pointer as 840 // Src. If Src is not a trivial GEP too, don't combine 841 // the indices. 842 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 843 !Src.hasOneUse()) 844 return false; 845 return true; 846 } 847 848 /// Descale - Return a value X such that Val = X * Scale, or null if none. If 849 /// the multiplication is known not to overflow then NoSignedWrap is set. 850 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 851 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 852 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 853 Scale.getBitWidth() && "Scale not compatible with value!"); 854 855 // If Val is zero or Scale is one then Val = Val * Scale. 856 if (match(Val, m_Zero()) || Scale == 1) { 857 NoSignedWrap = true; 858 return Val; 859 } 860 861 // If Scale is zero then it does not divide Val. 862 if (Scale.isMinValue()) 863 return nullptr; 864 865 // Look through chains of multiplications, searching for a constant that is 866 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 867 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 868 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 869 // down from Val: 870 // 871 // Val = M1 * X || Analysis starts here and works down 872 // M1 = M2 * Y || Doesn't descend into terms with more 873 // M2 = Z * 4 \/ than one use 874 // 875 // Then to modify a term at the bottom: 876 // 877 // Val = M1 * X 878 // M1 = Z * Y || Replaced M2 with Z 879 // 880 // Then to work back up correcting nsw flags. 881 882 // Op - the term we are currently analyzing. Starts at Val then drills down. 883 // Replaced with its descaled value before exiting from the drill down loop. 884 Value *Op = Val; 885 886 // Parent - initially null, but after drilling down notes where Op came from. 887 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 888 // 0'th operand of Val. 889 std::pair<Instruction*, unsigned> Parent; 890 891 // RequireNoSignedWrap - Set if the transform requires a descaling at deeper 892 // levels that doesn't overflow. 893 bool RequireNoSignedWrap = false; 894 895 // logScale - log base 2 of the scale. Negative if not a power of 2. 896 int32_t logScale = Scale.exactLogBase2(); 897 898 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 899 900 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 901 // If Op is a constant divisible by Scale then descale to the quotient. 902 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 903 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 904 if (!Remainder.isMinValue()) 905 // Not divisible by Scale. 906 return nullptr; 907 // Replace with the quotient in the parent. 908 Op = ConstantInt::get(CI->getType(), Quotient); 909 NoSignedWrap = true; 910 break; 911 } 912 913 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 914 915 if (BO->getOpcode() == Instruction::Mul) { 916 // Multiplication. 917 NoSignedWrap = BO->hasNoSignedWrap(); 918 if (RequireNoSignedWrap && !NoSignedWrap) 919 return nullptr; 920 921 // There are three cases for multiplication: multiplication by exactly 922 // the scale, multiplication by a constant different to the scale, and 923 // multiplication by something else. 924 Value *LHS = BO->getOperand(0); 925 Value *RHS = BO->getOperand(1); 926 927 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 928 // Multiplication by a constant. 929 if (CI->getValue() == Scale) { 930 // Multiplication by exactly the scale, replace the multiplication 931 // by its left-hand side in the parent. 932 Op = LHS; 933 break; 934 } 935 936 // Otherwise drill down into the constant. 937 if (!Op->hasOneUse()) 938 return nullptr; 939 940 Parent = std::make_pair(BO, 1); 941 continue; 942 } 943 944 // Multiplication by something else. Drill down into the left-hand side 945 // since that's where the reassociate pass puts the good stuff. 946 if (!Op->hasOneUse()) 947 return nullptr; 948 949 Parent = std::make_pair(BO, 0); 950 continue; 951 } 952 953 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 954 isa<ConstantInt>(BO->getOperand(1))) { 955 // Multiplication by a power of 2. 956 NoSignedWrap = BO->hasNoSignedWrap(); 957 if (RequireNoSignedWrap && !NoSignedWrap) 958 return nullptr; 959 960 Value *LHS = BO->getOperand(0); 961 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 962 getLimitedValue(Scale.getBitWidth()); 963 // Op = LHS << Amt. 964 965 if (Amt == logScale) { 966 // Multiplication by exactly the scale, replace the multiplication 967 // by its left-hand side in the parent. 968 Op = LHS; 969 break; 970 } 971 if (Amt < logScale || !Op->hasOneUse()) 972 return nullptr; 973 974 // Multiplication by more than the scale. Reduce the multiplying amount 975 // by the scale in the parent. 976 Parent = std::make_pair(BO, 1); 977 Op = ConstantInt::get(BO->getType(), Amt - logScale); 978 break; 979 } 980 } 981 982 if (!Op->hasOneUse()) 983 return nullptr; 984 985 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 986 if (Cast->getOpcode() == Instruction::SExt) { 987 // Op is sign-extended from a smaller type, descale in the smaller type. 988 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 989 APInt SmallScale = Scale.trunc(SmallSize); 990 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 991 // descale Op as (sext Y) * Scale. In order to have 992 // sext (Y * SmallScale) = (sext Y) * Scale 993 // some conditions need to hold however: SmallScale must sign-extend to 994 // Scale and the multiplication Y * SmallScale should not overflow. 995 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 996 // SmallScale does not sign-extend to Scale. 997 return nullptr; 998 assert(SmallScale.exactLogBase2() == logScale); 999 // Require that Y * SmallScale must not overflow. 1000 RequireNoSignedWrap = true; 1001 1002 // Drill down through the cast. 1003 Parent = std::make_pair(Cast, 0); 1004 Scale = SmallScale; 1005 continue; 1006 } 1007 1008 if (Cast->getOpcode() == Instruction::Trunc) { 1009 // Op is truncated from a larger type, descale in the larger type. 1010 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1011 // trunc (Y * sext Scale) = (trunc Y) * Scale 1012 // always holds. However (trunc Y) * Scale may overflow even if 1013 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1014 // from this point up in the expression (see later). 1015 if (RequireNoSignedWrap) 1016 return nullptr; 1017 1018 // Drill down through the cast. 1019 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1020 Parent = std::make_pair(Cast, 0); 1021 Scale = Scale.sext(LargeSize); 1022 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1023 logScale = -1; 1024 assert(Scale.exactLogBase2() == logScale); 1025 continue; 1026 } 1027 } 1028 1029 // Unsupported expression, bail out. 1030 return nullptr; 1031 } 1032 1033 // We know that we can successfully descale, so from here on we can safely 1034 // modify the IR. Op holds the descaled version of the deepest term in the 1035 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1036 // not to overflow. 1037 1038 if (!Parent.first) 1039 // The expression only had one term. 1040 return Op; 1041 1042 // Rewrite the parent using the descaled version of its operand. 1043 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1044 assert(Op != Parent.first->getOperand(Parent.second) && 1045 "Descaling was a no-op?"); 1046 Parent.first->setOperand(Parent.second, Op); 1047 Worklist.Add(Parent.first); 1048 1049 // Now work back up the expression correcting nsw flags. The logic is based 1050 // on the following observation: if X * Y is known not to overflow as a signed 1051 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1052 // then X * Z will not overflow as a signed multiplication either. As we work 1053 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1054 // current level has strictly smaller absolute value than the original. 1055 Instruction *Ancestor = Parent.first; 1056 do { 1057 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1058 // If the multiplication wasn't nsw then we can't say anything about the 1059 // value of the descaled multiplication, and we have to clear nsw flags 1060 // from this point on up. 1061 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1062 NoSignedWrap &= OpNoSignedWrap; 1063 if (NoSignedWrap != OpNoSignedWrap) { 1064 BO->setHasNoSignedWrap(NoSignedWrap); 1065 Worklist.Add(Ancestor); 1066 } 1067 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1068 // The fact that the descaled input to the trunc has smaller absolute 1069 // value than the original input doesn't tell us anything useful about 1070 // the absolute values of the truncations. 1071 NoSignedWrap = false; 1072 } 1073 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1074 "Failed to keep proper track of nsw flags while drilling down?"); 1075 1076 if (Ancestor == Val) 1077 // Got to the top, all done! 1078 return Val; 1079 1080 // Move up one level in the expression. 1081 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1082 Ancestor = Ancestor->user_back(); 1083 } while (1); 1084 } 1085 1086 /// \brief Creates node of binary operation with the same attributes as the 1087 /// specified one but with other operands. 1088 static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS, 1089 InstCombiner::BuilderTy *B) { 1090 Value *BORes = B->CreateBinOp(Inst.getOpcode(), LHS, RHS); 1091 if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BORes)) { 1092 if (isa<OverflowingBinaryOperator>(NewBO)) { 1093 NewBO->setHasNoSignedWrap(Inst.hasNoSignedWrap()); 1094 NewBO->setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap()); 1095 } 1096 if (isa<PossiblyExactOperator>(NewBO)) 1097 NewBO->setIsExact(Inst.isExact()); 1098 } 1099 return BORes; 1100 } 1101 1102 /// \brief Makes transformation of binary operation specific for vector types. 1103 /// \param Inst Binary operator to transform. 1104 /// \return Pointer to node that must replace the original binary operator, or 1105 /// null pointer if no transformation was made. 1106 Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) { 1107 if (!Inst.getType()->isVectorTy()) return nullptr; 1108 1109 unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements(); 1110 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1111 assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth); 1112 assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth); 1113 1114 // If both arguments of binary operation are shuffles, which use the same 1115 // mask and shuffle within a single vector, it is worthwhile to move the 1116 // shuffle after binary operation: 1117 // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m) 1118 if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) { 1119 ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS); 1120 ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS); 1121 if (isa<UndefValue>(LShuf->getOperand(1)) && 1122 isa<UndefValue>(RShuf->getOperand(1)) && 1123 LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() && 1124 LShuf->getMask() == RShuf->getMask()) { 1125 Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0), 1126 RShuf->getOperand(0), Builder); 1127 Value *Res = Builder->CreateShuffleVector(NewBO, 1128 UndefValue::get(NewBO->getType()), LShuf->getMask()); 1129 return Res; 1130 } 1131 } 1132 1133 // If one argument is a shuffle within one vector, the other is a constant, 1134 // try moving the shuffle after the binary operation. 1135 ShuffleVectorInst *Shuffle = nullptr; 1136 Constant *C1 = nullptr; 1137 if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS); 1138 if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS); 1139 if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS); 1140 if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS); 1141 if (Shuffle && C1 && isa<UndefValue>(Shuffle->getOperand(1)) && 1142 Shuffle->getType() == Shuffle->getOperand(0)->getType()) { 1143 SmallVector<int, 16> ShMask = Shuffle->getShuffleMask(); 1144 // Find constant C2 that has property: 1145 // shuffle(C2, ShMask) = C1 1146 // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>) 1147 // reorder is not possible. 1148 SmallVector<Constant*, 16> C2M(VWidth, 1149 UndefValue::get(C1->getType()->getScalarType())); 1150 bool MayChange = true; 1151 for (unsigned I = 0; I < VWidth; ++I) { 1152 if (ShMask[I] >= 0) { 1153 assert(ShMask[I] < (int)VWidth); 1154 if (!isa<UndefValue>(C2M[ShMask[I]])) { 1155 MayChange = false; 1156 break; 1157 } 1158 C2M[ShMask[I]] = C1->getAggregateElement(I); 1159 } 1160 } 1161 if (MayChange) { 1162 Constant *C2 = ConstantVector::get(C2M); 1163 Value *NewLHS, *NewRHS; 1164 if (isa<Constant>(LHS)) { 1165 NewLHS = C2; 1166 NewRHS = Shuffle->getOperand(0); 1167 } else { 1168 NewLHS = Shuffle->getOperand(0); 1169 NewRHS = C2; 1170 } 1171 Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder); 1172 Value *Res = Builder->CreateShuffleVector(NewBO, 1173 UndefValue::get(Inst.getType()), Shuffle->getMask()); 1174 return Res; 1175 } 1176 } 1177 1178 return nullptr; 1179 } 1180 1181 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1182 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1183 1184 if (Value *V = SimplifyGEPInst(Ops, DL)) 1185 return ReplaceInstUsesWith(GEP, V); 1186 1187 Value *PtrOp = GEP.getOperand(0); 1188 1189 // Eliminate unneeded casts for indices, and replace indices which displace 1190 // by multiples of a zero size type with zero. 1191 if (DL) { 1192 bool MadeChange = false; 1193 Type *IntPtrTy = DL->getIntPtrType(GEP.getPointerOperandType()); 1194 1195 gep_type_iterator GTI = gep_type_begin(GEP); 1196 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); 1197 I != E; ++I, ++GTI) { 1198 // Skip indices into struct types. 1199 SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI); 1200 if (!SeqTy) continue; 1201 1202 // If the element type has zero size then any index over it is equivalent 1203 // to an index of zero, so replace it with zero if it is not zero already. 1204 if (SeqTy->getElementType()->isSized() && 1205 DL->getTypeAllocSize(SeqTy->getElementType()) == 0) 1206 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { 1207 *I = Constant::getNullValue(IntPtrTy); 1208 MadeChange = true; 1209 } 1210 1211 Type *IndexTy = (*I)->getType(); 1212 if (IndexTy != IntPtrTy) { 1213 // If we are using a wider index than needed for this platform, shrink 1214 // it to what we need. If narrower, sign-extend it to what we need. 1215 // This explicit cast can make subsequent optimizations more obvious. 1216 *I = Builder->CreateIntCast(*I, IntPtrTy, true); 1217 MadeChange = true; 1218 } 1219 } 1220 if (MadeChange) return &GEP; 1221 } 1222 1223 // Check to see if the inputs to the PHI node are getelementptr instructions. 1224 if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) { 1225 GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1226 if (!Op1) 1227 return nullptr; 1228 1229 signed DI = -1; 1230 1231 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1232 GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I); 1233 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1234 return nullptr; 1235 1236 // Keep track of the type as we walk the GEP. 1237 Type *CurTy = Op1->getOperand(0)->getType()->getScalarType(); 1238 1239 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1240 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1241 return nullptr; 1242 1243 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1244 if (DI == -1) { 1245 // We have not seen any differences yet in the GEPs feeding the 1246 // PHI yet, so we record this one if it is allowed to be a 1247 // variable. 1248 1249 // The first two arguments can vary for any GEP, the rest have to be 1250 // static for struct slots 1251 if (J > 1 && CurTy->isStructTy()) 1252 return nullptr; 1253 1254 DI = J; 1255 } else { 1256 // The GEP is different by more than one input. While this could be 1257 // extended to support GEPs that vary by more than one variable it 1258 // doesn't make sense since it greatly increases the complexity and 1259 // would result in an R+R+R addressing mode which no backend 1260 // directly supports and would need to be broken into several 1261 // simpler instructions anyway. 1262 return nullptr; 1263 } 1264 } 1265 1266 // Sink down a layer of the type for the next iteration. 1267 if (J > 0) { 1268 if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) { 1269 CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); 1270 } else { 1271 CurTy = nullptr; 1272 } 1273 } 1274 } 1275 } 1276 1277 GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1278 1279 if (DI == -1) { 1280 // All the GEPs feeding the PHI are identical. Clone one down into our 1281 // BB so that it can be merged with the current GEP. 1282 GEP.getParent()->getInstList().insert(GEP.getParent()->getFirstNonPHI(), 1283 NewGEP); 1284 } else { 1285 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1286 // into the current block so it can be merged, and create a new PHI to 1287 // set that index. 1288 Instruction *InsertPt = Builder->GetInsertPoint(); 1289 Builder->SetInsertPoint(PN); 1290 PHINode *NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(), 1291 PN->getNumOperands()); 1292 Builder->SetInsertPoint(InsertPt); 1293 1294 for (auto &I : PN->operands()) 1295 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1296 PN->getIncomingBlock(I)); 1297 1298 NewGEP->setOperand(DI, NewPN); 1299 GEP.getParent()->getInstList().insert(GEP.getParent()->getFirstNonPHI(), 1300 NewGEP); 1301 NewGEP->setOperand(DI, NewPN); 1302 } 1303 1304 GEP.setOperand(0, NewGEP); 1305 PtrOp = NewGEP; 1306 } 1307 1308 // Combine Indices - If the source pointer to this getelementptr instruction 1309 // is a getelementptr instruction, combine the indices of the two 1310 // getelementptr instructions into a single instruction. 1311 // 1312 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) { 1313 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1314 return nullptr; 1315 1316 // Note that if our source is a gep chain itself then we wait for that 1317 // chain to be resolved before we perform this transformation. This 1318 // avoids us creating a TON of code in some cases. 1319 if (GEPOperator *SrcGEP = 1320 dyn_cast<GEPOperator>(Src->getOperand(0))) 1321 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1322 return nullptr; // Wait until our source is folded to completion. 1323 1324 SmallVector<Value*, 8> Indices; 1325 1326 // Find out whether the last index in the source GEP is a sequential idx. 1327 bool EndsWithSequential = false; 1328 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1329 I != E; ++I) 1330 EndsWithSequential = !(*I)->isStructTy(); 1331 1332 // Can we combine the two pointer arithmetics offsets? 1333 if (EndsWithSequential) { 1334 // Replace: gep (gep %P, long B), long A, ... 1335 // With: T = long A+B; gep %P, T, ... 1336 // 1337 Value *Sum; 1338 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1339 Value *GO1 = GEP.getOperand(1); 1340 if (SO1 == Constant::getNullValue(SO1->getType())) { 1341 Sum = GO1; 1342 } else if (GO1 == Constant::getNullValue(GO1->getType())) { 1343 Sum = SO1; 1344 } else { 1345 // If they aren't the same type, then the input hasn't been processed 1346 // by the loop above yet (which canonicalizes sequential index types to 1347 // intptr_t). Just avoid transforming this until the input has been 1348 // normalized. 1349 if (SO1->getType() != GO1->getType()) 1350 return nullptr; 1351 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum"); 1352 } 1353 1354 // Update the GEP in place if possible. 1355 if (Src->getNumOperands() == 2) { 1356 GEP.setOperand(0, Src->getOperand(0)); 1357 GEP.setOperand(1, Sum); 1358 return &GEP; 1359 } 1360 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1361 Indices.push_back(Sum); 1362 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1363 } else if (isa<Constant>(*GEP.idx_begin()) && 1364 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1365 Src->getNumOperands() != 1) { 1366 // Otherwise we can do the fold if the first index of the GEP is a zero 1367 Indices.append(Src->op_begin()+1, Src->op_end()); 1368 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1369 } 1370 1371 if (!Indices.empty()) 1372 return (GEP.isInBounds() && Src->isInBounds()) ? 1373 GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices, 1374 GEP.getName()) : 1375 GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName()); 1376 } 1377 1378 // Canonicalize (gep i8* X, -(ptrtoint Y)) to (sub (ptrtoint X), (ptrtoint Y)) 1379 // The GEP pattern is emitted by the SCEV expander for certain kinds of 1380 // pointer arithmetic. 1381 if (DL && GEP.getNumIndices() == 1 && 1382 match(GEP.getOperand(1), m_Neg(m_PtrToInt(m_Value())))) { 1383 unsigned AS = GEP.getPointerAddressSpace(); 1384 if (GEP.getType() == Builder->getInt8PtrTy(AS) && 1385 GEP.getOperand(1)->getType()->getScalarSizeInBits() == 1386 DL->getPointerSizeInBits(AS)) { 1387 Operator *Index = cast<Operator>(GEP.getOperand(1)); 1388 Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType()); 1389 Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1)); 1390 return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType()); 1391 } 1392 } 1393 1394 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 1395 Value *StrippedPtr = PtrOp->stripPointerCasts(); 1396 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType()); 1397 1398 // We do not handle pointer-vector geps here. 1399 if (!StrippedPtrTy) 1400 return nullptr; 1401 1402 if (StrippedPtr != PtrOp) { 1403 bool HasZeroPointerIndex = false; 1404 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 1405 HasZeroPointerIndex = C->isZero(); 1406 1407 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 1408 // into : GEP [10 x i8]* X, i32 0, ... 1409 // 1410 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 1411 // into : GEP i8* X, ... 1412 // 1413 // This occurs when the program declares an array extern like "int X[];" 1414 if (HasZeroPointerIndex) { 1415 PointerType *CPTy = cast<PointerType>(PtrOp->getType()); 1416 if (ArrayType *CATy = 1417 dyn_cast<ArrayType>(CPTy->getElementType())) { 1418 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 1419 if (CATy->getElementType() == StrippedPtrTy->getElementType()) { 1420 // -> GEP i8* X, ... 1421 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 1422 GetElementPtrInst *Res = 1423 GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName()); 1424 Res->setIsInBounds(GEP.isInBounds()); 1425 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 1426 return Res; 1427 // Insert Res, and create an addrspacecast. 1428 // e.g., 1429 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 1430 // -> 1431 // %0 = GEP i8 addrspace(1)* X, ... 1432 // addrspacecast i8 addrspace(1)* %0 to i8* 1433 return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType()); 1434 } 1435 1436 if (ArrayType *XATy = 1437 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){ 1438 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 1439 if (CATy->getElementType() == XATy->getElementType()) { 1440 // -> GEP [10 x i8]* X, i32 0, ... 1441 // At this point, we know that the cast source type is a pointer 1442 // to an array of the same type as the destination pointer 1443 // array. Because the array type is never stepped over (there 1444 // is a leading zero) we can fold the cast into this GEP. 1445 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 1446 GEP.setOperand(0, StrippedPtr); 1447 return &GEP; 1448 } 1449 // Cannot replace the base pointer directly because StrippedPtr's 1450 // address space is different. Instead, create a new GEP followed by 1451 // an addrspacecast. 1452 // e.g., 1453 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 1454 // i32 0, ... 1455 // -> 1456 // %0 = GEP [10 x i8] addrspace(1)* X, ... 1457 // addrspacecast i8 addrspace(1)* %0 to i8* 1458 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 1459 Value *NewGEP = GEP.isInBounds() ? 1460 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) : 1461 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName()); 1462 return new AddrSpaceCastInst(NewGEP, GEP.getType()); 1463 } 1464 } 1465 } 1466 } else if (GEP.getNumOperands() == 2) { 1467 // Transform things like: 1468 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 1469 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 1470 Type *SrcElTy = StrippedPtrTy->getElementType(); 1471 Type *ResElTy = PtrOp->getType()->getPointerElementType(); 1472 if (DL && SrcElTy->isArrayTy() && 1473 DL->getTypeAllocSize(SrcElTy->getArrayElementType()) == 1474 DL->getTypeAllocSize(ResElTy)) { 1475 Type *IdxType = DL->getIntPtrType(GEP.getType()); 1476 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 1477 Value *NewGEP = GEP.isInBounds() ? 1478 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) : 1479 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName()); 1480 1481 // V and GEP are both pointer types --> BitCast 1482 if (StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) 1483 return new BitCastInst(NewGEP, GEP.getType()); 1484 return new AddrSpaceCastInst(NewGEP, GEP.getType()); 1485 } 1486 1487 // Transform things like: 1488 // %V = mul i64 %N, 4 1489 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 1490 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 1491 if (DL && ResElTy->isSized() && SrcElTy->isSized()) { 1492 // Check that changing the type amounts to dividing the index by a scale 1493 // factor. 1494 uint64_t ResSize = DL->getTypeAllocSize(ResElTy); 1495 uint64_t SrcSize = DL->getTypeAllocSize(SrcElTy); 1496 if (ResSize && SrcSize % ResSize == 0) { 1497 Value *Idx = GEP.getOperand(1); 1498 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1499 uint64_t Scale = SrcSize / ResSize; 1500 1501 // Earlier transforms ensure that the index has type IntPtrType, which 1502 // considerably simplifies the logic by eliminating implicit casts. 1503 assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) && 1504 "Index not cast to pointer width?"); 1505 1506 bool NSW; 1507 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1508 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1509 // If the multiplication NewIdx * Scale may overflow then the new 1510 // GEP may not be "inbounds". 1511 Value *NewGEP = GEP.isInBounds() && NSW ? 1512 Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) : 1513 Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName()); 1514 1515 // The NewGEP must be pointer typed, so must the old one -> BitCast 1516 if (StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) 1517 return new BitCastInst(NewGEP, GEP.getType()); 1518 return new AddrSpaceCastInst(NewGEP, GEP.getType()); 1519 } 1520 } 1521 } 1522 1523 // Similarly, transform things like: 1524 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 1525 // (where tmp = 8*tmp2) into: 1526 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 1527 if (DL && ResElTy->isSized() && SrcElTy->isSized() && 1528 SrcElTy->isArrayTy()) { 1529 // Check that changing to the array element type amounts to dividing the 1530 // index by a scale factor. 1531 uint64_t ResSize = DL->getTypeAllocSize(ResElTy); 1532 uint64_t ArrayEltSize 1533 = DL->getTypeAllocSize(SrcElTy->getArrayElementType()); 1534 if (ResSize && ArrayEltSize % ResSize == 0) { 1535 Value *Idx = GEP.getOperand(1); 1536 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1537 uint64_t Scale = ArrayEltSize / ResSize; 1538 1539 // Earlier transforms ensure that the index has type IntPtrType, which 1540 // considerably simplifies the logic by eliminating implicit casts. 1541 assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) && 1542 "Index not cast to pointer width?"); 1543 1544 bool NSW; 1545 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1546 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1547 // If the multiplication NewIdx * Scale may overflow then the new 1548 // GEP may not be "inbounds". 1549 Value *Off[2] = { 1550 Constant::getNullValue(DL->getIntPtrType(GEP.getType())), 1551 NewIdx 1552 }; 1553 1554 Value *NewGEP = GEP.isInBounds() && NSW ? 1555 Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) : 1556 Builder->CreateGEP(StrippedPtr, Off, GEP.getName()); 1557 // The NewGEP must be pointer typed, so must the old one -> BitCast 1558 if (StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) 1559 return new BitCastInst(NewGEP, GEP.getType()); 1560 return new AddrSpaceCastInst(NewGEP, GEP.getType()); 1561 } 1562 } 1563 } 1564 } 1565 } 1566 1567 if (!DL) 1568 return nullptr; 1569 1570 /// See if we can simplify: 1571 /// X = bitcast A* to B* 1572 /// Y = gep X, <...constant indices...> 1573 /// into a gep of the original struct. This is important for SROA and alias 1574 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 1575 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) { 1576 Value *Operand = BCI->getOperand(0); 1577 PointerType *OpType = cast<PointerType>(Operand->getType()); 1578 unsigned OffsetBits = DL->getPointerTypeSizeInBits(OpType); 1579 APInt Offset(OffsetBits, 0); 1580 if (!isa<BitCastInst>(Operand) && 1581 GEP.accumulateConstantOffset(*DL, Offset) && 1582 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) { 1583 1584 // If this GEP instruction doesn't move the pointer, just replace the GEP 1585 // with a bitcast of the real input to the dest type. 1586 if (!Offset) { 1587 // If the bitcast is of an allocation, and the allocation will be 1588 // converted to match the type of the cast, don't touch this. 1589 if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) { 1590 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 1591 if (Instruction *I = visitBitCast(*BCI)) { 1592 if (I != BCI) { 1593 I->takeName(BCI); 1594 BCI->getParent()->getInstList().insert(BCI, I); 1595 ReplaceInstUsesWith(*BCI, I); 1596 } 1597 return &GEP; 1598 } 1599 } 1600 return new BitCastInst(Operand, GEP.getType()); 1601 } 1602 1603 // Otherwise, if the offset is non-zero, we need to find out if there is a 1604 // field at Offset in 'A's type. If so, we can pull the cast through the 1605 // GEP. 1606 SmallVector<Value*, 8> NewIndices; 1607 if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) { 1608 Value *NGEP = GEP.isInBounds() ? 1609 Builder->CreateInBoundsGEP(Operand, NewIndices) : 1610 Builder->CreateGEP(Operand, NewIndices); 1611 1612 if (NGEP->getType() == GEP.getType()) 1613 return ReplaceInstUsesWith(GEP, NGEP); 1614 NGEP->takeName(&GEP); 1615 return new BitCastInst(NGEP, GEP.getType()); 1616 } 1617 } 1618 } 1619 1620 return nullptr; 1621 } 1622 1623 static bool 1624 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users, 1625 const TargetLibraryInfo *TLI) { 1626 SmallVector<Instruction*, 4> Worklist; 1627 Worklist.push_back(AI); 1628 1629 do { 1630 Instruction *PI = Worklist.pop_back_val(); 1631 for (User *U : PI->users()) { 1632 Instruction *I = cast<Instruction>(U); 1633 switch (I->getOpcode()) { 1634 default: 1635 // Give up the moment we see something we can't handle. 1636 return false; 1637 1638 case Instruction::BitCast: 1639 case Instruction::GetElementPtr: 1640 Users.push_back(I); 1641 Worklist.push_back(I); 1642 continue; 1643 1644 case Instruction::ICmp: { 1645 ICmpInst *ICI = cast<ICmpInst>(I); 1646 // We can fold eq/ne comparisons with null to false/true, respectively. 1647 if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1))) 1648 return false; 1649 Users.push_back(I); 1650 continue; 1651 } 1652 1653 case Instruction::Call: 1654 // Ignore no-op and store intrinsics. 1655 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1656 switch (II->getIntrinsicID()) { 1657 default: 1658 return false; 1659 1660 case Intrinsic::memmove: 1661 case Intrinsic::memcpy: 1662 case Intrinsic::memset: { 1663 MemIntrinsic *MI = cast<MemIntrinsic>(II); 1664 if (MI->isVolatile() || MI->getRawDest() != PI) 1665 return false; 1666 } 1667 // fall through 1668 case Intrinsic::dbg_declare: 1669 case Intrinsic::dbg_value: 1670 case Intrinsic::invariant_start: 1671 case Intrinsic::invariant_end: 1672 case Intrinsic::lifetime_start: 1673 case Intrinsic::lifetime_end: 1674 case Intrinsic::objectsize: 1675 Users.push_back(I); 1676 continue; 1677 } 1678 } 1679 1680 if (isFreeCall(I, TLI)) { 1681 Users.push_back(I); 1682 continue; 1683 } 1684 return false; 1685 1686 case Instruction::Store: { 1687 StoreInst *SI = cast<StoreInst>(I); 1688 if (SI->isVolatile() || SI->getPointerOperand() != PI) 1689 return false; 1690 Users.push_back(I); 1691 continue; 1692 } 1693 } 1694 llvm_unreachable("missing a return?"); 1695 } 1696 } while (!Worklist.empty()); 1697 return true; 1698 } 1699 1700 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 1701 // If we have a malloc call which is only used in any amount of comparisons 1702 // to null and free calls, delete the calls and replace the comparisons with 1703 // true or false as appropriate. 1704 SmallVector<WeakVH, 64> Users; 1705 if (isAllocSiteRemovable(&MI, Users, TLI)) { 1706 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 1707 Instruction *I = cast_or_null<Instruction>(&*Users[i]); 1708 if (!I) continue; 1709 1710 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 1711 ReplaceInstUsesWith(*C, 1712 ConstantInt::get(Type::getInt1Ty(C->getContext()), 1713 C->isFalseWhenEqual())); 1714 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) { 1715 ReplaceInstUsesWith(*I, UndefValue::get(I->getType())); 1716 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1717 if (II->getIntrinsicID() == Intrinsic::objectsize) { 1718 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1719 uint64_t DontKnow = CI->isZero() ? -1ULL : 0; 1720 ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow)); 1721 } 1722 } 1723 EraseInstFromFunction(*I); 1724 } 1725 1726 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 1727 // Replace invoke with a NOP intrinsic to maintain the original CFG 1728 Module *M = II->getParent()->getParent()->getParent(); 1729 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 1730 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 1731 None, "", II->getParent()); 1732 } 1733 return EraseInstFromFunction(MI); 1734 } 1735 return nullptr; 1736 } 1737 1738 /// \brief Move the call to free before a NULL test. 1739 /// 1740 /// Check if this free is accessed after its argument has been test 1741 /// against NULL (property 0). 1742 /// If yes, it is legal to move this call in its predecessor block. 1743 /// 1744 /// The move is performed only if the block containing the call to free 1745 /// will be removed, i.e.: 1746 /// 1. it has only one predecessor P, and P has two successors 1747 /// 2. it contains the call and an unconditional branch 1748 /// 3. its successor is the same as its predecessor's successor 1749 /// 1750 /// The profitability is out-of concern here and this function should 1751 /// be called only if the caller knows this transformation would be 1752 /// profitable (e.g., for code size). 1753 static Instruction * 1754 tryToMoveFreeBeforeNullTest(CallInst &FI) { 1755 Value *Op = FI.getArgOperand(0); 1756 BasicBlock *FreeInstrBB = FI.getParent(); 1757 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 1758 1759 // Validate part of constraint #1: Only one predecessor 1760 // FIXME: We can extend the number of predecessor, but in that case, we 1761 // would duplicate the call to free in each predecessor and it may 1762 // not be profitable even for code size. 1763 if (!PredBB) 1764 return nullptr; 1765 1766 // Validate constraint #2: Does this block contains only the call to 1767 // free and an unconditional branch? 1768 // FIXME: We could check if we can speculate everything in the 1769 // predecessor block 1770 if (FreeInstrBB->size() != 2) 1771 return nullptr; 1772 BasicBlock *SuccBB; 1773 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB))) 1774 return nullptr; 1775 1776 // Validate the rest of constraint #1 by matching on the pred branch. 1777 TerminatorInst *TI = PredBB->getTerminator(); 1778 BasicBlock *TrueBB, *FalseBB; 1779 ICmpInst::Predicate Pred; 1780 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB))) 1781 return nullptr; 1782 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 1783 return nullptr; 1784 1785 // Validate constraint #3: Ensure the null case just falls through. 1786 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 1787 return nullptr; 1788 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 1789 "Broken CFG: missing edge from predecessor to successor"); 1790 1791 FI.moveBefore(TI); 1792 return &FI; 1793 } 1794 1795 1796 Instruction *InstCombiner::visitFree(CallInst &FI) { 1797 Value *Op = FI.getArgOperand(0); 1798 1799 // free undef -> unreachable. 1800 if (isa<UndefValue>(Op)) { 1801 // Insert a new store to null because we cannot modify the CFG here. 1802 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()), 1803 UndefValue::get(Type::getInt1PtrTy(FI.getContext()))); 1804 return EraseInstFromFunction(FI); 1805 } 1806 1807 // If we have 'free null' delete the instruction. This can happen in stl code 1808 // when lots of inlining happens. 1809 if (isa<ConstantPointerNull>(Op)) 1810 return EraseInstFromFunction(FI); 1811 1812 // If we optimize for code size, try to move the call to free before the null 1813 // test so that simplify cfg can remove the empty block and dead code 1814 // elimination the branch. I.e., helps to turn something like: 1815 // if (foo) free(foo); 1816 // into 1817 // free(foo); 1818 if (MinimizeSize) 1819 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI)) 1820 return I; 1821 1822 return nullptr; 1823 } 1824 1825 1826 1827 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 1828 // Change br (not X), label True, label False to: br X, label False, True 1829 Value *X = nullptr; 1830 BasicBlock *TrueDest; 1831 BasicBlock *FalseDest; 1832 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && 1833 !isa<Constant>(X)) { 1834 // Swap Destinations and condition... 1835 BI.setCondition(X); 1836 BI.swapSuccessors(); 1837 return &BI; 1838 } 1839 1840 // Canonicalize fcmp_one -> fcmp_oeq 1841 FCmpInst::Predicate FPred; Value *Y; 1842 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), 1843 TrueDest, FalseDest)) && 1844 BI.getCondition()->hasOneUse()) 1845 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE || 1846 FPred == FCmpInst::FCMP_OGE) { 1847 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition()); 1848 Cond->setPredicate(FCmpInst::getInversePredicate(FPred)); 1849 1850 // Swap Destinations and condition. 1851 BI.swapSuccessors(); 1852 Worklist.Add(Cond); 1853 return &BI; 1854 } 1855 1856 // Canonicalize icmp_ne -> icmp_eq 1857 ICmpInst::Predicate IPred; 1858 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)), 1859 TrueDest, FalseDest)) && 1860 BI.getCondition()->hasOneUse()) 1861 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE || 1862 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE || 1863 IPred == ICmpInst::ICMP_SGE) { 1864 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition()); 1865 Cond->setPredicate(ICmpInst::getInversePredicate(IPred)); 1866 // Swap Destinations and condition. 1867 BI.swapSuccessors(); 1868 Worklist.Add(Cond); 1869 return &BI; 1870 } 1871 1872 return nullptr; 1873 } 1874 1875 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 1876 Value *Cond = SI.getCondition(); 1877 if (Instruction *I = dyn_cast<Instruction>(Cond)) { 1878 if (I->getOpcode() == Instruction::Add) 1879 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 1880 // change 'switch (X+4) case 1:' into 'switch (X) case -3' 1881 // Skip the first item since that's the default case. 1882 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); 1883 i != e; ++i) { 1884 ConstantInt* CaseVal = i.getCaseValue(); 1885 Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal), 1886 AddRHS); 1887 assert(isa<ConstantInt>(NewCaseVal) && 1888 "Result of expression should be constant"); 1889 i.setValue(cast<ConstantInt>(NewCaseVal)); 1890 } 1891 SI.setCondition(I->getOperand(0)); 1892 Worklist.Add(I); 1893 return &SI; 1894 } 1895 } 1896 return nullptr; 1897 } 1898 1899 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 1900 Value *Agg = EV.getAggregateOperand(); 1901 1902 if (!EV.hasIndices()) 1903 return ReplaceInstUsesWith(EV, Agg); 1904 1905 if (Constant *C = dyn_cast<Constant>(Agg)) { 1906 if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) { 1907 if (EV.getNumIndices() == 0) 1908 return ReplaceInstUsesWith(EV, C2); 1909 // Extract the remaining indices out of the constant indexed by the 1910 // first index 1911 return ExtractValueInst::Create(C2, EV.getIndices().slice(1)); 1912 } 1913 return nullptr; // Can't handle other constants 1914 } 1915 1916 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 1917 // We're extracting from an insertvalue instruction, compare the indices 1918 const unsigned *exti, *exte, *insi, *inse; 1919 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 1920 exte = EV.idx_end(), inse = IV->idx_end(); 1921 exti != exte && insi != inse; 1922 ++exti, ++insi) { 1923 if (*insi != *exti) 1924 // The insert and extract both reference distinctly different elements. 1925 // This means the extract is not influenced by the insert, and we can 1926 // replace the aggregate operand of the extract with the aggregate 1927 // operand of the insert. i.e., replace 1928 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 1929 // %E = extractvalue { i32, { i32 } } %I, 0 1930 // with 1931 // %E = extractvalue { i32, { i32 } } %A, 0 1932 return ExtractValueInst::Create(IV->getAggregateOperand(), 1933 EV.getIndices()); 1934 } 1935 if (exti == exte && insi == inse) 1936 // Both iterators are at the end: Index lists are identical. Replace 1937 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 1938 // %C = extractvalue { i32, { i32 } } %B, 1, 0 1939 // with "i32 42" 1940 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand()); 1941 if (exti == exte) { 1942 // The extract list is a prefix of the insert list. i.e. replace 1943 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 1944 // %E = extractvalue { i32, { i32 } } %I, 1 1945 // with 1946 // %X = extractvalue { i32, { i32 } } %A, 1 1947 // %E = insertvalue { i32 } %X, i32 42, 0 1948 // by switching the order of the insert and extract (though the 1949 // insertvalue should be left in, since it may have other uses). 1950 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(), 1951 EV.getIndices()); 1952 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 1953 makeArrayRef(insi, inse)); 1954 } 1955 if (insi == inse) 1956 // The insert list is a prefix of the extract list 1957 // We can simply remove the common indices from the extract and make it 1958 // operate on the inserted value instead of the insertvalue result. 1959 // i.e., replace 1960 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 1961 // %E = extractvalue { i32, { i32 } } %I, 1, 0 1962 // with 1963 // %E extractvalue { i32 } { i32 42 }, 0 1964 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 1965 makeArrayRef(exti, exte)); 1966 } 1967 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { 1968 // We're extracting from an intrinsic, see if we're the only user, which 1969 // allows us to simplify multiple result intrinsics to simpler things that 1970 // just get one value. 1971 if (II->hasOneUse()) { 1972 // Check if we're grabbing the overflow bit or the result of a 'with 1973 // overflow' intrinsic. If it's the latter we can remove the intrinsic 1974 // and replace it with a traditional binary instruction. 1975 switch (II->getIntrinsicID()) { 1976 case Intrinsic::uadd_with_overflow: 1977 case Intrinsic::sadd_with_overflow: 1978 if (*EV.idx_begin() == 0) { // Normal result. 1979 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 1980 ReplaceInstUsesWith(*II, UndefValue::get(II->getType())); 1981 EraseInstFromFunction(*II); 1982 return BinaryOperator::CreateAdd(LHS, RHS); 1983 } 1984 1985 // If the normal result of the add is dead, and the RHS is a constant, 1986 // we can transform this into a range comparison. 1987 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 1988 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) 1989 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1))) 1990 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0), 1991 ConstantExpr::getNot(CI)); 1992 break; 1993 case Intrinsic::usub_with_overflow: 1994 case Intrinsic::ssub_with_overflow: 1995 if (*EV.idx_begin() == 0) { // Normal result. 1996 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 1997 ReplaceInstUsesWith(*II, UndefValue::get(II->getType())); 1998 EraseInstFromFunction(*II); 1999 return BinaryOperator::CreateSub(LHS, RHS); 2000 } 2001 break; 2002 case Intrinsic::umul_with_overflow: 2003 case Intrinsic::smul_with_overflow: 2004 if (*EV.idx_begin() == 0) { // Normal result. 2005 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2006 ReplaceInstUsesWith(*II, UndefValue::get(II->getType())); 2007 EraseInstFromFunction(*II); 2008 return BinaryOperator::CreateMul(LHS, RHS); 2009 } 2010 break; 2011 default: 2012 break; 2013 } 2014 } 2015 } 2016 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2017 // If the (non-volatile) load only has one use, we can rewrite this to a 2018 // load from a GEP. This reduces the size of the load. 2019 // FIXME: If a load is used only by extractvalue instructions then this 2020 // could be done regardless of having multiple uses. 2021 if (L->isSimple() && L->hasOneUse()) { 2022 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2023 SmallVector<Value*, 4> Indices; 2024 // Prefix an i32 0 since we need the first element. 2025 Indices.push_back(Builder->getInt32(0)); 2026 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2027 I != E; ++I) 2028 Indices.push_back(Builder->getInt32(*I)); 2029 2030 // We need to insert these at the location of the old load, not at that of 2031 // the extractvalue. 2032 Builder->SetInsertPoint(L->getParent(), L); 2033 Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices); 2034 // Returning the load directly will cause the main loop to insert it in 2035 // the wrong spot, so use ReplaceInstUsesWith(). 2036 return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP)); 2037 } 2038 // We could simplify extracts from other values. Note that nested extracts may 2039 // already be simplified implicitly by the above: extract (extract (insert) ) 2040 // will be translated into extract ( insert ( extract ) ) first and then just 2041 // the value inserted, if appropriate. Similarly for extracts from single-use 2042 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2043 // and if again single-use then via load (gep (gep)) to load (gep). 2044 // However, double extracts from e.g. function arguments or return values 2045 // aren't handled yet. 2046 return nullptr; 2047 } 2048 2049 enum Personality_Type { 2050 Unknown_Personality, 2051 GNU_Ada_Personality, 2052 GNU_CXX_Personality, 2053 GNU_ObjC_Personality 2054 }; 2055 2056 /// RecognizePersonality - See if the given exception handling personality 2057 /// function is one that we understand. If so, return a description of it; 2058 /// otherwise return Unknown_Personality. 2059 static Personality_Type RecognizePersonality(Value *Pers) { 2060 Function *F = dyn_cast<Function>(Pers->stripPointerCasts()); 2061 if (!F) 2062 return Unknown_Personality; 2063 return StringSwitch<Personality_Type>(F->getName()) 2064 .Case("__gnat_eh_personality", GNU_Ada_Personality) 2065 .Case("__gxx_personality_v0", GNU_CXX_Personality) 2066 .Case("__objc_personality_v0", GNU_ObjC_Personality) 2067 .Default(Unknown_Personality); 2068 } 2069 2070 /// isCatchAll - Return 'true' if the given typeinfo will match anything. 2071 static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) { 2072 switch (Personality) { 2073 case Unknown_Personality: 2074 return false; 2075 case GNU_Ada_Personality: 2076 // While __gnat_all_others_value will match any Ada exception, it doesn't 2077 // match foreign exceptions (or didn't, before gcc-4.7). 2078 return false; 2079 case GNU_CXX_Personality: 2080 case GNU_ObjC_Personality: 2081 return TypeInfo->isNullValue(); 2082 } 2083 llvm_unreachable("Unknown personality!"); 2084 } 2085 2086 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2087 return 2088 cast<ArrayType>(LHS->getType())->getNumElements() 2089 < 2090 cast<ArrayType>(RHS->getType())->getNumElements(); 2091 } 2092 2093 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2094 // The logic here should be correct for any real-world personality function. 2095 // However if that turns out not to be true, the offending logic can always 2096 // be conditioned on the personality function, like the catch-all logic is. 2097 Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn()); 2098 2099 // Simplify the list of clauses, eg by removing repeated catch clauses 2100 // (these are often created by inlining). 2101 bool MakeNewInstruction = false; // If true, recreate using the following: 2102 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2103 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2104 2105 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 2106 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 2107 bool isLastClause = i + 1 == e; 2108 if (LI.isCatch(i)) { 2109 // A catch clause. 2110 Constant *CatchClause = LI.getClause(i); 2111 Constant *TypeInfo = CatchClause->stripPointerCasts(); 2112 2113 // If we already saw this clause, there is no point in having a second 2114 // copy of it. 2115 if (AlreadyCaught.insert(TypeInfo)) { 2116 // This catch clause was not already seen. 2117 NewClauses.push_back(CatchClause); 2118 } else { 2119 // Repeated catch clause - drop the redundant copy. 2120 MakeNewInstruction = true; 2121 } 2122 2123 // If this is a catch-all then there is no point in keeping any following 2124 // clauses or marking the landingpad as having a cleanup. 2125 if (isCatchAll(Personality, TypeInfo)) { 2126 if (!isLastClause) 2127 MakeNewInstruction = true; 2128 CleanupFlag = false; 2129 break; 2130 } 2131 } else { 2132 // A filter clause. If any of the filter elements were already caught 2133 // then they can be dropped from the filter. It is tempting to try to 2134 // exploit the filter further by saying that any typeinfo that does not 2135 // occur in the filter can't be caught later (and thus can be dropped). 2136 // However this would be wrong, since typeinfos can match without being 2137 // equal (for example if one represents a C++ class, and the other some 2138 // class derived from it). 2139 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 2140 Constant *FilterClause = LI.getClause(i); 2141 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 2142 unsigned NumTypeInfos = FilterType->getNumElements(); 2143 2144 // An empty filter catches everything, so there is no point in keeping any 2145 // following clauses or marking the landingpad as having a cleanup. By 2146 // dealing with this case here the following code is made a bit simpler. 2147 if (!NumTypeInfos) { 2148 NewClauses.push_back(FilterClause); 2149 if (!isLastClause) 2150 MakeNewInstruction = true; 2151 CleanupFlag = false; 2152 break; 2153 } 2154 2155 bool MakeNewFilter = false; // If true, make a new filter. 2156 SmallVector<Constant *, 16> NewFilterElts; // New elements. 2157 if (isa<ConstantAggregateZero>(FilterClause)) { 2158 // Not an empty filter - it contains at least one null typeinfo. 2159 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 2160 Constant *TypeInfo = 2161 Constant::getNullValue(FilterType->getElementType()); 2162 // If this typeinfo is a catch-all then the filter can never match. 2163 if (isCatchAll(Personality, TypeInfo)) { 2164 // Throw the filter away. 2165 MakeNewInstruction = true; 2166 continue; 2167 } 2168 2169 // There is no point in having multiple copies of this typeinfo, so 2170 // discard all but the first copy if there is more than one. 2171 NewFilterElts.push_back(TypeInfo); 2172 if (NumTypeInfos > 1) 2173 MakeNewFilter = true; 2174 } else { 2175 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 2176 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 2177 NewFilterElts.reserve(NumTypeInfos); 2178 2179 // Remove any filter elements that were already caught or that already 2180 // occurred in the filter. While there, see if any of the elements are 2181 // catch-alls. If so, the filter can be discarded. 2182 bool SawCatchAll = false; 2183 for (unsigned j = 0; j != NumTypeInfos; ++j) { 2184 Constant *Elt = Filter->getOperand(j); 2185 Constant *TypeInfo = Elt->stripPointerCasts(); 2186 if (isCatchAll(Personality, TypeInfo)) { 2187 // This element is a catch-all. Bail out, noting this fact. 2188 SawCatchAll = true; 2189 break; 2190 } 2191 if (AlreadyCaught.count(TypeInfo)) 2192 // Already caught by an earlier clause, so having it in the filter 2193 // is pointless. 2194 continue; 2195 // There is no point in having multiple copies of the same typeinfo in 2196 // a filter, so only add it if we didn't already. 2197 if (SeenInFilter.insert(TypeInfo)) 2198 NewFilterElts.push_back(cast<Constant>(Elt)); 2199 } 2200 // A filter containing a catch-all cannot match anything by definition. 2201 if (SawCatchAll) { 2202 // Throw the filter away. 2203 MakeNewInstruction = true; 2204 continue; 2205 } 2206 2207 // If we dropped something from the filter, make a new one. 2208 if (NewFilterElts.size() < NumTypeInfos) 2209 MakeNewFilter = true; 2210 } 2211 if (MakeNewFilter) { 2212 FilterType = ArrayType::get(FilterType->getElementType(), 2213 NewFilterElts.size()); 2214 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 2215 MakeNewInstruction = true; 2216 } 2217 2218 NewClauses.push_back(FilterClause); 2219 2220 // If the new filter is empty then it will catch everything so there is 2221 // no point in keeping any following clauses or marking the landingpad 2222 // as having a cleanup. The case of the original filter being empty was 2223 // already handled above. 2224 if (MakeNewFilter && !NewFilterElts.size()) { 2225 assert(MakeNewInstruction && "New filter but not a new instruction!"); 2226 CleanupFlag = false; 2227 break; 2228 } 2229 } 2230 } 2231 2232 // If several filters occur in a row then reorder them so that the shortest 2233 // filters come first (those with the smallest number of elements). This is 2234 // advantageous because shorter filters are more likely to match, speeding up 2235 // unwinding, but mostly because it increases the effectiveness of the other 2236 // filter optimizations below. 2237 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 2238 unsigned j; 2239 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 2240 for (j = i; j != e; ++j) 2241 if (!isa<ArrayType>(NewClauses[j]->getType())) 2242 break; 2243 2244 // Check whether the filters are already sorted by length. We need to know 2245 // if sorting them is actually going to do anything so that we only make a 2246 // new landingpad instruction if it does. 2247 for (unsigned k = i; k + 1 < j; ++k) 2248 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 2249 // Not sorted, so sort the filters now. Doing an unstable sort would be 2250 // correct too but reordering filters pointlessly might confuse users. 2251 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 2252 shorter_filter); 2253 MakeNewInstruction = true; 2254 break; 2255 } 2256 2257 // Look for the next batch of filters. 2258 i = j + 1; 2259 } 2260 2261 // If typeinfos matched if and only if equal, then the elements of a filter L 2262 // that occurs later than a filter F could be replaced by the intersection of 2263 // the elements of F and L. In reality two typeinfos can match without being 2264 // equal (for example if one represents a C++ class, and the other some class 2265 // derived from it) so it would be wrong to perform this transform in general. 2266 // However the transform is correct and useful if F is a subset of L. In that 2267 // case L can be replaced by F, and thus removed altogether since repeating a 2268 // filter is pointless. So here we look at all pairs of filters F and L where 2269 // L follows F in the list of clauses, and remove L if every element of F is 2270 // an element of L. This can occur when inlining C++ functions with exception 2271 // specifications. 2272 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 2273 // Examine each filter in turn. 2274 Value *Filter = NewClauses[i]; 2275 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 2276 if (!FTy) 2277 // Not a filter - skip it. 2278 continue; 2279 unsigned FElts = FTy->getNumElements(); 2280 // Examine each filter following this one. Doing this backwards means that 2281 // we don't have to worry about filters disappearing under us when removed. 2282 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 2283 Value *LFilter = NewClauses[j]; 2284 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 2285 if (!LTy) 2286 // Not a filter - skip it. 2287 continue; 2288 // If Filter is a subset of LFilter, i.e. every element of Filter is also 2289 // an element of LFilter, then discard LFilter. 2290 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 2291 // If Filter is empty then it is a subset of LFilter. 2292 if (!FElts) { 2293 // Discard LFilter. 2294 NewClauses.erase(J); 2295 MakeNewInstruction = true; 2296 // Move on to the next filter. 2297 continue; 2298 } 2299 unsigned LElts = LTy->getNumElements(); 2300 // If Filter is longer than LFilter then it cannot be a subset of it. 2301 if (FElts > LElts) 2302 // Move on to the next filter. 2303 continue; 2304 // At this point we know that LFilter has at least one element. 2305 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 2306 // Filter is a subset of LFilter iff Filter contains only zeros (as we 2307 // already know that Filter is not longer than LFilter). 2308 if (isa<ConstantAggregateZero>(Filter)) { 2309 assert(FElts <= LElts && "Should have handled this case earlier!"); 2310 // Discard LFilter. 2311 NewClauses.erase(J); 2312 MakeNewInstruction = true; 2313 } 2314 // Move on to the next filter. 2315 continue; 2316 } 2317 ConstantArray *LArray = cast<ConstantArray>(LFilter); 2318 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 2319 // Since Filter is non-empty and contains only zeros, it is a subset of 2320 // LFilter iff LFilter contains a zero. 2321 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 2322 for (unsigned l = 0; l != LElts; ++l) 2323 if (LArray->getOperand(l)->isNullValue()) { 2324 // LFilter contains a zero - discard it. 2325 NewClauses.erase(J); 2326 MakeNewInstruction = true; 2327 break; 2328 } 2329 // Move on to the next filter. 2330 continue; 2331 } 2332 // At this point we know that both filters are ConstantArrays. Loop over 2333 // operands to see whether every element of Filter is also an element of 2334 // LFilter. Since filters tend to be short this is probably faster than 2335 // using a method that scales nicely. 2336 ConstantArray *FArray = cast<ConstantArray>(Filter); 2337 bool AllFound = true; 2338 for (unsigned f = 0; f != FElts; ++f) { 2339 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 2340 AllFound = false; 2341 for (unsigned l = 0; l != LElts; ++l) { 2342 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 2343 if (LTypeInfo == FTypeInfo) { 2344 AllFound = true; 2345 break; 2346 } 2347 } 2348 if (!AllFound) 2349 break; 2350 } 2351 if (AllFound) { 2352 // Discard LFilter. 2353 NewClauses.erase(J); 2354 MakeNewInstruction = true; 2355 } 2356 // Move on to the next filter. 2357 } 2358 } 2359 2360 // If we changed any of the clauses, replace the old landingpad instruction 2361 // with a new one. 2362 if (MakeNewInstruction) { 2363 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 2364 LI.getPersonalityFn(), 2365 NewClauses.size()); 2366 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 2367 NLI->addClause(NewClauses[i]); 2368 // A landing pad with no clauses must have the cleanup flag set. It is 2369 // theoretically possible, though highly unlikely, that we eliminated all 2370 // clauses. If so, force the cleanup flag to true. 2371 if (NewClauses.empty()) 2372 CleanupFlag = true; 2373 NLI->setCleanup(CleanupFlag); 2374 return NLI; 2375 } 2376 2377 // Even if none of the clauses changed, we may nonetheless have understood 2378 // that the cleanup flag is pointless. Clear it if so. 2379 if (LI.isCleanup() != CleanupFlag) { 2380 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 2381 LI.setCleanup(CleanupFlag); 2382 return &LI; 2383 } 2384 2385 return nullptr; 2386 } 2387 2388 2389 2390 2391 /// TryToSinkInstruction - Try to move the specified instruction from its 2392 /// current block into the beginning of DestBlock, which can only happen if it's 2393 /// safe to move the instruction past all of the instructions between it and the 2394 /// end of its block. 2395 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 2396 assert(I->hasOneUse() && "Invariants didn't hold!"); 2397 2398 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 2399 if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() || 2400 isa<TerminatorInst>(I)) 2401 return false; 2402 2403 // Do not sink alloca instructions out of the entry block. 2404 if (isa<AllocaInst>(I) && I->getParent() == 2405 &DestBlock->getParent()->getEntryBlock()) 2406 return false; 2407 2408 // We can only sink load instructions if there is nothing between the load and 2409 // the end of block that could change the value. 2410 if (I->mayReadFromMemory()) { 2411 for (BasicBlock::iterator Scan = I, E = I->getParent()->end(); 2412 Scan != E; ++Scan) 2413 if (Scan->mayWriteToMemory()) 2414 return false; 2415 } 2416 2417 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 2418 I->moveBefore(InsertPos); 2419 ++NumSunkInst; 2420 return true; 2421 } 2422 2423 2424 /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding 2425 /// all reachable code to the worklist. 2426 /// 2427 /// This has a couple of tricks to make the code faster and more powerful. In 2428 /// particular, we constant fold and DCE instructions as we go, to avoid adding 2429 /// them to the worklist (this significantly speeds up instcombine on code where 2430 /// many instructions are dead or constant). Additionally, if we find a branch 2431 /// whose condition is a known constant, we only visit the reachable successors. 2432 /// 2433 static bool AddReachableCodeToWorklist(BasicBlock *BB, 2434 SmallPtrSet<BasicBlock*, 64> &Visited, 2435 InstCombiner &IC, 2436 const DataLayout *DL, 2437 const TargetLibraryInfo *TLI) { 2438 bool MadeIRChange = false; 2439 SmallVector<BasicBlock*, 256> Worklist; 2440 Worklist.push_back(BB); 2441 2442 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 2443 DenseMap<ConstantExpr*, Constant*> FoldedConstants; 2444 2445 do { 2446 BB = Worklist.pop_back_val(); 2447 2448 // We have now visited this block! If we've already been here, ignore it. 2449 if (!Visited.insert(BB)) continue; 2450 2451 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 2452 Instruction *Inst = BBI++; 2453 2454 // DCE instruction if trivially dead. 2455 if (isInstructionTriviallyDead(Inst, TLI)) { 2456 ++NumDeadInst; 2457 DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 2458 Inst->eraseFromParent(); 2459 continue; 2460 } 2461 2462 // ConstantProp instruction if trivially constant. 2463 if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0))) 2464 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 2465 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " 2466 << *Inst << '\n'); 2467 Inst->replaceAllUsesWith(C); 2468 ++NumConstProp; 2469 Inst->eraseFromParent(); 2470 continue; 2471 } 2472 2473 if (DL) { 2474 // See if we can constant fold its operands. 2475 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); 2476 i != e; ++i) { 2477 ConstantExpr *CE = dyn_cast<ConstantExpr>(i); 2478 if (CE == nullptr) continue; 2479 2480 Constant*& FoldRes = FoldedConstants[CE]; 2481 if (!FoldRes) 2482 FoldRes = ConstantFoldConstantExpression(CE, DL, TLI); 2483 if (!FoldRes) 2484 FoldRes = CE; 2485 2486 if (FoldRes != CE) { 2487 *i = FoldRes; 2488 MadeIRChange = true; 2489 } 2490 } 2491 } 2492 2493 InstrsForInstCombineWorklist.push_back(Inst); 2494 } 2495 2496 // Recursively visit successors. If this is a branch or switch on a 2497 // constant, only visit the reachable successor. 2498 TerminatorInst *TI = BB->getTerminator(); 2499 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2500 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 2501 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 2502 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 2503 Worklist.push_back(ReachableBB); 2504 continue; 2505 } 2506 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2507 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 2508 // See if this is an explicit destination. 2509 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2510 i != e; ++i) 2511 if (i.getCaseValue() == Cond) { 2512 BasicBlock *ReachableBB = i.getCaseSuccessor(); 2513 Worklist.push_back(ReachableBB); 2514 continue; 2515 } 2516 2517 // Otherwise it is the default destination. 2518 Worklist.push_back(SI->getDefaultDest()); 2519 continue; 2520 } 2521 } 2522 2523 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 2524 Worklist.push_back(TI->getSuccessor(i)); 2525 } while (!Worklist.empty()); 2526 2527 // Once we've found all of the instructions to add to instcombine's worklist, 2528 // add them in reverse order. This way instcombine will visit from the top 2529 // of the function down. This jives well with the way that it adds all uses 2530 // of instructions to the worklist after doing a transformation, thus avoiding 2531 // some N^2 behavior in pathological cases. 2532 IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0], 2533 InstrsForInstCombineWorklist.size()); 2534 2535 return MadeIRChange; 2536 } 2537 2538 bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { 2539 MadeIRChange = false; 2540 2541 DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 2542 << F.getName() << "\n"); 2543 2544 { 2545 // Do a depth-first traversal of the function, populate the worklist with 2546 // the reachable instructions. Ignore blocks that are not reachable. Keep 2547 // track of which blocks we visit. 2548 SmallPtrSet<BasicBlock*, 64> Visited; 2549 MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, DL, 2550 TLI); 2551 2552 // Do a quick scan over the function. If we find any blocks that are 2553 // unreachable, remove any instructions inside of them. This prevents 2554 // the instcombine code from having to deal with some bad special cases. 2555 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 2556 if (Visited.count(BB)) continue; 2557 2558 // Delete the instructions backwards, as it has a reduced likelihood of 2559 // having to update as many def-use and use-def chains. 2560 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2561 while (EndInst != BB->begin()) { 2562 // Delete the next to last instruction. 2563 BasicBlock::iterator I = EndInst; 2564 Instruction *Inst = --I; 2565 if (!Inst->use_empty()) 2566 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2567 if (isa<LandingPadInst>(Inst)) { 2568 EndInst = Inst; 2569 continue; 2570 } 2571 if (!isa<DbgInfoIntrinsic>(Inst)) { 2572 ++NumDeadInst; 2573 MadeIRChange = true; 2574 } 2575 Inst->eraseFromParent(); 2576 } 2577 } 2578 } 2579 2580 while (!Worklist.isEmpty()) { 2581 Instruction *I = Worklist.RemoveOne(); 2582 if (I == nullptr) continue; // skip null values. 2583 2584 // Check to see if we can DCE the instruction. 2585 if (isInstructionTriviallyDead(I, TLI)) { 2586 DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); 2587 EraseInstFromFunction(*I); 2588 ++NumDeadInst; 2589 MadeIRChange = true; 2590 continue; 2591 } 2592 2593 // Instruction isn't dead, see if we can constant propagate it. 2594 if (!I->use_empty() && isa<Constant>(I->getOperand(0))) 2595 if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) { 2596 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n'); 2597 2598 // Add operands to the worklist. 2599 ReplaceInstUsesWith(*I, C); 2600 ++NumConstProp; 2601 EraseInstFromFunction(*I); 2602 MadeIRChange = true; 2603 continue; 2604 } 2605 2606 // See if we can trivially sink this instruction to a successor basic block. 2607 if (I->hasOneUse()) { 2608 BasicBlock *BB = I->getParent(); 2609 Instruction *UserInst = cast<Instruction>(*I->user_begin()); 2610 BasicBlock *UserParent; 2611 2612 // Get the block the use occurs in. 2613 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 2614 UserParent = PN->getIncomingBlock(*I->use_begin()); 2615 else 2616 UserParent = UserInst->getParent(); 2617 2618 if (UserParent != BB) { 2619 bool UserIsSuccessor = false; 2620 // See if the user is one of our successors. 2621 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 2622 if (*SI == UserParent) { 2623 UserIsSuccessor = true; 2624 break; 2625 } 2626 2627 // If the user is one of our immediate successors, and if that successor 2628 // only has us as a predecessors (we'd have to split the critical edge 2629 // otherwise), we can keep going. 2630 if (UserIsSuccessor && UserParent->getSinglePredecessor()) 2631 // Okay, the CFG is simple enough, try to sink this instruction. 2632 MadeIRChange |= TryToSinkInstruction(I, UserParent); 2633 } 2634 } 2635 2636 // Now that we have an instruction, try combining it to simplify it. 2637 Builder->SetInsertPoint(I->getParent(), I); 2638 Builder->SetCurrentDebugLocation(I->getDebugLoc()); 2639 2640 #ifndef NDEBUG 2641 std::string OrigI; 2642 #endif 2643 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 2644 DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 2645 2646 if (Instruction *Result = visit(*I)) { 2647 ++NumCombined; 2648 // Should we replace the old instruction with a new one? 2649 if (Result != I) { 2650 DEBUG(dbgs() << "IC: Old = " << *I << '\n' 2651 << " New = " << *Result << '\n'); 2652 2653 if (!I->getDebugLoc().isUnknown()) 2654 Result->setDebugLoc(I->getDebugLoc()); 2655 // Everything uses the new instruction now. 2656 I->replaceAllUsesWith(Result); 2657 2658 // Move the name to the new instruction first. 2659 Result->takeName(I); 2660 2661 // Push the new instruction and any users onto the worklist. 2662 Worklist.Add(Result); 2663 Worklist.AddUsersToWorkList(*Result); 2664 2665 // Insert the new instruction into the basic block... 2666 BasicBlock *InstParent = I->getParent(); 2667 BasicBlock::iterator InsertPos = I; 2668 2669 // If we replace a PHI with something that isn't a PHI, fix up the 2670 // insertion point. 2671 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 2672 InsertPos = InstParent->getFirstInsertionPt(); 2673 2674 InstParent->getInstList().insert(InsertPos, Result); 2675 2676 EraseInstFromFunction(*I); 2677 } else { 2678 #ifndef NDEBUG 2679 DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 2680 << " New = " << *I << '\n'); 2681 #endif 2682 2683 // If the instruction was modified, it's possible that it is now dead. 2684 // if so, remove it. 2685 if (isInstructionTriviallyDead(I, TLI)) { 2686 EraseInstFromFunction(*I); 2687 } else { 2688 Worklist.Add(I); 2689 Worklist.AddUsersToWorkList(*I); 2690 } 2691 } 2692 MadeIRChange = true; 2693 } 2694 } 2695 2696 Worklist.Zap(); 2697 return MadeIRChange; 2698 } 2699 2700 namespace { 2701 class InstCombinerLibCallSimplifier : public LibCallSimplifier { 2702 InstCombiner *IC; 2703 public: 2704 InstCombinerLibCallSimplifier(const DataLayout *DL, 2705 const TargetLibraryInfo *TLI, 2706 InstCombiner *IC) 2707 : LibCallSimplifier(DL, TLI, UnsafeFPShrink) { 2708 this->IC = IC; 2709 } 2710 2711 /// replaceAllUsesWith - override so that instruction replacement 2712 /// can be defined in terms of the instruction combiner framework. 2713 void replaceAllUsesWith(Instruction *I, Value *With) const override { 2714 IC->ReplaceInstUsesWith(*I, With); 2715 } 2716 }; 2717 } 2718 2719 bool InstCombiner::runOnFunction(Function &F) { 2720 if (skipOptnoneFunction(F)) 2721 return false; 2722 2723 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 2724 DL = DLP ? &DLP->getDataLayout() : nullptr; 2725 TLI = &getAnalysis<TargetLibraryInfo>(); 2726 // Minimizing size? 2727 MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex, 2728 Attribute::MinSize); 2729 2730 /// Builder - This is an IRBuilder that automatically inserts new 2731 /// instructions into the worklist when they are created. 2732 IRBuilder<true, TargetFolder, InstCombineIRInserter> 2733 TheBuilder(F.getContext(), TargetFolder(DL), 2734 InstCombineIRInserter(Worklist)); 2735 Builder = &TheBuilder; 2736 2737 InstCombinerLibCallSimplifier TheSimplifier(DL, TLI, this); 2738 Simplifier = &TheSimplifier; 2739 2740 bool EverMadeChange = false; 2741 2742 // Lower dbg.declare intrinsics otherwise their value may be clobbered 2743 // by instcombiner. 2744 EverMadeChange = LowerDbgDeclare(F); 2745 2746 // Iterate while there is work to do. 2747 unsigned Iteration = 0; 2748 while (DoOneIteration(F, Iteration++)) 2749 EverMadeChange = true; 2750 2751 Builder = nullptr; 2752 return EverMadeChange; 2753 } 2754 2755 FunctionPass *llvm::createInstructionCombiningPass() { 2756 return new InstCombiner(); 2757 } 2758