1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/TinyPtrVector.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/CFG.h" 50 #include "llvm/Analysis/ConstantFolding.h" 51 #include "llvm/Analysis/EHPersonalities.h" 52 #include "llvm/Analysis/GlobalsModRef.h" 53 #include "llvm/Analysis/InstructionSimplify.h" 54 #include "llvm/Analysis/LoopInfo.h" 55 #include "llvm/Analysis/MemoryBuiltins.h" 56 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 57 #include "llvm/Analysis/TargetFolder.h" 58 #include "llvm/Analysis/TargetLibraryInfo.h" 59 #include "llvm/Analysis/ValueTracking.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/Constants.h" 64 #include "llvm/IR/DIBuilder.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DerivedTypes.h" 67 #include "llvm/IR/Dominators.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GetElementPtrTypeIterator.h" 70 #include "llvm/IR/IRBuilder.h" 71 #include "llvm/IR/InstrTypes.h" 72 #include "llvm/IR/Instruction.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/Intrinsics.h" 76 #include "llvm/IR/LegacyPassManager.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Operator.h" 79 #include "llvm/IR/PassManager.h" 80 #include "llvm/IR/PatternMatch.h" 81 #include "llvm/IR/Type.h" 82 #include "llvm/IR/Use.h" 83 #include "llvm/IR/User.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/IR/ValueHandle.h" 86 #include "llvm/Pass.h" 87 #include "llvm/Support/CBindingWrapping.h" 88 #include "llvm/Support/Casting.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Compiler.h" 91 #include "llvm/Support/Debug.h" 92 #include "llvm/Support/DebugCounter.h" 93 #include "llvm/Support/ErrorHandling.h" 94 #include "llvm/Support/KnownBits.h" 95 #include "llvm/Support/raw_ostream.h" 96 #include "llvm/Transforms/InstCombine/InstCombine.h" 97 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 98 #include "llvm/Transforms/Utils/Local.h" 99 #include <algorithm> 100 #include <cassert> 101 #include <cstdint> 102 #include <memory> 103 #include <string> 104 #include <utility> 105 106 using namespace llvm; 107 using namespace llvm::PatternMatch; 108 109 #define DEBUG_TYPE "instcombine" 110 111 STATISTIC(NumCombined , "Number of insts combined"); 112 STATISTIC(NumConstProp, "Number of constant folds"); 113 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 114 STATISTIC(NumSunkInst , "Number of instructions sunk"); 115 STATISTIC(NumExpand, "Number of expansions"); 116 STATISTIC(NumFactor , "Number of factorizations"); 117 STATISTIC(NumReassoc , "Number of reassociations"); 118 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 119 "Controls which instructions are visited"); 120 121 static cl::opt<bool> 122 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 123 cl::init(true)); 124 125 static cl::opt<bool> 126 EnableExpensiveCombines("expensive-combines", 127 cl::desc("Enable expensive instruction combines")); 128 129 static cl::opt<unsigned> 130 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 131 cl::desc("Maximum array size considered when doing a combine")); 132 133 // FIXME: Remove this flag when it is no longer necessary to convert 134 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 135 // increases variable availability at the cost of accuracy. Variables that 136 // cannot be promoted by mem2reg or SROA will be described as living in memory 137 // for their entire lifetime. However, passes like DSE and instcombine can 138 // delete stores to the alloca, leading to misleading and inaccurate debug 139 // information. This flag can be removed when those passes are fixed. 140 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 141 cl::Hidden, cl::init(true)); 142 143 Value *InstCombiner::EmitGEPOffset(User *GEP) { 144 return llvm::EmitGEPOffset(&Builder, DL, GEP); 145 } 146 147 /// Return true if it is desirable to convert an integer computation from a 148 /// given bit width to a new bit width. 149 /// We don't want to convert from a legal to an illegal type or from a smaller 150 /// to a larger illegal type. A width of '1' is always treated as a legal type 151 /// because i1 is a fundamental type in IR, and there are many specialized 152 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as 153 /// legal to convert to, in order to open up more combining opportunities. 154 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common 155 /// from frontend languages. 156 bool InstCombiner::shouldChangeType(unsigned FromWidth, 157 unsigned ToWidth) const { 158 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 159 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 160 161 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only 162 // shrink types, to prevent infinite loops. 163 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32)) 164 return true; 165 166 // If this is a legal integer from type, and the result would be an illegal 167 // type, don't do the transformation. 168 if (FromLegal && !ToLegal) 169 return false; 170 171 // Otherwise, if both are illegal, do not increase the size of the result. We 172 // do allow things like i160 -> i64, but not i64 -> i160. 173 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 174 return false; 175 176 return true; 177 } 178 179 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 180 /// We don't want to convert from a legal to an illegal type or from a smaller 181 /// to a larger illegal type. i1 is always treated as a legal type because it is 182 /// a fundamental type in IR, and there are many specialized optimizations for 183 /// i1 types. 184 bool InstCombiner::shouldChangeType(Type *From, Type *To) const { 185 // TODO: This could be extended to allow vectors. Datalayout changes might be 186 // needed to properly support that. 187 if (!From->isIntegerTy() || !To->isIntegerTy()) 188 return false; 189 190 unsigned FromWidth = From->getPrimitiveSizeInBits(); 191 unsigned ToWidth = To->getPrimitiveSizeInBits(); 192 return shouldChangeType(FromWidth, ToWidth); 193 } 194 195 // Return true, if No Signed Wrap should be maintained for I. 196 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 197 // where both B and C should be ConstantInts, results in a constant that does 198 // not overflow. This function only handles the Add and Sub opcodes. For 199 // all other opcodes, the function conservatively returns false. 200 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 201 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 202 if (!OBO || !OBO->hasNoSignedWrap()) 203 return false; 204 205 // We reason about Add and Sub Only. 206 Instruction::BinaryOps Opcode = I.getOpcode(); 207 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 208 return false; 209 210 const APInt *BVal, *CVal; 211 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 212 return false; 213 214 bool Overflow = false; 215 if (Opcode == Instruction::Add) 216 (void)BVal->sadd_ov(*CVal, Overflow); 217 else 218 (void)BVal->ssub_ov(*CVal, Overflow); 219 220 return !Overflow; 221 } 222 223 /// Conservatively clears subclassOptionalData after a reassociation or 224 /// commutation. We preserve fast-math flags when applicable as they can be 225 /// preserved. 226 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 227 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 228 if (!FPMO) { 229 I.clearSubclassOptionalData(); 230 return; 231 } 232 233 FastMathFlags FMF = I.getFastMathFlags(); 234 I.clearSubclassOptionalData(); 235 I.setFastMathFlags(FMF); 236 } 237 238 /// Combine constant operands of associative operations either before or after a 239 /// cast to eliminate one of the associative operations: 240 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 241 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 242 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) { 243 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 244 if (!Cast || !Cast->hasOneUse()) 245 return false; 246 247 // TODO: Enhance logic for other casts and remove this check. 248 auto CastOpcode = Cast->getOpcode(); 249 if (CastOpcode != Instruction::ZExt) 250 return false; 251 252 // TODO: Enhance logic for other BinOps and remove this check. 253 if (!BinOp1->isBitwiseLogicOp()) 254 return false; 255 256 auto AssocOpcode = BinOp1->getOpcode(); 257 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 258 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 259 return false; 260 261 Constant *C1, *C2; 262 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 263 !match(BinOp2->getOperand(1), m_Constant(C2))) 264 return false; 265 266 // TODO: This assumes a zext cast. 267 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 268 // to the destination type might lose bits. 269 270 // Fold the constants together in the destination type: 271 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 272 Type *DestTy = C1->getType(); 273 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 274 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 275 Cast->setOperand(0, BinOp2->getOperand(0)); 276 BinOp1->setOperand(1, FoldedC); 277 return true; 278 } 279 280 /// This performs a few simplifications for operators that are associative or 281 /// commutative: 282 /// 283 /// Commutative operators: 284 /// 285 /// 1. Order operands such that they are listed from right (least complex) to 286 /// left (most complex). This puts constants before unary operators before 287 /// binary operators. 288 /// 289 /// Associative operators: 290 /// 291 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 292 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 293 /// 294 /// Associative and commutative operators: 295 /// 296 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 297 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 298 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 299 /// if C1 and C2 are constants. 300 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 301 Instruction::BinaryOps Opcode = I.getOpcode(); 302 bool Changed = false; 303 304 do { 305 // Order operands such that they are listed from right (least complex) to 306 // left (most complex). This puts constants before unary operators before 307 // binary operators. 308 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 309 getComplexity(I.getOperand(1))) 310 Changed = !I.swapOperands(); 311 312 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 313 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 314 315 if (I.isAssociative()) { 316 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 317 if (Op0 && Op0->getOpcode() == Opcode) { 318 Value *A = Op0->getOperand(0); 319 Value *B = Op0->getOperand(1); 320 Value *C = I.getOperand(1); 321 322 // Does "B op C" simplify? 323 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 324 // It simplifies to V. Form "A op V". 325 I.setOperand(0, A); 326 I.setOperand(1, V); 327 // Conservatively clear the optional flags, since they may not be 328 // preserved by the reassociation. 329 if (MaintainNoSignedWrap(I, B, C) && 330 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { 331 // Note: this is only valid because SimplifyBinOp doesn't look at 332 // the operands to Op0. 333 I.clearSubclassOptionalData(); 334 I.setHasNoSignedWrap(true); 335 } else { 336 ClearSubclassDataAfterReassociation(I); 337 } 338 339 Changed = true; 340 ++NumReassoc; 341 continue; 342 } 343 } 344 345 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 346 if (Op1 && Op1->getOpcode() == Opcode) { 347 Value *A = I.getOperand(0); 348 Value *B = Op1->getOperand(0); 349 Value *C = Op1->getOperand(1); 350 351 // Does "A op B" simplify? 352 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 353 // It simplifies to V. Form "V op C". 354 I.setOperand(0, V); 355 I.setOperand(1, C); 356 // Conservatively clear the optional flags, since they may not be 357 // preserved by the reassociation. 358 ClearSubclassDataAfterReassociation(I); 359 Changed = true; 360 ++NumReassoc; 361 continue; 362 } 363 } 364 } 365 366 if (I.isAssociative() && I.isCommutative()) { 367 if (simplifyAssocCastAssoc(&I)) { 368 Changed = true; 369 ++NumReassoc; 370 continue; 371 } 372 373 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 374 if (Op0 && Op0->getOpcode() == Opcode) { 375 Value *A = Op0->getOperand(0); 376 Value *B = Op0->getOperand(1); 377 Value *C = I.getOperand(1); 378 379 // Does "C op A" simplify? 380 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 381 // It simplifies to V. Form "V op B". 382 I.setOperand(0, V); 383 I.setOperand(1, B); 384 // Conservatively clear the optional flags, since they may not be 385 // preserved by the reassociation. 386 ClearSubclassDataAfterReassociation(I); 387 Changed = true; 388 ++NumReassoc; 389 continue; 390 } 391 } 392 393 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 394 if (Op1 && Op1->getOpcode() == Opcode) { 395 Value *A = I.getOperand(0); 396 Value *B = Op1->getOperand(0); 397 Value *C = Op1->getOperand(1); 398 399 // Does "C op A" simplify? 400 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 401 // It simplifies to V. Form "B op V". 402 I.setOperand(0, B); 403 I.setOperand(1, V); 404 // Conservatively clear the optional flags, since they may not be 405 // preserved by the reassociation. 406 ClearSubclassDataAfterReassociation(I); 407 Changed = true; 408 ++NumReassoc; 409 continue; 410 } 411 } 412 413 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 414 // if C1 and C2 are constants. 415 Value *A, *B; 416 Constant *C1, *C2; 417 if (Op0 && Op1 && 418 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 419 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 420 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 421 BinaryOperator *NewBO = BinaryOperator::Create(Opcode, A, B); 422 if (isa<FPMathOperator>(NewBO)) { 423 FastMathFlags Flags = I.getFastMathFlags(); 424 Flags &= Op0->getFastMathFlags(); 425 Flags &= Op1->getFastMathFlags(); 426 NewBO->setFastMathFlags(Flags); 427 } 428 InsertNewInstWith(NewBO, I); 429 NewBO->takeName(Op1); 430 I.setOperand(0, NewBO); 431 I.setOperand(1, ConstantExpr::get(Opcode, C1, C2)); 432 // Conservatively clear the optional flags, since they may not be 433 // preserved by the reassociation. 434 ClearSubclassDataAfterReassociation(I); 435 436 Changed = true; 437 continue; 438 } 439 } 440 441 // No further simplifications. 442 return Changed; 443 } while (true); 444 } 445 446 /// Return whether "X LOp (Y ROp Z)" is always equal to 447 /// "(X LOp Y) ROp (X LOp Z)". 448 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 449 Instruction::BinaryOps ROp) { 450 // X & (Y | Z) <--> (X & Y) | (X & Z) 451 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 452 if (LOp == Instruction::And) 453 return ROp == Instruction::Or || ROp == Instruction::Xor; 454 455 // X | (Y & Z) <--> (X | Y) & (X | Z) 456 if (LOp == Instruction::Or) 457 return ROp == Instruction::And; 458 459 // X * (Y + Z) <--> (X * Y) + (X * Z) 460 // X * (Y - Z) <--> (X * Y) - (X * Z) 461 if (LOp == Instruction::Mul) 462 return ROp == Instruction::Add || ROp == Instruction::Sub; 463 464 return false; 465 } 466 467 /// Return whether "(X LOp Y) ROp Z" is always equal to 468 /// "(X ROp Z) LOp (Y ROp Z)". 469 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 470 Instruction::BinaryOps ROp) { 471 if (Instruction::isCommutative(ROp)) 472 return leftDistributesOverRight(ROp, LOp); 473 474 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 475 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 476 477 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 478 // but this requires knowing that the addition does not overflow and other 479 // such subtleties. 480 } 481 482 /// This function returns identity value for given opcode, which can be used to 483 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 484 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 485 if (isa<Constant>(V)) 486 return nullptr; 487 488 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 489 } 490 491 /// This function predicates factorization using distributive laws. By default, 492 /// it just returns the 'Op' inputs. But for special-cases like 493 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 494 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 495 /// allow more factorization opportunities. 496 static Instruction::BinaryOps 497 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 498 Value *&LHS, Value *&RHS) { 499 assert(Op && "Expected a binary operator"); 500 LHS = Op->getOperand(0); 501 RHS = Op->getOperand(1); 502 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 503 Constant *C; 504 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 505 // X << C --> X * (1 << C) 506 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 507 return Instruction::Mul; 508 } 509 // TODO: We can add other conversions e.g. shr => div etc. 510 } 511 return Op->getOpcode(); 512 } 513 514 /// This tries to simplify binary operations by factorizing out common terms 515 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 516 Value *InstCombiner::tryFactorization(BinaryOperator &I, 517 Instruction::BinaryOps InnerOpcode, 518 Value *A, Value *B, Value *C, Value *D) { 519 assert(A && B && C && D && "All values must be provided"); 520 521 Value *V = nullptr; 522 Value *SimplifiedInst = nullptr; 523 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 524 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 525 526 // Does "X op' Y" always equal "Y op' X"? 527 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 528 529 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 530 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 531 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 532 // commutative case, "(A op' B) op (C op' A)"? 533 if (A == C || (InnerCommutative && A == D)) { 534 if (A != C) 535 std::swap(C, D); 536 // Consider forming "A op' (B op D)". 537 // If "B op D" simplifies then it can be formed with no cost. 538 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 539 // If "B op D" doesn't simplify then only go on if both of the existing 540 // operations "A op' B" and "C op' D" will be zapped as no longer used. 541 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 542 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 543 if (V) { 544 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 545 } 546 } 547 548 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 549 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 550 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 551 // commutative case, "(A op' B) op (B op' D)"? 552 if (B == D || (InnerCommutative && B == C)) { 553 if (B != D) 554 std::swap(C, D); 555 // Consider forming "(A op C) op' B". 556 // If "A op C" simplifies then it can be formed with no cost. 557 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 558 559 // If "A op C" doesn't simplify then only go on if both of the existing 560 // operations "A op' B" and "C op' D" will be zapped as no longer used. 561 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 562 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 563 if (V) { 564 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 565 } 566 } 567 568 if (SimplifiedInst) { 569 ++NumFactor; 570 SimplifiedInst->takeName(&I); 571 572 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag. 573 // TODO: Check for NUW. 574 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 575 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 576 bool HasNSW = false; 577 if (isa<OverflowingBinaryOperator>(&I)) 578 HasNSW = I.hasNoSignedWrap(); 579 580 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) 581 HasNSW &= LOBO->hasNoSignedWrap(); 582 583 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) 584 HasNSW &= ROBO->hasNoSignedWrap(); 585 586 // We can propagate 'nsw' if we know that 587 // %Y = mul nsw i16 %X, C 588 // %Z = add nsw i16 %Y, %X 589 // => 590 // %Z = mul nsw i16 %X, C+1 591 // 592 // iff C+1 isn't INT_MIN 593 const APInt *CInt; 594 if (TopLevelOpcode == Instruction::Add && 595 InnerOpcode == Instruction::Mul) 596 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) 597 BO->setHasNoSignedWrap(HasNSW); 598 } 599 } 600 } 601 return SimplifiedInst; 602 } 603 604 /// This tries to simplify binary operations which some other binary operation 605 /// distributes over either by factorizing out common terms 606 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 607 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 608 /// Returns the simplified value, or null if it didn't simplify. 609 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 610 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 611 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 612 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 613 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 614 615 { 616 // Factorization. 617 Value *A, *B, *C, *D; 618 Instruction::BinaryOps LHSOpcode, RHSOpcode; 619 if (Op0) 620 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 621 if (Op1) 622 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 623 624 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 625 // a common term. 626 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 627 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 628 return V; 629 630 // The instruction has the form "(A op' B) op (C)". Try to factorize common 631 // term. 632 if (Op0) 633 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 634 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 635 return V; 636 637 // The instruction has the form "(B) op (C op' D)". Try to factorize common 638 // term. 639 if (Op1) 640 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 641 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 642 return V; 643 } 644 645 // Expansion. 646 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 647 // The instruction has the form "(A op' B) op C". See if expanding it out 648 // to "(A op C) op' (B op C)" results in simplifications. 649 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 650 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 651 652 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 653 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I)); 654 655 // Do "A op C" and "B op C" both simplify? 656 if (L && R) { 657 // They do! Return "L op' R". 658 ++NumExpand; 659 C = Builder.CreateBinOp(InnerOpcode, L, R); 660 C->takeName(&I); 661 return C; 662 } 663 664 // Does "A op C" simplify to the identity value for the inner opcode? 665 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 666 // They do! Return "B op C". 667 ++NumExpand; 668 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 669 C->takeName(&I); 670 return C; 671 } 672 673 // Does "B op C" simplify to the identity value for the inner opcode? 674 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 675 // They do! Return "A op C". 676 ++NumExpand; 677 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 678 C->takeName(&I); 679 return C; 680 } 681 } 682 683 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 684 // The instruction has the form "A op (B op' C)". See if expanding it out 685 // to "(A op B) op' (A op C)" results in simplifications. 686 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 687 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 688 689 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I)); 690 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 691 692 // Do "A op B" and "A op C" both simplify? 693 if (L && R) { 694 // They do! Return "L op' R". 695 ++NumExpand; 696 A = Builder.CreateBinOp(InnerOpcode, L, R); 697 A->takeName(&I); 698 return A; 699 } 700 701 // Does "A op B" simplify to the identity value for the inner opcode? 702 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 703 // They do! Return "A op C". 704 ++NumExpand; 705 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 706 A->takeName(&I); 707 return A; 708 } 709 710 // Does "A op C" simplify to the identity value for the inner opcode? 711 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 712 // They do! Return "A op B". 713 ++NumExpand; 714 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 715 A->takeName(&I); 716 return A; 717 } 718 } 719 720 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 721 } 722 723 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 724 Value *LHS, Value *RHS) { 725 Instruction::BinaryOps Opcode = I.getOpcode(); 726 // (op (select (a, b, c)), (select (a, d, e))) -> (select (a, (op b, d), (op 727 // c, e))) 728 Value *A, *B, *C, *D, *E; 729 Value *SI = nullptr; 730 if (match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))) && 731 match(RHS, m_Select(m_Specific(A), m_Value(D), m_Value(E)))) { 732 bool SelectsHaveOneUse = LHS->hasOneUse() && RHS->hasOneUse(); 733 BuilderTy::FastMathFlagGuard Guard(Builder); 734 if (isa<FPMathOperator>(&I)) 735 Builder.setFastMathFlags(I.getFastMathFlags()); 736 737 Value *V1 = SimplifyBinOp(Opcode, C, E, SQ.getWithInstruction(&I)); 738 Value *V2 = SimplifyBinOp(Opcode, B, D, SQ.getWithInstruction(&I)); 739 if (V1 && V2) 740 SI = Builder.CreateSelect(A, V2, V1); 741 else if (V2 && SelectsHaveOneUse) 742 SI = Builder.CreateSelect(A, V2, Builder.CreateBinOp(Opcode, C, E)); 743 else if (V1 && SelectsHaveOneUse) 744 SI = Builder.CreateSelect(A, Builder.CreateBinOp(Opcode, B, D), V1); 745 746 if (SI) 747 SI->takeName(&I); 748 } 749 750 return SI; 751 } 752 753 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 754 /// constant zero (which is the 'negate' form). 755 Value *InstCombiner::dyn_castNegVal(Value *V) const { 756 Value *NegV; 757 if (match(V, m_Neg(m_Value(NegV)))) 758 return NegV; 759 760 // Constants can be considered to be negated values if they can be folded. 761 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 762 return ConstantExpr::getNeg(C); 763 764 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 765 if (C->getType()->getElementType()->isIntegerTy()) 766 return ConstantExpr::getNeg(C); 767 768 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 769 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 770 Constant *Elt = CV->getAggregateElement(i); 771 if (!Elt) 772 return nullptr; 773 774 if (isa<UndefValue>(Elt)) 775 continue; 776 777 if (!isa<ConstantInt>(Elt)) 778 return nullptr; 779 } 780 return ConstantExpr::getNeg(CV); 781 } 782 783 return nullptr; 784 } 785 786 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 787 InstCombiner::BuilderTy &Builder) { 788 if (auto *Cast = dyn_cast<CastInst>(&I)) 789 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 790 791 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 792 793 // Figure out if the constant is the left or the right argument. 794 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 795 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 796 797 if (auto *SOC = dyn_cast<Constant>(SO)) { 798 if (ConstIsRHS) 799 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 800 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 801 } 802 803 Value *Op0 = SO, *Op1 = ConstOperand; 804 if (!ConstIsRHS) 805 std::swap(Op0, Op1); 806 807 auto *BO = cast<BinaryOperator>(&I); 808 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 809 SO->getName() + ".op"); 810 auto *FPInst = dyn_cast<Instruction>(RI); 811 if (FPInst && isa<FPMathOperator>(FPInst)) 812 FPInst->copyFastMathFlags(BO); 813 return RI; 814 } 815 816 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 817 // Don't modify shared select instructions. 818 if (!SI->hasOneUse()) 819 return nullptr; 820 821 Value *TV = SI->getTrueValue(); 822 Value *FV = SI->getFalseValue(); 823 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 824 return nullptr; 825 826 // Bool selects with constant operands can be folded to logical ops. 827 if (SI->getType()->isIntOrIntVectorTy(1)) 828 return nullptr; 829 830 // If it's a bitcast involving vectors, make sure it has the same number of 831 // elements on both sides. 832 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 833 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 834 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 835 836 // Verify that either both or neither are vectors. 837 if ((SrcTy == nullptr) != (DestTy == nullptr)) 838 return nullptr; 839 840 // If vectors, verify that they have the same number of elements. 841 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 842 return nullptr; 843 } 844 845 // Test if a CmpInst instruction is used exclusively by a select as 846 // part of a minimum or maximum operation. If so, refrain from doing 847 // any other folding. This helps out other analyses which understand 848 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 849 // and CodeGen. And in this case, at least one of the comparison 850 // operands has at least one user besides the compare (the select), 851 // which would often largely negate the benefit of folding anyway. 852 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 853 if (CI->hasOneUse()) { 854 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 855 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 856 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 857 return nullptr; 858 } 859 } 860 861 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 862 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 863 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 864 } 865 866 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 867 InstCombiner::BuilderTy &Builder) { 868 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 869 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 870 871 if (auto *InC = dyn_cast<Constant>(InV)) { 872 if (ConstIsRHS) 873 return ConstantExpr::get(I->getOpcode(), InC, C); 874 return ConstantExpr::get(I->getOpcode(), C, InC); 875 } 876 877 Value *Op0 = InV, *Op1 = C; 878 if (!ConstIsRHS) 879 std::swap(Op0, Op1); 880 881 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp"); 882 auto *FPInst = dyn_cast<Instruction>(RI); 883 if (FPInst && isa<FPMathOperator>(FPInst)) 884 FPInst->copyFastMathFlags(I); 885 return RI; 886 } 887 888 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) { 889 unsigned NumPHIValues = PN->getNumIncomingValues(); 890 if (NumPHIValues == 0) 891 return nullptr; 892 893 // We normally only transform phis with a single use. However, if a PHI has 894 // multiple uses and they are all the same operation, we can fold *all* of the 895 // uses into the PHI. 896 if (!PN->hasOneUse()) { 897 // Walk the use list for the instruction, comparing them to I. 898 for (User *U : PN->users()) { 899 Instruction *UI = cast<Instruction>(U); 900 if (UI != &I && !I.isIdenticalTo(UI)) 901 return nullptr; 902 } 903 // Otherwise, we can replace *all* users with the new PHI we form. 904 } 905 906 // Check to see if all of the operands of the PHI are simple constants 907 // (constantint/constantfp/undef). If there is one non-constant value, 908 // remember the BB it is in. If there is more than one or if *it* is a PHI, 909 // bail out. We don't do arbitrary constant expressions here because moving 910 // their computation can be expensive without a cost model. 911 BasicBlock *NonConstBB = nullptr; 912 for (unsigned i = 0; i != NumPHIValues; ++i) { 913 Value *InVal = PN->getIncomingValue(i); 914 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 915 continue; 916 917 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 918 if (NonConstBB) return nullptr; // More than one non-const value. 919 920 NonConstBB = PN->getIncomingBlock(i); 921 922 // If the InVal is an invoke at the end of the pred block, then we can't 923 // insert a computation after it without breaking the edge. 924 if (isa<InvokeInst>(InVal)) 925 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 926 return nullptr; 927 928 // If the incoming non-constant value is in I's block, we will remove one 929 // instruction, but insert another equivalent one, leading to infinite 930 // instcombine. 931 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI)) 932 return nullptr; 933 } 934 935 // If there is exactly one non-constant value, we can insert a copy of the 936 // operation in that block. However, if this is a critical edge, we would be 937 // inserting the computation on some other paths (e.g. inside a loop). Only 938 // do this if the pred block is unconditionally branching into the phi block. 939 if (NonConstBB != nullptr) { 940 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 941 if (!BI || !BI->isUnconditional()) return nullptr; 942 } 943 944 // Okay, we can do the transformation: create the new PHI node. 945 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 946 InsertNewInstBefore(NewPN, *PN); 947 NewPN->takeName(PN); 948 949 // If we are going to have to insert a new computation, do so right before the 950 // predecessor's terminator. 951 if (NonConstBB) 952 Builder.SetInsertPoint(NonConstBB->getTerminator()); 953 954 // Next, add all of the operands to the PHI. 955 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 956 // We only currently try to fold the condition of a select when it is a phi, 957 // not the true/false values. 958 Value *TrueV = SI->getTrueValue(); 959 Value *FalseV = SI->getFalseValue(); 960 BasicBlock *PhiTransBB = PN->getParent(); 961 for (unsigned i = 0; i != NumPHIValues; ++i) { 962 BasicBlock *ThisBB = PN->getIncomingBlock(i); 963 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 964 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 965 Value *InV = nullptr; 966 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 967 // even if currently isNullValue gives false. 968 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 969 // For vector constants, we cannot use isNullValue to fold into 970 // FalseVInPred versus TrueVInPred. When we have individual nonzero 971 // elements in the vector, we will incorrectly fold InC to 972 // `TrueVInPred`. 973 if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC)) 974 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 975 else { 976 // Generate the select in the same block as PN's current incoming block. 977 // Note: ThisBB need not be the NonConstBB because vector constants 978 // which are constants by definition are handled here. 979 // FIXME: This can lead to an increase in IR generation because we might 980 // generate selects for vector constant phi operand, that could not be 981 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 982 // non-vector phis, this transformation was always profitable because 983 // the select would be generated exactly once in the NonConstBB. 984 Builder.SetInsertPoint(ThisBB->getTerminator()); 985 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 986 FalseVInPred, "phitmp"); 987 } 988 NewPN->addIncoming(InV, ThisBB); 989 } 990 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 991 Constant *C = cast<Constant>(I.getOperand(1)); 992 for (unsigned i = 0; i != NumPHIValues; ++i) { 993 Value *InV = nullptr; 994 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 995 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 996 else if (isa<ICmpInst>(CI)) 997 InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 998 C, "phitmp"); 999 else 1000 InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 1001 C, "phitmp"); 1002 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1003 } 1004 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1005 for (unsigned i = 0; i != NumPHIValues; ++i) { 1006 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1007 Builder); 1008 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1009 } 1010 } else { 1011 CastInst *CI = cast<CastInst>(&I); 1012 Type *RetTy = CI->getType(); 1013 for (unsigned i = 0; i != NumPHIValues; ++i) { 1014 Value *InV; 1015 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1016 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1017 else 1018 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1019 I.getType(), "phitmp"); 1020 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1021 } 1022 } 1023 1024 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1025 Instruction *User = cast<Instruction>(*UI++); 1026 if (User == &I) continue; 1027 replaceInstUsesWith(*User, NewPN); 1028 eraseInstFromFunction(*User); 1029 } 1030 return replaceInstUsesWith(I, NewPN); 1031 } 1032 1033 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1034 if (!isa<Constant>(I.getOperand(1))) 1035 return nullptr; 1036 1037 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1038 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1039 return NewSel; 1040 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1041 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1042 return NewPhi; 1043 } 1044 return nullptr; 1045 } 1046 1047 /// Given a pointer type and a constant offset, determine whether or not there 1048 /// is a sequence of GEP indices into the pointed type that will land us at the 1049 /// specified offset. If so, fill them into NewIndices and return the resultant 1050 /// element type, otherwise return null. 1051 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 1052 SmallVectorImpl<Value *> &NewIndices) { 1053 Type *Ty = PtrTy->getElementType(); 1054 if (!Ty->isSized()) 1055 return nullptr; 1056 1057 // Start with the index over the outer type. Note that the type size 1058 // might be zero (even if the offset isn't zero) if the indexed type 1059 // is something like [0 x {int, int}] 1060 Type *IndexTy = DL.getIndexType(PtrTy); 1061 int64_t FirstIdx = 0; 1062 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 1063 FirstIdx = Offset/TySize; 1064 Offset -= FirstIdx*TySize; 1065 1066 // Handle hosts where % returns negative instead of values [0..TySize). 1067 if (Offset < 0) { 1068 --FirstIdx; 1069 Offset += TySize; 1070 assert(Offset >= 0); 1071 } 1072 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 1073 } 1074 1075 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx)); 1076 1077 // Index into the types. If we fail, set OrigBase to null. 1078 while (Offset) { 1079 // Indexing into tail padding between struct/array elements. 1080 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1081 return nullptr; 1082 1083 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1084 const StructLayout *SL = DL.getStructLayout(STy); 1085 assert(Offset < (int64_t)SL->getSizeInBytes() && 1086 "Offset must stay within the indexed type"); 1087 1088 unsigned Elt = SL->getElementContainingOffset(Offset); 1089 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1090 Elt)); 1091 1092 Offset -= SL->getElementOffset(Elt); 1093 Ty = STy->getElementType(Elt); 1094 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1095 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1096 assert(EltSize && "Cannot index into a zero-sized array"); 1097 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize)); 1098 Offset %= EltSize; 1099 Ty = AT->getElementType(); 1100 } else { 1101 // Otherwise, we can't index into the middle of this atomic type, bail. 1102 return nullptr; 1103 } 1104 } 1105 1106 return Ty; 1107 } 1108 1109 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1110 // If this GEP has only 0 indices, it is the same pointer as 1111 // Src. If Src is not a trivial GEP too, don't combine 1112 // the indices. 1113 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1114 !Src.hasOneUse()) 1115 return false; 1116 return true; 1117 } 1118 1119 /// Return a value X such that Val = X * Scale, or null if none. 1120 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1121 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1122 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1123 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1124 Scale.getBitWidth() && "Scale not compatible with value!"); 1125 1126 // If Val is zero or Scale is one then Val = Val * Scale. 1127 if (match(Val, m_Zero()) || Scale == 1) { 1128 NoSignedWrap = true; 1129 return Val; 1130 } 1131 1132 // If Scale is zero then it does not divide Val. 1133 if (Scale.isMinValue()) 1134 return nullptr; 1135 1136 // Look through chains of multiplications, searching for a constant that is 1137 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1138 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1139 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1140 // down from Val: 1141 // 1142 // Val = M1 * X || Analysis starts here and works down 1143 // M1 = M2 * Y || Doesn't descend into terms with more 1144 // M2 = Z * 4 \/ than one use 1145 // 1146 // Then to modify a term at the bottom: 1147 // 1148 // Val = M1 * X 1149 // M1 = Z * Y || Replaced M2 with Z 1150 // 1151 // Then to work back up correcting nsw flags. 1152 1153 // Op - the term we are currently analyzing. Starts at Val then drills down. 1154 // Replaced with its descaled value before exiting from the drill down loop. 1155 Value *Op = Val; 1156 1157 // Parent - initially null, but after drilling down notes where Op came from. 1158 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1159 // 0'th operand of Val. 1160 std::pair<Instruction *, unsigned> Parent; 1161 1162 // Set if the transform requires a descaling at deeper levels that doesn't 1163 // overflow. 1164 bool RequireNoSignedWrap = false; 1165 1166 // Log base 2 of the scale. Negative if not a power of 2. 1167 int32_t logScale = Scale.exactLogBase2(); 1168 1169 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1170 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1171 // If Op is a constant divisible by Scale then descale to the quotient. 1172 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1173 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1174 if (!Remainder.isMinValue()) 1175 // Not divisible by Scale. 1176 return nullptr; 1177 // Replace with the quotient in the parent. 1178 Op = ConstantInt::get(CI->getType(), Quotient); 1179 NoSignedWrap = true; 1180 break; 1181 } 1182 1183 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1184 if (BO->getOpcode() == Instruction::Mul) { 1185 // Multiplication. 1186 NoSignedWrap = BO->hasNoSignedWrap(); 1187 if (RequireNoSignedWrap && !NoSignedWrap) 1188 return nullptr; 1189 1190 // There are three cases for multiplication: multiplication by exactly 1191 // the scale, multiplication by a constant different to the scale, and 1192 // multiplication by something else. 1193 Value *LHS = BO->getOperand(0); 1194 Value *RHS = BO->getOperand(1); 1195 1196 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1197 // Multiplication by a constant. 1198 if (CI->getValue() == Scale) { 1199 // Multiplication by exactly the scale, replace the multiplication 1200 // by its left-hand side in the parent. 1201 Op = LHS; 1202 break; 1203 } 1204 1205 // Otherwise drill down into the constant. 1206 if (!Op->hasOneUse()) 1207 return nullptr; 1208 1209 Parent = std::make_pair(BO, 1); 1210 continue; 1211 } 1212 1213 // Multiplication by something else. Drill down into the left-hand side 1214 // since that's where the reassociate pass puts the good stuff. 1215 if (!Op->hasOneUse()) 1216 return nullptr; 1217 1218 Parent = std::make_pair(BO, 0); 1219 continue; 1220 } 1221 1222 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1223 isa<ConstantInt>(BO->getOperand(1))) { 1224 // Multiplication by a power of 2. 1225 NoSignedWrap = BO->hasNoSignedWrap(); 1226 if (RequireNoSignedWrap && !NoSignedWrap) 1227 return nullptr; 1228 1229 Value *LHS = BO->getOperand(0); 1230 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1231 getLimitedValue(Scale.getBitWidth()); 1232 // Op = LHS << Amt. 1233 1234 if (Amt == logScale) { 1235 // Multiplication by exactly the scale, replace the multiplication 1236 // by its left-hand side in the parent. 1237 Op = LHS; 1238 break; 1239 } 1240 if (Amt < logScale || !Op->hasOneUse()) 1241 return nullptr; 1242 1243 // Multiplication by more than the scale. Reduce the multiplying amount 1244 // by the scale in the parent. 1245 Parent = std::make_pair(BO, 1); 1246 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1247 break; 1248 } 1249 } 1250 1251 if (!Op->hasOneUse()) 1252 return nullptr; 1253 1254 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1255 if (Cast->getOpcode() == Instruction::SExt) { 1256 // Op is sign-extended from a smaller type, descale in the smaller type. 1257 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1258 APInt SmallScale = Scale.trunc(SmallSize); 1259 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1260 // descale Op as (sext Y) * Scale. In order to have 1261 // sext (Y * SmallScale) = (sext Y) * Scale 1262 // some conditions need to hold however: SmallScale must sign-extend to 1263 // Scale and the multiplication Y * SmallScale should not overflow. 1264 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1265 // SmallScale does not sign-extend to Scale. 1266 return nullptr; 1267 assert(SmallScale.exactLogBase2() == logScale); 1268 // Require that Y * SmallScale must not overflow. 1269 RequireNoSignedWrap = true; 1270 1271 // Drill down through the cast. 1272 Parent = std::make_pair(Cast, 0); 1273 Scale = SmallScale; 1274 continue; 1275 } 1276 1277 if (Cast->getOpcode() == Instruction::Trunc) { 1278 // Op is truncated from a larger type, descale in the larger type. 1279 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1280 // trunc (Y * sext Scale) = (trunc Y) * Scale 1281 // always holds. However (trunc Y) * Scale may overflow even if 1282 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1283 // from this point up in the expression (see later). 1284 if (RequireNoSignedWrap) 1285 return nullptr; 1286 1287 // Drill down through the cast. 1288 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1289 Parent = std::make_pair(Cast, 0); 1290 Scale = Scale.sext(LargeSize); 1291 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1292 logScale = -1; 1293 assert(Scale.exactLogBase2() == logScale); 1294 continue; 1295 } 1296 } 1297 1298 // Unsupported expression, bail out. 1299 return nullptr; 1300 } 1301 1302 // If Op is zero then Val = Op * Scale. 1303 if (match(Op, m_Zero())) { 1304 NoSignedWrap = true; 1305 return Op; 1306 } 1307 1308 // We know that we can successfully descale, so from here on we can safely 1309 // modify the IR. Op holds the descaled version of the deepest term in the 1310 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1311 // not to overflow. 1312 1313 if (!Parent.first) 1314 // The expression only had one term. 1315 return Op; 1316 1317 // Rewrite the parent using the descaled version of its operand. 1318 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1319 assert(Op != Parent.first->getOperand(Parent.second) && 1320 "Descaling was a no-op?"); 1321 Parent.first->setOperand(Parent.second, Op); 1322 Worklist.Add(Parent.first); 1323 1324 // Now work back up the expression correcting nsw flags. The logic is based 1325 // on the following observation: if X * Y is known not to overflow as a signed 1326 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1327 // then X * Z will not overflow as a signed multiplication either. As we work 1328 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1329 // current level has strictly smaller absolute value than the original. 1330 Instruction *Ancestor = Parent.first; 1331 do { 1332 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1333 // If the multiplication wasn't nsw then we can't say anything about the 1334 // value of the descaled multiplication, and we have to clear nsw flags 1335 // from this point on up. 1336 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1337 NoSignedWrap &= OpNoSignedWrap; 1338 if (NoSignedWrap != OpNoSignedWrap) { 1339 BO->setHasNoSignedWrap(NoSignedWrap); 1340 Worklist.Add(Ancestor); 1341 } 1342 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1343 // The fact that the descaled input to the trunc has smaller absolute 1344 // value than the original input doesn't tell us anything useful about 1345 // the absolute values of the truncations. 1346 NoSignedWrap = false; 1347 } 1348 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1349 "Failed to keep proper track of nsw flags while drilling down?"); 1350 1351 if (Ancestor == Val) 1352 // Got to the top, all done! 1353 return Val; 1354 1355 // Move up one level in the expression. 1356 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1357 Ancestor = Ancestor->user_back(); 1358 } while (true); 1359 } 1360 1361 Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) { 1362 if (!Inst.getType()->isVectorTy()) return nullptr; 1363 1364 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1365 unsigned NumElts = cast<VectorType>(Inst.getType())->getNumElements(); 1366 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1367 assert(cast<VectorType>(LHS->getType())->getNumElements() == NumElts); 1368 assert(cast<VectorType>(RHS->getType())->getNumElements() == NumElts); 1369 1370 // If both operands of the binop are vector concatenations, then perform the 1371 // narrow binop on each pair of the source operands followed by concatenation 1372 // of the results. 1373 Value *L0, *L1, *R0, *R1; 1374 Constant *Mask; 1375 if (match(LHS, m_ShuffleVector(m_Value(L0), m_Value(L1), m_Constant(Mask))) && 1376 match(RHS, m_ShuffleVector(m_Value(R0), m_Value(R1), m_Specific(Mask))) && 1377 LHS->hasOneUse() && RHS->hasOneUse() && 1378 cast<ShuffleVectorInst>(LHS)->isConcat() && 1379 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1380 // This transform does not have the speculative execution constraint as 1381 // below because the shuffle is a concatenation. The new binops are 1382 // operating on exactly the same elements as the existing binop. 1383 // TODO: We could ease the mask requirement to allow different undef lanes, 1384 // but that requires an analysis of the binop-with-undef output value. 1385 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1386 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1387 BO->copyIRFlags(&Inst); 1388 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1389 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1390 BO->copyIRFlags(&Inst); 1391 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1392 } 1393 1394 // It may not be safe to reorder shuffles and things like div, urem, etc. 1395 // because we may trap when executing those ops on unknown vector elements. 1396 // See PR20059. 1397 if (!isSafeToSpeculativelyExecute(&Inst)) 1398 return nullptr; 1399 1400 auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) { 1401 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1402 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1403 BO->copyIRFlags(&Inst); 1404 return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M); 1405 }; 1406 1407 // If both arguments of the binary operation are shuffles that use the same 1408 // mask and shuffle within a single vector, move the shuffle after the binop. 1409 Value *V1, *V2; 1410 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) && 1411 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) && 1412 V1->getType() == V2->getType() && 1413 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1414 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1415 return createBinOpShuffle(V1, V2, Mask); 1416 } 1417 1418 // If one argument is a shuffle within one vector and the other is a constant, 1419 // try moving the shuffle after the binary operation. This canonicalization 1420 // intends to move shuffles closer to other shuffles and binops closer to 1421 // other binops, so they can be folded. It may also enable demanded elements 1422 // transforms. 1423 Constant *C; 1424 if (match(&Inst, m_c_BinOp( 1425 m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))), 1426 m_Constant(C))) && 1427 V1->getType()->getVectorNumElements() <= NumElts) { 1428 assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() && 1429 "Shuffle should not change scalar type"); 1430 1431 // Find constant NewC that has property: 1432 // shuffle(NewC, ShMask) = C 1433 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1434 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1435 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1436 bool ConstOp1 = isa<Constant>(RHS); 1437 SmallVector<int, 16> ShMask; 1438 ShuffleVectorInst::getShuffleMask(Mask, ShMask); 1439 unsigned SrcVecNumElts = V1->getType()->getVectorNumElements(); 1440 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1441 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1442 bool MayChange = true; 1443 for (unsigned I = 0; I < NumElts; ++I) { 1444 Constant *CElt = C->getAggregateElement(I); 1445 if (ShMask[I] >= 0) { 1446 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1447 Constant *NewCElt = NewVecC[ShMask[I]]; 1448 // Bail out if: 1449 // 1. The constant vector contains a constant expression. 1450 // 2. The shuffle needs an element of the constant vector that can't 1451 // be mapped to a new constant vector. 1452 // 3. This is a widening shuffle that copies elements of V1 into the 1453 // extended elements (extending with undef is allowed). 1454 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1455 I >= SrcVecNumElts) { 1456 MayChange = false; 1457 break; 1458 } 1459 NewVecC[ShMask[I]] = CElt; 1460 } 1461 // If this is a widening shuffle, we must be able to extend with undef 1462 // elements. If the original binop does not produce an undef in the high 1463 // lanes, then this transform is not safe. 1464 // TODO: We could shuffle those non-undef constant values into the 1465 // result by using a constant vector (rather than an undef vector) 1466 // as operand 1 of the new binop, but that might be too aggressive 1467 // for target-independent shuffle creation. 1468 if (I >= SrcVecNumElts) { 1469 Constant *MaybeUndef = 1470 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1471 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1472 if (!isa<UndefValue>(MaybeUndef)) { 1473 MayChange = false; 1474 break; 1475 } 1476 } 1477 } 1478 if (MayChange) { 1479 Constant *NewC = ConstantVector::get(NewVecC); 1480 // It may not be safe to execute a binop on a vector with undef elements 1481 // because the entire instruction can be folded to undef or create poison 1482 // that did not exist in the original code. 1483 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1484 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1485 1486 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1487 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1488 Value *NewLHS = ConstOp1 ? V1 : NewC; 1489 Value *NewRHS = ConstOp1 ? NewC : V1; 1490 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1491 } 1492 } 1493 1494 return nullptr; 1495 } 1496 1497 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1498 /// of a value. This requires a potentially expensive known bits check to make 1499 /// sure the narrow op does not overflow. 1500 Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) { 1501 // We need at least one extended operand. 1502 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1503 1504 // If this is a sub, we swap the operands since we always want an extension 1505 // on the RHS. The LHS can be an extension or a constant. 1506 if (BO.getOpcode() == Instruction::Sub) 1507 std::swap(Op0, Op1); 1508 1509 Value *X; 1510 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1511 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1512 return nullptr; 1513 1514 // If both operands are the same extension from the same source type and we 1515 // can eliminate at least one (hasOneUse), this might work. 1516 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1517 Value *Y; 1518 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1519 cast<Operator>(Op1)->getOpcode() == CastOpc && 1520 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1521 // If that did not match, see if we have a suitable constant operand. 1522 // Truncating and extending must produce the same constant. 1523 Constant *WideC; 1524 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1525 return nullptr; 1526 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1527 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1528 return nullptr; 1529 Y = NarrowC; 1530 } 1531 1532 // Swap back now that we found our operands. 1533 if (BO.getOpcode() == Instruction::Sub) 1534 std::swap(X, Y); 1535 1536 // Both operands have narrow versions. Last step: the math must not overflow 1537 // in the narrow width. 1538 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1539 return nullptr; 1540 1541 // bo (ext X), (ext Y) --> ext (bo X, Y) 1542 // bo (ext X), C --> ext (bo X, C') 1543 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1544 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1545 if (IsSext) 1546 NewBinOp->setHasNoSignedWrap(); 1547 else 1548 NewBinOp->setHasNoUnsignedWrap(); 1549 } 1550 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1551 } 1552 1553 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1554 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1555 Type *GEPType = GEP.getType(); 1556 Type *GEPEltType = GEP.getSourceElementType(); 1557 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP))) 1558 return replaceInstUsesWith(GEP, V); 1559 1560 Value *PtrOp = GEP.getOperand(0); 1561 1562 // Eliminate unneeded casts for indices, and replace indices which displace 1563 // by multiples of a zero size type with zero. 1564 bool MadeChange = false; 1565 1566 // Index width may not be the same width as pointer width. 1567 // Data layout chooses the right type based on supported integer types. 1568 Type *NewScalarIndexTy = 1569 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 1570 1571 gep_type_iterator GTI = gep_type_begin(GEP); 1572 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1573 ++I, ++GTI) { 1574 // Skip indices into struct types. 1575 if (GTI.isStruct()) 1576 continue; 1577 1578 Type *IndexTy = (*I)->getType(); 1579 Type *NewIndexType = 1580 IndexTy->isVectorTy() 1581 ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements()) 1582 : NewScalarIndexTy; 1583 1584 // If the element type has zero size then any index over it is equivalent 1585 // to an index of zero, so replace it with zero if it is not zero already. 1586 Type *EltTy = GTI.getIndexedType(); 1587 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0) 1588 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { 1589 *I = Constant::getNullValue(NewIndexType); 1590 MadeChange = true; 1591 } 1592 1593 if (IndexTy != NewIndexType) { 1594 // If we are using a wider index than needed for this platform, shrink 1595 // it to what we need. If narrower, sign-extend it to what we need. 1596 // This explicit cast can make subsequent optimizations more obvious. 1597 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1598 MadeChange = true; 1599 } 1600 } 1601 if (MadeChange) 1602 return &GEP; 1603 1604 // Check to see if the inputs to the PHI node are getelementptr instructions. 1605 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 1606 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1607 if (!Op1) 1608 return nullptr; 1609 1610 // Don't fold a GEP into itself through a PHI node. This can only happen 1611 // through the back-edge of a loop. Folding a GEP into itself means that 1612 // the value of the previous iteration needs to be stored in the meantime, 1613 // thus requiring an additional register variable to be live, but not 1614 // actually achieving anything (the GEP still needs to be executed once per 1615 // loop iteration). 1616 if (Op1 == &GEP) 1617 return nullptr; 1618 1619 int DI = -1; 1620 1621 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1622 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 1623 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1624 return nullptr; 1625 1626 // As for Op1 above, don't try to fold a GEP into itself. 1627 if (Op2 == &GEP) 1628 return nullptr; 1629 1630 // Keep track of the type as we walk the GEP. 1631 Type *CurTy = nullptr; 1632 1633 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1634 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1635 return nullptr; 1636 1637 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1638 if (DI == -1) { 1639 // We have not seen any differences yet in the GEPs feeding the 1640 // PHI yet, so we record this one if it is allowed to be a 1641 // variable. 1642 1643 // The first two arguments can vary for any GEP, the rest have to be 1644 // static for struct slots 1645 if (J > 1 && CurTy->isStructTy()) 1646 return nullptr; 1647 1648 DI = J; 1649 } else { 1650 // The GEP is different by more than one input. While this could be 1651 // extended to support GEPs that vary by more than one variable it 1652 // doesn't make sense since it greatly increases the complexity and 1653 // would result in an R+R+R addressing mode which no backend 1654 // directly supports and would need to be broken into several 1655 // simpler instructions anyway. 1656 return nullptr; 1657 } 1658 } 1659 1660 // Sink down a layer of the type for the next iteration. 1661 if (J > 0) { 1662 if (J == 1) { 1663 CurTy = Op1->getSourceElementType(); 1664 } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) { 1665 CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); 1666 } else { 1667 CurTy = nullptr; 1668 } 1669 } 1670 } 1671 } 1672 1673 // If not all GEPs are identical we'll have to create a new PHI node. 1674 // Check that the old PHI node has only one use so that it will get 1675 // removed. 1676 if (DI != -1 && !PN->hasOneUse()) 1677 return nullptr; 1678 1679 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1680 if (DI == -1) { 1681 // All the GEPs feeding the PHI are identical. Clone one down into our 1682 // BB so that it can be merged with the current GEP. 1683 GEP.getParent()->getInstList().insert( 1684 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1685 } else { 1686 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1687 // into the current block so it can be merged, and create a new PHI to 1688 // set that index. 1689 PHINode *NewPN; 1690 { 1691 IRBuilderBase::InsertPointGuard Guard(Builder); 1692 Builder.SetInsertPoint(PN); 1693 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 1694 PN->getNumOperands()); 1695 } 1696 1697 for (auto &I : PN->operands()) 1698 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1699 PN->getIncomingBlock(I)); 1700 1701 NewGEP->setOperand(DI, NewPN); 1702 GEP.getParent()->getInstList().insert( 1703 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1704 NewGEP->setOperand(DI, NewPN); 1705 } 1706 1707 GEP.setOperand(0, NewGEP); 1708 PtrOp = NewGEP; 1709 } 1710 1711 // Combine Indices - If the source pointer to this getelementptr instruction 1712 // is a getelementptr instruction, combine the indices of the two 1713 // getelementptr instructions into a single instruction. 1714 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { 1715 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1716 return nullptr; 1717 1718 // Try to reassociate loop invariant GEP chains to enable LICM. 1719 if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1720 Src->hasOneUse()) { 1721 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1722 Value *GO1 = GEP.getOperand(1); 1723 Value *SO1 = Src->getOperand(1); 1724 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1725 // invariant: this breaks the dependence between GEPs and allows LICM 1726 // to hoist the invariant part out of the loop. 1727 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1728 // We have to be careful here. 1729 // We have something like: 1730 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 1731 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 1732 // If we just swap idx & idx2 then we could inadvertantly 1733 // change %src from a vector to a scalar, or vice versa. 1734 // Cases: 1735 // 1) %base a scalar & idx a scalar & idx2 a vector 1736 // => Swapping idx & idx2 turns %src into a vector type. 1737 // 2) %base a scalar & idx a vector & idx2 a scalar 1738 // => Swapping idx & idx2 turns %src in a scalar type 1739 // 3) %base, %idx, and %idx2 are scalars 1740 // => %src & %gep are scalars 1741 // => swapping idx & idx2 is safe 1742 // 4) %base a vector 1743 // => %src is a vector 1744 // => swapping idx & idx2 is safe. 1745 auto *SO0 = Src->getOperand(0); 1746 auto *SO0Ty = SO0->getType(); 1747 if (!isa<VectorType>(GEPType) || // case 3 1748 isa<VectorType>(SO0Ty)) { // case 4 1749 Src->setOperand(1, GO1); 1750 GEP.setOperand(1, SO1); 1751 return &GEP; 1752 } else { 1753 // Case 1 or 2 1754 // -- have to recreate %src & %gep 1755 // put NewSrc at same location as %src 1756 Builder.SetInsertPoint(cast<Instruction>(PtrOp)); 1757 auto *NewSrc = cast<GetElementPtrInst>( 1758 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName())); 1759 NewSrc->setIsInBounds(Src->isInBounds()); 1760 auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1}); 1761 NewGEP->setIsInBounds(GEP.isInBounds()); 1762 return NewGEP; 1763 } 1764 } 1765 } 1766 } 1767 1768 // Note that if our source is a gep chain itself then we wait for that 1769 // chain to be resolved before we perform this transformation. This 1770 // avoids us creating a TON of code in some cases. 1771 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 1772 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1773 return nullptr; // Wait until our source is folded to completion. 1774 1775 SmallVector<Value*, 8> Indices; 1776 1777 // Find out whether the last index in the source GEP is a sequential idx. 1778 bool EndsWithSequential = false; 1779 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1780 I != E; ++I) 1781 EndsWithSequential = I.isSequential(); 1782 1783 // Can we combine the two pointer arithmetics offsets? 1784 if (EndsWithSequential) { 1785 // Replace: gep (gep %P, long B), long A, ... 1786 // With: T = long A+B; gep %P, T, ... 1787 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1788 Value *GO1 = GEP.getOperand(1); 1789 1790 // If they aren't the same type, then the input hasn't been processed 1791 // by the loop above yet (which canonicalizes sequential index types to 1792 // intptr_t). Just avoid transforming this until the input has been 1793 // normalized. 1794 if (SO1->getType() != GO1->getType()) 1795 return nullptr; 1796 1797 Value *Sum = 1798 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 1799 // Only do the combine when we are sure the cost after the 1800 // merge is never more than that before the merge. 1801 if (Sum == nullptr) 1802 return nullptr; 1803 1804 // Update the GEP in place if possible. 1805 if (Src->getNumOperands() == 2) { 1806 GEP.setOperand(0, Src->getOperand(0)); 1807 GEP.setOperand(1, Sum); 1808 return &GEP; 1809 } 1810 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1811 Indices.push_back(Sum); 1812 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1813 } else if (isa<Constant>(*GEP.idx_begin()) && 1814 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1815 Src->getNumOperands() != 1) { 1816 // Otherwise we can do the fold if the first index of the GEP is a zero 1817 Indices.append(Src->op_begin()+1, Src->op_end()); 1818 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1819 } 1820 1821 if (!Indices.empty()) 1822 return GEP.isInBounds() && Src->isInBounds() 1823 ? GetElementPtrInst::CreateInBounds( 1824 Src->getSourceElementType(), Src->getOperand(0), Indices, 1825 GEP.getName()) 1826 : GetElementPtrInst::Create(Src->getSourceElementType(), 1827 Src->getOperand(0), Indices, 1828 GEP.getName()); 1829 } 1830 1831 if (GEP.getNumIndices() == 1) { 1832 unsigned AS = GEP.getPointerAddressSpace(); 1833 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 1834 DL.getIndexSizeInBits(AS)) { 1835 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType); 1836 1837 bool Matched = false; 1838 uint64_t C; 1839 Value *V = nullptr; 1840 if (TyAllocSize == 1) { 1841 V = GEP.getOperand(1); 1842 Matched = true; 1843 } else if (match(GEP.getOperand(1), 1844 m_AShr(m_Value(V), m_ConstantInt(C)))) { 1845 if (TyAllocSize == 1ULL << C) 1846 Matched = true; 1847 } else if (match(GEP.getOperand(1), 1848 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 1849 if (TyAllocSize == C) 1850 Matched = true; 1851 } 1852 1853 if (Matched) { 1854 // Canonicalize (gep i8* X, -(ptrtoint Y)) 1855 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) 1856 // The GEP pattern is emitted by the SCEV expander for certain kinds of 1857 // pointer arithmetic. 1858 if (match(V, m_Neg(m_PtrToInt(m_Value())))) { 1859 Operator *Index = cast<Operator>(V); 1860 Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType()); 1861 Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1)); 1862 return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType); 1863 } 1864 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) 1865 // to (bitcast Y) 1866 Value *Y; 1867 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), 1868 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) 1869 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 1870 } 1871 } 1872 } 1873 1874 // We do not handle pointer-vector geps here. 1875 if (GEPType->isVectorTy()) 1876 return nullptr; 1877 1878 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 1879 Value *StrippedPtr = PtrOp->stripPointerCasts(); 1880 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 1881 1882 if (StrippedPtr != PtrOp) { 1883 bool HasZeroPointerIndex = false; 1884 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType(); 1885 1886 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 1887 HasZeroPointerIndex = C->isZero(); 1888 1889 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 1890 // into : GEP [10 x i8]* X, i32 0, ... 1891 // 1892 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 1893 // into : GEP i8* X, ... 1894 // 1895 // This occurs when the program declares an array extern like "int X[];" 1896 if (HasZeroPointerIndex) { 1897 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 1898 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 1899 if (CATy->getElementType() == StrippedPtrEltTy) { 1900 // -> GEP i8* X, ... 1901 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 1902 GetElementPtrInst *Res = GetElementPtrInst::Create( 1903 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 1904 Res->setIsInBounds(GEP.isInBounds()); 1905 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 1906 return Res; 1907 // Insert Res, and create an addrspacecast. 1908 // e.g., 1909 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 1910 // -> 1911 // %0 = GEP i8 addrspace(1)* X, ... 1912 // addrspacecast i8 addrspace(1)* %0 to i8* 1913 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 1914 } 1915 1916 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 1917 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 1918 if (CATy->getElementType() == XATy->getElementType()) { 1919 // -> GEP [10 x i8]* X, i32 0, ... 1920 // At this point, we know that the cast source type is a pointer 1921 // to an array of the same type as the destination pointer 1922 // array. Because the array type is never stepped over (there 1923 // is a leading zero) we can fold the cast into this GEP. 1924 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 1925 GEP.setOperand(0, StrippedPtr); 1926 GEP.setSourceElementType(XATy); 1927 return &GEP; 1928 } 1929 // Cannot replace the base pointer directly because StrippedPtr's 1930 // address space is different. Instead, create a new GEP followed by 1931 // an addrspacecast. 1932 // e.g., 1933 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 1934 // i32 0, ... 1935 // -> 1936 // %0 = GEP [10 x i8] addrspace(1)* X, ... 1937 // addrspacecast i8 addrspace(1)* %0 to i8* 1938 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 1939 Value *NewGEP = 1940 GEP.isInBounds() 1941 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 1942 Idx, GEP.getName()) 1943 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 1944 GEP.getName()); 1945 return new AddrSpaceCastInst(NewGEP, GEPType); 1946 } 1947 } 1948 } 1949 } else if (GEP.getNumOperands() == 2) { 1950 // Transform things like: 1951 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 1952 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 1953 if (StrippedPtrEltTy->isArrayTy() && 1954 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 1955 DL.getTypeAllocSize(GEPEltType)) { 1956 Type *IdxType = DL.getIndexType(GEPType); 1957 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 1958 Value *NewGEP = 1959 GEP.isInBounds() 1960 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, 1961 GEP.getName()) 1962 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 1963 GEP.getName()); 1964 1965 // V and GEP are both pointer types --> BitCast 1966 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 1967 } 1968 1969 // Transform things like: 1970 // %V = mul i64 %N, 4 1971 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 1972 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 1973 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 1974 // Check that changing the type amounts to dividing the index by a scale 1975 // factor. 1976 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 1977 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy); 1978 if (ResSize && SrcSize % ResSize == 0) { 1979 Value *Idx = GEP.getOperand(1); 1980 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1981 uint64_t Scale = SrcSize / ResSize; 1982 1983 // Earlier transforms ensure that the index has the right type 1984 // according to Data Layout, which considerably simplifies the 1985 // logic by eliminating implicit casts. 1986 assert(Idx->getType() == DL.getIndexType(GEPType) && 1987 "Index type does not match the Data Layout preferences"); 1988 1989 bool NSW; 1990 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1991 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1992 // If the multiplication NewIdx * Scale may overflow then the new 1993 // GEP may not be "inbounds". 1994 Value *NewGEP = 1995 GEP.isInBounds() && NSW 1996 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 1997 NewIdx, GEP.getName()) 1998 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 1999 GEP.getName()); 2000 2001 // The NewGEP must be pointer typed, so must the old one -> BitCast 2002 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2003 GEPType); 2004 } 2005 } 2006 } 2007 2008 // Similarly, transform things like: 2009 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2010 // (where tmp = 8*tmp2) into: 2011 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2012 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2013 StrippedPtrEltTy->isArrayTy()) { 2014 // Check that changing to the array element type amounts to dividing the 2015 // index by a scale factor. 2016 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 2017 uint64_t ArrayEltSize = 2018 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()); 2019 if (ResSize && ArrayEltSize % ResSize == 0) { 2020 Value *Idx = GEP.getOperand(1); 2021 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2022 uint64_t Scale = ArrayEltSize / ResSize; 2023 2024 // Earlier transforms ensure that the index has the right type 2025 // according to the Data Layout, which considerably simplifies 2026 // the logic by eliminating implicit casts. 2027 assert(Idx->getType() == DL.getIndexType(GEPType) && 2028 "Index type does not match the Data Layout preferences"); 2029 2030 bool NSW; 2031 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2032 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2033 // If the multiplication NewIdx * Scale may overflow then the new 2034 // GEP may not be "inbounds". 2035 Type *IndTy = DL.getIndexType(GEPType); 2036 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2037 2038 Value *NewGEP = 2039 GEP.isInBounds() && NSW 2040 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2041 Off, GEP.getName()) 2042 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2043 GEP.getName()); 2044 // The NewGEP must be pointer typed, so must the old one -> BitCast 2045 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2046 GEPType); 2047 } 2048 } 2049 } 2050 } 2051 } 2052 2053 // addrspacecast between types is canonicalized as a bitcast, then an 2054 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2055 // through the addrspacecast. 2056 Value *ASCStrippedPtrOp = PtrOp; 2057 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2058 // X = bitcast A addrspace(1)* to B addrspace(1)* 2059 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2060 // Z = gep Y, <...constant indices...> 2061 // Into an addrspacecasted GEP of the struct. 2062 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2063 ASCStrippedPtrOp = BC; 2064 } 2065 2066 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 2067 Value *SrcOp = BCI->getOperand(0); 2068 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2069 Type *SrcEltType = SrcType->getElementType(); 2070 2071 // GEP directly using the source operand if this GEP is accessing an element 2072 // of a bitcasted pointer to vector or array of the same dimensions: 2073 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2074 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2075 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy) { 2076 return ArrTy->getArrayElementType() == VecTy->getVectorElementType() && 2077 ArrTy->getArrayNumElements() == VecTy->getVectorNumElements(); 2078 }; 2079 if (GEP.getNumOperands() == 3 && 2080 ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() && 2081 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType)) || 2082 (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() && 2083 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType)))) { 2084 2085 // Create a new GEP here, as using `setOperand()` followed by 2086 // `setSourceElementType()` won't actually update the type of the 2087 // existing GEP Value. Causing issues if this Value is accessed when 2088 // constructing an AddrSpaceCastInst 2089 Value *NGEP = 2090 GEP.isInBounds() 2091 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}) 2092 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}); 2093 NGEP->takeName(&GEP); 2094 2095 // Preserve GEP address space to satisfy users 2096 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2097 return new AddrSpaceCastInst(NGEP, GEPType); 2098 2099 return replaceInstUsesWith(GEP, NGEP); 2100 } 2101 2102 // See if we can simplify: 2103 // X = bitcast A* to B* 2104 // Y = gep X, <...constant indices...> 2105 // into a gep of the original struct. This is important for SROA and alias 2106 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2107 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 2108 APInt Offset(OffsetBits, 0); 2109 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) { 2110 // If this GEP instruction doesn't move the pointer, just replace the GEP 2111 // with a bitcast of the real input to the dest type. 2112 if (!Offset) { 2113 // If the bitcast is of an allocation, and the allocation will be 2114 // converted to match the type of the cast, don't touch this. 2115 if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) { 2116 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2117 if (Instruction *I = visitBitCast(*BCI)) { 2118 if (I != BCI) { 2119 I->takeName(BCI); 2120 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2121 replaceInstUsesWith(*BCI, I); 2122 } 2123 return &GEP; 2124 } 2125 } 2126 2127 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2128 return new AddrSpaceCastInst(SrcOp, GEPType); 2129 return new BitCastInst(SrcOp, GEPType); 2130 } 2131 2132 // Otherwise, if the offset is non-zero, we need to find out if there is a 2133 // field at Offset in 'A's type. If so, we can pull the cast through the 2134 // GEP. 2135 SmallVector<Value*, 8> NewIndices; 2136 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2137 Value *NGEP = 2138 GEP.isInBounds() 2139 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) 2140 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); 2141 2142 if (NGEP->getType() == GEPType) 2143 return replaceInstUsesWith(GEP, NGEP); 2144 NGEP->takeName(&GEP); 2145 2146 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2147 return new AddrSpaceCastInst(NGEP, GEPType); 2148 return new BitCastInst(NGEP, GEPType); 2149 } 2150 } 2151 } 2152 2153 if (!GEP.isInBounds()) { 2154 unsigned IdxWidth = 2155 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2156 APInt BasePtrOffset(IdxWidth, 0); 2157 Value *UnderlyingPtrOp = 2158 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2159 BasePtrOffset); 2160 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2161 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2162 BasePtrOffset.isNonNegative()) { 2163 APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType())); 2164 if (BasePtrOffset.ule(AllocSize)) { 2165 return GetElementPtrInst::CreateInBounds( 2166 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1), 2167 GEP.getName()); 2168 } 2169 } 2170 } 2171 } 2172 2173 return nullptr; 2174 } 2175 2176 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 2177 Instruction *AI) { 2178 if (isa<ConstantPointerNull>(V)) 2179 return true; 2180 if (auto *LI = dyn_cast<LoadInst>(V)) 2181 return isa<GlobalVariable>(LI->getPointerOperand()); 2182 // Two distinct allocations will never be equal. 2183 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2184 // through bitcasts of V can cause 2185 // the result statement below to be true, even when AI and V (ex: 2186 // i8* ->i32* ->i8* of AI) are the same allocations. 2187 return isAllocLikeFn(V, TLI) && V != AI; 2188 } 2189 2190 static bool isAllocSiteRemovable(Instruction *AI, 2191 SmallVectorImpl<WeakTrackingVH> &Users, 2192 const TargetLibraryInfo *TLI) { 2193 SmallVector<Instruction*, 4> Worklist; 2194 Worklist.push_back(AI); 2195 2196 do { 2197 Instruction *PI = Worklist.pop_back_val(); 2198 for (User *U : PI->users()) { 2199 Instruction *I = cast<Instruction>(U); 2200 switch (I->getOpcode()) { 2201 default: 2202 // Give up the moment we see something we can't handle. 2203 return false; 2204 2205 case Instruction::AddrSpaceCast: 2206 case Instruction::BitCast: 2207 case Instruction::GetElementPtr: 2208 Users.emplace_back(I); 2209 Worklist.push_back(I); 2210 continue; 2211 2212 case Instruction::ICmp: { 2213 ICmpInst *ICI = cast<ICmpInst>(I); 2214 // We can fold eq/ne comparisons with null to false/true, respectively. 2215 // We also fold comparisons in some conditions provided the alloc has 2216 // not escaped (see isNeverEqualToUnescapedAlloc). 2217 if (!ICI->isEquality()) 2218 return false; 2219 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2220 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2221 return false; 2222 Users.emplace_back(I); 2223 continue; 2224 } 2225 2226 case Instruction::Call: 2227 // Ignore no-op and store intrinsics. 2228 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2229 switch (II->getIntrinsicID()) { 2230 default: 2231 return false; 2232 2233 case Intrinsic::memmove: 2234 case Intrinsic::memcpy: 2235 case Intrinsic::memset: { 2236 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2237 if (MI->isVolatile() || MI->getRawDest() != PI) 2238 return false; 2239 LLVM_FALLTHROUGH; 2240 } 2241 case Intrinsic::invariant_start: 2242 case Intrinsic::invariant_end: 2243 case Intrinsic::lifetime_start: 2244 case Intrinsic::lifetime_end: 2245 case Intrinsic::objectsize: 2246 Users.emplace_back(I); 2247 continue; 2248 } 2249 } 2250 2251 if (isFreeCall(I, TLI)) { 2252 Users.emplace_back(I); 2253 continue; 2254 } 2255 return false; 2256 2257 case Instruction::Store: { 2258 StoreInst *SI = cast<StoreInst>(I); 2259 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2260 return false; 2261 Users.emplace_back(I); 2262 continue; 2263 } 2264 } 2265 llvm_unreachable("missing a return?"); 2266 } 2267 } while (!Worklist.empty()); 2268 return true; 2269 } 2270 2271 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 2272 // If we have a malloc call which is only used in any amount of comparisons to 2273 // null and free calls, delete the calls and replace the comparisons with true 2274 // or false as appropriate. 2275 2276 // This is based on the principle that we can substitute our own allocation 2277 // function (which will never return null) rather than knowledge of the 2278 // specific function being called. In some sense this can change the permitted 2279 // outputs of a program (when we convert a malloc to an alloca, the fact that 2280 // the allocation is now on the stack is potentially visible, for example), 2281 // but we believe in a permissible manner. 2282 SmallVector<WeakTrackingVH, 64> Users; 2283 2284 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2285 // before each store. 2286 TinyPtrVector<DbgVariableIntrinsic *> DIIs; 2287 std::unique_ptr<DIBuilder> DIB; 2288 if (isa<AllocaInst>(MI)) { 2289 DIIs = FindDbgAddrUses(&MI); 2290 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2291 } 2292 2293 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2294 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2295 // Lowering all @llvm.objectsize calls first because they may 2296 // use a bitcast/GEP of the alloca we are removing. 2297 if (!Users[i]) 2298 continue; 2299 2300 Instruction *I = cast<Instruction>(&*Users[i]); 2301 2302 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2303 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2304 Value *Result = 2305 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); 2306 replaceInstUsesWith(*I, Result); 2307 eraseInstFromFunction(*I); 2308 Users[i] = nullptr; // Skip examining in the next loop. 2309 } 2310 } 2311 } 2312 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2313 if (!Users[i]) 2314 continue; 2315 2316 Instruction *I = cast<Instruction>(&*Users[i]); 2317 2318 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2319 replaceInstUsesWith(*C, 2320 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2321 C->isFalseWhenEqual())); 2322 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) || 2323 isa<AddrSpaceCastInst>(I)) { 2324 replaceInstUsesWith(*I, UndefValue::get(I->getType())); 2325 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2326 for (auto *DII : DIIs) 2327 ConvertDebugDeclareToDebugValue(DII, SI, *DIB); 2328 } 2329 eraseInstFromFunction(*I); 2330 } 2331 2332 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2333 // Replace invoke with a NOP intrinsic to maintain the original CFG 2334 Module *M = II->getModule(); 2335 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2336 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2337 None, "", II->getParent()); 2338 } 2339 2340 for (auto *DII : DIIs) 2341 eraseInstFromFunction(*DII); 2342 2343 return eraseInstFromFunction(MI); 2344 } 2345 return nullptr; 2346 } 2347 2348 /// Move the call to free before a NULL test. 2349 /// 2350 /// Check if this free is accessed after its argument has been test 2351 /// against NULL (property 0). 2352 /// If yes, it is legal to move this call in its predecessor block. 2353 /// 2354 /// The move is performed only if the block containing the call to free 2355 /// will be removed, i.e.: 2356 /// 1. it has only one predecessor P, and P has two successors 2357 /// 2. it contains the call, noops, and an unconditional branch 2358 /// 3. its successor is the same as its predecessor's successor 2359 /// 2360 /// The profitability is out-of concern here and this function should 2361 /// be called only if the caller knows this transformation would be 2362 /// profitable (e.g., for code size). 2363 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2364 const DataLayout &DL) { 2365 Value *Op = FI.getArgOperand(0); 2366 BasicBlock *FreeInstrBB = FI.getParent(); 2367 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2368 2369 // Validate part of constraint #1: Only one predecessor 2370 // FIXME: We can extend the number of predecessor, but in that case, we 2371 // would duplicate the call to free in each predecessor and it may 2372 // not be profitable even for code size. 2373 if (!PredBB) 2374 return nullptr; 2375 2376 // Validate constraint #2: Does this block contains only the call to 2377 // free, noops, and an unconditional branch? 2378 BasicBlock *SuccBB; 2379 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2380 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2381 return nullptr; 2382 2383 // If there are only 2 instructions in the block, at this point, 2384 // this is the call to free and unconditional. 2385 // If there are more than 2 instructions, check that they are noops 2386 // i.e., they won't hurt the performance of the generated code. 2387 if (FreeInstrBB->size() != 2) { 2388 for (const Instruction &Inst : *FreeInstrBB) { 2389 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2390 continue; 2391 auto *Cast = dyn_cast<CastInst>(&Inst); 2392 if (!Cast || !Cast->isNoopCast(DL)) 2393 return nullptr; 2394 } 2395 } 2396 // Validate the rest of constraint #1 by matching on the pred branch. 2397 Instruction *TI = PredBB->getTerminator(); 2398 BasicBlock *TrueBB, *FalseBB; 2399 ICmpInst::Predicate Pred; 2400 if (!match(TI, m_Br(m_ICmp(Pred, 2401 m_CombineOr(m_Specific(Op), 2402 m_Specific(Op->stripPointerCasts())), 2403 m_Zero()), 2404 TrueBB, FalseBB))) 2405 return nullptr; 2406 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2407 return nullptr; 2408 2409 // Validate constraint #3: Ensure the null case just falls through. 2410 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2411 return nullptr; 2412 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2413 "Broken CFG: missing edge from predecessor to successor"); 2414 2415 // At this point, we know that everything in FreeInstrBB can be moved 2416 // before TI. 2417 for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end(); 2418 It != End;) { 2419 Instruction &Instr = *It++; 2420 if (&Instr == FreeInstrBBTerminator) 2421 break; 2422 Instr.moveBefore(TI); 2423 } 2424 assert(FreeInstrBB->size() == 1 && 2425 "Only the branch instruction should remain"); 2426 return &FI; 2427 } 2428 2429 Instruction *InstCombiner::visitFree(CallInst &FI) { 2430 Value *Op = FI.getArgOperand(0); 2431 2432 // free undef -> unreachable. 2433 if (isa<UndefValue>(Op)) { 2434 // Insert a new store to null because we cannot modify the CFG here. 2435 Builder.CreateStore(ConstantInt::getTrue(FI.getContext()), 2436 UndefValue::get(Type::getInt1PtrTy(FI.getContext()))); 2437 return eraseInstFromFunction(FI); 2438 } 2439 2440 // If we have 'free null' delete the instruction. This can happen in stl code 2441 // when lots of inlining happens. 2442 if (isa<ConstantPointerNull>(Op)) 2443 return eraseInstFromFunction(FI); 2444 2445 // If we optimize for code size, try to move the call to free before the null 2446 // test so that simplify cfg can remove the empty block and dead code 2447 // elimination the branch. I.e., helps to turn something like: 2448 // if (foo) free(foo); 2449 // into 2450 // free(foo); 2451 if (MinimizeSize) 2452 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 2453 return I; 2454 2455 return nullptr; 2456 } 2457 2458 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { 2459 if (RI.getNumOperands() == 0) // ret void 2460 return nullptr; 2461 2462 Value *ResultOp = RI.getOperand(0); 2463 Type *VTy = ResultOp->getType(); 2464 if (!VTy->isIntegerTy()) 2465 return nullptr; 2466 2467 // There might be assume intrinsics dominating this return that completely 2468 // determine the value. If so, constant fold it. 2469 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2470 if (Known.isConstant()) 2471 RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant())); 2472 2473 return nullptr; 2474 } 2475 2476 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 2477 // Change br (not X), label True, label False to: br X, label False, True 2478 Value *X = nullptr; 2479 BasicBlock *TrueDest; 2480 BasicBlock *FalseDest; 2481 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && 2482 !isa<Constant>(X)) { 2483 // Swap Destinations and condition... 2484 BI.setCondition(X); 2485 BI.swapSuccessors(); 2486 return &BI; 2487 } 2488 2489 // If the condition is irrelevant, remove the use so that other 2490 // transforms on the condition become more effective. 2491 if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) && 2492 BI.getSuccessor(0) == BI.getSuccessor(1)) { 2493 BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType())); 2494 return &BI; 2495 } 2496 2497 // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq. 2498 CmpInst::Predicate Pred; 2499 if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), TrueDest, 2500 FalseDest)) && 2501 !isCanonicalPredicate(Pred)) { 2502 // Swap destinations and condition. 2503 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 2504 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2505 BI.swapSuccessors(); 2506 Worklist.Add(Cond); 2507 return &BI; 2508 } 2509 2510 return nullptr; 2511 } 2512 2513 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 2514 Value *Cond = SI.getCondition(); 2515 Value *Op0; 2516 ConstantInt *AddRHS; 2517 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 2518 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2519 for (auto Case : SI.cases()) { 2520 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 2521 assert(isa<ConstantInt>(NewCase) && 2522 "Result of expression should be constant"); 2523 Case.setValue(cast<ConstantInt>(NewCase)); 2524 } 2525 SI.setCondition(Op0); 2526 return &SI; 2527 } 2528 2529 KnownBits Known = computeKnownBits(Cond, 0, &SI); 2530 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 2531 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 2532 2533 // Compute the number of leading bits we can ignore. 2534 // TODO: A better way to determine this would use ComputeNumSignBits(). 2535 for (auto &C : SI.cases()) { 2536 LeadingKnownZeros = std::min( 2537 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2538 LeadingKnownOnes = std::min( 2539 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2540 } 2541 2542 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 2543 2544 // Shrink the condition operand if the new type is smaller than the old type. 2545 // But do not shrink to a non-standard type, because backend can't generate 2546 // good code for that yet. 2547 // TODO: We can make it aggressive again after fixing PR39569. 2548 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 2549 shouldChangeType(Known.getBitWidth(), NewWidth)) { 2550 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2551 Builder.SetInsertPoint(&SI); 2552 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 2553 SI.setCondition(NewCond); 2554 2555 for (auto Case : SI.cases()) { 2556 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 2557 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 2558 } 2559 return &SI; 2560 } 2561 2562 return nullptr; 2563 } 2564 2565 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 2566 Value *Agg = EV.getAggregateOperand(); 2567 2568 if (!EV.hasIndices()) 2569 return replaceInstUsesWith(EV, Agg); 2570 2571 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 2572 SQ.getWithInstruction(&EV))) 2573 return replaceInstUsesWith(EV, V); 2574 2575 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 2576 // We're extracting from an insertvalue instruction, compare the indices 2577 const unsigned *exti, *exte, *insi, *inse; 2578 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 2579 exte = EV.idx_end(), inse = IV->idx_end(); 2580 exti != exte && insi != inse; 2581 ++exti, ++insi) { 2582 if (*insi != *exti) 2583 // The insert and extract both reference distinctly different elements. 2584 // This means the extract is not influenced by the insert, and we can 2585 // replace the aggregate operand of the extract with the aggregate 2586 // operand of the insert. i.e., replace 2587 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2588 // %E = extractvalue { i32, { i32 } } %I, 0 2589 // with 2590 // %E = extractvalue { i32, { i32 } } %A, 0 2591 return ExtractValueInst::Create(IV->getAggregateOperand(), 2592 EV.getIndices()); 2593 } 2594 if (exti == exte && insi == inse) 2595 // Both iterators are at the end: Index lists are identical. Replace 2596 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2597 // %C = extractvalue { i32, { i32 } } %B, 1, 0 2598 // with "i32 42" 2599 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 2600 if (exti == exte) { 2601 // The extract list is a prefix of the insert list. i.e. replace 2602 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2603 // %E = extractvalue { i32, { i32 } } %I, 1 2604 // with 2605 // %X = extractvalue { i32, { i32 } } %A, 1 2606 // %E = insertvalue { i32 } %X, i32 42, 0 2607 // by switching the order of the insert and extract (though the 2608 // insertvalue should be left in, since it may have other uses). 2609 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 2610 EV.getIndices()); 2611 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 2612 makeArrayRef(insi, inse)); 2613 } 2614 if (insi == inse) 2615 // The insert list is a prefix of the extract list 2616 // We can simply remove the common indices from the extract and make it 2617 // operate on the inserted value instead of the insertvalue result. 2618 // i.e., replace 2619 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2620 // %E = extractvalue { i32, { i32 } } %I, 1, 0 2621 // with 2622 // %E extractvalue { i32 } { i32 42 }, 0 2623 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 2624 makeArrayRef(exti, exte)); 2625 } 2626 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { 2627 // We're extracting from an intrinsic, see if we're the only user, which 2628 // allows us to simplify multiple result intrinsics to simpler things that 2629 // just get one value. 2630 if (II->hasOneUse()) { 2631 // Check if we're grabbing the overflow bit or the result of a 'with 2632 // overflow' intrinsic. If it's the latter we can remove the intrinsic 2633 // and replace it with a traditional binary instruction. 2634 switch (II->getIntrinsicID()) { 2635 case Intrinsic::uadd_with_overflow: 2636 case Intrinsic::sadd_with_overflow: 2637 if (*EV.idx_begin() == 0) { // Normal result. 2638 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2639 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2640 eraseInstFromFunction(*II); 2641 return BinaryOperator::CreateAdd(LHS, RHS); 2642 } 2643 2644 // If the normal result of the add is dead, and the RHS is a constant, 2645 // we can transform this into a range comparison. 2646 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 2647 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) 2648 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1))) 2649 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0), 2650 ConstantExpr::getNot(CI)); 2651 break; 2652 case Intrinsic::usub_with_overflow: 2653 case Intrinsic::ssub_with_overflow: 2654 if (*EV.idx_begin() == 0) { // Normal result. 2655 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2656 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2657 eraseInstFromFunction(*II); 2658 return BinaryOperator::CreateSub(LHS, RHS); 2659 } 2660 break; 2661 case Intrinsic::umul_with_overflow: 2662 case Intrinsic::smul_with_overflow: 2663 if (*EV.idx_begin() == 0) { // Normal result. 2664 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2665 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2666 eraseInstFromFunction(*II); 2667 return BinaryOperator::CreateMul(LHS, RHS); 2668 } 2669 break; 2670 default: 2671 break; 2672 } 2673 } 2674 } 2675 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2676 // If the (non-volatile) load only has one use, we can rewrite this to a 2677 // load from a GEP. This reduces the size of the load. If a load is used 2678 // only by extractvalue instructions then this either must have been 2679 // optimized before, or it is a struct with padding, in which case we 2680 // don't want to do the transformation as it loses padding knowledge. 2681 if (L->isSimple() && L->hasOneUse()) { 2682 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2683 SmallVector<Value*, 4> Indices; 2684 // Prefix an i32 0 since we need the first element. 2685 Indices.push_back(Builder.getInt32(0)); 2686 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2687 I != E; ++I) 2688 Indices.push_back(Builder.getInt32(*I)); 2689 2690 // We need to insert these at the location of the old load, not at that of 2691 // the extractvalue. 2692 Builder.SetInsertPoint(L); 2693 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 2694 L->getPointerOperand(), Indices); 2695 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 2696 // Whatever aliasing information we had for the orignal load must also 2697 // hold for the smaller load, so propagate the annotations. 2698 AAMDNodes Nodes; 2699 L->getAAMetadata(Nodes); 2700 NL->setAAMetadata(Nodes); 2701 // Returning the load directly will cause the main loop to insert it in 2702 // the wrong spot, so use replaceInstUsesWith(). 2703 return replaceInstUsesWith(EV, NL); 2704 } 2705 // We could simplify extracts from other values. Note that nested extracts may 2706 // already be simplified implicitly by the above: extract (extract (insert) ) 2707 // will be translated into extract ( insert ( extract ) ) first and then just 2708 // the value inserted, if appropriate. Similarly for extracts from single-use 2709 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2710 // and if again single-use then via load (gep (gep)) to load (gep). 2711 // However, double extracts from e.g. function arguments or return values 2712 // aren't handled yet. 2713 return nullptr; 2714 } 2715 2716 /// Return 'true' if the given typeinfo will match anything. 2717 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 2718 switch (Personality) { 2719 case EHPersonality::GNU_C: 2720 case EHPersonality::GNU_C_SjLj: 2721 case EHPersonality::Rust: 2722 // The GCC C EH and Rust personality only exists to support cleanups, so 2723 // it's not clear what the semantics of catch clauses are. 2724 return false; 2725 case EHPersonality::Unknown: 2726 return false; 2727 case EHPersonality::GNU_Ada: 2728 // While __gnat_all_others_value will match any Ada exception, it doesn't 2729 // match foreign exceptions (or didn't, before gcc-4.7). 2730 return false; 2731 case EHPersonality::GNU_CXX: 2732 case EHPersonality::GNU_CXX_SjLj: 2733 case EHPersonality::GNU_ObjC: 2734 case EHPersonality::MSVC_X86SEH: 2735 case EHPersonality::MSVC_Win64SEH: 2736 case EHPersonality::MSVC_CXX: 2737 case EHPersonality::CoreCLR: 2738 case EHPersonality::Wasm_CXX: 2739 return TypeInfo->isNullValue(); 2740 } 2741 llvm_unreachable("invalid enum"); 2742 } 2743 2744 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2745 return 2746 cast<ArrayType>(LHS->getType())->getNumElements() 2747 < 2748 cast<ArrayType>(RHS->getType())->getNumElements(); 2749 } 2750 2751 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2752 // The logic here should be correct for any real-world personality function. 2753 // However if that turns out not to be true, the offending logic can always 2754 // be conditioned on the personality function, like the catch-all logic is. 2755 EHPersonality Personality = 2756 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 2757 2758 // Simplify the list of clauses, eg by removing repeated catch clauses 2759 // (these are often created by inlining). 2760 bool MakeNewInstruction = false; // If true, recreate using the following: 2761 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2762 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2763 2764 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 2765 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 2766 bool isLastClause = i + 1 == e; 2767 if (LI.isCatch(i)) { 2768 // A catch clause. 2769 Constant *CatchClause = LI.getClause(i); 2770 Constant *TypeInfo = CatchClause->stripPointerCasts(); 2771 2772 // If we already saw this clause, there is no point in having a second 2773 // copy of it. 2774 if (AlreadyCaught.insert(TypeInfo).second) { 2775 // This catch clause was not already seen. 2776 NewClauses.push_back(CatchClause); 2777 } else { 2778 // Repeated catch clause - drop the redundant copy. 2779 MakeNewInstruction = true; 2780 } 2781 2782 // If this is a catch-all then there is no point in keeping any following 2783 // clauses or marking the landingpad as having a cleanup. 2784 if (isCatchAll(Personality, TypeInfo)) { 2785 if (!isLastClause) 2786 MakeNewInstruction = true; 2787 CleanupFlag = false; 2788 break; 2789 } 2790 } else { 2791 // A filter clause. If any of the filter elements were already caught 2792 // then they can be dropped from the filter. It is tempting to try to 2793 // exploit the filter further by saying that any typeinfo that does not 2794 // occur in the filter can't be caught later (and thus can be dropped). 2795 // However this would be wrong, since typeinfos can match without being 2796 // equal (for example if one represents a C++ class, and the other some 2797 // class derived from it). 2798 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 2799 Constant *FilterClause = LI.getClause(i); 2800 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 2801 unsigned NumTypeInfos = FilterType->getNumElements(); 2802 2803 // An empty filter catches everything, so there is no point in keeping any 2804 // following clauses or marking the landingpad as having a cleanup. By 2805 // dealing with this case here the following code is made a bit simpler. 2806 if (!NumTypeInfos) { 2807 NewClauses.push_back(FilterClause); 2808 if (!isLastClause) 2809 MakeNewInstruction = true; 2810 CleanupFlag = false; 2811 break; 2812 } 2813 2814 bool MakeNewFilter = false; // If true, make a new filter. 2815 SmallVector<Constant *, 16> NewFilterElts; // New elements. 2816 if (isa<ConstantAggregateZero>(FilterClause)) { 2817 // Not an empty filter - it contains at least one null typeinfo. 2818 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 2819 Constant *TypeInfo = 2820 Constant::getNullValue(FilterType->getElementType()); 2821 // If this typeinfo is a catch-all then the filter can never match. 2822 if (isCatchAll(Personality, TypeInfo)) { 2823 // Throw the filter away. 2824 MakeNewInstruction = true; 2825 continue; 2826 } 2827 2828 // There is no point in having multiple copies of this typeinfo, so 2829 // discard all but the first copy if there is more than one. 2830 NewFilterElts.push_back(TypeInfo); 2831 if (NumTypeInfos > 1) 2832 MakeNewFilter = true; 2833 } else { 2834 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 2835 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 2836 NewFilterElts.reserve(NumTypeInfos); 2837 2838 // Remove any filter elements that were already caught or that already 2839 // occurred in the filter. While there, see if any of the elements are 2840 // catch-alls. If so, the filter can be discarded. 2841 bool SawCatchAll = false; 2842 for (unsigned j = 0; j != NumTypeInfos; ++j) { 2843 Constant *Elt = Filter->getOperand(j); 2844 Constant *TypeInfo = Elt->stripPointerCasts(); 2845 if (isCatchAll(Personality, TypeInfo)) { 2846 // This element is a catch-all. Bail out, noting this fact. 2847 SawCatchAll = true; 2848 break; 2849 } 2850 2851 // Even if we've seen a type in a catch clause, we don't want to 2852 // remove it from the filter. An unexpected type handler may be 2853 // set up for a call site which throws an exception of the same 2854 // type caught. In order for the exception thrown by the unexpected 2855 // handler to propagate correctly, the filter must be correctly 2856 // described for the call site. 2857 // 2858 // Example: 2859 // 2860 // void unexpected() { throw 1;} 2861 // void foo() throw (int) { 2862 // std::set_unexpected(unexpected); 2863 // try { 2864 // throw 2.0; 2865 // } catch (int i) {} 2866 // } 2867 2868 // There is no point in having multiple copies of the same typeinfo in 2869 // a filter, so only add it if we didn't already. 2870 if (SeenInFilter.insert(TypeInfo).second) 2871 NewFilterElts.push_back(cast<Constant>(Elt)); 2872 } 2873 // A filter containing a catch-all cannot match anything by definition. 2874 if (SawCatchAll) { 2875 // Throw the filter away. 2876 MakeNewInstruction = true; 2877 continue; 2878 } 2879 2880 // If we dropped something from the filter, make a new one. 2881 if (NewFilterElts.size() < NumTypeInfos) 2882 MakeNewFilter = true; 2883 } 2884 if (MakeNewFilter) { 2885 FilterType = ArrayType::get(FilterType->getElementType(), 2886 NewFilterElts.size()); 2887 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 2888 MakeNewInstruction = true; 2889 } 2890 2891 NewClauses.push_back(FilterClause); 2892 2893 // If the new filter is empty then it will catch everything so there is 2894 // no point in keeping any following clauses or marking the landingpad 2895 // as having a cleanup. The case of the original filter being empty was 2896 // already handled above. 2897 if (MakeNewFilter && !NewFilterElts.size()) { 2898 assert(MakeNewInstruction && "New filter but not a new instruction!"); 2899 CleanupFlag = false; 2900 break; 2901 } 2902 } 2903 } 2904 2905 // If several filters occur in a row then reorder them so that the shortest 2906 // filters come first (those with the smallest number of elements). This is 2907 // advantageous because shorter filters are more likely to match, speeding up 2908 // unwinding, but mostly because it increases the effectiveness of the other 2909 // filter optimizations below. 2910 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 2911 unsigned j; 2912 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 2913 for (j = i; j != e; ++j) 2914 if (!isa<ArrayType>(NewClauses[j]->getType())) 2915 break; 2916 2917 // Check whether the filters are already sorted by length. We need to know 2918 // if sorting them is actually going to do anything so that we only make a 2919 // new landingpad instruction if it does. 2920 for (unsigned k = i; k + 1 < j; ++k) 2921 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 2922 // Not sorted, so sort the filters now. Doing an unstable sort would be 2923 // correct too but reordering filters pointlessly might confuse users. 2924 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 2925 shorter_filter); 2926 MakeNewInstruction = true; 2927 break; 2928 } 2929 2930 // Look for the next batch of filters. 2931 i = j + 1; 2932 } 2933 2934 // If typeinfos matched if and only if equal, then the elements of a filter L 2935 // that occurs later than a filter F could be replaced by the intersection of 2936 // the elements of F and L. In reality two typeinfos can match without being 2937 // equal (for example if one represents a C++ class, and the other some class 2938 // derived from it) so it would be wrong to perform this transform in general. 2939 // However the transform is correct and useful if F is a subset of L. In that 2940 // case L can be replaced by F, and thus removed altogether since repeating a 2941 // filter is pointless. So here we look at all pairs of filters F and L where 2942 // L follows F in the list of clauses, and remove L if every element of F is 2943 // an element of L. This can occur when inlining C++ functions with exception 2944 // specifications. 2945 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 2946 // Examine each filter in turn. 2947 Value *Filter = NewClauses[i]; 2948 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 2949 if (!FTy) 2950 // Not a filter - skip it. 2951 continue; 2952 unsigned FElts = FTy->getNumElements(); 2953 // Examine each filter following this one. Doing this backwards means that 2954 // we don't have to worry about filters disappearing under us when removed. 2955 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 2956 Value *LFilter = NewClauses[j]; 2957 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 2958 if (!LTy) 2959 // Not a filter - skip it. 2960 continue; 2961 // If Filter is a subset of LFilter, i.e. every element of Filter is also 2962 // an element of LFilter, then discard LFilter. 2963 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 2964 // If Filter is empty then it is a subset of LFilter. 2965 if (!FElts) { 2966 // Discard LFilter. 2967 NewClauses.erase(J); 2968 MakeNewInstruction = true; 2969 // Move on to the next filter. 2970 continue; 2971 } 2972 unsigned LElts = LTy->getNumElements(); 2973 // If Filter is longer than LFilter then it cannot be a subset of it. 2974 if (FElts > LElts) 2975 // Move on to the next filter. 2976 continue; 2977 // At this point we know that LFilter has at least one element. 2978 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 2979 // Filter is a subset of LFilter iff Filter contains only zeros (as we 2980 // already know that Filter is not longer than LFilter). 2981 if (isa<ConstantAggregateZero>(Filter)) { 2982 assert(FElts <= LElts && "Should have handled this case earlier!"); 2983 // Discard LFilter. 2984 NewClauses.erase(J); 2985 MakeNewInstruction = true; 2986 } 2987 // Move on to the next filter. 2988 continue; 2989 } 2990 ConstantArray *LArray = cast<ConstantArray>(LFilter); 2991 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 2992 // Since Filter is non-empty and contains only zeros, it is a subset of 2993 // LFilter iff LFilter contains a zero. 2994 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 2995 for (unsigned l = 0; l != LElts; ++l) 2996 if (LArray->getOperand(l)->isNullValue()) { 2997 // LFilter contains a zero - discard it. 2998 NewClauses.erase(J); 2999 MakeNewInstruction = true; 3000 break; 3001 } 3002 // Move on to the next filter. 3003 continue; 3004 } 3005 // At this point we know that both filters are ConstantArrays. Loop over 3006 // operands to see whether every element of Filter is also an element of 3007 // LFilter. Since filters tend to be short this is probably faster than 3008 // using a method that scales nicely. 3009 ConstantArray *FArray = cast<ConstantArray>(Filter); 3010 bool AllFound = true; 3011 for (unsigned f = 0; f != FElts; ++f) { 3012 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3013 AllFound = false; 3014 for (unsigned l = 0; l != LElts; ++l) { 3015 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3016 if (LTypeInfo == FTypeInfo) { 3017 AllFound = true; 3018 break; 3019 } 3020 } 3021 if (!AllFound) 3022 break; 3023 } 3024 if (AllFound) { 3025 // Discard LFilter. 3026 NewClauses.erase(J); 3027 MakeNewInstruction = true; 3028 } 3029 // Move on to the next filter. 3030 } 3031 } 3032 3033 // If we changed any of the clauses, replace the old landingpad instruction 3034 // with a new one. 3035 if (MakeNewInstruction) { 3036 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3037 NewClauses.size()); 3038 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3039 NLI->addClause(NewClauses[i]); 3040 // A landing pad with no clauses must have the cleanup flag set. It is 3041 // theoretically possible, though highly unlikely, that we eliminated all 3042 // clauses. If so, force the cleanup flag to true. 3043 if (NewClauses.empty()) 3044 CleanupFlag = true; 3045 NLI->setCleanup(CleanupFlag); 3046 return NLI; 3047 } 3048 3049 // Even if none of the clauses changed, we may nonetheless have understood 3050 // that the cleanup flag is pointless. Clear it if so. 3051 if (LI.isCleanup() != CleanupFlag) { 3052 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3053 LI.setCleanup(CleanupFlag); 3054 return &LI; 3055 } 3056 3057 return nullptr; 3058 } 3059 3060 /// Try to move the specified instruction from its current block into the 3061 /// beginning of DestBlock, which can only happen if it's safe to move the 3062 /// instruction past all of the instructions between it and the end of its 3063 /// block. 3064 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 3065 assert(I->hasOneUse() && "Invariants didn't hold!"); 3066 BasicBlock *SrcBlock = I->getParent(); 3067 3068 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3069 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 3070 I->isTerminator()) 3071 return false; 3072 3073 // Do not sink static or dynamic alloca instructions. Static allocas must 3074 // remain in the entry block, and dynamic allocas must not be sunk in between 3075 // a stacksave / stackrestore pair, which would incorrectly shorten its 3076 // lifetime. 3077 if (isa<AllocaInst>(I)) 3078 return false; 3079 3080 // Do not sink into catchswitch blocks. 3081 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 3082 return false; 3083 3084 // Do not sink convergent call instructions. 3085 if (auto *CI = dyn_cast<CallInst>(I)) { 3086 if (CI->isConvergent()) 3087 return false; 3088 } 3089 // We can only sink load instructions if there is nothing between the load and 3090 // the end of block that could change the value. 3091 if (I->mayReadFromMemory()) { 3092 for (BasicBlock::iterator Scan = I->getIterator(), 3093 E = I->getParent()->end(); 3094 Scan != E; ++Scan) 3095 if (Scan->mayWriteToMemory()) 3096 return false; 3097 } 3098 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 3099 I->moveBefore(&*InsertPos); 3100 ++NumSunkInst; 3101 3102 // Also sink all related debug uses from the source basic block. Otherwise we 3103 // get debug use before the def. Attempt to salvage debug uses first, to 3104 // maximise the range variables have location for. If we cannot salvage, then 3105 // mark the location undef: we know it was supposed to receive a new location 3106 // here, but that computation has been sunk. 3107 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 3108 findDbgUsers(DbgUsers, I); 3109 for (auto *DII : reverse(DbgUsers)) { 3110 if (DII->getParent() == SrcBlock) { 3111 // dbg.value is in the same basic block as the sunk inst, see if we can 3112 // salvage it. Clone a new copy of the instruction: on success we need 3113 // both salvaged and unsalvaged copies. 3114 SmallVector<DbgVariableIntrinsic *, 1> TmpUser{ 3115 cast<DbgVariableIntrinsic>(DII->clone())}; 3116 3117 if (!salvageDebugInfoForDbgValues(*I, TmpUser)) { 3118 // We are unable to salvage: sink the cloned dbg.value, and mark the 3119 // original as undef, terminating any earlier variable location. 3120 LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n'); 3121 TmpUser[0]->insertBefore(&*InsertPos); 3122 Value *Undef = UndefValue::get(I->getType()); 3123 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 3124 ValueAsMetadata::get(Undef))); 3125 } else { 3126 // We successfully salvaged: place the salvaged dbg.value in the 3127 // original location, and move the unmodified dbg.value to sink with 3128 // the sunk inst. 3129 TmpUser[0]->insertBefore(DII); 3130 DII->moveBefore(&*InsertPos); 3131 } 3132 } 3133 } 3134 return true; 3135 } 3136 3137 bool InstCombiner::run() { 3138 while (!Worklist.isEmpty()) { 3139 Instruction *I = Worklist.RemoveOne(); 3140 if (I == nullptr) continue; // skip null values. 3141 3142 // Check to see if we can DCE the instruction. 3143 if (isInstructionTriviallyDead(I, &TLI)) { 3144 LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); 3145 eraseInstFromFunction(*I); 3146 ++NumDeadInst; 3147 MadeIRChange = true; 3148 continue; 3149 } 3150 3151 if (!DebugCounter::shouldExecute(VisitCounter)) 3152 continue; 3153 3154 // Instruction isn't dead, see if we can constant propagate it. 3155 if (!I->use_empty() && 3156 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 3157 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 3158 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 3159 << '\n'); 3160 3161 // Add operands to the worklist. 3162 replaceInstUsesWith(*I, C); 3163 ++NumConstProp; 3164 if (isInstructionTriviallyDead(I, &TLI)) 3165 eraseInstFromFunction(*I); 3166 MadeIRChange = true; 3167 continue; 3168 } 3169 } 3170 3171 // In general, it is possible for computeKnownBits to determine all bits in 3172 // a value even when the operands are not all constants. 3173 Type *Ty = I->getType(); 3174 if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) { 3175 KnownBits Known = computeKnownBits(I, /*Depth*/0, I); 3176 if (Known.isConstant()) { 3177 Constant *C = ConstantInt::get(Ty, Known.getConstant()); 3178 LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C 3179 << " from: " << *I << '\n'); 3180 3181 // Add operands to the worklist. 3182 replaceInstUsesWith(*I, C); 3183 ++NumConstProp; 3184 if (isInstructionTriviallyDead(I, &TLI)) 3185 eraseInstFromFunction(*I); 3186 MadeIRChange = true; 3187 continue; 3188 } 3189 } 3190 3191 // See if we can trivially sink this instruction to a successor basic block. 3192 if (EnableCodeSinking && I->hasOneUse()) { 3193 BasicBlock *BB = I->getParent(); 3194 Instruction *UserInst = cast<Instruction>(*I->user_begin()); 3195 BasicBlock *UserParent; 3196 3197 // Get the block the use occurs in. 3198 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 3199 UserParent = PN->getIncomingBlock(*I->use_begin()); 3200 else 3201 UserParent = UserInst->getParent(); 3202 3203 if (UserParent != BB) { 3204 bool UserIsSuccessor = false; 3205 // See if the user is one of our successors. 3206 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 3207 if (*SI == UserParent) { 3208 UserIsSuccessor = true; 3209 break; 3210 } 3211 3212 // If the user is one of our immediate successors, and if that successor 3213 // only has us as a predecessors (we'd have to split the critical edge 3214 // otherwise), we can keep going. 3215 if (UserIsSuccessor && UserParent->getUniquePredecessor()) { 3216 // Okay, the CFG is simple enough, try to sink this instruction. 3217 if (TryToSinkInstruction(I, UserParent)) { 3218 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3219 MadeIRChange = true; 3220 // We'll add uses of the sunk instruction below, but since sinking 3221 // can expose opportunities for it's *operands* add them to the 3222 // worklist 3223 for (Use &U : I->operands()) 3224 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3225 Worklist.Add(OpI); 3226 } 3227 } 3228 } 3229 } 3230 3231 // Now that we have an instruction, try combining it to simplify it. 3232 Builder.SetInsertPoint(I); 3233 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 3234 3235 #ifndef NDEBUG 3236 std::string OrigI; 3237 #endif 3238 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 3239 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 3240 3241 if (Instruction *Result = visit(*I)) { 3242 ++NumCombined; 3243 // Should we replace the old instruction with a new one? 3244 if (Result != I) { 3245 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 3246 << " New = " << *Result << '\n'); 3247 3248 if (I->getDebugLoc()) 3249 Result->setDebugLoc(I->getDebugLoc()); 3250 // Everything uses the new instruction now. 3251 I->replaceAllUsesWith(Result); 3252 3253 // Move the name to the new instruction first. 3254 Result->takeName(I); 3255 3256 // Push the new instruction and any users onto the worklist. 3257 Worklist.AddUsersToWorkList(*Result); 3258 Worklist.Add(Result); 3259 3260 // Insert the new instruction into the basic block... 3261 BasicBlock *InstParent = I->getParent(); 3262 BasicBlock::iterator InsertPos = I->getIterator(); 3263 3264 // If we replace a PHI with something that isn't a PHI, fix up the 3265 // insertion point. 3266 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 3267 InsertPos = InstParent->getFirstInsertionPt(); 3268 3269 InstParent->getInstList().insert(InsertPos, Result); 3270 3271 eraseInstFromFunction(*I); 3272 } else { 3273 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3274 << " New = " << *I << '\n'); 3275 3276 // If the instruction was modified, it's possible that it is now dead. 3277 // if so, remove it. 3278 if (isInstructionTriviallyDead(I, &TLI)) { 3279 eraseInstFromFunction(*I); 3280 } else { 3281 Worklist.AddUsersToWorkList(*I); 3282 Worklist.Add(I); 3283 } 3284 } 3285 MadeIRChange = true; 3286 } 3287 } 3288 3289 Worklist.Zap(); 3290 return MadeIRChange; 3291 } 3292 3293 /// Walk the function in depth-first order, adding all reachable code to the 3294 /// worklist. 3295 /// 3296 /// This has a couple of tricks to make the code faster and more powerful. In 3297 /// particular, we constant fold and DCE instructions as we go, to avoid adding 3298 /// them to the worklist (this significantly speeds up instcombine on code where 3299 /// many instructions are dead or constant). Additionally, if we find a branch 3300 /// whose condition is a known constant, we only visit the reachable successors. 3301 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, 3302 SmallPtrSetImpl<BasicBlock *> &Visited, 3303 InstCombineWorklist &ICWorklist, 3304 const TargetLibraryInfo *TLI) { 3305 bool MadeIRChange = false; 3306 SmallVector<BasicBlock*, 256> Worklist; 3307 Worklist.push_back(BB); 3308 3309 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 3310 DenseMap<Constant *, Constant *> FoldedConstants; 3311 3312 do { 3313 BB = Worklist.pop_back_val(); 3314 3315 // We have now visited this block! If we've already been here, ignore it. 3316 if (!Visited.insert(BB).second) 3317 continue; 3318 3319 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 3320 Instruction *Inst = &*BBI++; 3321 3322 // DCE instruction if trivially dead. 3323 if (isInstructionTriviallyDead(Inst, TLI)) { 3324 ++NumDeadInst; 3325 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 3326 if (!salvageDebugInfo(*Inst)) 3327 replaceDbgUsesWithUndef(Inst); 3328 Inst->eraseFromParent(); 3329 MadeIRChange = true; 3330 continue; 3331 } 3332 3333 // ConstantProp instruction if trivially constant. 3334 if (!Inst->use_empty() && 3335 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 3336 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 3337 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst 3338 << '\n'); 3339 Inst->replaceAllUsesWith(C); 3340 ++NumConstProp; 3341 if (isInstructionTriviallyDead(Inst, TLI)) 3342 Inst->eraseFromParent(); 3343 MadeIRChange = true; 3344 continue; 3345 } 3346 3347 // See if we can constant fold its operands. 3348 for (Use &U : Inst->operands()) { 3349 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 3350 continue; 3351 3352 auto *C = cast<Constant>(U); 3353 Constant *&FoldRes = FoldedConstants[C]; 3354 if (!FoldRes) 3355 FoldRes = ConstantFoldConstant(C, DL, TLI); 3356 if (!FoldRes) 3357 FoldRes = C; 3358 3359 if (FoldRes != C) { 3360 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst 3361 << "\n Old = " << *C 3362 << "\n New = " << *FoldRes << '\n'); 3363 U = FoldRes; 3364 MadeIRChange = true; 3365 } 3366 } 3367 3368 // Skip processing debug intrinsics in InstCombine. Processing these call instructions 3369 // consumes non-trivial amount of time and provides no value for the optimization. 3370 if (!isa<DbgInfoIntrinsic>(Inst)) 3371 InstrsForInstCombineWorklist.push_back(Inst); 3372 } 3373 3374 // Recursively visit successors. If this is a branch or switch on a 3375 // constant, only visit the reachable successor. 3376 Instruction *TI = BB->getTerminator(); 3377 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3378 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 3379 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 3380 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 3381 Worklist.push_back(ReachableBB); 3382 continue; 3383 } 3384 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3385 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 3386 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 3387 continue; 3388 } 3389 } 3390 3391 for (BasicBlock *SuccBB : successors(TI)) 3392 Worklist.push_back(SuccBB); 3393 } while (!Worklist.empty()); 3394 3395 // Once we've found all of the instructions to add to instcombine's worklist, 3396 // add them in reverse order. This way instcombine will visit from the top 3397 // of the function down. This jives well with the way that it adds all uses 3398 // of instructions to the worklist after doing a transformation, thus avoiding 3399 // some N^2 behavior in pathological cases. 3400 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist); 3401 3402 return MadeIRChange; 3403 } 3404 3405 /// Populate the IC worklist from a function, and prune any dead basic 3406 /// blocks discovered in the process. 3407 /// 3408 /// This also does basic constant propagation and other forward fixing to make 3409 /// the combiner itself run much faster. 3410 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 3411 TargetLibraryInfo *TLI, 3412 InstCombineWorklist &ICWorklist) { 3413 bool MadeIRChange = false; 3414 3415 // Do a depth-first traversal of the function, populate the worklist with 3416 // the reachable instructions. Ignore blocks that are not reachable. Keep 3417 // track of which blocks we visit. 3418 SmallPtrSet<BasicBlock *, 32> Visited; 3419 MadeIRChange |= 3420 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI); 3421 3422 // Do a quick scan over the function. If we find any blocks that are 3423 // unreachable, remove any instructions inside of them. This prevents 3424 // the instcombine code from having to deal with some bad special cases. 3425 for (BasicBlock &BB : F) { 3426 if (Visited.count(&BB)) 3427 continue; 3428 3429 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB); 3430 MadeIRChange |= NumDeadInstInBB > 0; 3431 NumDeadInst += NumDeadInstInBB; 3432 } 3433 3434 return MadeIRChange; 3435 } 3436 3437 static bool combineInstructionsOverFunction( 3438 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, 3439 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, 3440 OptimizationRemarkEmitter &ORE, bool ExpensiveCombines = true, 3441 LoopInfo *LI = nullptr) { 3442 auto &DL = F.getParent()->getDataLayout(); 3443 ExpensiveCombines |= EnableExpensiveCombines; 3444 3445 /// Builder - This is an IRBuilder that automatically inserts new 3446 /// instructions into the worklist when they are created. 3447 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 3448 F.getContext(), TargetFolder(DL), 3449 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 3450 Worklist.Add(I); 3451 if (match(I, m_Intrinsic<Intrinsic::assume>())) 3452 AC.registerAssumption(cast<CallInst>(I)); 3453 })); 3454 3455 // Lower dbg.declare intrinsics otherwise their value may be clobbered 3456 // by instcombiner. 3457 bool MadeIRChange = false; 3458 if (ShouldLowerDbgDeclare) 3459 MadeIRChange = LowerDbgDeclare(F); 3460 3461 // Iterate while there is work to do. 3462 int Iteration = 0; 3463 while (true) { 3464 ++Iteration; 3465 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 3466 << F.getName() << "\n"); 3467 3468 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 3469 3470 InstCombiner IC(Worklist, Builder, F.optForMinSize(), ExpensiveCombines, AA, 3471 AC, TLI, DT, ORE, DL, LI); 3472 IC.MaxArraySizeForCombine = MaxArraySize; 3473 3474 if (!IC.run()) 3475 break; 3476 } 3477 3478 return MadeIRChange || Iteration > 1; 3479 } 3480 3481 PreservedAnalyses InstCombinePass::run(Function &F, 3482 FunctionAnalysisManager &AM) { 3483 auto &AC = AM.getResult<AssumptionAnalysis>(F); 3484 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 3485 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 3486 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3487 3488 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 3489 3490 auto *AA = &AM.getResult<AAManager>(F); 3491 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, 3492 ExpensiveCombines, LI)) 3493 // No changes, all analyses are preserved. 3494 return PreservedAnalyses::all(); 3495 3496 // Mark all the analyses that instcombine updates as preserved. 3497 PreservedAnalyses PA; 3498 PA.preserveSet<CFGAnalyses>(); 3499 PA.preserve<AAManager>(); 3500 PA.preserve<BasicAA>(); 3501 PA.preserve<GlobalsAA>(); 3502 return PA; 3503 } 3504 3505 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 3506 AU.setPreservesCFG(); 3507 AU.addRequired<AAResultsWrapperPass>(); 3508 AU.addRequired<AssumptionCacheTracker>(); 3509 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3510 AU.addRequired<DominatorTreeWrapperPass>(); 3511 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3512 AU.addPreserved<DominatorTreeWrapperPass>(); 3513 AU.addPreserved<AAResultsWrapperPass>(); 3514 AU.addPreserved<BasicAAWrapperPass>(); 3515 AU.addPreserved<GlobalsAAWrapperPass>(); 3516 } 3517 3518 bool InstructionCombiningPass::runOnFunction(Function &F) { 3519 if (skipFunction(F)) 3520 return false; 3521 3522 // Required analyses. 3523 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3524 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3525 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 3526 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3527 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 3528 3529 // Optional analyses. 3530 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3531 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 3532 3533 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, 3534 ExpensiveCombines, LI); 3535 } 3536 3537 char InstructionCombiningPass::ID = 0; 3538 3539 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 3540 "Combine redundant instructions", false, false) 3541 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3542 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3543 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3544 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3545 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3546 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3547 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 3548 "Combine redundant instructions", false, false) 3549 3550 // Initialization Routines 3551 void llvm::initializeInstCombine(PassRegistry &Registry) { 3552 initializeInstructionCombiningPassPass(Registry); 3553 } 3554 3555 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 3556 initializeInstructionCombiningPassPass(*unwrap(R)); 3557 } 3558 3559 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) { 3560 return new InstructionCombiningPass(ExpensiveCombines); 3561 } 3562 3563 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 3564 unwrap(PM)->add(createInstructionCombiningPass()); 3565 } 3566