1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/TinyPtrVector.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/BlockFrequencyInfo.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/MemoryBuiltins.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ProfileSummaryInfo.h" 60 #include "llvm/Analysis/TargetFolder.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/Analysis/VectorUtils.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Dominators.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GetElementPtrTypeIterator.h" 75 #include "llvm/IR/IRBuilder.h" 76 #include "llvm/IR/InstrTypes.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/Intrinsics.h" 81 #include "llvm/IR/LegacyPassManager.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/PassManager.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/Use.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/IR/ValueHandle.h" 91 #include "llvm/InitializePasses.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/CBindingWrapping.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/DebugCounter.h" 99 #include "llvm/Support/ErrorHandling.h" 100 #include "llvm/Support/KnownBits.h" 101 #include "llvm/Support/raw_ostream.h" 102 #include "llvm/Transforms/InstCombine/InstCombine.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <algorithm> 105 #include <cassert> 106 #include <cstdint> 107 #include <memory> 108 #include <string> 109 #include <utility> 110 111 #define DEBUG_TYPE "instcombine" 112 #include "llvm/Transforms/Utils/InstructionWorklist.h" 113 114 using namespace llvm; 115 using namespace llvm::PatternMatch; 116 117 STATISTIC(NumWorklistIterations, 118 "Number of instruction combining iterations performed"); 119 120 STATISTIC(NumCombined , "Number of insts combined"); 121 STATISTIC(NumConstProp, "Number of constant folds"); 122 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 123 STATISTIC(NumSunkInst , "Number of instructions sunk"); 124 STATISTIC(NumExpand, "Number of expansions"); 125 STATISTIC(NumFactor , "Number of factorizations"); 126 STATISTIC(NumReassoc , "Number of reassociations"); 127 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 128 "Controls which instructions are visited"); 129 130 // FIXME: these limits eventually should be as low as 2. 131 static constexpr unsigned InstCombineDefaultMaxIterations = 1000; 132 #ifndef NDEBUG 133 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100; 134 #else 135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; 136 #endif 137 138 static cl::opt<bool> 139 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 140 cl::init(true)); 141 142 static cl::opt<unsigned> LimitMaxIterations( 143 "instcombine-max-iterations", 144 cl::desc("Limit the maximum number of instruction combining iterations"), 145 cl::init(InstCombineDefaultMaxIterations)); 146 147 static cl::opt<unsigned> InfiniteLoopDetectionThreshold( 148 "instcombine-infinite-loop-threshold", 149 cl::desc("Number of instruction combining iterations considered an " 150 "infinite loop"), 151 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); 152 153 static cl::opt<unsigned> 154 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 155 cl::desc("Maximum array size considered when doing a combine")); 156 157 // FIXME: Remove this flag when it is no longer necessary to convert 158 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 159 // increases variable availability at the cost of accuracy. Variables that 160 // cannot be promoted by mem2reg or SROA will be described as living in memory 161 // for their entire lifetime. However, passes like DSE and instcombine can 162 // delete stores to the alloca, leading to misleading and inaccurate debug 163 // information. This flag can be removed when those passes are fixed. 164 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 165 cl::Hidden, cl::init(true)); 166 167 Optional<Instruction *> 168 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 169 // Handle target specific intrinsics 170 if (II.getCalledFunction()->isTargetIntrinsic()) { 171 return TTI.instCombineIntrinsic(*this, II); 172 } 173 return None; 174 } 175 176 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 177 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 178 bool &KnownBitsComputed) { 179 // Handle target specific intrinsics 180 if (II.getCalledFunction()->isTargetIntrinsic()) { 181 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, 182 KnownBitsComputed); 183 } 184 return None; 185 } 186 187 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 188 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, 189 APInt &UndefElts3, 190 std::function<void(Instruction *, unsigned, APInt, APInt &)> 191 SimplifyAndSetOp) { 192 // Handle target specific intrinsics 193 if (II.getCalledFunction()->isTargetIntrinsic()) { 194 return TTI.simplifyDemandedVectorEltsIntrinsic( 195 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 196 SimplifyAndSetOp); 197 } 198 return None; 199 } 200 201 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { 202 return llvm::EmitGEPOffset(&Builder, DL, GEP); 203 } 204 205 /// Legal integers and common types are considered desirable. This is used to 206 /// avoid creating instructions with types that may not be supported well by the 207 /// the backend. 208 /// NOTE: This treats i8, i16 and i32 specially because they are common 209 /// types in frontend languages. 210 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { 211 switch (BitWidth) { 212 case 8: 213 case 16: 214 case 32: 215 return true; 216 default: 217 return DL.isLegalInteger(BitWidth); 218 } 219 } 220 221 /// Return true if it is desirable to convert an integer computation from a 222 /// given bit width to a new bit width. 223 /// We don't want to convert from a legal to an illegal type or from a smaller 224 /// to a larger illegal type. A width of '1' is always treated as a desirable 225 /// type because i1 is a fundamental type in IR, and there are many specialized 226 /// optimizations for i1 types. Common/desirable widths are equally treated as 227 /// legal to convert to, in order to open up more combining opportunities. 228 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 229 unsigned ToWidth) const { 230 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 231 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 232 233 // Convert to desirable widths even if they are not legal types. 234 // Only shrink types, to prevent infinite loops. 235 if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) 236 return true; 237 238 // If this is a legal integer from type, and the result would be an illegal 239 // type, don't do the transformation. 240 if (FromLegal && !ToLegal) 241 return false; 242 243 // Otherwise, if both are illegal, do not increase the size of the result. We 244 // do allow things like i160 -> i64, but not i64 -> i160. 245 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 246 return false; 247 248 return true; 249 } 250 251 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 252 /// We don't want to convert from a legal to an illegal type or from a smaller 253 /// to a larger illegal type. i1 is always treated as a legal type because it is 254 /// a fundamental type in IR, and there are many specialized optimizations for 255 /// i1 types. 256 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 257 // TODO: This could be extended to allow vectors. Datalayout changes might be 258 // needed to properly support that. 259 if (!From->isIntegerTy() || !To->isIntegerTy()) 260 return false; 261 262 unsigned FromWidth = From->getPrimitiveSizeInBits(); 263 unsigned ToWidth = To->getPrimitiveSizeInBits(); 264 return shouldChangeType(FromWidth, ToWidth); 265 } 266 267 // Return true, if No Signed Wrap should be maintained for I. 268 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 269 // where both B and C should be ConstantInts, results in a constant that does 270 // not overflow. This function only handles the Add and Sub opcodes. For 271 // all other opcodes, the function conservatively returns false. 272 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 273 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 274 if (!OBO || !OBO->hasNoSignedWrap()) 275 return false; 276 277 // We reason about Add and Sub Only. 278 Instruction::BinaryOps Opcode = I.getOpcode(); 279 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 280 return false; 281 282 const APInt *BVal, *CVal; 283 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 284 return false; 285 286 bool Overflow = false; 287 if (Opcode == Instruction::Add) 288 (void)BVal->sadd_ov(*CVal, Overflow); 289 else 290 (void)BVal->ssub_ov(*CVal, Overflow); 291 292 return !Overflow; 293 } 294 295 static bool hasNoUnsignedWrap(BinaryOperator &I) { 296 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 297 return OBO && OBO->hasNoUnsignedWrap(); 298 } 299 300 static bool hasNoSignedWrap(BinaryOperator &I) { 301 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 302 return OBO && OBO->hasNoSignedWrap(); 303 } 304 305 /// Conservatively clears subclassOptionalData after a reassociation or 306 /// commutation. We preserve fast-math flags when applicable as they can be 307 /// preserved. 308 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 309 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 310 if (!FPMO) { 311 I.clearSubclassOptionalData(); 312 return; 313 } 314 315 FastMathFlags FMF = I.getFastMathFlags(); 316 I.clearSubclassOptionalData(); 317 I.setFastMathFlags(FMF); 318 } 319 320 /// Combine constant operands of associative operations either before or after a 321 /// cast to eliminate one of the associative operations: 322 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 323 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 324 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 325 InstCombinerImpl &IC) { 326 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 327 if (!Cast || !Cast->hasOneUse()) 328 return false; 329 330 // TODO: Enhance logic for other casts and remove this check. 331 auto CastOpcode = Cast->getOpcode(); 332 if (CastOpcode != Instruction::ZExt) 333 return false; 334 335 // TODO: Enhance logic for other BinOps and remove this check. 336 if (!BinOp1->isBitwiseLogicOp()) 337 return false; 338 339 auto AssocOpcode = BinOp1->getOpcode(); 340 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 341 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 342 return false; 343 344 Constant *C1, *C2; 345 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 346 !match(BinOp2->getOperand(1), m_Constant(C2))) 347 return false; 348 349 // TODO: This assumes a zext cast. 350 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 351 // to the destination type might lose bits. 352 353 // Fold the constants together in the destination type: 354 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 355 Type *DestTy = C1->getType(); 356 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 357 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 358 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 359 IC.replaceOperand(*BinOp1, 1, FoldedC); 360 return true; 361 } 362 363 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast. 364 // inttoptr ( ptrtoint (x) ) --> x 365 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { 366 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); 367 if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) == 368 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { 369 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); 370 Type *CastTy = IntToPtr->getDestTy(); 371 if (PtrToInt && 372 CastTy->getPointerAddressSpace() == 373 PtrToInt->getSrcTy()->getPointerAddressSpace() && 374 DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) == 375 DL.getTypeSizeInBits(PtrToInt->getDestTy())) { 376 return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy, 377 "", PtrToInt); 378 } 379 } 380 return nullptr; 381 } 382 383 /// This performs a few simplifications for operators that are associative or 384 /// commutative: 385 /// 386 /// Commutative operators: 387 /// 388 /// 1. Order operands such that they are listed from right (least complex) to 389 /// left (most complex). This puts constants before unary operators before 390 /// binary operators. 391 /// 392 /// Associative operators: 393 /// 394 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 395 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 396 /// 397 /// Associative and commutative operators: 398 /// 399 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 400 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 401 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 402 /// if C1 and C2 are constants. 403 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 404 Instruction::BinaryOps Opcode = I.getOpcode(); 405 bool Changed = false; 406 407 do { 408 // Order operands such that they are listed from right (least complex) to 409 // left (most complex). This puts constants before unary operators before 410 // binary operators. 411 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 412 getComplexity(I.getOperand(1))) 413 Changed = !I.swapOperands(); 414 415 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 416 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 417 418 if (I.isAssociative()) { 419 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 420 if (Op0 && Op0->getOpcode() == Opcode) { 421 Value *A = Op0->getOperand(0); 422 Value *B = Op0->getOperand(1); 423 Value *C = I.getOperand(1); 424 425 // Does "B op C" simplify? 426 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 427 // It simplifies to V. Form "A op V". 428 replaceOperand(I, 0, A); 429 replaceOperand(I, 1, V); 430 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 431 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 432 433 // Conservatively clear all optional flags since they may not be 434 // preserved by the reassociation. Reset nsw/nuw based on the above 435 // analysis. 436 ClearSubclassDataAfterReassociation(I); 437 438 // Note: this is only valid because SimplifyBinOp doesn't look at 439 // the operands to Op0. 440 if (IsNUW) 441 I.setHasNoUnsignedWrap(true); 442 443 if (IsNSW) 444 I.setHasNoSignedWrap(true); 445 446 Changed = true; 447 ++NumReassoc; 448 continue; 449 } 450 } 451 452 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 453 if (Op1 && Op1->getOpcode() == Opcode) { 454 Value *A = I.getOperand(0); 455 Value *B = Op1->getOperand(0); 456 Value *C = Op1->getOperand(1); 457 458 // Does "A op B" simplify? 459 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 460 // It simplifies to V. Form "V op C". 461 replaceOperand(I, 0, V); 462 replaceOperand(I, 1, C); 463 // Conservatively clear the optional flags, since they may not be 464 // preserved by the reassociation. 465 ClearSubclassDataAfterReassociation(I); 466 Changed = true; 467 ++NumReassoc; 468 continue; 469 } 470 } 471 } 472 473 if (I.isAssociative() && I.isCommutative()) { 474 if (simplifyAssocCastAssoc(&I, *this)) { 475 Changed = true; 476 ++NumReassoc; 477 continue; 478 } 479 480 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 481 if (Op0 && Op0->getOpcode() == Opcode) { 482 Value *A = Op0->getOperand(0); 483 Value *B = Op0->getOperand(1); 484 Value *C = I.getOperand(1); 485 486 // Does "C op A" simplify? 487 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 488 // It simplifies to V. Form "V op B". 489 replaceOperand(I, 0, V); 490 replaceOperand(I, 1, B); 491 // Conservatively clear the optional flags, since they may not be 492 // preserved by the reassociation. 493 ClearSubclassDataAfterReassociation(I); 494 Changed = true; 495 ++NumReassoc; 496 continue; 497 } 498 } 499 500 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 501 if (Op1 && Op1->getOpcode() == Opcode) { 502 Value *A = I.getOperand(0); 503 Value *B = Op1->getOperand(0); 504 Value *C = Op1->getOperand(1); 505 506 // Does "C op A" simplify? 507 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 508 // It simplifies to V. Form "B op V". 509 replaceOperand(I, 0, B); 510 replaceOperand(I, 1, V); 511 // Conservatively clear the optional flags, since they may not be 512 // preserved by the reassociation. 513 ClearSubclassDataAfterReassociation(I); 514 Changed = true; 515 ++NumReassoc; 516 continue; 517 } 518 } 519 520 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 521 // if C1 and C2 are constants. 522 Value *A, *B; 523 Constant *C1, *C2; 524 if (Op0 && Op1 && 525 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 526 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 527 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 528 bool IsNUW = hasNoUnsignedWrap(I) && 529 hasNoUnsignedWrap(*Op0) && 530 hasNoUnsignedWrap(*Op1); 531 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 532 BinaryOperator::CreateNUW(Opcode, A, B) : 533 BinaryOperator::Create(Opcode, A, B); 534 535 if (isa<FPMathOperator>(NewBO)) { 536 FastMathFlags Flags = I.getFastMathFlags(); 537 Flags &= Op0->getFastMathFlags(); 538 Flags &= Op1->getFastMathFlags(); 539 NewBO->setFastMathFlags(Flags); 540 } 541 InsertNewInstWith(NewBO, I); 542 NewBO->takeName(Op1); 543 replaceOperand(I, 0, NewBO); 544 replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2)); 545 // Conservatively clear the optional flags, since they may not be 546 // preserved by the reassociation. 547 ClearSubclassDataAfterReassociation(I); 548 if (IsNUW) 549 I.setHasNoUnsignedWrap(true); 550 551 Changed = true; 552 continue; 553 } 554 } 555 556 // No further simplifications. 557 return Changed; 558 } while (true); 559 } 560 561 /// Return whether "X LOp (Y ROp Z)" is always equal to 562 /// "(X LOp Y) ROp (X LOp Z)". 563 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 564 Instruction::BinaryOps ROp) { 565 // X & (Y | Z) <--> (X & Y) | (X & Z) 566 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 567 if (LOp == Instruction::And) 568 return ROp == Instruction::Or || ROp == Instruction::Xor; 569 570 // X | (Y & Z) <--> (X | Y) & (X | Z) 571 if (LOp == Instruction::Or) 572 return ROp == Instruction::And; 573 574 // X * (Y + Z) <--> (X * Y) + (X * Z) 575 // X * (Y - Z) <--> (X * Y) - (X * Z) 576 if (LOp == Instruction::Mul) 577 return ROp == Instruction::Add || ROp == Instruction::Sub; 578 579 return false; 580 } 581 582 /// Return whether "(X LOp Y) ROp Z" is always equal to 583 /// "(X ROp Z) LOp (Y ROp Z)". 584 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 585 Instruction::BinaryOps ROp) { 586 if (Instruction::isCommutative(ROp)) 587 return leftDistributesOverRight(ROp, LOp); 588 589 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 590 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 591 592 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 593 // but this requires knowing that the addition does not overflow and other 594 // such subtleties. 595 } 596 597 /// This function returns identity value for given opcode, which can be used to 598 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 599 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 600 if (isa<Constant>(V)) 601 return nullptr; 602 603 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 604 } 605 606 /// This function predicates factorization using distributive laws. By default, 607 /// it just returns the 'Op' inputs. But for special-cases like 608 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 609 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 610 /// allow more factorization opportunities. 611 static Instruction::BinaryOps 612 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 613 Value *&LHS, Value *&RHS) { 614 assert(Op && "Expected a binary operator"); 615 LHS = Op->getOperand(0); 616 RHS = Op->getOperand(1); 617 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 618 Constant *C; 619 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 620 // X << C --> X * (1 << C) 621 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 622 return Instruction::Mul; 623 } 624 // TODO: We can add other conversions e.g. shr => div etc. 625 } 626 return Op->getOpcode(); 627 } 628 629 /// This tries to simplify binary operations by factorizing out common terms 630 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 631 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I, 632 Instruction::BinaryOps InnerOpcode, 633 Value *A, Value *B, Value *C, 634 Value *D) { 635 assert(A && B && C && D && "All values must be provided"); 636 637 Value *V = nullptr; 638 Value *SimplifiedInst = nullptr; 639 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 640 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 641 642 // Does "X op' Y" always equal "Y op' X"? 643 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 644 645 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 646 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 647 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 648 // commutative case, "(A op' B) op (C op' A)"? 649 if (A == C || (InnerCommutative && A == D)) { 650 if (A != C) 651 std::swap(C, D); 652 // Consider forming "A op' (B op D)". 653 // If "B op D" simplifies then it can be formed with no cost. 654 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 655 // If "B op D" doesn't simplify then only go on if both of the existing 656 // operations "A op' B" and "C op' D" will be zapped as no longer used. 657 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 658 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 659 if (V) { 660 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 661 } 662 } 663 664 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 665 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 666 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 667 // commutative case, "(A op' B) op (B op' D)"? 668 if (B == D || (InnerCommutative && B == C)) { 669 if (B != D) 670 std::swap(C, D); 671 // Consider forming "(A op C) op' B". 672 // If "A op C" simplifies then it can be formed with no cost. 673 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 674 675 // If "A op C" doesn't simplify then only go on if both of the existing 676 // operations "A op' B" and "C op' D" will be zapped as no longer used. 677 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 678 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 679 if (V) { 680 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 681 } 682 } 683 684 if (SimplifiedInst) { 685 ++NumFactor; 686 SimplifiedInst->takeName(&I); 687 688 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 689 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 690 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 691 bool HasNSW = false; 692 bool HasNUW = false; 693 if (isa<OverflowingBinaryOperator>(&I)) { 694 HasNSW = I.hasNoSignedWrap(); 695 HasNUW = I.hasNoUnsignedWrap(); 696 } 697 698 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 699 HasNSW &= LOBO->hasNoSignedWrap(); 700 HasNUW &= LOBO->hasNoUnsignedWrap(); 701 } 702 703 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 704 HasNSW &= ROBO->hasNoSignedWrap(); 705 HasNUW &= ROBO->hasNoUnsignedWrap(); 706 } 707 708 if (TopLevelOpcode == Instruction::Add && 709 InnerOpcode == Instruction::Mul) { 710 // We can propagate 'nsw' if we know that 711 // %Y = mul nsw i16 %X, C 712 // %Z = add nsw i16 %Y, %X 713 // => 714 // %Z = mul nsw i16 %X, C+1 715 // 716 // iff C+1 isn't INT_MIN 717 const APInt *CInt; 718 if (match(V, m_APInt(CInt))) { 719 if (!CInt->isMinSignedValue()) 720 BO->setHasNoSignedWrap(HasNSW); 721 } 722 723 // nuw can be propagated with any constant or nuw value. 724 BO->setHasNoUnsignedWrap(HasNUW); 725 } 726 } 727 } 728 } 729 return SimplifiedInst; 730 } 731 732 /// This tries to simplify binary operations which some other binary operation 733 /// distributes over either by factorizing out common terms 734 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 735 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 736 /// Returns the simplified value, or null if it didn't simplify. 737 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 738 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 739 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 740 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 741 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 742 743 { 744 // Factorization. 745 Value *A, *B, *C, *D; 746 Instruction::BinaryOps LHSOpcode, RHSOpcode; 747 if (Op0) 748 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 749 if (Op1) 750 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 751 752 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 753 // a common term. 754 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 755 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 756 return V; 757 758 // The instruction has the form "(A op' B) op (C)". Try to factorize common 759 // term. 760 if (Op0) 761 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 762 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 763 return V; 764 765 // The instruction has the form "(B) op (C op' D)". Try to factorize common 766 // term. 767 if (Op1) 768 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 769 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 770 return V; 771 } 772 773 // Expansion. 774 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 775 // The instruction has the form "(A op' B) op C". See if expanding it out 776 // to "(A op C) op' (B op C)" results in simplifications. 777 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 778 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 779 780 // Disable the use of undef because it's not safe to distribute undef. 781 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 782 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 783 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 784 785 // Do "A op C" and "B op C" both simplify? 786 if (L && R) { 787 // They do! Return "L op' R". 788 ++NumExpand; 789 C = Builder.CreateBinOp(InnerOpcode, L, R); 790 C->takeName(&I); 791 return C; 792 } 793 794 // Does "A op C" simplify to the identity value for the inner opcode? 795 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 796 // They do! Return "B op C". 797 ++NumExpand; 798 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 799 C->takeName(&I); 800 return C; 801 } 802 803 // Does "B op C" simplify to the identity value for the inner opcode? 804 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 805 // They do! Return "A op C". 806 ++NumExpand; 807 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 808 C->takeName(&I); 809 return C; 810 } 811 } 812 813 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 814 // The instruction has the form "A op (B op' C)". See if expanding it out 815 // to "(A op B) op' (A op C)" results in simplifications. 816 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 817 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 818 819 // Disable the use of undef because it's not safe to distribute undef. 820 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 821 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 822 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 823 824 // Do "A op B" and "A op C" both simplify? 825 if (L && R) { 826 // They do! Return "L op' R". 827 ++NumExpand; 828 A = Builder.CreateBinOp(InnerOpcode, L, R); 829 A->takeName(&I); 830 return A; 831 } 832 833 // Does "A op B" simplify to the identity value for the inner opcode? 834 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 835 // They do! Return "A op C". 836 ++NumExpand; 837 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 838 A->takeName(&I); 839 return A; 840 } 841 842 // Does "A op C" simplify to the identity value for the inner opcode? 843 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 844 // They do! Return "A op B". 845 ++NumExpand; 846 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 847 A->takeName(&I); 848 return A; 849 } 850 } 851 852 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 853 } 854 855 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 856 Value *LHS, 857 Value *RHS) { 858 Value *A, *B, *C, *D, *E, *F; 859 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 860 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 861 if (!LHSIsSelect && !RHSIsSelect) 862 return nullptr; 863 864 FastMathFlags FMF; 865 BuilderTy::FastMathFlagGuard Guard(Builder); 866 if (isa<FPMathOperator>(&I)) { 867 FMF = I.getFastMathFlags(); 868 Builder.setFastMathFlags(FMF); 869 } 870 871 Instruction::BinaryOps Opcode = I.getOpcode(); 872 SimplifyQuery Q = SQ.getWithInstruction(&I); 873 874 Value *Cond, *True = nullptr, *False = nullptr; 875 if (LHSIsSelect && RHSIsSelect && A == D) { 876 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 877 Cond = A; 878 True = SimplifyBinOp(Opcode, B, E, FMF, Q); 879 False = SimplifyBinOp(Opcode, C, F, FMF, Q); 880 881 if (LHS->hasOneUse() && RHS->hasOneUse()) { 882 if (False && !True) 883 True = Builder.CreateBinOp(Opcode, B, E); 884 else if (True && !False) 885 False = Builder.CreateBinOp(Opcode, C, F); 886 } 887 } else if (LHSIsSelect && LHS->hasOneUse()) { 888 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 889 Cond = A; 890 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q); 891 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q); 892 } else if (RHSIsSelect && RHS->hasOneUse()) { 893 // X op (D ? E : F) -> D ? (X op E) : (X op F) 894 Cond = D; 895 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q); 896 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q); 897 } 898 899 if (!True || !False) 900 return nullptr; 901 902 Value *SI = Builder.CreateSelect(Cond, True, False); 903 SI->takeName(&I); 904 return SI; 905 } 906 907 /// Freely adapt every user of V as-if V was changed to !V. 908 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 909 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) { 910 for (User *U : I->users()) { 911 switch (cast<Instruction>(U)->getOpcode()) { 912 case Instruction::Select: { 913 auto *SI = cast<SelectInst>(U); 914 SI->swapValues(); 915 SI->swapProfMetadata(); 916 break; 917 } 918 case Instruction::Br: 919 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 920 break; 921 case Instruction::Xor: 922 replaceInstUsesWith(cast<Instruction>(*U), I); 923 break; 924 default: 925 llvm_unreachable("Got unexpected user - out of sync with " 926 "canFreelyInvertAllUsersOf() ?"); 927 } 928 } 929 } 930 931 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 932 /// constant zero (which is the 'negate' form). 933 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 934 Value *NegV; 935 if (match(V, m_Neg(m_Value(NegV)))) 936 return NegV; 937 938 // Constants can be considered to be negated values if they can be folded. 939 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 940 return ConstantExpr::getNeg(C); 941 942 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 943 if (C->getType()->getElementType()->isIntegerTy()) 944 return ConstantExpr::getNeg(C); 945 946 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 947 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 948 Constant *Elt = CV->getAggregateElement(i); 949 if (!Elt) 950 return nullptr; 951 952 if (isa<UndefValue>(Elt)) 953 continue; 954 955 if (!isa<ConstantInt>(Elt)) 956 return nullptr; 957 } 958 return ConstantExpr::getNeg(CV); 959 } 960 961 // Negate integer vector splats. 962 if (auto *CV = dyn_cast<Constant>(V)) 963 if (CV->getType()->isVectorTy() && 964 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 965 return ConstantExpr::getNeg(CV); 966 967 return nullptr; 968 } 969 970 /// A binop with a constant operand and a sign-extended boolean operand may be 971 /// converted into a select of constants by applying the binary operation to 972 /// the constant with the two possible values of the extended boolean (0 or -1). 973 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) { 974 // TODO: Handle non-commutative binop (constant is operand 0). 975 // TODO: Handle zext. 976 // TODO: Peek through 'not' of cast. 977 Value *BO0 = BO.getOperand(0); 978 Value *BO1 = BO.getOperand(1); 979 Value *X; 980 Constant *C; 981 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) || 982 !X->getType()->isIntOrIntVectorTy(1)) 983 return nullptr; 984 985 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C) 986 Constant *Ones = ConstantInt::getAllOnesValue(BO.getType()); 987 Constant *Zero = ConstantInt::getNullValue(BO.getType()); 988 Constant *TVal = ConstantExpr::get(BO.getOpcode(), Ones, C); 989 Constant *FVal = ConstantExpr::get(BO.getOpcode(), Zero, C); 990 return SelectInst::Create(X, TVal, FVal); 991 } 992 993 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 994 InstCombiner::BuilderTy &Builder) { 995 if (auto *Cast = dyn_cast<CastInst>(&I)) 996 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 997 998 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 999 assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) && 1000 "Expected constant-foldable intrinsic"); 1001 Intrinsic::ID IID = II->getIntrinsicID(); 1002 if (II->arg_size() == 1) 1003 return Builder.CreateUnaryIntrinsic(IID, SO); 1004 1005 // This works for real binary ops like min/max (where we always expect the 1006 // constant operand to be canonicalized as op1) and unary ops with a bonus 1007 // constant argument like ctlz/cttz. 1008 // TODO: Handle non-commutative binary intrinsics as below for binops. 1009 assert(II->arg_size() == 2 && "Expected binary intrinsic"); 1010 assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand"); 1011 return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1)); 1012 } 1013 1014 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 1015 1016 // Figure out if the constant is the left or the right argument. 1017 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 1018 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 1019 1020 if (auto *SOC = dyn_cast<Constant>(SO)) { 1021 if (ConstIsRHS) 1022 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 1023 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 1024 } 1025 1026 Value *Op0 = SO, *Op1 = ConstOperand; 1027 if (!ConstIsRHS) 1028 std::swap(Op0, Op1); 1029 1030 auto *BO = cast<BinaryOperator>(&I); 1031 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 1032 SO->getName() + ".op"); 1033 auto *FPInst = dyn_cast<Instruction>(RI); 1034 if (FPInst && isa<FPMathOperator>(FPInst)) 1035 FPInst->copyFastMathFlags(BO); 1036 return RI; 1037 } 1038 1039 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, 1040 SelectInst *SI) { 1041 // Don't modify shared select instructions. 1042 if (!SI->hasOneUse()) 1043 return nullptr; 1044 1045 Value *TV = SI->getTrueValue(); 1046 Value *FV = SI->getFalseValue(); 1047 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 1048 return nullptr; 1049 1050 // Bool selects with constant operands can be folded to logical ops. 1051 if (SI->getType()->isIntOrIntVectorTy(1)) 1052 return nullptr; 1053 1054 // If it's a bitcast involving vectors, make sure it has the same number of 1055 // elements on both sides. 1056 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 1057 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 1058 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 1059 1060 // Verify that either both or neither are vectors. 1061 if ((SrcTy == nullptr) != (DestTy == nullptr)) 1062 return nullptr; 1063 1064 // If vectors, verify that they have the same number of elements. 1065 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) 1066 return nullptr; 1067 } 1068 1069 // Test if a CmpInst instruction is used exclusively by a select as 1070 // part of a minimum or maximum operation. If so, refrain from doing 1071 // any other folding. This helps out other analyses which understand 1072 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 1073 // and CodeGen. And in this case, at least one of the comparison 1074 // operands has at least one user besides the compare (the select), 1075 // which would often largely negate the benefit of folding anyway. 1076 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 1077 if (CI->hasOneUse()) { 1078 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 1079 1080 // FIXME: This is a hack to avoid infinite looping with min/max patterns. 1081 // We have to ensure that vector constants that only differ with 1082 // undef elements are treated as equivalent. 1083 auto areLooselyEqual = [](Value *A, Value *B) { 1084 if (A == B) 1085 return true; 1086 1087 // Test for vector constants. 1088 Constant *ConstA, *ConstB; 1089 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB))) 1090 return false; 1091 1092 // TODO: Deal with FP constants? 1093 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType()) 1094 return false; 1095 1096 // Compare for equality including undefs as equal. 1097 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB); 1098 const APInt *C; 1099 return match(Cmp, m_APIntAllowUndef(C)) && C->isOne(); 1100 }; 1101 1102 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) || 1103 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1))) 1104 return nullptr; 1105 } 1106 } 1107 1108 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 1109 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 1110 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 1111 } 1112 1113 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 1114 InstCombiner::BuilderTy &Builder) { 1115 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 1116 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 1117 1118 if (auto *InC = dyn_cast<Constant>(InV)) { 1119 if (ConstIsRHS) 1120 return ConstantExpr::get(I->getOpcode(), InC, C); 1121 return ConstantExpr::get(I->getOpcode(), C, InC); 1122 } 1123 1124 Value *Op0 = InV, *Op1 = C; 1125 if (!ConstIsRHS) 1126 std::swap(Op0, Op1); 1127 1128 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo"); 1129 auto *FPInst = dyn_cast<Instruction>(RI); 1130 if (FPInst && isa<FPMathOperator>(FPInst)) 1131 FPInst->copyFastMathFlags(I); 1132 return RI; 1133 } 1134 1135 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { 1136 unsigned NumPHIValues = PN->getNumIncomingValues(); 1137 if (NumPHIValues == 0) 1138 return nullptr; 1139 1140 // We normally only transform phis with a single use. However, if a PHI has 1141 // multiple uses and they are all the same operation, we can fold *all* of the 1142 // uses into the PHI. 1143 if (!PN->hasOneUse()) { 1144 // Walk the use list for the instruction, comparing them to I. 1145 for (User *U : PN->users()) { 1146 Instruction *UI = cast<Instruction>(U); 1147 if (UI != &I && !I.isIdenticalTo(UI)) 1148 return nullptr; 1149 } 1150 // Otherwise, we can replace *all* users with the new PHI we form. 1151 } 1152 1153 // Check to see if all of the operands of the PHI are simple constants 1154 // (constantint/constantfp/undef). If there is one non-constant value, 1155 // remember the BB it is in. If there is more than one or if *it* is a PHI, 1156 // bail out. We don't do arbitrary constant expressions here because moving 1157 // their computation can be expensive without a cost model. 1158 BasicBlock *NonConstBB = nullptr; 1159 for (unsigned i = 0; i != NumPHIValues; ++i) { 1160 Value *InVal = PN->getIncomingValue(i); 1161 // For non-freeze, require constant operand 1162 // For freeze, require non-undef, non-poison operand 1163 if (!isa<FreezeInst>(I) && match(InVal, m_ImmConstant())) 1164 continue; 1165 if (isa<FreezeInst>(I) && isGuaranteedNotToBeUndefOrPoison(InVal)) 1166 continue; 1167 1168 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 1169 if (NonConstBB) return nullptr; // More than one non-const value. 1170 1171 NonConstBB = PN->getIncomingBlock(i); 1172 1173 // If the InVal is an invoke at the end of the pred block, then we can't 1174 // insert a computation after it without breaking the edge. 1175 if (isa<InvokeInst>(InVal)) 1176 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 1177 return nullptr; 1178 1179 // If the incoming non-constant value is in I's block, we will remove one 1180 // instruction, but insert another equivalent one, leading to infinite 1181 // instcombine. 1182 if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI)) 1183 return nullptr; 1184 } 1185 1186 // If there is exactly one non-constant value, we can insert a copy of the 1187 // operation in that block. However, if this is a critical edge, we would be 1188 // inserting the computation on some other paths (e.g. inside a loop). Only 1189 // do this if the pred block is unconditionally branching into the phi block. 1190 // Also, make sure that the pred block is not dead code. 1191 if (NonConstBB != nullptr) { 1192 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1193 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB)) 1194 return nullptr; 1195 } 1196 1197 // Okay, we can do the transformation: create the new PHI node. 1198 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1199 InsertNewInstBefore(NewPN, *PN); 1200 NewPN->takeName(PN); 1201 1202 // If we are going to have to insert a new computation, do so right before the 1203 // predecessor's terminator. 1204 if (NonConstBB) 1205 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1206 1207 // Next, add all of the operands to the PHI. 1208 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1209 // We only currently try to fold the condition of a select when it is a phi, 1210 // not the true/false values. 1211 Value *TrueV = SI->getTrueValue(); 1212 Value *FalseV = SI->getFalseValue(); 1213 BasicBlock *PhiTransBB = PN->getParent(); 1214 for (unsigned i = 0; i != NumPHIValues; ++i) { 1215 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1216 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1217 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1218 Value *InV = nullptr; 1219 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1220 // even if currently isNullValue gives false. 1221 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1222 // For vector constants, we cannot use isNullValue to fold into 1223 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1224 // elements in the vector, we will incorrectly fold InC to 1225 // `TrueVInPred`. 1226 if (InC && isa<ConstantInt>(InC)) 1227 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1228 else { 1229 // Generate the select in the same block as PN's current incoming block. 1230 // Note: ThisBB need not be the NonConstBB because vector constants 1231 // which are constants by definition are handled here. 1232 // FIXME: This can lead to an increase in IR generation because we might 1233 // generate selects for vector constant phi operand, that could not be 1234 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1235 // non-vector phis, this transformation was always profitable because 1236 // the select would be generated exactly once in the NonConstBB. 1237 Builder.SetInsertPoint(ThisBB->getTerminator()); 1238 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1239 FalseVInPred, "phi.sel"); 1240 } 1241 NewPN->addIncoming(InV, ThisBB); 1242 } 1243 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1244 Constant *C = cast<Constant>(I.getOperand(1)); 1245 for (unsigned i = 0; i != NumPHIValues; ++i) { 1246 Value *InV = nullptr; 1247 if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1248 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1249 else 1250 InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i), 1251 C, "phi.cmp"); 1252 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1253 } 1254 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1255 for (unsigned i = 0; i != NumPHIValues; ++i) { 1256 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1257 Builder); 1258 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1259 } 1260 } else if (isa<FreezeInst>(&I)) { 1261 for (unsigned i = 0; i != NumPHIValues; ++i) { 1262 Value *InV; 1263 if (NonConstBB == PN->getIncomingBlock(i)) 1264 InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr"); 1265 else 1266 InV = PN->getIncomingValue(i); 1267 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1268 } 1269 } else { 1270 CastInst *CI = cast<CastInst>(&I); 1271 Type *RetTy = CI->getType(); 1272 for (unsigned i = 0; i != NumPHIValues; ++i) { 1273 Value *InV; 1274 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1275 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1276 else 1277 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1278 I.getType(), "phi.cast"); 1279 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1280 } 1281 } 1282 1283 for (User *U : make_early_inc_range(PN->users())) { 1284 Instruction *User = cast<Instruction>(U); 1285 if (User == &I) continue; 1286 replaceInstUsesWith(*User, NewPN); 1287 eraseInstFromFunction(*User); 1288 } 1289 return replaceInstUsesWith(I, NewPN); 1290 } 1291 1292 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1293 if (!isa<Constant>(I.getOperand(1))) 1294 return nullptr; 1295 1296 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1297 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1298 return NewSel; 1299 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1300 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1301 return NewPhi; 1302 } 1303 return nullptr; 1304 } 1305 1306 /// Given a pointer type and a constant offset, determine whether or not there 1307 /// is a sequence of GEP indices into the pointed type that will land us at the 1308 /// specified offset. If so, fill them into NewIndices and return the resultant 1309 /// element type, otherwise return null. 1310 Type * 1311 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t IntOffset, 1312 SmallVectorImpl<Value *> &NewIndices) { 1313 Type *Ty = PtrTy->getElementType(); 1314 if (!Ty->isSized()) 1315 return nullptr; 1316 1317 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset); 1318 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset); 1319 if (!Offset.isZero()) 1320 return nullptr; 1321 1322 for (const APInt &Index : Indices) 1323 NewIndices.push_back(Builder.getInt(Index)); 1324 return Ty; 1325 } 1326 1327 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1328 // If this GEP has only 0 indices, it is the same pointer as 1329 // Src. If Src is not a trivial GEP too, don't combine 1330 // the indices. 1331 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1332 !Src.hasOneUse()) 1333 return false; 1334 return true; 1335 } 1336 1337 /// Return a value X such that Val = X * Scale, or null if none. 1338 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1339 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1340 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1341 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1342 Scale.getBitWidth() && "Scale not compatible with value!"); 1343 1344 // If Val is zero or Scale is one then Val = Val * Scale. 1345 if (match(Val, m_Zero()) || Scale == 1) { 1346 NoSignedWrap = true; 1347 return Val; 1348 } 1349 1350 // If Scale is zero then it does not divide Val. 1351 if (Scale.isMinValue()) 1352 return nullptr; 1353 1354 // Look through chains of multiplications, searching for a constant that is 1355 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1356 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1357 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1358 // down from Val: 1359 // 1360 // Val = M1 * X || Analysis starts here and works down 1361 // M1 = M2 * Y || Doesn't descend into terms with more 1362 // M2 = Z * 4 \/ than one use 1363 // 1364 // Then to modify a term at the bottom: 1365 // 1366 // Val = M1 * X 1367 // M1 = Z * Y || Replaced M2 with Z 1368 // 1369 // Then to work back up correcting nsw flags. 1370 1371 // Op - the term we are currently analyzing. Starts at Val then drills down. 1372 // Replaced with its descaled value before exiting from the drill down loop. 1373 Value *Op = Val; 1374 1375 // Parent - initially null, but after drilling down notes where Op came from. 1376 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1377 // 0'th operand of Val. 1378 std::pair<Instruction *, unsigned> Parent; 1379 1380 // Set if the transform requires a descaling at deeper levels that doesn't 1381 // overflow. 1382 bool RequireNoSignedWrap = false; 1383 1384 // Log base 2 of the scale. Negative if not a power of 2. 1385 int32_t logScale = Scale.exactLogBase2(); 1386 1387 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1388 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1389 // If Op is a constant divisible by Scale then descale to the quotient. 1390 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1391 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1392 if (!Remainder.isMinValue()) 1393 // Not divisible by Scale. 1394 return nullptr; 1395 // Replace with the quotient in the parent. 1396 Op = ConstantInt::get(CI->getType(), Quotient); 1397 NoSignedWrap = true; 1398 break; 1399 } 1400 1401 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1402 if (BO->getOpcode() == Instruction::Mul) { 1403 // Multiplication. 1404 NoSignedWrap = BO->hasNoSignedWrap(); 1405 if (RequireNoSignedWrap && !NoSignedWrap) 1406 return nullptr; 1407 1408 // There are three cases for multiplication: multiplication by exactly 1409 // the scale, multiplication by a constant different to the scale, and 1410 // multiplication by something else. 1411 Value *LHS = BO->getOperand(0); 1412 Value *RHS = BO->getOperand(1); 1413 1414 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1415 // Multiplication by a constant. 1416 if (CI->getValue() == Scale) { 1417 // Multiplication by exactly the scale, replace the multiplication 1418 // by its left-hand side in the parent. 1419 Op = LHS; 1420 break; 1421 } 1422 1423 // Otherwise drill down into the constant. 1424 if (!Op->hasOneUse()) 1425 return nullptr; 1426 1427 Parent = std::make_pair(BO, 1); 1428 continue; 1429 } 1430 1431 // Multiplication by something else. Drill down into the left-hand side 1432 // since that's where the reassociate pass puts the good stuff. 1433 if (!Op->hasOneUse()) 1434 return nullptr; 1435 1436 Parent = std::make_pair(BO, 0); 1437 continue; 1438 } 1439 1440 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1441 isa<ConstantInt>(BO->getOperand(1))) { 1442 // Multiplication by a power of 2. 1443 NoSignedWrap = BO->hasNoSignedWrap(); 1444 if (RequireNoSignedWrap && !NoSignedWrap) 1445 return nullptr; 1446 1447 Value *LHS = BO->getOperand(0); 1448 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1449 getLimitedValue(Scale.getBitWidth()); 1450 // Op = LHS << Amt. 1451 1452 if (Amt == logScale) { 1453 // Multiplication by exactly the scale, replace the multiplication 1454 // by its left-hand side in the parent. 1455 Op = LHS; 1456 break; 1457 } 1458 if (Amt < logScale || !Op->hasOneUse()) 1459 return nullptr; 1460 1461 // Multiplication by more than the scale. Reduce the multiplying amount 1462 // by the scale in the parent. 1463 Parent = std::make_pair(BO, 1); 1464 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1465 break; 1466 } 1467 } 1468 1469 if (!Op->hasOneUse()) 1470 return nullptr; 1471 1472 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1473 if (Cast->getOpcode() == Instruction::SExt) { 1474 // Op is sign-extended from a smaller type, descale in the smaller type. 1475 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1476 APInt SmallScale = Scale.trunc(SmallSize); 1477 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1478 // descale Op as (sext Y) * Scale. In order to have 1479 // sext (Y * SmallScale) = (sext Y) * Scale 1480 // some conditions need to hold however: SmallScale must sign-extend to 1481 // Scale and the multiplication Y * SmallScale should not overflow. 1482 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1483 // SmallScale does not sign-extend to Scale. 1484 return nullptr; 1485 assert(SmallScale.exactLogBase2() == logScale); 1486 // Require that Y * SmallScale must not overflow. 1487 RequireNoSignedWrap = true; 1488 1489 // Drill down through the cast. 1490 Parent = std::make_pair(Cast, 0); 1491 Scale = SmallScale; 1492 continue; 1493 } 1494 1495 if (Cast->getOpcode() == Instruction::Trunc) { 1496 // Op is truncated from a larger type, descale in the larger type. 1497 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1498 // trunc (Y * sext Scale) = (trunc Y) * Scale 1499 // always holds. However (trunc Y) * Scale may overflow even if 1500 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1501 // from this point up in the expression (see later). 1502 if (RequireNoSignedWrap) 1503 return nullptr; 1504 1505 // Drill down through the cast. 1506 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1507 Parent = std::make_pair(Cast, 0); 1508 Scale = Scale.sext(LargeSize); 1509 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1510 logScale = -1; 1511 assert(Scale.exactLogBase2() == logScale); 1512 continue; 1513 } 1514 } 1515 1516 // Unsupported expression, bail out. 1517 return nullptr; 1518 } 1519 1520 // If Op is zero then Val = Op * Scale. 1521 if (match(Op, m_Zero())) { 1522 NoSignedWrap = true; 1523 return Op; 1524 } 1525 1526 // We know that we can successfully descale, so from here on we can safely 1527 // modify the IR. Op holds the descaled version of the deepest term in the 1528 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1529 // not to overflow. 1530 1531 if (!Parent.first) 1532 // The expression only had one term. 1533 return Op; 1534 1535 // Rewrite the parent using the descaled version of its operand. 1536 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1537 assert(Op != Parent.first->getOperand(Parent.second) && 1538 "Descaling was a no-op?"); 1539 replaceOperand(*Parent.first, Parent.second, Op); 1540 Worklist.push(Parent.first); 1541 1542 // Now work back up the expression correcting nsw flags. The logic is based 1543 // on the following observation: if X * Y is known not to overflow as a signed 1544 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1545 // then X * Z will not overflow as a signed multiplication either. As we work 1546 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1547 // current level has strictly smaller absolute value than the original. 1548 Instruction *Ancestor = Parent.first; 1549 do { 1550 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1551 // If the multiplication wasn't nsw then we can't say anything about the 1552 // value of the descaled multiplication, and we have to clear nsw flags 1553 // from this point on up. 1554 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1555 NoSignedWrap &= OpNoSignedWrap; 1556 if (NoSignedWrap != OpNoSignedWrap) { 1557 BO->setHasNoSignedWrap(NoSignedWrap); 1558 Worklist.push(Ancestor); 1559 } 1560 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1561 // The fact that the descaled input to the trunc has smaller absolute 1562 // value than the original input doesn't tell us anything useful about 1563 // the absolute values of the truncations. 1564 NoSignedWrap = false; 1565 } 1566 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1567 "Failed to keep proper track of nsw flags while drilling down?"); 1568 1569 if (Ancestor == Val) 1570 // Got to the top, all done! 1571 return Val; 1572 1573 // Move up one level in the expression. 1574 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1575 Ancestor = Ancestor->user_back(); 1576 } while (true); 1577 } 1578 1579 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 1580 if (!isa<VectorType>(Inst.getType())) 1581 return nullptr; 1582 1583 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1584 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1585 assert(cast<VectorType>(LHS->getType())->getElementCount() == 1586 cast<VectorType>(Inst.getType())->getElementCount()); 1587 assert(cast<VectorType>(RHS->getType())->getElementCount() == 1588 cast<VectorType>(Inst.getType())->getElementCount()); 1589 1590 // If both operands of the binop are vector concatenations, then perform the 1591 // narrow binop on each pair of the source operands followed by concatenation 1592 // of the results. 1593 Value *L0, *L1, *R0, *R1; 1594 ArrayRef<int> Mask; 1595 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 1596 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 1597 LHS->hasOneUse() && RHS->hasOneUse() && 1598 cast<ShuffleVectorInst>(LHS)->isConcat() && 1599 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1600 // This transform does not have the speculative execution constraint as 1601 // below because the shuffle is a concatenation. The new binops are 1602 // operating on exactly the same elements as the existing binop. 1603 // TODO: We could ease the mask requirement to allow different undef lanes, 1604 // but that requires an analysis of the binop-with-undef output value. 1605 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1606 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1607 BO->copyIRFlags(&Inst); 1608 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1609 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1610 BO->copyIRFlags(&Inst); 1611 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1612 } 1613 1614 // It may not be safe to reorder shuffles and things like div, urem, etc. 1615 // because we may trap when executing those ops on unknown vector elements. 1616 // See PR20059. 1617 if (!isSafeToSpeculativelyExecute(&Inst)) 1618 return nullptr; 1619 1620 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 1621 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1622 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1623 BO->copyIRFlags(&Inst); 1624 return new ShuffleVectorInst(XY, M); 1625 }; 1626 1627 // If both arguments of the binary operation are shuffles that use the same 1628 // mask and shuffle within a single vector, move the shuffle after the binop. 1629 Value *V1, *V2; 1630 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) && 1631 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) && 1632 V1->getType() == V2->getType() && 1633 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1634 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1635 return createBinOpShuffle(V1, V2, Mask); 1636 } 1637 1638 // If both arguments of a commutative binop are select-shuffles that use the 1639 // same mask with commuted operands, the shuffles are unnecessary. 1640 if (Inst.isCommutative() && 1641 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 1642 match(RHS, 1643 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 1644 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1645 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1646 // TODO: Allow shuffles that contain undefs in the mask? 1647 // That is legal, but it reduces undef knowledge. 1648 // TODO: Allow arbitrary shuffles by shuffling after binop? 1649 // That might be legal, but we have to deal with poison. 1650 if (LShuf->isSelect() && 1651 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) && 1652 RShuf->isSelect() && 1653 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) { 1654 // Example: 1655 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1656 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1657 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1658 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1659 NewBO->copyIRFlags(&Inst); 1660 return NewBO; 1661 } 1662 } 1663 1664 // If one argument is a shuffle within one vector and the other is a constant, 1665 // try moving the shuffle after the binary operation. This canonicalization 1666 // intends to move shuffles closer to other shuffles and binops closer to 1667 // other binops, so they can be folded. It may also enable demanded elements 1668 // transforms. 1669 Constant *C; 1670 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 1671 if (InstVTy && 1672 match(&Inst, 1673 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))), 1674 m_ImmConstant(C))) && 1675 cast<FixedVectorType>(V1->getType())->getNumElements() <= 1676 InstVTy->getNumElements()) { 1677 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 1678 "Shuffle should not change scalar type"); 1679 1680 // Find constant NewC that has property: 1681 // shuffle(NewC, ShMask) = C 1682 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1683 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1684 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1685 bool ConstOp1 = isa<Constant>(RHS); 1686 ArrayRef<int> ShMask = Mask; 1687 unsigned SrcVecNumElts = 1688 cast<FixedVectorType>(V1->getType())->getNumElements(); 1689 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1690 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1691 bool MayChange = true; 1692 unsigned NumElts = InstVTy->getNumElements(); 1693 for (unsigned I = 0; I < NumElts; ++I) { 1694 Constant *CElt = C->getAggregateElement(I); 1695 if (ShMask[I] >= 0) { 1696 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1697 Constant *NewCElt = NewVecC[ShMask[I]]; 1698 // Bail out if: 1699 // 1. The constant vector contains a constant expression. 1700 // 2. The shuffle needs an element of the constant vector that can't 1701 // be mapped to a new constant vector. 1702 // 3. This is a widening shuffle that copies elements of V1 into the 1703 // extended elements (extending with undef is allowed). 1704 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1705 I >= SrcVecNumElts) { 1706 MayChange = false; 1707 break; 1708 } 1709 NewVecC[ShMask[I]] = CElt; 1710 } 1711 // If this is a widening shuffle, we must be able to extend with undef 1712 // elements. If the original binop does not produce an undef in the high 1713 // lanes, then this transform is not safe. 1714 // Similarly for undef lanes due to the shuffle mask, we can only 1715 // transform binops that preserve undef. 1716 // TODO: We could shuffle those non-undef constant values into the 1717 // result by using a constant vector (rather than an undef vector) 1718 // as operand 1 of the new binop, but that might be too aggressive 1719 // for target-independent shuffle creation. 1720 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1721 Constant *MaybeUndef = 1722 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1723 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1724 if (!match(MaybeUndef, m_Undef())) { 1725 MayChange = false; 1726 break; 1727 } 1728 } 1729 } 1730 if (MayChange) { 1731 Constant *NewC = ConstantVector::get(NewVecC); 1732 // It may not be safe to execute a binop on a vector with undef elements 1733 // because the entire instruction can be folded to undef or create poison 1734 // that did not exist in the original code. 1735 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1736 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1737 1738 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1739 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1740 Value *NewLHS = ConstOp1 ? V1 : NewC; 1741 Value *NewRHS = ConstOp1 ? NewC : V1; 1742 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1743 } 1744 } 1745 1746 // Try to reassociate to sink a splat shuffle after a binary operation. 1747 if (Inst.isAssociative() && Inst.isCommutative()) { 1748 // Canonicalize shuffle operand as LHS. 1749 if (isa<ShuffleVectorInst>(RHS)) 1750 std::swap(LHS, RHS); 1751 1752 Value *X; 1753 ArrayRef<int> MaskC; 1754 int SplatIndex; 1755 Value *Y, *OtherOp; 1756 if (!match(LHS, 1757 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 1758 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || 1759 X->getType() != Inst.getType() || 1760 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp))))) 1761 return nullptr; 1762 1763 // FIXME: This may not be safe if the analysis allows undef elements. By 1764 // moving 'Y' before the splat shuffle, we are implicitly assuming 1765 // that it is not undef/poison at the splat index. 1766 if (isSplatValue(OtherOp, SplatIndex)) { 1767 std::swap(Y, OtherOp); 1768 } else if (!isSplatValue(Y, SplatIndex)) { 1769 return nullptr; 1770 } 1771 1772 // X and Y are splatted values, so perform the binary operation on those 1773 // values followed by a splat followed by the 2nd binary operation: 1774 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 1775 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 1776 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 1777 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 1778 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 1779 1780 // Intersect FMF on both new binops. Other (poison-generating) flags are 1781 // dropped to be safe. 1782 if (isa<FPMathOperator>(R)) { 1783 R->copyFastMathFlags(&Inst); 1784 R->andIRFlags(RHS); 1785 } 1786 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 1787 NewInstBO->copyIRFlags(R); 1788 return R; 1789 } 1790 1791 return nullptr; 1792 } 1793 1794 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1795 /// of a value. This requires a potentially expensive known bits check to make 1796 /// sure the narrow op does not overflow. 1797 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 1798 // We need at least one extended operand. 1799 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1800 1801 // If this is a sub, we swap the operands since we always want an extension 1802 // on the RHS. The LHS can be an extension or a constant. 1803 if (BO.getOpcode() == Instruction::Sub) 1804 std::swap(Op0, Op1); 1805 1806 Value *X; 1807 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1808 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1809 return nullptr; 1810 1811 // If both operands are the same extension from the same source type and we 1812 // can eliminate at least one (hasOneUse), this might work. 1813 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1814 Value *Y; 1815 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1816 cast<Operator>(Op1)->getOpcode() == CastOpc && 1817 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1818 // If that did not match, see if we have a suitable constant operand. 1819 // Truncating and extending must produce the same constant. 1820 Constant *WideC; 1821 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1822 return nullptr; 1823 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1824 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1825 return nullptr; 1826 Y = NarrowC; 1827 } 1828 1829 // Swap back now that we found our operands. 1830 if (BO.getOpcode() == Instruction::Sub) 1831 std::swap(X, Y); 1832 1833 // Both operands have narrow versions. Last step: the math must not overflow 1834 // in the narrow width. 1835 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1836 return nullptr; 1837 1838 // bo (ext X), (ext Y) --> ext (bo X, Y) 1839 // bo (ext X), C --> ext (bo X, C') 1840 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1841 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1842 if (IsSext) 1843 NewBinOp->setHasNoSignedWrap(); 1844 else 1845 NewBinOp->setHasNoUnsignedWrap(); 1846 } 1847 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1848 } 1849 1850 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 1851 // At least one GEP must be inbounds. 1852 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 1853 return false; 1854 1855 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 1856 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 1857 } 1858 1859 /// Thread a GEP operation with constant indices through the constant true/false 1860 /// arms of a select. 1861 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 1862 InstCombiner::BuilderTy &Builder) { 1863 if (!GEP.hasAllConstantIndices()) 1864 return nullptr; 1865 1866 Instruction *Sel; 1867 Value *Cond; 1868 Constant *TrueC, *FalseC; 1869 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 1870 !match(Sel, 1871 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 1872 return nullptr; 1873 1874 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 1875 // Propagate 'inbounds' and metadata from existing instructions. 1876 // Note: using IRBuilder to create the constants for efficiency. 1877 SmallVector<Value *, 4> IndexC(GEP.indices()); 1878 bool IsInBounds = GEP.isInBounds(); 1879 Type *Ty = GEP.getSourceElementType(); 1880 Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC) 1881 : Builder.CreateGEP(Ty, TrueC, IndexC); 1882 Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC) 1883 : Builder.CreateGEP(Ty, FalseC, IndexC); 1884 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 1885 } 1886 1887 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP, 1888 GEPOperator *Src) { 1889 // Combine Indices - If the source pointer to this getelementptr instruction 1890 // is a getelementptr instruction with matching element type, combine the 1891 // indices of the two getelementptr instructions into a single instruction. 1892 if (Src->getResultElementType() != GEP.getSourceElementType()) 1893 return nullptr; 1894 1895 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1896 return nullptr; 1897 1898 if (Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1899 Src->hasOneUse()) { 1900 Value *GO1 = GEP.getOperand(1); 1901 Value *SO1 = Src->getOperand(1); 1902 1903 if (LI) { 1904 // Try to reassociate loop invariant GEP chains to enable LICM. 1905 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1906 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1907 // invariant: this breaks the dependence between GEPs and allows LICM 1908 // to hoist the invariant part out of the loop. 1909 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1910 // We have to be careful here. 1911 // We have something like: 1912 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 1913 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 1914 // If we just swap idx & idx2 then we could inadvertantly 1915 // change %src from a vector to a scalar, or vice versa. 1916 // Cases: 1917 // 1) %base a scalar & idx a scalar & idx2 a vector 1918 // => Swapping idx & idx2 turns %src into a vector type. 1919 // 2) %base a scalar & idx a vector & idx2 a scalar 1920 // => Swapping idx & idx2 turns %src in a scalar type 1921 // 3) %base, %idx, and %idx2 are scalars 1922 // => %src & %gep are scalars 1923 // => swapping idx & idx2 is safe 1924 // 4) %base a vector 1925 // => %src is a vector 1926 // => swapping idx & idx2 is safe. 1927 auto *SO0 = Src->getOperand(0); 1928 auto *SO0Ty = SO0->getType(); 1929 if (!isa<VectorType>(GEP.getType()) || // case 3 1930 isa<VectorType>(SO0Ty)) { // case 4 1931 Src->setOperand(1, GO1); 1932 GEP.setOperand(1, SO1); 1933 return &GEP; 1934 } else { 1935 // Case 1 or 2 1936 // -- have to recreate %src & %gep 1937 // put NewSrc at same location as %src 1938 Builder.SetInsertPoint(cast<Instruction>(Src)); 1939 Value *NewSrc = Builder.CreateGEP( 1940 GEP.getSourceElementType(), SO0, GO1, Src->getName()); 1941 // Propagate 'inbounds' if the new source was not constant-folded. 1942 if (auto *NewSrcGEPI = dyn_cast<GetElementPtrInst>(NewSrc)) 1943 NewSrcGEPI->setIsInBounds(Src->isInBounds()); 1944 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 1945 GEP.getSourceElementType(), NewSrc, {SO1}); 1946 NewGEP->setIsInBounds(GEP.isInBounds()); 1947 return NewGEP; 1948 } 1949 } 1950 } 1951 } 1952 } 1953 1954 // Note that if our source is a gep chain itself then we wait for that 1955 // chain to be resolved before we perform this transformation. This 1956 // avoids us creating a TON of code in some cases. 1957 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 1958 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1959 return nullptr; // Wait until our source is folded to completion. 1960 1961 SmallVector<Value*, 8> Indices; 1962 1963 // Find out whether the last index in the source GEP is a sequential idx. 1964 bool EndsWithSequential = false; 1965 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1966 I != E; ++I) 1967 EndsWithSequential = I.isSequential(); 1968 1969 // Can we combine the two pointer arithmetics offsets? 1970 if (EndsWithSequential) { 1971 // Replace: gep (gep %P, long B), long A, ... 1972 // With: T = long A+B; gep %P, T, ... 1973 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1974 Value *GO1 = GEP.getOperand(1); 1975 1976 // If they aren't the same type, then the input hasn't been processed 1977 // by the loop above yet (which canonicalizes sequential index types to 1978 // intptr_t). Just avoid transforming this until the input has been 1979 // normalized. 1980 if (SO1->getType() != GO1->getType()) 1981 return nullptr; 1982 1983 Value *Sum = 1984 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 1985 // Only do the combine when we are sure the cost after the 1986 // merge is never more than that before the merge. 1987 if (Sum == nullptr) 1988 return nullptr; 1989 1990 // Update the GEP in place if possible. 1991 if (Src->getNumOperands() == 2) { 1992 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 1993 replaceOperand(GEP, 0, Src->getOperand(0)); 1994 replaceOperand(GEP, 1, Sum); 1995 return &GEP; 1996 } 1997 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1998 Indices.push_back(Sum); 1999 Indices.append(GEP.op_begin()+2, GEP.op_end()); 2000 } else if (isa<Constant>(*GEP.idx_begin()) && 2001 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2002 Src->getNumOperands() != 1) { 2003 // Otherwise we can do the fold if the first index of the GEP is a zero 2004 Indices.append(Src->op_begin()+1, Src->op_end()); 2005 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2006 } 2007 2008 if (!Indices.empty()) 2009 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2010 ? GetElementPtrInst::CreateInBounds( 2011 Src->getSourceElementType(), Src->getOperand(0), Indices, 2012 GEP.getName()) 2013 : GetElementPtrInst::Create(Src->getSourceElementType(), 2014 Src->getOperand(0), Indices, 2015 GEP.getName()); 2016 2017 return nullptr; 2018 } 2019 2020 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 2021 Value *PtrOp = GEP.getOperand(0); 2022 SmallVector<Value *, 8> Indices(GEP.indices()); 2023 Type *GEPType = GEP.getType(); 2024 Type *GEPEltType = GEP.getSourceElementType(); 2025 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType); 2026 if (Value *V = SimplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(), 2027 SQ.getWithInstruction(&GEP))) 2028 return replaceInstUsesWith(GEP, V); 2029 2030 // For vector geps, use the generic demanded vector support. 2031 // Skip if GEP return type is scalable. The number of elements is unknown at 2032 // compile-time. 2033 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 2034 auto VWidth = GEPFVTy->getNumElements(); 2035 APInt UndefElts(VWidth, 0); 2036 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2037 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 2038 UndefElts)) { 2039 if (V != &GEP) 2040 return replaceInstUsesWith(GEP, V); 2041 return &GEP; 2042 } 2043 2044 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 2045 // possible (decide on canonical form for pointer broadcast), 3) exploit 2046 // undef elements to decrease demanded bits 2047 } 2048 2049 // Eliminate unneeded casts for indices, and replace indices which displace 2050 // by multiples of a zero size type with zero. 2051 bool MadeChange = false; 2052 2053 // Index width may not be the same width as pointer width. 2054 // Data layout chooses the right type based on supported integer types. 2055 Type *NewScalarIndexTy = 2056 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 2057 2058 gep_type_iterator GTI = gep_type_begin(GEP); 2059 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 2060 ++I, ++GTI) { 2061 // Skip indices into struct types. 2062 if (GTI.isStruct()) 2063 continue; 2064 2065 Type *IndexTy = (*I)->getType(); 2066 Type *NewIndexType = 2067 IndexTy->isVectorTy() 2068 ? VectorType::get(NewScalarIndexTy, 2069 cast<VectorType>(IndexTy)->getElementCount()) 2070 : NewScalarIndexTy; 2071 2072 // If the element type has zero size then any index over it is equivalent 2073 // to an index of zero, so replace it with zero if it is not zero already. 2074 Type *EltTy = GTI.getIndexedType(); 2075 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 2076 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 2077 *I = Constant::getNullValue(NewIndexType); 2078 MadeChange = true; 2079 } 2080 2081 if (IndexTy != NewIndexType) { 2082 // If we are using a wider index than needed for this platform, shrink 2083 // it to what we need. If narrower, sign-extend it to what we need. 2084 // This explicit cast can make subsequent optimizations more obvious. 2085 *I = Builder.CreateIntCast(*I, NewIndexType, true); 2086 MadeChange = true; 2087 } 2088 } 2089 if (MadeChange) 2090 return &GEP; 2091 2092 // Check to see if the inputs to the PHI node are getelementptr instructions. 2093 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 2094 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 2095 if (!Op1) 2096 return nullptr; 2097 2098 // Don't fold a GEP into itself through a PHI node. This can only happen 2099 // through the back-edge of a loop. Folding a GEP into itself means that 2100 // the value of the previous iteration needs to be stored in the meantime, 2101 // thus requiring an additional register variable to be live, but not 2102 // actually achieving anything (the GEP still needs to be executed once per 2103 // loop iteration). 2104 if (Op1 == &GEP) 2105 return nullptr; 2106 2107 int DI = -1; 2108 2109 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 2110 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 2111 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 2112 return nullptr; 2113 2114 // As for Op1 above, don't try to fold a GEP into itself. 2115 if (Op2 == &GEP) 2116 return nullptr; 2117 2118 // Keep track of the type as we walk the GEP. 2119 Type *CurTy = nullptr; 2120 2121 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 2122 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 2123 return nullptr; 2124 2125 if (Op1->getOperand(J) != Op2->getOperand(J)) { 2126 if (DI == -1) { 2127 // We have not seen any differences yet in the GEPs feeding the 2128 // PHI yet, so we record this one if it is allowed to be a 2129 // variable. 2130 2131 // The first two arguments can vary for any GEP, the rest have to be 2132 // static for struct slots 2133 if (J > 1) { 2134 assert(CurTy && "No current type?"); 2135 if (CurTy->isStructTy()) 2136 return nullptr; 2137 } 2138 2139 DI = J; 2140 } else { 2141 // The GEP is different by more than one input. While this could be 2142 // extended to support GEPs that vary by more than one variable it 2143 // doesn't make sense since it greatly increases the complexity and 2144 // would result in an R+R+R addressing mode which no backend 2145 // directly supports and would need to be broken into several 2146 // simpler instructions anyway. 2147 return nullptr; 2148 } 2149 } 2150 2151 // Sink down a layer of the type for the next iteration. 2152 if (J > 0) { 2153 if (J == 1) { 2154 CurTy = Op1->getSourceElementType(); 2155 } else { 2156 CurTy = 2157 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 2158 } 2159 } 2160 } 2161 } 2162 2163 // If not all GEPs are identical we'll have to create a new PHI node. 2164 // Check that the old PHI node has only one use so that it will get 2165 // removed. 2166 if (DI != -1 && !PN->hasOneUse()) 2167 return nullptr; 2168 2169 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 2170 if (DI == -1) { 2171 // All the GEPs feeding the PHI are identical. Clone one down into our 2172 // BB so that it can be merged with the current GEP. 2173 } else { 2174 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 2175 // into the current block so it can be merged, and create a new PHI to 2176 // set that index. 2177 PHINode *NewPN; 2178 { 2179 IRBuilderBase::InsertPointGuard Guard(Builder); 2180 Builder.SetInsertPoint(PN); 2181 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 2182 PN->getNumOperands()); 2183 } 2184 2185 for (auto &I : PN->operands()) 2186 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 2187 PN->getIncomingBlock(I)); 2188 2189 NewGEP->setOperand(DI, NewPN); 2190 } 2191 2192 GEP.getParent()->getInstList().insert( 2193 GEP.getParent()->getFirstInsertionPt(), NewGEP); 2194 replaceOperand(GEP, 0, NewGEP); 2195 PtrOp = NewGEP; 2196 } 2197 2198 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) 2199 if (Instruction *I = visitGEPOfGEP(GEP, Src)) 2200 return I; 2201 2202 // Skip if GEP source element type is scalable. The type alloc size is unknown 2203 // at compile-time. 2204 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { 2205 unsigned AS = GEP.getPointerAddressSpace(); 2206 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 2207 DL.getIndexSizeInBits(AS)) { 2208 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2209 2210 bool Matched = false; 2211 uint64_t C; 2212 Value *V = nullptr; 2213 if (TyAllocSize == 1) { 2214 V = GEP.getOperand(1); 2215 Matched = true; 2216 } else if (match(GEP.getOperand(1), 2217 m_AShr(m_Value(V), m_ConstantInt(C)))) { 2218 if (TyAllocSize == 1ULL << C) 2219 Matched = true; 2220 } else if (match(GEP.getOperand(1), 2221 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 2222 if (TyAllocSize == C) 2223 Matched = true; 2224 } 2225 2226 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but 2227 // only if both point to the same underlying object (otherwise provenance 2228 // is not necessarily retained). 2229 Value *Y; 2230 Value *X = GEP.getOperand(0); 2231 if (Matched && 2232 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 2233 getUnderlyingObject(X) == getUnderlyingObject(Y)) 2234 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 2235 } 2236 } 2237 2238 // We do not handle pointer-vector geps here. 2239 if (GEPType->isVectorTy()) 2240 return nullptr; 2241 2242 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 2243 Value *StrippedPtr = PtrOp->stripPointerCasts(); 2244 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 2245 2246 // TODO: The basic approach of these folds is not compatible with opaque 2247 // pointers, because we can't use bitcasts as a hint for a desirable GEP 2248 // type. Instead, we should perform canonicalization directly on the GEP 2249 // type. For now, skip these. 2250 if (StrippedPtr != PtrOp && !StrippedPtrTy->isOpaque()) { 2251 bool HasZeroPointerIndex = false; 2252 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType(); 2253 2254 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 2255 HasZeroPointerIndex = C->isZero(); 2256 2257 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2258 // into : GEP [10 x i8]* X, i32 0, ... 2259 // 2260 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2261 // into : GEP i8* X, ... 2262 // 2263 // This occurs when the program declares an array extern like "int X[];" 2264 if (HasZeroPointerIndex) { 2265 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2266 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2267 if (CATy->getElementType() == StrippedPtrEltTy) { 2268 // -> GEP i8* X, ... 2269 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices())); 2270 GetElementPtrInst *Res = GetElementPtrInst::Create( 2271 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2272 Res->setIsInBounds(GEP.isInBounds()); 2273 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2274 return Res; 2275 // Insert Res, and create an addrspacecast. 2276 // e.g., 2277 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2278 // -> 2279 // %0 = GEP i8 addrspace(1)* X, ... 2280 // addrspacecast i8 addrspace(1)* %0 to i8* 2281 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2282 } 2283 2284 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2285 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2286 if (CATy->getElementType() == XATy->getElementType()) { 2287 // -> GEP [10 x i8]* X, i32 0, ... 2288 // At this point, we know that the cast source type is a pointer 2289 // to an array of the same type as the destination pointer 2290 // array. Because the array type is never stepped over (there 2291 // is a leading zero) we can fold the cast into this GEP. 2292 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2293 GEP.setSourceElementType(XATy); 2294 return replaceOperand(GEP, 0, StrippedPtr); 2295 } 2296 // Cannot replace the base pointer directly because StrippedPtr's 2297 // address space is different. Instead, create a new GEP followed by 2298 // an addrspacecast. 2299 // e.g., 2300 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2301 // i32 0, ... 2302 // -> 2303 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2304 // addrspacecast i8 addrspace(1)* %0 to i8* 2305 SmallVector<Value *, 8> Idx(GEP.indices()); 2306 Value *NewGEP = 2307 GEP.isInBounds() 2308 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2309 Idx, GEP.getName()) 2310 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2311 GEP.getName()); 2312 return new AddrSpaceCastInst(NewGEP, GEPType); 2313 } 2314 } 2315 } 2316 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) { 2317 // Skip if GEP source element type is scalable. The type alloc size is 2318 // unknown at compile-time. 2319 // Transform things like: %t = getelementptr i32* 2320 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2 2321 // x i32]* %str, i32 0, i32 %V; bitcast 2322 if (StrippedPtrEltTy->isArrayTy() && 2323 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2324 DL.getTypeAllocSize(GEPEltType)) { 2325 Type *IdxType = DL.getIndexType(GEPType); 2326 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 2327 Value *NewGEP = 2328 GEP.isInBounds() 2329 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2330 GEP.getName()) 2331 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2332 GEP.getName()); 2333 2334 // V and GEP are both pointer types --> BitCast 2335 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2336 } 2337 2338 // Transform things like: 2339 // %V = mul i64 %N, 4 2340 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2341 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2342 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2343 // Check that changing the type amounts to dividing the index by a scale 2344 // factor. 2345 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2346 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize(); 2347 if (ResSize && SrcSize % ResSize == 0) { 2348 Value *Idx = GEP.getOperand(1); 2349 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2350 uint64_t Scale = SrcSize / ResSize; 2351 2352 // Earlier transforms ensure that the index has the right type 2353 // according to Data Layout, which considerably simplifies the 2354 // logic by eliminating implicit casts. 2355 assert(Idx->getType() == DL.getIndexType(GEPType) && 2356 "Index type does not match the Data Layout preferences"); 2357 2358 bool NSW; 2359 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2360 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2361 // If the multiplication NewIdx * Scale may overflow then the new 2362 // GEP may not be "inbounds". 2363 Value *NewGEP = 2364 GEP.isInBounds() && NSW 2365 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2366 NewIdx, GEP.getName()) 2367 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2368 GEP.getName()); 2369 2370 // The NewGEP must be pointer typed, so must the old one -> BitCast 2371 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2372 GEPType); 2373 } 2374 } 2375 } 2376 2377 // Similarly, transform things like: 2378 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2379 // (where tmp = 8*tmp2) into: 2380 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2381 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2382 StrippedPtrEltTy->isArrayTy()) { 2383 // Check that changing to the array element type amounts to dividing the 2384 // index by a scale factor. 2385 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2386 uint64_t ArrayEltSize = 2387 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) 2388 .getFixedSize(); 2389 if (ResSize && ArrayEltSize % ResSize == 0) { 2390 Value *Idx = GEP.getOperand(1); 2391 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2392 uint64_t Scale = ArrayEltSize / ResSize; 2393 2394 // Earlier transforms ensure that the index has the right type 2395 // according to the Data Layout, which considerably simplifies 2396 // the logic by eliminating implicit casts. 2397 assert(Idx->getType() == DL.getIndexType(GEPType) && 2398 "Index type does not match the Data Layout preferences"); 2399 2400 bool NSW; 2401 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2402 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2403 // If the multiplication NewIdx * Scale may overflow then the new 2404 // GEP may not be "inbounds". 2405 Type *IndTy = DL.getIndexType(GEPType); 2406 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2407 2408 Value *NewGEP = 2409 GEP.isInBounds() && NSW 2410 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2411 Off, GEP.getName()) 2412 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2413 GEP.getName()); 2414 // The NewGEP must be pointer typed, so must the old one -> BitCast 2415 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2416 GEPType); 2417 } 2418 } 2419 } 2420 } 2421 } 2422 2423 // addrspacecast between types is canonicalized as a bitcast, then an 2424 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2425 // through the addrspacecast. 2426 Value *ASCStrippedPtrOp = PtrOp; 2427 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2428 // X = bitcast A addrspace(1)* to B addrspace(1)* 2429 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2430 // Z = gep Y, <...constant indices...> 2431 // Into an addrspacecasted GEP of the struct. 2432 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2433 ASCStrippedPtrOp = BC; 2434 } 2435 2436 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 2437 Value *SrcOp = BCI->getOperand(0); 2438 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2439 Type *SrcEltType = SrcType->getElementType(); 2440 2441 // GEP directly using the source operand if this GEP is accessing an element 2442 // of a bitcasted pointer to vector or array of the same dimensions: 2443 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2444 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2445 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, 2446 const DataLayout &DL) { 2447 auto *VecVTy = cast<FixedVectorType>(VecTy); 2448 return ArrTy->getArrayElementType() == VecVTy->getElementType() && 2449 ArrTy->getArrayNumElements() == VecVTy->getNumElements() && 2450 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); 2451 }; 2452 if (GEP.getNumOperands() == 3 && 2453 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) && 2454 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || 2455 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() && 2456 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { 2457 2458 // Create a new GEP here, as using `setOperand()` followed by 2459 // `setSourceElementType()` won't actually update the type of the 2460 // existing GEP Value. Causing issues if this Value is accessed when 2461 // constructing an AddrSpaceCastInst 2462 Value *NGEP = GEP.isInBounds() 2463 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, Indices) 2464 : Builder.CreateGEP(SrcEltType, SrcOp, Indices); 2465 NGEP->takeName(&GEP); 2466 2467 // Preserve GEP address space to satisfy users 2468 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2469 return new AddrSpaceCastInst(NGEP, GEPType); 2470 2471 return replaceInstUsesWith(GEP, NGEP); 2472 } 2473 2474 // See if we can simplify: 2475 // X = bitcast A* to B* 2476 // Y = gep X, <...constant indices...> 2477 // into a gep of the original struct. This is important for SROA and alias 2478 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2479 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 2480 APInt Offset(OffsetBits, 0); 2481 2482 // If the bitcast argument is an allocation, The bitcast is for convertion 2483 // to actual type of allocation. Removing such bitcasts, results in having 2484 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of 2485 // struct or array hierarchy. 2486 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have 2487 // a better chance to succeed. 2488 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) && 2489 !isAllocationFn(SrcOp, &TLI)) { 2490 // If this GEP instruction doesn't move the pointer, just replace the GEP 2491 // with a bitcast of the real input to the dest type. 2492 if (!Offset) { 2493 // If the bitcast is of an allocation, and the allocation will be 2494 // converted to match the type of the cast, don't touch this. 2495 if (isa<AllocaInst>(SrcOp)) { 2496 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2497 if (Instruction *I = visitBitCast(*BCI)) { 2498 if (I != BCI) { 2499 I->takeName(BCI); 2500 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2501 replaceInstUsesWith(*BCI, I); 2502 } 2503 return &GEP; 2504 } 2505 } 2506 2507 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2508 return new AddrSpaceCastInst(SrcOp, GEPType); 2509 return new BitCastInst(SrcOp, GEPType); 2510 } 2511 2512 // Otherwise, if the offset is non-zero, we need to find out if there is a 2513 // field at Offset in 'A's type. If so, we can pull the cast through the 2514 // GEP. 2515 SmallVector<Value*, 8> NewIndices; 2516 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2517 Value *NGEP = 2518 GEP.isInBounds() 2519 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) 2520 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); 2521 2522 if (NGEP->getType() == GEPType) 2523 return replaceInstUsesWith(GEP, NGEP); 2524 NGEP->takeName(&GEP); 2525 2526 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2527 return new AddrSpaceCastInst(NGEP, GEPType); 2528 return new BitCastInst(NGEP, GEPType); 2529 } 2530 } 2531 } 2532 2533 if (!GEP.isInBounds()) { 2534 unsigned IdxWidth = 2535 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2536 APInt BasePtrOffset(IdxWidth, 0); 2537 Value *UnderlyingPtrOp = 2538 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2539 BasePtrOffset); 2540 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2541 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2542 BasePtrOffset.isNonNegative()) { 2543 APInt AllocSize( 2544 IdxWidth, 2545 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize()); 2546 if (BasePtrOffset.ule(AllocSize)) { 2547 return GetElementPtrInst::CreateInBounds( 2548 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName()); 2549 } 2550 } 2551 } 2552 } 2553 2554 if (Instruction *R = foldSelectGEP(GEP, Builder)) 2555 return R; 2556 2557 return nullptr; 2558 } 2559 2560 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, 2561 Instruction *AI) { 2562 if (isa<ConstantPointerNull>(V)) 2563 return true; 2564 if (auto *LI = dyn_cast<LoadInst>(V)) 2565 return isa<GlobalVariable>(LI->getPointerOperand()); 2566 // Two distinct allocations will never be equal. 2567 return isAllocLikeFn(V, &TLI) && V != AI; 2568 } 2569 2570 /// Given a call CB which uses an address UsedV, return true if we can prove the 2571 /// call's only possible effect is storing to V. 2572 static bool isRemovableWrite(CallBase &CB, Value *UsedV, 2573 const TargetLibraryInfo &TLI) { 2574 if (!CB.use_empty()) 2575 // TODO: add recursion if returned attribute is present 2576 return false; 2577 2578 if (CB.isTerminator()) 2579 // TODO: remove implementation restriction 2580 return false; 2581 2582 if (!CB.willReturn() || !CB.doesNotThrow()) 2583 return false; 2584 2585 // If the only possible side effect of the call is writing to the alloca, 2586 // and the result isn't used, we can safely remove any reads implied by the 2587 // call including those which might read the alloca itself. 2588 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI); 2589 return Dest && Dest->Ptr == UsedV; 2590 } 2591 2592 static bool isAllocSiteRemovable(Instruction *AI, 2593 SmallVectorImpl<WeakTrackingVH> &Users, 2594 const TargetLibraryInfo &TLI) { 2595 SmallVector<Instruction*, 4> Worklist; 2596 Worklist.push_back(AI); 2597 2598 do { 2599 Instruction *PI = Worklist.pop_back_val(); 2600 for (User *U : PI->users()) { 2601 Instruction *I = cast<Instruction>(U); 2602 switch (I->getOpcode()) { 2603 default: 2604 // Give up the moment we see something we can't handle. 2605 return false; 2606 2607 case Instruction::AddrSpaceCast: 2608 case Instruction::BitCast: 2609 case Instruction::GetElementPtr: 2610 Users.emplace_back(I); 2611 Worklist.push_back(I); 2612 continue; 2613 2614 case Instruction::ICmp: { 2615 ICmpInst *ICI = cast<ICmpInst>(I); 2616 // We can fold eq/ne comparisons with null to false/true, respectively. 2617 // We also fold comparisons in some conditions provided the alloc has 2618 // not escaped (see isNeverEqualToUnescapedAlloc). 2619 if (!ICI->isEquality()) 2620 return false; 2621 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2622 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2623 return false; 2624 Users.emplace_back(I); 2625 continue; 2626 } 2627 2628 case Instruction::Call: 2629 // Ignore no-op and store intrinsics. 2630 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2631 switch (II->getIntrinsicID()) { 2632 default: 2633 return false; 2634 2635 case Intrinsic::memmove: 2636 case Intrinsic::memcpy: 2637 case Intrinsic::memset: { 2638 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2639 if (MI->isVolatile() || MI->getRawDest() != PI) 2640 return false; 2641 LLVM_FALLTHROUGH; 2642 } 2643 case Intrinsic::assume: 2644 case Intrinsic::invariant_start: 2645 case Intrinsic::invariant_end: 2646 case Intrinsic::lifetime_start: 2647 case Intrinsic::lifetime_end: 2648 case Intrinsic::objectsize: 2649 Users.emplace_back(I); 2650 continue; 2651 case Intrinsic::launder_invariant_group: 2652 case Intrinsic::strip_invariant_group: 2653 Users.emplace_back(I); 2654 Worklist.push_back(I); 2655 continue; 2656 } 2657 } 2658 2659 if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) { 2660 Users.emplace_back(I); 2661 continue; 2662 } 2663 2664 if (isFreeCall(I, &TLI)) { 2665 Users.emplace_back(I); 2666 continue; 2667 } 2668 2669 if (isReallocLikeFn(I, &TLI)) { 2670 Users.emplace_back(I); 2671 Worklist.push_back(I); 2672 continue; 2673 } 2674 2675 return false; 2676 2677 case Instruction::Store: { 2678 StoreInst *SI = cast<StoreInst>(I); 2679 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2680 return false; 2681 Users.emplace_back(I); 2682 continue; 2683 } 2684 } 2685 llvm_unreachable("missing a return?"); 2686 } 2687 } while (!Worklist.empty()); 2688 return true; 2689 } 2690 2691 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 2692 assert(isa<AllocaInst>(MI) || isAllocRemovable(&cast<CallBase>(MI), &TLI)); 2693 2694 // If we have a malloc call which is only used in any amount of comparisons to 2695 // null and free calls, delete the calls and replace the comparisons with true 2696 // or false as appropriate. 2697 2698 // This is based on the principle that we can substitute our own allocation 2699 // function (which will never return null) rather than knowledge of the 2700 // specific function being called. In some sense this can change the permitted 2701 // outputs of a program (when we convert a malloc to an alloca, the fact that 2702 // the allocation is now on the stack is potentially visible, for example), 2703 // but we believe in a permissible manner. 2704 SmallVector<WeakTrackingVH, 64> Users; 2705 2706 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2707 // before each store. 2708 SmallVector<DbgVariableIntrinsic *, 8> DVIs; 2709 std::unique_ptr<DIBuilder> DIB; 2710 if (isa<AllocaInst>(MI)) { 2711 findDbgUsers(DVIs, &MI); 2712 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2713 } 2714 2715 if (isAllocSiteRemovable(&MI, Users, TLI)) { 2716 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2717 // Lowering all @llvm.objectsize calls first because they may 2718 // use a bitcast/GEP of the alloca we are removing. 2719 if (!Users[i]) 2720 continue; 2721 2722 Instruction *I = cast<Instruction>(&*Users[i]); 2723 2724 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2725 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2726 Value *Result = 2727 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); 2728 replaceInstUsesWith(*I, Result); 2729 eraseInstFromFunction(*I); 2730 Users[i] = nullptr; // Skip examining in the next loop. 2731 } 2732 } 2733 } 2734 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2735 if (!Users[i]) 2736 continue; 2737 2738 Instruction *I = cast<Instruction>(&*Users[i]); 2739 2740 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2741 replaceInstUsesWith(*C, 2742 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2743 C->isFalseWhenEqual())); 2744 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2745 for (auto *DVI : DVIs) 2746 if (DVI->isAddressOfVariable()) 2747 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 2748 } else { 2749 // Casts, GEP, or anything else: we're about to delete this instruction, 2750 // so it can not have any valid uses. 2751 replaceInstUsesWith(*I, PoisonValue::get(I->getType())); 2752 } 2753 eraseInstFromFunction(*I); 2754 } 2755 2756 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2757 // Replace invoke with a NOP intrinsic to maintain the original CFG 2758 Module *M = II->getModule(); 2759 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2760 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2761 None, "", II->getParent()); 2762 } 2763 2764 // Remove debug intrinsics which describe the value contained within the 2765 // alloca. In addition to removing dbg.{declare,addr} which simply point to 2766 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 2767 // 2768 // ``` 2769 // define void @foo(i32 %0) { 2770 // %a = alloca i32 ; Deleted. 2771 // store i32 %0, i32* %a 2772 // dbg.value(i32 %0, "arg0") ; Not deleted. 2773 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 2774 // call void @trivially_inlinable_no_op(i32* %a) 2775 // ret void 2776 // } 2777 // ``` 2778 // 2779 // This may not be required if we stop describing the contents of allocas 2780 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 2781 // the LowerDbgDeclare utility. 2782 // 2783 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 2784 // "arg0" dbg.value may be stale after the call. However, failing to remove 2785 // the DW_OP_deref dbg.value causes large gaps in location coverage. 2786 for (auto *DVI : DVIs) 2787 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 2788 DVI->eraseFromParent(); 2789 2790 return eraseInstFromFunction(MI); 2791 } 2792 return nullptr; 2793 } 2794 2795 /// Move the call to free before a NULL test. 2796 /// 2797 /// Check if this free is accessed after its argument has been test 2798 /// against NULL (property 0). 2799 /// If yes, it is legal to move this call in its predecessor block. 2800 /// 2801 /// The move is performed only if the block containing the call to free 2802 /// will be removed, i.e.: 2803 /// 1. it has only one predecessor P, and P has two successors 2804 /// 2. it contains the call, noops, and an unconditional branch 2805 /// 3. its successor is the same as its predecessor's successor 2806 /// 2807 /// The profitability is out-of concern here and this function should 2808 /// be called only if the caller knows this transformation would be 2809 /// profitable (e.g., for code size). 2810 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2811 const DataLayout &DL) { 2812 Value *Op = FI.getArgOperand(0); 2813 BasicBlock *FreeInstrBB = FI.getParent(); 2814 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2815 2816 // Validate part of constraint #1: Only one predecessor 2817 // FIXME: We can extend the number of predecessor, but in that case, we 2818 // would duplicate the call to free in each predecessor and it may 2819 // not be profitable even for code size. 2820 if (!PredBB) 2821 return nullptr; 2822 2823 // Validate constraint #2: Does this block contains only the call to 2824 // free, noops, and an unconditional branch? 2825 BasicBlock *SuccBB; 2826 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2827 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2828 return nullptr; 2829 2830 // If there are only 2 instructions in the block, at this point, 2831 // this is the call to free and unconditional. 2832 // If there are more than 2 instructions, check that they are noops 2833 // i.e., they won't hurt the performance of the generated code. 2834 if (FreeInstrBB->size() != 2) { 2835 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 2836 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2837 continue; 2838 auto *Cast = dyn_cast<CastInst>(&Inst); 2839 if (!Cast || !Cast->isNoopCast(DL)) 2840 return nullptr; 2841 } 2842 } 2843 // Validate the rest of constraint #1 by matching on the pred branch. 2844 Instruction *TI = PredBB->getTerminator(); 2845 BasicBlock *TrueBB, *FalseBB; 2846 ICmpInst::Predicate Pred; 2847 if (!match(TI, m_Br(m_ICmp(Pred, 2848 m_CombineOr(m_Specific(Op), 2849 m_Specific(Op->stripPointerCasts())), 2850 m_Zero()), 2851 TrueBB, FalseBB))) 2852 return nullptr; 2853 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2854 return nullptr; 2855 2856 // Validate constraint #3: Ensure the null case just falls through. 2857 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2858 return nullptr; 2859 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2860 "Broken CFG: missing edge from predecessor to successor"); 2861 2862 // At this point, we know that everything in FreeInstrBB can be moved 2863 // before TI. 2864 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) { 2865 if (&Instr == FreeInstrBBTerminator) 2866 break; 2867 Instr.moveBefore(TI); 2868 } 2869 assert(FreeInstrBB->size() == 1 && 2870 "Only the branch instruction should remain"); 2871 2872 // Now that we've moved the call to free before the NULL check, we have to 2873 // remove any attributes on its parameter that imply it's non-null, because 2874 // those attributes might have only been valid because of the NULL check, and 2875 // we can get miscompiles if we keep them. This is conservative if non-null is 2876 // also implied by something other than the NULL check, but it's guaranteed to 2877 // be correct, and the conservativeness won't matter in practice, since the 2878 // attributes are irrelevant for the call to free itself and the pointer 2879 // shouldn't be used after the call. 2880 AttributeList Attrs = FI.getAttributes(); 2881 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull); 2882 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable); 2883 if (Dereferenceable.isValid()) { 2884 uint64_t Bytes = Dereferenceable.getDereferenceableBytes(); 2885 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, 2886 Attribute::Dereferenceable); 2887 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes); 2888 } 2889 FI.setAttributes(Attrs); 2890 2891 return &FI; 2892 } 2893 2894 Instruction *InstCombinerImpl::visitFree(CallInst &FI) { 2895 Value *Op = FI.getArgOperand(0); 2896 2897 // free undef -> unreachable. 2898 if (isa<UndefValue>(Op)) { 2899 // Leave a marker since we can't modify the CFG here. 2900 CreateNonTerminatorUnreachable(&FI); 2901 return eraseInstFromFunction(FI); 2902 } 2903 2904 // If we have 'free null' delete the instruction. This can happen in stl code 2905 // when lots of inlining happens. 2906 if (isa<ConstantPointerNull>(Op)) 2907 return eraseInstFromFunction(FI); 2908 2909 // If we had free(realloc(...)) with no intervening uses, then eliminate the 2910 // realloc() entirely. 2911 if (CallInst *CI = dyn_cast<CallInst>(Op)) { 2912 if (CI->hasOneUse() && isReallocLikeFn(CI, &TLI)) { 2913 return eraseInstFromFunction( 2914 *replaceInstUsesWith(*CI, CI->getOperand(0))); 2915 } 2916 } 2917 2918 // If we optimize for code size, try to move the call to free before the null 2919 // test so that simplify cfg can remove the empty block and dead code 2920 // elimination the branch. I.e., helps to turn something like: 2921 // if (foo) free(foo); 2922 // into 2923 // free(foo); 2924 // 2925 // Note that we can only do this for 'free' and not for any flavor of 2926 // 'operator delete'; there is no 'operator delete' symbol for which we are 2927 // permitted to invent a call, even if we're passing in a null pointer. 2928 if (MinimizeSize) { 2929 LibFunc Func; 2930 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 2931 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 2932 return I; 2933 } 2934 2935 return nullptr; 2936 } 2937 2938 static bool isMustTailCall(Value *V) { 2939 if (auto *CI = dyn_cast<CallInst>(V)) 2940 return CI->isMustTailCall(); 2941 return false; 2942 } 2943 2944 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 2945 if (RI.getNumOperands() == 0) // ret void 2946 return nullptr; 2947 2948 Value *ResultOp = RI.getOperand(0); 2949 Type *VTy = ResultOp->getType(); 2950 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp)) 2951 return nullptr; 2952 2953 // Don't replace result of musttail calls. 2954 if (isMustTailCall(ResultOp)) 2955 return nullptr; 2956 2957 // There might be assume intrinsics dominating this return that completely 2958 // determine the value. If so, constant fold it. 2959 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2960 if (Known.isConstant()) 2961 return replaceOperand(RI, 0, 2962 Constant::getIntegerValue(VTy, Known.getConstant())); 2963 2964 return nullptr; 2965 } 2966 2967 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! 2968 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 2969 // Try to remove the previous instruction if it must lead to unreachable. 2970 // This includes instructions like stores and "llvm.assume" that may not get 2971 // removed by simple dead code elimination. 2972 while (Instruction *Prev = I.getPrevNonDebugInstruction()) { 2973 // While we theoretically can erase EH, that would result in a block that 2974 // used to start with an EH no longer starting with EH, which is invalid. 2975 // To make it valid, we'd need to fixup predecessors to no longer refer to 2976 // this block, but that changes CFG, which is not allowed in InstCombine. 2977 if (Prev->isEHPad()) 2978 return nullptr; // Can not drop any more instructions. We're done here. 2979 2980 if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) 2981 return nullptr; // Can not drop any more instructions. We're done here. 2982 // Otherwise, this instruction can be freely erased, 2983 // even if it is not side-effect free. 2984 2985 // A value may still have uses before we process it here (for example, in 2986 // another unreachable block), so convert those to poison. 2987 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); 2988 eraseInstFromFunction(*Prev); 2989 } 2990 assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty."); 2991 // FIXME: recurse into unconditional predecessors? 2992 return nullptr; 2993 } 2994 2995 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 2996 assert(BI.isUnconditional() && "Only for unconditional branches."); 2997 2998 // If this store is the second-to-last instruction in the basic block 2999 // (excluding debug info and bitcasts of pointers) and if the block ends with 3000 // an unconditional branch, try to move the store to the successor block. 3001 3002 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 3003 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 3004 return BBI->isDebugOrPseudoInst() || 3005 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 3006 }; 3007 3008 BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 3009 do { 3010 if (BBI != FirstInstr) 3011 --BBI; 3012 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 3013 3014 return dyn_cast<StoreInst>(BBI); 3015 }; 3016 3017 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 3018 if (mergeStoreIntoSuccessor(*SI)) 3019 return &BI; 3020 3021 return nullptr; 3022 } 3023 3024 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 3025 if (BI.isUnconditional()) 3026 return visitUnconditionalBranchInst(BI); 3027 3028 // Change br (not X), label True, label False to: br X, label False, True 3029 Value *X = nullptr; 3030 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 3031 !isa<Constant>(X)) { 3032 // Swap Destinations and condition... 3033 BI.swapSuccessors(); 3034 return replaceOperand(BI, 0, X); 3035 } 3036 3037 // If the condition is irrelevant, remove the use so that other 3038 // transforms on the condition become more effective. 3039 if (!isa<ConstantInt>(BI.getCondition()) && 3040 BI.getSuccessor(0) == BI.getSuccessor(1)) 3041 return replaceOperand( 3042 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType())); 3043 3044 // Canonicalize, for example, fcmp_one -> fcmp_oeq. 3045 CmpInst::Predicate Pred; 3046 if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())), 3047 m_BasicBlock(), m_BasicBlock())) && 3048 !isCanonicalPredicate(Pred)) { 3049 // Swap destinations and condition. 3050 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 3051 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 3052 BI.swapSuccessors(); 3053 Worklist.push(Cond); 3054 return &BI; 3055 } 3056 3057 return nullptr; 3058 } 3059 3060 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 3061 Value *Cond = SI.getCondition(); 3062 Value *Op0; 3063 ConstantInt *AddRHS; 3064 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 3065 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 3066 for (auto Case : SI.cases()) { 3067 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 3068 assert(isa<ConstantInt>(NewCase) && 3069 "Result of expression should be constant"); 3070 Case.setValue(cast<ConstantInt>(NewCase)); 3071 } 3072 return replaceOperand(SI, 0, Op0); 3073 } 3074 3075 KnownBits Known = computeKnownBits(Cond, 0, &SI); 3076 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 3077 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 3078 3079 // Compute the number of leading bits we can ignore. 3080 // TODO: A better way to determine this would use ComputeNumSignBits(). 3081 for (auto &C : SI.cases()) { 3082 LeadingKnownZeros = std::min( 3083 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 3084 LeadingKnownOnes = std::min( 3085 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 3086 } 3087 3088 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 3089 3090 // Shrink the condition operand if the new type is smaller than the old type. 3091 // But do not shrink to a non-standard type, because backend can't generate 3092 // good code for that yet. 3093 // TODO: We can make it aggressive again after fixing PR39569. 3094 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 3095 shouldChangeType(Known.getBitWidth(), NewWidth)) { 3096 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 3097 Builder.SetInsertPoint(&SI); 3098 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 3099 3100 for (auto Case : SI.cases()) { 3101 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3102 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3103 } 3104 return replaceOperand(SI, 0, NewCond); 3105 } 3106 3107 return nullptr; 3108 } 3109 3110 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 3111 Value *Agg = EV.getAggregateOperand(); 3112 3113 if (!EV.hasIndices()) 3114 return replaceInstUsesWith(EV, Agg); 3115 3116 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 3117 SQ.getWithInstruction(&EV))) 3118 return replaceInstUsesWith(EV, V); 3119 3120 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 3121 // We're extracting from an insertvalue instruction, compare the indices 3122 const unsigned *exti, *exte, *insi, *inse; 3123 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 3124 exte = EV.idx_end(), inse = IV->idx_end(); 3125 exti != exte && insi != inse; 3126 ++exti, ++insi) { 3127 if (*insi != *exti) 3128 // The insert and extract both reference distinctly different elements. 3129 // This means the extract is not influenced by the insert, and we can 3130 // replace the aggregate operand of the extract with the aggregate 3131 // operand of the insert. i.e., replace 3132 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3133 // %E = extractvalue { i32, { i32 } } %I, 0 3134 // with 3135 // %E = extractvalue { i32, { i32 } } %A, 0 3136 return ExtractValueInst::Create(IV->getAggregateOperand(), 3137 EV.getIndices()); 3138 } 3139 if (exti == exte && insi == inse) 3140 // Both iterators are at the end: Index lists are identical. Replace 3141 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3142 // %C = extractvalue { i32, { i32 } } %B, 1, 0 3143 // with "i32 42" 3144 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 3145 if (exti == exte) { 3146 // The extract list is a prefix of the insert list. i.e. replace 3147 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3148 // %E = extractvalue { i32, { i32 } } %I, 1 3149 // with 3150 // %X = extractvalue { i32, { i32 } } %A, 1 3151 // %E = insertvalue { i32 } %X, i32 42, 0 3152 // by switching the order of the insert and extract (though the 3153 // insertvalue should be left in, since it may have other uses). 3154 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 3155 EV.getIndices()); 3156 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 3157 makeArrayRef(insi, inse)); 3158 } 3159 if (insi == inse) 3160 // The insert list is a prefix of the extract list 3161 // We can simply remove the common indices from the extract and make it 3162 // operate on the inserted value instead of the insertvalue result. 3163 // i.e., replace 3164 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3165 // %E = extractvalue { i32, { i32 } } %I, 1, 0 3166 // with 3167 // %E extractvalue { i32 } { i32 42 }, 0 3168 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 3169 makeArrayRef(exti, exte)); 3170 } 3171 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 3172 // We're extracting from an overflow intrinsic, see if we're the only user, 3173 // which allows us to simplify multiple result intrinsics to simpler 3174 // things that just get one value. 3175 if (WO->hasOneUse()) { 3176 // Check if we're grabbing only the result of a 'with overflow' intrinsic 3177 // and replace it with a traditional binary instruction. 3178 if (*EV.idx_begin() == 0) { 3179 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 3180 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 3181 // Replace the old instruction's uses with poison. 3182 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); 3183 eraseInstFromFunction(*WO); 3184 return BinaryOperator::Create(BinOp, LHS, RHS); 3185 } 3186 3187 assert(*EV.idx_begin() == 1 && 3188 "unexpected extract index for overflow inst"); 3189 3190 // If only the overflow result is used, and the right hand side is a 3191 // constant (or constant splat), we can remove the intrinsic by directly 3192 // checking for overflow. 3193 const APInt *C; 3194 if (match(WO->getRHS(), m_APInt(C))) { 3195 // Compute the no-wrap range for LHS given RHS=C, then construct an 3196 // equivalent icmp, potentially using an offset. 3197 ConstantRange NWR = 3198 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 3199 WO->getNoWrapKind()); 3200 3201 CmpInst::Predicate Pred; 3202 APInt NewRHSC, Offset; 3203 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 3204 auto *OpTy = WO->getRHS()->getType(); 3205 auto *NewLHS = WO->getLHS(); 3206 if (Offset != 0) 3207 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset)); 3208 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, 3209 ConstantInt::get(OpTy, NewRHSC)); 3210 } 3211 } 3212 } 3213 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 3214 // If the (non-volatile) load only has one use, we can rewrite this to a 3215 // load from a GEP. This reduces the size of the load. If a load is used 3216 // only by extractvalue instructions then this either must have been 3217 // optimized before, or it is a struct with padding, in which case we 3218 // don't want to do the transformation as it loses padding knowledge. 3219 if (L->isSimple() && L->hasOneUse()) { 3220 // extractvalue has integer indices, getelementptr has Value*s. Convert. 3221 SmallVector<Value*, 4> Indices; 3222 // Prefix an i32 0 since we need the first element. 3223 Indices.push_back(Builder.getInt32(0)); 3224 for (unsigned Idx : EV.indices()) 3225 Indices.push_back(Builder.getInt32(Idx)); 3226 3227 // We need to insert these at the location of the old load, not at that of 3228 // the extractvalue. 3229 Builder.SetInsertPoint(L); 3230 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 3231 L->getPointerOperand(), Indices); 3232 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 3233 // Whatever aliasing information we had for the orignal load must also 3234 // hold for the smaller load, so propagate the annotations. 3235 NL->setAAMetadata(L->getAAMetadata()); 3236 // Returning the load directly will cause the main loop to insert it in 3237 // the wrong spot, so use replaceInstUsesWith(). 3238 return replaceInstUsesWith(EV, NL); 3239 } 3240 // We could simplify extracts from other values. Note that nested extracts may 3241 // already be simplified implicitly by the above: extract (extract (insert) ) 3242 // will be translated into extract ( insert ( extract ) ) first and then just 3243 // the value inserted, if appropriate. Similarly for extracts from single-use 3244 // loads: extract (extract (load)) will be translated to extract (load (gep)) 3245 // and if again single-use then via load (gep (gep)) to load (gep). 3246 // However, double extracts from e.g. function arguments or return values 3247 // aren't handled yet. 3248 return nullptr; 3249 } 3250 3251 /// Return 'true' if the given typeinfo will match anything. 3252 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 3253 switch (Personality) { 3254 case EHPersonality::GNU_C: 3255 case EHPersonality::GNU_C_SjLj: 3256 case EHPersonality::Rust: 3257 // The GCC C EH and Rust personality only exists to support cleanups, so 3258 // it's not clear what the semantics of catch clauses are. 3259 return false; 3260 case EHPersonality::Unknown: 3261 return false; 3262 case EHPersonality::GNU_Ada: 3263 // While __gnat_all_others_value will match any Ada exception, it doesn't 3264 // match foreign exceptions (or didn't, before gcc-4.7). 3265 return false; 3266 case EHPersonality::GNU_CXX: 3267 case EHPersonality::GNU_CXX_SjLj: 3268 case EHPersonality::GNU_ObjC: 3269 case EHPersonality::MSVC_X86SEH: 3270 case EHPersonality::MSVC_TableSEH: 3271 case EHPersonality::MSVC_CXX: 3272 case EHPersonality::CoreCLR: 3273 case EHPersonality::Wasm_CXX: 3274 case EHPersonality::XL_CXX: 3275 return TypeInfo->isNullValue(); 3276 } 3277 llvm_unreachable("invalid enum"); 3278 } 3279 3280 static bool shorter_filter(const Value *LHS, const Value *RHS) { 3281 return 3282 cast<ArrayType>(LHS->getType())->getNumElements() 3283 < 3284 cast<ArrayType>(RHS->getType())->getNumElements(); 3285 } 3286 3287 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 3288 // The logic here should be correct for any real-world personality function. 3289 // However if that turns out not to be true, the offending logic can always 3290 // be conditioned on the personality function, like the catch-all logic is. 3291 EHPersonality Personality = 3292 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 3293 3294 // Simplify the list of clauses, eg by removing repeated catch clauses 3295 // (these are often created by inlining). 3296 bool MakeNewInstruction = false; // If true, recreate using the following: 3297 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 3298 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 3299 3300 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 3301 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 3302 bool isLastClause = i + 1 == e; 3303 if (LI.isCatch(i)) { 3304 // A catch clause. 3305 Constant *CatchClause = LI.getClause(i); 3306 Constant *TypeInfo = CatchClause->stripPointerCasts(); 3307 3308 // If we already saw this clause, there is no point in having a second 3309 // copy of it. 3310 if (AlreadyCaught.insert(TypeInfo).second) { 3311 // This catch clause was not already seen. 3312 NewClauses.push_back(CatchClause); 3313 } else { 3314 // Repeated catch clause - drop the redundant copy. 3315 MakeNewInstruction = true; 3316 } 3317 3318 // If this is a catch-all then there is no point in keeping any following 3319 // clauses or marking the landingpad as having a cleanup. 3320 if (isCatchAll(Personality, TypeInfo)) { 3321 if (!isLastClause) 3322 MakeNewInstruction = true; 3323 CleanupFlag = false; 3324 break; 3325 } 3326 } else { 3327 // A filter clause. If any of the filter elements were already caught 3328 // then they can be dropped from the filter. It is tempting to try to 3329 // exploit the filter further by saying that any typeinfo that does not 3330 // occur in the filter can't be caught later (and thus can be dropped). 3331 // However this would be wrong, since typeinfos can match without being 3332 // equal (for example if one represents a C++ class, and the other some 3333 // class derived from it). 3334 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 3335 Constant *FilterClause = LI.getClause(i); 3336 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 3337 unsigned NumTypeInfos = FilterType->getNumElements(); 3338 3339 // An empty filter catches everything, so there is no point in keeping any 3340 // following clauses or marking the landingpad as having a cleanup. By 3341 // dealing with this case here the following code is made a bit simpler. 3342 if (!NumTypeInfos) { 3343 NewClauses.push_back(FilterClause); 3344 if (!isLastClause) 3345 MakeNewInstruction = true; 3346 CleanupFlag = false; 3347 break; 3348 } 3349 3350 bool MakeNewFilter = false; // If true, make a new filter. 3351 SmallVector<Constant *, 16> NewFilterElts; // New elements. 3352 if (isa<ConstantAggregateZero>(FilterClause)) { 3353 // Not an empty filter - it contains at least one null typeinfo. 3354 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 3355 Constant *TypeInfo = 3356 Constant::getNullValue(FilterType->getElementType()); 3357 // If this typeinfo is a catch-all then the filter can never match. 3358 if (isCatchAll(Personality, TypeInfo)) { 3359 // Throw the filter away. 3360 MakeNewInstruction = true; 3361 continue; 3362 } 3363 3364 // There is no point in having multiple copies of this typeinfo, so 3365 // discard all but the first copy if there is more than one. 3366 NewFilterElts.push_back(TypeInfo); 3367 if (NumTypeInfos > 1) 3368 MakeNewFilter = true; 3369 } else { 3370 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 3371 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 3372 NewFilterElts.reserve(NumTypeInfos); 3373 3374 // Remove any filter elements that were already caught or that already 3375 // occurred in the filter. While there, see if any of the elements are 3376 // catch-alls. If so, the filter can be discarded. 3377 bool SawCatchAll = false; 3378 for (unsigned j = 0; j != NumTypeInfos; ++j) { 3379 Constant *Elt = Filter->getOperand(j); 3380 Constant *TypeInfo = Elt->stripPointerCasts(); 3381 if (isCatchAll(Personality, TypeInfo)) { 3382 // This element is a catch-all. Bail out, noting this fact. 3383 SawCatchAll = true; 3384 break; 3385 } 3386 3387 // Even if we've seen a type in a catch clause, we don't want to 3388 // remove it from the filter. An unexpected type handler may be 3389 // set up for a call site which throws an exception of the same 3390 // type caught. In order for the exception thrown by the unexpected 3391 // handler to propagate correctly, the filter must be correctly 3392 // described for the call site. 3393 // 3394 // Example: 3395 // 3396 // void unexpected() { throw 1;} 3397 // void foo() throw (int) { 3398 // std::set_unexpected(unexpected); 3399 // try { 3400 // throw 2.0; 3401 // } catch (int i) {} 3402 // } 3403 3404 // There is no point in having multiple copies of the same typeinfo in 3405 // a filter, so only add it if we didn't already. 3406 if (SeenInFilter.insert(TypeInfo).second) 3407 NewFilterElts.push_back(cast<Constant>(Elt)); 3408 } 3409 // A filter containing a catch-all cannot match anything by definition. 3410 if (SawCatchAll) { 3411 // Throw the filter away. 3412 MakeNewInstruction = true; 3413 continue; 3414 } 3415 3416 // If we dropped something from the filter, make a new one. 3417 if (NewFilterElts.size() < NumTypeInfos) 3418 MakeNewFilter = true; 3419 } 3420 if (MakeNewFilter) { 3421 FilterType = ArrayType::get(FilterType->getElementType(), 3422 NewFilterElts.size()); 3423 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 3424 MakeNewInstruction = true; 3425 } 3426 3427 NewClauses.push_back(FilterClause); 3428 3429 // If the new filter is empty then it will catch everything so there is 3430 // no point in keeping any following clauses or marking the landingpad 3431 // as having a cleanup. The case of the original filter being empty was 3432 // already handled above. 3433 if (MakeNewFilter && !NewFilterElts.size()) { 3434 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3435 CleanupFlag = false; 3436 break; 3437 } 3438 } 3439 } 3440 3441 // If several filters occur in a row then reorder them so that the shortest 3442 // filters come first (those with the smallest number of elements). This is 3443 // advantageous because shorter filters are more likely to match, speeding up 3444 // unwinding, but mostly because it increases the effectiveness of the other 3445 // filter optimizations below. 3446 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3447 unsigned j; 3448 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3449 for (j = i; j != e; ++j) 3450 if (!isa<ArrayType>(NewClauses[j]->getType())) 3451 break; 3452 3453 // Check whether the filters are already sorted by length. We need to know 3454 // if sorting them is actually going to do anything so that we only make a 3455 // new landingpad instruction if it does. 3456 for (unsigned k = i; k + 1 < j; ++k) 3457 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3458 // Not sorted, so sort the filters now. Doing an unstable sort would be 3459 // correct too but reordering filters pointlessly might confuse users. 3460 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3461 shorter_filter); 3462 MakeNewInstruction = true; 3463 break; 3464 } 3465 3466 // Look for the next batch of filters. 3467 i = j + 1; 3468 } 3469 3470 // If typeinfos matched if and only if equal, then the elements of a filter L 3471 // that occurs later than a filter F could be replaced by the intersection of 3472 // the elements of F and L. In reality two typeinfos can match without being 3473 // equal (for example if one represents a C++ class, and the other some class 3474 // derived from it) so it would be wrong to perform this transform in general. 3475 // However the transform is correct and useful if F is a subset of L. In that 3476 // case L can be replaced by F, and thus removed altogether since repeating a 3477 // filter is pointless. So here we look at all pairs of filters F and L where 3478 // L follows F in the list of clauses, and remove L if every element of F is 3479 // an element of L. This can occur when inlining C++ functions with exception 3480 // specifications. 3481 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3482 // Examine each filter in turn. 3483 Value *Filter = NewClauses[i]; 3484 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3485 if (!FTy) 3486 // Not a filter - skip it. 3487 continue; 3488 unsigned FElts = FTy->getNumElements(); 3489 // Examine each filter following this one. Doing this backwards means that 3490 // we don't have to worry about filters disappearing under us when removed. 3491 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3492 Value *LFilter = NewClauses[j]; 3493 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3494 if (!LTy) 3495 // Not a filter - skip it. 3496 continue; 3497 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3498 // an element of LFilter, then discard LFilter. 3499 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3500 // If Filter is empty then it is a subset of LFilter. 3501 if (!FElts) { 3502 // Discard LFilter. 3503 NewClauses.erase(J); 3504 MakeNewInstruction = true; 3505 // Move on to the next filter. 3506 continue; 3507 } 3508 unsigned LElts = LTy->getNumElements(); 3509 // If Filter is longer than LFilter then it cannot be a subset of it. 3510 if (FElts > LElts) 3511 // Move on to the next filter. 3512 continue; 3513 // At this point we know that LFilter has at least one element. 3514 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3515 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3516 // already know that Filter is not longer than LFilter). 3517 if (isa<ConstantAggregateZero>(Filter)) { 3518 assert(FElts <= LElts && "Should have handled this case earlier!"); 3519 // Discard LFilter. 3520 NewClauses.erase(J); 3521 MakeNewInstruction = true; 3522 } 3523 // Move on to the next filter. 3524 continue; 3525 } 3526 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3527 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3528 // Since Filter is non-empty and contains only zeros, it is a subset of 3529 // LFilter iff LFilter contains a zero. 3530 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3531 for (unsigned l = 0; l != LElts; ++l) 3532 if (LArray->getOperand(l)->isNullValue()) { 3533 // LFilter contains a zero - discard it. 3534 NewClauses.erase(J); 3535 MakeNewInstruction = true; 3536 break; 3537 } 3538 // Move on to the next filter. 3539 continue; 3540 } 3541 // At this point we know that both filters are ConstantArrays. Loop over 3542 // operands to see whether every element of Filter is also an element of 3543 // LFilter. Since filters tend to be short this is probably faster than 3544 // using a method that scales nicely. 3545 ConstantArray *FArray = cast<ConstantArray>(Filter); 3546 bool AllFound = true; 3547 for (unsigned f = 0; f != FElts; ++f) { 3548 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3549 AllFound = false; 3550 for (unsigned l = 0; l != LElts; ++l) { 3551 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3552 if (LTypeInfo == FTypeInfo) { 3553 AllFound = true; 3554 break; 3555 } 3556 } 3557 if (!AllFound) 3558 break; 3559 } 3560 if (AllFound) { 3561 // Discard LFilter. 3562 NewClauses.erase(J); 3563 MakeNewInstruction = true; 3564 } 3565 // Move on to the next filter. 3566 } 3567 } 3568 3569 // If we changed any of the clauses, replace the old landingpad instruction 3570 // with a new one. 3571 if (MakeNewInstruction) { 3572 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3573 NewClauses.size()); 3574 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3575 NLI->addClause(NewClauses[i]); 3576 // A landing pad with no clauses must have the cleanup flag set. It is 3577 // theoretically possible, though highly unlikely, that we eliminated all 3578 // clauses. If so, force the cleanup flag to true. 3579 if (NewClauses.empty()) 3580 CleanupFlag = true; 3581 NLI->setCleanup(CleanupFlag); 3582 return NLI; 3583 } 3584 3585 // Even if none of the clauses changed, we may nonetheless have understood 3586 // that the cleanup flag is pointless. Clear it if so. 3587 if (LI.isCleanup() != CleanupFlag) { 3588 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3589 LI.setCleanup(CleanupFlag); 3590 return &LI; 3591 } 3592 3593 return nullptr; 3594 } 3595 3596 Value * 3597 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { 3598 // Try to push freeze through instructions that propagate but don't produce 3599 // poison as far as possible. If an operand of freeze follows three 3600 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one 3601 // guaranteed-non-poison operands then push the freeze through to the one 3602 // operand that is not guaranteed non-poison. The actual transform is as 3603 // follows. 3604 // Op1 = ... ; Op1 can be posion 3605 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have 3606 // ; single guaranteed-non-poison operands 3607 // ... = Freeze(Op0) 3608 // => 3609 // Op1 = ... 3610 // Op1.fr = Freeze(Op1) 3611 // ... = Inst(Op1.fr, NonPoisonOps...) 3612 auto *OrigOp = OrigFI.getOperand(0); 3613 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp); 3614 3615 // While we could change the other users of OrigOp to use freeze(OrigOp), that 3616 // potentially reduces their optimization potential, so let's only do this iff 3617 // the OrigOp is only used by the freeze. 3618 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp)) 3619 return nullptr; 3620 3621 // We can't push the freeze through an instruction which can itself create 3622 // poison. If the only source of new poison is flags, we can simply 3623 // strip them (since we know the only use is the freeze and nothing can 3624 // benefit from them.) 3625 if (canCreateUndefOrPoison(cast<Operator>(OrigOp), /*ConsiderFlags*/ false)) 3626 return nullptr; 3627 3628 // If operand is guaranteed not to be poison, there is no need to add freeze 3629 // to the operand. So we first find the operand that is not guaranteed to be 3630 // poison. 3631 Use *MaybePoisonOperand = nullptr; 3632 for (Use &U : OrigOpInst->operands()) { 3633 if (isGuaranteedNotToBeUndefOrPoison(U.get())) 3634 continue; 3635 if (!MaybePoisonOperand) 3636 MaybePoisonOperand = &U; 3637 else 3638 return nullptr; 3639 } 3640 3641 OrigOpInst->dropPoisonGeneratingFlags(); 3642 3643 // If all operands are guaranteed to be non-poison, we can drop freeze. 3644 if (!MaybePoisonOperand) 3645 return OrigOp; 3646 3647 auto *FrozenMaybePoisonOperand = new FreezeInst( 3648 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); 3649 3650 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); 3651 FrozenMaybePoisonOperand->insertBefore(OrigOpInst); 3652 return OrigOp; 3653 } 3654 3655 bool InstCombinerImpl::freezeDominatedUses(FreezeInst &FI) { 3656 Value *Op = FI.getOperand(0); 3657 3658 if (isa<Constant>(Op)) 3659 return false; 3660 3661 bool Changed = false; 3662 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { 3663 bool Dominates = DT.dominates(&FI, U); 3664 Changed |= Dominates; 3665 return Dominates; 3666 }); 3667 3668 return Changed; 3669 } 3670 3671 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 3672 Value *Op0 = I.getOperand(0); 3673 3674 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3675 return replaceInstUsesWith(I, V); 3676 3677 // freeze (phi const, x) --> phi const, (freeze x) 3678 if (auto *PN = dyn_cast<PHINode>(Op0)) { 3679 if (Instruction *NV = foldOpIntoPhi(I, PN)) 3680 return NV; 3681 } 3682 3683 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) 3684 return replaceInstUsesWith(I, NI); 3685 3686 if (match(Op0, m_Undef())) { 3687 // If I is freeze(undef), see its uses and fold it to the best constant. 3688 // - or: pick -1 3689 // - select's condition: pick the value that leads to choosing a constant 3690 // - other ops: pick 0 3691 Constant *BestValue = nullptr; 3692 Constant *NullValue = Constant::getNullValue(I.getType()); 3693 for (const auto *U : I.users()) { 3694 Constant *C = NullValue; 3695 3696 if (match(U, m_Or(m_Value(), m_Value()))) 3697 C = Constant::getAllOnesValue(I.getType()); 3698 else if (const auto *SI = dyn_cast<SelectInst>(U)) { 3699 if (SI->getCondition() == &I) { 3700 APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1); 3701 C = Constant::getIntegerValue(I.getType(), CondVal); 3702 } 3703 } 3704 3705 if (!BestValue) 3706 BestValue = C; 3707 else if (BestValue != C) 3708 BestValue = NullValue; 3709 } 3710 3711 return replaceInstUsesWith(I, BestValue); 3712 } 3713 3714 // Replace all dominated uses of Op to freeze(Op). 3715 if (freezeDominatedUses(I)) 3716 return &I; 3717 3718 return nullptr; 3719 } 3720 3721 /// Check for case where the call writes to an otherwise dead alloca. This 3722 /// shows up for unused out-params in idiomatic C/C++ code. Note that this 3723 /// helper *only* analyzes the write; doesn't check any other legality aspect. 3724 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) { 3725 auto *CB = dyn_cast<CallBase>(I); 3726 if (!CB) 3727 // TODO: handle e.g. store to alloca here - only worth doing if we extend 3728 // to allow reload along used path as described below. Otherwise, this 3729 // is simply a store to a dead allocation which will be removed. 3730 return false; 3731 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI); 3732 if (!Dest) 3733 return false; 3734 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr)); 3735 if (!AI) 3736 // TODO: allow malloc? 3737 return false; 3738 // TODO: allow memory access dominated by move point? Note that since AI 3739 // could have a reference to itself captured by the call, we would need to 3740 // account for cycles in doing so. 3741 SmallVector<const User *> AllocaUsers; 3742 SmallPtrSet<const User *, 4> Visited; 3743 auto pushUsers = [&](const Instruction &I) { 3744 for (const User *U : I.users()) { 3745 if (Visited.insert(U).second) 3746 AllocaUsers.push_back(U); 3747 } 3748 }; 3749 pushUsers(*AI); 3750 while (!AllocaUsers.empty()) { 3751 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val()); 3752 if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) || 3753 isa<AddrSpaceCastInst>(UserI)) { 3754 pushUsers(*UserI); 3755 continue; 3756 } 3757 if (UserI == CB) 3758 continue; 3759 // TODO: support lifetime.start/end here 3760 return false; 3761 } 3762 return true; 3763 } 3764 3765 /// Try to move the specified instruction from its current block into the 3766 /// beginning of DestBlock, which can only happen if it's safe to move the 3767 /// instruction past all of the instructions between it and the end of its 3768 /// block. 3769 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock, 3770 TargetLibraryInfo &TLI) { 3771 assert(I->getUniqueUndroppableUser() && "Invariants didn't hold!"); 3772 BasicBlock *SrcBlock = I->getParent(); 3773 3774 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3775 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || 3776 I->isTerminator()) 3777 return false; 3778 3779 // Do not sink static or dynamic alloca instructions. Static allocas must 3780 // remain in the entry block, and dynamic allocas must not be sunk in between 3781 // a stacksave / stackrestore pair, which would incorrectly shorten its 3782 // lifetime. 3783 if (isa<AllocaInst>(I)) 3784 return false; 3785 3786 // Do not sink into catchswitch blocks. 3787 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 3788 return false; 3789 3790 // Do not sink convergent call instructions. 3791 if (auto *CI = dyn_cast<CallInst>(I)) { 3792 if (CI->isConvergent()) 3793 return false; 3794 } 3795 3796 // Unless we can prove that the memory write isn't visibile except on the 3797 // path we're sinking to, we must bail. 3798 if (I->mayWriteToMemory()) { 3799 if (!SoleWriteToDeadLocal(I, TLI)) 3800 return false; 3801 } 3802 3803 // We can only sink load instructions if there is nothing between the load and 3804 // the end of block that could change the value. 3805 if (I->mayReadFromMemory()) { 3806 // We don't want to do any sophisticated alias analysis, so we only check 3807 // the instructions after I in I's parent block if we try to sink to its 3808 // successor block. 3809 if (DestBlock->getUniquePredecessor() != I->getParent()) 3810 return false; 3811 for (BasicBlock::iterator Scan = std::next(I->getIterator()), 3812 E = I->getParent()->end(); 3813 Scan != E; ++Scan) 3814 if (Scan->mayWriteToMemory()) 3815 return false; 3816 } 3817 3818 I->dropDroppableUses([DestBlock](const Use *U) { 3819 if (auto *I = dyn_cast<Instruction>(U->getUser())) 3820 return I->getParent() != DestBlock; 3821 return true; 3822 }); 3823 /// FIXME: We could remove droppable uses that are not dominated by 3824 /// the new position. 3825 3826 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 3827 I->moveBefore(&*InsertPos); 3828 ++NumSunkInst; 3829 3830 // Also sink all related debug uses from the source basic block. Otherwise we 3831 // get debug use before the def. Attempt to salvage debug uses first, to 3832 // maximise the range variables have location for. If we cannot salvage, then 3833 // mark the location undef: we know it was supposed to receive a new location 3834 // here, but that computation has been sunk. 3835 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 3836 findDbgUsers(DbgUsers, I); 3837 // Process the sinking DbgUsers in reverse order, as we only want to clone the 3838 // last appearing debug intrinsic for each given variable. 3839 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 3840 for (DbgVariableIntrinsic *DVI : DbgUsers) 3841 if (DVI->getParent() == SrcBlock) 3842 DbgUsersToSink.push_back(DVI); 3843 llvm::sort(DbgUsersToSink, 3844 [](auto *A, auto *B) { return B->comesBefore(A); }); 3845 3846 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 3847 SmallSet<DebugVariable, 4> SunkVariables; 3848 for (auto User : DbgUsersToSink) { 3849 // A dbg.declare instruction should not be cloned, since there can only be 3850 // one per variable fragment. It should be left in the original place 3851 // because the sunk instruction is not an alloca (otherwise we could not be 3852 // here). 3853 if (isa<DbgDeclareInst>(User)) 3854 continue; 3855 3856 DebugVariable DbgUserVariable = 3857 DebugVariable(User->getVariable(), User->getExpression(), 3858 User->getDebugLoc()->getInlinedAt()); 3859 3860 if (!SunkVariables.insert(DbgUserVariable).second) 3861 continue; 3862 3863 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 3864 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 3865 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 3866 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 3867 } 3868 3869 // Perform salvaging without the clones, then sink the clones. 3870 if (!DIIClones.empty()) { 3871 salvageDebugInfoForDbgValues(*I, DbgUsers); 3872 // The clones are in reverse order of original appearance, reverse again to 3873 // maintain the original order. 3874 for (auto &DIIClone : llvm::reverse(DIIClones)) { 3875 DIIClone->insertBefore(&*InsertPos); 3876 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 3877 } 3878 } 3879 3880 return true; 3881 } 3882 3883 bool InstCombinerImpl::run() { 3884 while (!Worklist.isEmpty()) { 3885 // Walk deferred instructions in reverse order, and push them to the 3886 // worklist, which means they'll end up popped from the worklist in-order. 3887 while (Instruction *I = Worklist.popDeferred()) { 3888 // Check to see if we can DCE the instruction. We do this already here to 3889 // reduce the number of uses and thus allow other folds to trigger. 3890 // Note that eraseInstFromFunction() may push additional instructions on 3891 // the deferred worklist, so this will DCE whole instruction chains. 3892 if (isInstructionTriviallyDead(I, &TLI)) { 3893 eraseInstFromFunction(*I); 3894 ++NumDeadInst; 3895 continue; 3896 } 3897 3898 Worklist.push(I); 3899 } 3900 3901 Instruction *I = Worklist.removeOne(); 3902 if (I == nullptr) continue; // skip null values. 3903 3904 // Check to see if we can DCE the instruction. 3905 if (isInstructionTriviallyDead(I, &TLI)) { 3906 eraseInstFromFunction(*I); 3907 ++NumDeadInst; 3908 continue; 3909 } 3910 3911 if (!DebugCounter::shouldExecute(VisitCounter)) 3912 continue; 3913 3914 // Instruction isn't dead, see if we can constant propagate it. 3915 if (!I->use_empty() && 3916 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 3917 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 3918 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 3919 << '\n'); 3920 3921 // Add operands to the worklist. 3922 replaceInstUsesWith(*I, C); 3923 ++NumConstProp; 3924 if (isInstructionTriviallyDead(I, &TLI)) 3925 eraseInstFromFunction(*I); 3926 MadeIRChange = true; 3927 continue; 3928 } 3929 } 3930 3931 // See if we can trivially sink this instruction to its user if we can 3932 // prove that the successor is not executed more frequently than our block. 3933 // Return the UserBlock if successful. 3934 auto getOptionalSinkBlockForInst = 3935 [this](Instruction *I) -> Optional<BasicBlock *> { 3936 if (!EnableCodeSinking) 3937 return None; 3938 auto *UserInst = cast_or_null<Instruction>(I->getUniqueUndroppableUser()); 3939 if (!UserInst) 3940 return None; 3941 3942 BasicBlock *BB = I->getParent(); 3943 BasicBlock *UserParent = nullptr; 3944 3945 // Special handling for Phi nodes - get the block the use occurs in. 3946 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) { 3947 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 3948 if (PN->getIncomingValue(i) == I) { 3949 // Bail out if we have uses in different blocks. We don't do any 3950 // sophisticated analysis (i.e finding NearestCommonDominator of these 3951 // use blocks). 3952 if (UserParent && UserParent != PN->getIncomingBlock(i)) 3953 return None; 3954 UserParent = PN->getIncomingBlock(i); 3955 } 3956 } 3957 assert(UserParent && "expected to find user block!"); 3958 } else 3959 UserParent = UserInst->getParent(); 3960 3961 // Try sinking to another block. If that block is unreachable, then do 3962 // not bother. SimplifyCFG should handle it. 3963 if (UserParent == BB || !DT.isReachableFromEntry(UserParent)) 3964 return None; 3965 3966 auto *Term = UserParent->getTerminator(); 3967 // See if the user is one of our successors that has only one 3968 // predecessor, so that we don't have to split the critical edge. 3969 // Another option where we can sink is a block that ends with a 3970 // terminator that does not pass control to other block (such as 3971 // return or unreachable). In this case: 3972 // - I dominates the User (by SSA form); 3973 // - the User will be executed at most once. 3974 // So sinking I down to User is always profitable or neutral. 3975 if (UserParent->getUniquePredecessor() == BB || 3976 (isa<ReturnInst>(Term) || isa<UnreachableInst>(Term))) { 3977 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?"); 3978 return UserParent; 3979 } 3980 return None; 3981 }; 3982 3983 auto OptBB = getOptionalSinkBlockForInst(I); 3984 if (OptBB) { 3985 auto *UserParent = *OptBB; 3986 // Okay, the CFG is simple enough, try to sink this instruction. 3987 if (TryToSinkInstruction(I, UserParent, TLI)) { 3988 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3989 MadeIRChange = true; 3990 // We'll add uses of the sunk instruction below, but since 3991 // sinking can expose opportunities for it's *operands* add 3992 // them to the worklist 3993 for (Use &U : I->operands()) 3994 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3995 Worklist.push(OpI); 3996 } 3997 } 3998 3999 // Now that we have an instruction, try combining it to simplify it. 4000 Builder.SetInsertPoint(I); 4001 Builder.CollectMetadataToCopy( 4002 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4003 4004 #ifndef NDEBUG 4005 std::string OrigI; 4006 #endif 4007 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 4008 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 4009 4010 if (Instruction *Result = visit(*I)) { 4011 ++NumCombined; 4012 // Should we replace the old instruction with a new one? 4013 if (Result != I) { 4014 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 4015 << " New = " << *Result << '\n'); 4016 4017 Result->copyMetadata(*I, 4018 {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4019 // Everything uses the new instruction now. 4020 I->replaceAllUsesWith(Result); 4021 4022 // Move the name to the new instruction first. 4023 Result->takeName(I); 4024 4025 // Insert the new instruction into the basic block... 4026 BasicBlock *InstParent = I->getParent(); 4027 BasicBlock::iterator InsertPos = I->getIterator(); 4028 4029 // Are we replace a PHI with something that isn't a PHI, or vice versa? 4030 if (isa<PHINode>(Result) != isa<PHINode>(I)) { 4031 // We need to fix up the insertion point. 4032 if (isa<PHINode>(I)) // PHI -> Non-PHI 4033 InsertPos = InstParent->getFirstInsertionPt(); 4034 else // Non-PHI -> PHI 4035 InsertPos = InstParent->getFirstNonPHI()->getIterator(); 4036 } 4037 4038 InstParent->getInstList().insert(InsertPos, Result); 4039 4040 // Push the new instruction and any users onto the worklist. 4041 Worklist.pushUsersToWorkList(*Result); 4042 Worklist.push(Result); 4043 4044 eraseInstFromFunction(*I); 4045 } else { 4046 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 4047 << " New = " << *I << '\n'); 4048 4049 // If the instruction was modified, it's possible that it is now dead. 4050 // if so, remove it. 4051 if (isInstructionTriviallyDead(I, &TLI)) { 4052 eraseInstFromFunction(*I); 4053 } else { 4054 Worklist.pushUsersToWorkList(*I); 4055 Worklist.push(I); 4056 } 4057 } 4058 MadeIRChange = true; 4059 } 4060 } 4061 4062 Worklist.zap(); 4063 return MadeIRChange; 4064 } 4065 4066 // Track the scopes used by !alias.scope and !noalias. In a function, a 4067 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 4068 // by both sets. If not, the declaration of the scope can be safely omitted. 4069 // The MDNode of the scope can be omitted as well for the instructions that are 4070 // part of this function. We do not do that at this point, as this might become 4071 // too time consuming to do. 4072 class AliasScopeTracker { 4073 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 4074 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 4075 4076 public: 4077 void analyse(Instruction *I) { 4078 // This seems to be faster than checking 'mayReadOrWriteMemory()'. 4079 if (!I->hasMetadataOtherThanDebugLoc()) 4080 return; 4081 4082 auto Track = [](Metadata *ScopeList, auto &Container) { 4083 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 4084 if (!MDScopeList || !Container.insert(MDScopeList).second) 4085 return; 4086 for (auto &MDOperand : MDScopeList->operands()) 4087 if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 4088 Container.insert(MDScope); 4089 }; 4090 4091 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 4092 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 4093 } 4094 4095 bool isNoAliasScopeDeclDead(Instruction *Inst) { 4096 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 4097 if (!Decl) 4098 return false; 4099 4100 assert(Decl->use_empty() && 4101 "llvm.experimental.noalias.scope.decl in use ?"); 4102 const MDNode *MDSL = Decl->getScopeList(); 4103 assert(MDSL->getNumOperands() == 1 && 4104 "llvm.experimental.noalias.scope should refer to a single scope"); 4105 auto &MDOperand = MDSL->getOperand(0); 4106 if (auto *MD = dyn_cast<MDNode>(MDOperand)) 4107 return !UsedAliasScopesAndLists.contains(MD) || 4108 !UsedNoAliasScopesAndLists.contains(MD); 4109 4110 // Not an MDNode ? throw away. 4111 return true; 4112 } 4113 }; 4114 4115 /// Populate the IC worklist from a function, by walking it in depth-first 4116 /// order and adding all reachable code to the worklist. 4117 /// 4118 /// This has a couple of tricks to make the code faster and more powerful. In 4119 /// particular, we constant fold and DCE instructions as we go, to avoid adding 4120 /// them to the worklist (this significantly speeds up instcombine on code where 4121 /// many instructions are dead or constant). Additionally, if we find a branch 4122 /// whose condition is a known constant, we only visit the reachable successors. 4123 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 4124 const TargetLibraryInfo *TLI, 4125 InstructionWorklist &ICWorklist) { 4126 bool MadeIRChange = false; 4127 SmallPtrSet<BasicBlock *, 32> Visited; 4128 SmallVector<BasicBlock*, 256> Worklist; 4129 Worklist.push_back(&F.front()); 4130 4131 SmallVector<Instruction *, 128> InstrsForInstructionWorklist; 4132 DenseMap<Constant *, Constant *> FoldedConstants; 4133 AliasScopeTracker SeenAliasScopes; 4134 4135 do { 4136 BasicBlock *BB = Worklist.pop_back_val(); 4137 4138 // We have now visited this block! If we've already been here, ignore it. 4139 if (!Visited.insert(BB).second) 4140 continue; 4141 4142 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 4143 // ConstantProp instruction if trivially constant. 4144 if (!Inst.use_empty() && 4145 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0)))) 4146 if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) { 4147 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst 4148 << '\n'); 4149 Inst.replaceAllUsesWith(C); 4150 ++NumConstProp; 4151 if (isInstructionTriviallyDead(&Inst, TLI)) 4152 Inst.eraseFromParent(); 4153 MadeIRChange = true; 4154 continue; 4155 } 4156 4157 // See if we can constant fold its operands. 4158 for (Use &U : Inst.operands()) { 4159 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 4160 continue; 4161 4162 auto *C = cast<Constant>(U); 4163 Constant *&FoldRes = FoldedConstants[C]; 4164 if (!FoldRes) 4165 FoldRes = ConstantFoldConstant(C, DL, TLI); 4166 4167 if (FoldRes != C) { 4168 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst 4169 << "\n Old = " << *C 4170 << "\n New = " << *FoldRes << '\n'); 4171 U = FoldRes; 4172 MadeIRChange = true; 4173 } 4174 } 4175 4176 // Skip processing debug and pseudo intrinsics in InstCombine. Processing 4177 // these call instructions consumes non-trivial amount of time and 4178 // provides no value for the optimization. 4179 if (!Inst.isDebugOrPseudoInst()) { 4180 InstrsForInstructionWorklist.push_back(&Inst); 4181 SeenAliasScopes.analyse(&Inst); 4182 } 4183 } 4184 4185 // Recursively visit successors. If this is a branch or switch on a 4186 // constant, only visit the reachable successor. 4187 Instruction *TI = BB->getTerminator(); 4188 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 4189 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 4190 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 4191 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 4192 Worklist.push_back(ReachableBB); 4193 continue; 4194 } 4195 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 4196 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 4197 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 4198 continue; 4199 } 4200 } 4201 4202 append_range(Worklist, successors(TI)); 4203 } while (!Worklist.empty()); 4204 4205 // Remove instructions inside unreachable blocks. This prevents the 4206 // instcombine code from having to deal with some bad special cases, and 4207 // reduces use counts of instructions. 4208 for (BasicBlock &BB : F) { 4209 if (Visited.count(&BB)) 4210 continue; 4211 4212 unsigned NumDeadInstInBB; 4213 unsigned NumDeadDbgInstInBB; 4214 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 4215 removeAllNonTerminatorAndEHPadInstructions(&BB); 4216 4217 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 4218 NumDeadInst += NumDeadInstInBB; 4219 } 4220 4221 // Once we've found all of the instructions to add to instcombine's worklist, 4222 // add them in reverse order. This way instcombine will visit from the top 4223 // of the function down. This jives well with the way that it adds all uses 4224 // of instructions to the worklist after doing a transformation, thus avoiding 4225 // some N^2 behavior in pathological cases. 4226 ICWorklist.reserve(InstrsForInstructionWorklist.size()); 4227 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) { 4228 // DCE instruction if trivially dead. As we iterate in reverse program 4229 // order here, we will clean up whole chains of dead instructions. 4230 if (isInstructionTriviallyDead(Inst, TLI) || 4231 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 4232 ++NumDeadInst; 4233 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 4234 salvageDebugInfo(*Inst); 4235 Inst->eraseFromParent(); 4236 MadeIRChange = true; 4237 continue; 4238 } 4239 4240 ICWorklist.push(Inst); 4241 } 4242 4243 return MadeIRChange; 4244 } 4245 4246 static bool combineInstructionsOverFunction( 4247 Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, 4248 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 4249 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 4250 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) { 4251 auto &DL = F.getParent()->getDataLayout(); 4252 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 4253 4254 /// Builder - This is an IRBuilder that automatically inserts new 4255 /// instructions into the worklist when they are created. 4256 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 4257 F.getContext(), TargetFolder(DL), 4258 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 4259 Worklist.add(I); 4260 if (auto *Assume = dyn_cast<AssumeInst>(I)) 4261 AC.registerAssumption(Assume); 4262 })); 4263 4264 // Lower dbg.declare intrinsics otherwise their value may be clobbered 4265 // by instcombiner. 4266 bool MadeIRChange = false; 4267 if (ShouldLowerDbgDeclare) 4268 MadeIRChange = LowerDbgDeclare(F); 4269 4270 // Iterate while there is work to do. 4271 unsigned Iteration = 0; 4272 while (true) { 4273 ++NumWorklistIterations; 4274 ++Iteration; 4275 4276 if (Iteration > InfiniteLoopDetectionThreshold) { 4277 report_fatal_error( 4278 "Instruction Combining seems stuck in an infinite loop after " + 4279 Twine(InfiniteLoopDetectionThreshold) + " iterations."); 4280 } 4281 4282 if (Iteration > MaxIterations) { 4283 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 4284 << " on " << F.getName() 4285 << " reached; stopping before reaching a fixpoint\n"); 4286 break; 4287 } 4288 4289 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 4290 << F.getName() << "\n"); 4291 4292 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 4293 4294 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 4295 ORE, BFI, PSI, DL, LI); 4296 IC.MaxArraySizeForCombine = MaxArraySize; 4297 4298 if (!IC.run()) 4299 break; 4300 4301 MadeIRChange = true; 4302 } 4303 4304 return MadeIRChange; 4305 } 4306 4307 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {} 4308 4309 InstCombinePass::InstCombinePass(unsigned MaxIterations) 4310 : MaxIterations(MaxIterations) {} 4311 4312 PreservedAnalyses InstCombinePass::run(Function &F, 4313 FunctionAnalysisManager &AM) { 4314 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4315 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4316 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4317 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4318 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 4319 4320 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 4321 4322 auto *AA = &AM.getResult<AAManager>(F); 4323 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 4324 ProfileSummaryInfo *PSI = 4325 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 4326 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 4327 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 4328 4329 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4330 BFI, PSI, MaxIterations, LI)) 4331 // No changes, all analyses are preserved. 4332 return PreservedAnalyses::all(); 4333 4334 // Mark all the analyses that instcombine updates as preserved. 4335 PreservedAnalyses PA; 4336 PA.preserveSet<CFGAnalyses>(); 4337 return PA; 4338 } 4339 4340 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 4341 AU.setPreservesCFG(); 4342 AU.addRequired<AAResultsWrapperPass>(); 4343 AU.addRequired<AssumptionCacheTracker>(); 4344 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4345 AU.addRequired<TargetTransformInfoWrapperPass>(); 4346 AU.addRequired<DominatorTreeWrapperPass>(); 4347 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4348 AU.addPreserved<DominatorTreeWrapperPass>(); 4349 AU.addPreserved<AAResultsWrapperPass>(); 4350 AU.addPreserved<BasicAAWrapperPass>(); 4351 AU.addPreserved<GlobalsAAWrapperPass>(); 4352 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 4353 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 4354 } 4355 4356 bool InstructionCombiningPass::runOnFunction(Function &F) { 4357 if (skipFunction(F)) 4358 return false; 4359 4360 // Required analyses. 4361 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4362 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4363 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 4364 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4365 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4366 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4367 4368 // Optional analyses. 4369 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 4370 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 4371 ProfileSummaryInfo *PSI = 4372 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 4373 BlockFrequencyInfo *BFI = 4374 (PSI && PSI->hasProfileSummary()) ? 4375 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 4376 nullptr; 4377 4378 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4379 BFI, PSI, MaxIterations, LI); 4380 } 4381 4382 char InstructionCombiningPass::ID = 0; 4383 4384 InstructionCombiningPass::InstructionCombiningPass() 4385 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) { 4386 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4387 } 4388 4389 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations) 4390 : FunctionPass(ID), MaxIterations(MaxIterations) { 4391 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4392 } 4393 4394 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 4395 "Combine redundant instructions", false, false) 4396 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4397 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4398 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4399 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4400 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4401 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4402 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 4403 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 4404 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 4405 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 4406 "Combine redundant instructions", false, false) 4407 4408 // Initialization Routines 4409 void llvm::initializeInstCombine(PassRegistry &Registry) { 4410 initializeInstructionCombiningPassPass(Registry); 4411 } 4412 4413 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 4414 initializeInstructionCombiningPassPass(*unwrap(R)); 4415 } 4416 4417 FunctionPass *llvm::createInstructionCombiningPass() { 4418 return new InstructionCombiningPass(); 4419 } 4420 4421 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) { 4422 return new InstructionCombiningPass(MaxIterations); 4423 } 4424 4425 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 4426 unwrap(PM)->add(createInstructionCombiningPass()); 4427 } 4428