1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // InstructionCombining - Combine instructions to form fewer, simple 11 // instructions. This pass does not modify the CFG. This pass is where 12 // algebraic simplification happens. 13 // 14 // This pass combines things like: 15 // %Y = add i32 %X, 1 16 // %Z = add i32 %Y, 1 17 // into: 18 // %Z = add i32 %X, 2 19 // 20 // This is a simple worklist driven algorithm. 21 // 22 // This pass guarantees that the following canonicalizations are performed on 23 // the program: 24 // 1. If a binary operator has a constant operand, it is moved to the RHS 25 // 2. Bitwise operators with constant operands are always grouped so that 26 // shifts are performed first, then or's, then and's, then xor's. 27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 28 // 4. All cmp instructions on boolean values are replaced with logical ops 29 // 5. add X, X is represented as (X*2) => (X << 1) 30 // 6. Multiplies with a power-of-two constant argument are transformed into 31 // shifts. 32 // ... etc. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #define DEBUG_TYPE "instcombine" 37 #include "llvm/Transforms/Scalar.h" 38 #include "InstCombine.h" 39 #include "llvm/IntrinsicInst.h" 40 #include "llvm/Analysis/ConstantFolding.h" 41 #include "llvm/Analysis/InstructionSimplify.h" 42 #include "llvm/Analysis/MemoryBuiltins.h" 43 #include "llvm/DataLayout.h" 44 #include "llvm/Target/TargetLibraryInfo.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 #include "llvm/Support/CFG.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/GetElementPtrTypeIterator.h" 50 #include "llvm/Support/PatternMatch.h" 51 #include "llvm/Support/ValueHandle.h" 52 #include "llvm/ADT/SmallPtrSet.h" 53 #include "llvm/ADT/Statistic.h" 54 #include "llvm/ADT/StringSwitch.h" 55 #include "llvm-c/Initialization.h" 56 #include <algorithm> 57 #include <climits> 58 using namespace llvm; 59 using namespace llvm::PatternMatch; 60 61 STATISTIC(NumCombined , "Number of insts combined"); 62 STATISTIC(NumConstProp, "Number of constant folds"); 63 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 64 STATISTIC(NumSunkInst , "Number of instructions sunk"); 65 STATISTIC(NumExpand, "Number of expansions"); 66 STATISTIC(NumFactor , "Number of factorizations"); 67 STATISTIC(NumReassoc , "Number of reassociations"); 68 69 static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 70 cl::init(false), 71 cl::desc("Enable unsafe double to float " 72 "shrinking for math lib calls")); 73 74 // Initialization Routines 75 void llvm::initializeInstCombine(PassRegistry &Registry) { 76 initializeInstCombinerPass(Registry); 77 } 78 79 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 80 initializeInstCombine(*unwrap(R)); 81 } 82 83 char InstCombiner::ID = 0; 84 INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine", 85 "Combine redundant instructions", false, false) 86 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 87 INITIALIZE_PASS_END(InstCombiner, "instcombine", 88 "Combine redundant instructions", false, false) 89 90 void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const { 91 AU.setPreservesCFG(); 92 AU.addRequired<TargetLibraryInfo>(); 93 } 94 95 96 Value *InstCombiner::EmitGEPOffset(User *GEP) { 97 return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP); 98 } 99 100 /// ShouldChangeType - Return true if it is desirable to convert a computation 101 /// from 'From' to 'To'. We don't want to convert from a legal to an illegal 102 /// type for example, or from a smaller to a larger illegal type. 103 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const { 104 assert(From->isIntegerTy() && To->isIntegerTy()); 105 106 // If we don't have TD, we don't know if the source/dest are legal. 107 if (!TD) return false; 108 109 unsigned FromWidth = From->getPrimitiveSizeInBits(); 110 unsigned ToWidth = To->getPrimitiveSizeInBits(); 111 bool FromLegal = TD->isLegalInteger(FromWidth); 112 bool ToLegal = TD->isLegalInteger(ToWidth); 113 114 // If this is a legal integer from type, and the result would be an illegal 115 // type, don't do the transformation. 116 if (FromLegal && !ToLegal) 117 return false; 118 119 // Otherwise, if both are illegal, do not increase the size of the result. We 120 // do allow things like i160 -> i64, but not i64 -> i160. 121 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 122 return false; 123 124 return true; 125 } 126 127 // Return true, if No Signed Wrap should be maintained for I. 128 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 129 // where both B and C should be ConstantInts, results in a constant that does 130 // not overflow. This function only handles the Add and Sub opcodes. For 131 // all other opcodes, the function conservatively returns false. 132 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 133 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 134 if (!OBO || !OBO->hasNoSignedWrap()) { 135 return false; 136 } 137 138 // We reason about Add and Sub Only. 139 Instruction::BinaryOps Opcode = I.getOpcode(); 140 if (Opcode != Instruction::Add && 141 Opcode != Instruction::Sub) { 142 return false; 143 } 144 145 ConstantInt *CB = dyn_cast<ConstantInt>(B); 146 ConstantInt *CC = dyn_cast<ConstantInt>(C); 147 148 if (!CB || !CC) { 149 return false; 150 } 151 152 const APInt &BVal = CB->getValue(); 153 const APInt &CVal = CC->getValue(); 154 bool Overflow = false; 155 156 if (Opcode == Instruction::Add) { 157 BVal.sadd_ov(CVal, Overflow); 158 } else { 159 BVal.ssub_ov(CVal, Overflow); 160 } 161 162 return !Overflow; 163 } 164 165 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for 166 /// operators which are associative or commutative: 167 // 168 // Commutative operators: 169 // 170 // 1. Order operands such that they are listed from right (least complex) to 171 // left (most complex). This puts constants before unary operators before 172 // binary operators. 173 // 174 // Associative operators: 175 // 176 // 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 177 // 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 178 // 179 // Associative and commutative operators: 180 // 181 // 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 182 // 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 183 // 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 184 // if C1 and C2 are constants. 185 // 186 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 187 Instruction::BinaryOps Opcode = I.getOpcode(); 188 bool Changed = false; 189 190 do { 191 // Order operands such that they are listed from right (least complex) to 192 // left (most complex). This puts constants before unary operators before 193 // binary operators. 194 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 195 getComplexity(I.getOperand(1))) 196 Changed = !I.swapOperands(); 197 198 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 199 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 200 201 if (I.isAssociative()) { 202 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 203 if (Op0 && Op0->getOpcode() == Opcode) { 204 Value *A = Op0->getOperand(0); 205 Value *B = Op0->getOperand(1); 206 Value *C = I.getOperand(1); 207 208 // Does "B op C" simplify? 209 if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) { 210 // It simplifies to V. Form "A op V". 211 I.setOperand(0, A); 212 I.setOperand(1, V); 213 // Conservatively clear the optional flags, since they may not be 214 // preserved by the reassociation. 215 if (MaintainNoSignedWrap(I, B, C) && 216 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { 217 // Note: this is only valid because SimplifyBinOp doesn't look at 218 // the operands to Op0. 219 I.clearSubclassOptionalData(); 220 I.setHasNoSignedWrap(true); 221 } else { 222 I.clearSubclassOptionalData(); 223 } 224 225 Changed = true; 226 ++NumReassoc; 227 continue; 228 } 229 } 230 231 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 232 if (Op1 && Op1->getOpcode() == Opcode) { 233 Value *A = I.getOperand(0); 234 Value *B = Op1->getOperand(0); 235 Value *C = Op1->getOperand(1); 236 237 // Does "A op B" simplify? 238 if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) { 239 // It simplifies to V. Form "V op C". 240 I.setOperand(0, V); 241 I.setOperand(1, C); 242 // Conservatively clear the optional flags, since they may not be 243 // preserved by the reassociation. 244 I.clearSubclassOptionalData(); 245 Changed = true; 246 ++NumReassoc; 247 continue; 248 } 249 } 250 } 251 252 if (I.isAssociative() && I.isCommutative()) { 253 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 254 if (Op0 && Op0->getOpcode() == Opcode) { 255 Value *A = Op0->getOperand(0); 256 Value *B = Op0->getOperand(1); 257 Value *C = I.getOperand(1); 258 259 // Does "C op A" simplify? 260 if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) { 261 // It simplifies to V. Form "V op B". 262 I.setOperand(0, V); 263 I.setOperand(1, B); 264 // Conservatively clear the optional flags, since they may not be 265 // preserved by the reassociation. 266 I.clearSubclassOptionalData(); 267 Changed = true; 268 ++NumReassoc; 269 continue; 270 } 271 } 272 273 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 274 if (Op1 && Op1->getOpcode() == Opcode) { 275 Value *A = I.getOperand(0); 276 Value *B = Op1->getOperand(0); 277 Value *C = Op1->getOperand(1); 278 279 // Does "C op A" simplify? 280 if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) { 281 // It simplifies to V. Form "B op V". 282 I.setOperand(0, B); 283 I.setOperand(1, V); 284 // Conservatively clear the optional flags, since they may not be 285 // preserved by the reassociation. 286 I.clearSubclassOptionalData(); 287 Changed = true; 288 ++NumReassoc; 289 continue; 290 } 291 } 292 293 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 294 // if C1 and C2 are constants. 295 if (Op0 && Op1 && 296 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 297 isa<Constant>(Op0->getOperand(1)) && 298 isa<Constant>(Op1->getOperand(1)) && 299 Op0->hasOneUse() && Op1->hasOneUse()) { 300 Value *A = Op0->getOperand(0); 301 Constant *C1 = cast<Constant>(Op0->getOperand(1)); 302 Value *B = Op1->getOperand(0); 303 Constant *C2 = cast<Constant>(Op1->getOperand(1)); 304 305 Constant *Folded = ConstantExpr::get(Opcode, C1, C2); 306 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B); 307 InsertNewInstWith(New, I); 308 New->takeName(Op1); 309 I.setOperand(0, New); 310 I.setOperand(1, Folded); 311 // Conservatively clear the optional flags, since they may not be 312 // preserved by the reassociation. 313 I.clearSubclassOptionalData(); 314 315 Changed = true; 316 continue; 317 } 318 } 319 320 // No further simplifications. 321 return Changed; 322 } while (1); 323 } 324 325 /// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to 326 /// "(X LOp Y) ROp (X LOp Z)". 327 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp, 328 Instruction::BinaryOps ROp) { 329 switch (LOp) { 330 default: 331 return false; 332 333 case Instruction::And: 334 // And distributes over Or and Xor. 335 switch (ROp) { 336 default: 337 return false; 338 case Instruction::Or: 339 case Instruction::Xor: 340 return true; 341 } 342 343 case Instruction::Mul: 344 // Multiplication distributes over addition and subtraction. 345 switch (ROp) { 346 default: 347 return false; 348 case Instruction::Add: 349 case Instruction::Sub: 350 return true; 351 } 352 353 case Instruction::Or: 354 // Or distributes over And. 355 switch (ROp) { 356 default: 357 return false; 358 case Instruction::And: 359 return true; 360 } 361 } 362 } 363 364 /// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to 365 /// "(X ROp Z) LOp (Y ROp Z)". 366 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp, 367 Instruction::BinaryOps ROp) { 368 if (Instruction::isCommutative(ROp)) 369 return LeftDistributesOverRight(ROp, LOp); 370 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 371 // but this requires knowing that the addition does not overflow and other 372 // such subtleties. 373 return false; 374 } 375 376 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations 377 /// which some other binary operation distributes over either by factorizing 378 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this 379 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is 380 /// a win). Returns the simplified value, or null if it didn't simplify. 381 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 382 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 383 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 384 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 385 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op 386 387 // Factorization. 388 if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) { 389 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 390 // a common term. 391 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1); 392 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1); 393 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 394 395 // Does "X op' Y" always equal "Y op' X"? 396 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 397 398 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 399 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 400 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 401 // commutative case, "(A op' B) op (C op' A)"? 402 if (A == C || (InnerCommutative && A == D)) { 403 if (A != C) 404 std::swap(C, D); 405 // Consider forming "A op' (B op D)". 406 // If "B op D" simplifies then it can be formed with no cost. 407 Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD); 408 // If "B op D" doesn't simplify then only go on if both of the existing 409 // operations "A op' B" and "C op' D" will be zapped as no longer used. 410 if (!V && Op0->hasOneUse() && Op1->hasOneUse()) 411 V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName()); 412 if (V) { 413 ++NumFactor; 414 V = Builder->CreateBinOp(InnerOpcode, A, V); 415 V->takeName(&I); 416 return V; 417 } 418 } 419 420 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 421 if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 422 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 423 // commutative case, "(A op' B) op (B op' D)"? 424 if (B == D || (InnerCommutative && B == C)) { 425 if (B != D) 426 std::swap(C, D); 427 // Consider forming "(A op C) op' B". 428 // If "A op C" simplifies then it can be formed with no cost. 429 Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD); 430 // If "A op C" doesn't simplify then only go on if both of the existing 431 // operations "A op' B" and "C op' D" will be zapped as no longer used. 432 if (!V && Op0->hasOneUse() && Op1->hasOneUse()) 433 V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName()); 434 if (V) { 435 ++NumFactor; 436 V = Builder->CreateBinOp(InnerOpcode, V, B); 437 V->takeName(&I); 438 return V; 439 } 440 } 441 } 442 443 // Expansion. 444 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 445 // The instruction has the form "(A op' B) op C". See if expanding it out 446 // to "(A op C) op' (B op C)" results in simplifications. 447 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 448 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 449 450 // Do "A op C" and "B op C" both simplify? 451 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD)) 452 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) { 453 // They do! Return "L op' R". 454 ++NumExpand; 455 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 456 if ((L == A && R == B) || 457 (Instruction::isCommutative(InnerOpcode) && L == B && R == A)) 458 return Op0; 459 // Otherwise return "L op' R" if it simplifies. 460 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD)) 461 return V; 462 // Otherwise, create a new instruction. 463 C = Builder->CreateBinOp(InnerOpcode, L, R); 464 C->takeName(&I); 465 return C; 466 } 467 } 468 469 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 470 // The instruction has the form "A op (B op' C)". See if expanding it out 471 // to "(A op B) op' (A op C)" results in simplifications. 472 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 473 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 474 475 // Do "A op B" and "A op C" both simplify? 476 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD)) 477 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) { 478 // They do! Return "L op' R". 479 ++NumExpand; 480 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 481 if ((L == B && R == C) || 482 (Instruction::isCommutative(InnerOpcode) && L == C && R == B)) 483 return Op1; 484 // Otherwise return "L op' R" if it simplifies. 485 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD)) 486 return V; 487 // Otherwise, create a new instruction. 488 A = Builder->CreateBinOp(InnerOpcode, L, R); 489 A->takeName(&I); 490 return A; 491 } 492 } 493 494 return 0; 495 } 496 497 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction 498 // if the LHS is a constant zero (which is the 'negate' form). 499 // 500 Value *InstCombiner::dyn_castNegVal(Value *V) const { 501 if (BinaryOperator::isNeg(V)) 502 return BinaryOperator::getNegArgument(V); 503 504 // Constants can be considered to be negated values if they can be folded. 505 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 506 return ConstantExpr::getNeg(C); 507 508 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 509 if (C->getType()->getElementType()->isIntegerTy()) 510 return ConstantExpr::getNeg(C); 511 512 return 0; 513 } 514 515 // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the 516 // instruction if the LHS is a constant negative zero (which is the 'negate' 517 // form). 518 // 519 Value *InstCombiner::dyn_castFNegVal(Value *V) const { 520 if (BinaryOperator::isFNeg(V)) 521 return BinaryOperator::getFNegArgument(V); 522 523 // Constants can be considered to be negated values if they can be folded. 524 if (ConstantFP *C = dyn_cast<ConstantFP>(V)) 525 return ConstantExpr::getFNeg(C); 526 527 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 528 if (C->getType()->getElementType()->isFloatingPointTy()) 529 return ConstantExpr::getFNeg(C); 530 531 return 0; 532 } 533 534 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO, 535 InstCombiner *IC) { 536 if (CastInst *CI = dyn_cast<CastInst>(&I)) { 537 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType()); 538 } 539 540 // Figure out if the constant is the left or the right argument. 541 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 542 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 543 544 if (Constant *SOC = dyn_cast<Constant>(SO)) { 545 if (ConstIsRHS) 546 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 547 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 548 } 549 550 Value *Op0 = SO, *Op1 = ConstOperand; 551 if (!ConstIsRHS) 552 std::swap(Op0, Op1); 553 554 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) 555 return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1, 556 SO->getName()+".op"); 557 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I)) 558 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, 559 SO->getName()+".cmp"); 560 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I)) 561 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, 562 SO->getName()+".cmp"); 563 llvm_unreachable("Unknown binary instruction type!"); 564 } 565 566 // FoldOpIntoSelect - Given an instruction with a select as one operand and a 567 // constant as the other operand, try to fold the binary operator into the 568 // select arguments. This also works for Cast instructions, which obviously do 569 // not have a second operand. 570 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 571 // Don't modify shared select instructions 572 if (!SI->hasOneUse()) return 0; 573 Value *TV = SI->getOperand(1); 574 Value *FV = SI->getOperand(2); 575 576 if (isa<Constant>(TV) || isa<Constant>(FV)) { 577 // Bool selects with constant operands can be folded to logical ops. 578 if (SI->getType()->isIntegerTy(1)) return 0; 579 580 // If it's a bitcast involving vectors, make sure it has the same number of 581 // elements on both sides. 582 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) { 583 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 584 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 585 586 // Verify that either both or neither are vectors. 587 if ((SrcTy == NULL) != (DestTy == NULL)) return 0; 588 // If vectors, verify that they have the same number of elements. 589 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 590 return 0; 591 } 592 593 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this); 594 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this); 595 596 return SelectInst::Create(SI->getCondition(), 597 SelectTrueVal, SelectFalseVal); 598 } 599 return 0; 600 } 601 602 603 /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which 604 /// has a PHI node as operand #0, see if we can fold the instruction into the 605 /// PHI (which is only possible if all operands to the PHI are constants). 606 /// 607 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { 608 PHINode *PN = cast<PHINode>(I.getOperand(0)); 609 unsigned NumPHIValues = PN->getNumIncomingValues(); 610 if (NumPHIValues == 0) 611 return 0; 612 613 // We normally only transform phis with a single use. However, if a PHI has 614 // multiple uses and they are all the same operation, we can fold *all* of the 615 // uses into the PHI. 616 if (!PN->hasOneUse()) { 617 // Walk the use list for the instruction, comparing them to I. 618 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); 619 UI != E; ++UI) { 620 Instruction *User = cast<Instruction>(*UI); 621 if (User != &I && !I.isIdenticalTo(User)) 622 return 0; 623 } 624 // Otherwise, we can replace *all* users with the new PHI we form. 625 } 626 627 // Check to see if all of the operands of the PHI are simple constants 628 // (constantint/constantfp/undef). If there is one non-constant value, 629 // remember the BB it is in. If there is more than one or if *it* is a PHI, 630 // bail out. We don't do arbitrary constant expressions here because moving 631 // their computation can be expensive without a cost model. 632 BasicBlock *NonConstBB = 0; 633 for (unsigned i = 0; i != NumPHIValues; ++i) { 634 Value *InVal = PN->getIncomingValue(i); 635 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 636 continue; 637 638 if (isa<PHINode>(InVal)) return 0; // Itself a phi. 639 if (NonConstBB) return 0; // More than one non-const value. 640 641 NonConstBB = PN->getIncomingBlock(i); 642 643 // If the InVal is an invoke at the end of the pred block, then we can't 644 // insert a computation after it without breaking the edge. 645 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal)) 646 if (II->getParent() == NonConstBB) 647 return 0; 648 649 // If the incoming non-constant value is in I's block, we will remove one 650 // instruction, but insert another equivalent one, leading to infinite 651 // instcombine. 652 if (NonConstBB == I.getParent()) 653 return 0; 654 } 655 656 // If there is exactly one non-constant value, we can insert a copy of the 657 // operation in that block. However, if this is a critical edge, we would be 658 // inserting the computation one some other paths (e.g. inside a loop). Only 659 // do this if the pred block is unconditionally branching into the phi block. 660 if (NonConstBB != 0) { 661 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 662 if (!BI || !BI->isUnconditional()) return 0; 663 } 664 665 // Okay, we can do the transformation: create the new PHI node. 666 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 667 InsertNewInstBefore(NewPN, *PN); 668 NewPN->takeName(PN); 669 670 // If we are going to have to insert a new computation, do so right before the 671 // predecessors terminator. 672 if (NonConstBB) 673 Builder->SetInsertPoint(NonConstBB->getTerminator()); 674 675 // Next, add all of the operands to the PHI. 676 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 677 // We only currently try to fold the condition of a select when it is a phi, 678 // not the true/false values. 679 Value *TrueV = SI->getTrueValue(); 680 Value *FalseV = SI->getFalseValue(); 681 BasicBlock *PhiTransBB = PN->getParent(); 682 for (unsigned i = 0; i != NumPHIValues; ++i) { 683 BasicBlock *ThisBB = PN->getIncomingBlock(i); 684 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 685 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 686 Value *InV = 0; 687 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 688 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 689 else 690 InV = Builder->CreateSelect(PN->getIncomingValue(i), 691 TrueVInPred, FalseVInPred, "phitmp"); 692 NewPN->addIncoming(InV, ThisBB); 693 } 694 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 695 Constant *C = cast<Constant>(I.getOperand(1)); 696 for (unsigned i = 0; i != NumPHIValues; ++i) { 697 Value *InV = 0; 698 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 699 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 700 else if (isa<ICmpInst>(CI)) 701 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 702 C, "phitmp"); 703 else 704 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 705 C, "phitmp"); 706 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 707 } 708 } else if (I.getNumOperands() == 2) { 709 Constant *C = cast<Constant>(I.getOperand(1)); 710 for (unsigned i = 0; i != NumPHIValues; ++i) { 711 Value *InV = 0; 712 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 713 InV = ConstantExpr::get(I.getOpcode(), InC, C); 714 else 715 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 716 PN->getIncomingValue(i), C, "phitmp"); 717 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 718 } 719 } else { 720 CastInst *CI = cast<CastInst>(&I); 721 Type *RetTy = CI->getType(); 722 for (unsigned i = 0; i != NumPHIValues; ++i) { 723 Value *InV; 724 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 725 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 726 else 727 InV = Builder->CreateCast(CI->getOpcode(), 728 PN->getIncomingValue(i), I.getType(), "phitmp"); 729 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 730 } 731 } 732 733 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); 734 UI != E; ) { 735 Instruction *User = cast<Instruction>(*UI++); 736 if (User == &I) continue; 737 ReplaceInstUsesWith(*User, NewPN); 738 EraseInstFromFunction(*User); 739 } 740 return ReplaceInstUsesWith(I, NewPN); 741 } 742 743 /// FindElementAtOffset - Given a type and a constant offset, determine whether 744 /// or not there is a sequence of GEP indices into the type that will land us at 745 /// the specified offset. If so, fill them into NewIndices and return the 746 /// resultant element type, otherwise return null. 747 Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset, 748 SmallVectorImpl<Value*> &NewIndices) { 749 if (!TD) return 0; 750 if (!Ty->isSized()) return 0; 751 752 // Start with the index over the outer type. Note that the type size 753 // might be zero (even if the offset isn't zero) if the indexed type 754 // is something like [0 x {int, int}] 755 Type *IntPtrTy = TD->getIntPtrType(Ty->getContext()); 756 int64_t FirstIdx = 0; 757 if (int64_t TySize = TD->getTypeAllocSize(Ty)) { 758 FirstIdx = Offset/TySize; 759 Offset -= FirstIdx*TySize; 760 761 // Handle hosts where % returns negative instead of values [0..TySize). 762 if (Offset < 0) { 763 --FirstIdx; 764 Offset += TySize; 765 assert(Offset >= 0); 766 } 767 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 768 } 769 770 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx)); 771 772 // Index into the types. If we fail, set OrigBase to null. 773 while (Offset) { 774 // Indexing into tail padding between struct/array elements. 775 if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty)) 776 return 0; 777 778 if (StructType *STy = dyn_cast<StructType>(Ty)) { 779 const StructLayout *SL = TD->getStructLayout(STy); 780 assert(Offset < (int64_t)SL->getSizeInBytes() && 781 "Offset must stay within the indexed type"); 782 783 unsigned Elt = SL->getElementContainingOffset(Offset); 784 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 785 Elt)); 786 787 Offset -= SL->getElementOffset(Elt); 788 Ty = STy->getElementType(Elt); 789 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 790 uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType()); 791 assert(EltSize && "Cannot index into a zero-sized array"); 792 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize)); 793 Offset %= EltSize; 794 Ty = AT->getElementType(); 795 } else { 796 // Otherwise, we can't index into the middle of this atomic type, bail. 797 return 0; 798 } 799 } 800 801 return Ty; 802 } 803 804 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 805 // If this GEP has only 0 indices, it is the same pointer as 806 // Src. If Src is not a trivial GEP too, don't combine 807 // the indices. 808 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 809 !Src.hasOneUse()) 810 return false; 811 return true; 812 } 813 814 /// Descale - Return a value X such that Val = X * Scale, or null if none. If 815 /// the multiplication is known not to overflow then NoSignedWrap is set. 816 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 817 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 818 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 819 Scale.getBitWidth() && "Scale not compatible with value!"); 820 821 // If Val is zero or Scale is one then Val = Val * Scale. 822 if (match(Val, m_Zero()) || Scale == 1) { 823 NoSignedWrap = true; 824 return Val; 825 } 826 827 // If Scale is zero then it does not divide Val. 828 if (Scale.isMinValue()) 829 return 0; 830 831 // Look through chains of multiplications, searching for a constant that is 832 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 833 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 834 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 835 // down from Val: 836 // 837 // Val = M1 * X || Analysis starts here and works down 838 // M1 = M2 * Y || Doesn't descend into terms with more 839 // M2 = Z * 4 \/ than one use 840 // 841 // Then to modify a term at the bottom: 842 // 843 // Val = M1 * X 844 // M1 = Z * Y || Replaced M2 with Z 845 // 846 // Then to work back up correcting nsw flags. 847 848 // Op - the term we are currently analyzing. Starts at Val then drills down. 849 // Replaced with its descaled value before exiting from the drill down loop. 850 Value *Op = Val; 851 852 // Parent - initially null, but after drilling down notes where Op came from. 853 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 854 // 0'th operand of Val. 855 std::pair<Instruction*, unsigned> Parent; 856 857 // RequireNoSignedWrap - Set if the transform requires a descaling at deeper 858 // levels that doesn't overflow. 859 bool RequireNoSignedWrap = false; 860 861 // logScale - log base 2 of the scale. Negative if not a power of 2. 862 int32_t logScale = Scale.exactLogBase2(); 863 864 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 865 866 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 867 // If Op is a constant divisible by Scale then descale to the quotient. 868 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 869 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 870 if (!Remainder.isMinValue()) 871 // Not divisible by Scale. 872 return 0; 873 // Replace with the quotient in the parent. 874 Op = ConstantInt::get(CI->getType(), Quotient); 875 NoSignedWrap = true; 876 break; 877 } 878 879 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 880 881 if (BO->getOpcode() == Instruction::Mul) { 882 // Multiplication. 883 NoSignedWrap = BO->hasNoSignedWrap(); 884 if (RequireNoSignedWrap && !NoSignedWrap) 885 return 0; 886 887 // There are three cases for multiplication: multiplication by exactly 888 // the scale, multiplication by a constant different to the scale, and 889 // multiplication by something else. 890 Value *LHS = BO->getOperand(0); 891 Value *RHS = BO->getOperand(1); 892 893 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 894 // Multiplication by a constant. 895 if (CI->getValue() == Scale) { 896 // Multiplication by exactly the scale, replace the multiplication 897 // by its left-hand side in the parent. 898 Op = LHS; 899 break; 900 } 901 902 // Otherwise drill down into the constant. 903 if (!Op->hasOneUse()) 904 return 0; 905 906 Parent = std::make_pair(BO, 1); 907 continue; 908 } 909 910 // Multiplication by something else. Drill down into the left-hand side 911 // since that's where the reassociate pass puts the good stuff. 912 if (!Op->hasOneUse()) 913 return 0; 914 915 Parent = std::make_pair(BO, 0); 916 continue; 917 } 918 919 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 920 isa<ConstantInt>(BO->getOperand(1))) { 921 // Multiplication by a power of 2. 922 NoSignedWrap = BO->hasNoSignedWrap(); 923 if (RequireNoSignedWrap && !NoSignedWrap) 924 return 0; 925 926 Value *LHS = BO->getOperand(0); 927 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 928 getLimitedValue(Scale.getBitWidth()); 929 // Op = LHS << Amt. 930 931 if (Amt == logScale) { 932 // Multiplication by exactly the scale, replace the multiplication 933 // by its left-hand side in the parent. 934 Op = LHS; 935 break; 936 } 937 if (Amt < logScale || !Op->hasOneUse()) 938 return 0; 939 940 // Multiplication by more than the scale. Reduce the multiplying amount 941 // by the scale in the parent. 942 Parent = std::make_pair(BO, 1); 943 Op = ConstantInt::get(BO->getType(), Amt - logScale); 944 break; 945 } 946 } 947 948 if (!Op->hasOneUse()) 949 return 0; 950 951 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 952 if (Cast->getOpcode() == Instruction::SExt) { 953 // Op is sign-extended from a smaller type, descale in the smaller type. 954 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 955 APInt SmallScale = Scale.trunc(SmallSize); 956 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 957 // descale Op as (sext Y) * Scale. In order to have 958 // sext (Y * SmallScale) = (sext Y) * Scale 959 // some conditions need to hold however: SmallScale must sign-extend to 960 // Scale and the multiplication Y * SmallScale should not overflow. 961 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 962 // SmallScale does not sign-extend to Scale. 963 return 0; 964 assert(SmallScale.exactLogBase2() == logScale); 965 // Require that Y * SmallScale must not overflow. 966 RequireNoSignedWrap = true; 967 968 // Drill down through the cast. 969 Parent = std::make_pair(Cast, 0); 970 Scale = SmallScale; 971 continue; 972 } 973 974 if (Cast->getOpcode() == Instruction::Trunc) { 975 // Op is truncated from a larger type, descale in the larger type. 976 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 977 // trunc (Y * sext Scale) = (trunc Y) * Scale 978 // always holds. However (trunc Y) * Scale may overflow even if 979 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 980 // from this point up in the expression (see later). 981 if (RequireNoSignedWrap) 982 return 0; 983 984 // Drill down through the cast. 985 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 986 Parent = std::make_pair(Cast, 0); 987 Scale = Scale.sext(LargeSize); 988 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 989 logScale = -1; 990 assert(Scale.exactLogBase2() == logScale); 991 continue; 992 } 993 } 994 995 // Unsupported expression, bail out. 996 return 0; 997 } 998 999 // We know that we can successfully descale, so from here on we can safely 1000 // modify the IR. Op holds the descaled version of the deepest term in the 1001 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1002 // not to overflow. 1003 1004 if (!Parent.first) 1005 // The expression only had one term. 1006 return Op; 1007 1008 // Rewrite the parent using the descaled version of its operand. 1009 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1010 assert(Op != Parent.first->getOperand(Parent.second) && 1011 "Descaling was a no-op?"); 1012 Parent.first->setOperand(Parent.second, Op); 1013 Worklist.Add(Parent.first); 1014 1015 // Now work back up the expression correcting nsw flags. The logic is based 1016 // on the following observation: if X * Y is known not to overflow as a signed 1017 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1018 // then X * Z will not overflow as a signed multiplication either. As we work 1019 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1020 // current level has strictly smaller absolute value than the original. 1021 Instruction *Ancestor = Parent.first; 1022 do { 1023 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1024 // If the multiplication wasn't nsw then we can't say anything about the 1025 // value of the descaled multiplication, and we have to clear nsw flags 1026 // from this point on up. 1027 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1028 NoSignedWrap &= OpNoSignedWrap; 1029 if (NoSignedWrap != OpNoSignedWrap) { 1030 BO->setHasNoSignedWrap(NoSignedWrap); 1031 Worklist.Add(Ancestor); 1032 } 1033 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1034 // The fact that the descaled input to the trunc has smaller absolute 1035 // value than the original input doesn't tell us anything useful about 1036 // the absolute values of the truncations. 1037 NoSignedWrap = false; 1038 } 1039 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1040 "Failed to keep proper track of nsw flags while drilling down?"); 1041 1042 if (Ancestor == Val) 1043 // Got to the top, all done! 1044 return Val; 1045 1046 // Move up one level in the expression. 1047 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1048 Ancestor = Ancestor->use_back(); 1049 } while (1); 1050 } 1051 1052 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1053 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1054 1055 if (Value *V = SimplifyGEPInst(Ops, TD)) 1056 return ReplaceInstUsesWith(GEP, V); 1057 1058 Value *PtrOp = GEP.getOperand(0); 1059 1060 // Eliminate unneeded casts for indices, and replace indices which displace 1061 // by multiples of a zero size type with zero. 1062 if (TD) { 1063 bool MadeChange = false; 1064 Type *IntPtrTy = TD->getIntPtrType(GEP.getPointerOperandType()); 1065 1066 gep_type_iterator GTI = gep_type_begin(GEP); 1067 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); 1068 I != E; ++I, ++GTI) { 1069 // Skip indices into struct types. 1070 SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI); 1071 if (!SeqTy) continue; 1072 1073 // If the element type has zero size then any index over it is equivalent 1074 // to an index of zero, so replace it with zero if it is not zero already. 1075 if (SeqTy->getElementType()->isSized() && 1076 TD->getTypeAllocSize(SeqTy->getElementType()) == 0) 1077 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { 1078 *I = Constant::getNullValue(IntPtrTy); 1079 MadeChange = true; 1080 } 1081 1082 Type *IndexTy = (*I)->getType(); 1083 if (IndexTy != IntPtrTy) { 1084 // If we are using a wider index than needed for this platform, shrink 1085 // it to what we need. If narrower, sign-extend it to what we need. 1086 // This explicit cast can make subsequent optimizations more obvious. 1087 *I = Builder->CreateIntCast(*I, IntPtrTy, true); 1088 MadeChange = true; 1089 } 1090 } 1091 if (MadeChange) return &GEP; 1092 } 1093 1094 // Combine Indices - If the source pointer to this getelementptr instruction 1095 // is a getelementptr instruction, combine the indices of the two 1096 // getelementptr instructions into a single instruction. 1097 // 1098 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) { 1099 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1100 return 0; 1101 1102 // Note that if our source is a gep chain itself then we wait for that 1103 // chain to be resolved before we perform this transformation. This 1104 // avoids us creating a TON of code in some cases. 1105 if (GEPOperator *SrcGEP = 1106 dyn_cast<GEPOperator>(Src->getOperand(0))) 1107 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1108 return 0; // Wait until our source is folded to completion. 1109 1110 SmallVector<Value*, 8> Indices; 1111 1112 // Find out whether the last index in the source GEP is a sequential idx. 1113 bool EndsWithSequential = false; 1114 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1115 I != E; ++I) 1116 EndsWithSequential = !(*I)->isStructTy(); 1117 1118 // Can we combine the two pointer arithmetics offsets? 1119 if (EndsWithSequential) { 1120 // Replace: gep (gep %P, long B), long A, ... 1121 // With: T = long A+B; gep %P, T, ... 1122 // 1123 Value *Sum; 1124 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1125 Value *GO1 = GEP.getOperand(1); 1126 if (SO1 == Constant::getNullValue(SO1->getType())) { 1127 Sum = GO1; 1128 } else if (GO1 == Constant::getNullValue(GO1->getType())) { 1129 Sum = SO1; 1130 } else { 1131 // If they aren't the same type, then the input hasn't been processed 1132 // by the loop above yet (which canonicalizes sequential index types to 1133 // intptr_t). Just avoid transforming this until the input has been 1134 // normalized. 1135 if (SO1->getType() != GO1->getType()) 1136 return 0; 1137 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum"); 1138 } 1139 1140 // Update the GEP in place if possible. 1141 if (Src->getNumOperands() == 2) { 1142 GEP.setOperand(0, Src->getOperand(0)); 1143 GEP.setOperand(1, Sum); 1144 return &GEP; 1145 } 1146 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1147 Indices.push_back(Sum); 1148 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1149 } else if (isa<Constant>(*GEP.idx_begin()) && 1150 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1151 Src->getNumOperands() != 1) { 1152 // Otherwise we can do the fold if the first index of the GEP is a zero 1153 Indices.append(Src->op_begin()+1, Src->op_end()); 1154 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1155 } 1156 1157 if (!Indices.empty()) 1158 return (GEP.isInBounds() && Src->isInBounds()) ? 1159 GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices, 1160 GEP.getName()) : 1161 GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName()); 1162 } 1163 1164 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 1165 Value *StrippedPtr = PtrOp->stripPointerCasts(); 1166 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType()); 1167 1168 // We do not handle pointer-vector geps here. 1169 if (!StrippedPtrTy) 1170 return 0; 1171 1172 if (StrippedPtr != PtrOp && 1173 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) { 1174 1175 bool HasZeroPointerIndex = false; 1176 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 1177 HasZeroPointerIndex = C->isZero(); 1178 1179 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 1180 // into : GEP [10 x i8]* X, i32 0, ... 1181 // 1182 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 1183 // into : GEP i8* X, ... 1184 // 1185 // This occurs when the program declares an array extern like "int X[];" 1186 if (HasZeroPointerIndex) { 1187 PointerType *CPTy = cast<PointerType>(PtrOp->getType()); 1188 if (ArrayType *CATy = 1189 dyn_cast<ArrayType>(CPTy->getElementType())) { 1190 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 1191 if (CATy->getElementType() == StrippedPtrTy->getElementType()) { 1192 // -> GEP i8* X, ... 1193 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 1194 GetElementPtrInst *Res = 1195 GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName()); 1196 Res->setIsInBounds(GEP.isInBounds()); 1197 return Res; 1198 } 1199 1200 if (ArrayType *XATy = 1201 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){ 1202 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 1203 if (CATy->getElementType() == XATy->getElementType()) { 1204 // -> GEP [10 x i8]* X, i32 0, ... 1205 // At this point, we know that the cast source type is a pointer 1206 // to an array of the same type as the destination pointer 1207 // array. Because the array type is never stepped over (there 1208 // is a leading zero) we can fold the cast into this GEP. 1209 GEP.setOperand(0, StrippedPtr); 1210 return &GEP; 1211 } 1212 } 1213 } 1214 } else if (GEP.getNumOperands() == 2) { 1215 // Transform things like: 1216 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 1217 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 1218 Type *SrcElTy = StrippedPtrTy->getElementType(); 1219 Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType(); 1220 if (TD && SrcElTy->isArrayTy() && 1221 TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) == 1222 TD->getTypeAllocSize(ResElTy)) { 1223 Value *Idx[2]; 1224 Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext())); 1225 Idx[1] = GEP.getOperand(1); 1226 Value *NewGEP = GEP.isInBounds() ? 1227 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) : 1228 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName()); 1229 // V and GEP are both pointer types --> BitCast 1230 return new BitCastInst(NewGEP, GEP.getType()); 1231 } 1232 1233 // Transform things like: 1234 // %V = mul i64 %N, 4 1235 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 1236 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 1237 if (TD && ResElTy->isSized() && SrcElTy->isSized()) { 1238 // Check that changing the type amounts to dividing the index by a scale 1239 // factor. 1240 uint64_t ResSize = TD->getTypeAllocSize(ResElTy); 1241 uint64_t SrcSize = TD->getTypeAllocSize(SrcElTy); 1242 if (ResSize && SrcSize % ResSize == 0) { 1243 Value *Idx = GEP.getOperand(1); 1244 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1245 uint64_t Scale = SrcSize / ResSize; 1246 1247 // Earlier transforms ensure that the index has type IntPtrType, which 1248 // considerably simplifies the logic by eliminating implicit casts. 1249 assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) && 1250 "Index not cast to pointer width?"); 1251 1252 bool NSW; 1253 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1254 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1255 // If the multiplication NewIdx * Scale may overflow then the new 1256 // GEP may not be "inbounds". 1257 Value *NewGEP = GEP.isInBounds() && NSW ? 1258 Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) : 1259 Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName()); 1260 // The NewGEP must be pointer typed, so must the old one -> BitCast 1261 return new BitCastInst(NewGEP, GEP.getType()); 1262 } 1263 } 1264 } 1265 1266 // Similarly, transform things like: 1267 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 1268 // (where tmp = 8*tmp2) into: 1269 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 1270 if (TD && ResElTy->isSized() && SrcElTy->isSized() && 1271 SrcElTy->isArrayTy()) { 1272 // Check that changing to the array element type amounts to dividing the 1273 // index by a scale factor. 1274 uint64_t ResSize = TD->getTypeAllocSize(ResElTy); 1275 uint64_t ArrayEltSize = 1276 TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()); 1277 if (ResSize && ArrayEltSize % ResSize == 0) { 1278 Value *Idx = GEP.getOperand(1); 1279 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1280 uint64_t Scale = ArrayEltSize / ResSize; 1281 1282 // Earlier transforms ensure that the index has type IntPtrType, which 1283 // considerably simplifies the logic by eliminating implicit casts. 1284 assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) && 1285 "Index not cast to pointer width?"); 1286 1287 bool NSW; 1288 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1289 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1290 // If the multiplication NewIdx * Scale may overflow then the new 1291 // GEP may not be "inbounds". 1292 Value *Off[2]; 1293 Off[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext())); 1294 Off[1] = NewIdx; 1295 Value *NewGEP = GEP.isInBounds() && NSW ? 1296 Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) : 1297 Builder->CreateGEP(StrippedPtr, Off, GEP.getName()); 1298 // The NewGEP must be pointer typed, so must the old one -> BitCast 1299 return new BitCastInst(NewGEP, GEP.getType()); 1300 } 1301 } 1302 } 1303 } 1304 } 1305 1306 /// See if we can simplify: 1307 /// X = bitcast A* to B* 1308 /// Y = gep X, <...constant indices...> 1309 /// into a gep of the original struct. This is important for SROA and alias 1310 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 1311 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) { 1312 if (TD && 1313 !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() && 1314 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) { 1315 1316 // Determine how much the GEP moves the pointer. 1317 SmallVector<Value*, 8> Ops(GEP.idx_begin(), GEP.idx_end()); 1318 int64_t Offset = TD->getIndexedOffset(GEP.getPointerOperandType(), Ops); 1319 1320 // If this GEP instruction doesn't move the pointer, just replace the GEP 1321 // with a bitcast of the real input to the dest type. 1322 if (Offset == 0) { 1323 // If the bitcast is of an allocation, and the allocation will be 1324 // converted to match the type of the cast, don't touch this. 1325 if (isa<AllocaInst>(BCI->getOperand(0)) || 1326 isAllocationFn(BCI->getOperand(0), TLI)) { 1327 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 1328 if (Instruction *I = visitBitCast(*BCI)) { 1329 if (I != BCI) { 1330 I->takeName(BCI); 1331 BCI->getParent()->getInstList().insert(BCI, I); 1332 ReplaceInstUsesWith(*BCI, I); 1333 } 1334 return &GEP; 1335 } 1336 } 1337 return new BitCastInst(BCI->getOperand(0), GEP.getType()); 1338 } 1339 1340 // Otherwise, if the offset is non-zero, we need to find out if there is a 1341 // field at Offset in 'A's type. If so, we can pull the cast through the 1342 // GEP. 1343 SmallVector<Value*, 8> NewIndices; 1344 Type *InTy = 1345 cast<PointerType>(BCI->getOperand(0)->getType())->getElementType(); 1346 if (FindElementAtOffset(InTy, Offset, NewIndices)) { 1347 Value *NGEP = GEP.isInBounds() ? 1348 Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) : 1349 Builder->CreateGEP(BCI->getOperand(0), NewIndices); 1350 1351 if (NGEP->getType() == GEP.getType()) 1352 return ReplaceInstUsesWith(GEP, NGEP); 1353 NGEP->takeName(&GEP); 1354 return new BitCastInst(NGEP, GEP.getType()); 1355 } 1356 } 1357 } 1358 1359 return 0; 1360 } 1361 1362 1363 1364 static bool 1365 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users, 1366 const TargetLibraryInfo *TLI) { 1367 SmallVector<Instruction*, 4> Worklist; 1368 Worklist.push_back(AI); 1369 1370 do { 1371 Instruction *PI = Worklist.pop_back_val(); 1372 for (Value::use_iterator UI = PI->use_begin(), UE = PI->use_end(); UI != UE; 1373 ++UI) { 1374 Instruction *I = cast<Instruction>(*UI); 1375 switch (I->getOpcode()) { 1376 default: 1377 // Give up the moment we see something we can't handle. 1378 return false; 1379 1380 case Instruction::BitCast: 1381 case Instruction::GetElementPtr: 1382 Users.push_back(I); 1383 Worklist.push_back(I); 1384 continue; 1385 1386 case Instruction::ICmp: { 1387 ICmpInst *ICI = cast<ICmpInst>(I); 1388 // We can fold eq/ne comparisons with null to false/true, respectively. 1389 if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1))) 1390 return false; 1391 Users.push_back(I); 1392 continue; 1393 } 1394 1395 case Instruction::Call: 1396 // Ignore no-op and store intrinsics. 1397 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1398 switch (II->getIntrinsicID()) { 1399 default: 1400 return false; 1401 1402 case Intrinsic::memmove: 1403 case Intrinsic::memcpy: 1404 case Intrinsic::memset: { 1405 MemIntrinsic *MI = cast<MemIntrinsic>(II); 1406 if (MI->isVolatile() || MI->getRawDest() != PI) 1407 return false; 1408 } 1409 // fall through 1410 case Intrinsic::dbg_declare: 1411 case Intrinsic::dbg_value: 1412 case Intrinsic::invariant_start: 1413 case Intrinsic::invariant_end: 1414 case Intrinsic::lifetime_start: 1415 case Intrinsic::lifetime_end: 1416 case Intrinsic::objectsize: 1417 Users.push_back(I); 1418 continue; 1419 } 1420 } 1421 1422 if (isFreeCall(I, TLI)) { 1423 Users.push_back(I); 1424 continue; 1425 } 1426 return false; 1427 1428 case Instruction::Store: { 1429 StoreInst *SI = cast<StoreInst>(I); 1430 if (SI->isVolatile() || SI->getPointerOperand() != PI) 1431 return false; 1432 Users.push_back(I); 1433 continue; 1434 } 1435 } 1436 llvm_unreachable("missing a return?"); 1437 } 1438 } while (!Worklist.empty()); 1439 return true; 1440 } 1441 1442 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 1443 // If we have a malloc call which is only used in any amount of comparisons 1444 // to null and free calls, delete the calls and replace the comparisons with 1445 // true or false as appropriate. 1446 SmallVector<WeakVH, 64> Users; 1447 if (isAllocSiteRemovable(&MI, Users, TLI)) { 1448 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 1449 Instruction *I = cast_or_null<Instruction>(&*Users[i]); 1450 if (!I) continue; 1451 1452 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 1453 ReplaceInstUsesWith(*C, 1454 ConstantInt::get(Type::getInt1Ty(C->getContext()), 1455 C->isFalseWhenEqual())); 1456 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) { 1457 ReplaceInstUsesWith(*I, UndefValue::get(I->getType())); 1458 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1459 if (II->getIntrinsicID() == Intrinsic::objectsize) { 1460 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1461 uint64_t DontKnow = CI->isZero() ? -1ULL : 0; 1462 ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow)); 1463 } 1464 } 1465 EraseInstFromFunction(*I); 1466 } 1467 1468 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 1469 // Replace invoke with a NOP intrinsic to maintain the original CFG 1470 Module *M = II->getParent()->getParent()->getParent(); 1471 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 1472 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 1473 ArrayRef<Value *>(), "", II->getParent()); 1474 } 1475 return EraseInstFromFunction(MI); 1476 } 1477 return 0; 1478 } 1479 1480 1481 1482 Instruction *InstCombiner::visitFree(CallInst &FI) { 1483 Value *Op = FI.getArgOperand(0); 1484 1485 // free undef -> unreachable. 1486 if (isa<UndefValue>(Op)) { 1487 // Insert a new store to null because we cannot modify the CFG here. 1488 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()), 1489 UndefValue::get(Type::getInt1PtrTy(FI.getContext()))); 1490 return EraseInstFromFunction(FI); 1491 } 1492 1493 // If we have 'free null' delete the instruction. This can happen in stl code 1494 // when lots of inlining happens. 1495 if (isa<ConstantPointerNull>(Op)) 1496 return EraseInstFromFunction(FI); 1497 1498 return 0; 1499 } 1500 1501 1502 1503 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 1504 // Change br (not X), label True, label False to: br X, label False, True 1505 Value *X = 0; 1506 BasicBlock *TrueDest; 1507 BasicBlock *FalseDest; 1508 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && 1509 !isa<Constant>(X)) { 1510 // Swap Destinations and condition... 1511 BI.setCondition(X); 1512 BI.swapSuccessors(); 1513 return &BI; 1514 } 1515 1516 // Cannonicalize fcmp_one -> fcmp_oeq 1517 FCmpInst::Predicate FPred; Value *Y; 1518 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), 1519 TrueDest, FalseDest)) && 1520 BI.getCondition()->hasOneUse()) 1521 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE || 1522 FPred == FCmpInst::FCMP_OGE) { 1523 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition()); 1524 Cond->setPredicate(FCmpInst::getInversePredicate(FPred)); 1525 1526 // Swap Destinations and condition. 1527 BI.swapSuccessors(); 1528 Worklist.Add(Cond); 1529 return &BI; 1530 } 1531 1532 // Cannonicalize icmp_ne -> icmp_eq 1533 ICmpInst::Predicate IPred; 1534 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)), 1535 TrueDest, FalseDest)) && 1536 BI.getCondition()->hasOneUse()) 1537 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE || 1538 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE || 1539 IPred == ICmpInst::ICMP_SGE) { 1540 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition()); 1541 Cond->setPredicate(ICmpInst::getInversePredicate(IPred)); 1542 // Swap Destinations and condition. 1543 BI.swapSuccessors(); 1544 Worklist.Add(Cond); 1545 return &BI; 1546 } 1547 1548 return 0; 1549 } 1550 1551 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 1552 Value *Cond = SI.getCondition(); 1553 if (Instruction *I = dyn_cast<Instruction>(Cond)) { 1554 if (I->getOpcode() == Instruction::Add) 1555 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 1556 // change 'switch (X+4) case 1:' into 'switch (X) case -3' 1557 // Skip the first item since that's the default case. 1558 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); 1559 i != e; ++i) { 1560 ConstantInt* CaseVal = i.getCaseValue(); 1561 Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal), 1562 AddRHS); 1563 assert(isa<ConstantInt>(NewCaseVal) && 1564 "Result of expression should be constant"); 1565 i.setValue(cast<ConstantInt>(NewCaseVal)); 1566 } 1567 SI.setCondition(I->getOperand(0)); 1568 Worklist.Add(I); 1569 return &SI; 1570 } 1571 } 1572 return 0; 1573 } 1574 1575 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 1576 Value *Agg = EV.getAggregateOperand(); 1577 1578 if (!EV.hasIndices()) 1579 return ReplaceInstUsesWith(EV, Agg); 1580 1581 if (Constant *C = dyn_cast<Constant>(Agg)) { 1582 if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) { 1583 if (EV.getNumIndices() == 0) 1584 return ReplaceInstUsesWith(EV, C2); 1585 // Extract the remaining indices out of the constant indexed by the 1586 // first index 1587 return ExtractValueInst::Create(C2, EV.getIndices().slice(1)); 1588 } 1589 return 0; // Can't handle other constants 1590 } 1591 1592 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 1593 // We're extracting from an insertvalue instruction, compare the indices 1594 const unsigned *exti, *exte, *insi, *inse; 1595 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 1596 exte = EV.idx_end(), inse = IV->idx_end(); 1597 exti != exte && insi != inse; 1598 ++exti, ++insi) { 1599 if (*insi != *exti) 1600 // The insert and extract both reference distinctly different elements. 1601 // This means the extract is not influenced by the insert, and we can 1602 // replace the aggregate operand of the extract with the aggregate 1603 // operand of the insert. i.e., replace 1604 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 1605 // %E = extractvalue { i32, { i32 } } %I, 0 1606 // with 1607 // %E = extractvalue { i32, { i32 } } %A, 0 1608 return ExtractValueInst::Create(IV->getAggregateOperand(), 1609 EV.getIndices()); 1610 } 1611 if (exti == exte && insi == inse) 1612 // Both iterators are at the end: Index lists are identical. Replace 1613 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 1614 // %C = extractvalue { i32, { i32 } } %B, 1, 0 1615 // with "i32 42" 1616 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand()); 1617 if (exti == exte) { 1618 // The extract list is a prefix of the insert list. i.e. replace 1619 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 1620 // %E = extractvalue { i32, { i32 } } %I, 1 1621 // with 1622 // %X = extractvalue { i32, { i32 } } %A, 1 1623 // %E = insertvalue { i32 } %X, i32 42, 0 1624 // by switching the order of the insert and extract (though the 1625 // insertvalue should be left in, since it may have other uses). 1626 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(), 1627 EV.getIndices()); 1628 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 1629 makeArrayRef(insi, inse)); 1630 } 1631 if (insi == inse) 1632 // The insert list is a prefix of the extract list 1633 // We can simply remove the common indices from the extract and make it 1634 // operate on the inserted value instead of the insertvalue result. 1635 // i.e., replace 1636 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 1637 // %E = extractvalue { i32, { i32 } } %I, 1, 0 1638 // with 1639 // %E extractvalue { i32 } { i32 42 }, 0 1640 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 1641 makeArrayRef(exti, exte)); 1642 } 1643 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { 1644 // We're extracting from an intrinsic, see if we're the only user, which 1645 // allows us to simplify multiple result intrinsics to simpler things that 1646 // just get one value. 1647 if (II->hasOneUse()) { 1648 // Check if we're grabbing the overflow bit or the result of a 'with 1649 // overflow' intrinsic. If it's the latter we can remove the intrinsic 1650 // and replace it with a traditional binary instruction. 1651 switch (II->getIntrinsicID()) { 1652 case Intrinsic::uadd_with_overflow: 1653 case Intrinsic::sadd_with_overflow: 1654 if (*EV.idx_begin() == 0) { // Normal result. 1655 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 1656 ReplaceInstUsesWith(*II, UndefValue::get(II->getType())); 1657 EraseInstFromFunction(*II); 1658 return BinaryOperator::CreateAdd(LHS, RHS); 1659 } 1660 1661 // If the normal result of the add is dead, and the RHS is a constant, 1662 // we can transform this into a range comparison. 1663 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 1664 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) 1665 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1))) 1666 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0), 1667 ConstantExpr::getNot(CI)); 1668 break; 1669 case Intrinsic::usub_with_overflow: 1670 case Intrinsic::ssub_with_overflow: 1671 if (*EV.idx_begin() == 0) { // Normal result. 1672 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 1673 ReplaceInstUsesWith(*II, UndefValue::get(II->getType())); 1674 EraseInstFromFunction(*II); 1675 return BinaryOperator::CreateSub(LHS, RHS); 1676 } 1677 break; 1678 case Intrinsic::umul_with_overflow: 1679 case Intrinsic::smul_with_overflow: 1680 if (*EV.idx_begin() == 0) { // Normal result. 1681 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 1682 ReplaceInstUsesWith(*II, UndefValue::get(II->getType())); 1683 EraseInstFromFunction(*II); 1684 return BinaryOperator::CreateMul(LHS, RHS); 1685 } 1686 break; 1687 default: 1688 break; 1689 } 1690 } 1691 } 1692 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 1693 // If the (non-volatile) load only has one use, we can rewrite this to a 1694 // load from a GEP. This reduces the size of the load. 1695 // FIXME: If a load is used only by extractvalue instructions then this 1696 // could be done regardless of having multiple uses. 1697 if (L->isSimple() && L->hasOneUse()) { 1698 // extractvalue has integer indices, getelementptr has Value*s. Convert. 1699 SmallVector<Value*, 4> Indices; 1700 // Prefix an i32 0 since we need the first element. 1701 Indices.push_back(Builder->getInt32(0)); 1702 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 1703 I != E; ++I) 1704 Indices.push_back(Builder->getInt32(*I)); 1705 1706 // We need to insert these at the location of the old load, not at that of 1707 // the extractvalue. 1708 Builder->SetInsertPoint(L->getParent(), L); 1709 Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices); 1710 // Returning the load directly will cause the main loop to insert it in 1711 // the wrong spot, so use ReplaceInstUsesWith(). 1712 return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP)); 1713 } 1714 // We could simplify extracts from other values. Note that nested extracts may 1715 // already be simplified implicitly by the above: extract (extract (insert) ) 1716 // will be translated into extract ( insert ( extract ) ) first and then just 1717 // the value inserted, if appropriate. Similarly for extracts from single-use 1718 // loads: extract (extract (load)) will be translated to extract (load (gep)) 1719 // and if again single-use then via load (gep (gep)) to load (gep). 1720 // However, double extracts from e.g. function arguments or return values 1721 // aren't handled yet. 1722 return 0; 1723 } 1724 1725 enum Personality_Type { 1726 Unknown_Personality, 1727 GNU_Ada_Personality, 1728 GNU_CXX_Personality, 1729 GNU_ObjC_Personality 1730 }; 1731 1732 /// RecognizePersonality - See if the given exception handling personality 1733 /// function is one that we understand. If so, return a description of it; 1734 /// otherwise return Unknown_Personality. 1735 static Personality_Type RecognizePersonality(Value *Pers) { 1736 Function *F = dyn_cast<Function>(Pers->stripPointerCasts()); 1737 if (!F) 1738 return Unknown_Personality; 1739 return StringSwitch<Personality_Type>(F->getName()) 1740 .Case("__gnat_eh_personality", GNU_Ada_Personality) 1741 .Case("__gxx_personality_v0", GNU_CXX_Personality) 1742 .Case("__objc_personality_v0", GNU_ObjC_Personality) 1743 .Default(Unknown_Personality); 1744 } 1745 1746 /// isCatchAll - Return 'true' if the given typeinfo will match anything. 1747 static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) { 1748 switch (Personality) { 1749 case Unknown_Personality: 1750 return false; 1751 case GNU_Ada_Personality: 1752 // While __gnat_all_others_value will match any Ada exception, it doesn't 1753 // match foreign exceptions (or didn't, before gcc-4.7). 1754 return false; 1755 case GNU_CXX_Personality: 1756 case GNU_ObjC_Personality: 1757 return TypeInfo->isNullValue(); 1758 } 1759 llvm_unreachable("Unknown personality!"); 1760 } 1761 1762 static bool shorter_filter(const Value *LHS, const Value *RHS) { 1763 return 1764 cast<ArrayType>(LHS->getType())->getNumElements() 1765 < 1766 cast<ArrayType>(RHS->getType())->getNumElements(); 1767 } 1768 1769 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 1770 // The logic here should be correct for any real-world personality function. 1771 // However if that turns out not to be true, the offending logic can always 1772 // be conditioned on the personality function, like the catch-all logic is. 1773 Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn()); 1774 1775 // Simplify the list of clauses, eg by removing repeated catch clauses 1776 // (these are often created by inlining). 1777 bool MakeNewInstruction = false; // If true, recreate using the following: 1778 SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction; 1779 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 1780 1781 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 1782 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 1783 bool isLastClause = i + 1 == e; 1784 if (LI.isCatch(i)) { 1785 // A catch clause. 1786 Value *CatchClause = LI.getClause(i); 1787 Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts()); 1788 1789 // If we already saw this clause, there is no point in having a second 1790 // copy of it. 1791 if (AlreadyCaught.insert(TypeInfo)) { 1792 // This catch clause was not already seen. 1793 NewClauses.push_back(CatchClause); 1794 } else { 1795 // Repeated catch clause - drop the redundant copy. 1796 MakeNewInstruction = true; 1797 } 1798 1799 // If this is a catch-all then there is no point in keeping any following 1800 // clauses or marking the landingpad as having a cleanup. 1801 if (isCatchAll(Personality, TypeInfo)) { 1802 if (!isLastClause) 1803 MakeNewInstruction = true; 1804 CleanupFlag = false; 1805 break; 1806 } 1807 } else { 1808 // A filter clause. If any of the filter elements were already caught 1809 // then they can be dropped from the filter. It is tempting to try to 1810 // exploit the filter further by saying that any typeinfo that does not 1811 // occur in the filter can't be caught later (and thus can be dropped). 1812 // However this would be wrong, since typeinfos can match without being 1813 // equal (for example if one represents a C++ class, and the other some 1814 // class derived from it). 1815 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 1816 Value *FilterClause = LI.getClause(i); 1817 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 1818 unsigned NumTypeInfos = FilterType->getNumElements(); 1819 1820 // An empty filter catches everything, so there is no point in keeping any 1821 // following clauses or marking the landingpad as having a cleanup. By 1822 // dealing with this case here the following code is made a bit simpler. 1823 if (!NumTypeInfos) { 1824 NewClauses.push_back(FilterClause); 1825 if (!isLastClause) 1826 MakeNewInstruction = true; 1827 CleanupFlag = false; 1828 break; 1829 } 1830 1831 bool MakeNewFilter = false; // If true, make a new filter. 1832 SmallVector<Constant *, 16> NewFilterElts; // New elements. 1833 if (isa<ConstantAggregateZero>(FilterClause)) { 1834 // Not an empty filter - it contains at least one null typeinfo. 1835 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 1836 Constant *TypeInfo = 1837 Constant::getNullValue(FilterType->getElementType()); 1838 // If this typeinfo is a catch-all then the filter can never match. 1839 if (isCatchAll(Personality, TypeInfo)) { 1840 // Throw the filter away. 1841 MakeNewInstruction = true; 1842 continue; 1843 } 1844 1845 // There is no point in having multiple copies of this typeinfo, so 1846 // discard all but the first copy if there is more than one. 1847 NewFilterElts.push_back(TypeInfo); 1848 if (NumTypeInfos > 1) 1849 MakeNewFilter = true; 1850 } else { 1851 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 1852 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 1853 NewFilterElts.reserve(NumTypeInfos); 1854 1855 // Remove any filter elements that were already caught or that already 1856 // occurred in the filter. While there, see if any of the elements are 1857 // catch-alls. If so, the filter can be discarded. 1858 bool SawCatchAll = false; 1859 for (unsigned j = 0; j != NumTypeInfos; ++j) { 1860 Value *Elt = Filter->getOperand(j); 1861 Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts()); 1862 if (isCatchAll(Personality, TypeInfo)) { 1863 // This element is a catch-all. Bail out, noting this fact. 1864 SawCatchAll = true; 1865 break; 1866 } 1867 if (AlreadyCaught.count(TypeInfo)) 1868 // Already caught by an earlier clause, so having it in the filter 1869 // is pointless. 1870 continue; 1871 // There is no point in having multiple copies of the same typeinfo in 1872 // a filter, so only add it if we didn't already. 1873 if (SeenInFilter.insert(TypeInfo)) 1874 NewFilterElts.push_back(cast<Constant>(Elt)); 1875 } 1876 // A filter containing a catch-all cannot match anything by definition. 1877 if (SawCatchAll) { 1878 // Throw the filter away. 1879 MakeNewInstruction = true; 1880 continue; 1881 } 1882 1883 // If we dropped something from the filter, make a new one. 1884 if (NewFilterElts.size() < NumTypeInfos) 1885 MakeNewFilter = true; 1886 } 1887 if (MakeNewFilter) { 1888 FilterType = ArrayType::get(FilterType->getElementType(), 1889 NewFilterElts.size()); 1890 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 1891 MakeNewInstruction = true; 1892 } 1893 1894 NewClauses.push_back(FilterClause); 1895 1896 // If the new filter is empty then it will catch everything so there is 1897 // no point in keeping any following clauses or marking the landingpad 1898 // as having a cleanup. The case of the original filter being empty was 1899 // already handled above. 1900 if (MakeNewFilter && !NewFilterElts.size()) { 1901 assert(MakeNewInstruction && "New filter but not a new instruction!"); 1902 CleanupFlag = false; 1903 break; 1904 } 1905 } 1906 } 1907 1908 // If several filters occur in a row then reorder them so that the shortest 1909 // filters come first (those with the smallest number of elements). This is 1910 // advantageous because shorter filters are more likely to match, speeding up 1911 // unwinding, but mostly because it increases the effectiveness of the other 1912 // filter optimizations below. 1913 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 1914 unsigned j; 1915 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 1916 for (j = i; j != e; ++j) 1917 if (!isa<ArrayType>(NewClauses[j]->getType())) 1918 break; 1919 1920 // Check whether the filters are already sorted by length. We need to know 1921 // if sorting them is actually going to do anything so that we only make a 1922 // new landingpad instruction if it does. 1923 for (unsigned k = i; k + 1 < j; ++k) 1924 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 1925 // Not sorted, so sort the filters now. Doing an unstable sort would be 1926 // correct too but reordering filters pointlessly might confuse users. 1927 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 1928 shorter_filter); 1929 MakeNewInstruction = true; 1930 break; 1931 } 1932 1933 // Look for the next batch of filters. 1934 i = j + 1; 1935 } 1936 1937 // If typeinfos matched if and only if equal, then the elements of a filter L 1938 // that occurs later than a filter F could be replaced by the intersection of 1939 // the elements of F and L. In reality two typeinfos can match without being 1940 // equal (for example if one represents a C++ class, and the other some class 1941 // derived from it) so it would be wrong to perform this transform in general. 1942 // However the transform is correct and useful if F is a subset of L. In that 1943 // case L can be replaced by F, and thus removed altogether since repeating a 1944 // filter is pointless. So here we look at all pairs of filters F and L where 1945 // L follows F in the list of clauses, and remove L if every element of F is 1946 // an element of L. This can occur when inlining C++ functions with exception 1947 // specifications. 1948 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 1949 // Examine each filter in turn. 1950 Value *Filter = NewClauses[i]; 1951 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 1952 if (!FTy) 1953 // Not a filter - skip it. 1954 continue; 1955 unsigned FElts = FTy->getNumElements(); 1956 // Examine each filter following this one. Doing this backwards means that 1957 // we don't have to worry about filters disappearing under us when removed. 1958 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 1959 Value *LFilter = NewClauses[j]; 1960 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 1961 if (!LTy) 1962 // Not a filter - skip it. 1963 continue; 1964 // If Filter is a subset of LFilter, i.e. every element of Filter is also 1965 // an element of LFilter, then discard LFilter. 1966 SmallVector<Value *, 16>::iterator J = NewClauses.begin() + j; 1967 // If Filter is empty then it is a subset of LFilter. 1968 if (!FElts) { 1969 // Discard LFilter. 1970 NewClauses.erase(J); 1971 MakeNewInstruction = true; 1972 // Move on to the next filter. 1973 continue; 1974 } 1975 unsigned LElts = LTy->getNumElements(); 1976 // If Filter is longer than LFilter then it cannot be a subset of it. 1977 if (FElts > LElts) 1978 // Move on to the next filter. 1979 continue; 1980 // At this point we know that LFilter has at least one element. 1981 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 1982 // Filter is a subset of LFilter iff Filter contains only zeros (as we 1983 // already know that Filter is not longer than LFilter). 1984 if (isa<ConstantAggregateZero>(Filter)) { 1985 assert(FElts <= LElts && "Should have handled this case earlier!"); 1986 // Discard LFilter. 1987 NewClauses.erase(J); 1988 MakeNewInstruction = true; 1989 } 1990 // Move on to the next filter. 1991 continue; 1992 } 1993 ConstantArray *LArray = cast<ConstantArray>(LFilter); 1994 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 1995 // Since Filter is non-empty and contains only zeros, it is a subset of 1996 // LFilter iff LFilter contains a zero. 1997 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 1998 for (unsigned l = 0; l != LElts; ++l) 1999 if (LArray->getOperand(l)->isNullValue()) { 2000 // LFilter contains a zero - discard it. 2001 NewClauses.erase(J); 2002 MakeNewInstruction = true; 2003 break; 2004 } 2005 // Move on to the next filter. 2006 continue; 2007 } 2008 // At this point we know that both filters are ConstantArrays. Loop over 2009 // operands to see whether every element of Filter is also an element of 2010 // LFilter. Since filters tend to be short this is probably faster than 2011 // using a method that scales nicely. 2012 ConstantArray *FArray = cast<ConstantArray>(Filter); 2013 bool AllFound = true; 2014 for (unsigned f = 0; f != FElts; ++f) { 2015 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 2016 AllFound = false; 2017 for (unsigned l = 0; l != LElts; ++l) { 2018 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 2019 if (LTypeInfo == FTypeInfo) { 2020 AllFound = true; 2021 break; 2022 } 2023 } 2024 if (!AllFound) 2025 break; 2026 } 2027 if (AllFound) { 2028 // Discard LFilter. 2029 NewClauses.erase(J); 2030 MakeNewInstruction = true; 2031 } 2032 // Move on to the next filter. 2033 } 2034 } 2035 2036 // If we changed any of the clauses, replace the old landingpad instruction 2037 // with a new one. 2038 if (MakeNewInstruction) { 2039 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 2040 LI.getPersonalityFn(), 2041 NewClauses.size()); 2042 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 2043 NLI->addClause(NewClauses[i]); 2044 // A landing pad with no clauses must have the cleanup flag set. It is 2045 // theoretically possible, though highly unlikely, that we eliminated all 2046 // clauses. If so, force the cleanup flag to true. 2047 if (NewClauses.empty()) 2048 CleanupFlag = true; 2049 NLI->setCleanup(CleanupFlag); 2050 return NLI; 2051 } 2052 2053 // Even if none of the clauses changed, we may nonetheless have understood 2054 // that the cleanup flag is pointless. Clear it if so. 2055 if (LI.isCleanup() != CleanupFlag) { 2056 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 2057 LI.setCleanup(CleanupFlag); 2058 return &LI; 2059 } 2060 2061 return 0; 2062 } 2063 2064 2065 2066 2067 /// TryToSinkInstruction - Try to move the specified instruction from its 2068 /// current block into the beginning of DestBlock, which can only happen if it's 2069 /// safe to move the instruction past all of the instructions between it and the 2070 /// end of its block. 2071 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 2072 assert(I->hasOneUse() && "Invariants didn't hold!"); 2073 2074 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 2075 if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() || 2076 isa<TerminatorInst>(I)) 2077 return false; 2078 2079 // Do not sink alloca instructions out of the entry block. 2080 if (isa<AllocaInst>(I) && I->getParent() == 2081 &DestBlock->getParent()->getEntryBlock()) 2082 return false; 2083 2084 // We can only sink load instructions if there is nothing between the load and 2085 // the end of block that could change the value. 2086 if (I->mayReadFromMemory()) { 2087 for (BasicBlock::iterator Scan = I, E = I->getParent()->end(); 2088 Scan != E; ++Scan) 2089 if (Scan->mayWriteToMemory()) 2090 return false; 2091 } 2092 2093 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 2094 I->moveBefore(InsertPos); 2095 ++NumSunkInst; 2096 return true; 2097 } 2098 2099 2100 /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding 2101 /// all reachable code to the worklist. 2102 /// 2103 /// This has a couple of tricks to make the code faster and more powerful. In 2104 /// particular, we constant fold and DCE instructions as we go, to avoid adding 2105 /// them to the worklist (this significantly speeds up instcombine on code where 2106 /// many instructions are dead or constant). Additionally, if we find a branch 2107 /// whose condition is a known constant, we only visit the reachable successors. 2108 /// 2109 static bool AddReachableCodeToWorklist(BasicBlock *BB, 2110 SmallPtrSet<BasicBlock*, 64> &Visited, 2111 InstCombiner &IC, 2112 const DataLayout *TD, 2113 const TargetLibraryInfo *TLI) { 2114 bool MadeIRChange = false; 2115 SmallVector<BasicBlock*, 256> Worklist; 2116 Worklist.push_back(BB); 2117 2118 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 2119 DenseMap<ConstantExpr*, Constant*> FoldedConstants; 2120 2121 do { 2122 BB = Worklist.pop_back_val(); 2123 2124 // We have now visited this block! If we've already been here, ignore it. 2125 if (!Visited.insert(BB)) continue; 2126 2127 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 2128 Instruction *Inst = BBI++; 2129 2130 // DCE instruction if trivially dead. 2131 if (isInstructionTriviallyDead(Inst, TLI)) { 2132 ++NumDeadInst; 2133 DEBUG(errs() << "IC: DCE: " << *Inst << '\n'); 2134 Inst->eraseFromParent(); 2135 continue; 2136 } 2137 2138 // ConstantProp instruction if trivially constant. 2139 if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0))) 2140 if (Constant *C = ConstantFoldInstruction(Inst, TD, TLI)) { 2141 DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " 2142 << *Inst << '\n'); 2143 Inst->replaceAllUsesWith(C); 2144 ++NumConstProp; 2145 Inst->eraseFromParent(); 2146 continue; 2147 } 2148 2149 if (TD) { 2150 // See if we can constant fold its operands. 2151 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); 2152 i != e; ++i) { 2153 ConstantExpr *CE = dyn_cast<ConstantExpr>(i); 2154 if (CE == 0) continue; 2155 2156 Constant*& FoldRes = FoldedConstants[CE]; 2157 if (!FoldRes) 2158 FoldRes = ConstantFoldConstantExpression(CE, TD, TLI); 2159 if (!FoldRes) 2160 FoldRes = CE; 2161 2162 if (FoldRes != CE) { 2163 *i = FoldRes; 2164 MadeIRChange = true; 2165 } 2166 } 2167 } 2168 2169 InstrsForInstCombineWorklist.push_back(Inst); 2170 } 2171 2172 // Recursively visit successors. If this is a branch or switch on a 2173 // constant, only visit the reachable successor. 2174 TerminatorInst *TI = BB->getTerminator(); 2175 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2176 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 2177 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 2178 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 2179 Worklist.push_back(ReachableBB); 2180 continue; 2181 } 2182 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2183 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 2184 // See if this is an explicit destination. 2185 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2186 i != e; ++i) 2187 if (i.getCaseValue() == Cond) { 2188 BasicBlock *ReachableBB = i.getCaseSuccessor(); 2189 Worklist.push_back(ReachableBB); 2190 continue; 2191 } 2192 2193 // Otherwise it is the default destination. 2194 Worklist.push_back(SI->getDefaultDest()); 2195 continue; 2196 } 2197 } 2198 2199 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 2200 Worklist.push_back(TI->getSuccessor(i)); 2201 } while (!Worklist.empty()); 2202 2203 // Once we've found all of the instructions to add to instcombine's worklist, 2204 // add them in reverse order. This way instcombine will visit from the top 2205 // of the function down. This jives well with the way that it adds all uses 2206 // of instructions to the worklist after doing a transformation, thus avoiding 2207 // some N^2 behavior in pathological cases. 2208 IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0], 2209 InstrsForInstCombineWorklist.size()); 2210 2211 return MadeIRChange; 2212 } 2213 2214 bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { 2215 MadeIRChange = false; 2216 2217 DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 2218 << F.getName() << "\n"); 2219 2220 { 2221 // Do a depth-first traversal of the function, populate the worklist with 2222 // the reachable instructions. Ignore blocks that are not reachable. Keep 2223 // track of which blocks we visit. 2224 SmallPtrSet<BasicBlock*, 64> Visited; 2225 MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD, 2226 TLI); 2227 2228 // Do a quick scan over the function. If we find any blocks that are 2229 // unreachable, remove any instructions inside of them. This prevents 2230 // the instcombine code from having to deal with some bad special cases. 2231 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 2232 if (Visited.count(BB)) continue; 2233 2234 // Delete the instructions backwards, as it has a reduced likelihood of 2235 // having to update as many def-use and use-def chains. 2236 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2237 while (EndInst != BB->begin()) { 2238 // Delete the next to last instruction. 2239 BasicBlock::iterator I = EndInst; 2240 Instruction *Inst = --I; 2241 if (!Inst->use_empty()) 2242 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2243 if (isa<LandingPadInst>(Inst)) { 2244 EndInst = Inst; 2245 continue; 2246 } 2247 if (!isa<DbgInfoIntrinsic>(Inst)) { 2248 ++NumDeadInst; 2249 MadeIRChange = true; 2250 } 2251 Inst->eraseFromParent(); 2252 } 2253 } 2254 } 2255 2256 while (!Worklist.isEmpty()) { 2257 Instruction *I = Worklist.RemoveOne(); 2258 if (I == 0) continue; // skip null values. 2259 2260 // Check to see if we can DCE the instruction. 2261 if (isInstructionTriviallyDead(I, TLI)) { 2262 DEBUG(errs() << "IC: DCE: " << *I << '\n'); 2263 EraseInstFromFunction(*I); 2264 ++NumDeadInst; 2265 MadeIRChange = true; 2266 continue; 2267 } 2268 2269 // Instruction isn't dead, see if we can constant propagate it. 2270 if (!I->use_empty() && isa<Constant>(I->getOperand(0))) 2271 if (Constant *C = ConstantFoldInstruction(I, TD, TLI)) { 2272 DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n'); 2273 2274 // Add operands to the worklist. 2275 ReplaceInstUsesWith(*I, C); 2276 ++NumConstProp; 2277 EraseInstFromFunction(*I); 2278 MadeIRChange = true; 2279 continue; 2280 } 2281 2282 // See if we can trivially sink this instruction to a successor basic block. 2283 if (I->hasOneUse()) { 2284 BasicBlock *BB = I->getParent(); 2285 Instruction *UserInst = cast<Instruction>(I->use_back()); 2286 BasicBlock *UserParent; 2287 2288 // Get the block the use occurs in. 2289 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 2290 UserParent = PN->getIncomingBlock(I->use_begin().getUse()); 2291 else 2292 UserParent = UserInst->getParent(); 2293 2294 if (UserParent != BB) { 2295 bool UserIsSuccessor = false; 2296 // See if the user is one of our successors. 2297 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 2298 if (*SI == UserParent) { 2299 UserIsSuccessor = true; 2300 break; 2301 } 2302 2303 // If the user is one of our immediate successors, and if that successor 2304 // only has us as a predecessors (we'd have to split the critical edge 2305 // otherwise), we can keep going. 2306 if (UserIsSuccessor && UserParent->getSinglePredecessor()) 2307 // Okay, the CFG is simple enough, try to sink this instruction. 2308 MadeIRChange |= TryToSinkInstruction(I, UserParent); 2309 } 2310 } 2311 2312 // Now that we have an instruction, try combining it to simplify it. 2313 Builder->SetInsertPoint(I->getParent(), I); 2314 Builder->SetCurrentDebugLocation(I->getDebugLoc()); 2315 2316 #ifndef NDEBUG 2317 std::string OrigI; 2318 #endif 2319 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 2320 DEBUG(errs() << "IC: Visiting: " << OrigI << '\n'); 2321 2322 if (Instruction *Result = visit(*I)) { 2323 ++NumCombined; 2324 // Should we replace the old instruction with a new one? 2325 if (Result != I) { 2326 DEBUG(errs() << "IC: Old = " << *I << '\n' 2327 << " New = " << *Result << '\n'); 2328 2329 if (!I->getDebugLoc().isUnknown()) 2330 Result->setDebugLoc(I->getDebugLoc()); 2331 // Everything uses the new instruction now. 2332 I->replaceAllUsesWith(Result); 2333 2334 // Move the name to the new instruction first. 2335 Result->takeName(I); 2336 2337 // Push the new instruction and any users onto the worklist. 2338 Worklist.Add(Result); 2339 Worklist.AddUsersToWorkList(*Result); 2340 2341 // Insert the new instruction into the basic block... 2342 BasicBlock *InstParent = I->getParent(); 2343 BasicBlock::iterator InsertPos = I; 2344 2345 // If we replace a PHI with something that isn't a PHI, fix up the 2346 // insertion point. 2347 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 2348 InsertPos = InstParent->getFirstInsertionPt(); 2349 2350 InstParent->getInstList().insert(InsertPos, Result); 2351 2352 EraseInstFromFunction(*I); 2353 } else { 2354 #ifndef NDEBUG 2355 DEBUG(errs() << "IC: Mod = " << OrigI << '\n' 2356 << " New = " << *I << '\n'); 2357 #endif 2358 2359 // If the instruction was modified, it's possible that it is now dead. 2360 // if so, remove it. 2361 if (isInstructionTriviallyDead(I, TLI)) { 2362 EraseInstFromFunction(*I); 2363 } else { 2364 Worklist.Add(I); 2365 Worklist.AddUsersToWorkList(*I); 2366 } 2367 } 2368 MadeIRChange = true; 2369 } 2370 } 2371 2372 Worklist.Zap(); 2373 return MadeIRChange; 2374 } 2375 2376 namespace { 2377 class InstCombinerLibCallSimplifier : public LibCallSimplifier { 2378 InstCombiner *IC; 2379 public: 2380 InstCombinerLibCallSimplifier(const DataLayout *TD, 2381 const TargetLibraryInfo *TLI, 2382 InstCombiner *IC) 2383 : LibCallSimplifier(TD, TLI, UnsafeFPShrink) { 2384 this->IC = IC; 2385 } 2386 2387 /// replaceAllUsesWith - override so that instruction replacement 2388 /// can be defined in terms of the instruction combiner framework. 2389 virtual void replaceAllUsesWith(Instruction *I, Value *With) const { 2390 IC->ReplaceInstUsesWith(*I, With); 2391 } 2392 }; 2393 } 2394 2395 bool InstCombiner::runOnFunction(Function &F) { 2396 TD = getAnalysisIfAvailable<DataLayout>(); 2397 TLI = &getAnalysis<TargetLibraryInfo>(); 2398 2399 /// Builder - This is an IRBuilder that automatically inserts new 2400 /// instructions into the worklist when they are created. 2401 IRBuilder<true, TargetFolder, InstCombineIRInserter> 2402 TheBuilder(F.getContext(), TargetFolder(TD), 2403 InstCombineIRInserter(Worklist)); 2404 Builder = &TheBuilder; 2405 2406 InstCombinerLibCallSimplifier TheSimplifier(TD, TLI, this); 2407 Simplifier = &TheSimplifier; 2408 2409 bool EverMadeChange = false; 2410 2411 // Lower dbg.declare intrinsics otherwise their value may be clobbered 2412 // by instcombiner. 2413 EverMadeChange = LowerDbgDeclare(F); 2414 2415 // Iterate while there is work to do. 2416 unsigned Iteration = 0; 2417 while (DoOneIteration(F, Iteration++)) 2418 EverMadeChange = true; 2419 2420 Builder = 0; 2421 return EverMadeChange; 2422 } 2423 2424 FunctionPass *llvm::createInstructionCombiningPass() { 2425 return new InstCombiner(); 2426 } 2427