1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/TinyPtrVector.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/BlockFrequencyInfo.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/MemoryBuiltins.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ProfileSummaryInfo.h" 60 #include "llvm/Analysis/TargetFolder.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/ValueTracking.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DIBuilder.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Dominators.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/IRBuilder.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/LegacyPassManager.h" 80 #include "llvm/IR/Metadata.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PassManager.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/Use.h" 86 #include "llvm/IR/User.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/IR/ValueHandle.h" 89 #include "llvm/InitializePasses.h" 90 #include "llvm/Pass.h" 91 #include "llvm/Support/CBindingWrapping.h" 92 #include "llvm/Support/Casting.h" 93 #include "llvm/Support/CommandLine.h" 94 #include "llvm/Support/Compiler.h" 95 #include "llvm/Support/Debug.h" 96 #include "llvm/Support/DebugCounter.h" 97 #include "llvm/Support/ErrorHandling.h" 98 #include "llvm/Support/KnownBits.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Transforms/InstCombine/InstCombine.h" 101 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <algorithm> 104 #include <cassert> 105 #include <cstdint> 106 #include <memory> 107 #include <string> 108 #include <utility> 109 110 using namespace llvm; 111 using namespace llvm::PatternMatch; 112 113 #define DEBUG_TYPE "instcombine" 114 115 STATISTIC(NumCombined , "Number of insts combined"); 116 STATISTIC(NumConstProp, "Number of constant folds"); 117 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 118 STATISTIC(NumSunkInst , "Number of instructions sunk"); 119 STATISTIC(NumExpand, "Number of expansions"); 120 STATISTIC(NumFactor , "Number of factorizations"); 121 STATISTIC(NumReassoc , "Number of reassociations"); 122 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 123 "Controls which instructions are visited"); 124 125 static constexpr unsigned InstCombineDefaultMaxIterations = 1000; 126 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; 127 128 static cl::opt<bool> 129 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 130 cl::init(true)); 131 132 static cl::opt<bool> 133 EnableExpensiveCombines("expensive-combines", 134 cl::desc("Enable expensive instruction combines")); 135 136 static cl::opt<unsigned> LimitMaxIterations( 137 "instcombine-max-iterations", 138 cl::desc("Limit the maximum number of instruction combining iterations"), 139 cl::init(InstCombineDefaultMaxIterations)); 140 141 static cl::opt<unsigned> InfiniteLoopDetectionThreshold( 142 "instcombine-infinite-loop-threshold", 143 cl::desc("Number of instruction combining iterations considered an " 144 "infinite loop"), 145 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); 146 147 static cl::opt<unsigned> 148 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 149 cl::desc("Maximum array size considered when doing a combine")); 150 151 // FIXME: Remove this flag when it is no longer necessary to convert 152 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 153 // increases variable availability at the cost of accuracy. Variables that 154 // cannot be promoted by mem2reg or SROA will be described as living in memory 155 // for their entire lifetime. However, passes like DSE and instcombine can 156 // delete stores to the alloca, leading to misleading and inaccurate debug 157 // information. This flag can be removed when those passes are fixed. 158 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 159 cl::Hidden, cl::init(true)); 160 161 Value *InstCombiner::EmitGEPOffset(User *GEP) { 162 return llvm::EmitGEPOffset(&Builder, DL, GEP); 163 } 164 165 /// Return true if it is desirable to convert an integer computation from a 166 /// given bit width to a new bit width. 167 /// We don't want to convert from a legal to an illegal type or from a smaller 168 /// to a larger illegal type. A width of '1' is always treated as a legal type 169 /// because i1 is a fundamental type in IR, and there are many specialized 170 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as 171 /// legal to convert to, in order to open up more combining opportunities. 172 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common 173 /// from frontend languages. 174 bool InstCombiner::shouldChangeType(unsigned FromWidth, 175 unsigned ToWidth) const { 176 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 177 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 178 179 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only 180 // shrink types, to prevent infinite loops. 181 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32)) 182 return true; 183 184 // If this is a legal integer from type, and the result would be an illegal 185 // type, don't do the transformation. 186 if (FromLegal && !ToLegal) 187 return false; 188 189 // Otherwise, if both are illegal, do not increase the size of the result. We 190 // do allow things like i160 -> i64, but not i64 -> i160. 191 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 192 return false; 193 194 return true; 195 } 196 197 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 198 /// We don't want to convert from a legal to an illegal type or from a smaller 199 /// to a larger illegal type. i1 is always treated as a legal type because it is 200 /// a fundamental type in IR, and there are many specialized optimizations for 201 /// i1 types. 202 bool InstCombiner::shouldChangeType(Type *From, Type *To) const { 203 // TODO: This could be extended to allow vectors. Datalayout changes might be 204 // needed to properly support that. 205 if (!From->isIntegerTy() || !To->isIntegerTy()) 206 return false; 207 208 unsigned FromWidth = From->getPrimitiveSizeInBits(); 209 unsigned ToWidth = To->getPrimitiveSizeInBits(); 210 return shouldChangeType(FromWidth, ToWidth); 211 } 212 213 // Return true, if No Signed Wrap should be maintained for I. 214 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 215 // where both B and C should be ConstantInts, results in a constant that does 216 // not overflow. This function only handles the Add and Sub opcodes. For 217 // all other opcodes, the function conservatively returns false. 218 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 219 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 220 if (!OBO || !OBO->hasNoSignedWrap()) 221 return false; 222 223 // We reason about Add and Sub Only. 224 Instruction::BinaryOps Opcode = I.getOpcode(); 225 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 226 return false; 227 228 const APInt *BVal, *CVal; 229 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 230 return false; 231 232 bool Overflow = false; 233 if (Opcode == Instruction::Add) 234 (void)BVal->sadd_ov(*CVal, Overflow); 235 else 236 (void)BVal->ssub_ov(*CVal, Overflow); 237 238 return !Overflow; 239 } 240 241 static bool hasNoUnsignedWrap(BinaryOperator &I) { 242 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 243 return OBO && OBO->hasNoUnsignedWrap(); 244 } 245 246 static bool hasNoSignedWrap(BinaryOperator &I) { 247 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 248 return OBO && OBO->hasNoSignedWrap(); 249 } 250 251 /// Conservatively clears subclassOptionalData after a reassociation or 252 /// commutation. We preserve fast-math flags when applicable as they can be 253 /// preserved. 254 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 255 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 256 if (!FPMO) { 257 I.clearSubclassOptionalData(); 258 return; 259 } 260 261 FastMathFlags FMF = I.getFastMathFlags(); 262 I.clearSubclassOptionalData(); 263 I.setFastMathFlags(FMF); 264 } 265 266 /// Combine constant operands of associative operations either before or after a 267 /// cast to eliminate one of the associative operations: 268 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 269 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 270 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) { 271 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 272 if (!Cast || !Cast->hasOneUse()) 273 return false; 274 275 // TODO: Enhance logic for other casts and remove this check. 276 auto CastOpcode = Cast->getOpcode(); 277 if (CastOpcode != Instruction::ZExt) 278 return false; 279 280 // TODO: Enhance logic for other BinOps and remove this check. 281 if (!BinOp1->isBitwiseLogicOp()) 282 return false; 283 284 auto AssocOpcode = BinOp1->getOpcode(); 285 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 286 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 287 return false; 288 289 Constant *C1, *C2; 290 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 291 !match(BinOp2->getOperand(1), m_Constant(C2))) 292 return false; 293 294 // TODO: This assumes a zext cast. 295 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 296 // to the destination type might lose bits. 297 298 // Fold the constants together in the destination type: 299 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 300 Type *DestTy = C1->getType(); 301 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 302 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 303 Cast->setOperand(0, BinOp2->getOperand(0)); 304 BinOp1->setOperand(1, FoldedC); 305 return true; 306 } 307 308 /// This performs a few simplifications for operators that are associative or 309 /// commutative: 310 /// 311 /// Commutative operators: 312 /// 313 /// 1. Order operands such that they are listed from right (least complex) to 314 /// left (most complex). This puts constants before unary operators before 315 /// binary operators. 316 /// 317 /// Associative operators: 318 /// 319 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 320 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 321 /// 322 /// Associative and commutative operators: 323 /// 324 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 325 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 326 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 327 /// if C1 and C2 are constants. 328 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 329 Instruction::BinaryOps Opcode = I.getOpcode(); 330 bool Changed = false; 331 332 do { 333 // Order operands such that they are listed from right (least complex) to 334 // left (most complex). This puts constants before unary operators before 335 // binary operators. 336 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 337 getComplexity(I.getOperand(1))) 338 Changed = !I.swapOperands(); 339 340 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 341 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 342 343 if (I.isAssociative()) { 344 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 345 if (Op0 && Op0->getOpcode() == Opcode) { 346 Value *A = Op0->getOperand(0); 347 Value *B = Op0->getOperand(1); 348 Value *C = I.getOperand(1); 349 350 // Does "B op C" simplify? 351 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 352 // It simplifies to V. Form "A op V". 353 I.setOperand(0, A); 354 I.setOperand(1, V); 355 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 356 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 357 358 // Conservatively clear all optional flags since they may not be 359 // preserved by the reassociation. Reset nsw/nuw based on the above 360 // analysis. 361 ClearSubclassDataAfterReassociation(I); 362 363 // Note: this is only valid because SimplifyBinOp doesn't look at 364 // the operands to Op0. 365 if (IsNUW) 366 I.setHasNoUnsignedWrap(true); 367 368 if (IsNSW) 369 I.setHasNoSignedWrap(true); 370 371 Changed = true; 372 ++NumReassoc; 373 continue; 374 } 375 } 376 377 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 378 if (Op1 && Op1->getOpcode() == Opcode) { 379 Value *A = I.getOperand(0); 380 Value *B = Op1->getOperand(0); 381 Value *C = Op1->getOperand(1); 382 383 // Does "A op B" simplify? 384 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 385 // It simplifies to V. Form "V op C". 386 I.setOperand(0, V); 387 I.setOperand(1, C); 388 // Conservatively clear the optional flags, since they may not be 389 // preserved by the reassociation. 390 ClearSubclassDataAfterReassociation(I); 391 Changed = true; 392 ++NumReassoc; 393 continue; 394 } 395 } 396 } 397 398 if (I.isAssociative() && I.isCommutative()) { 399 if (simplifyAssocCastAssoc(&I)) { 400 Changed = true; 401 ++NumReassoc; 402 continue; 403 } 404 405 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 406 if (Op0 && Op0->getOpcode() == Opcode) { 407 Value *A = Op0->getOperand(0); 408 Value *B = Op0->getOperand(1); 409 Value *C = I.getOperand(1); 410 411 // Does "C op A" simplify? 412 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 413 // It simplifies to V. Form "V op B". 414 I.setOperand(0, V); 415 I.setOperand(1, B); 416 // Conservatively clear the optional flags, since they may not be 417 // preserved by the reassociation. 418 ClearSubclassDataAfterReassociation(I); 419 Changed = true; 420 ++NumReassoc; 421 continue; 422 } 423 } 424 425 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 426 if (Op1 && Op1->getOpcode() == Opcode) { 427 Value *A = I.getOperand(0); 428 Value *B = Op1->getOperand(0); 429 Value *C = Op1->getOperand(1); 430 431 // Does "C op A" simplify? 432 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 433 // It simplifies to V. Form "B op V". 434 I.setOperand(0, B); 435 I.setOperand(1, V); 436 // Conservatively clear the optional flags, since they may not be 437 // preserved by the reassociation. 438 ClearSubclassDataAfterReassociation(I); 439 Changed = true; 440 ++NumReassoc; 441 continue; 442 } 443 } 444 445 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 446 // if C1 and C2 are constants. 447 Value *A, *B; 448 Constant *C1, *C2; 449 if (Op0 && Op1 && 450 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 451 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 452 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 453 bool IsNUW = hasNoUnsignedWrap(I) && 454 hasNoUnsignedWrap(*Op0) && 455 hasNoUnsignedWrap(*Op1); 456 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 457 BinaryOperator::CreateNUW(Opcode, A, B) : 458 BinaryOperator::Create(Opcode, A, B); 459 460 if (isa<FPMathOperator>(NewBO)) { 461 FastMathFlags Flags = I.getFastMathFlags(); 462 Flags &= Op0->getFastMathFlags(); 463 Flags &= Op1->getFastMathFlags(); 464 NewBO->setFastMathFlags(Flags); 465 } 466 InsertNewInstWith(NewBO, I); 467 NewBO->takeName(Op1); 468 I.setOperand(0, NewBO); 469 I.setOperand(1, ConstantExpr::get(Opcode, C1, C2)); 470 // Conservatively clear the optional flags, since they may not be 471 // preserved by the reassociation. 472 ClearSubclassDataAfterReassociation(I); 473 if (IsNUW) 474 I.setHasNoUnsignedWrap(true); 475 476 Changed = true; 477 continue; 478 } 479 } 480 481 // No further simplifications. 482 return Changed; 483 } while (true); 484 } 485 486 /// Return whether "X LOp (Y ROp Z)" is always equal to 487 /// "(X LOp Y) ROp (X LOp Z)". 488 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 489 Instruction::BinaryOps ROp) { 490 // X & (Y | Z) <--> (X & Y) | (X & Z) 491 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 492 if (LOp == Instruction::And) 493 return ROp == Instruction::Or || ROp == Instruction::Xor; 494 495 // X | (Y & Z) <--> (X | Y) & (X | Z) 496 if (LOp == Instruction::Or) 497 return ROp == Instruction::And; 498 499 // X * (Y + Z) <--> (X * Y) + (X * Z) 500 // X * (Y - Z) <--> (X * Y) - (X * Z) 501 if (LOp == Instruction::Mul) 502 return ROp == Instruction::Add || ROp == Instruction::Sub; 503 504 return false; 505 } 506 507 /// Return whether "(X LOp Y) ROp Z" is always equal to 508 /// "(X ROp Z) LOp (Y ROp Z)". 509 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 510 Instruction::BinaryOps ROp) { 511 if (Instruction::isCommutative(ROp)) 512 return leftDistributesOverRight(ROp, LOp); 513 514 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 515 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 516 517 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 518 // but this requires knowing that the addition does not overflow and other 519 // such subtleties. 520 } 521 522 /// This function returns identity value for given opcode, which can be used to 523 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 524 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 525 if (isa<Constant>(V)) 526 return nullptr; 527 528 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 529 } 530 531 /// This function predicates factorization using distributive laws. By default, 532 /// it just returns the 'Op' inputs. But for special-cases like 533 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 534 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 535 /// allow more factorization opportunities. 536 static Instruction::BinaryOps 537 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 538 Value *&LHS, Value *&RHS) { 539 assert(Op && "Expected a binary operator"); 540 LHS = Op->getOperand(0); 541 RHS = Op->getOperand(1); 542 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 543 Constant *C; 544 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 545 // X << C --> X * (1 << C) 546 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 547 return Instruction::Mul; 548 } 549 // TODO: We can add other conversions e.g. shr => div etc. 550 } 551 return Op->getOpcode(); 552 } 553 554 /// This tries to simplify binary operations by factorizing out common terms 555 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 556 Value *InstCombiner::tryFactorization(BinaryOperator &I, 557 Instruction::BinaryOps InnerOpcode, 558 Value *A, Value *B, Value *C, Value *D) { 559 assert(A && B && C && D && "All values must be provided"); 560 561 Value *V = nullptr; 562 Value *SimplifiedInst = nullptr; 563 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 564 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 565 566 // Does "X op' Y" always equal "Y op' X"? 567 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 568 569 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 570 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 571 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 572 // commutative case, "(A op' B) op (C op' A)"? 573 if (A == C || (InnerCommutative && A == D)) { 574 if (A != C) 575 std::swap(C, D); 576 // Consider forming "A op' (B op D)". 577 // If "B op D" simplifies then it can be formed with no cost. 578 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 579 // If "B op D" doesn't simplify then only go on if both of the existing 580 // operations "A op' B" and "C op' D" will be zapped as no longer used. 581 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 582 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 583 if (V) { 584 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 585 } 586 } 587 588 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 589 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 590 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 591 // commutative case, "(A op' B) op (B op' D)"? 592 if (B == D || (InnerCommutative && B == C)) { 593 if (B != D) 594 std::swap(C, D); 595 // Consider forming "(A op C) op' B". 596 // If "A op C" simplifies then it can be formed with no cost. 597 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 598 599 // If "A op C" doesn't simplify then only go on if both of the existing 600 // operations "A op' B" and "C op' D" will be zapped as no longer used. 601 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 602 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 603 if (V) { 604 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 605 } 606 } 607 608 if (SimplifiedInst) { 609 ++NumFactor; 610 SimplifiedInst->takeName(&I); 611 612 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 613 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 614 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 615 bool HasNSW = false; 616 bool HasNUW = false; 617 if (isa<OverflowingBinaryOperator>(&I)) { 618 HasNSW = I.hasNoSignedWrap(); 619 HasNUW = I.hasNoUnsignedWrap(); 620 } 621 622 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 623 HasNSW &= LOBO->hasNoSignedWrap(); 624 HasNUW &= LOBO->hasNoUnsignedWrap(); 625 } 626 627 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 628 HasNSW &= ROBO->hasNoSignedWrap(); 629 HasNUW &= ROBO->hasNoUnsignedWrap(); 630 } 631 632 if (TopLevelOpcode == Instruction::Add && 633 InnerOpcode == Instruction::Mul) { 634 // We can propagate 'nsw' if we know that 635 // %Y = mul nsw i16 %X, C 636 // %Z = add nsw i16 %Y, %X 637 // => 638 // %Z = mul nsw i16 %X, C+1 639 // 640 // iff C+1 isn't INT_MIN 641 const APInt *CInt; 642 if (match(V, m_APInt(CInt))) { 643 if (!CInt->isMinSignedValue()) 644 BO->setHasNoSignedWrap(HasNSW); 645 } 646 647 // nuw can be propagated with any constant or nuw value. 648 BO->setHasNoUnsignedWrap(HasNUW); 649 } 650 } 651 } 652 } 653 return SimplifiedInst; 654 } 655 656 /// This tries to simplify binary operations which some other binary operation 657 /// distributes over either by factorizing out common terms 658 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 659 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 660 /// Returns the simplified value, or null if it didn't simplify. 661 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 662 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 663 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 664 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 665 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 666 667 { 668 // Factorization. 669 Value *A, *B, *C, *D; 670 Instruction::BinaryOps LHSOpcode, RHSOpcode; 671 if (Op0) 672 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 673 if (Op1) 674 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 675 676 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 677 // a common term. 678 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 679 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 680 return V; 681 682 // The instruction has the form "(A op' B) op (C)". Try to factorize common 683 // term. 684 if (Op0) 685 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 686 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 687 return V; 688 689 // The instruction has the form "(B) op (C op' D)". Try to factorize common 690 // term. 691 if (Op1) 692 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 693 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 694 return V; 695 } 696 697 // Expansion. 698 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 699 // The instruction has the form "(A op' B) op C". See if expanding it out 700 // to "(A op C) op' (B op C)" results in simplifications. 701 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 702 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 703 704 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 705 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I)); 706 707 // Do "A op C" and "B op C" both simplify? 708 if (L && R) { 709 // They do! Return "L op' R". 710 ++NumExpand; 711 C = Builder.CreateBinOp(InnerOpcode, L, R); 712 C->takeName(&I); 713 return C; 714 } 715 716 // Does "A op C" simplify to the identity value for the inner opcode? 717 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 718 // They do! Return "B op C". 719 ++NumExpand; 720 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 721 C->takeName(&I); 722 return C; 723 } 724 725 // Does "B op C" simplify to the identity value for the inner opcode? 726 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 727 // They do! Return "A op C". 728 ++NumExpand; 729 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 730 C->takeName(&I); 731 return C; 732 } 733 } 734 735 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 736 // The instruction has the form "A op (B op' C)". See if expanding it out 737 // to "(A op B) op' (A op C)" results in simplifications. 738 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 739 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 740 741 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I)); 742 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 743 744 // Do "A op B" and "A op C" both simplify? 745 if (L && R) { 746 // They do! Return "L op' R". 747 ++NumExpand; 748 A = Builder.CreateBinOp(InnerOpcode, L, R); 749 A->takeName(&I); 750 return A; 751 } 752 753 // Does "A op B" simplify to the identity value for the inner opcode? 754 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 755 // They do! Return "A op C". 756 ++NumExpand; 757 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 758 A->takeName(&I); 759 return A; 760 } 761 762 // Does "A op C" simplify to the identity value for the inner opcode? 763 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 764 // They do! Return "A op B". 765 ++NumExpand; 766 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 767 A->takeName(&I); 768 return A; 769 } 770 } 771 772 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 773 } 774 775 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 776 Value *LHS, Value *RHS) { 777 Value *A, *B, *C, *D, *E, *F; 778 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 779 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 780 if (!LHSIsSelect && !RHSIsSelect) 781 return nullptr; 782 783 FastMathFlags FMF; 784 BuilderTy::FastMathFlagGuard Guard(Builder); 785 if (isa<FPMathOperator>(&I)) { 786 FMF = I.getFastMathFlags(); 787 Builder.setFastMathFlags(FMF); 788 } 789 790 Instruction::BinaryOps Opcode = I.getOpcode(); 791 SimplifyQuery Q = SQ.getWithInstruction(&I); 792 793 Value *Cond, *True = nullptr, *False = nullptr; 794 if (LHSIsSelect && RHSIsSelect && A == D) { 795 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 796 Cond = A; 797 True = SimplifyBinOp(Opcode, B, E, FMF, Q); 798 False = SimplifyBinOp(Opcode, C, F, FMF, Q); 799 800 if (LHS->hasOneUse() && RHS->hasOneUse()) { 801 if (False && !True) 802 True = Builder.CreateBinOp(Opcode, B, E); 803 else if (True && !False) 804 False = Builder.CreateBinOp(Opcode, C, F); 805 } 806 } else if (LHSIsSelect && LHS->hasOneUse()) { 807 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 808 Cond = A; 809 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q); 810 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q); 811 } else if (RHSIsSelect && RHS->hasOneUse()) { 812 // X op (D ? E : F) -> D ? (X op E) : (X op F) 813 Cond = D; 814 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q); 815 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q); 816 } 817 818 if (!True || !False) 819 return nullptr; 820 821 Value *SI = Builder.CreateSelect(Cond, True, False); 822 SI->takeName(&I); 823 return SI; 824 } 825 826 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 827 /// constant zero (which is the 'negate' form). 828 Value *InstCombiner::dyn_castNegVal(Value *V) const { 829 Value *NegV; 830 if (match(V, m_Neg(m_Value(NegV)))) 831 return NegV; 832 833 // Constants can be considered to be negated values if they can be folded. 834 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 835 return ConstantExpr::getNeg(C); 836 837 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 838 if (C->getType()->getElementType()->isIntegerTy()) 839 return ConstantExpr::getNeg(C); 840 841 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 842 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 843 Constant *Elt = CV->getAggregateElement(i); 844 if (!Elt) 845 return nullptr; 846 847 if (isa<UndefValue>(Elt)) 848 continue; 849 850 if (!isa<ConstantInt>(Elt)) 851 return nullptr; 852 } 853 return ConstantExpr::getNeg(CV); 854 } 855 856 return nullptr; 857 } 858 859 /// Get negated V (that is 0-V) without increasing instruction count, 860 /// assuming that the original V will become unused. 861 Value *InstCombiner::freelyNegateValue(Value *V) { 862 if (Value *NegV = dyn_castNegVal(V)) 863 return NegV; 864 865 if (!V->hasOneUse()) 866 return nullptr; 867 868 Value *A, *B; 869 // 0-(A-B) => B-A 870 if (match(V, m_Sub(m_Value(A), m_Value(B)))) 871 return Builder.CreateSub(B, A); 872 873 return nullptr; 874 } 875 876 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 877 InstCombiner::BuilderTy &Builder) { 878 if (auto *Cast = dyn_cast<CastInst>(&I)) 879 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 880 881 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 882 883 // Figure out if the constant is the left or the right argument. 884 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 885 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 886 887 if (auto *SOC = dyn_cast<Constant>(SO)) { 888 if (ConstIsRHS) 889 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 890 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 891 } 892 893 Value *Op0 = SO, *Op1 = ConstOperand; 894 if (!ConstIsRHS) 895 std::swap(Op0, Op1); 896 897 auto *BO = cast<BinaryOperator>(&I); 898 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 899 SO->getName() + ".op"); 900 auto *FPInst = dyn_cast<Instruction>(RI); 901 if (FPInst && isa<FPMathOperator>(FPInst)) 902 FPInst->copyFastMathFlags(BO); 903 return RI; 904 } 905 906 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 907 // Don't modify shared select instructions. 908 if (!SI->hasOneUse()) 909 return nullptr; 910 911 Value *TV = SI->getTrueValue(); 912 Value *FV = SI->getFalseValue(); 913 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 914 return nullptr; 915 916 // Bool selects with constant operands can be folded to logical ops. 917 if (SI->getType()->isIntOrIntVectorTy(1)) 918 return nullptr; 919 920 // If it's a bitcast involving vectors, make sure it has the same number of 921 // elements on both sides. 922 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 923 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 924 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 925 926 // Verify that either both or neither are vectors. 927 if ((SrcTy == nullptr) != (DestTy == nullptr)) 928 return nullptr; 929 930 // If vectors, verify that they have the same number of elements. 931 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 932 return nullptr; 933 } 934 935 // Test if a CmpInst instruction is used exclusively by a select as 936 // part of a minimum or maximum operation. If so, refrain from doing 937 // any other folding. This helps out other analyses which understand 938 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 939 // and CodeGen. And in this case, at least one of the comparison 940 // operands has at least one user besides the compare (the select), 941 // which would often largely negate the benefit of folding anyway. 942 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 943 if (CI->hasOneUse()) { 944 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 945 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 946 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 947 return nullptr; 948 } 949 } 950 951 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 952 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 953 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 954 } 955 956 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 957 InstCombiner::BuilderTy &Builder) { 958 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 959 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 960 961 if (auto *InC = dyn_cast<Constant>(InV)) { 962 if (ConstIsRHS) 963 return ConstantExpr::get(I->getOpcode(), InC, C); 964 return ConstantExpr::get(I->getOpcode(), C, InC); 965 } 966 967 Value *Op0 = InV, *Op1 = C; 968 if (!ConstIsRHS) 969 std::swap(Op0, Op1); 970 971 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp"); 972 auto *FPInst = dyn_cast<Instruction>(RI); 973 if (FPInst && isa<FPMathOperator>(FPInst)) 974 FPInst->copyFastMathFlags(I); 975 return RI; 976 } 977 978 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) { 979 unsigned NumPHIValues = PN->getNumIncomingValues(); 980 if (NumPHIValues == 0) 981 return nullptr; 982 983 // We normally only transform phis with a single use. However, if a PHI has 984 // multiple uses and they are all the same operation, we can fold *all* of the 985 // uses into the PHI. 986 if (!PN->hasOneUse()) { 987 // Walk the use list for the instruction, comparing them to I. 988 for (User *U : PN->users()) { 989 Instruction *UI = cast<Instruction>(U); 990 if (UI != &I && !I.isIdenticalTo(UI)) 991 return nullptr; 992 } 993 // Otherwise, we can replace *all* users with the new PHI we form. 994 } 995 996 // Check to see if all of the operands of the PHI are simple constants 997 // (constantint/constantfp/undef). If there is one non-constant value, 998 // remember the BB it is in. If there is more than one or if *it* is a PHI, 999 // bail out. We don't do arbitrary constant expressions here because moving 1000 // their computation can be expensive without a cost model. 1001 BasicBlock *NonConstBB = nullptr; 1002 for (unsigned i = 0; i != NumPHIValues; ++i) { 1003 Value *InVal = PN->getIncomingValue(i); 1004 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 1005 continue; 1006 1007 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 1008 if (NonConstBB) return nullptr; // More than one non-const value. 1009 1010 NonConstBB = PN->getIncomingBlock(i); 1011 1012 // If the InVal is an invoke at the end of the pred block, then we can't 1013 // insert a computation after it without breaking the edge. 1014 if (isa<InvokeInst>(InVal)) 1015 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 1016 return nullptr; 1017 1018 // If the incoming non-constant value is in I's block, we will remove one 1019 // instruction, but insert another equivalent one, leading to infinite 1020 // instcombine. 1021 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI)) 1022 return nullptr; 1023 } 1024 1025 // If there is exactly one non-constant value, we can insert a copy of the 1026 // operation in that block. However, if this is a critical edge, we would be 1027 // inserting the computation on some other paths (e.g. inside a loop). Only 1028 // do this if the pred block is unconditionally branching into the phi block. 1029 if (NonConstBB != nullptr) { 1030 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1031 if (!BI || !BI->isUnconditional()) return nullptr; 1032 } 1033 1034 // Okay, we can do the transformation: create the new PHI node. 1035 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1036 InsertNewInstBefore(NewPN, *PN); 1037 NewPN->takeName(PN); 1038 1039 // If we are going to have to insert a new computation, do so right before the 1040 // predecessor's terminator. 1041 if (NonConstBB) 1042 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1043 1044 // Next, add all of the operands to the PHI. 1045 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1046 // We only currently try to fold the condition of a select when it is a phi, 1047 // not the true/false values. 1048 Value *TrueV = SI->getTrueValue(); 1049 Value *FalseV = SI->getFalseValue(); 1050 BasicBlock *PhiTransBB = PN->getParent(); 1051 for (unsigned i = 0; i != NumPHIValues; ++i) { 1052 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1053 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1054 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1055 Value *InV = nullptr; 1056 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1057 // even if currently isNullValue gives false. 1058 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1059 // For vector constants, we cannot use isNullValue to fold into 1060 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1061 // elements in the vector, we will incorrectly fold InC to 1062 // `TrueVInPred`. 1063 if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC)) 1064 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1065 else { 1066 // Generate the select in the same block as PN's current incoming block. 1067 // Note: ThisBB need not be the NonConstBB because vector constants 1068 // which are constants by definition are handled here. 1069 // FIXME: This can lead to an increase in IR generation because we might 1070 // generate selects for vector constant phi operand, that could not be 1071 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1072 // non-vector phis, this transformation was always profitable because 1073 // the select would be generated exactly once in the NonConstBB. 1074 Builder.SetInsertPoint(ThisBB->getTerminator()); 1075 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1076 FalseVInPred, "phitmp"); 1077 } 1078 NewPN->addIncoming(InV, ThisBB); 1079 } 1080 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1081 Constant *C = cast<Constant>(I.getOperand(1)); 1082 for (unsigned i = 0; i != NumPHIValues; ++i) { 1083 Value *InV = nullptr; 1084 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1085 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1086 else if (isa<ICmpInst>(CI)) 1087 InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 1088 C, "phitmp"); 1089 else 1090 InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 1091 C, "phitmp"); 1092 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1093 } 1094 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1095 for (unsigned i = 0; i != NumPHIValues; ++i) { 1096 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1097 Builder); 1098 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1099 } 1100 } else { 1101 CastInst *CI = cast<CastInst>(&I); 1102 Type *RetTy = CI->getType(); 1103 for (unsigned i = 0; i != NumPHIValues; ++i) { 1104 Value *InV; 1105 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1106 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1107 else 1108 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1109 I.getType(), "phitmp"); 1110 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1111 } 1112 } 1113 1114 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1115 Instruction *User = cast<Instruction>(*UI++); 1116 if (User == &I) continue; 1117 replaceInstUsesWith(*User, NewPN); 1118 eraseInstFromFunction(*User); 1119 } 1120 return replaceInstUsesWith(I, NewPN); 1121 } 1122 1123 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1124 if (!isa<Constant>(I.getOperand(1))) 1125 return nullptr; 1126 1127 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1128 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1129 return NewSel; 1130 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1131 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1132 return NewPhi; 1133 } 1134 return nullptr; 1135 } 1136 1137 /// Given a pointer type and a constant offset, determine whether or not there 1138 /// is a sequence of GEP indices into the pointed type that will land us at the 1139 /// specified offset. If so, fill them into NewIndices and return the resultant 1140 /// element type, otherwise return null. 1141 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 1142 SmallVectorImpl<Value *> &NewIndices) { 1143 Type *Ty = PtrTy->getElementType(); 1144 if (!Ty->isSized()) 1145 return nullptr; 1146 1147 // Start with the index over the outer type. Note that the type size 1148 // might be zero (even if the offset isn't zero) if the indexed type 1149 // is something like [0 x {int, int}] 1150 Type *IndexTy = DL.getIndexType(PtrTy); 1151 int64_t FirstIdx = 0; 1152 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 1153 FirstIdx = Offset/TySize; 1154 Offset -= FirstIdx*TySize; 1155 1156 // Handle hosts where % returns negative instead of values [0..TySize). 1157 if (Offset < 0) { 1158 --FirstIdx; 1159 Offset += TySize; 1160 assert(Offset >= 0); 1161 } 1162 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 1163 } 1164 1165 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx)); 1166 1167 // Index into the types. If we fail, set OrigBase to null. 1168 while (Offset) { 1169 // Indexing into tail padding between struct/array elements. 1170 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1171 return nullptr; 1172 1173 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1174 const StructLayout *SL = DL.getStructLayout(STy); 1175 assert(Offset < (int64_t)SL->getSizeInBytes() && 1176 "Offset must stay within the indexed type"); 1177 1178 unsigned Elt = SL->getElementContainingOffset(Offset); 1179 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1180 Elt)); 1181 1182 Offset -= SL->getElementOffset(Elt); 1183 Ty = STy->getElementType(Elt); 1184 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1185 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1186 assert(EltSize && "Cannot index into a zero-sized array"); 1187 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize)); 1188 Offset %= EltSize; 1189 Ty = AT->getElementType(); 1190 } else { 1191 // Otherwise, we can't index into the middle of this atomic type, bail. 1192 return nullptr; 1193 } 1194 } 1195 1196 return Ty; 1197 } 1198 1199 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1200 // If this GEP has only 0 indices, it is the same pointer as 1201 // Src. If Src is not a trivial GEP too, don't combine 1202 // the indices. 1203 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1204 !Src.hasOneUse()) 1205 return false; 1206 return true; 1207 } 1208 1209 /// Return a value X such that Val = X * Scale, or null if none. 1210 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1211 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1212 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1213 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1214 Scale.getBitWidth() && "Scale not compatible with value!"); 1215 1216 // If Val is zero or Scale is one then Val = Val * Scale. 1217 if (match(Val, m_Zero()) || Scale == 1) { 1218 NoSignedWrap = true; 1219 return Val; 1220 } 1221 1222 // If Scale is zero then it does not divide Val. 1223 if (Scale.isMinValue()) 1224 return nullptr; 1225 1226 // Look through chains of multiplications, searching for a constant that is 1227 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1228 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1229 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1230 // down from Val: 1231 // 1232 // Val = M1 * X || Analysis starts here and works down 1233 // M1 = M2 * Y || Doesn't descend into terms with more 1234 // M2 = Z * 4 \/ than one use 1235 // 1236 // Then to modify a term at the bottom: 1237 // 1238 // Val = M1 * X 1239 // M1 = Z * Y || Replaced M2 with Z 1240 // 1241 // Then to work back up correcting nsw flags. 1242 1243 // Op - the term we are currently analyzing. Starts at Val then drills down. 1244 // Replaced with its descaled value before exiting from the drill down loop. 1245 Value *Op = Val; 1246 1247 // Parent - initially null, but after drilling down notes where Op came from. 1248 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1249 // 0'th operand of Val. 1250 std::pair<Instruction *, unsigned> Parent; 1251 1252 // Set if the transform requires a descaling at deeper levels that doesn't 1253 // overflow. 1254 bool RequireNoSignedWrap = false; 1255 1256 // Log base 2 of the scale. Negative if not a power of 2. 1257 int32_t logScale = Scale.exactLogBase2(); 1258 1259 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1260 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1261 // If Op is a constant divisible by Scale then descale to the quotient. 1262 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1263 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1264 if (!Remainder.isMinValue()) 1265 // Not divisible by Scale. 1266 return nullptr; 1267 // Replace with the quotient in the parent. 1268 Op = ConstantInt::get(CI->getType(), Quotient); 1269 NoSignedWrap = true; 1270 break; 1271 } 1272 1273 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1274 if (BO->getOpcode() == Instruction::Mul) { 1275 // Multiplication. 1276 NoSignedWrap = BO->hasNoSignedWrap(); 1277 if (RequireNoSignedWrap && !NoSignedWrap) 1278 return nullptr; 1279 1280 // There are three cases for multiplication: multiplication by exactly 1281 // the scale, multiplication by a constant different to the scale, and 1282 // multiplication by something else. 1283 Value *LHS = BO->getOperand(0); 1284 Value *RHS = BO->getOperand(1); 1285 1286 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1287 // Multiplication by a constant. 1288 if (CI->getValue() == Scale) { 1289 // Multiplication by exactly the scale, replace the multiplication 1290 // by its left-hand side in the parent. 1291 Op = LHS; 1292 break; 1293 } 1294 1295 // Otherwise drill down into the constant. 1296 if (!Op->hasOneUse()) 1297 return nullptr; 1298 1299 Parent = std::make_pair(BO, 1); 1300 continue; 1301 } 1302 1303 // Multiplication by something else. Drill down into the left-hand side 1304 // since that's where the reassociate pass puts the good stuff. 1305 if (!Op->hasOneUse()) 1306 return nullptr; 1307 1308 Parent = std::make_pair(BO, 0); 1309 continue; 1310 } 1311 1312 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1313 isa<ConstantInt>(BO->getOperand(1))) { 1314 // Multiplication by a power of 2. 1315 NoSignedWrap = BO->hasNoSignedWrap(); 1316 if (RequireNoSignedWrap && !NoSignedWrap) 1317 return nullptr; 1318 1319 Value *LHS = BO->getOperand(0); 1320 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1321 getLimitedValue(Scale.getBitWidth()); 1322 // Op = LHS << Amt. 1323 1324 if (Amt == logScale) { 1325 // Multiplication by exactly the scale, replace the multiplication 1326 // by its left-hand side in the parent. 1327 Op = LHS; 1328 break; 1329 } 1330 if (Amt < logScale || !Op->hasOneUse()) 1331 return nullptr; 1332 1333 // Multiplication by more than the scale. Reduce the multiplying amount 1334 // by the scale in the parent. 1335 Parent = std::make_pair(BO, 1); 1336 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1337 break; 1338 } 1339 } 1340 1341 if (!Op->hasOneUse()) 1342 return nullptr; 1343 1344 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1345 if (Cast->getOpcode() == Instruction::SExt) { 1346 // Op is sign-extended from a smaller type, descale in the smaller type. 1347 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1348 APInt SmallScale = Scale.trunc(SmallSize); 1349 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1350 // descale Op as (sext Y) * Scale. In order to have 1351 // sext (Y * SmallScale) = (sext Y) * Scale 1352 // some conditions need to hold however: SmallScale must sign-extend to 1353 // Scale and the multiplication Y * SmallScale should not overflow. 1354 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1355 // SmallScale does not sign-extend to Scale. 1356 return nullptr; 1357 assert(SmallScale.exactLogBase2() == logScale); 1358 // Require that Y * SmallScale must not overflow. 1359 RequireNoSignedWrap = true; 1360 1361 // Drill down through the cast. 1362 Parent = std::make_pair(Cast, 0); 1363 Scale = SmallScale; 1364 continue; 1365 } 1366 1367 if (Cast->getOpcode() == Instruction::Trunc) { 1368 // Op is truncated from a larger type, descale in the larger type. 1369 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1370 // trunc (Y * sext Scale) = (trunc Y) * Scale 1371 // always holds. However (trunc Y) * Scale may overflow even if 1372 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1373 // from this point up in the expression (see later). 1374 if (RequireNoSignedWrap) 1375 return nullptr; 1376 1377 // Drill down through the cast. 1378 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1379 Parent = std::make_pair(Cast, 0); 1380 Scale = Scale.sext(LargeSize); 1381 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1382 logScale = -1; 1383 assert(Scale.exactLogBase2() == logScale); 1384 continue; 1385 } 1386 } 1387 1388 // Unsupported expression, bail out. 1389 return nullptr; 1390 } 1391 1392 // If Op is zero then Val = Op * Scale. 1393 if (match(Op, m_Zero())) { 1394 NoSignedWrap = true; 1395 return Op; 1396 } 1397 1398 // We know that we can successfully descale, so from here on we can safely 1399 // modify the IR. Op holds the descaled version of the deepest term in the 1400 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1401 // not to overflow. 1402 1403 if (!Parent.first) 1404 // The expression only had one term. 1405 return Op; 1406 1407 // Rewrite the parent using the descaled version of its operand. 1408 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1409 assert(Op != Parent.first->getOperand(Parent.second) && 1410 "Descaling was a no-op?"); 1411 Parent.first->setOperand(Parent.second, Op); 1412 Worklist.Add(Parent.first); 1413 1414 // Now work back up the expression correcting nsw flags. The logic is based 1415 // on the following observation: if X * Y is known not to overflow as a signed 1416 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1417 // then X * Z will not overflow as a signed multiplication either. As we work 1418 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1419 // current level has strictly smaller absolute value than the original. 1420 Instruction *Ancestor = Parent.first; 1421 do { 1422 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1423 // If the multiplication wasn't nsw then we can't say anything about the 1424 // value of the descaled multiplication, and we have to clear nsw flags 1425 // from this point on up. 1426 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1427 NoSignedWrap &= OpNoSignedWrap; 1428 if (NoSignedWrap != OpNoSignedWrap) { 1429 BO->setHasNoSignedWrap(NoSignedWrap); 1430 Worklist.Add(Ancestor); 1431 } 1432 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1433 // The fact that the descaled input to the trunc has smaller absolute 1434 // value than the original input doesn't tell us anything useful about 1435 // the absolute values of the truncations. 1436 NoSignedWrap = false; 1437 } 1438 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1439 "Failed to keep proper track of nsw flags while drilling down?"); 1440 1441 if (Ancestor == Val) 1442 // Got to the top, all done! 1443 return Val; 1444 1445 // Move up one level in the expression. 1446 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1447 Ancestor = Ancestor->user_back(); 1448 } while (true); 1449 } 1450 1451 Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) { 1452 if (!Inst.getType()->isVectorTy()) return nullptr; 1453 1454 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1455 unsigned NumElts = cast<VectorType>(Inst.getType())->getNumElements(); 1456 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1457 assert(cast<VectorType>(LHS->getType())->getNumElements() == NumElts); 1458 assert(cast<VectorType>(RHS->getType())->getNumElements() == NumElts); 1459 1460 // If both operands of the binop are vector concatenations, then perform the 1461 // narrow binop on each pair of the source operands followed by concatenation 1462 // of the results. 1463 Value *L0, *L1, *R0, *R1; 1464 Constant *Mask; 1465 if (match(LHS, m_ShuffleVector(m_Value(L0), m_Value(L1), m_Constant(Mask))) && 1466 match(RHS, m_ShuffleVector(m_Value(R0), m_Value(R1), m_Specific(Mask))) && 1467 LHS->hasOneUse() && RHS->hasOneUse() && 1468 cast<ShuffleVectorInst>(LHS)->isConcat() && 1469 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1470 // This transform does not have the speculative execution constraint as 1471 // below because the shuffle is a concatenation. The new binops are 1472 // operating on exactly the same elements as the existing binop. 1473 // TODO: We could ease the mask requirement to allow different undef lanes, 1474 // but that requires an analysis of the binop-with-undef output value. 1475 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1476 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1477 BO->copyIRFlags(&Inst); 1478 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1479 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1480 BO->copyIRFlags(&Inst); 1481 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1482 } 1483 1484 // It may not be safe to reorder shuffles and things like div, urem, etc. 1485 // because we may trap when executing those ops on unknown vector elements. 1486 // See PR20059. 1487 if (!isSafeToSpeculativelyExecute(&Inst)) 1488 return nullptr; 1489 1490 auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) { 1491 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1492 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1493 BO->copyIRFlags(&Inst); 1494 return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M); 1495 }; 1496 1497 // If both arguments of the binary operation are shuffles that use the same 1498 // mask and shuffle within a single vector, move the shuffle after the binop. 1499 Value *V1, *V2; 1500 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) && 1501 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) && 1502 V1->getType() == V2->getType() && 1503 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1504 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1505 return createBinOpShuffle(V1, V2, Mask); 1506 } 1507 1508 // If both arguments of a commutative binop are select-shuffles that use the 1509 // same mask with commuted operands, the shuffles are unnecessary. 1510 if (Inst.isCommutative() && 1511 match(LHS, m_ShuffleVector(m_Value(V1), m_Value(V2), m_Constant(Mask))) && 1512 match(RHS, m_ShuffleVector(m_Specific(V2), m_Specific(V1), 1513 m_Specific(Mask)))) { 1514 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1515 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1516 // TODO: Allow shuffles that contain undefs in the mask? 1517 // That is legal, but it reduces undef knowledge. 1518 // TODO: Allow arbitrary shuffles by shuffling after binop? 1519 // That might be legal, but we have to deal with poison. 1520 if (LShuf->isSelect() && !LShuf->getMask()->containsUndefElement() && 1521 RShuf->isSelect() && !RShuf->getMask()->containsUndefElement()) { 1522 // Example: 1523 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1524 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1525 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1526 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1527 NewBO->copyIRFlags(&Inst); 1528 return NewBO; 1529 } 1530 } 1531 1532 // If one argument is a shuffle within one vector and the other is a constant, 1533 // try moving the shuffle after the binary operation. This canonicalization 1534 // intends to move shuffles closer to other shuffles and binops closer to 1535 // other binops, so they can be folded. It may also enable demanded elements 1536 // transforms. 1537 Constant *C; 1538 if (match(&Inst, m_c_BinOp( 1539 m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))), 1540 m_Constant(C))) && 1541 V1->getType()->getVectorNumElements() <= NumElts) { 1542 assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() && 1543 "Shuffle should not change scalar type"); 1544 1545 // Find constant NewC that has property: 1546 // shuffle(NewC, ShMask) = C 1547 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1548 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1549 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1550 bool ConstOp1 = isa<Constant>(RHS); 1551 SmallVector<int, 16> ShMask; 1552 ShuffleVectorInst::getShuffleMask(Mask, ShMask); 1553 unsigned SrcVecNumElts = V1->getType()->getVectorNumElements(); 1554 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1555 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1556 bool MayChange = true; 1557 for (unsigned I = 0; I < NumElts; ++I) { 1558 Constant *CElt = C->getAggregateElement(I); 1559 if (ShMask[I] >= 0) { 1560 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1561 Constant *NewCElt = NewVecC[ShMask[I]]; 1562 // Bail out if: 1563 // 1. The constant vector contains a constant expression. 1564 // 2. The shuffle needs an element of the constant vector that can't 1565 // be mapped to a new constant vector. 1566 // 3. This is a widening shuffle that copies elements of V1 into the 1567 // extended elements (extending with undef is allowed). 1568 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1569 I >= SrcVecNumElts) { 1570 MayChange = false; 1571 break; 1572 } 1573 NewVecC[ShMask[I]] = CElt; 1574 } 1575 // If this is a widening shuffle, we must be able to extend with undef 1576 // elements. If the original binop does not produce an undef in the high 1577 // lanes, then this transform is not safe. 1578 // Similarly for undef lanes due to the shuffle mask, we can only 1579 // transform binops that preserve undef. 1580 // TODO: We could shuffle those non-undef constant values into the 1581 // result by using a constant vector (rather than an undef vector) 1582 // as operand 1 of the new binop, but that might be too aggressive 1583 // for target-independent shuffle creation. 1584 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1585 Constant *MaybeUndef = 1586 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1587 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1588 if (!isa<UndefValue>(MaybeUndef)) { 1589 MayChange = false; 1590 break; 1591 } 1592 } 1593 } 1594 if (MayChange) { 1595 Constant *NewC = ConstantVector::get(NewVecC); 1596 // It may not be safe to execute a binop on a vector with undef elements 1597 // because the entire instruction can be folded to undef or create poison 1598 // that did not exist in the original code. 1599 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1600 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1601 1602 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1603 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1604 Value *NewLHS = ConstOp1 ? V1 : NewC; 1605 Value *NewRHS = ConstOp1 ? NewC : V1; 1606 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1607 } 1608 } 1609 1610 return nullptr; 1611 } 1612 1613 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1614 /// of a value. This requires a potentially expensive known bits check to make 1615 /// sure the narrow op does not overflow. 1616 Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) { 1617 // We need at least one extended operand. 1618 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1619 1620 // If this is a sub, we swap the operands since we always want an extension 1621 // on the RHS. The LHS can be an extension or a constant. 1622 if (BO.getOpcode() == Instruction::Sub) 1623 std::swap(Op0, Op1); 1624 1625 Value *X; 1626 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1627 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1628 return nullptr; 1629 1630 // If both operands are the same extension from the same source type and we 1631 // can eliminate at least one (hasOneUse), this might work. 1632 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1633 Value *Y; 1634 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1635 cast<Operator>(Op1)->getOpcode() == CastOpc && 1636 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1637 // If that did not match, see if we have a suitable constant operand. 1638 // Truncating and extending must produce the same constant. 1639 Constant *WideC; 1640 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1641 return nullptr; 1642 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1643 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1644 return nullptr; 1645 Y = NarrowC; 1646 } 1647 1648 // Swap back now that we found our operands. 1649 if (BO.getOpcode() == Instruction::Sub) 1650 std::swap(X, Y); 1651 1652 // Both operands have narrow versions. Last step: the math must not overflow 1653 // in the narrow width. 1654 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1655 return nullptr; 1656 1657 // bo (ext X), (ext Y) --> ext (bo X, Y) 1658 // bo (ext X), C --> ext (bo X, C') 1659 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1660 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1661 if (IsSext) 1662 NewBinOp->setHasNoSignedWrap(); 1663 else 1664 NewBinOp->setHasNoUnsignedWrap(); 1665 } 1666 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1667 } 1668 1669 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 1670 // At least one GEP must be inbounds. 1671 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 1672 return false; 1673 1674 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 1675 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 1676 } 1677 1678 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1679 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1680 Type *GEPType = GEP.getType(); 1681 Type *GEPEltType = GEP.getSourceElementType(); 1682 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP))) 1683 return replaceInstUsesWith(GEP, V); 1684 1685 // For vector geps, use the generic demanded vector support. 1686 if (GEP.getType()->isVectorTy()) { 1687 auto VWidth = GEP.getType()->getVectorNumElements(); 1688 APInt UndefElts(VWidth, 0); 1689 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1690 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 1691 UndefElts)) { 1692 if (V != &GEP) 1693 return replaceInstUsesWith(GEP, V); 1694 return &GEP; 1695 } 1696 1697 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 1698 // possible (decide on canonical form for pointer broadcast), 3) exploit 1699 // undef elements to decrease demanded bits 1700 } 1701 1702 Value *PtrOp = GEP.getOperand(0); 1703 1704 // Eliminate unneeded casts for indices, and replace indices which displace 1705 // by multiples of a zero size type with zero. 1706 bool MadeChange = false; 1707 1708 // Index width may not be the same width as pointer width. 1709 // Data layout chooses the right type based on supported integer types. 1710 Type *NewScalarIndexTy = 1711 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 1712 1713 gep_type_iterator GTI = gep_type_begin(GEP); 1714 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1715 ++I, ++GTI) { 1716 // Skip indices into struct types. 1717 if (GTI.isStruct()) 1718 continue; 1719 1720 Type *IndexTy = (*I)->getType(); 1721 Type *NewIndexType = 1722 IndexTy->isVectorTy() 1723 ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements()) 1724 : NewScalarIndexTy; 1725 1726 // If the element type has zero size then any index over it is equivalent 1727 // to an index of zero, so replace it with zero if it is not zero already. 1728 Type *EltTy = GTI.getIndexedType(); 1729 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0) 1730 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 1731 *I = Constant::getNullValue(NewIndexType); 1732 MadeChange = true; 1733 } 1734 1735 if (IndexTy != NewIndexType) { 1736 // If we are using a wider index than needed for this platform, shrink 1737 // it to what we need. If narrower, sign-extend it to what we need. 1738 // This explicit cast can make subsequent optimizations more obvious. 1739 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1740 MadeChange = true; 1741 } 1742 } 1743 if (MadeChange) 1744 return &GEP; 1745 1746 // Check to see if the inputs to the PHI node are getelementptr instructions. 1747 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 1748 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1749 if (!Op1) 1750 return nullptr; 1751 1752 // Don't fold a GEP into itself through a PHI node. This can only happen 1753 // through the back-edge of a loop. Folding a GEP into itself means that 1754 // the value of the previous iteration needs to be stored in the meantime, 1755 // thus requiring an additional register variable to be live, but not 1756 // actually achieving anything (the GEP still needs to be executed once per 1757 // loop iteration). 1758 if (Op1 == &GEP) 1759 return nullptr; 1760 1761 int DI = -1; 1762 1763 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1764 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 1765 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1766 return nullptr; 1767 1768 // As for Op1 above, don't try to fold a GEP into itself. 1769 if (Op2 == &GEP) 1770 return nullptr; 1771 1772 // Keep track of the type as we walk the GEP. 1773 Type *CurTy = nullptr; 1774 1775 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1776 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1777 return nullptr; 1778 1779 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1780 if (DI == -1) { 1781 // We have not seen any differences yet in the GEPs feeding the 1782 // PHI yet, so we record this one if it is allowed to be a 1783 // variable. 1784 1785 // The first two arguments can vary for any GEP, the rest have to be 1786 // static for struct slots 1787 if (J > 1) { 1788 assert(CurTy && "No current type?"); 1789 if (CurTy->isStructTy()) 1790 return nullptr; 1791 } 1792 1793 DI = J; 1794 } else { 1795 // The GEP is different by more than one input. While this could be 1796 // extended to support GEPs that vary by more than one variable it 1797 // doesn't make sense since it greatly increases the complexity and 1798 // would result in an R+R+R addressing mode which no backend 1799 // directly supports and would need to be broken into several 1800 // simpler instructions anyway. 1801 return nullptr; 1802 } 1803 } 1804 1805 // Sink down a layer of the type for the next iteration. 1806 if (J > 0) { 1807 if (J == 1) { 1808 CurTy = Op1->getSourceElementType(); 1809 } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) { 1810 CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); 1811 } else { 1812 CurTy = nullptr; 1813 } 1814 } 1815 } 1816 } 1817 1818 // If not all GEPs are identical we'll have to create a new PHI node. 1819 // Check that the old PHI node has only one use so that it will get 1820 // removed. 1821 if (DI != -1 && !PN->hasOneUse()) 1822 return nullptr; 1823 1824 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1825 if (DI == -1) { 1826 // All the GEPs feeding the PHI are identical. Clone one down into our 1827 // BB so that it can be merged with the current GEP. 1828 GEP.getParent()->getInstList().insert( 1829 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1830 } else { 1831 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1832 // into the current block so it can be merged, and create a new PHI to 1833 // set that index. 1834 PHINode *NewPN; 1835 { 1836 IRBuilderBase::InsertPointGuard Guard(Builder); 1837 Builder.SetInsertPoint(PN); 1838 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 1839 PN->getNumOperands()); 1840 } 1841 1842 for (auto &I : PN->operands()) 1843 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1844 PN->getIncomingBlock(I)); 1845 1846 NewGEP->setOperand(DI, NewPN); 1847 GEP.getParent()->getInstList().insert( 1848 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1849 NewGEP->setOperand(DI, NewPN); 1850 } 1851 1852 GEP.setOperand(0, NewGEP); 1853 PtrOp = NewGEP; 1854 } 1855 1856 // Combine Indices - If the source pointer to this getelementptr instruction 1857 // is a getelementptr instruction, combine the indices of the two 1858 // getelementptr instructions into a single instruction. 1859 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { 1860 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1861 return nullptr; 1862 1863 // Try to reassociate loop invariant GEP chains to enable LICM. 1864 if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1865 Src->hasOneUse()) { 1866 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1867 Value *GO1 = GEP.getOperand(1); 1868 Value *SO1 = Src->getOperand(1); 1869 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1870 // invariant: this breaks the dependence between GEPs and allows LICM 1871 // to hoist the invariant part out of the loop. 1872 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1873 // We have to be careful here. 1874 // We have something like: 1875 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 1876 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 1877 // If we just swap idx & idx2 then we could inadvertantly 1878 // change %src from a vector to a scalar, or vice versa. 1879 // Cases: 1880 // 1) %base a scalar & idx a scalar & idx2 a vector 1881 // => Swapping idx & idx2 turns %src into a vector type. 1882 // 2) %base a scalar & idx a vector & idx2 a scalar 1883 // => Swapping idx & idx2 turns %src in a scalar type 1884 // 3) %base, %idx, and %idx2 are scalars 1885 // => %src & %gep are scalars 1886 // => swapping idx & idx2 is safe 1887 // 4) %base a vector 1888 // => %src is a vector 1889 // => swapping idx & idx2 is safe. 1890 auto *SO0 = Src->getOperand(0); 1891 auto *SO0Ty = SO0->getType(); 1892 if (!isa<VectorType>(GEPType) || // case 3 1893 isa<VectorType>(SO0Ty)) { // case 4 1894 Src->setOperand(1, GO1); 1895 GEP.setOperand(1, SO1); 1896 return &GEP; 1897 } else { 1898 // Case 1 or 2 1899 // -- have to recreate %src & %gep 1900 // put NewSrc at same location as %src 1901 Builder.SetInsertPoint(cast<Instruction>(PtrOp)); 1902 auto *NewSrc = cast<GetElementPtrInst>( 1903 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName())); 1904 NewSrc->setIsInBounds(Src->isInBounds()); 1905 auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1}); 1906 NewGEP->setIsInBounds(GEP.isInBounds()); 1907 return NewGEP; 1908 } 1909 } 1910 } 1911 } 1912 1913 // Note that if our source is a gep chain itself then we wait for that 1914 // chain to be resolved before we perform this transformation. This 1915 // avoids us creating a TON of code in some cases. 1916 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 1917 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1918 return nullptr; // Wait until our source is folded to completion. 1919 1920 SmallVector<Value*, 8> Indices; 1921 1922 // Find out whether the last index in the source GEP is a sequential idx. 1923 bool EndsWithSequential = false; 1924 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1925 I != E; ++I) 1926 EndsWithSequential = I.isSequential(); 1927 1928 // Can we combine the two pointer arithmetics offsets? 1929 if (EndsWithSequential) { 1930 // Replace: gep (gep %P, long B), long A, ... 1931 // With: T = long A+B; gep %P, T, ... 1932 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1933 Value *GO1 = GEP.getOperand(1); 1934 1935 // If they aren't the same type, then the input hasn't been processed 1936 // by the loop above yet (which canonicalizes sequential index types to 1937 // intptr_t). Just avoid transforming this until the input has been 1938 // normalized. 1939 if (SO1->getType() != GO1->getType()) 1940 return nullptr; 1941 1942 Value *Sum = 1943 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 1944 // Only do the combine when we are sure the cost after the 1945 // merge is never more than that before the merge. 1946 if (Sum == nullptr) 1947 return nullptr; 1948 1949 // Update the GEP in place if possible. 1950 if (Src->getNumOperands() == 2) { 1951 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 1952 GEP.setOperand(0, Src->getOperand(0)); 1953 GEP.setOperand(1, Sum); 1954 return &GEP; 1955 } 1956 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1957 Indices.push_back(Sum); 1958 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1959 } else if (isa<Constant>(*GEP.idx_begin()) && 1960 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1961 Src->getNumOperands() != 1) { 1962 // Otherwise we can do the fold if the first index of the GEP is a zero 1963 Indices.append(Src->op_begin()+1, Src->op_end()); 1964 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1965 } 1966 1967 if (!Indices.empty()) 1968 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 1969 ? GetElementPtrInst::CreateInBounds( 1970 Src->getSourceElementType(), Src->getOperand(0), Indices, 1971 GEP.getName()) 1972 : GetElementPtrInst::Create(Src->getSourceElementType(), 1973 Src->getOperand(0), Indices, 1974 GEP.getName()); 1975 } 1976 1977 if (GEP.getNumIndices() == 1) { 1978 unsigned AS = GEP.getPointerAddressSpace(); 1979 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 1980 DL.getIndexSizeInBits(AS)) { 1981 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType); 1982 1983 bool Matched = false; 1984 uint64_t C; 1985 Value *V = nullptr; 1986 if (TyAllocSize == 1) { 1987 V = GEP.getOperand(1); 1988 Matched = true; 1989 } else if (match(GEP.getOperand(1), 1990 m_AShr(m_Value(V), m_ConstantInt(C)))) { 1991 if (TyAllocSize == 1ULL << C) 1992 Matched = true; 1993 } else if (match(GEP.getOperand(1), 1994 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 1995 if (TyAllocSize == C) 1996 Matched = true; 1997 } 1998 1999 if (Matched) { 2000 // Canonicalize (gep i8* X, -(ptrtoint Y)) 2001 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) 2002 // The GEP pattern is emitted by the SCEV expander for certain kinds of 2003 // pointer arithmetic. 2004 if (match(V, m_Neg(m_PtrToInt(m_Value())))) { 2005 Operator *Index = cast<Operator>(V); 2006 Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType()); 2007 Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1)); 2008 return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType); 2009 } 2010 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) 2011 // to (bitcast Y) 2012 Value *Y; 2013 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), 2014 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) 2015 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 2016 } 2017 } 2018 } 2019 2020 // We do not handle pointer-vector geps here. 2021 if (GEPType->isVectorTy()) 2022 return nullptr; 2023 2024 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 2025 Value *StrippedPtr = PtrOp->stripPointerCasts(); 2026 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 2027 2028 if (StrippedPtr != PtrOp) { 2029 bool HasZeroPointerIndex = false; 2030 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType(); 2031 2032 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 2033 HasZeroPointerIndex = C->isZero(); 2034 2035 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2036 // into : GEP [10 x i8]* X, i32 0, ... 2037 // 2038 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2039 // into : GEP i8* X, ... 2040 // 2041 // This occurs when the program declares an array extern like "int X[];" 2042 if (HasZeroPointerIndex) { 2043 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2044 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2045 if (CATy->getElementType() == StrippedPtrEltTy) { 2046 // -> GEP i8* X, ... 2047 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 2048 GetElementPtrInst *Res = GetElementPtrInst::Create( 2049 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2050 Res->setIsInBounds(GEP.isInBounds()); 2051 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2052 return Res; 2053 // Insert Res, and create an addrspacecast. 2054 // e.g., 2055 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2056 // -> 2057 // %0 = GEP i8 addrspace(1)* X, ... 2058 // addrspacecast i8 addrspace(1)* %0 to i8* 2059 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2060 } 2061 2062 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2063 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2064 if (CATy->getElementType() == XATy->getElementType()) { 2065 // -> GEP [10 x i8]* X, i32 0, ... 2066 // At this point, we know that the cast source type is a pointer 2067 // to an array of the same type as the destination pointer 2068 // array. Because the array type is never stepped over (there 2069 // is a leading zero) we can fold the cast into this GEP. 2070 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2071 GEP.setOperand(0, StrippedPtr); 2072 GEP.setSourceElementType(XATy); 2073 return &GEP; 2074 } 2075 // Cannot replace the base pointer directly because StrippedPtr's 2076 // address space is different. Instead, create a new GEP followed by 2077 // an addrspacecast. 2078 // e.g., 2079 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2080 // i32 0, ... 2081 // -> 2082 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2083 // addrspacecast i8 addrspace(1)* %0 to i8* 2084 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 2085 Value *NewGEP = 2086 GEP.isInBounds() 2087 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2088 Idx, GEP.getName()) 2089 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2090 GEP.getName()); 2091 return new AddrSpaceCastInst(NewGEP, GEPType); 2092 } 2093 } 2094 } 2095 } else if (GEP.getNumOperands() == 2) { 2096 // Transform things like: 2097 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 2098 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 2099 if (StrippedPtrEltTy->isArrayTy() && 2100 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2101 DL.getTypeAllocSize(GEPEltType)) { 2102 Type *IdxType = DL.getIndexType(GEPType); 2103 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 2104 Value *NewGEP = 2105 GEP.isInBounds() 2106 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2107 GEP.getName()) 2108 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2109 GEP.getName()); 2110 2111 // V and GEP are both pointer types --> BitCast 2112 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2113 } 2114 2115 // Transform things like: 2116 // %V = mul i64 %N, 4 2117 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2118 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2119 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2120 // Check that changing the type amounts to dividing the index by a scale 2121 // factor. 2122 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 2123 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy); 2124 if (ResSize && SrcSize % ResSize == 0) { 2125 Value *Idx = GEP.getOperand(1); 2126 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2127 uint64_t Scale = SrcSize / ResSize; 2128 2129 // Earlier transforms ensure that the index has the right type 2130 // according to Data Layout, which considerably simplifies the 2131 // logic by eliminating implicit casts. 2132 assert(Idx->getType() == DL.getIndexType(GEPType) && 2133 "Index type does not match the Data Layout preferences"); 2134 2135 bool NSW; 2136 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2137 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2138 // If the multiplication NewIdx * Scale may overflow then the new 2139 // GEP may not be "inbounds". 2140 Value *NewGEP = 2141 GEP.isInBounds() && NSW 2142 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2143 NewIdx, GEP.getName()) 2144 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2145 GEP.getName()); 2146 2147 // The NewGEP must be pointer typed, so must the old one -> BitCast 2148 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2149 GEPType); 2150 } 2151 } 2152 } 2153 2154 // Similarly, transform things like: 2155 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2156 // (where tmp = 8*tmp2) into: 2157 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2158 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2159 StrippedPtrEltTy->isArrayTy()) { 2160 // Check that changing to the array element type amounts to dividing the 2161 // index by a scale factor. 2162 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 2163 uint64_t ArrayEltSize = 2164 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()); 2165 if (ResSize && ArrayEltSize % ResSize == 0) { 2166 Value *Idx = GEP.getOperand(1); 2167 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2168 uint64_t Scale = ArrayEltSize / ResSize; 2169 2170 // Earlier transforms ensure that the index has the right type 2171 // according to the Data Layout, which considerably simplifies 2172 // the logic by eliminating implicit casts. 2173 assert(Idx->getType() == DL.getIndexType(GEPType) && 2174 "Index type does not match the Data Layout preferences"); 2175 2176 bool NSW; 2177 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2178 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2179 // If the multiplication NewIdx * Scale may overflow then the new 2180 // GEP may not be "inbounds". 2181 Type *IndTy = DL.getIndexType(GEPType); 2182 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2183 2184 Value *NewGEP = 2185 GEP.isInBounds() && NSW 2186 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2187 Off, GEP.getName()) 2188 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2189 GEP.getName()); 2190 // The NewGEP must be pointer typed, so must the old one -> BitCast 2191 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2192 GEPType); 2193 } 2194 } 2195 } 2196 } 2197 } 2198 2199 // addrspacecast between types is canonicalized as a bitcast, then an 2200 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2201 // through the addrspacecast. 2202 Value *ASCStrippedPtrOp = PtrOp; 2203 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2204 // X = bitcast A addrspace(1)* to B addrspace(1)* 2205 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2206 // Z = gep Y, <...constant indices...> 2207 // Into an addrspacecasted GEP of the struct. 2208 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2209 ASCStrippedPtrOp = BC; 2210 } 2211 2212 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 2213 Value *SrcOp = BCI->getOperand(0); 2214 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2215 Type *SrcEltType = SrcType->getElementType(); 2216 2217 // GEP directly using the source operand if this GEP is accessing an element 2218 // of a bitcasted pointer to vector or array of the same dimensions: 2219 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2220 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2221 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, 2222 const DataLayout &DL) { 2223 return ArrTy->getArrayElementType() == VecTy->getVectorElementType() && 2224 ArrTy->getArrayNumElements() == VecTy->getVectorNumElements() && 2225 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); 2226 }; 2227 if (GEP.getNumOperands() == 3 && 2228 ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() && 2229 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || 2230 (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() && 2231 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { 2232 2233 // Create a new GEP here, as using `setOperand()` followed by 2234 // `setSourceElementType()` won't actually update the type of the 2235 // existing GEP Value. Causing issues if this Value is accessed when 2236 // constructing an AddrSpaceCastInst 2237 Value *NGEP = 2238 GEP.isInBounds() 2239 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}) 2240 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}); 2241 NGEP->takeName(&GEP); 2242 2243 // Preserve GEP address space to satisfy users 2244 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2245 return new AddrSpaceCastInst(NGEP, GEPType); 2246 2247 return replaceInstUsesWith(GEP, NGEP); 2248 } 2249 2250 // See if we can simplify: 2251 // X = bitcast A* to B* 2252 // Y = gep X, <...constant indices...> 2253 // into a gep of the original struct. This is important for SROA and alias 2254 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2255 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 2256 APInt Offset(OffsetBits, 0); 2257 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) { 2258 // If this GEP instruction doesn't move the pointer, just replace the GEP 2259 // with a bitcast of the real input to the dest type. 2260 if (!Offset) { 2261 // If the bitcast is of an allocation, and the allocation will be 2262 // converted to match the type of the cast, don't touch this. 2263 if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) { 2264 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2265 if (Instruction *I = visitBitCast(*BCI)) { 2266 if (I != BCI) { 2267 I->takeName(BCI); 2268 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2269 replaceInstUsesWith(*BCI, I); 2270 } 2271 return &GEP; 2272 } 2273 } 2274 2275 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2276 return new AddrSpaceCastInst(SrcOp, GEPType); 2277 return new BitCastInst(SrcOp, GEPType); 2278 } 2279 2280 // Otherwise, if the offset is non-zero, we need to find out if there is a 2281 // field at Offset in 'A's type. If so, we can pull the cast through the 2282 // GEP. 2283 SmallVector<Value*, 8> NewIndices; 2284 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2285 Value *NGEP = 2286 GEP.isInBounds() 2287 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) 2288 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); 2289 2290 if (NGEP->getType() == GEPType) 2291 return replaceInstUsesWith(GEP, NGEP); 2292 NGEP->takeName(&GEP); 2293 2294 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2295 return new AddrSpaceCastInst(NGEP, GEPType); 2296 return new BitCastInst(NGEP, GEPType); 2297 } 2298 } 2299 } 2300 2301 if (!GEP.isInBounds()) { 2302 unsigned IdxWidth = 2303 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2304 APInt BasePtrOffset(IdxWidth, 0); 2305 Value *UnderlyingPtrOp = 2306 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2307 BasePtrOffset); 2308 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2309 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2310 BasePtrOffset.isNonNegative()) { 2311 APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType())); 2312 if (BasePtrOffset.ule(AllocSize)) { 2313 return GetElementPtrInst::CreateInBounds( 2314 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1), 2315 GEP.getName()); 2316 } 2317 } 2318 } 2319 } 2320 2321 return nullptr; 2322 } 2323 2324 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 2325 Instruction *AI) { 2326 if (isa<ConstantPointerNull>(V)) 2327 return true; 2328 if (auto *LI = dyn_cast<LoadInst>(V)) 2329 return isa<GlobalVariable>(LI->getPointerOperand()); 2330 // Two distinct allocations will never be equal. 2331 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2332 // through bitcasts of V can cause 2333 // the result statement below to be true, even when AI and V (ex: 2334 // i8* ->i32* ->i8* of AI) are the same allocations. 2335 return isAllocLikeFn(V, TLI) && V != AI; 2336 } 2337 2338 static bool isAllocSiteRemovable(Instruction *AI, 2339 SmallVectorImpl<WeakTrackingVH> &Users, 2340 const TargetLibraryInfo *TLI) { 2341 SmallVector<Instruction*, 4> Worklist; 2342 Worklist.push_back(AI); 2343 2344 do { 2345 Instruction *PI = Worklist.pop_back_val(); 2346 for (User *U : PI->users()) { 2347 Instruction *I = cast<Instruction>(U); 2348 switch (I->getOpcode()) { 2349 default: 2350 // Give up the moment we see something we can't handle. 2351 return false; 2352 2353 case Instruction::AddrSpaceCast: 2354 case Instruction::BitCast: 2355 case Instruction::GetElementPtr: 2356 Users.emplace_back(I); 2357 Worklist.push_back(I); 2358 continue; 2359 2360 case Instruction::ICmp: { 2361 ICmpInst *ICI = cast<ICmpInst>(I); 2362 // We can fold eq/ne comparisons with null to false/true, respectively. 2363 // We also fold comparisons in some conditions provided the alloc has 2364 // not escaped (see isNeverEqualToUnescapedAlloc). 2365 if (!ICI->isEquality()) 2366 return false; 2367 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2368 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2369 return false; 2370 Users.emplace_back(I); 2371 continue; 2372 } 2373 2374 case Instruction::Call: 2375 // Ignore no-op and store intrinsics. 2376 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2377 switch (II->getIntrinsicID()) { 2378 default: 2379 return false; 2380 2381 case Intrinsic::memmove: 2382 case Intrinsic::memcpy: 2383 case Intrinsic::memset: { 2384 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2385 if (MI->isVolatile() || MI->getRawDest() != PI) 2386 return false; 2387 LLVM_FALLTHROUGH; 2388 } 2389 case Intrinsic::invariant_start: 2390 case Intrinsic::invariant_end: 2391 case Intrinsic::lifetime_start: 2392 case Intrinsic::lifetime_end: 2393 case Intrinsic::objectsize: 2394 Users.emplace_back(I); 2395 continue; 2396 } 2397 } 2398 2399 if (isFreeCall(I, TLI)) { 2400 Users.emplace_back(I); 2401 continue; 2402 } 2403 return false; 2404 2405 case Instruction::Store: { 2406 StoreInst *SI = cast<StoreInst>(I); 2407 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2408 return false; 2409 Users.emplace_back(I); 2410 continue; 2411 } 2412 } 2413 llvm_unreachable("missing a return?"); 2414 } 2415 } while (!Worklist.empty()); 2416 return true; 2417 } 2418 2419 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 2420 // If we have a malloc call which is only used in any amount of comparisons to 2421 // null and free calls, delete the calls and replace the comparisons with true 2422 // or false as appropriate. 2423 2424 // This is based on the principle that we can substitute our own allocation 2425 // function (which will never return null) rather than knowledge of the 2426 // specific function being called. In some sense this can change the permitted 2427 // outputs of a program (when we convert a malloc to an alloca, the fact that 2428 // the allocation is now on the stack is potentially visible, for example), 2429 // but we believe in a permissible manner. 2430 SmallVector<WeakTrackingVH, 64> Users; 2431 2432 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2433 // before each store. 2434 TinyPtrVector<DbgVariableIntrinsic *> DIIs; 2435 std::unique_ptr<DIBuilder> DIB; 2436 if (isa<AllocaInst>(MI)) { 2437 DIIs = FindDbgAddrUses(&MI); 2438 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2439 } 2440 2441 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2442 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2443 // Lowering all @llvm.objectsize calls first because they may 2444 // use a bitcast/GEP of the alloca we are removing. 2445 if (!Users[i]) 2446 continue; 2447 2448 Instruction *I = cast<Instruction>(&*Users[i]); 2449 2450 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2451 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2452 Value *Result = 2453 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); 2454 replaceInstUsesWith(*I, Result); 2455 eraseInstFromFunction(*I); 2456 Users[i] = nullptr; // Skip examining in the next loop. 2457 } 2458 } 2459 } 2460 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2461 if (!Users[i]) 2462 continue; 2463 2464 Instruction *I = cast<Instruction>(&*Users[i]); 2465 2466 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2467 replaceInstUsesWith(*C, 2468 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2469 C->isFalseWhenEqual())); 2470 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2471 for (auto *DII : DIIs) 2472 ConvertDebugDeclareToDebugValue(DII, SI, *DIB); 2473 } else { 2474 // Casts, GEP, or anything else: we're about to delete this instruction, 2475 // so it can not have any valid uses. 2476 replaceInstUsesWith(*I, UndefValue::get(I->getType())); 2477 } 2478 eraseInstFromFunction(*I); 2479 } 2480 2481 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2482 // Replace invoke with a NOP intrinsic to maintain the original CFG 2483 Module *M = II->getModule(); 2484 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2485 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2486 None, "", II->getParent()); 2487 } 2488 2489 for (auto *DII : DIIs) 2490 eraseInstFromFunction(*DII); 2491 2492 return eraseInstFromFunction(MI); 2493 } 2494 return nullptr; 2495 } 2496 2497 /// Move the call to free before a NULL test. 2498 /// 2499 /// Check if this free is accessed after its argument has been test 2500 /// against NULL (property 0). 2501 /// If yes, it is legal to move this call in its predecessor block. 2502 /// 2503 /// The move is performed only if the block containing the call to free 2504 /// will be removed, i.e.: 2505 /// 1. it has only one predecessor P, and P has two successors 2506 /// 2. it contains the call, noops, and an unconditional branch 2507 /// 3. its successor is the same as its predecessor's successor 2508 /// 2509 /// The profitability is out-of concern here and this function should 2510 /// be called only if the caller knows this transformation would be 2511 /// profitable (e.g., for code size). 2512 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2513 const DataLayout &DL) { 2514 Value *Op = FI.getArgOperand(0); 2515 BasicBlock *FreeInstrBB = FI.getParent(); 2516 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2517 2518 // Validate part of constraint #1: Only one predecessor 2519 // FIXME: We can extend the number of predecessor, but in that case, we 2520 // would duplicate the call to free in each predecessor and it may 2521 // not be profitable even for code size. 2522 if (!PredBB) 2523 return nullptr; 2524 2525 // Validate constraint #2: Does this block contains only the call to 2526 // free, noops, and an unconditional branch? 2527 BasicBlock *SuccBB; 2528 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2529 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2530 return nullptr; 2531 2532 // If there are only 2 instructions in the block, at this point, 2533 // this is the call to free and unconditional. 2534 // If there are more than 2 instructions, check that they are noops 2535 // i.e., they won't hurt the performance of the generated code. 2536 if (FreeInstrBB->size() != 2) { 2537 for (const Instruction &Inst : *FreeInstrBB) { 2538 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2539 continue; 2540 auto *Cast = dyn_cast<CastInst>(&Inst); 2541 if (!Cast || !Cast->isNoopCast(DL)) 2542 return nullptr; 2543 } 2544 } 2545 // Validate the rest of constraint #1 by matching on the pred branch. 2546 Instruction *TI = PredBB->getTerminator(); 2547 BasicBlock *TrueBB, *FalseBB; 2548 ICmpInst::Predicate Pred; 2549 if (!match(TI, m_Br(m_ICmp(Pred, 2550 m_CombineOr(m_Specific(Op), 2551 m_Specific(Op->stripPointerCasts())), 2552 m_Zero()), 2553 TrueBB, FalseBB))) 2554 return nullptr; 2555 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2556 return nullptr; 2557 2558 // Validate constraint #3: Ensure the null case just falls through. 2559 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2560 return nullptr; 2561 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2562 "Broken CFG: missing edge from predecessor to successor"); 2563 2564 // At this point, we know that everything in FreeInstrBB can be moved 2565 // before TI. 2566 for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end(); 2567 It != End;) { 2568 Instruction &Instr = *It++; 2569 if (&Instr == FreeInstrBBTerminator) 2570 break; 2571 Instr.moveBefore(TI); 2572 } 2573 assert(FreeInstrBB->size() == 1 && 2574 "Only the branch instruction should remain"); 2575 return &FI; 2576 } 2577 2578 Instruction *InstCombiner::visitFree(CallInst &FI) { 2579 Value *Op = FI.getArgOperand(0); 2580 2581 // free undef -> unreachable. 2582 if (isa<UndefValue>(Op)) { 2583 // Leave a marker since we can't modify the CFG here. 2584 CreateNonTerminatorUnreachable(&FI); 2585 return eraseInstFromFunction(FI); 2586 } 2587 2588 // If we have 'free null' delete the instruction. This can happen in stl code 2589 // when lots of inlining happens. 2590 if (isa<ConstantPointerNull>(Op)) 2591 return eraseInstFromFunction(FI); 2592 2593 // If we optimize for code size, try to move the call to free before the null 2594 // test so that simplify cfg can remove the empty block and dead code 2595 // elimination the branch. I.e., helps to turn something like: 2596 // if (foo) free(foo); 2597 // into 2598 // free(foo); 2599 if (MinimizeSize) 2600 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 2601 return I; 2602 2603 return nullptr; 2604 } 2605 2606 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { 2607 if (RI.getNumOperands() == 0) // ret void 2608 return nullptr; 2609 2610 Value *ResultOp = RI.getOperand(0); 2611 Type *VTy = ResultOp->getType(); 2612 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp)) 2613 return nullptr; 2614 2615 // There might be assume intrinsics dominating this return that completely 2616 // determine the value. If so, constant fold it. 2617 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2618 if (Known.isConstant()) { 2619 Worklist.AddValue(ResultOp); 2620 RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant())); 2621 return &RI; 2622 } 2623 2624 return nullptr; 2625 } 2626 2627 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 2628 // Change br (not X), label True, label False to: br X, label False, True 2629 Value *X = nullptr; 2630 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 2631 !isa<Constant>(X)) { 2632 // Swap Destinations and condition... 2633 BI.setCondition(X); 2634 BI.swapSuccessors(); 2635 return &BI; 2636 } 2637 2638 // If the condition is irrelevant, remove the use so that other 2639 // transforms on the condition become more effective. 2640 if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) && 2641 BI.getSuccessor(0) == BI.getSuccessor(1)) { 2642 BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType())); 2643 return &BI; 2644 } 2645 2646 // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq. 2647 CmpInst::Predicate Pred; 2648 if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), 2649 m_BasicBlock(), m_BasicBlock())) && 2650 !isCanonicalPredicate(Pred)) { 2651 // Swap destinations and condition. 2652 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 2653 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2654 BI.swapSuccessors(); 2655 Worklist.Add(Cond); 2656 return &BI; 2657 } 2658 2659 return nullptr; 2660 } 2661 2662 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 2663 Value *Cond = SI.getCondition(); 2664 Value *Op0; 2665 ConstantInt *AddRHS; 2666 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 2667 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2668 for (auto Case : SI.cases()) { 2669 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 2670 assert(isa<ConstantInt>(NewCase) && 2671 "Result of expression should be constant"); 2672 Case.setValue(cast<ConstantInt>(NewCase)); 2673 } 2674 SI.setCondition(Op0); 2675 return &SI; 2676 } 2677 2678 KnownBits Known = computeKnownBits(Cond, 0, &SI); 2679 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 2680 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 2681 2682 // Compute the number of leading bits we can ignore. 2683 // TODO: A better way to determine this would use ComputeNumSignBits(). 2684 for (auto &C : SI.cases()) { 2685 LeadingKnownZeros = std::min( 2686 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2687 LeadingKnownOnes = std::min( 2688 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2689 } 2690 2691 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 2692 2693 // Shrink the condition operand if the new type is smaller than the old type. 2694 // But do not shrink to a non-standard type, because backend can't generate 2695 // good code for that yet. 2696 // TODO: We can make it aggressive again after fixing PR39569. 2697 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 2698 shouldChangeType(Known.getBitWidth(), NewWidth)) { 2699 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2700 Builder.SetInsertPoint(&SI); 2701 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 2702 SI.setCondition(NewCond); 2703 2704 for (auto Case : SI.cases()) { 2705 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 2706 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 2707 } 2708 return &SI; 2709 } 2710 2711 return nullptr; 2712 } 2713 2714 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 2715 Value *Agg = EV.getAggregateOperand(); 2716 2717 if (!EV.hasIndices()) 2718 return replaceInstUsesWith(EV, Agg); 2719 2720 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 2721 SQ.getWithInstruction(&EV))) 2722 return replaceInstUsesWith(EV, V); 2723 2724 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 2725 // We're extracting from an insertvalue instruction, compare the indices 2726 const unsigned *exti, *exte, *insi, *inse; 2727 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 2728 exte = EV.idx_end(), inse = IV->idx_end(); 2729 exti != exte && insi != inse; 2730 ++exti, ++insi) { 2731 if (*insi != *exti) 2732 // The insert and extract both reference distinctly different elements. 2733 // This means the extract is not influenced by the insert, and we can 2734 // replace the aggregate operand of the extract with the aggregate 2735 // operand of the insert. i.e., replace 2736 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2737 // %E = extractvalue { i32, { i32 } } %I, 0 2738 // with 2739 // %E = extractvalue { i32, { i32 } } %A, 0 2740 return ExtractValueInst::Create(IV->getAggregateOperand(), 2741 EV.getIndices()); 2742 } 2743 if (exti == exte && insi == inse) 2744 // Both iterators are at the end: Index lists are identical. Replace 2745 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2746 // %C = extractvalue { i32, { i32 } } %B, 1, 0 2747 // with "i32 42" 2748 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 2749 if (exti == exte) { 2750 // The extract list is a prefix of the insert list. i.e. replace 2751 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2752 // %E = extractvalue { i32, { i32 } } %I, 1 2753 // with 2754 // %X = extractvalue { i32, { i32 } } %A, 1 2755 // %E = insertvalue { i32 } %X, i32 42, 0 2756 // by switching the order of the insert and extract (though the 2757 // insertvalue should be left in, since it may have other uses). 2758 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 2759 EV.getIndices()); 2760 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 2761 makeArrayRef(insi, inse)); 2762 } 2763 if (insi == inse) 2764 // The insert list is a prefix of the extract list 2765 // We can simply remove the common indices from the extract and make it 2766 // operate on the inserted value instead of the insertvalue result. 2767 // i.e., replace 2768 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2769 // %E = extractvalue { i32, { i32 } } %I, 1, 0 2770 // with 2771 // %E extractvalue { i32 } { i32 42 }, 0 2772 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 2773 makeArrayRef(exti, exte)); 2774 } 2775 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 2776 // We're extracting from an overflow intrinsic, see if we're the only user, 2777 // which allows us to simplify multiple result intrinsics to simpler 2778 // things that just get one value. 2779 if (WO->hasOneUse()) { 2780 // Check if we're grabbing only the result of a 'with overflow' intrinsic 2781 // and replace it with a traditional binary instruction. 2782 if (*EV.idx_begin() == 0) { 2783 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 2784 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 2785 replaceInstUsesWith(*WO, UndefValue::get(WO->getType())); 2786 eraseInstFromFunction(*WO); 2787 return BinaryOperator::Create(BinOp, LHS, RHS); 2788 } 2789 2790 // If the normal result of the add is dead, and the RHS is a constant, 2791 // we can transform this into a range comparison. 2792 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 2793 if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow) 2794 if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS())) 2795 return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(), 2796 ConstantExpr::getNot(CI)); 2797 } 2798 } 2799 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2800 // If the (non-volatile) load only has one use, we can rewrite this to a 2801 // load from a GEP. This reduces the size of the load. If a load is used 2802 // only by extractvalue instructions then this either must have been 2803 // optimized before, or it is a struct with padding, in which case we 2804 // don't want to do the transformation as it loses padding knowledge. 2805 if (L->isSimple() && L->hasOneUse()) { 2806 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2807 SmallVector<Value*, 4> Indices; 2808 // Prefix an i32 0 since we need the first element. 2809 Indices.push_back(Builder.getInt32(0)); 2810 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2811 I != E; ++I) 2812 Indices.push_back(Builder.getInt32(*I)); 2813 2814 // We need to insert these at the location of the old load, not at that of 2815 // the extractvalue. 2816 Builder.SetInsertPoint(L); 2817 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 2818 L->getPointerOperand(), Indices); 2819 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 2820 // Whatever aliasing information we had for the orignal load must also 2821 // hold for the smaller load, so propagate the annotations. 2822 AAMDNodes Nodes; 2823 L->getAAMetadata(Nodes); 2824 NL->setAAMetadata(Nodes); 2825 // Returning the load directly will cause the main loop to insert it in 2826 // the wrong spot, so use replaceInstUsesWith(). 2827 return replaceInstUsesWith(EV, NL); 2828 } 2829 // We could simplify extracts from other values. Note that nested extracts may 2830 // already be simplified implicitly by the above: extract (extract (insert) ) 2831 // will be translated into extract ( insert ( extract ) ) first and then just 2832 // the value inserted, if appropriate. Similarly for extracts from single-use 2833 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2834 // and if again single-use then via load (gep (gep)) to load (gep). 2835 // However, double extracts from e.g. function arguments or return values 2836 // aren't handled yet. 2837 return nullptr; 2838 } 2839 2840 /// Return 'true' if the given typeinfo will match anything. 2841 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 2842 switch (Personality) { 2843 case EHPersonality::GNU_C: 2844 case EHPersonality::GNU_C_SjLj: 2845 case EHPersonality::Rust: 2846 // The GCC C EH and Rust personality only exists to support cleanups, so 2847 // it's not clear what the semantics of catch clauses are. 2848 return false; 2849 case EHPersonality::Unknown: 2850 return false; 2851 case EHPersonality::GNU_Ada: 2852 // While __gnat_all_others_value will match any Ada exception, it doesn't 2853 // match foreign exceptions (or didn't, before gcc-4.7). 2854 return false; 2855 case EHPersonality::GNU_CXX: 2856 case EHPersonality::GNU_CXX_SjLj: 2857 case EHPersonality::GNU_ObjC: 2858 case EHPersonality::MSVC_X86SEH: 2859 case EHPersonality::MSVC_Win64SEH: 2860 case EHPersonality::MSVC_CXX: 2861 case EHPersonality::CoreCLR: 2862 case EHPersonality::Wasm_CXX: 2863 return TypeInfo->isNullValue(); 2864 } 2865 llvm_unreachable("invalid enum"); 2866 } 2867 2868 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2869 return 2870 cast<ArrayType>(LHS->getType())->getNumElements() 2871 < 2872 cast<ArrayType>(RHS->getType())->getNumElements(); 2873 } 2874 2875 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2876 // The logic here should be correct for any real-world personality function. 2877 // However if that turns out not to be true, the offending logic can always 2878 // be conditioned on the personality function, like the catch-all logic is. 2879 EHPersonality Personality = 2880 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 2881 2882 // Simplify the list of clauses, eg by removing repeated catch clauses 2883 // (these are often created by inlining). 2884 bool MakeNewInstruction = false; // If true, recreate using the following: 2885 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2886 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2887 2888 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 2889 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 2890 bool isLastClause = i + 1 == e; 2891 if (LI.isCatch(i)) { 2892 // A catch clause. 2893 Constant *CatchClause = LI.getClause(i); 2894 Constant *TypeInfo = CatchClause->stripPointerCasts(); 2895 2896 // If we already saw this clause, there is no point in having a second 2897 // copy of it. 2898 if (AlreadyCaught.insert(TypeInfo).second) { 2899 // This catch clause was not already seen. 2900 NewClauses.push_back(CatchClause); 2901 } else { 2902 // Repeated catch clause - drop the redundant copy. 2903 MakeNewInstruction = true; 2904 } 2905 2906 // If this is a catch-all then there is no point in keeping any following 2907 // clauses or marking the landingpad as having a cleanup. 2908 if (isCatchAll(Personality, TypeInfo)) { 2909 if (!isLastClause) 2910 MakeNewInstruction = true; 2911 CleanupFlag = false; 2912 break; 2913 } 2914 } else { 2915 // A filter clause. If any of the filter elements were already caught 2916 // then they can be dropped from the filter. It is tempting to try to 2917 // exploit the filter further by saying that any typeinfo that does not 2918 // occur in the filter can't be caught later (and thus can be dropped). 2919 // However this would be wrong, since typeinfos can match without being 2920 // equal (for example if one represents a C++ class, and the other some 2921 // class derived from it). 2922 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 2923 Constant *FilterClause = LI.getClause(i); 2924 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 2925 unsigned NumTypeInfos = FilterType->getNumElements(); 2926 2927 // An empty filter catches everything, so there is no point in keeping any 2928 // following clauses or marking the landingpad as having a cleanup. By 2929 // dealing with this case here the following code is made a bit simpler. 2930 if (!NumTypeInfos) { 2931 NewClauses.push_back(FilterClause); 2932 if (!isLastClause) 2933 MakeNewInstruction = true; 2934 CleanupFlag = false; 2935 break; 2936 } 2937 2938 bool MakeNewFilter = false; // If true, make a new filter. 2939 SmallVector<Constant *, 16> NewFilterElts; // New elements. 2940 if (isa<ConstantAggregateZero>(FilterClause)) { 2941 // Not an empty filter - it contains at least one null typeinfo. 2942 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 2943 Constant *TypeInfo = 2944 Constant::getNullValue(FilterType->getElementType()); 2945 // If this typeinfo is a catch-all then the filter can never match. 2946 if (isCatchAll(Personality, TypeInfo)) { 2947 // Throw the filter away. 2948 MakeNewInstruction = true; 2949 continue; 2950 } 2951 2952 // There is no point in having multiple copies of this typeinfo, so 2953 // discard all but the first copy if there is more than one. 2954 NewFilterElts.push_back(TypeInfo); 2955 if (NumTypeInfos > 1) 2956 MakeNewFilter = true; 2957 } else { 2958 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 2959 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 2960 NewFilterElts.reserve(NumTypeInfos); 2961 2962 // Remove any filter elements that were already caught or that already 2963 // occurred in the filter. While there, see if any of the elements are 2964 // catch-alls. If so, the filter can be discarded. 2965 bool SawCatchAll = false; 2966 for (unsigned j = 0; j != NumTypeInfos; ++j) { 2967 Constant *Elt = Filter->getOperand(j); 2968 Constant *TypeInfo = Elt->stripPointerCasts(); 2969 if (isCatchAll(Personality, TypeInfo)) { 2970 // This element is a catch-all. Bail out, noting this fact. 2971 SawCatchAll = true; 2972 break; 2973 } 2974 2975 // Even if we've seen a type in a catch clause, we don't want to 2976 // remove it from the filter. An unexpected type handler may be 2977 // set up for a call site which throws an exception of the same 2978 // type caught. In order for the exception thrown by the unexpected 2979 // handler to propagate correctly, the filter must be correctly 2980 // described for the call site. 2981 // 2982 // Example: 2983 // 2984 // void unexpected() { throw 1;} 2985 // void foo() throw (int) { 2986 // std::set_unexpected(unexpected); 2987 // try { 2988 // throw 2.0; 2989 // } catch (int i) {} 2990 // } 2991 2992 // There is no point in having multiple copies of the same typeinfo in 2993 // a filter, so only add it if we didn't already. 2994 if (SeenInFilter.insert(TypeInfo).second) 2995 NewFilterElts.push_back(cast<Constant>(Elt)); 2996 } 2997 // A filter containing a catch-all cannot match anything by definition. 2998 if (SawCatchAll) { 2999 // Throw the filter away. 3000 MakeNewInstruction = true; 3001 continue; 3002 } 3003 3004 // If we dropped something from the filter, make a new one. 3005 if (NewFilterElts.size() < NumTypeInfos) 3006 MakeNewFilter = true; 3007 } 3008 if (MakeNewFilter) { 3009 FilterType = ArrayType::get(FilterType->getElementType(), 3010 NewFilterElts.size()); 3011 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 3012 MakeNewInstruction = true; 3013 } 3014 3015 NewClauses.push_back(FilterClause); 3016 3017 // If the new filter is empty then it will catch everything so there is 3018 // no point in keeping any following clauses or marking the landingpad 3019 // as having a cleanup. The case of the original filter being empty was 3020 // already handled above. 3021 if (MakeNewFilter && !NewFilterElts.size()) { 3022 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3023 CleanupFlag = false; 3024 break; 3025 } 3026 } 3027 } 3028 3029 // If several filters occur in a row then reorder them so that the shortest 3030 // filters come first (those with the smallest number of elements). This is 3031 // advantageous because shorter filters are more likely to match, speeding up 3032 // unwinding, but mostly because it increases the effectiveness of the other 3033 // filter optimizations below. 3034 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3035 unsigned j; 3036 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3037 for (j = i; j != e; ++j) 3038 if (!isa<ArrayType>(NewClauses[j]->getType())) 3039 break; 3040 3041 // Check whether the filters are already sorted by length. We need to know 3042 // if sorting them is actually going to do anything so that we only make a 3043 // new landingpad instruction if it does. 3044 for (unsigned k = i; k + 1 < j; ++k) 3045 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3046 // Not sorted, so sort the filters now. Doing an unstable sort would be 3047 // correct too but reordering filters pointlessly might confuse users. 3048 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3049 shorter_filter); 3050 MakeNewInstruction = true; 3051 break; 3052 } 3053 3054 // Look for the next batch of filters. 3055 i = j + 1; 3056 } 3057 3058 // If typeinfos matched if and only if equal, then the elements of a filter L 3059 // that occurs later than a filter F could be replaced by the intersection of 3060 // the elements of F and L. In reality two typeinfos can match without being 3061 // equal (for example if one represents a C++ class, and the other some class 3062 // derived from it) so it would be wrong to perform this transform in general. 3063 // However the transform is correct and useful if F is a subset of L. In that 3064 // case L can be replaced by F, and thus removed altogether since repeating a 3065 // filter is pointless. So here we look at all pairs of filters F and L where 3066 // L follows F in the list of clauses, and remove L if every element of F is 3067 // an element of L. This can occur when inlining C++ functions with exception 3068 // specifications. 3069 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3070 // Examine each filter in turn. 3071 Value *Filter = NewClauses[i]; 3072 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3073 if (!FTy) 3074 // Not a filter - skip it. 3075 continue; 3076 unsigned FElts = FTy->getNumElements(); 3077 // Examine each filter following this one. Doing this backwards means that 3078 // we don't have to worry about filters disappearing under us when removed. 3079 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3080 Value *LFilter = NewClauses[j]; 3081 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3082 if (!LTy) 3083 // Not a filter - skip it. 3084 continue; 3085 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3086 // an element of LFilter, then discard LFilter. 3087 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3088 // If Filter is empty then it is a subset of LFilter. 3089 if (!FElts) { 3090 // Discard LFilter. 3091 NewClauses.erase(J); 3092 MakeNewInstruction = true; 3093 // Move on to the next filter. 3094 continue; 3095 } 3096 unsigned LElts = LTy->getNumElements(); 3097 // If Filter is longer than LFilter then it cannot be a subset of it. 3098 if (FElts > LElts) 3099 // Move on to the next filter. 3100 continue; 3101 // At this point we know that LFilter has at least one element. 3102 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3103 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3104 // already know that Filter is not longer than LFilter). 3105 if (isa<ConstantAggregateZero>(Filter)) { 3106 assert(FElts <= LElts && "Should have handled this case earlier!"); 3107 // Discard LFilter. 3108 NewClauses.erase(J); 3109 MakeNewInstruction = true; 3110 } 3111 // Move on to the next filter. 3112 continue; 3113 } 3114 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3115 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3116 // Since Filter is non-empty and contains only zeros, it is a subset of 3117 // LFilter iff LFilter contains a zero. 3118 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3119 for (unsigned l = 0; l != LElts; ++l) 3120 if (LArray->getOperand(l)->isNullValue()) { 3121 // LFilter contains a zero - discard it. 3122 NewClauses.erase(J); 3123 MakeNewInstruction = true; 3124 break; 3125 } 3126 // Move on to the next filter. 3127 continue; 3128 } 3129 // At this point we know that both filters are ConstantArrays. Loop over 3130 // operands to see whether every element of Filter is also an element of 3131 // LFilter. Since filters tend to be short this is probably faster than 3132 // using a method that scales nicely. 3133 ConstantArray *FArray = cast<ConstantArray>(Filter); 3134 bool AllFound = true; 3135 for (unsigned f = 0; f != FElts; ++f) { 3136 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3137 AllFound = false; 3138 for (unsigned l = 0; l != LElts; ++l) { 3139 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3140 if (LTypeInfo == FTypeInfo) { 3141 AllFound = true; 3142 break; 3143 } 3144 } 3145 if (!AllFound) 3146 break; 3147 } 3148 if (AllFound) { 3149 // Discard LFilter. 3150 NewClauses.erase(J); 3151 MakeNewInstruction = true; 3152 } 3153 // Move on to the next filter. 3154 } 3155 } 3156 3157 // If we changed any of the clauses, replace the old landingpad instruction 3158 // with a new one. 3159 if (MakeNewInstruction) { 3160 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3161 NewClauses.size()); 3162 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3163 NLI->addClause(NewClauses[i]); 3164 // A landing pad with no clauses must have the cleanup flag set. It is 3165 // theoretically possible, though highly unlikely, that we eliminated all 3166 // clauses. If so, force the cleanup flag to true. 3167 if (NewClauses.empty()) 3168 CleanupFlag = true; 3169 NLI->setCleanup(CleanupFlag); 3170 return NLI; 3171 } 3172 3173 // Even if none of the clauses changed, we may nonetheless have understood 3174 // that the cleanup flag is pointless. Clear it if so. 3175 if (LI.isCleanup() != CleanupFlag) { 3176 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3177 LI.setCleanup(CleanupFlag); 3178 return &LI; 3179 } 3180 3181 return nullptr; 3182 } 3183 3184 Instruction *InstCombiner::visitFreeze(FreezeInst &I) { 3185 Value *Op0 = I.getOperand(0); 3186 3187 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3188 return replaceInstUsesWith(I, V); 3189 3190 return nullptr; 3191 } 3192 3193 /// Try to move the specified instruction from its current block into the 3194 /// beginning of DestBlock, which can only happen if it's safe to move the 3195 /// instruction past all of the instructions between it and the end of its 3196 /// block. 3197 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 3198 assert(I->hasOneUse() && "Invariants didn't hold!"); 3199 BasicBlock *SrcBlock = I->getParent(); 3200 3201 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3202 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 3203 I->isTerminator()) 3204 return false; 3205 3206 // Do not sink static or dynamic alloca instructions. Static allocas must 3207 // remain in the entry block, and dynamic allocas must not be sunk in between 3208 // a stacksave / stackrestore pair, which would incorrectly shorten its 3209 // lifetime. 3210 if (isa<AllocaInst>(I)) 3211 return false; 3212 3213 // Do not sink into catchswitch blocks. 3214 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 3215 return false; 3216 3217 // Do not sink convergent call instructions. 3218 if (auto *CI = dyn_cast<CallInst>(I)) { 3219 if (CI->isConvergent()) 3220 return false; 3221 } 3222 // We can only sink load instructions if there is nothing between the load and 3223 // the end of block that could change the value. 3224 if (I->mayReadFromMemory()) { 3225 for (BasicBlock::iterator Scan = I->getIterator(), 3226 E = I->getParent()->end(); 3227 Scan != E; ++Scan) 3228 if (Scan->mayWriteToMemory()) 3229 return false; 3230 } 3231 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 3232 I->moveBefore(&*InsertPos); 3233 ++NumSunkInst; 3234 3235 // Also sink all related debug uses from the source basic block. Otherwise we 3236 // get debug use before the def. Attempt to salvage debug uses first, to 3237 // maximise the range variables have location for. If we cannot salvage, then 3238 // mark the location undef: we know it was supposed to receive a new location 3239 // here, but that computation has been sunk. 3240 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 3241 findDbgUsers(DbgUsers, I); 3242 for (auto *DII : reverse(DbgUsers)) { 3243 if (DII->getParent() == SrcBlock) { 3244 if (isa<DbgDeclareInst>(DII)) { 3245 // A dbg.declare instruction should not be cloned, since there can only be 3246 // one per variable fragment. It should be left in the original place since 3247 // sunk instruction is not an alloca(otherwise we could not be here). 3248 // But we need to update arguments of dbg.declare instruction, so that it 3249 // would not point into sunk instruction. 3250 if (!isa<CastInst>(I)) 3251 continue; // dbg.declare points at something it shouldn't 3252 3253 DII->setOperand( 3254 0, MetadataAsValue::get(I->getContext(), 3255 ValueAsMetadata::get(I->getOperand(0)))); 3256 continue; 3257 } 3258 3259 // dbg.value is in the same basic block as the sunk inst, see if we can 3260 // salvage it. Clone a new copy of the instruction: on success we need 3261 // both salvaged and unsalvaged copies. 3262 SmallVector<DbgVariableIntrinsic *, 1> TmpUser{ 3263 cast<DbgVariableIntrinsic>(DII->clone())}; 3264 3265 if (!salvageDebugInfoForDbgValues(*I, TmpUser)) { 3266 // We are unable to salvage: sink the cloned dbg.value, and mark the 3267 // original as undef, terminating any earlier variable location. 3268 LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n'); 3269 TmpUser[0]->insertBefore(&*InsertPos); 3270 Value *Undef = UndefValue::get(I->getType()); 3271 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 3272 ValueAsMetadata::get(Undef))); 3273 } else { 3274 // We successfully salvaged: place the salvaged dbg.value in the 3275 // original location, and move the unmodified dbg.value to sink with 3276 // the sunk inst. 3277 TmpUser[0]->insertBefore(DII); 3278 DII->moveBefore(&*InsertPos); 3279 } 3280 } 3281 } 3282 return true; 3283 } 3284 3285 bool InstCombiner::run() { 3286 while (!Worklist.isEmpty()) { 3287 Instruction *I = Worklist.RemoveOne(); 3288 if (I == nullptr) continue; // skip null values. 3289 3290 // Check to see if we can DCE the instruction. 3291 if (isInstructionTriviallyDead(I, &TLI)) { 3292 LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); 3293 eraseInstFromFunction(*I); 3294 ++NumDeadInst; 3295 MadeIRChange = true; 3296 continue; 3297 } 3298 3299 if (!DebugCounter::shouldExecute(VisitCounter)) 3300 continue; 3301 3302 // Instruction isn't dead, see if we can constant propagate it. 3303 if (!I->use_empty() && 3304 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 3305 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 3306 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 3307 << '\n'); 3308 3309 // Add operands to the worklist. 3310 replaceInstUsesWith(*I, C); 3311 ++NumConstProp; 3312 if (isInstructionTriviallyDead(I, &TLI)) 3313 eraseInstFromFunction(*I); 3314 MadeIRChange = true; 3315 continue; 3316 } 3317 } 3318 3319 // In general, it is possible for computeKnownBits to determine all bits in 3320 // a value even when the operands are not all constants. 3321 Type *Ty = I->getType(); 3322 if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) { 3323 KnownBits Known = computeKnownBits(I, /*Depth*/0, I); 3324 if (Known.isConstant()) { 3325 Constant *C = ConstantInt::get(Ty, Known.getConstant()); 3326 LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C 3327 << " from: " << *I << '\n'); 3328 3329 // Add operands to the worklist. 3330 replaceInstUsesWith(*I, C); 3331 ++NumConstProp; 3332 if (isInstructionTriviallyDead(I, &TLI)) 3333 eraseInstFromFunction(*I); 3334 MadeIRChange = true; 3335 continue; 3336 } 3337 } 3338 3339 // See if we can trivially sink this instruction to a successor basic block. 3340 if (EnableCodeSinking && I->hasOneUse()) { 3341 BasicBlock *BB = I->getParent(); 3342 Instruction *UserInst = cast<Instruction>(*I->user_begin()); 3343 BasicBlock *UserParent; 3344 3345 // Get the block the use occurs in. 3346 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 3347 UserParent = PN->getIncomingBlock(*I->use_begin()); 3348 else 3349 UserParent = UserInst->getParent(); 3350 3351 if (UserParent != BB) { 3352 bool UserIsSuccessor = false; 3353 // See if the user is one of our successors. 3354 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 3355 if (*SI == UserParent) { 3356 UserIsSuccessor = true; 3357 break; 3358 } 3359 3360 // If the user is one of our immediate successors, and if that successor 3361 // only has us as a predecessors (we'd have to split the critical edge 3362 // otherwise), we can keep going. 3363 if (UserIsSuccessor && UserParent->getUniquePredecessor()) { 3364 // Okay, the CFG is simple enough, try to sink this instruction. 3365 if (TryToSinkInstruction(I, UserParent)) { 3366 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3367 MadeIRChange = true; 3368 // We'll add uses of the sunk instruction below, but since sinking 3369 // can expose opportunities for it's *operands* add them to the 3370 // worklist 3371 for (Use &U : I->operands()) 3372 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3373 Worklist.Add(OpI); 3374 } 3375 } 3376 } 3377 } 3378 3379 // Now that we have an instruction, try combining it to simplify it. 3380 Builder.SetInsertPoint(I); 3381 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 3382 3383 #ifndef NDEBUG 3384 std::string OrigI; 3385 #endif 3386 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 3387 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 3388 3389 if (Instruction *Result = visit(*I)) { 3390 ++NumCombined; 3391 // Should we replace the old instruction with a new one? 3392 if (Result != I) { 3393 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 3394 << " New = " << *Result << '\n'); 3395 3396 if (I->getDebugLoc()) 3397 Result->setDebugLoc(I->getDebugLoc()); 3398 // Everything uses the new instruction now. 3399 I->replaceAllUsesWith(Result); 3400 3401 // Move the name to the new instruction first. 3402 Result->takeName(I); 3403 3404 // Insert the new instruction into the basic block... 3405 BasicBlock *InstParent = I->getParent(); 3406 BasicBlock::iterator InsertPos = I->getIterator(); 3407 3408 // If we replace a PHI with something that isn't a PHI, fix up the 3409 // insertion point. 3410 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 3411 InsertPos = InstParent->getFirstInsertionPt(); 3412 3413 InstParent->getInstList().insert(InsertPos, Result); 3414 3415 // Push the new instruction and any users onto the worklist. 3416 Worklist.AddUsersToWorkList(*Result); 3417 Worklist.Add(Result); 3418 3419 eraseInstFromFunction(*I); 3420 } else { 3421 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3422 << " New = " << *I << '\n'); 3423 3424 // If the instruction was modified, it's possible that it is now dead. 3425 // if so, remove it. 3426 if (isInstructionTriviallyDead(I, &TLI)) { 3427 eraseInstFromFunction(*I); 3428 } else { 3429 Worklist.AddUsersToWorkList(*I); 3430 Worklist.Add(I); 3431 } 3432 } 3433 MadeIRChange = true; 3434 } 3435 } 3436 3437 Worklist.Zap(); 3438 return MadeIRChange; 3439 } 3440 3441 /// Walk the function in depth-first order, adding all reachable code to the 3442 /// worklist. 3443 /// 3444 /// This has a couple of tricks to make the code faster and more powerful. In 3445 /// particular, we constant fold and DCE instructions as we go, to avoid adding 3446 /// them to the worklist (this significantly speeds up instcombine on code where 3447 /// many instructions are dead or constant). Additionally, if we find a branch 3448 /// whose condition is a known constant, we only visit the reachable successors. 3449 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, 3450 SmallPtrSetImpl<BasicBlock *> &Visited, 3451 InstCombineWorklist &ICWorklist, 3452 const TargetLibraryInfo *TLI) { 3453 bool MadeIRChange = false; 3454 SmallVector<BasicBlock*, 256> Worklist; 3455 Worklist.push_back(BB); 3456 3457 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 3458 DenseMap<Constant *, Constant *> FoldedConstants; 3459 3460 do { 3461 BB = Worklist.pop_back_val(); 3462 3463 // We have now visited this block! If we've already been here, ignore it. 3464 if (!Visited.insert(BB).second) 3465 continue; 3466 3467 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 3468 Instruction *Inst = &*BBI++; 3469 3470 // DCE instruction if trivially dead. 3471 if (isInstructionTriviallyDead(Inst, TLI)) { 3472 ++NumDeadInst; 3473 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 3474 salvageDebugInfoOrMarkUndef(*Inst); 3475 Inst->eraseFromParent(); 3476 MadeIRChange = true; 3477 continue; 3478 } 3479 3480 // ConstantProp instruction if trivially constant. 3481 if (!Inst->use_empty() && 3482 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 3483 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 3484 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst 3485 << '\n'); 3486 Inst->replaceAllUsesWith(C); 3487 ++NumConstProp; 3488 if (isInstructionTriviallyDead(Inst, TLI)) 3489 Inst->eraseFromParent(); 3490 MadeIRChange = true; 3491 continue; 3492 } 3493 3494 // See if we can constant fold its operands. 3495 for (Use &U : Inst->operands()) { 3496 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 3497 continue; 3498 3499 auto *C = cast<Constant>(U); 3500 Constant *&FoldRes = FoldedConstants[C]; 3501 if (!FoldRes) 3502 FoldRes = ConstantFoldConstant(C, DL, TLI); 3503 if (!FoldRes) 3504 FoldRes = C; 3505 3506 if (FoldRes != C) { 3507 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst 3508 << "\n Old = " << *C 3509 << "\n New = " << *FoldRes << '\n'); 3510 U = FoldRes; 3511 MadeIRChange = true; 3512 } 3513 } 3514 3515 // Skip processing debug intrinsics in InstCombine. Processing these call instructions 3516 // consumes non-trivial amount of time and provides no value for the optimization. 3517 if (!isa<DbgInfoIntrinsic>(Inst)) 3518 InstrsForInstCombineWorklist.push_back(Inst); 3519 } 3520 3521 // Recursively visit successors. If this is a branch or switch on a 3522 // constant, only visit the reachable successor. 3523 Instruction *TI = BB->getTerminator(); 3524 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3525 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 3526 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 3527 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 3528 Worklist.push_back(ReachableBB); 3529 continue; 3530 } 3531 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3532 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 3533 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 3534 continue; 3535 } 3536 } 3537 3538 for (BasicBlock *SuccBB : successors(TI)) 3539 Worklist.push_back(SuccBB); 3540 } while (!Worklist.empty()); 3541 3542 // Once we've found all of the instructions to add to instcombine's worklist, 3543 // add them in reverse order. This way instcombine will visit from the top 3544 // of the function down. This jives well with the way that it adds all uses 3545 // of instructions to the worklist after doing a transformation, thus avoiding 3546 // some N^2 behavior in pathological cases. 3547 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist); 3548 3549 return MadeIRChange; 3550 } 3551 3552 /// Populate the IC worklist from a function, and prune any dead basic 3553 /// blocks discovered in the process. 3554 /// 3555 /// This also does basic constant propagation and other forward fixing to make 3556 /// the combiner itself run much faster. 3557 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 3558 TargetLibraryInfo *TLI, 3559 InstCombineWorklist &ICWorklist) { 3560 bool MadeIRChange = false; 3561 3562 // Do a depth-first traversal of the function, populate the worklist with 3563 // the reachable instructions. Ignore blocks that are not reachable. Keep 3564 // track of which blocks we visit. 3565 SmallPtrSet<BasicBlock *, 32> Visited; 3566 MadeIRChange |= 3567 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI); 3568 3569 // Do a quick scan over the function. If we find any blocks that are 3570 // unreachable, remove any instructions inside of them. This prevents 3571 // the instcombine code from having to deal with some bad special cases. 3572 for (BasicBlock &BB : F) { 3573 if (Visited.count(&BB)) 3574 continue; 3575 3576 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB); 3577 MadeIRChange |= NumDeadInstInBB > 0; 3578 NumDeadInst += NumDeadInstInBB; 3579 } 3580 3581 return MadeIRChange; 3582 } 3583 3584 static bool combineInstructionsOverFunction( 3585 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, 3586 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, 3587 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 3588 ProfileSummaryInfo *PSI, bool ExpensiveCombines, unsigned MaxIterations, 3589 LoopInfo *LI) { 3590 auto &DL = F.getParent()->getDataLayout(); 3591 if (EnableExpensiveCombines.getNumOccurrences()) 3592 ExpensiveCombines = EnableExpensiveCombines; 3593 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 3594 3595 /// Builder - This is an IRBuilder that automatically inserts new 3596 /// instructions into the worklist when they are created. 3597 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 3598 F.getContext(), TargetFolder(DL), 3599 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 3600 Worklist.Add(I); 3601 if (match(I, m_Intrinsic<Intrinsic::assume>())) 3602 AC.registerAssumption(cast<CallInst>(I)); 3603 })); 3604 3605 // Lower dbg.declare intrinsics otherwise their value may be clobbered 3606 // by instcombiner. 3607 bool MadeIRChange = false; 3608 if (ShouldLowerDbgDeclare) 3609 MadeIRChange = LowerDbgDeclare(F); 3610 3611 // Iterate while there is work to do. 3612 unsigned Iteration = 0; 3613 while (true) { 3614 ++Iteration; 3615 3616 if (Iteration > InfiniteLoopDetectionThreshold) { 3617 report_fatal_error( 3618 "Instruction Combining seems stuck in an infinite loop after " + 3619 Twine(InfiniteLoopDetectionThreshold) + " iterations."); 3620 } 3621 3622 if (Iteration > MaxIterations) { 3623 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 3624 << " on " << F.getName() 3625 << " reached; stopping before reaching a fixpoint\n"); 3626 break; 3627 } 3628 3629 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 3630 << F.getName() << "\n"); 3631 3632 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 3633 3634 InstCombiner IC(Worklist, Builder, F.hasMinSize(), ExpensiveCombines, AA, 3635 AC, TLI, DT, ORE, BFI, PSI, DL, LI); 3636 IC.MaxArraySizeForCombine = MaxArraySize; 3637 3638 if (!IC.run()) 3639 break; 3640 3641 MadeIRChange = true; 3642 } 3643 3644 return MadeIRChange; 3645 } 3646 3647 InstCombinePass::InstCombinePass(bool ExpensiveCombines) 3648 : ExpensiveCombines(ExpensiveCombines), MaxIterations(LimitMaxIterations) {} 3649 3650 InstCombinePass::InstCombinePass(bool ExpensiveCombines, unsigned MaxIterations) 3651 : ExpensiveCombines(ExpensiveCombines), MaxIterations(MaxIterations) {} 3652 3653 PreservedAnalyses InstCombinePass::run(Function &F, 3654 FunctionAnalysisManager &AM) { 3655 auto &AC = AM.getResult<AssumptionAnalysis>(F); 3656 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 3657 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 3658 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3659 3660 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 3661 3662 auto *AA = &AM.getResult<AAManager>(F); 3663 const ModuleAnalysisManager &MAM = 3664 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 3665 ProfileSummaryInfo *PSI = 3666 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 3667 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 3668 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 3669 3670 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI, 3671 PSI, ExpensiveCombines, MaxIterations, 3672 LI)) 3673 // No changes, all analyses are preserved. 3674 return PreservedAnalyses::all(); 3675 3676 // Mark all the analyses that instcombine updates as preserved. 3677 PreservedAnalyses PA; 3678 PA.preserveSet<CFGAnalyses>(); 3679 PA.preserve<AAManager>(); 3680 PA.preserve<BasicAA>(); 3681 PA.preserve<GlobalsAA>(); 3682 return PA; 3683 } 3684 3685 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 3686 AU.setPreservesCFG(); 3687 AU.addRequired<AAResultsWrapperPass>(); 3688 AU.addRequired<AssumptionCacheTracker>(); 3689 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3690 AU.addRequired<DominatorTreeWrapperPass>(); 3691 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3692 AU.addPreserved<DominatorTreeWrapperPass>(); 3693 AU.addPreserved<AAResultsWrapperPass>(); 3694 AU.addPreserved<BasicAAWrapperPass>(); 3695 AU.addPreserved<GlobalsAAWrapperPass>(); 3696 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 3697 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 3698 } 3699 3700 bool InstructionCombiningPass::runOnFunction(Function &F) { 3701 if (skipFunction(F)) 3702 return false; 3703 3704 // Required analyses. 3705 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3706 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3707 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 3708 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3709 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 3710 3711 // Optional analyses. 3712 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3713 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 3714 ProfileSummaryInfo *PSI = 3715 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 3716 BlockFrequencyInfo *BFI = 3717 (PSI && PSI->hasProfileSummary()) ? 3718 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 3719 nullptr; 3720 3721 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI, 3722 PSI, ExpensiveCombines, MaxIterations, 3723 LI); 3724 } 3725 3726 char InstructionCombiningPass::ID = 0; 3727 3728 InstructionCombiningPass::InstructionCombiningPass(bool ExpensiveCombines) 3729 : FunctionPass(ID), ExpensiveCombines(ExpensiveCombines), 3730 MaxIterations(InstCombineDefaultMaxIterations) { 3731 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 3732 } 3733 3734 InstructionCombiningPass::InstructionCombiningPass(bool ExpensiveCombines, 3735 unsigned MaxIterations) 3736 : FunctionPass(ID), ExpensiveCombines(ExpensiveCombines), 3737 MaxIterations(MaxIterations) { 3738 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 3739 } 3740 3741 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 3742 "Combine redundant instructions", false, false) 3743 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3744 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3745 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3746 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3747 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3748 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3749 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 3750 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 3751 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 3752 "Combine redundant instructions", false, false) 3753 3754 // Initialization Routines 3755 void llvm::initializeInstCombine(PassRegistry &Registry) { 3756 initializeInstructionCombiningPassPass(Registry); 3757 } 3758 3759 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 3760 initializeInstructionCombiningPassPass(*unwrap(R)); 3761 } 3762 3763 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) { 3764 return new InstructionCombiningPass(ExpensiveCombines); 3765 } 3766 3767 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines, 3768 unsigned MaxIterations) { 3769 return new InstructionCombiningPass(ExpensiveCombines, MaxIterations); 3770 } 3771 3772 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 3773 unwrap(PM)->add(createInstructionCombiningPass()); 3774 } 3775