1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // InstructionCombining - Combine instructions to form fewer, simple
11 // instructions.  This pass does not modify the CFG.  This pass is where
12 // algebraic simplification happens.
13 //
14 // This pass combines things like:
15 //    %Y = add i32 %X, 1
16 //    %Z = add i32 %Y, 1
17 // into:
18 //    %Z = add i32 %X, 2
19 //
20 // This is a simple worklist driven algorithm.
21 //
22 // This pass guarantees that the following canonicalizations are performed on
23 // the program:
24 //    1. If a binary operator has a constant operand, it is moved to the RHS
25 //    2. Bitwise operators with constant operands are always grouped so that
26 //       shifts are performed first, then or's, then and's, then xor's.
27 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28 //    4. All cmp instructions on boolean values are replaced with logical ops
29 //    5. add X, X is represented as (X*2) => (X << 1)
30 //    6. Multiplies with a power-of-two constant argument are transformed into
31 //       shifts.
32 //   ... etc.
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "llvm/Transforms/InstCombine/InstCombine.h"
37 #include "InstCombineInternal.h"
38 #include "llvm-c/Initialization.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/Statistic.h"
41 #include "llvm/ADT/StringSwitch.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/Analysis/AssumptionCache.h"
44 #include "llvm/Analysis/BasicAliasAnalysis.h"
45 #include "llvm/Analysis/CFG.h"
46 #include "llvm/Analysis/ConstantFolding.h"
47 #include "llvm/Analysis/EHPersonalities.h"
48 #include "llvm/Analysis/GlobalsModRef.h"
49 #include "llvm/Analysis/InstructionSimplify.h"
50 #include "llvm/Analysis/LoopInfo.h"
51 #include "llvm/Analysis/MemoryBuiltins.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Analysis/ValueTracking.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/GetElementPtrTypeIterator.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/ValueHandle.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/Local.h"
66 #include <algorithm>
67 #include <climits>
68 using namespace llvm;
69 using namespace llvm::PatternMatch;
70 
71 #define DEBUG_TYPE "instcombine"
72 
73 STATISTIC(NumCombined , "Number of insts combined");
74 STATISTIC(NumConstProp, "Number of constant folds");
75 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
76 STATISTIC(NumSunkInst , "Number of instructions sunk");
77 STATISTIC(NumExpand,    "Number of expansions");
78 STATISTIC(NumFactor   , "Number of factorizations");
79 STATISTIC(NumReassoc  , "Number of reassociations");
80 
81 static cl::opt<bool>
82 EnableExpensiveCombines("expensive-combines",
83                         cl::desc("Enable expensive instruction combines"));
84 
85 Value *InstCombiner::EmitGEPOffset(User *GEP) {
86   return llvm::EmitGEPOffset(Builder, DL, GEP);
87 }
88 
89 /// Return true if it is desirable to convert an integer computation from a
90 /// given bit width to a new bit width.
91 /// We don't want to convert from a legal to an illegal type for example or from
92 /// a smaller to a larger illegal type.
93 bool InstCombiner::ShouldChangeType(unsigned FromWidth,
94                                     unsigned ToWidth) const {
95   bool FromLegal = DL.isLegalInteger(FromWidth);
96   bool ToLegal = DL.isLegalInteger(ToWidth);
97 
98   // If this is a legal integer from type, and the result would be an illegal
99   // type, don't do the transformation.
100   if (FromLegal && !ToLegal)
101     return false;
102 
103   // Otherwise, if both are illegal, do not increase the size of the result. We
104   // do allow things like i160 -> i64, but not i64 -> i160.
105   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
106     return false;
107 
108   return true;
109 }
110 
111 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
112 /// We don't want to convert from a legal to an illegal type for example or from
113 /// a smaller to a larger illegal type.
114 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
115   assert(From->isIntegerTy() && To->isIntegerTy());
116 
117   unsigned FromWidth = From->getPrimitiveSizeInBits();
118   unsigned ToWidth = To->getPrimitiveSizeInBits();
119   return ShouldChangeType(FromWidth, ToWidth);
120 }
121 
122 // Return true, if No Signed Wrap should be maintained for I.
123 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
124 // where both B and C should be ConstantInts, results in a constant that does
125 // not overflow. This function only handles the Add and Sub opcodes. For
126 // all other opcodes, the function conservatively returns false.
127 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
128   OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
129   if (!OBO || !OBO->hasNoSignedWrap()) {
130     return false;
131   }
132 
133   // We reason about Add and Sub Only.
134   Instruction::BinaryOps Opcode = I.getOpcode();
135   if (Opcode != Instruction::Add &&
136       Opcode != Instruction::Sub) {
137     return false;
138   }
139 
140   ConstantInt *CB = dyn_cast<ConstantInt>(B);
141   ConstantInt *CC = dyn_cast<ConstantInt>(C);
142 
143   if (!CB || !CC) {
144     return false;
145   }
146 
147   const APInt &BVal = CB->getValue();
148   const APInt &CVal = CC->getValue();
149   bool Overflow = false;
150 
151   if (Opcode == Instruction::Add) {
152     BVal.sadd_ov(CVal, Overflow);
153   } else {
154     BVal.ssub_ov(CVal, Overflow);
155   }
156 
157   return !Overflow;
158 }
159 
160 /// Conservatively clears subclassOptionalData after a reassociation or
161 /// commutation. We preserve fast-math flags when applicable as they can be
162 /// preserved.
163 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
164   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
165   if (!FPMO) {
166     I.clearSubclassOptionalData();
167     return;
168   }
169 
170   FastMathFlags FMF = I.getFastMathFlags();
171   I.clearSubclassOptionalData();
172   I.setFastMathFlags(FMF);
173 }
174 
175 /// This performs a few simplifications for operators that are associative or
176 /// commutative:
177 ///
178 ///  Commutative operators:
179 ///
180 ///  1. Order operands such that they are listed from right (least complex) to
181 ///     left (most complex).  This puts constants before unary operators before
182 ///     binary operators.
183 ///
184 ///  Associative operators:
185 ///
186 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
187 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
188 ///
189 ///  Associative and commutative operators:
190 ///
191 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
192 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
193 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
194 ///     if C1 and C2 are constants.
195 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
196   Instruction::BinaryOps Opcode = I.getOpcode();
197   bool Changed = false;
198 
199   do {
200     // Order operands such that they are listed from right (least complex) to
201     // left (most complex).  This puts constants before unary operators before
202     // binary operators.
203     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
204         getComplexity(I.getOperand(1)))
205       Changed = !I.swapOperands();
206 
207     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
208     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
209 
210     if (I.isAssociative()) {
211       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
212       if (Op0 && Op0->getOpcode() == Opcode) {
213         Value *A = Op0->getOperand(0);
214         Value *B = Op0->getOperand(1);
215         Value *C = I.getOperand(1);
216 
217         // Does "B op C" simplify?
218         if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
219           // It simplifies to V.  Form "A op V".
220           I.setOperand(0, A);
221           I.setOperand(1, V);
222           // Conservatively clear the optional flags, since they may not be
223           // preserved by the reassociation.
224           if (MaintainNoSignedWrap(I, B, C) &&
225               (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
226             // Note: this is only valid because SimplifyBinOp doesn't look at
227             // the operands to Op0.
228             I.clearSubclassOptionalData();
229             I.setHasNoSignedWrap(true);
230           } else {
231             ClearSubclassDataAfterReassociation(I);
232           }
233 
234           Changed = true;
235           ++NumReassoc;
236           continue;
237         }
238       }
239 
240       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
241       if (Op1 && Op1->getOpcode() == Opcode) {
242         Value *A = I.getOperand(0);
243         Value *B = Op1->getOperand(0);
244         Value *C = Op1->getOperand(1);
245 
246         // Does "A op B" simplify?
247         if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
248           // It simplifies to V.  Form "V op C".
249           I.setOperand(0, V);
250           I.setOperand(1, C);
251           // Conservatively clear the optional flags, since they may not be
252           // preserved by the reassociation.
253           ClearSubclassDataAfterReassociation(I);
254           Changed = true;
255           ++NumReassoc;
256           continue;
257         }
258       }
259     }
260 
261     if (I.isAssociative() && I.isCommutative()) {
262       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
263       if (Op0 && Op0->getOpcode() == Opcode) {
264         Value *A = Op0->getOperand(0);
265         Value *B = Op0->getOperand(1);
266         Value *C = I.getOperand(1);
267 
268         // Does "C op A" simplify?
269         if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
270           // It simplifies to V.  Form "V op B".
271           I.setOperand(0, V);
272           I.setOperand(1, B);
273           // Conservatively clear the optional flags, since they may not be
274           // preserved by the reassociation.
275           ClearSubclassDataAfterReassociation(I);
276           Changed = true;
277           ++NumReassoc;
278           continue;
279         }
280       }
281 
282       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
283       if (Op1 && Op1->getOpcode() == Opcode) {
284         Value *A = I.getOperand(0);
285         Value *B = Op1->getOperand(0);
286         Value *C = Op1->getOperand(1);
287 
288         // Does "C op A" simplify?
289         if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
290           // It simplifies to V.  Form "B op V".
291           I.setOperand(0, B);
292           I.setOperand(1, V);
293           // Conservatively clear the optional flags, since they may not be
294           // preserved by the reassociation.
295           ClearSubclassDataAfterReassociation(I);
296           Changed = true;
297           ++NumReassoc;
298           continue;
299         }
300       }
301 
302       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
303       // if C1 and C2 are constants.
304       if (Op0 && Op1 &&
305           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
306           isa<Constant>(Op0->getOperand(1)) &&
307           isa<Constant>(Op1->getOperand(1)) &&
308           Op0->hasOneUse() && Op1->hasOneUse()) {
309         Value *A = Op0->getOperand(0);
310         Constant *C1 = cast<Constant>(Op0->getOperand(1));
311         Value *B = Op1->getOperand(0);
312         Constant *C2 = cast<Constant>(Op1->getOperand(1));
313 
314         Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
315         BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
316         if (isa<FPMathOperator>(New)) {
317           FastMathFlags Flags = I.getFastMathFlags();
318           Flags &= Op0->getFastMathFlags();
319           Flags &= Op1->getFastMathFlags();
320           New->setFastMathFlags(Flags);
321         }
322         InsertNewInstWith(New, I);
323         New->takeName(Op1);
324         I.setOperand(0, New);
325         I.setOperand(1, Folded);
326         // Conservatively clear the optional flags, since they may not be
327         // preserved by the reassociation.
328         ClearSubclassDataAfterReassociation(I);
329 
330         Changed = true;
331         continue;
332       }
333     }
334 
335     // No further simplifications.
336     return Changed;
337   } while (1);
338 }
339 
340 /// Return whether "X LOp (Y ROp Z)" is always equal to
341 /// "(X LOp Y) ROp (X LOp Z)".
342 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
343                                      Instruction::BinaryOps ROp) {
344   switch (LOp) {
345   default:
346     return false;
347 
348   case Instruction::And:
349     // And distributes over Or and Xor.
350     switch (ROp) {
351     default:
352       return false;
353     case Instruction::Or:
354     case Instruction::Xor:
355       return true;
356     }
357 
358   case Instruction::Mul:
359     // Multiplication distributes over addition and subtraction.
360     switch (ROp) {
361     default:
362       return false;
363     case Instruction::Add:
364     case Instruction::Sub:
365       return true;
366     }
367 
368   case Instruction::Or:
369     // Or distributes over And.
370     switch (ROp) {
371     default:
372       return false;
373     case Instruction::And:
374       return true;
375     }
376   }
377 }
378 
379 /// Return whether "(X LOp Y) ROp Z" is always equal to
380 /// "(X ROp Z) LOp (Y ROp Z)".
381 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
382                                      Instruction::BinaryOps ROp) {
383   if (Instruction::isCommutative(ROp))
384     return LeftDistributesOverRight(ROp, LOp);
385 
386   switch (LOp) {
387   default:
388     return false;
389   // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
390   // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
391   // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
392   case Instruction::And:
393   case Instruction::Or:
394   case Instruction::Xor:
395     switch (ROp) {
396     default:
397       return false;
398     case Instruction::Shl:
399     case Instruction::LShr:
400     case Instruction::AShr:
401       return true;
402     }
403   }
404   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
405   // but this requires knowing that the addition does not overflow and other
406   // such subtleties.
407   return false;
408 }
409 
410 /// This function returns identity value for given opcode, which can be used to
411 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
412 static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) {
413   if (isa<Constant>(V))
414     return nullptr;
415 
416   if (OpCode == Instruction::Mul)
417     return ConstantInt::get(V->getType(), 1);
418 
419   // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc.
420 
421   return nullptr;
422 }
423 
424 /// This function factors binary ops which can be combined using distributive
425 /// laws. This function tries to transform 'Op' based TopLevelOpcode to enable
426 /// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called
427 /// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms
428 /// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and
429 /// RHS to 4.
430 static Instruction::BinaryOps
431 getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,
432                           BinaryOperator *Op, Value *&LHS, Value *&RHS) {
433   if (!Op)
434     return Instruction::BinaryOpsEnd;
435 
436   LHS = Op->getOperand(0);
437   RHS = Op->getOperand(1);
438 
439   switch (TopLevelOpcode) {
440   default:
441     return Op->getOpcode();
442 
443   case Instruction::Add:
444   case Instruction::Sub:
445     if (Op->getOpcode() == Instruction::Shl) {
446       if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
447         // The multiplier is really 1 << CST.
448         RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
449         return Instruction::Mul;
450       }
451     }
452     return Op->getOpcode();
453   }
454 
455   // TODO: We can add other conversions e.g. shr => div etc.
456 }
457 
458 /// This tries to simplify binary operations by factorizing out common terms
459 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
460 static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
461                                const DataLayout &DL, BinaryOperator &I,
462                                Instruction::BinaryOps InnerOpcode, Value *A,
463                                Value *B, Value *C, Value *D) {
464 
465   // If any of A, B, C, D are null, we can not factor I, return early.
466   // Checking A and C should be enough.
467   if (!A || !C || !B || !D)
468     return nullptr;
469 
470   Value *V = nullptr;
471   Value *SimplifiedInst = nullptr;
472   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
473   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
474 
475   // Does "X op' Y" always equal "Y op' X"?
476   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
477 
478   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
479   if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
480     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
481     // commutative case, "(A op' B) op (C op' A)"?
482     if (A == C || (InnerCommutative && A == D)) {
483       if (A != C)
484         std::swap(C, D);
485       // Consider forming "A op' (B op D)".
486       // If "B op D" simplifies then it can be formed with no cost.
487       V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
488       // If "B op D" doesn't simplify then only go on if both of the existing
489       // operations "A op' B" and "C op' D" will be zapped as no longer used.
490       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
491         V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
492       if (V) {
493         SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V);
494       }
495     }
496 
497   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
498   if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
499     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
500     // commutative case, "(A op' B) op (B op' D)"?
501     if (B == D || (InnerCommutative && B == C)) {
502       if (B != D)
503         std::swap(C, D);
504       // Consider forming "(A op C) op' B".
505       // If "A op C" simplifies then it can be formed with no cost.
506       V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
507 
508       // If "A op C" doesn't simplify then only go on if both of the existing
509       // operations "A op' B" and "C op' D" will be zapped as no longer used.
510       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
511         V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
512       if (V) {
513         SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B);
514       }
515     }
516 
517   if (SimplifiedInst) {
518     ++NumFactor;
519     SimplifiedInst->takeName(&I);
520 
521     // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
522     // TODO: Check for NUW.
523     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
524       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
525         bool HasNSW = false;
526         if (isa<OverflowingBinaryOperator>(&I))
527           HasNSW = I.hasNoSignedWrap();
528 
529         if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
530           if (isa<OverflowingBinaryOperator>(Op0))
531             HasNSW &= Op0->hasNoSignedWrap();
532 
533         if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
534           if (isa<OverflowingBinaryOperator>(Op1))
535             HasNSW &= Op1->hasNoSignedWrap();
536 
537         // We can propagate 'nsw' if we know that
538         //  %Y = mul nsw i16 %X, C
539         //  %Z = add nsw i16 %Y, %X
540         // =>
541         //  %Z = mul nsw i16 %X, C+1
542         //
543         // iff C+1 isn't INT_MIN
544         const APInt *CInt;
545         if (TopLevelOpcode == Instruction::Add &&
546             InnerOpcode == Instruction::Mul)
547           if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
548             BO->setHasNoSignedWrap(HasNSW);
549       }
550     }
551   }
552   return SimplifiedInst;
553 }
554 
555 /// This tries to simplify binary operations which some other binary operation
556 /// distributes over either by factorizing out common terms
557 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
558 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
559 /// Returns the simplified value, or null if it didn't simplify.
560 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
561   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
562   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
563   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
564 
565   // Factorization.
566   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
567   auto TopLevelOpcode = I.getOpcode();
568   auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
569   auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
570 
571   // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
572   // a common term.
573   if (LHSOpcode == RHSOpcode) {
574     if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D))
575       return V;
576   }
577 
578   // The instruction has the form "(A op' B) op (C)".  Try to factorize common
579   // term.
580   if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS,
581                                   getIdentityValue(LHSOpcode, RHS)))
582     return V;
583 
584   // The instruction has the form "(B) op (C op' D)".  Try to factorize common
585   // term.
586   if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS,
587                                   getIdentityValue(RHSOpcode, LHS), C, D))
588     return V;
589 
590   // Expansion.
591   if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
592     // The instruction has the form "(A op' B) op C".  See if expanding it out
593     // to "(A op C) op' (B op C)" results in simplifications.
594     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
595     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
596 
597     // Do "A op C" and "B op C" both simplify?
598     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
599       if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
600         // They do! Return "L op' R".
601         ++NumExpand;
602         // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
603         if ((L == A && R == B) ||
604             (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
605           return Op0;
606         // Otherwise return "L op' R" if it simplifies.
607         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
608           return V;
609         // Otherwise, create a new instruction.
610         C = Builder->CreateBinOp(InnerOpcode, L, R);
611         C->takeName(&I);
612         return C;
613       }
614   }
615 
616   if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
617     // The instruction has the form "A op (B op' C)".  See if expanding it out
618     // to "(A op B) op' (A op C)" results in simplifications.
619     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
620     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
621 
622     // Do "A op B" and "A op C" both simplify?
623     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
624       if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
625         // They do! Return "L op' R".
626         ++NumExpand;
627         // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
628         if ((L == B && R == C) ||
629             (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
630           return Op1;
631         // Otherwise return "L op' R" if it simplifies.
632         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
633           return V;
634         // Otherwise, create a new instruction.
635         A = Builder->CreateBinOp(InnerOpcode, L, R);
636         A->takeName(&I);
637         return A;
638       }
639   }
640 
641   // (op (select (a, c, b)), (select (a, d, b))) -> (select (a, (op c, d), 0))
642   // (op (select (a, b, c)), (select (a, b, d))) -> (select (a, 0, (op c, d)))
643   if (auto *SI0 = dyn_cast<SelectInst>(LHS)) {
644     if (auto *SI1 = dyn_cast<SelectInst>(RHS)) {
645       if (SI0->getCondition() == SI1->getCondition()) {
646         Value *SI = nullptr;
647         if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getFalseValue(),
648                                      SI1->getFalseValue(), DL, TLI, DT, AC))
649           SI = Builder->CreateSelect(SI0->getCondition(),
650                                      Builder->CreateBinOp(TopLevelOpcode,
651                                                           SI0->getTrueValue(),
652                                                           SI1->getTrueValue()),
653                                      V);
654         if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getTrueValue(),
655                                      SI1->getTrueValue(), DL, TLI, DT, AC))
656           SI = Builder->CreateSelect(
657               SI0->getCondition(), V,
658               Builder->CreateBinOp(TopLevelOpcode, SI0->getFalseValue(),
659                                    SI1->getFalseValue()));
660         if (SI) {
661           SI->takeName(&I);
662           return SI;
663         }
664       }
665     }
666   }
667 
668   return nullptr;
669 }
670 
671 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
672 /// constant zero (which is the 'negate' form).
673 Value *InstCombiner::dyn_castNegVal(Value *V) const {
674   if (BinaryOperator::isNeg(V))
675     return BinaryOperator::getNegArgument(V);
676 
677   // Constants can be considered to be negated values if they can be folded.
678   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
679     return ConstantExpr::getNeg(C);
680 
681   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
682     if (C->getType()->getElementType()->isIntegerTy())
683       return ConstantExpr::getNeg(C);
684 
685   return nullptr;
686 }
687 
688 /// Given a 'fsub' instruction, return the RHS of the instruction if the LHS is
689 /// a constant negative zero (which is the 'negate' form).
690 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
691   if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
692     return BinaryOperator::getFNegArgument(V);
693 
694   // Constants can be considered to be negated values if they can be folded.
695   if (ConstantFP *C = dyn_cast<ConstantFP>(V))
696     return ConstantExpr::getFNeg(C);
697 
698   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
699     if (C->getType()->getElementType()->isFloatingPointTy())
700       return ConstantExpr::getFNeg(C);
701 
702   return nullptr;
703 }
704 
705 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
706                                              InstCombiner *IC) {
707   if (CastInst *CI = dyn_cast<CastInst>(&I)) {
708     return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
709   }
710 
711   // Figure out if the constant is the left or the right argument.
712   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
713   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
714 
715   if (Constant *SOC = dyn_cast<Constant>(SO)) {
716     if (ConstIsRHS)
717       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
718     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
719   }
720 
721   Value *Op0 = SO, *Op1 = ConstOperand;
722   if (!ConstIsRHS)
723     std::swap(Op0, Op1);
724 
725   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) {
726     Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
727                                     SO->getName()+".op");
728     Instruction *FPInst = dyn_cast<Instruction>(RI);
729     if (FPInst && isa<FPMathOperator>(FPInst))
730       FPInst->copyFastMathFlags(BO);
731     return RI;
732   }
733   if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
734     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
735                                    SO->getName()+".cmp");
736   if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
737     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
738                                    SO->getName()+".cmp");
739   llvm_unreachable("Unknown binary instruction type!");
740 }
741 
742 /// Given an instruction with a select as one operand and a constant as the
743 /// other operand, try to fold the binary operator into the select arguments.
744 /// This also works for Cast instructions, which obviously do not have a second
745 /// operand.
746 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
747   // Don't modify shared select instructions
748   if (!SI->hasOneUse()) return nullptr;
749   Value *TV = SI->getOperand(1);
750   Value *FV = SI->getOperand(2);
751 
752   if (isa<Constant>(TV) || isa<Constant>(FV)) {
753     // Bool selects with constant operands can be folded to logical ops.
754     if (SI->getType()->isIntegerTy(1)) return nullptr;
755 
756     // If it's a bitcast involving vectors, make sure it has the same number of
757     // elements on both sides.
758     if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
759       VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
760       VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
761 
762       // Verify that either both or neither are vectors.
763       if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr;
764       // If vectors, verify that they have the same number of elements.
765       if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
766         return nullptr;
767     }
768 
769     // Test if a CmpInst instruction is used exclusively by a select as
770     // part of a minimum or maximum operation. If so, refrain from doing
771     // any other folding. This helps out other analyses which understand
772     // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
773     // and CodeGen. And in this case, at least one of the comparison
774     // operands has at least one user besides the compare (the select),
775     // which would often largely negate the benefit of folding anyway.
776     if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
777       if (CI->hasOneUse()) {
778         Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
779         if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
780             (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
781           return nullptr;
782       }
783     }
784 
785     Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
786     Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
787 
788     return SelectInst::Create(SI->getCondition(),
789                               SelectTrueVal, SelectFalseVal);
790   }
791   return nullptr;
792 }
793 
794 /// Given a binary operator, cast instruction, or select which has a PHI node as
795 /// operand #0, see if we can fold the instruction into the PHI (which is only
796 /// possible if all operands to the PHI are constants).
797 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
798   PHINode *PN = cast<PHINode>(I.getOperand(0));
799   unsigned NumPHIValues = PN->getNumIncomingValues();
800   if (NumPHIValues == 0)
801     return nullptr;
802 
803   // We normally only transform phis with a single use.  However, if a PHI has
804   // multiple uses and they are all the same operation, we can fold *all* of the
805   // uses into the PHI.
806   if (!PN->hasOneUse()) {
807     // Walk the use list for the instruction, comparing them to I.
808     for (User *U : PN->users()) {
809       Instruction *UI = cast<Instruction>(U);
810       if (UI != &I && !I.isIdenticalTo(UI))
811         return nullptr;
812     }
813     // Otherwise, we can replace *all* users with the new PHI we form.
814   }
815 
816   // Check to see if all of the operands of the PHI are simple constants
817   // (constantint/constantfp/undef).  If there is one non-constant value,
818   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
819   // bail out.  We don't do arbitrary constant expressions here because moving
820   // their computation can be expensive without a cost model.
821   BasicBlock *NonConstBB = nullptr;
822   for (unsigned i = 0; i != NumPHIValues; ++i) {
823     Value *InVal = PN->getIncomingValue(i);
824     if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
825       continue;
826 
827     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
828     if (NonConstBB) return nullptr;  // More than one non-const value.
829 
830     NonConstBB = PN->getIncomingBlock(i);
831 
832     // If the InVal is an invoke at the end of the pred block, then we can't
833     // insert a computation after it without breaking the edge.
834     if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
835       if (II->getParent() == NonConstBB)
836         return nullptr;
837 
838     // If the incoming non-constant value is in I's block, we will remove one
839     // instruction, but insert another equivalent one, leading to infinite
840     // instcombine.
841     if (isPotentiallyReachable(I.getParent(), NonConstBB, DT, LI))
842       return nullptr;
843   }
844 
845   // If there is exactly one non-constant value, we can insert a copy of the
846   // operation in that block.  However, if this is a critical edge, we would be
847   // inserting the computation on some other paths (e.g. inside a loop).  Only
848   // do this if the pred block is unconditionally branching into the phi block.
849   if (NonConstBB != nullptr) {
850     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
851     if (!BI || !BI->isUnconditional()) return nullptr;
852   }
853 
854   // Okay, we can do the transformation: create the new PHI node.
855   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
856   InsertNewInstBefore(NewPN, *PN);
857   NewPN->takeName(PN);
858 
859   // If we are going to have to insert a new computation, do so right before the
860   // predecessor's terminator.
861   if (NonConstBB)
862     Builder->SetInsertPoint(NonConstBB->getTerminator());
863 
864   // Next, add all of the operands to the PHI.
865   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
866     // We only currently try to fold the condition of a select when it is a phi,
867     // not the true/false values.
868     Value *TrueV = SI->getTrueValue();
869     Value *FalseV = SI->getFalseValue();
870     BasicBlock *PhiTransBB = PN->getParent();
871     for (unsigned i = 0; i != NumPHIValues; ++i) {
872       BasicBlock *ThisBB = PN->getIncomingBlock(i);
873       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
874       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
875       Value *InV = nullptr;
876       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
877       // even if currently isNullValue gives false.
878       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
879       if (InC && !isa<ConstantExpr>(InC))
880         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
881       else
882         InV = Builder->CreateSelect(PN->getIncomingValue(i),
883                                     TrueVInPred, FalseVInPred, "phitmp");
884       NewPN->addIncoming(InV, ThisBB);
885     }
886   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
887     Constant *C = cast<Constant>(I.getOperand(1));
888     for (unsigned i = 0; i != NumPHIValues; ++i) {
889       Value *InV = nullptr;
890       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
891         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
892       else if (isa<ICmpInst>(CI))
893         InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
894                                   C, "phitmp");
895       else
896         InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
897                                   C, "phitmp");
898       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
899     }
900   } else if (I.getNumOperands() == 2) {
901     Constant *C = cast<Constant>(I.getOperand(1));
902     for (unsigned i = 0; i != NumPHIValues; ++i) {
903       Value *InV = nullptr;
904       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
905         InV = ConstantExpr::get(I.getOpcode(), InC, C);
906       else
907         InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
908                                    PN->getIncomingValue(i), C, "phitmp");
909       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
910     }
911   } else {
912     CastInst *CI = cast<CastInst>(&I);
913     Type *RetTy = CI->getType();
914     for (unsigned i = 0; i != NumPHIValues; ++i) {
915       Value *InV;
916       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
917         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
918       else
919         InV = Builder->CreateCast(CI->getOpcode(),
920                                 PN->getIncomingValue(i), I.getType(), "phitmp");
921       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
922     }
923   }
924 
925   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
926     Instruction *User = cast<Instruction>(*UI++);
927     if (User == &I) continue;
928     replaceInstUsesWith(*User, NewPN);
929     eraseInstFromFunction(*User);
930   }
931   return replaceInstUsesWith(I, NewPN);
932 }
933 
934 /// Given a pointer type and a constant offset, determine whether or not there
935 /// is a sequence of GEP indices into the pointed type that will land us at the
936 /// specified offset. If so, fill them into NewIndices and return the resultant
937 /// element type, otherwise return null.
938 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
939                                         SmallVectorImpl<Value *> &NewIndices) {
940   Type *Ty = PtrTy->getElementType();
941   if (!Ty->isSized())
942     return nullptr;
943 
944   // Start with the index over the outer type.  Note that the type size
945   // might be zero (even if the offset isn't zero) if the indexed type
946   // is something like [0 x {int, int}]
947   Type *IntPtrTy = DL.getIntPtrType(PtrTy);
948   int64_t FirstIdx = 0;
949   if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
950     FirstIdx = Offset/TySize;
951     Offset -= FirstIdx*TySize;
952 
953     // Handle hosts where % returns negative instead of values [0..TySize).
954     if (Offset < 0) {
955       --FirstIdx;
956       Offset += TySize;
957       assert(Offset >= 0);
958     }
959     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
960   }
961 
962   NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
963 
964   // Index into the types.  If we fail, set OrigBase to null.
965   while (Offset) {
966     // Indexing into tail padding between struct/array elements.
967     if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
968       return nullptr;
969 
970     if (StructType *STy = dyn_cast<StructType>(Ty)) {
971       const StructLayout *SL = DL.getStructLayout(STy);
972       assert(Offset < (int64_t)SL->getSizeInBytes() &&
973              "Offset must stay within the indexed type");
974 
975       unsigned Elt = SL->getElementContainingOffset(Offset);
976       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
977                                             Elt));
978 
979       Offset -= SL->getElementOffset(Elt);
980       Ty = STy->getElementType(Elt);
981     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
982       uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
983       assert(EltSize && "Cannot index into a zero-sized array");
984       NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
985       Offset %= EltSize;
986       Ty = AT->getElementType();
987     } else {
988       // Otherwise, we can't index into the middle of this atomic type, bail.
989       return nullptr;
990     }
991   }
992 
993   return Ty;
994 }
995 
996 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
997   // If this GEP has only 0 indices, it is the same pointer as
998   // Src. If Src is not a trivial GEP too, don't combine
999   // the indices.
1000   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1001       !Src.hasOneUse())
1002     return false;
1003   return true;
1004 }
1005 
1006 /// Return a value X such that Val = X * Scale, or null if none.
1007 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1008 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1009   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1010   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1011          Scale.getBitWidth() && "Scale not compatible with value!");
1012 
1013   // If Val is zero or Scale is one then Val = Val * Scale.
1014   if (match(Val, m_Zero()) || Scale == 1) {
1015     NoSignedWrap = true;
1016     return Val;
1017   }
1018 
1019   // If Scale is zero then it does not divide Val.
1020   if (Scale.isMinValue())
1021     return nullptr;
1022 
1023   // Look through chains of multiplications, searching for a constant that is
1024   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1025   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1026   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1027   // down from Val:
1028   //
1029   //     Val = M1 * X          ||   Analysis starts here and works down
1030   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1031   //      M2 =  Z * 4          \/   than one use
1032   //
1033   // Then to modify a term at the bottom:
1034   //
1035   //     Val = M1 * X
1036   //      M1 =  Z * Y          ||   Replaced M2 with Z
1037   //
1038   // Then to work back up correcting nsw flags.
1039 
1040   // Op - the term we are currently analyzing.  Starts at Val then drills down.
1041   // Replaced with its descaled value before exiting from the drill down loop.
1042   Value *Op = Val;
1043 
1044   // Parent - initially null, but after drilling down notes where Op came from.
1045   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1046   // 0'th operand of Val.
1047   std::pair<Instruction*, unsigned> Parent;
1048 
1049   // Set if the transform requires a descaling at deeper levels that doesn't
1050   // overflow.
1051   bool RequireNoSignedWrap = false;
1052 
1053   // Log base 2 of the scale. Negative if not a power of 2.
1054   int32_t logScale = Scale.exactLogBase2();
1055 
1056   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1057 
1058     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1059       // If Op is a constant divisible by Scale then descale to the quotient.
1060       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1061       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1062       if (!Remainder.isMinValue())
1063         // Not divisible by Scale.
1064         return nullptr;
1065       // Replace with the quotient in the parent.
1066       Op = ConstantInt::get(CI->getType(), Quotient);
1067       NoSignedWrap = true;
1068       break;
1069     }
1070 
1071     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1072 
1073       if (BO->getOpcode() == Instruction::Mul) {
1074         // Multiplication.
1075         NoSignedWrap = BO->hasNoSignedWrap();
1076         if (RequireNoSignedWrap && !NoSignedWrap)
1077           return nullptr;
1078 
1079         // There are three cases for multiplication: multiplication by exactly
1080         // the scale, multiplication by a constant different to the scale, and
1081         // multiplication by something else.
1082         Value *LHS = BO->getOperand(0);
1083         Value *RHS = BO->getOperand(1);
1084 
1085         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1086           // Multiplication by a constant.
1087           if (CI->getValue() == Scale) {
1088             // Multiplication by exactly the scale, replace the multiplication
1089             // by its left-hand side in the parent.
1090             Op = LHS;
1091             break;
1092           }
1093 
1094           // Otherwise drill down into the constant.
1095           if (!Op->hasOneUse())
1096             return nullptr;
1097 
1098           Parent = std::make_pair(BO, 1);
1099           continue;
1100         }
1101 
1102         // Multiplication by something else. Drill down into the left-hand side
1103         // since that's where the reassociate pass puts the good stuff.
1104         if (!Op->hasOneUse())
1105           return nullptr;
1106 
1107         Parent = std::make_pair(BO, 0);
1108         continue;
1109       }
1110 
1111       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1112           isa<ConstantInt>(BO->getOperand(1))) {
1113         // Multiplication by a power of 2.
1114         NoSignedWrap = BO->hasNoSignedWrap();
1115         if (RequireNoSignedWrap && !NoSignedWrap)
1116           return nullptr;
1117 
1118         Value *LHS = BO->getOperand(0);
1119         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1120           getLimitedValue(Scale.getBitWidth());
1121         // Op = LHS << Amt.
1122 
1123         if (Amt == logScale) {
1124           // Multiplication by exactly the scale, replace the multiplication
1125           // by its left-hand side in the parent.
1126           Op = LHS;
1127           break;
1128         }
1129         if (Amt < logScale || !Op->hasOneUse())
1130           return nullptr;
1131 
1132         // Multiplication by more than the scale.  Reduce the multiplying amount
1133         // by the scale in the parent.
1134         Parent = std::make_pair(BO, 1);
1135         Op = ConstantInt::get(BO->getType(), Amt - logScale);
1136         break;
1137       }
1138     }
1139 
1140     if (!Op->hasOneUse())
1141       return nullptr;
1142 
1143     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1144       if (Cast->getOpcode() == Instruction::SExt) {
1145         // Op is sign-extended from a smaller type, descale in the smaller type.
1146         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1147         APInt SmallScale = Scale.trunc(SmallSize);
1148         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1149         // descale Op as (sext Y) * Scale.  In order to have
1150         //   sext (Y * SmallScale) = (sext Y) * Scale
1151         // some conditions need to hold however: SmallScale must sign-extend to
1152         // Scale and the multiplication Y * SmallScale should not overflow.
1153         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1154           // SmallScale does not sign-extend to Scale.
1155           return nullptr;
1156         assert(SmallScale.exactLogBase2() == logScale);
1157         // Require that Y * SmallScale must not overflow.
1158         RequireNoSignedWrap = true;
1159 
1160         // Drill down through the cast.
1161         Parent = std::make_pair(Cast, 0);
1162         Scale = SmallScale;
1163         continue;
1164       }
1165 
1166       if (Cast->getOpcode() == Instruction::Trunc) {
1167         // Op is truncated from a larger type, descale in the larger type.
1168         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1169         //   trunc (Y * sext Scale) = (trunc Y) * Scale
1170         // always holds.  However (trunc Y) * Scale may overflow even if
1171         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1172         // from this point up in the expression (see later).
1173         if (RequireNoSignedWrap)
1174           return nullptr;
1175 
1176         // Drill down through the cast.
1177         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1178         Parent = std::make_pair(Cast, 0);
1179         Scale = Scale.sext(LargeSize);
1180         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1181           logScale = -1;
1182         assert(Scale.exactLogBase2() == logScale);
1183         continue;
1184       }
1185     }
1186 
1187     // Unsupported expression, bail out.
1188     return nullptr;
1189   }
1190 
1191   // If Op is zero then Val = Op * Scale.
1192   if (match(Op, m_Zero())) {
1193     NoSignedWrap = true;
1194     return Op;
1195   }
1196 
1197   // We know that we can successfully descale, so from here on we can safely
1198   // modify the IR.  Op holds the descaled version of the deepest term in the
1199   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1200   // not to overflow.
1201 
1202   if (!Parent.first)
1203     // The expression only had one term.
1204     return Op;
1205 
1206   // Rewrite the parent using the descaled version of its operand.
1207   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1208   assert(Op != Parent.first->getOperand(Parent.second) &&
1209          "Descaling was a no-op?");
1210   Parent.first->setOperand(Parent.second, Op);
1211   Worklist.Add(Parent.first);
1212 
1213   // Now work back up the expression correcting nsw flags.  The logic is based
1214   // on the following observation: if X * Y is known not to overflow as a signed
1215   // multiplication, and Y is replaced by a value Z with smaller absolute value,
1216   // then X * Z will not overflow as a signed multiplication either.  As we work
1217   // our way up, having NoSignedWrap 'true' means that the descaled value at the
1218   // current level has strictly smaller absolute value than the original.
1219   Instruction *Ancestor = Parent.first;
1220   do {
1221     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1222       // If the multiplication wasn't nsw then we can't say anything about the
1223       // value of the descaled multiplication, and we have to clear nsw flags
1224       // from this point on up.
1225       bool OpNoSignedWrap = BO->hasNoSignedWrap();
1226       NoSignedWrap &= OpNoSignedWrap;
1227       if (NoSignedWrap != OpNoSignedWrap) {
1228         BO->setHasNoSignedWrap(NoSignedWrap);
1229         Worklist.Add(Ancestor);
1230       }
1231     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1232       // The fact that the descaled input to the trunc has smaller absolute
1233       // value than the original input doesn't tell us anything useful about
1234       // the absolute values of the truncations.
1235       NoSignedWrap = false;
1236     }
1237     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1238            "Failed to keep proper track of nsw flags while drilling down?");
1239 
1240     if (Ancestor == Val)
1241       // Got to the top, all done!
1242       return Val;
1243 
1244     // Move up one level in the expression.
1245     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1246     Ancestor = Ancestor->user_back();
1247   } while (1);
1248 }
1249 
1250 /// \brief Creates node of binary operation with the same attributes as the
1251 /// specified one but with other operands.
1252 static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS,
1253                                  InstCombiner::BuilderTy *B) {
1254   Value *BO = B->CreateBinOp(Inst.getOpcode(), LHS, RHS);
1255   // If LHS and RHS are constant, BO won't be a binary operator.
1256   if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BO))
1257     NewBO->copyIRFlags(&Inst);
1258   return BO;
1259 }
1260 
1261 /// \brief Makes transformation of binary operation specific for vector types.
1262 /// \param Inst Binary operator to transform.
1263 /// \return Pointer to node that must replace the original binary operator, or
1264 ///         null pointer if no transformation was made.
1265 Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
1266   if (!Inst.getType()->isVectorTy()) return nullptr;
1267 
1268   // It may not be safe to reorder shuffles and things like div, urem, etc.
1269   // because we may trap when executing those ops on unknown vector elements.
1270   // See PR20059.
1271   if (!isSafeToSpeculativelyExecute(&Inst))
1272     return nullptr;
1273 
1274   unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
1275   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1276   assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
1277   assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
1278 
1279   // If both arguments of binary operation are shuffles, which use the same
1280   // mask and shuffle within a single vector, it is worthwhile to move the
1281   // shuffle after binary operation:
1282   //   Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m)
1283   if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) {
1284     ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS);
1285     ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS);
1286     if (isa<UndefValue>(LShuf->getOperand(1)) &&
1287         isa<UndefValue>(RShuf->getOperand(1)) &&
1288         LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() &&
1289         LShuf->getMask() == RShuf->getMask()) {
1290       Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0),
1291           RShuf->getOperand(0), Builder);
1292       return Builder->CreateShuffleVector(NewBO,
1293           UndefValue::get(NewBO->getType()), LShuf->getMask());
1294     }
1295   }
1296 
1297   // If one argument is a shuffle within one vector, the other is a constant,
1298   // try moving the shuffle after the binary operation.
1299   ShuffleVectorInst *Shuffle = nullptr;
1300   Constant *C1 = nullptr;
1301   if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS);
1302   if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS);
1303   if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS);
1304   if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS);
1305   if (Shuffle && C1 &&
1306       (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) &&
1307       isa<UndefValue>(Shuffle->getOperand(1)) &&
1308       Shuffle->getType() == Shuffle->getOperand(0)->getType()) {
1309     SmallVector<int, 16> ShMask = Shuffle->getShuffleMask();
1310     // Find constant C2 that has property:
1311     //   shuffle(C2, ShMask) = C1
1312     // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>)
1313     // reorder is not possible.
1314     SmallVector<Constant*, 16> C2M(VWidth,
1315                                UndefValue::get(C1->getType()->getScalarType()));
1316     bool MayChange = true;
1317     for (unsigned I = 0; I < VWidth; ++I) {
1318       if (ShMask[I] >= 0) {
1319         assert(ShMask[I] < (int)VWidth);
1320         if (!isa<UndefValue>(C2M[ShMask[I]])) {
1321           MayChange = false;
1322           break;
1323         }
1324         C2M[ShMask[I]] = C1->getAggregateElement(I);
1325       }
1326     }
1327     if (MayChange) {
1328       Constant *C2 = ConstantVector::get(C2M);
1329       Value *NewLHS = isa<Constant>(LHS) ? C2 : Shuffle->getOperand(0);
1330       Value *NewRHS = isa<Constant>(LHS) ? Shuffle->getOperand(0) : C2;
1331       Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder);
1332       return Builder->CreateShuffleVector(NewBO,
1333           UndefValue::get(Inst.getType()), Shuffle->getMask());
1334     }
1335   }
1336 
1337   return nullptr;
1338 }
1339 
1340 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1341   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1342 
1343   if (Value *V = SimplifyGEPInst(GEP.getSourceElementType(), Ops, DL, TLI, DT, AC))
1344     return replaceInstUsesWith(GEP, V);
1345 
1346   Value *PtrOp = GEP.getOperand(0);
1347 
1348   // Eliminate unneeded casts for indices, and replace indices which displace
1349   // by multiples of a zero size type with zero.
1350   bool MadeChange = false;
1351   Type *IntPtrTy =
1352     DL.getIntPtrType(GEP.getPointerOperandType()->getScalarType());
1353 
1354   gep_type_iterator GTI = gep_type_begin(GEP);
1355   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1356        ++I, ++GTI) {
1357     // Skip indices into struct types.
1358     if (isa<StructType>(*GTI))
1359       continue;
1360 
1361     // Index type should have the same width as IntPtr
1362     Type *IndexTy = (*I)->getType();
1363     Type *NewIndexType = IndexTy->isVectorTy() ?
1364       VectorType::get(IntPtrTy, IndexTy->getVectorNumElements()) : IntPtrTy;
1365 
1366     // If the element type has zero size then any index over it is equivalent
1367     // to an index of zero, so replace it with zero if it is not zero already.
1368     Type *EltTy = GTI.getIndexedType();
1369     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0)
1370       if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1371         *I = Constant::getNullValue(NewIndexType);
1372         MadeChange = true;
1373       }
1374 
1375     if (IndexTy != NewIndexType) {
1376       // If we are using a wider index than needed for this platform, shrink
1377       // it to what we need.  If narrower, sign-extend it to what we need.
1378       // This explicit cast can make subsequent optimizations more obvious.
1379       *I = Builder->CreateIntCast(*I, NewIndexType, true);
1380       MadeChange = true;
1381     }
1382   }
1383   if (MadeChange)
1384     return &GEP;
1385 
1386   // Check to see if the inputs to the PHI node are getelementptr instructions.
1387   if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
1388     GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1389     if (!Op1)
1390       return nullptr;
1391 
1392     // Don't fold a GEP into itself through a PHI node. This can only happen
1393     // through the back-edge of a loop. Folding a GEP into itself means that
1394     // the value of the previous iteration needs to be stored in the meantime,
1395     // thus requiring an additional register variable to be live, but not
1396     // actually achieving anything (the GEP still needs to be executed once per
1397     // loop iteration).
1398     if (Op1 == &GEP)
1399       return nullptr;
1400 
1401     signed DI = -1;
1402 
1403     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1404       GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I);
1405       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1406         return nullptr;
1407 
1408       // As for Op1 above, don't try to fold a GEP into itself.
1409       if (Op2 == &GEP)
1410         return nullptr;
1411 
1412       // Keep track of the type as we walk the GEP.
1413       Type *CurTy = nullptr;
1414 
1415       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1416         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1417           return nullptr;
1418 
1419         if (Op1->getOperand(J) != Op2->getOperand(J)) {
1420           if (DI == -1) {
1421             // We have not seen any differences yet in the GEPs feeding the
1422             // PHI yet, so we record this one if it is allowed to be a
1423             // variable.
1424 
1425             // The first two arguments can vary for any GEP, the rest have to be
1426             // static for struct slots
1427             if (J > 1 && CurTy->isStructTy())
1428               return nullptr;
1429 
1430             DI = J;
1431           } else {
1432             // The GEP is different by more than one input. While this could be
1433             // extended to support GEPs that vary by more than one variable it
1434             // doesn't make sense since it greatly increases the complexity and
1435             // would result in an R+R+R addressing mode which no backend
1436             // directly supports and would need to be broken into several
1437             // simpler instructions anyway.
1438             return nullptr;
1439           }
1440         }
1441 
1442         // Sink down a layer of the type for the next iteration.
1443         if (J > 0) {
1444           if (J == 1) {
1445             CurTy = Op1->getSourceElementType();
1446           } else if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) {
1447             CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
1448           } else {
1449             CurTy = nullptr;
1450           }
1451         }
1452       }
1453     }
1454 
1455     // If not all GEPs are identical we'll have to create a new PHI node.
1456     // Check that the old PHI node has only one use so that it will get
1457     // removed.
1458     if (DI != -1 && !PN->hasOneUse())
1459       return nullptr;
1460 
1461     GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1462     if (DI == -1) {
1463       // All the GEPs feeding the PHI are identical. Clone one down into our
1464       // BB so that it can be merged with the current GEP.
1465       GEP.getParent()->getInstList().insert(
1466           GEP.getParent()->getFirstInsertionPt(), NewGEP);
1467     } else {
1468       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1469       // into the current block so it can be merged, and create a new PHI to
1470       // set that index.
1471       PHINode *NewPN;
1472       {
1473         IRBuilderBase::InsertPointGuard Guard(*Builder);
1474         Builder->SetInsertPoint(PN);
1475         NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(),
1476                                    PN->getNumOperands());
1477       }
1478 
1479       for (auto &I : PN->operands())
1480         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1481                            PN->getIncomingBlock(I));
1482 
1483       NewGEP->setOperand(DI, NewPN);
1484       GEP.getParent()->getInstList().insert(
1485           GEP.getParent()->getFirstInsertionPt(), NewGEP);
1486       NewGEP->setOperand(DI, NewPN);
1487     }
1488 
1489     GEP.setOperand(0, NewGEP);
1490     PtrOp = NewGEP;
1491   }
1492 
1493   // Combine Indices - If the source pointer to this getelementptr instruction
1494   // is a getelementptr instruction, combine the indices of the two
1495   // getelementptr instructions into a single instruction.
1496   //
1497   if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
1498     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1499       return nullptr;
1500 
1501     // Note that if our source is a gep chain itself then we wait for that
1502     // chain to be resolved before we perform this transformation.  This
1503     // avoids us creating a TON of code in some cases.
1504     if (GEPOperator *SrcGEP =
1505           dyn_cast<GEPOperator>(Src->getOperand(0)))
1506       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1507         return nullptr;   // Wait until our source is folded to completion.
1508 
1509     SmallVector<Value*, 8> Indices;
1510 
1511     // Find out whether the last index in the source GEP is a sequential idx.
1512     bool EndsWithSequential = false;
1513     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1514          I != E; ++I)
1515       EndsWithSequential = !(*I)->isStructTy();
1516 
1517     // Can we combine the two pointer arithmetics offsets?
1518     if (EndsWithSequential) {
1519       // Replace: gep (gep %P, long B), long A, ...
1520       // With:    T = long A+B; gep %P, T, ...
1521       //
1522       Value *Sum;
1523       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1524       Value *GO1 = GEP.getOperand(1);
1525       if (SO1 == Constant::getNullValue(SO1->getType())) {
1526         Sum = GO1;
1527       } else if (GO1 == Constant::getNullValue(GO1->getType())) {
1528         Sum = SO1;
1529       } else {
1530         // If they aren't the same type, then the input hasn't been processed
1531         // by the loop above yet (which canonicalizes sequential index types to
1532         // intptr_t).  Just avoid transforming this until the input has been
1533         // normalized.
1534         if (SO1->getType() != GO1->getType())
1535           return nullptr;
1536         // Only do the combine when GO1 and SO1 are both constants. Only in
1537         // this case, we are sure the cost after the merge is never more than
1538         // that before the merge.
1539         if (!isa<Constant>(GO1) || !isa<Constant>(SO1))
1540           return nullptr;
1541         Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
1542       }
1543 
1544       // Update the GEP in place if possible.
1545       if (Src->getNumOperands() == 2) {
1546         GEP.setOperand(0, Src->getOperand(0));
1547         GEP.setOperand(1, Sum);
1548         return &GEP;
1549       }
1550       Indices.append(Src->op_begin()+1, Src->op_end()-1);
1551       Indices.push_back(Sum);
1552       Indices.append(GEP.op_begin()+2, GEP.op_end());
1553     } else if (isa<Constant>(*GEP.idx_begin()) &&
1554                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1555                Src->getNumOperands() != 1) {
1556       // Otherwise we can do the fold if the first index of the GEP is a zero
1557       Indices.append(Src->op_begin()+1, Src->op_end());
1558       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1559     }
1560 
1561     if (!Indices.empty())
1562       return GEP.isInBounds() && Src->isInBounds()
1563                  ? GetElementPtrInst::CreateInBounds(
1564                        Src->getSourceElementType(), Src->getOperand(0), Indices,
1565                        GEP.getName())
1566                  : GetElementPtrInst::Create(Src->getSourceElementType(),
1567                                              Src->getOperand(0), Indices,
1568                                              GEP.getName());
1569   }
1570 
1571   if (GEP.getNumIndices() == 1) {
1572     unsigned AS = GEP.getPointerAddressSpace();
1573     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
1574         DL.getPointerSizeInBits(AS)) {
1575       Type *Ty = GEP.getSourceElementType();
1576       uint64_t TyAllocSize = DL.getTypeAllocSize(Ty);
1577 
1578       bool Matched = false;
1579       uint64_t C;
1580       Value *V = nullptr;
1581       if (TyAllocSize == 1) {
1582         V = GEP.getOperand(1);
1583         Matched = true;
1584       } else if (match(GEP.getOperand(1),
1585                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
1586         if (TyAllocSize == 1ULL << C)
1587           Matched = true;
1588       } else if (match(GEP.getOperand(1),
1589                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
1590         if (TyAllocSize == C)
1591           Matched = true;
1592       }
1593 
1594       if (Matched) {
1595         // Canonicalize (gep i8* X, -(ptrtoint Y))
1596         // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
1597         // The GEP pattern is emitted by the SCEV expander for certain kinds of
1598         // pointer arithmetic.
1599         if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
1600           Operator *Index = cast<Operator>(V);
1601           Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
1602           Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
1603           return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
1604         }
1605         // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
1606         // to (bitcast Y)
1607         Value *Y;
1608         if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
1609                            m_PtrToInt(m_Specific(GEP.getOperand(0)))))) {
1610           return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y,
1611                                                                GEP.getType());
1612         }
1613       }
1614     }
1615   }
1616 
1617   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1618   Value *StrippedPtr = PtrOp->stripPointerCasts();
1619   PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1620 
1621   // We do not handle pointer-vector geps here.
1622   if (!StrippedPtrTy)
1623     return nullptr;
1624 
1625   if (StrippedPtr != PtrOp) {
1626     bool HasZeroPointerIndex = false;
1627     if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1628       HasZeroPointerIndex = C->isZero();
1629 
1630     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1631     // into     : GEP [10 x i8]* X, i32 0, ...
1632     //
1633     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1634     //           into     : GEP i8* X, ...
1635     //
1636     // This occurs when the program declares an array extern like "int X[];"
1637     if (HasZeroPointerIndex) {
1638       if (ArrayType *CATy =
1639           dyn_cast<ArrayType>(GEP.getSourceElementType())) {
1640         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1641         if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
1642           // -> GEP i8* X, ...
1643           SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1644           GetElementPtrInst *Res = GetElementPtrInst::Create(
1645               StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName());
1646           Res->setIsInBounds(GEP.isInBounds());
1647           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
1648             return Res;
1649           // Insert Res, and create an addrspacecast.
1650           // e.g.,
1651           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
1652           // ->
1653           // %0 = GEP i8 addrspace(1)* X, ...
1654           // addrspacecast i8 addrspace(1)* %0 to i8*
1655           return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType());
1656         }
1657 
1658         if (ArrayType *XATy =
1659               dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
1660           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
1661           if (CATy->getElementType() == XATy->getElementType()) {
1662             // -> GEP [10 x i8]* X, i32 0, ...
1663             // At this point, we know that the cast source type is a pointer
1664             // to an array of the same type as the destination pointer
1665             // array.  Because the array type is never stepped over (there
1666             // is a leading zero) we can fold the cast into this GEP.
1667             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
1668               GEP.setOperand(0, StrippedPtr);
1669               GEP.setSourceElementType(XATy);
1670               return &GEP;
1671             }
1672             // Cannot replace the base pointer directly because StrippedPtr's
1673             // address space is different. Instead, create a new GEP followed by
1674             // an addrspacecast.
1675             // e.g.,
1676             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
1677             //   i32 0, ...
1678             // ->
1679             // %0 = GEP [10 x i8] addrspace(1)* X, ...
1680             // addrspacecast i8 addrspace(1)* %0 to i8*
1681             SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
1682             Value *NewGEP = GEP.isInBounds()
1683                                 ? Builder->CreateInBoundsGEP(
1684                                       nullptr, StrippedPtr, Idx, GEP.getName())
1685                                 : Builder->CreateGEP(nullptr, StrippedPtr, Idx,
1686                                                      GEP.getName());
1687             return new AddrSpaceCastInst(NewGEP, GEP.getType());
1688           }
1689         }
1690       }
1691     } else if (GEP.getNumOperands() == 2) {
1692       // Transform things like:
1693       // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1694       // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
1695       Type *SrcElTy = StrippedPtrTy->getElementType();
1696       Type *ResElTy = GEP.getSourceElementType();
1697       if (SrcElTy->isArrayTy() &&
1698           DL.getTypeAllocSize(SrcElTy->getArrayElementType()) ==
1699               DL.getTypeAllocSize(ResElTy)) {
1700         Type *IdxType = DL.getIntPtrType(GEP.getType());
1701         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
1702         Value *NewGEP =
1703             GEP.isInBounds()
1704                 ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, Idx,
1705                                              GEP.getName())
1706                 : Builder->CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName());
1707 
1708         // V and GEP are both pointer types --> BitCast
1709         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1710                                                              GEP.getType());
1711       }
1712 
1713       // Transform things like:
1714       // %V = mul i64 %N, 4
1715       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1716       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
1717       if (ResElTy->isSized() && SrcElTy->isSized()) {
1718         // Check that changing the type amounts to dividing the index by a scale
1719         // factor.
1720         uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
1721         uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy);
1722         if (ResSize && SrcSize % ResSize == 0) {
1723           Value *Idx = GEP.getOperand(1);
1724           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1725           uint64_t Scale = SrcSize / ResSize;
1726 
1727           // Earlier transforms ensure that the index has type IntPtrType, which
1728           // considerably simplifies the logic by eliminating implicit casts.
1729           assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
1730                  "Index not cast to pointer width?");
1731 
1732           bool NSW;
1733           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1734             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1735             // If the multiplication NewIdx * Scale may overflow then the new
1736             // GEP may not be "inbounds".
1737             Value *NewGEP =
1738                 GEP.isInBounds() && NSW
1739                     ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx,
1740                                                  GEP.getName())
1741                     : Builder->CreateGEP(nullptr, StrippedPtr, NewIdx,
1742                                          GEP.getName());
1743 
1744             // The NewGEP must be pointer typed, so must the old one -> BitCast
1745             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1746                                                                  GEP.getType());
1747           }
1748         }
1749       }
1750 
1751       // Similarly, transform things like:
1752       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
1753       //   (where tmp = 8*tmp2) into:
1754       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
1755       if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) {
1756         // Check that changing to the array element type amounts to dividing the
1757         // index by a scale factor.
1758         uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
1759         uint64_t ArrayEltSize =
1760             DL.getTypeAllocSize(SrcElTy->getArrayElementType());
1761         if (ResSize && ArrayEltSize % ResSize == 0) {
1762           Value *Idx = GEP.getOperand(1);
1763           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1764           uint64_t Scale = ArrayEltSize / ResSize;
1765 
1766           // Earlier transforms ensure that the index has type IntPtrType, which
1767           // considerably simplifies the logic by eliminating implicit casts.
1768           assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
1769                  "Index not cast to pointer width?");
1770 
1771           bool NSW;
1772           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1773             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1774             // If the multiplication NewIdx * Scale may overflow then the new
1775             // GEP may not be "inbounds".
1776             Value *Off[2] = {
1777                 Constant::getNullValue(DL.getIntPtrType(GEP.getType())),
1778                 NewIdx};
1779 
1780             Value *NewGEP = GEP.isInBounds() && NSW
1781                                 ? Builder->CreateInBoundsGEP(
1782                                       SrcElTy, StrippedPtr, Off, GEP.getName())
1783                                 : Builder->CreateGEP(SrcElTy, StrippedPtr, Off,
1784                                                      GEP.getName());
1785             // The NewGEP must be pointer typed, so must the old one -> BitCast
1786             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1787                                                                  GEP.getType());
1788           }
1789         }
1790       }
1791     }
1792   }
1793 
1794   // addrspacecast between types is canonicalized as a bitcast, then an
1795   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
1796   // through the addrspacecast.
1797   if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
1798     //   X = bitcast A addrspace(1)* to B addrspace(1)*
1799     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
1800     //   Z = gep Y, <...constant indices...>
1801     // Into an addrspacecasted GEP of the struct.
1802     if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
1803       PtrOp = BC;
1804   }
1805 
1806   /// See if we can simplify:
1807   ///   X = bitcast A* to B*
1808   ///   Y = gep X, <...constant indices...>
1809   /// into a gep of the original struct.  This is important for SROA and alias
1810   /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
1811   if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1812     Value *Operand = BCI->getOperand(0);
1813     PointerType *OpType = cast<PointerType>(Operand->getType());
1814     unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType());
1815     APInt Offset(OffsetBits, 0);
1816     if (!isa<BitCastInst>(Operand) &&
1817         GEP.accumulateConstantOffset(DL, Offset)) {
1818 
1819       // If this GEP instruction doesn't move the pointer, just replace the GEP
1820       // with a bitcast of the real input to the dest type.
1821       if (!Offset) {
1822         // If the bitcast is of an allocation, and the allocation will be
1823         // converted to match the type of the cast, don't touch this.
1824         if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
1825           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1826           if (Instruction *I = visitBitCast(*BCI)) {
1827             if (I != BCI) {
1828               I->takeName(BCI);
1829               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
1830               replaceInstUsesWith(*BCI, I);
1831             }
1832             return &GEP;
1833           }
1834         }
1835 
1836         if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1837           return new AddrSpaceCastInst(Operand, GEP.getType());
1838         return new BitCastInst(Operand, GEP.getType());
1839       }
1840 
1841       // Otherwise, if the offset is non-zero, we need to find out if there is a
1842       // field at Offset in 'A's type.  If so, we can pull the cast through the
1843       // GEP.
1844       SmallVector<Value*, 8> NewIndices;
1845       if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
1846         Value *NGEP =
1847             GEP.isInBounds()
1848                 ? Builder->CreateInBoundsGEP(nullptr, Operand, NewIndices)
1849                 : Builder->CreateGEP(nullptr, Operand, NewIndices);
1850 
1851         if (NGEP->getType() == GEP.getType())
1852           return replaceInstUsesWith(GEP, NGEP);
1853         NGEP->takeName(&GEP);
1854 
1855         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1856           return new AddrSpaceCastInst(NGEP, GEP.getType());
1857         return new BitCastInst(NGEP, GEP.getType());
1858       }
1859     }
1860   }
1861 
1862   return nullptr;
1863 }
1864 
1865 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
1866                                          Instruction *AI) {
1867   if (isa<ConstantPointerNull>(V))
1868     return true;
1869   if (auto *LI = dyn_cast<LoadInst>(V))
1870     return isa<GlobalVariable>(LI->getPointerOperand());
1871   // Two distinct allocations will never be equal.
1872   // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
1873   // through bitcasts of V can cause
1874   // the result statement below to be true, even when AI and V (ex:
1875   // i8* ->i32* ->i8* of AI) are the same allocations.
1876   return isAllocLikeFn(V, TLI) && V != AI;
1877 }
1878 
1879 static bool
1880 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1881                      const TargetLibraryInfo *TLI) {
1882   SmallVector<Instruction*, 4> Worklist;
1883   Worklist.push_back(AI);
1884 
1885   do {
1886     Instruction *PI = Worklist.pop_back_val();
1887     for (User *U : PI->users()) {
1888       Instruction *I = cast<Instruction>(U);
1889       switch (I->getOpcode()) {
1890       default:
1891         // Give up the moment we see something we can't handle.
1892         return false;
1893 
1894       case Instruction::BitCast:
1895       case Instruction::GetElementPtr:
1896         Users.emplace_back(I);
1897         Worklist.push_back(I);
1898         continue;
1899 
1900       case Instruction::ICmp: {
1901         ICmpInst *ICI = cast<ICmpInst>(I);
1902         // We can fold eq/ne comparisons with null to false/true, respectively.
1903         // We also fold comparisons in some conditions provided the alloc has
1904         // not escaped (see isNeverEqualToUnescapedAlloc).
1905         if (!ICI->isEquality())
1906           return false;
1907         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
1908         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
1909           return false;
1910         Users.emplace_back(I);
1911         continue;
1912       }
1913 
1914       case Instruction::Call:
1915         // Ignore no-op and store intrinsics.
1916         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1917           switch (II->getIntrinsicID()) {
1918           default:
1919             return false;
1920 
1921           case Intrinsic::memmove:
1922           case Intrinsic::memcpy:
1923           case Intrinsic::memset: {
1924             MemIntrinsic *MI = cast<MemIntrinsic>(II);
1925             if (MI->isVolatile() || MI->getRawDest() != PI)
1926               return false;
1927           }
1928           // fall through
1929           case Intrinsic::dbg_declare:
1930           case Intrinsic::dbg_value:
1931           case Intrinsic::invariant_start:
1932           case Intrinsic::invariant_end:
1933           case Intrinsic::lifetime_start:
1934           case Intrinsic::lifetime_end:
1935           case Intrinsic::objectsize:
1936             Users.emplace_back(I);
1937             continue;
1938           }
1939         }
1940 
1941         if (isFreeCall(I, TLI)) {
1942           Users.emplace_back(I);
1943           continue;
1944         }
1945         return false;
1946 
1947       case Instruction::Store: {
1948         StoreInst *SI = cast<StoreInst>(I);
1949         if (SI->isVolatile() || SI->getPointerOperand() != PI)
1950           return false;
1951         Users.emplace_back(I);
1952         continue;
1953       }
1954       }
1955       llvm_unreachable("missing a return?");
1956     }
1957   } while (!Worklist.empty());
1958   return true;
1959 }
1960 
1961 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
1962   // If we have a malloc call which is only used in any amount of comparisons
1963   // to null and free calls, delete the calls and replace the comparisons with
1964   // true or false as appropriate.
1965   SmallVector<WeakVH, 64> Users;
1966   if (isAllocSiteRemovable(&MI, Users, TLI)) {
1967     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1968       // Lowering all @llvm.objectsize calls first because they may
1969       // use a bitcast/GEP of the alloca we are removing.
1970       if (!Users[i])
1971        continue;
1972 
1973       Instruction *I = cast<Instruction>(&*Users[i]);
1974 
1975       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1976         if (II->getIntrinsicID() == Intrinsic::objectsize) {
1977           uint64_t Size;
1978           if (!getObjectSize(II->getArgOperand(0), Size, DL, TLI)) {
1979             ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1980             Size = CI->isZero() ? -1ULL : 0;
1981           }
1982           replaceInstUsesWith(*I, ConstantInt::get(I->getType(), Size));
1983           eraseInstFromFunction(*I);
1984           Users[i] = nullptr; // Skip examining in the next loop.
1985         }
1986       }
1987     }
1988     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1989       if (!Users[i])
1990         continue;
1991 
1992       Instruction *I = cast<Instruction>(&*Users[i]);
1993 
1994       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
1995         replaceInstUsesWith(*C,
1996                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
1997                                              C->isFalseWhenEqual()));
1998       } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
1999         replaceInstUsesWith(*I, UndefValue::get(I->getType()));
2000       }
2001       eraseInstFromFunction(*I);
2002     }
2003 
2004     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2005       // Replace invoke with a NOP intrinsic to maintain the original CFG
2006       Module *M = II->getModule();
2007       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2008       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2009                          None, "", II->getParent());
2010     }
2011     return eraseInstFromFunction(MI);
2012   }
2013   return nullptr;
2014 }
2015 
2016 /// \brief Move the call to free before a NULL test.
2017 ///
2018 /// Check if this free is accessed after its argument has been test
2019 /// against NULL (property 0).
2020 /// If yes, it is legal to move this call in its predecessor block.
2021 ///
2022 /// The move is performed only if the block containing the call to free
2023 /// will be removed, i.e.:
2024 /// 1. it has only one predecessor P, and P has two successors
2025 /// 2. it contains the call and an unconditional branch
2026 /// 3. its successor is the same as its predecessor's successor
2027 ///
2028 /// The profitability is out-of concern here and this function should
2029 /// be called only if the caller knows this transformation would be
2030 /// profitable (e.g., for code size).
2031 static Instruction *
2032 tryToMoveFreeBeforeNullTest(CallInst &FI) {
2033   Value *Op = FI.getArgOperand(0);
2034   BasicBlock *FreeInstrBB = FI.getParent();
2035   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2036 
2037   // Validate part of constraint #1: Only one predecessor
2038   // FIXME: We can extend the number of predecessor, but in that case, we
2039   //        would duplicate the call to free in each predecessor and it may
2040   //        not be profitable even for code size.
2041   if (!PredBB)
2042     return nullptr;
2043 
2044   // Validate constraint #2: Does this block contains only the call to
2045   //                         free and an unconditional branch?
2046   // FIXME: We could check if we can speculate everything in the
2047   //        predecessor block
2048   if (FreeInstrBB->size() != 2)
2049     return nullptr;
2050   BasicBlock *SuccBB;
2051   if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
2052     return nullptr;
2053 
2054   // Validate the rest of constraint #1 by matching on the pred branch.
2055   TerminatorInst *TI = PredBB->getTerminator();
2056   BasicBlock *TrueBB, *FalseBB;
2057   ICmpInst::Predicate Pred;
2058   if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
2059     return nullptr;
2060   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2061     return nullptr;
2062 
2063   // Validate constraint #3: Ensure the null case just falls through.
2064   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2065     return nullptr;
2066   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2067          "Broken CFG: missing edge from predecessor to successor");
2068 
2069   FI.moveBefore(TI);
2070   return &FI;
2071 }
2072 
2073 
2074 Instruction *InstCombiner::visitFree(CallInst &FI) {
2075   Value *Op = FI.getArgOperand(0);
2076 
2077   // free undef -> unreachable.
2078   if (isa<UndefValue>(Op)) {
2079     // Insert a new store to null because we cannot modify the CFG here.
2080     Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
2081                          UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
2082     return eraseInstFromFunction(FI);
2083   }
2084 
2085   // If we have 'free null' delete the instruction.  This can happen in stl code
2086   // when lots of inlining happens.
2087   if (isa<ConstantPointerNull>(Op))
2088     return eraseInstFromFunction(FI);
2089 
2090   // If we optimize for code size, try to move the call to free before the null
2091   // test so that simplify cfg can remove the empty block and dead code
2092   // elimination the branch. I.e., helps to turn something like:
2093   // if (foo) free(foo);
2094   // into
2095   // free(foo);
2096   if (MinimizeSize)
2097     if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
2098       return I;
2099 
2100   return nullptr;
2101 }
2102 
2103 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
2104   if (RI.getNumOperands() == 0) // ret void
2105     return nullptr;
2106 
2107   Value *ResultOp = RI.getOperand(0);
2108   Type *VTy = ResultOp->getType();
2109   if (!VTy->isIntegerTy())
2110     return nullptr;
2111 
2112   // There might be assume intrinsics dominating this return that completely
2113   // determine the value. If so, constant fold it.
2114   unsigned BitWidth = VTy->getPrimitiveSizeInBits();
2115   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2116   computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI);
2117   if ((KnownZero|KnownOne).isAllOnesValue())
2118     RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne));
2119 
2120   return nullptr;
2121 }
2122 
2123 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2124   // Change br (not X), label True, label False to: br X, label False, True
2125   Value *X = nullptr;
2126   BasicBlock *TrueDest;
2127   BasicBlock *FalseDest;
2128   if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
2129       !isa<Constant>(X)) {
2130     // Swap Destinations and condition...
2131     BI.setCondition(X);
2132     BI.swapSuccessors();
2133     return &BI;
2134   }
2135 
2136   // If the condition is irrelevant, remove the use so that other
2137   // transforms on the condition become more effective.
2138   if (BI.isConditional() &&
2139       BI.getSuccessor(0) == BI.getSuccessor(1) &&
2140       !isa<UndefValue>(BI.getCondition())) {
2141     BI.setCondition(UndefValue::get(BI.getCondition()->getType()));
2142     return &BI;
2143   }
2144 
2145   // Canonicalize fcmp_one -> fcmp_oeq
2146   FCmpInst::Predicate FPred; Value *Y;
2147   if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
2148                              TrueDest, FalseDest)) &&
2149       BI.getCondition()->hasOneUse())
2150     if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
2151         FPred == FCmpInst::FCMP_OGE) {
2152       FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
2153       Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
2154 
2155       // Swap Destinations and condition.
2156       BI.swapSuccessors();
2157       Worklist.Add(Cond);
2158       return &BI;
2159     }
2160 
2161   // Canonicalize icmp_ne -> icmp_eq
2162   ICmpInst::Predicate IPred;
2163   if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
2164                       TrueDest, FalseDest)) &&
2165       BI.getCondition()->hasOneUse())
2166     if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
2167         IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
2168         IPred == ICmpInst::ICMP_SGE) {
2169       ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
2170       Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
2171       // Swap Destinations and condition.
2172       BI.swapSuccessors();
2173       Worklist.Add(Cond);
2174       return &BI;
2175     }
2176 
2177   return nullptr;
2178 }
2179 
2180 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
2181   Value *Cond = SI.getCondition();
2182   unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth();
2183   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2184   computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI);
2185   unsigned LeadingKnownZeros = KnownZero.countLeadingOnes();
2186   unsigned LeadingKnownOnes = KnownOne.countLeadingOnes();
2187 
2188   // Compute the number of leading bits we can ignore.
2189   for (auto &C : SI.cases()) {
2190     LeadingKnownZeros = std::min(
2191         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2192     LeadingKnownOnes = std::min(
2193         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2194   }
2195 
2196   unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes);
2197 
2198   // Truncate the condition operand if the new type is equal to or larger than
2199   // the largest legal integer type. We need to be conservative here since
2200   // x86 generates redundant zero-extension instructions if the operand is
2201   // truncated to i8 or i16.
2202   bool TruncCond = false;
2203   if (NewWidth > 0 && BitWidth > NewWidth &&
2204       NewWidth >= DL.getLargestLegalIntTypeSizeInBits()) {
2205     TruncCond = true;
2206     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2207     Builder->SetInsertPoint(&SI);
2208     Value *NewCond = Builder->CreateTrunc(SI.getCondition(), Ty, "trunc");
2209     SI.setCondition(NewCond);
2210 
2211     for (auto &C : SI.cases())
2212       static_cast<SwitchInst::CaseIt *>(&C)->setValue(ConstantInt::get(
2213           SI.getContext(), C.getCaseValue()->getValue().trunc(NewWidth)));
2214   }
2215 
2216   ConstantInt *AddRHS = nullptr;
2217   if (match(Cond, m_Add(m_Value(), m_ConstantInt(AddRHS)))) {
2218     Instruction *I = cast<Instruction>(Cond);
2219     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2220     for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e;
2221          ++i) {
2222       ConstantInt *CaseVal = i.getCaseValue();
2223       Constant *LHS = CaseVal;
2224       if (TruncCond) {
2225         LHS = LeadingKnownZeros
2226                   ? ConstantExpr::getZExt(CaseVal, Cond->getType())
2227                   : ConstantExpr::getSExt(CaseVal, Cond->getType());
2228       }
2229       Constant *NewCaseVal = ConstantExpr::getSub(LHS, AddRHS);
2230       assert(isa<ConstantInt>(NewCaseVal) &&
2231              "Result of expression should be constant");
2232       i.setValue(cast<ConstantInt>(NewCaseVal));
2233     }
2234     SI.setCondition(I->getOperand(0));
2235     Worklist.Add(I);
2236     return &SI;
2237   }
2238 
2239   return TruncCond ? &SI : nullptr;
2240 }
2241 
2242 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
2243   Value *Agg = EV.getAggregateOperand();
2244 
2245   if (!EV.hasIndices())
2246     return replaceInstUsesWith(EV, Agg);
2247 
2248   if (Value *V =
2249           SimplifyExtractValueInst(Agg, EV.getIndices(), DL, TLI, DT, AC))
2250     return replaceInstUsesWith(EV, V);
2251 
2252   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2253     // We're extracting from an insertvalue instruction, compare the indices
2254     const unsigned *exti, *exte, *insi, *inse;
2255     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2256          exte = EV.idx_end(), inse = IV->idx_end();
2257          exti != exte && insi != inse;
2258          ++exti, ++insi) {
2259       if (*insi != *exti)
2260         // The insert and extract both reference distinctly different elements.
2261         // This means the extract is not influenced by the insert, and we can
2262         // replace the aggregate operand of the extract with the aggregate
2263         // operand of the insert. i.e., replace
2264         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2265         // %E = extractvalue { i32, { i32 } } %I, 0
2266         // with
2267         // %E = extractvalue { i32, { i32 } } %A, 0
2268         return ExtractValueInst::Create(IV->getAggregateOperand(),
2269                                         EV.getIndices());
2270     }
2271     if (exti == exte && insi == inse)
2272       // Both iterators are at the end: Index lists are identical. Replace
2273       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2274       // %C = extractvalue { i32, { i32 } } %B, 1, 0
2275       // with "i32 42"
2276       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
2277     if (exti == exte) {
2278       // The extract list is a prefix of the insert list. i.e. replace
2279       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2280       // %E = extractvalue { i32, { i32 } } %I, 1
2281       // with
2282       // %X = extractvalue { i32, { i32 } } %A, 1
2283       // %E = insertvalue { i32 } %X, i32 42, 0
2284       // by switching the order of the insert and extract (though the
2285       // insertvalue should be left in, since it may have other uses).
2286       Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
2287                                                  EV.getIndices());
2288       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
2289                                      makeArrayRef(insi, inse));
2290     }
2291     if (insi == inse)
2292       // The insert list is a prefix of the extract list
2293       // We can simply remove the common indices from the extract and make it
2294       // operate on the inserted value instead of the insertvalue result.
2295       // i.e., replace
2296       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2297       // %E = extractvalue { i32, { i32 } } %I, 1, 0
2298       // with
2299       // %E extractvalue { i32 } { i32 42 }, 0
2300       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
2301                                       makeArrayRef(exti, exte));
2302   }
2303   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
2304     // We're extracting from an intrinsic, see if we're the only user, which
2305     // allows us to simplify multiple result intrinsics to simpler things that
2306     // just get one value.
2307     if (II->hasOneUse()) {
2308       // Check if we're grabbing the overflow bit or the result of a 'with
2309       // overflow' intrinsic.  If it's the latter we can remove the intrinsic
2310       // and replace it with a traditional binary instruction.
2311       switch (II->getIntrinsicID()) {
2312       case Intrinsic::uadd_with_overflow:
2313       case Intrinsic::sadd_with_overflow:
2314         if (*EV.idx_begin() == 0) {  // Normal result.
2315           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2316           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2317           eraseInstFromFunction(*II);
2318           return BinaryOperator::CreateAdd(LHS, RHS);
2319         }
2320 
2321         // If the normal result of the add is dead, and the RHS is a constant,
2322         // we can transform this into a range comparison.
2323         // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
2324         if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2325           if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
2326             return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
2327                                 ConstantExpr::getNot(CI));
2328         break;
2329       case Intrinsic::usub_with_overflow:
2330       case Intrinsic::ssub_with_overflow:
2331         if (*EV.idx_begin() == 0) {  // Normal result.
2332           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2333           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2334           eraseInstFromFunction(*II);
2335           return BinaryOperator::CreateSub(LHS, RHS);
2336         }
2337         break;
2338       case Intrinsic::umul_with_overflow:
2339       case Intrinsic::smul_with_overflow:
2340         if (*EV.idx_begin() == 0) {  // Normal result.
2341           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2342           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2343           eraseInstFromFunction(*II);
2344           return BinaryOperator::CreateMul(LHS, RHS);
2345         }
2346         break;
2347       default:
2348         break;
2349       }
2350     }
2351   }
2352   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2353     // If the (non-volatile) load only has one use, we can rewrite this to a
2354     // load from a GEP. This reduces the size of the load. If a load is used
2355     // only by extractvalue instructions then this either must have been
2356     // optimized before, or it is a struct with padding, in which case we
2357     // don't want to do the transformation as it loses padding knowledge.
2358     if (L->isSimple() && L->hasOneUse()) {
2359       // extractvalue has integer indices, getelementptr has Value*s. Convert.
2360       SmallVector<Value*, 4> Indices;
2361       // Prefix an i32 0 since we need the first element.
2362       Indices.push_back(Builder->getInt32(0));
2363       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2364             I != E; ++I)
2365         Indices.push_back(Builder->getInt32(*I));
2366 
2367       // We need to insert these at the location of the old load, not at that of
2368       // the extractvalue.
2369       Builder->SetInsertPoint(L);
2370       Value *GEP = Builder->CreateInBoundsGEP(L->getType(),
2371                                               L->getPointerOperand(), Indices);
2372       // Returning the load directly will cause the main loop to insert it in
2373       // the wrong spot, so use replaceInstUsesWith().
2374       return replaceInstUsesWith(EV, Builder->CreateLoad(GEP));
2375     }
2376   // We could simplify extracts from other values. Note that nested extracts may
2377   // already be simplified implicitly by the above: extract (extract (insert) )
2378   // will be translated into extract ( insert ( extract ) ) first and then just
2379   // the value inserted, if appropriate. Similarly for extracts from single-use
2380   // loads: extract (extract (load)) will be translated to extract (load (gep))
2381   // and if again single-use then via load (gep (gep)) to load (gep).
2382   // However, double extracts from e.g. function arguments or return values
2383   // aren't handled yet.
2384   return nullptr;
2385 }
2386 
2387 /// Return 'true' if the given typeinfo will match anything.
2388 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
2389   switch (Personality) {
2390   case EHPersonality::GNU_C:
2391   case EHPersonality::GNU_C_SjLj:
2392   case EHPersonality::Rust:
2393     // The GCC C EH and Rust personality only exists to support cleanups, so
2394     // it's not clear what the semantics of catch clauses are.
2395     return false;
2396   case EHPersonality::Unknown:
2397     return false;
2398   case EHPersonality::GNU_Ada:
2399     // While __gnat_all_others_value will match any Ada exception, it doesn't
2400     // match foreign exceptions (or didn't, before gcc-4.7).
2401     return false;
2402   case EHPersonality::GNU_CXX:
2403   case EHPersonality::GNU_CXX_SjLj:
2404   case EHPersonality::GNU_ObjC:
2405   case EHPersonality::MSVC_X86SEH:
2406   case EHPersonality::MSVC_Win64SEH:
2407   case EHPersonality::MSVC_CXX:
2408   case EHPersonality::CoreCLR:
2409     return TypeInfo->isNullValue();
2410   }
2411   llvm_unreachable("invalid enum");
2412 }
2413 
2414 static bool shorter_filter(const Value *LHS, const Value *RHS) {
2415   return
2416     cast<ArrayType>(LHS->getType())->getNumElements()
2417   <
2418     cast<ArrayType>(RHS->getType())->getNumElements();
2419 }
2420 
2421 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
2422   // The logic here should be correct for any real-world personality function.
2423   // However if that turns out not to be true, the offending logic can always
2424   // be conditioned on the personality function, like the catch-all logic is.
2425   EHPersonality Personality =
2426       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
2427 
2428   // Simplify the list of clauses, eg by removing repeated catch clauses
2429   // (these are often created by inlining).
2430   bool MakeNewInstruction = false; // If true, recreate using the following:
2431   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
2432   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
2433 
2434   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
2435   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
2436     bool isLastClause = i + 1 == e;
2437     if (LI.isCatch(i)) {
2438       // A catch clause.
2439       Constant *CatchClause = LI.getClause(i);
2440       Constant *TypeInfo = CatchClause->stripPointerCasts();
2441 
2442       // If we already saw this clause, there is no point in having a second
2443       // copy of it.
2444       if (AlreadyCaught.insert(TypeInfo).second) {
2445         // This catch clause was not already seen.
2446         NewClauses.push_back(CatchClause);
2447       } else {
2448         // Repeated catch clause - drop the redundant copy.
2449         MakeNewInstruction = true;
2450       }
2451 
2452       // If this is a catch-all then there is no point in keeping any following
2453       // clauses or marking the landingpad as having a cleanup.
2454       if (isCatchAll(Personality, TypeInfo)) {
2455         if (!isLastClause)
2456           MakeNewInstruction = true;
2457         CleanupFlag = false;
2458         break;
2459       }
2460     } else {
2461       // A filter clause.  If any of the filter elements were already caught
2462       // then they can be dropped from the filter.  It is tempting to try to
2463       // exploit the filter further by saying that any typeinfo that does not
2464       // occur in the filter can't be caught later (and thus can be dropped).
2465       // However this would be wrong, since typeinfos can match without being
2466       // equal (for example if one represents a C++ class, and the other some
2467       // class derived from it).
2468       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
2469       Constant *FilterClause = LI.getClause(i);
2470       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
2471       unsigned NumTypeInfos = FilterType->getNumElements();
2472 
2473       // An empty filter catches everything, so there is no point in keeping any
2474       // following clauses or marking the landingpad as having a cleanup.  By
2475       // dealing with this case here the following code is made a bit simpler.
2476       if (!NumTypeInfos) {
2477         NewClauses.push_back(FilterClause);
2478         if (!isLastClause)
2479           MakeNewInstruction = true;
2480         CleanupFlag = false;
2481         break;
2482       }
2483 
2484       bool MakeNewFilter = false; // If true, make a new filter.
2485       SmallVector<Constant *, 16> NewFilterElts; // New elements.
2486       if (isa<ConstantAggregateZero>(FilterClause)) {
2487         // Not an empty filter - it contains at least one null typeinfo.
2488         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
2489         Constant *TypeInfo =
2490           Constant::getNullValue(FilterType->getElementType());
2491         // If this typeinfo is a catch-all then the filter can never match.
2492         if (isCatchAll(Personality, TypeInfo)) {
2493           // Throw the filter away.
2494           MakeNewInstruction = true;
2495           continue;
2496         }
2497 
2498         // There is no point in having multiple copies of this typeinfo, so
2499         // discard all but the first copy if there is more than one.
2500         NewFilterElts.push_back(TypeInfo);
2501         if (NumTypeInfos > 1)
2502           MakeNewFilter = true;
2503       } else {
2504         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
2505         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
2506         NewFilterElts.reserve(NumTypeInfos);
2507 
2508         // Remove any filter elements that were already caught or that already
2509         // occurred in the filter.  While there, see if any of the elements are
2510         // catch-alls.  If so, the filter can be discarded.
2511         bool SawCatchAll = false;
2512         for (unsigned j = 0; j != NumTypeInfos; ++j) {
2513           Constant *Elt = Filter->getOperand(j);
2514           Constant *TypeInfo = Elt->stripPointerCasts();
2515           if (isCatchAll(Personality, TypeInfo)) {
2516             // This element is a catch-all.  Bail out, noting this fact.
2517             SawCatchAll = true;
2518             break;
2519           }
2520 
2521           // Even if we've seen a type in a catch clause, we don't want to
2522           // remove it from the filter.  An unexpected type handler may be
2523           // set up for a call site which throws an exception of the same
2524           // type caught.  In order for the exception thrown by the unexpected
2525           // handler to propogate correctly, the filter must be correctly
2526           // described for the call site.
2527           //
2528           // Example:
2529           //
2530           // void unexpected() { throw 1;}
2531           // void foo() throw (int) {
2532           //   std::set_unexpected(unexpected);
2533           //   try {
2534           //     throw 2.0;
2535           //   } catch (int i) {}
2536           // }
2537 
2538           // There is no point in having multiple copies of the same typeinfo in
2539           // a filter, so only add it if we didn't already.
2540           if (SeenInFilter.insert(TypeInfo).second)
2541             NewFilterElts.push_back(cast<Constant>(Elt));
2542         }
2543         // A filter containing a catch-all cannot match anything by definition.
2544         if (SawCatchAll) {
2545           // Throw the filter away.
2546           MakeNewInstruction = true;
2547           continue;
2548         }
2549 
2550         // If we dropped something from the filter, make a new one.
2551         if (NewFilterElts.size() < NumTypeInfos)
2552           MakeNewFilter = true;
2553       }
2554       if (MakeNewFilter) {
2555         FilterType = ArrayType::get(FilterType->getElementType(),
2556                                     NewFilterElts.size());
2557         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2558         MakeNewInstruction = true;
2559       }
2560 
2561       NewClauses.push_back(FilterClause);
2562 
2563       // If the new filter is empty then it will catch everything so there is
2564       // no point in keeping any following clauses or marking the landingpad
2565       // as having a cleanup.  The case of the original filter being empty was
2566       // already handled above.
2567       if (MakeNewFilter && !NewFilterElts.size()) {
2568         assert(MakeNewInstruction && "New filter but not a new instruction!");
2569         CleanupFlag = false;
2570         break;
2571       }
2572     }
2573   }
2574 
2575   // If several filters occur in a row then reorder them so that the shortest
2576   // filters come first (those with the smallest number of elements).  This is
2577   // advantageous because shorter filters are more likely to match, speeding up
2578   // unwinding, but mostly because it increases the effectiveness of the other
2579   // filter optimizations below.
2580   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2581     unsigned j;
2582     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2583     for (j = i; j != e; ++j)
2584       if (!isa<ArrayType>(NewClauses[j]->getType()))
2585         break;
2586 
2587     // Check whether the filters are already sorted by length.  We need to know
2588     // if sorting them is actually going to do anything so that we only make a
2589     // new landingpad instruction if it does.
2590     for (unsigned k = i; k + 1 < j; ++k)
2591       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2592         // Not sorted, so sort the filters now.  Doing an unstable sort would be
2593         // correct too but reordering filters pointlessly might confuse users.
2594         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2595                          shorter_filter);
2596         MakeNewInstruction = true;
2597         break;
2598       }
2599 
2600     // Look for the next batch of filters.
2601     i = j + 1;
2602   }
2603 
2604   // If typeinfos matched if and only if equal, then the elements of a filter L
2605   // that occurs later than a filter F could be replaced by the intersection of
2606   // the elements of F and L.  In reality two typeinfos can match without being
2607   // equal (for example if one represents a C++ class, and the other some class
2608   // derived from it) so it would be wrong to perform this transform in general.
2609   // However the transform is correct and useful if F is a subset of L.  In that
2610   // case L can be replaced by F, and thus removed altogether since repeating a
2611   // filter is pointless.  So here we look at all pairs of filters F and L where
2612   // L follows F in the list of clauses, and remove L if every element of F is
2613   // an element of L.  This can occur when inlining C++ functions with exception
2614   // specifications.
2615   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2616     // Examine each filter in turn.
2617     Value *Filter = NewClauses[i];
2618     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2619     if (!FTy)
2620       // Not a filter - skip it.
2621       continue;
2622     unsigned FElts = FTy->getNumElements();
2623     // Examine each filter following this one.  Doing this backwards means that
2624     // we don't have to worry about filters disappearing under us when removed.
2625     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2626       Value *LFilter = NewClauses[j];
2627       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2628       if (!LTy)
2629         // Not a filter - skip it.
2630         continue;
2631       // If Filter is a subset of LFilter, i.e. every element of Filter is also
2632       // an element of LFilter, then discard LFilter.
2633       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
2634       // If Filter is empty then it is a subset of LFilter.
2635       if (!FElts) {
2636         // Discard LFilter.
2637         NewClauses.erase(J);
2638         MakeNewInstruction = true;
2639         // Move on to the next filter.
2640         continue;
2641       }
2642       unsigned LElts = LTy->getNumElements();
2643       // If Filter is longer than LFilter then it cannot be a subset of it.
2644       if (FElts > LElts)
2645         // Move on to the next filter.
2646         continue;
2647       // At this point we know that LFilter has at least one element.
2648       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
2649         // Filter is a subset of LFilter iff Filter contains only zeros (as we
2650         // already know that Filter is not longer than LFilter).
2651         if (isa<ConstantAggregateZero>(Filter)) {
2652           assert(FElts <= LElts && "Should have handled this case earlier!");
2653           // Discard LFilter.
2654           NewClauses.erase(J);
2655           MakeNewInstruction = true;
2656         }
2657         // Move on to the next filter.
2658         continue;
2659       }
2660       ConstantArray *LArray = cast<ConstantArray>(LFilter);
2661       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2662         // Since Filter is non-empty and contains only zeros, it is a subset of
2663         // LFilter iff LFilter contains a zero.
2664         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2665         for (unsigned l = 0; l != LElts; ++l)
2666           if (LArray->getOperand(l)->isNullValue()) {
2667             // LFilter contains a zero - discard it.
2668             NewClauses.erase(J);
2669             MakeNewInstruction = true;
2670             break;
2671           }
2672         // Move on to the next filter.
2673         continue;
2674       }
2675       // At this point we know that both filters are ConstantArrays.  Loop over
2676       // operands to see whether every element of Filter is also an element of
2677       // LFilter.  Since filters tend to be short this is probably faster than
2678       // using a method that scales nicely.
2679       ConstantArray *FArray = cast<ConstantArray>(Filter);
2680       bool AllFound = true;
2681       for (unsigned f = 0; f != FElts; ++f) {
2682         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2683         AllFound = false;
2684         for (unsigned l = 0; l != LElts; ++l) {
2685           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2686           if (LTypeInfo == FTypeInfo) {
2687             AllFound = true;
2688             break;
2689           }
2690         }
2691         if (!AllFound)
2692           break;
2693       }
2694       if (AllFound) {
2695         // Discard LFilter.
2696         NewClauses.erase(J);
2697         MakeNewInstruction = true;
2698       }
2699       // Move on to the next filter.
2700     }
2701   }
2702 
2703   // If we changed any of the clauses, replace the old landingpad instruction
2704   // with a new one.
2705   if (MakeNewInstruction) {
2706     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2707                                                  NewClauses.size());
2708     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2709       NLI->addClause(NewClauses[i]);
2710     // A landing pad with no clauses must have the cleanup flag set.  It is
2711     // theoretically possible, though highly unlikely, that we eliminated all
2712     // clauses.  If so, force the cleanup flag to true.
2713     if (NewClauses.empty())
2714       CleanupFlag = true;
2715     NLI->setCleanup(CleanupFlag);
2716     return NLI;
2717   }
2718 
2719   // Even if none of the clauses changed, we may nonetheless have understood
2720   // that the cleanup flag is pointless.  Clear it if so.
2721   if (LI.isCleanup() != CleanupFlag) {
2722     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2723     LI.setCleanup(CleanupFlag);
2724     return &LI;
2725   }
2726 
2727   return nullptr;
2728 }
2729 
2730 /// Try to move the specified instruction from its current block into the
2731 /// beginning of DestBlock, which can only happen if it's safe to move the
2732 /// instruction past all of the instructions between it and the end of its
2733 /// block.
2734 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2735   assert(I->hasOneUse() && "Invariants didn't hold!");
2736 
2737   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
2738   if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
2739       isa<TerminatorInst>(I))
2740     return false;
2741 
2742   // Do not sink alloca instructions out of the entry block.
2743   if (isa<AllocaInst>(I) && I->getParent() ==
2744         &DestBlock->getParent()->getEntryBlock())
2745     return false;
2746 
2747   // Do not sink into catchswitch blocks.
2748   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
2749     return false;
2750 
2751   // Do not sink convergent call instructions.
2752   if (auto *CI = dyn_cast<CallInst>(I)) {
2753     if (CI->isConvergent())
2754       return false;
2755   }
2756   // We can only sink load instructions if there is nothing between the load and
2757   // the end of block that could change the value.
2758   if (I->mayReadFromMemory()) {
2759     for (BasicBlock::iterator Scan = I->getIterator(),
2760                               E = I->getParent()->end();
2761          Scan != E; ++Scan)
2762       if (Scan->mayWriteToMemory())
2763         return false;
2764   }
2765 
2766   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
2767   I->moveBefore(&*InsertPos);
2768   ++NumSunkInst;
2769   return true;
2770 }
2771 
2772 bool InstCombiner::run() {
2773   while (!Worklist.isEmpty()) {
2774     Instruction *I = Worklist.RemoveOne();
2775     if (I == nullptr) continue;  // skip null values.
2776 
2777     // Check to see if we can DCE the instruction.
2778     if (isInstructionTriviallyDead(I, TLI)) {
2779       DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
2780       eraseInstFromFunction(*I);
2781       ++NumDeadInst;
2782       MadeIRChange = true;
2783       continue;
2784     }
2785 
2786     // Instruction isn't dead, see if we can constant propagate it.
2787     if (!I->use_empty() &&
2788         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
2789       if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
2790         DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
2791 
2792         // Add operands to the worklist.
2793         replaceInstUsesWith(*I, C);
2794         ++NumConstProp;
2795         eraseInstFromFunction(*I);
2796         MadeIRChange = true;
2797         continue;
2798       }
2799     }
2800 
2801     // In general, it is possible for computeKnownBits to determine all bits in
2802     // a value even when the operands are not all constants.
2803     if (ExpensiveCombines && !I->use_empty() && I->getType()->isIntegerTy()) {
2804       unsigned BitWidth = I->getType()->getScalarSizeInBits();
2805       APInt KnownZero(BitWidth, 0);
2806       APInt KnownOne(BitWidth, 0);
2807       computeKnownBits(I, KnownZero, KnownOne, /*Depth*/0, I);
2808       if ((KnownZero | KnownOne).isAllOnesValue()) {
2809         Constant *C = ConstantInt::get(I->getContext(), KnownOne);
2810         DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C <<
2811                         " from: " << *I << '\n');
2812 
2813         // Add operands to the worklist.
2814         replaceInstUsesWith(*I, C);
2815         ++NumConstProp;
2816         eraseInstFromFunction(*I);
2817         MadeIRChange = true;
2818         continue;
2819       }
2820     }
2821 
2822     // See if we can trivially sink this instruction to a successor basic block.
2823     if (I->hasOneUse()) {
2824       BasicBlock *BB = I->getParent();
2825       Instruction *UserInst = cast<Instruction>(*I->user_begin());
2826       BasicBlock *UserParent;
2827 
2828       // Get the block the use occurs in.
2829       if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2830         UserParent = PN->getIncomingBlock(*I->use_begin());
2831       else
2832         UserParent = UserInst->getParent();
2833 
2834       if (UserParent != BB) {
2835         bool UserIsSuccessor = false;
2836         // See if the user is one of our successors.
2837         for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2838           if (*SI == UserParent) {
2839             UserIsSuccessor = true;
2840             break;
2841           }
2842 
2843         // If the user is one of our immediate successors, and if that successor
2844         // only has us as a predecessors (we'd have to split the critical edge
2845         // otherwise), we can keep going.
2846         if (UserIsSuccessor && UserParent->getSinglePredecessor()) {
2847           // Okay, the CFG is simple enough, try to sink this instruction.
2848           if (TryToSinkInstruction(I, UserParent)) {
2849             DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
2850             MadeIRChange = true;
2851             // We'll add uses of the sunk instruction below, but since sinking
2852             // can expose opportunities for it's *operands* add them to the
2853             // worklist
2854             for (Use &U : I->operands())
2855               if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
2856                 Worklist.Add(OpI);
2857           }
2858         }
2859       }
2860     }
2861 
2862     // Now that we have an instruction, try combining it to simplify it.
2863     Builder->SetInsertPoint(I);
2864     Builder->SetCurrentDebugLocation(I->getDebugLoc());
2865 
2866 #ifndef NDEBUG
2867     std::string OrigI;
2868 #endif
2869     DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
2870     DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
2871 
2872     if (Instruction *Result = visit(*I)) {
2873       ++NumCombined;
2874       // Should we replace the old instruction with a new one?
2875       if (Result != I) {
2876         DEBUG(dbgs() << "IC: Old = " << *I << '\n'
2877                      << "    New = " << *Result << '\n');
2878 
2879         if (I->getDebugLoc())
2880           Result->setDebugLoc(I->getDebugLoc());
2881         // Everything uses the new instruction now.
2882         I->replaceAllUsesWith(Result);
2883 
2884         // Move the name to the new instruction first.
2885         Result->takeName(I);
2886 
2887         // Push the new instruction and any users onto the worklist.
2888         Worklist.Add(Result);
2889         Worklist.AddUsersToWorkList(*Result);
2890 
2891         // Insert the new instruction into the basic block...
2892         BasicBlock *InstParent = I->getParent();
2893         BasicBlock::iterator InsertPos = I->getIterator();
2894 
2895         // If we replace a PHI with something that isn't a PHI, fix up the
2896         // insertion point.
2897         if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2898           InsertPos = InstParent->getFirstInsertionPt();
2899 
2900         InstParent->getInstList().insert(InsertPos, Result);
2901 
2902         eraseInstFromFunction(*I);
2903       } else {
2904 #ifndef NDEBUG
2905         DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
2906                      << "    New = " << *I << '\n');
2907 #endif
2908 
2909         // If the instruction was modified, it's possible that it is now dead.
2910         // if so, remove it.
2911         if (isInstructionTriviallyDead(I, TLI)) {
2912           eraseInstFromFunction(*I);
2913         } else {
2914           Worklist.Add(I);
2915           Worklist.AddUsersToWorkList(*I);
2916         }
2917       }
2918       MadeIRChange = true;
2919     }
2920   }
2921 
2922   Worklist.Zap();
2923   return MadeIRChange;
2924 }
2925 
2926 /// Walk the function in depth-first order, adding all reachable code to the
2927 /// worklist.
2928 ///
2929 /// This has a couple of tricks to make the code faster and more powerful.  In
2930 /// particular, we constant fold and DCE instructions as we go, to avoid adding
2931 /// them to the worklist (this significantly speeds up instcombine on code where
2932 /// many instructions are dead or constant).  Additionally, if we find a branch
2933 /// whose condition is a known constant, we only visit the reachable successors.
2934 ///
2935 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
2936                                        SmallPtrSetImpl<BasicBlock *> &Visited,
2937                                        InstCombineWorklist &ICWorklist,
2938                                        const TargetLibraryInfo *TLI) {
2939   bool MadeIRChange = false;
2940   SmallVector<BasicBlock*, 256> Worklist;
2941   Worklist.push_back(BB);
2942 
2943   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
2944   DenseMap<ConstantExpr*, Constant*> FoldedConstants;
2945 
2946   do {
2947     BB = Worklist.pop_back_val();
2948 
2949     // We have now visited this block!  If we've already been here, ignore it.
2950     if (!Visited.insert(BB).second)
2951       continue;
2952 
2953     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2954       Instruction *Inst = &*BBI++;
2955 
2956       // DCE instruction if trivially dead.
2957       if (isInstructionTriviallyDead(Inst, TLI)) {
2958         ++NumDeadInst;
2959         DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
2960         Inst->eraseFromParent();
2961         continue;
2962       }
2963 
2964       // ConstantProp instruction if trivially constant.
2965       if (!Inst->use_empty() &&
2966           (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
2967         if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
2968           DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
2969                        << *Inst << '\n');
2970           Inst->replaceAllUsesWith(C);
2971           ++NumConstProp;
2972           Inst->eraseFromParent();
2973           continue;
2974         }
2975 
2976       // See if we can constant fold its operands.
2977       for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); i != e;
2978            ++i) {
2979         ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
2980         if (CE == nullptr)
2981           continue;
2982 
2983         Constant *&FoldRes = FoldedConstants[CE];
2984         if (!FoldRes)
2985           FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
2986         if (!FoldRes)
2987           FoldRes = CE;
2988 
2989         if (FoldRes != CE) {
2990           *i = FoldRes;
2991           MadeIRChange = true;
2992         }
2993       }
2994 
2995       InstrsForInstCombineWorklist.push_back(Inst);
2996     }
2997 
2998     // Recursively visit successors.  If this is a branch or switch on a
2999     // constant, only visit the reachable successor.
3000     TerminatorInst *TI = BB->getTerminator();
3001     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3002       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
3003         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
3004         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
3005         Worklist.push_back(ReachableBB);
3006         continue;
3007       }
3008     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3009       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
3010         // See if this is an explicit destination.
3011         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3012              i != e; ++i)
3013           if (i.getCaseValue() == Cond) {
3014             BasicBlock *ReachableBB = i.getCaseSuccessor();
3015             Worklist.push_back(ReachableBB);
3016             continue;
3017           }
3018 
3019         // Otherwise it is the default destination.
3020         Worklist.push_back(SI->getDefaultDest());
3021         continue;
3022       }
3023     }
3024 
3025     for (BasicBlock *SuccBB : TI->successors())
3026       Worklist.push_back(SuccBB);
3027   } while (!Worklist.empty());
3028 
3029   // Once we've found all of the instructions to add to instcombine's worklist,
3030   // add them in reverse order.  This way instcombine will visit from the top
3031   // of the function down.  This jives well with the way that it adds all uses
3032   // of instructions to the worklist after doing a transformation, thus avoiding
3033   // some N^2 behavior in pathological cases.
3034   ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist);
3035 
3036   return MadeIRChange;
3037 }
3038 
3039 /// \brief Populate the IC worklist from a function, and prune any dead basic
3040 /// blocks discovered in the process.
3041 ///
3042 /// This also does basic constant propagation and other forward fixing to make
3043 /// the combiner itself run much faster.
3044 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3045                                           TargetLibraryInfo *TLI,
3046                                           InstCombineWorklist &ICWorklist) {
3047   bool MadeIRChange = false;
3048 
3049   // Do a depth-first traversal of the function, populate the worklist with
3050   // the reachable instructions.  Ignore blocks that are not reachable.  Keep
3051   // track of which blocks we visit.
3052   SmallPtrSet<BasicBlock *, 32> Visited;
3053   MadeIRChange |=
3054       AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);
3055 
3056   // Do a quick scan over the function.  If we find any blocks that are
3057   // unreachable, remove any instructions inside of them.  This prevents
3058   // the instcombine code from having to deal with some bad special cases.
3059   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
3060     if (Visited.count(&*BB))
3061       continue;
3062 
3063     unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&*BB);
3064     MadeIRChange |= NumDeadInstInBB > 0;
3065     NumDeadInst += NumDeadInstInBB;
3066   }
3067 
3068   return MadeIRChange;
3069 }
3070 
3071 static bool
3072 combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist,
3073                                 AliasAnalysis *AA, AssumptionCache &AC,
3074                                 TargetLibraryInfo &TLI, DominatorTree &DT,
3075                                 bool ExpensiveCombines = true,
3076                                 LoopInfo *LI = nullptr) {
3077   auto &DL = F.getParent()->getDataLayout();
3078   ExpensiveCombines |= EnableExpensiveCombines;
3079 
3080   /// Builder - This is an IRBuilder that automatically inserts new
3081   /// instructions into the worklist when they are created.
3082   IRBuilder<TargetFolder, InstCombineIRInserter> Builder(
3083       F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, &AC));
3084 
3085   // Lower dbg.declare intrinsics otherwise their value may be clobbered
3086   // by instcombiner.
3087   bool DbgDeclaresChanged = LowerDbgDeclare(F);
3088 
3089   // Iterate while there is work to do.
3090   int Iteration = 0;
3091   for (;;) {
3092     ++Iteration;
3093     DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
3094                  << F.getName() << "\n");
3095 
3096     bool Changed = prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
3097 
3098     InstCombiner IC(Worklist, &Builder, F.optForMinSize(), ExpensiveCombines,
3099                     AA, &AC, &TLI, &DT, DL, LI);
3100     Changed |= IC.run();
3101 
3102     if (!Changed)
3103       break;
3104   }
3105 
3106   return DbgDeclaresChanged || Iteration > 1;
3107 }
3108 
3109 PreservedAnalyses InstCombinePass::run(Function &F,
3110                                        AnalysisManager<Function> &AM) {
3111   auto &AC = AM.getResult<AssumptionAnalysis>(F);
3112   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3113   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3114 
3115   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
3116 
3117   // FIXME: The AliasAnalysis is not yet supported in the new pass manager
3118   if (!combineInstructionsOverFunction(F, Worklist, nullptr, AC, TLI, DT,
3119                                        ExpensiveCombines, LI))
3120     // No changes, all analyses are preserved.
3121     return PreservedAnalyses::all();
3122 
3123   // Mark all the analyses that instcombine updates as preserved.
3124   // FIXME: Need a way to preserve CFG analyses here!
3125   PreservedAnalyses PA;
3126   PA.preserve<DominatorTreeAnalysis>();
3127   return PA;
3128 }
3129 
3130 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3131   AU.setPreservesCFG();
3132   AU.addRequired<AAResultsWrapperPass>();
3133   AU.addRequired<AssumptionCacheTracker>();
3134   AU.addRequired<TargetLibraryInfoWrapperPass>();
3135   AU.addRequired<DominatorTreeWrapperPass>();
3136   AU.addPreserved<DominatorTreeWrapperPass>();
3137   AU.addPreserved<AAResultsWrapperPass>();
3138   AU.addPreserved<BasicAAWrapperPass>();
3139   AU.addPreserved<GlobalsAAWrapperPass>();
3140 }
3141 
3142 bool InstructionCombiningPass::runOnFunction(Function &F) {
3143   if (skipFunction(F))
3144     return false;
3145 
3146   // Required analyses.
3147   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3148   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3149   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
3150   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3151 
3152   // Optional analyses.
3153   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3154   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3155 
3156   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT,
3157                                          ExpensiveCombines, LI);
3158 }
3159 
3160 char InstructionCombiningPass::ID = 0;
3161 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
3162                       "Combine redundant instructions", false, false)
3163 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3164 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3165 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3166 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3167 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3168 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
3169                     "Combine redundant instructions", false, false)
3170 
3171 // Initialization Routines
3172 void llvm::initializeInstCombine(PassRegistry &Registry) {
3173   initializeInstructionCombiningPassPass(Registry);
3174 }
3175 
3176 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
3177   initializeInstructionCombiningPassPass(*unwrap(R));
3178 }
3179 
3180 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) {
3181   return new InstructionCombiningPass(ExpensiveCombines);
3182 }
3183