1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Analysis/AliasAnalysis.h" 46 #include "llvm/Analysis/AssumptionCache.h" 47 #include "llvm/Analysis/BasicAliasAnalysis.h" 48 #include "llvm/Analysis/BlockFrequencyInfo.h" 49 #include "llvm/Analysis/CFG.h" 50 #include "llvm/Analysis/ConstantFolding.h" 51 #include "llvm/Analysis/EHPersonalities.h" 52 #include "llvm/Analysis/GlobalsModRef.h" 53 #include "llvm/Analysis/InstructionSimplify.h" 54 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 55 #include "llvm/Analysis/LoopInfo.h" 56 #include "llvm/Analysis/MemoryBuiltins.h" 57 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 58 #include "llvm/Analysis/ProfileSummaryInfo.h" 59 #include "llvm/Analysis/TargetFolder.h" 60 #include "llvm/Analysis/TargetLibraryInfo.h" 61 #include "llvm/Analysis/TargetTransformInfo.h" 62 #include "llvm/Analysis/Utils/Local.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/Analysis/VectorUtils.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugInfo.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/Dominators.h" 74 #include "llvm/IR/Function.h" 75 #include "llvm/IR/GetElementPtrTypeIterator.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/InstrTypes.h" 78 #include "llvm/IR/Instruction.h" 79 #include "llvm/IR/Instructions.h" 80 #include "llvm/IR/IntrinsicInst.h" 81 #include "llvm/IR/Intrinsics.h" 82 #include "llvm/IR/LegacyPassManager.h" 83 #include "llvm/IR/Metadata.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PassManager.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/Use.h" 89 #include "llvm/IR/User.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/InitializePasses.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/DebugCounter.h" 98 #include "llvm/Support/ErrorHandling.h" 99 #include "llvm/Support/KnownBits.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Transforms/InstCombine/InstCombine.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <algorithm> 104 #include <cassert> 105 #include <cstdint> 106 #include <memory> 107 #include <string> 108 #include <utility> 109 110 #define DEBUG_TYPE "instcombine" 111 #include "llvm/Transforms/Utils/InstructionWorklist.h" 112 113 using namespace llvm; 114 using namespace llvm::PatternMatch; 115 116 STATISTIC(NumWorklistIterations, 117 "Number of instruction combining iterations performed"); 118 119 STATISTIC(NumCombined , "Number of insts combined"); 120 STATISTIC(NumConstProp, "Number of constant folds"); 121 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 122 STATISTIC(NumSunkInst , "Number of instructions sunk"); 123 STATISTIC(NumExpand, "Number of expansions"); 124 STATISTIC(NumFactor , "Number of factorizations"); 125 STATISTIC(NumReassoc , "Number of reassociations"); 126 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 127 "Controls which instructions are visited"); 128 129 // FIXME: these limits eventually should be as low as 2. 130 static constexpr unsigned InstCombineDefaultMaxIterations = 1000; 131 #ifndef NDEBUG 132 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100; 133 #else 134 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; 135 #endif 136 137 static cl::opt<bool> 138 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 139 cl::init(true)); 140 141 static cl::opt<unsigned> MaxSinkNumUsers( 142 "instcombine-max-sink-users", cl::init(32), 143 cl::desc("Maximum number of undroppable users for instruction sinking")); 144 145 static cl::opt<unsigned> LimitMaxIterations( 146 "instcombine-max-iterations", 147 cl::desc("Limit the maximum number of instruction combining iterations"), 148 cl::init(InstCombineDefaultMaxIterations)); 149 150 static cl::opt<unsigned> InfiniteLoopDetectionThreshold( 151 "instcombine-infinite-loop-threshold", 152 cl::desc("Number of instruction combining iterations considered an " 153 "infinite loop"), 154 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); 155 156 static cl::opt<unsigned> 157 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 158 cl::desc("Maximum array size considered when doing a combine")); 159 160 // FIXME: Remove this flag when it is no longer necessary to convert 161 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 162 // increases variable availability at the cost of accuracy. Variables that 163 // cannot be promoted by mem2reg or SROA will be described as living in memory 164 // for their entire lifetime. However, passes like DSE and instcombine can 165 // delete stores to the alloca, leading to misleading and inaccurate debug 166 // information. This flag can be removed when those passes are fixed. 167 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 168 cl::Hidden, cl::init(true)); 169 170 Optional<Instruction *> 171 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 172 // Handle target specific intrinsics 173 if (II.getCalledFunction()->isTargetIntrinsic()) { 174 return TTI.instCombineIntrinsic(*this, II); 175 } 176 return None; 177 } 178 179 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 180 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 181 bool &KnownBitsComputed) { 182 // Handle target specific intrinsics 183 if (II.getCalledFunction()->isTargetIntrinsic()) { 184 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, 185 KnownBitsComputed); 186 } 187 return None; 188 } 189 190 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 191 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, 192 APInt &UndefElts3, 193 std::function<void(Instruction *, unsigned, APInt, APInt &)> 194 SimplifyAndSetOp) { 195 // Handle target specific intrinsics 196 if (II.getCalledFunction()->isTargetIntrinsic()) { 197 return TTI.simplifyDemandedVectorEltsIntrinsic( 198 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 199 SimplifyAndSetOp); 200 } 201 return None; 202 } 203 204 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { 205 return llvm::EmitGEPOffset(&Builder, DL, GEP); 206 } 207 208 /// Legal integers and common types are considered desirable. This is used to 209 /// avoid creating instructions with types that may not be supported well by the 210 /// the backend. 211 /// NOTE: This treats i8, i16 and i32 specially because they are common 212 /// types in frontend languages. 213 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { 214 switch (BitWidth) { 215 case 8: 216 case 16: 217 case 32: 218 return true; 219 default: 220 return DL.isLegalInteger(BitWidth); 221 } 222 } 223 224 /// Return true if it is desirable to convert an integer computation from a 225 /// given bit width to a new bit width. 226 /// We don't want to convert from a legal to an illegal type or from a smaller 227 /// to a larger illegal type. A width of '1' is always treated as a desirable 228 /// type because i1 is a fundamental type in IR, and there are many specialized 229 /// optimizations for i1 types. Common/desirable widths are equally treated as 230 /// legal to convert to, in order to open up more combining opportunities. 231 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 232 unsigned ToWidth) const { 233 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 234 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 235 236 // Convert to desirable widths even if they are not legal types. 237 // Only shrink types, to prevent infinite loops. 238 if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) 239 return true; 240 241 // If this is a legal integer from type, and the result would be an illegal 242 // type, don't do the transformation. 243 if (FromLegal && !ToLegal) 244 return false; 245 246 // Otherwise, if both are illegal, do not increase the size of the result. We 247 // do allow things like i160 -> i64, but not i64 -> i160. 248 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 249 return false; 250 251 return true; 252 } 253 254 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 255 /// We don't want to convert from a legal to an illegal type or from a smaller 256 /// to a larger illegal type. i1 is always treated as a legal type because it is 257 /// a fundamental type in IR, and there are many specialized optimizations for 258 /// i1 types. 259 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 260 // TODO: This could be extended to allow vectors. Datalayout changes might be 261 // needed to properly support that. 262 if (!From->isIntegerTy() || !To->isIntegerTy()) 263 return false; 264 265 unsigned FromWidth = From->getPrimitiveSizeInBits(); 266 unsigned ToWidth = To->getPrimitiveSizeInBits(); 267 return shouldChangeType(FromWidth, ToWidth); 268 } 269 270 // Return true, if No Signed Wrap should be maintained for I. 271 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 272 // where both B and C should be ConstantInts, results in a constant that does 273 // not overflow. This function only handles the Add and Sub opcodes. For 274 // all other opcodes, the function conservatively returns false. 275 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 276 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 277 if (!OBO || !OBO->hasNoSignedWrap()) 278 return false; 279 280 // We reason about Add and Sub Only. 281 Instruction::BinaryOps Opcode = I.getOpcode(); 282 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 283 return false; 284 285 const APInt *BVal, *CVal; 286 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 287 return false; 288 289 bool Overflow = false; 290 if (Opcode == Instruction::Add) 291 (void)BVal->sadd_ov(*CVal, Overflow); 292 else 293 (void)BVal->ssub_ov(*CVal, Overflow); 294 295 return !Overflow; 296 } 297 298 static bool hasNoUnsignedWrap(BinaryOperator &I) { 299 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 300 return OBO && OBO->hasNoUnsignedWrap(); 301 } 302 303 static bool hasNoSignedWrap(BinaryOperator &I) { 304 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 305 return OBO && OBO->hasNoSignedWrap(); 306 } 307 308 /// Conservatively clears subclassOptionalData after a reassociation or 309 /// commutation. We preserve fast-math flags when applicable as they can be 310 /// preserved. 311 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 312 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 313 if (!FPMO) { 314 I.clearSubclassOptionalData(); 315 return; 316 } 317 318 FastMathFlags FMF = I.getFastMathFlags(); 319 I.clearSubclassOptionalData(); 320 I.setFastMathFlags(FMF); 321 } 322 323 /// Combine constant operands of associative operations either before or after a 324 /// cast to eliminate one of the associative operations: 325 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 326 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 327 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 328 InstCombinerImpl &IC) { 329 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 330 if (!Cast || !Cast->hasOneUse()) 331 return false; 332 333 // TODO: Enhance logic for other casts and remove this check. 334 auto CastOpcode = Cast->getOpcode(); 335 if (CastOpcode != Instruction::ZExt) 336 return false; 337 338 // TODO: Enhance logic for other BinOps and remove this check. 339 if (!BinOp1->isBitwiseLogicOp()) 340 return false; 341 342 auto AssocOpcode = BinOp1->getOpcode(); 343 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 344 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 345 return false; 346 347 Constant *C1, *C2; 348 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 349 !match(BinOp2->getOperand(1), m_Constant(C2))) 350 return false; 351 352 // TODO: This assumes a zext cast. 353 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 354 // to the destination type might lose bits. 355 356 // Fold the constants together in the destination type: 357 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 358 Type *DestTy = C1->getType(); 359 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 360 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 361 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 362 IC.replaceOperand(*BinOp1, 1, FoldedC); 363 return true; 364 } 365 366 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast. 367 // inttoptr ( ptrtoint (x) ) --> x 368 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { 369 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); 370 if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) == 371 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { 372 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); 373 Type *CastTy = IntToPtr->getDestTy(); 374 if (PtrToInt && 375 CastTy->getPointerAddressSpace() == 376 PtrToInt->getSrcTy()->getPointerAddressSpace() && 377 DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) == 378 DL.getTypeSizeInBits(PtrToInt->getDestTy())) { 379 return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy, 380 "", PtrToInt); 381 } 382 } 383 return nullptr; 384 } 385 386 /// This performs a few simplifications for operators that are associative or 387 /// commutative: 388 /// 389 /// Commutative operators: 390 /// 391 /// 1. Order operands such that they are listed from right (least complex) to 392 /// left (most complex). This puts constants before unary operators before 393 /// binary operators. 394 /// 395 /// Associative operators: 396 /// 397 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 398 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 399 /// 400 /// Associative and commutative operators: 401 /// 402 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 403 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 404 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 405 /// if C1 and C2 are constants. 406 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 407 Instruction::BinaryOps Opcode = I.getOpcode(); 408 bool Changed = false; 409 410 do { 411 // Order operands such that they are listed from right (least complex) to 412 // left (most complex). This puts constants before unary operators before 413 // binary operators. 414 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 415 getComplexity(I.getOperand(1))) 416 Changed = !I.swapOperands(); 417 418 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 419 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 420 421 if (I.isAssociative()) { 422 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 423 if (Op0 && Op0->getOpcode() == Opcode) { 424 Value *A = Op0->getOperand(0); 425 Value *B = Op0->getOperand(1); 426 Value *C = I.getOperand(1); 427 428 // Does "B op C" simplify? 429 if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 430 // It simplifies to V. Form "A op V". 431 replaceOperand(I, 0, A); 432 replaceOperand(I, 1, V); 433 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 434 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 435 436 // Conservatively clear all optional flags since they may not be 437 // preserved by the reassociation. Reset nsw/nuw based on the above 438 // analysis. 439 ClearSubclassDataAfterReassociation(I); 440 441 // Note: this is only valid because SimplifyBinOp doesn't look at 442 // the operands to Op0. 443 if (IsNUW) 444 I.setHasNoUnsignedWrap(true); 445 446 if (IsNSW) 447 I.setHasNoSignedWrap(true); 448 449 Changed = true; 450 ++NumReassoc; 451 continue; 452 } 453 } 454 455 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 456 if (Op1 && Op1->getOpcode() == Opcode) { 457 Value *A = I.getOperand(0); 458 Value *B = Op1->getOperand(0); 459 Value *C = Op1->getOperand(1); 460 461 // Does "A op B" simplify? 462 if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 463 // It simplifies to V. Form "V op C". 464 replaceOperand(I, 0, V); 465 replaceOperand(I, 1, C); 466 // Conservatively clear the optional flags, since they may not be 467 // preserved by the reassociation. 468 ClearSubclassDataAfterReassociation(I); 469 Changed = true; 470 ++NumReassoc; 471 continue; 472 } 473 } 474 } 475 476 if (I.isAssociative() && I.isCommutative()) { 477 if (simplifyAssocCastAssoc(&I, *this)) { 478 Changed = true; 479 ++NumReassoc; 480 continue; 481 } 482 483 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 484 if (Op0 && Op0->getOpcode() == Opcode) { 485 Value *A = Op0->getOperand(0); 486 Value *B = Op0->getOperand(1); 487 Value *C = I.getOperand(1); 488 489 // Does "C op A" simplify? 490 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 491 // It simplifies to V. Form "V op B". 492 replaceOperand(I, 0, V); 493 replaceOperand(I, 1, B); 494 // Conservatively clear the optional flags, since they may not be 495 // preserved by the reassociation. 496 ClearSubclassDataAfterReassociation(I); 497 Changed = true; 498 ++NumReassoc; 499 continue; 500 } 501 } 502 503 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 504 if (Op1 && Op1->getOpcode() == Opcode) { 505 Value *A = I.getOperand(0); 506 Value *B = Op1->getOperand(0); 507 Value *C = Op1->getOperand(1); 508 509 // Does "C op A" simplify? 510 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 511 // It simplifies to V. Form "B op V". 512 replaceOperand(I, 0, B); 513 replaceOperand(I, 1, V); 514 // Conservatively clear the optional flags, since they may not be 515 // preserved by the reassociation. 516 ClearSubclassDataAfterReassociation(I); 517 Changed = true; 518 ++NumReassoc; 519 continue; 520 } 521 } 522 523 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 524 // if C1 and C2 are constants. 525 Value *A, *B; 526 Constant *C1, *C2; 527 if (Op0 && Op1 && 528 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 529 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 530 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 531 bool IsNUW = hasNoUnsignedWrap(I) && 532 hasNoUnsignedWrap(*Op0) && 533 hasNoUnsignedWrap(*Op1); 534 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 535 BinaryOperator::CreateNUW(Opcode, A, B) : 536 BinaryOperator::Create(Opcode, A, B); 537 538 if (isa<FPMathOperator>(NewBO)) { 539 FastMathFlags Flags = I.getFastMathFlags(); 540 Flags &= Op0->getFastMathFlags(); 541 Flags &= Op1->getFastMathFlags(); 542 NewBO->setFastMathFlags(Flags); 543 } 544 InsertNewInstWith(NewBO, I); 545 NewBO->takeName(Op1); 546 replaceOperand(I, 0, NewBO); 547 replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2)); 548 // Conservatively clear the optional flags, since they may not be 549 // preserved by the reassociation. 550 ClearSubclassDataAfterReassociation(I); 551 if (IsNUW) 552 I.setHasNoUnsignedWrap(true); 553 554 Changed = true; 555 continue; 556 } 557 } 558 559 // No further simplifications. 560 return Changed; 561 } while (true); 562 } 563 564 /// Return whether "X LOp (Y ROp Z)" is always equal to 565 /// "(X LOp Y) ROp (X LOp Z)". 566 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 567 Instruction::BinaryOps ROp) { 568 // X & (Y | Z) <--> (X & Y) | (X & Z) 569 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 570 if (LOp == Instruction::And) 571 return ROp == Instruction::Or || ROp == Instruction::Xor; 572 573 // X | (Y & Z) <--> (X | Y) & (X | Z) 574 if (LOp == Instruction::Or) 575 return ROp == Instruction::And; 576 577 // X * (Y + Z) <--> (X * Y) + (X * Z) 578 // X * (Y - Z) <--> (X * Y) - (X * Z) 579 if (LOp == Instruction::Mul) 580 return ROp == Instruction::Add || ROp == Instruction::Sub; 581 582 return false; 583 } 584 585 /// Return whether "(X LOp Y) ROp Z" is always equal to 586 /// "(X ROp Z) LOp (Y ROp Z)". 587 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 588 Instruction::BinaryOps ROp) { 589 if (Instruction::isCommutative(ROp)) 590 return leftDistributesOverRight(ROp, LOp); 591 592 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 593 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 594 595 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 596 // but this requires knowing that the addition does not overflow and other 597 // such subtleties. 598 } 599 600 /// This function returns identity value for given opcode, which can be used to 601 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 602 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 603 if (isa<Constant>(V)) 604 return nullptr; 605 606 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 607 } 608 609 /// This function predicates factorization using distributive laws. By default, 610 /// it just returns the 'Op' inputs. But for special-cases like 611 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 612 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 613 /// allow more factorization opportunities. 614 static Instruction::BinaryOps 615 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 616 Value *&LHS, Value *&RHS) { 617 assert(Op && "Expected a binary operator"); 618 LHS = Op->getOperand(0); 619 RHS = Op->getOperand(1); 620 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 621 Constant *C; 622 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 623 // X << C --> X * (1 << C) 624 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 625 return Instruction::Mul; 626 } 627 // TODO: We can add other conversions e.g. shr => div etc. 628 } 629 return Op->getOpcode(); 630 } 631 632 /// This tries to simplify binary operations by factorizing out common terms 633 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 634 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I, 635 Instruction::BinaryOps InnerOpcode, 636 Value *A, Value *B, Value *C, 637 Value *D) { 638 assert(A && B && C && D && "All values must be provided"); 639 640 Value *V = nullptr; 641 Value *SimplifiedInst = nullptr; 642 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 643 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 644 645 // Does "X op' Y" always equal "Y op' X"? 646 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 647 648 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 649 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 650 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 651 // commutative case, "(A op' B) op (C op' A)"? 652 if (A == C || (InnerCommutative && A == D)) { 653 if (A != C) 654 std::swap(C, D); 655 // Consider forming "A op' (B op D)". 656 // If "B op D" simplifies then it can be formed with no cost. 657 V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 658 // If "B op D" doesn't simplify then only go on if both of the existing 659 // operations "A op' B" and "C op' D" will be zapped as no longer used. 660 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 661 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 662 if (V) { 663 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 664 } 665 } 666 667 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 668 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 669 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 670 // commutative case, "(A op' B) op (B op' D)"? 671 if (B == D || (InnerCommutative && B == C)) { 672 if (B != D) 673 std::swap(C, D); 674 // Consider forming "(A op C) op' B". 675 // If "A op C" simplifies then it can be formed with no cost. 676 V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 677 678 // If "A op C" doesn't simplify then only go on if both of the existing 679 // operations "A op' B" and "C op' D" will be zapped as no longer used. 680 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 681 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 682 if (V) { 683 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 684 } 685 } 686 687 if (SimplifiedInst) { 688 ++NumFactor; 689 SimplifiedInst->takeName(&I); 690 691 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 692 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 693 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 694 bool HasNSW = false; 695 bool HasNUW = false; 696 if (isa<OverflowingBinaryOperator>(&I)) { 697 HasNSW = I.hasNoSignedWrap(); 698 HasNUW = I.hasNoUnsignedWrap(); 699 } 700 701 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 702 HasNSW &= LOBO->hasNoSignedWrap(); 703 HasNUW &= LOBO->hasNoUnsignedWrap(); 704 } 705 706 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 707 HasNSW &= ROBO->hasNoSignedWrap(); 708 HasNUW &= ROBO->hasNoUnsignedWrap(); 709 } 710 711 if (TopLevelOpcode == Instruction::Add && 712 InnerOpcode == Instruction::Mul) { 713 // We can propagate 'nsw' if we know that 714 // %Y = mul nsw i16 %X, C 715 // %Z = add nsw i16 %Y, %X 716 // => 717 // %Z = mul nsw i16 %X, C+1 718 // 719 // iff C+1 isn't INT_MIN 720 const APInt *CInt; 721 if (match(V, m_APInt(CInt))) { 722 if (!CInt->isMinSignedValue()) 723 BO->setHasNoSignedWrap(HasNSW); 724 } 725 726 // nuw can be propagated with any constant or nuw value. 727 BO->setHasNoUnsignedWrap(HasNUW); 728 } 729 } 730 } 731 } 732 return SimplifiedInst; 733 } 734 735 /// This tries to simplify binary operations which some other binary operation 736 /// distributes over either by factorizing out common terms 737 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 738 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 739 /// Returns the simplified value, or null if it didn't simplify. 740 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 741 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 742 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 743 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 744 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 745 746 { 747 // Factorization. 748 Value *A, *B, *C, *D; 749 Instruction::BinaryOps LHSOpcode, RHSOpcode; 750 if (Op0) 751 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 752 if (Op1) 753 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 754 755 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 756 // a common term. 757 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 758 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 759 return V; 760 761 // The instruction has the form "(A op' B) op (C)". Try to factorize common 762 // term. 763 if (Op0) 764 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 765 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 766 return V; 767 768 // The instruction has the form "(B) op (C op' D)". Try to factorize common 769 // term. 770 if (Op1) 771 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 772 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 773 return V; 774 } 775 776 // Expansion. 777 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 778 // The instruction has the form "(A op' B) op C". See if expanding it out 779 // to "(A op C) op' (B op C)" results in simplifications. 780 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 781 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 782 783 // Disable the use of undef because it's not safe to distribute undef. 784 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 785 Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 786 Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 787 788 // Do "A op C" and "B op C" both simplify? 789 if (L && R) { 790 // They do! Return "L op' R". 791 ++NumExpand; 792 C = Builder.CreateBinOp(InnerOpcode, L, R); 793 C->takeName(&I); 794 return C; 795 } 796 797 // Does "A op C" simplify to the identity value for the inner opcode? 798 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 799 // They do! Return "B op C". 800 ++NumExpand; 801 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 802 C->takeName(&I); 803 return C; 804 } 805 806 // Does "B op C" simplify to the identity value for the inner opcode? 807 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 808 // They do! Return "A op C". 809 ++NumExpand; 810 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 811 C->takeName(&I); 812 return C; 813 } 814 } 815 816 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 817 // The instruction has the form "A op (B op' C)". See if expanding it out 818 // to "(A op B) op' (A op C)" results in simplifications. 819 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 820 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 821 822 // Disable the use of undef because it's not safe to distribute undef. 823 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 824 Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 825 Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 826 827 // Do "A op B" and "A op C" both simplify? 828 if (L && R) { 829 // They do! Return "L op' R". 830 ++NumExpand; 831 A = Builder.CreateBinOp(InnerOpcode, L, R); 832 A->takeName(&I); 833 return A; 834 } 835 836 // Does "A op B" simplify to the identity value for the inner opcode? 837 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 838 // They do! Return "A op C". 839 ++NumExpand; 840 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 841 A->takeName(&I); 842 return A; 843 } 844 845 // Does "A op C" simplify to the identity value for the inner opcode? 846 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 847 // They do! Return "A op B". 848 ++NumExpand; 849 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 850 A->takeName(&I); 851 return A; 852 } 853 } 854 855 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 856 } 857 858 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 859 Value *LHS, 860 Value *RHS) { 861 Value *A, *B, *C, *D, *E, *F; 862 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 863 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 864 if (!LHSIsSelect && !RHSIsSelect) 865 return nullptr; 866 867 FastMathFlags FMF; 868 BuilderTy::FastMathFlagGuard Guard(Builder); 869 if (isa<FPMathOperator>(&I)) { 870 FMF = I.getFastMathFlags(); 871 Builder.setFastMathFlags(FMF); 872 } 873 874 Instruction::BinaryOps Opcode = I.getOpcode(); 875 SimplifyQuery Q = SQ.getWithInstruction(&I); 876 877 Value *Cond, *True = nullptr, *False = nullptr; 878 if (LHSIsSelect && RHSIsSelect && A == D) { 879 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 880 Cond = A; 881 True = simplifyBinOp(Opcode, B, E, FMF, Q); 882 False = simplifyBinOp(Opcode, C, F, FMF, Q); 883 884 if (LHS->hasOneUse() && RHS->hasOneUse()) { 885 if (False && !True) 886 True = Builder.CreateBinOp(Opcode, B, E); 887 else if (True && !False) 888 False = Builder.CreateBinOp(Opcode, C, F); 889 } 890 } else if (LHSIsSelect && LHS->hasOneUse()) { 891 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 892 Cond = A; 893 True = simplifyBinOp(Opcode, B, RHS, FMF, Q); 894 False = simplifyBinOp(Opcode, C, RHS, FMF, Q); 895 } else if (RHSIsSelect && RHS->hasOneUse()) { 896 // X op (D ? E : F) -> D ? (X op E) : (X op F) 897 Cond = D; 898 True = simplifyBinOp(Opcode, LHS, E, FMF, Q); 899 False = simplifyBinOp(Opcode, LHS, F, FMF, Q); 900 } 901 902 if (!True || !False) 903 return nullptr; 904 905 Value *SI = Builder.CreateSelect(Cond, True, False); 906 SI->takeName(&I); 907 return SI; 908 } 909 910 /// Freely adapt every user of V as-if V was changed to !V. 911 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 912 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) { 913 for (User *U : I->users()) { 914 switch (cast<Instruction>(U)->getOpcode()) { 915 case Instruction::Select: { 916 auto *SI = cast<SelectInst>(U); 917 SI->swapValues(); 918 SI->swapProfMetadata(); 919 break; 920 } 921 case Instruction::Br: 922 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 923 break; 924 case Instruction::Xor: 925 replaceInstUsesWith(cast<Instruction>(*U), I); 926 break; 927 default: 928 llvm_unreachable("Got unexpected user - out of sync with " 929 "canFreelyInvertAllUsersOf() ?"); 930 } 931 } 932 } 933 934 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 935 /// constant zero (which is the 'negate' form). 936 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 937 Value *NegV; 938 if (match(V, m_Neg(m_Value(NegV)))) 939 return NegV; 940 941 // Constants can be considered to be negated values if they can be folded. 942 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 943 return ConstantExpr::getNeg(C); 944 945 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 946 if (C->getType()->getElementType()->isIntegerTy()) 947 return ConstantExpr::getNeg(C); 948 949 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 950 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 951 Constant *Elt = CV->getAggregateElement(i); 952 if (!Elt) 953 return nullptr; 954 955 if (isa<UndefValue>(Elt)) 956 continue; 957 958 if (!isa<ConstantInt>(Elt)) 959 return nullptr; 960 } 961 return ConstantExpr::getNeg(CV); 962 } 963 964 // Negate integer vector splats. 965 if (auto *CV = dyn_cast<Constant>(V)) 966 if (CV->getType()->isVectorTy() && 967 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 968 return ConstantExpr::getNeg(CV); 969 970 return nullptr; 971 } 972 973 /// A binop with a constant operand and a sign-extended boolean operand may be 974 /// converted into a select of constants by applying the binary operation to 975 /// the constant with the two possible values of the extended boolean (0 or -1). 976 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) { 977 // TODO: Handle non-commutative binop (constant is operand 0). 978 // TODO: Handle zext. 979 // TODO: Peek through 'not' of cast. 980 Value *BO0 = BO.getOperand(0); 981 Value *BO1 = BO.getOperand(1); 982 Value *X; 983 Constant *C; 984 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) || 985 !X->getType()->isIntOrIntVectorTy(1)) 986 return nullptr; 987 988 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C) 989 Constant *Ones = ConstantInt::getAllOnesValue(BO.getType()); 990 Constant *Zero = ConstantInt::getNullValue(BO.getType()); 991 Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C); 992 Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C); 993 return SelectInst::Create(X, TVal, FVal); 994 } 995 996 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 997 InstCombiner::BuilderTy &Builder) { 998 if (auto *Cast = dyn_cast<CastInst>(&I)) 999 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 1000 1001 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1002 assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) && 1003 "Expected constant-foldable intrinsic"); 1004 Intrinsic::ID IID = II->getIntrinsicID(); 1005 if (II->arg_size() == 1) 1006 return Builder.CreateUnaryIntrinsic(IID, SO); 1007 1008 // This works for real binary ops like min/max (where we always expect the 1009 // constant operand to be canonicalized as op1) and unary ops with a bonus 1010 // constant argument like ctlz/cttz. 1011 // TODO: Handle non-commutative binary intrinsics as below for binops. 1012 assert(II->arg_size() == 2 && "Expected binary intrinsic"); 1013 assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand"); 1014 return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1)); 1015 } 1016 1017 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 1018 1019 // Figure out if the constant is the left or the right argument. 1020 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 1021 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 1022 1023 Value *Op0 = SO, *Op1 = ConstOperand; 1024 if (!ConstIsRHS) 1025 std::swap(Op0, Op1); 1026 1027 Value *NewBO = Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), Op0, 1028 Op1, SO->getName() + ".op"); 1029 if (auto *NewBOI = dyn_cast<Instruction>(NewBO)) 1030 NewBOI->copyIRFlags(&I); 1031 return NewBO; 1032 } 1033 1034 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI, 1035 bool FoldWithMultiUse) { 1036 // Don't modify shared select instructions unless set FoldWithMultiUse 1037 if (!SI->hasOneUse() && !FoldWithMultiUse) 1038 return nullptr; 1039 1040 Value *TV = SI->getTrueValue(); 1041 Value *FV = SI->getFalseValue(); 1042 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 1043 return nullptr; 1044 1045 // Bool selects with constant operands can be folded to logical ops. 1046 if (SI->getType()->isIntOrIntVectorTy(1)) 1047 return nullptr; 1048 1049 // If it's a bitcast involving vectors, make sure it has the same number of 1050 // elements on both sides. 1051 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 1052 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 1053 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 1054 1055 // Verify that either both or neither are vectors. 1056 if ((SrcTy == nullptr) != (DestTy == nullptr)) 1057 return nullptr; 1058 1059 // If vectors, verify that they have the same number of elements. 1060 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) 1061 return nullptr; 1062 } 1063 1064 // Test if a CmpInst instruction is used exclusively by a select as 1065 // part of a minimum or maximum operation. If so, refrain from doing 1066 // any other folding. This helps out other analyses which understand 1067 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 1068 // and CodeGen. And in this case, at least one of the comparison 1069 // operands has at least one user besides the compare (the select), 1070 // which would often largely negate the benefit of folding anyway. 1071 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 1072 if (CI->hasOneUse()) { 1073 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 1074 1075 // FIXME: This is a hack to avoid infinite looping with min/max patterns. 1076 // We have to ensure that vector constants that only differ with 1077 // undef elements are treated as equivalent. 1078 auto areLooselyEqual = [](Value *A, Value *B) { 1079 if (A == B) 1080 return true; 1081 1082 // Test for vector constants. 1083 Constant *ConstA, *ConstB; 1084 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB))) 1085 return false; 1086 1087 // TODO: Deal with FP constants? 1088 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType()) 1089 return false; 1090 1091 // Compare for equality including undefs as equal. 1092 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB); 1093 const APInt *C; 1094 return match(Cmp, m_APIntAllowUndef(C)) && C->isOne(); 1095 }; 1096 1097 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) || 1098 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1))) 1099 return nullptr; 1100 } 1101 } 1102 1103 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 1104 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 1105 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 1106 } 1107 1108 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 1109 InstCombiner::BuilderTy &Builder) { 1110 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 1111 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 1112 1113 Value *Op0 = InV, *Op1 = C; 1114 if (!ConstIsRHS) 1115 std::swap(Op0, Op1); 1116 1117 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo"); 1118 auto *FPInst = dyn_cast<Instruction>(RI); 1119 if (FPInst && isa<FPMathOperator>(FPInst)) 1120 FPInst->copyFastMathFlags(I); 1121 return RI; 1122 } 1123 1124 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { 1125 unsigned NumPHIValues = PN->getNumIncomingValues(); 1126 if (NumPHIValues == 0) 1127 return nullptr; 1128 1129 // We normally only transform phis with a single use. However, if a PHI has 1130 // multiple uses and they are all the same operation, we can fold *all* of the 1131 // uses into the PHI. 1132 if (!PN->hasOneUse()) { 1133 // Walk the use list for the instruction, comparing them to I. 1134 for (User *U : PN->users()) { 1135 Instruction *UI = cast<Instruction>(U); 1136 if (UI != &I && !I.isIdenticalTo(UI)) 1137 return nullptr; 1138 } 1139 // Otherwise, we can replace *all* users with the new PHI we form. 1140 } 1141 1142 // Check to see if all of the operands of the PHI are simple constants 1143 // (constantint/constantfp/undef). If there is one non-constant value, 1144 // remember the BB it is in. If there is more than one or if *it* is a PHI, 1145 // bail out. We don't do arbitrary constant expressions here because moving 1146 // their computation can be expensive without a cost model. 1147 BasicBlock *NonConstBB = nullptr; 1148 for (unsigned i = 0; i != NumPHIValues; ++i) { 1149 Value *InVal = PN->getIncomingValue(i); 1150 // For non-freeze, require constant operand 1151 // For freeze, require non-undef, non-poison operand 1152 if (!isa<FreezeInst>(I) && match(InVal, m_ImmConstant())) 1153 continue; 1154 if (isa<FreezeInst>(I) && isGuaranteedNotToBeUndefOrPoison(InVal)) 1155 continue; 1156 1157 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 1158 if (NonConstBB) return nullptr; // More than one non-const value. 1159 1160 NonConstBB = PN->getIncomingBlock(i); 1161 1162 // If the InVal is an invoke at the end of the pred block, then we can't 1163 // insert a computation after it without breaking the edge. 1164 if (isa<InvokeInst>(InVal)) 1165 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 1166 return nullptr; 1167 1168 // If the incoming non-constant value is reachable from the phis block, 1169 // we'll push the operation across a loop backedge. This could result in 1170 // an infinite combine loop, and is generally non-profitable (especially 1171 // if the operation was originally outside the loop). 1172 if (isPotentiallyReachable(PN->getParent(), NonConstBB, nullptr, &DT, LI)) 1173 return nullptr; 1174 } 1175 1176 // If there is exactly one non-constant value, we can insert a copy of the 1177 // operation in that block. However, if this is a critical edge, we would be 1178 // inserting the computation on some other paths (e.g. inside a loop). Only 1179 // do this if the pred block is unconditionally branching into the phi block. 1180 // Also, make sure that the pred block is not dead code. 1181 if (NonConstBB != nullptr) { 1182 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1183 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB)) 1184 return nullptr; 1185 } 1186 1187 // Okay, we can do the transformation: create the new PHI node. 1188 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1189 InsertNewInstBefore(NewPN, *PN); 1190 NewPN->takeName(PN); 1191 1192 // If we are going to have to insert a new computation, do so right before the 1193 // predecessor's terminator. 1194 if (NonConstBB) 1195 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1196 1197 // Next, add all of the operands to the PHI. 1198 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1199 // We only currently try to fold the condition of a select when it is a phi, 1200 // not the true/false values. 1201 Value *TrueV = SI->getTrueValue(); 1202 Value *FalseV = SI->getFalseValue(); 1203 BasicBlock *PhiTransBB = PN->getParent(); 1204 for (unsigned i = 0; i != NumPHIValues; ++i) { 1205 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1206 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1207 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1208 Value *InV = nullptr; 1209 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1210 // even if currently isNullValue gives false. 1211 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1212 // For vector constants, we cannot use isNullValue to fold into 1213 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1214 // elements in the vector, we will incorrectly fold InC to 1215 // `TrueVInPred`. 1216 if (InC && isa<ConstantInt>(InC)) 1217 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1218 else { 1219 // Generate the select in the same block as PN's current incoming block. 1220 // Note: ThisBB need not be the NonConstBB because vector constants 1221 // which are constants by definition are handled here. 1222 // FIXME: This can lead to an increase in IR generation because we might 1223 // generate selects for vector constant phi operand, that could not be 1224 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1225 // non-vector phis, this transformation was always profitable because 1226 // the select would be generated exactly once in the NonConstBB. 1227 Builder.SetInsertPoint(ThisBB->getTerminator()); 1228 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1229 FalseVInPred, "phi.sel"); 1230 } 1231 NewPN->addIncoming(InV, ThisBB); 1232 } 1233 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1234 Constant *C = cast<Constant>(I.getOperand(1)); 1235 for (unsigned i = 0; i != NumPHIValues; ++i) { 1236 Value *InV = nullptr; 1237 if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1238 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1239 else 1240 InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i), 1241 C, "phi.cmp"); 1242 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1243 } 1244 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1245 for (unsigned i = 0; i != NumPHIValues; ++i) { 1246 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1247 Builder); 1248 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1249 } 1250 } else if (isa<FreezeInst>(&I)) { 1251 for (unsigned i = 0; i != NumPHIValues; ++i) { 1252 Value *InV; 1253 if (NonConstBB == PN->getIncomingBlock(i)) 1254 InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr"); 1255 else 1256 InV = PN->getIncomingValue(i); 1257 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1258 } 1259 } else { 1260 CastInst *CI = cast<CastInst>(&I); 1261 Type *RetTy = CI->getType(); 1262 for (unsigned i = 0; i != NumPHIValues; ++i) { 1263 Value *InV; 1264 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1265 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1266 else 1267 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1268 I.getType(), "phi.cast"); 1269 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1270 } 1271 } 1272 1273 for (User *U : make_early_inc_range(PN->users())) { 1274 Instruction *User = cast<Instruction>(U); 1275 if (User == &I) continue; 1276 replaceInstUsesWith(*User, NewPN); 1277 eraseInstFromFunction(*User); 1278 } 1279 return replaceInstUsesWith(I, NewPN); 1280 } 1281 1282 Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) { 1283 // TODO: This should be similar to the incoming values check in foldOpIntoPhi: 1284 // we are guarding against replicating the binop in >1 predecessor. 1285 // This could miss matching a phi with 2 constant incoming values. 1286 auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0)); 1287 auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1)); 1288 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() || 1289 Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2) 1290 return nullptr; 1291 1292 // TODO: Remove the restriction for binop being in the same block as the phis. 1293 if (BO.getParent() != Phi0->getParent() || 1294 BO.getParent() != Phi1->getParent()) 1295 return nullptr; 1296 1297 // Match a pair of incoming constants for one of the predecessor blocks. 1298 BasicBlock *ConstBB, *OtherBB; 1299 Constant *C0, *C1; 1300 if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) { 1301 ConstBB = Phi0->getIncomingBlock(0); 1302 OtherBB = Phi0->getIncomingBlock(1); 1303 } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) { 1304 ConstBB = Phi0->getIncomingBlock(1); 1305 OtherBB = Phi0->getIncomingBlock(0); 1306 } else { 1307 return nullptr; 1308 } 1309 if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1))) 1310 return nullptr; 1311 1312 // The block that we are hoisting to must reach here unconditionally. 1313 // Otherwise, we could be speculatively executing an expensive or 1314 // non-speculative op. 1315 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator()); 1316 if (!PredBlockBranch || PredBlockBranch->isConditional() || 1317 !DT.isReachableFromEntry(OtherBB)) 1318 return nullptr; 1319 1320 // TODO: This check could be tightened to only apply to binops (div/rem) that 1321 // are not safe to speculatively execute. But that could allow hoisting 1322 // potentially expensive instructions (fdiv for example). 1323 for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter) 1324 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter)) 1325 return nullptr; 1326 1327 // Fold constants for the predecessor block with constant incoming values. 1328 Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL); 1329 if (!NewC) 1330 return nullptr; 1331 1332 // Make a new binop in the predecessor block with the non-constant incoming 1333 // values. 1334 Builder.SetInsertPoint(PredBlockBranch); 1335 Value *NewBO = Builder.CreateBinOp(BO.getOpcode(), 1336 Phi0->getIncomingValueForBlock(OtherBB), 1337 Phi1->getIncomingValueForBlock(OtherBB)); 1338 if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO)) 1339 NotFoldedNewBO->copyIRFlags(&BO); 1340 1341 // Replace the binop with a phi of the new values. The old phis are dead. 1342 PHINode *NewPhi = PHINode::Create(BO.getType(), 2); 1343 NewPhi->addIncoming(NewBO, OtherBB); 1344 NewPhi->addIncoming(NewC, ConstBB); 1345 return NewPhi; 1346 } 1347 1348 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1349 if (!isa<Constant>(I.getOperand(1))) 1350 return nullptr; 1351 1352 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1353 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1354 return NewSel; 1355 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1356 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1357 return NewPhi; 1358 } 1359 return nullptr; 1360 } 1361 1362 /// Given a pointer type and a constant offset, determine whether or not there 1363 /// is a sequence of GEP indices into the pointed type that will land us at the 1364 /// specified offset. If so, fill them into NewIndices and return the resultant 1365 /// element type, otherwise return null. 1366 static Type *findElementAtOffset(PointerType *PtrTy, int64_t IntOffset, 1367 SmallVectorImpl<Value *> &NewIndices, 1368 const DataLayout &DL) { 1369 // Only used by visitGEPOfBitcast(), which is skipped for opaque pointers. 1370 Type *Ty = PtrTy->getNonOpaquePointerElementType(); 1371 if (!Ty->isSized()) 1372 return nullptr; 1373 1374 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset); 1375 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset); 1376 if (!Offset.isZero()) 1377 return nullptr; 1378 1379 for (const APInt &Index : Indices) 1380 NewIndices.push_back(ConstantInt::get(PtrTy->getContext(), Index)); 1381 return Ty; 1382 } 1383 1384 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1385 // If this GEP has only 0 indices, it is the same pointer as 1386 // Src. If Src is not a trivial GEP too, don't combine 1387 // the indices. 1388 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1389 !Src.hasOneUse()) 1390 return false; 1391 return true; 1392 } 1393 1394 /// Return a value X such that Val = X * Scale, or null if none. 1395 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1396 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1397 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1398 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1399 Scale.getBitWidth() && "Scale not compatible with value!"); 1400 1401 // If Val is zero or Scale is one then Val = Val * Scale. 1402 if (match(Val, m_Zero()) || Scale == 1) { 1403 NoSignedWrap = true; 1404 return Val; 1405 } 1406 1407 // If Scale is zero then it does not divide Val. 1408 if (Scale.isMinValue()) 1409 return nullptr; 1410 1411 // Look through chains of multiplications, searching for a constant that is 1412 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1413 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1414 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1415 // down from Val: 1416 // 1417 // Val = M1 * X || Analysis starts here and works down 1418 // M1 = M2 * Y || Doesn't descend into terms with more 1419 // M2 = Z * 4 \/ than one use 1420 // 1421 // Then to modify a term at the bottom: 1422 // 1423 // Val = M1 * X 1424 // M1 = Z * Y || Replaced M2 with Z 1425 // 1426 // Then to work back up correcting nsw flags. 1427 1428 // Op - the term we are currently analyzing. Starts at Val then drills down. 1429 // Replaced with its descaled value before exiting from the drill down loop. 1430 Value *Op = Val; 1431 1432 // Parent - initially null, but after drilling down notes where Op came from. 1433 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1434 // 0'th operand of Val. 1435 std::pair<Instruction *, unsigned> Parent; 1436 1437 // Set if the transform requires a descaling at deeper levels that doesn't 1438 // overflow. 1439 bool RequireNoSignedWrap = false; 1440 1441 // Log base 2 of the scale. Negative if not a power of 2. 1442 int32_t logScale = Scale.exactLogBase2(); 1443 1444 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1445 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1446 // If Op is a constant divisible by Scale then descale to the quotient. 1447 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1448 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1449 if (!Remainder.isMinValue()) 1450 // Not divisible by Scale. 1451 return nullptr; 1452 // Replace with the quotient in the parent. 1453 Op = ConstantInt::get(CI->getType(), Quotient); 1454 NoSignedWrap = true; 1455 break; 1456 } 1457 1458 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1459 if (BO->getOpcode() == Instruction::Mul) { 1460 // Multiplication. 1461 NoSignedWrap = BO->hasNoSignedWrap(); 1462 if (RequireNoSignedWrap && !NoSignedWrap) 1463 return nullptr; 1464 1465 // There are three cases for multiplication: multiplication by exactly 1466 // the scale, multiplication by a constant different to the scale, and 1467 // multiplication by something else. 1468 Value *LHS = BO->getOperand(0); 1469 Value *RHS = BO->getOperand(1); 1470 1471 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1472 // Multiplication by a constant. 1473 if (CI->getValue() == Scale) { 1474 // Multiplication by exactly the scale, replace the multiplication 1475 // by its left-hand side in the parent. 1476 Op = LHS; 1477 break; 1478 } 1479 1480 // Otherwise drill down into the constant. 1481 if (!Op->hasOneUse()) 1482 return nullptr; 1483 1484 Parent = std::make_pair(BO, 1); 1485 continue; 1486 } 1487 1488 // Multiplication by something else. Drill down into the left-hand side 1489 // since that's where the reassociate pass puts the good stuff. 1490 if (!Op->hasOneUse()) 1491 return nullptr; 1492 1493 Parent = std::make_pair(BO, 0); 1494 continue; 1495 } 1496 1497 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1498 isa<ConstantInt>(BO->getOperand(1))) { 1499 // Multiplication by a power of 2. 1500 NoSignedWrap = BO->hasNoSignedWrap(); 1501 if (RequireNoSignedWrap && !NoSignedWrap) 1502 return nullptr; 1503 1504 Value *LHS = BO->getOperand(0); 1505 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1506 getLimitedValue(Scale.getBitWidth()); 1507 // Op = LHS << Amt. 1508 1509 if (Amt == logScale) { 1510 // Multiplication by exactly the scale, replace the multiplication 1511 // by its left-hand side in the parent. 1512 Op = LHS; 1513 break; 1514 } 1515 if (Amt < logScale || !Op->hasOneUse()) 1516 return nullptr; 1517 1518 // Multiplication by more than the scale. Reduce the multiplying amount 1519 // by the scale in the parent. 1520 Parent = std::make_pair(BO, 1); 1521 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1522 break; 1523 } 1524 } 1525 1526 if (!Op->hasOneUse()) 1527 return nullptr; 1528 1529 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1530 if (Cast->getOpcode() == Instruction::SExt) { 1531 // Op is sign-extended from a smaller type, descale in the smaller type. 1532 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1533 APInt SmallScale = Scale.trunc(SmallSize); 1534 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1535 // descale Op as (sext Y) * Scale. In order to have 1536 // sext (Y * SmallScale) = (sext Y) * Scale 1537 // some conditions need to hold however: SmallScale must sign-extend to 1538 // Scale and the multiplication Y * SmallScale should not overflow. 1539 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1540 // SmallScale does not sign-extend to Scale. 1541 return nullptr; 1542 assert(SmallScale.exactLogBase2() == logScale); 1543 // Require that Y * SmallScale must not overflow. 1544 RequireNoSignedWrap = true; 1545 1546 // Drill down through the cast. 1547 Parent = std::make_pair(Cast, 0); 1548 Scale = SmallScale; 1549 continue; 1550 } 1551 1552 if (Cast->getOpcode() == Instruction::Trunc) { 1553 // Op is truncated from a larger type, descale in the larger type. 1554 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1555 // trunc (Y * sext Scale) = (trunc Y) * Scale 1556 // always holds. However (trunc Y) * Scale may overflow even if 1557 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1558 // from this point up in the expression (see later). 1559 if (RequireNoSignedWrap) 1560 return nullptr; 1561 1562 // Drill down through the cast. 1563 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1564 Parent = std::make_pair(Cast, 0); 1565 Scale = Scale.sext(LargeSize); 1566 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1567 logScale = -1; 1568 assert(Scale.exactLogBase2() == logScale); 1569 continue; 1570 } 1571 } 1572 1573 // Unsupported expression, bail out. 1574 return nullptr; 1575 } 1576 1577 // If Op is zero then Val = Op * Scale. 1578 if (match(Op, m_Zero())) { 1579 NoSignedWrap = true; 1580 return Op; 1581 } 1582 1583 // We know that we can successfully descale, so from here on we can safely 1584 // modify the IR. Op holds the descaled version of the deepest term in the 1585 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1586 // not to overflow. 1587 1588 if (!Parent.first) 1589 // The expression only had one term. 1590 return Op; 1591 1592 // Rewrite the parent using the descaled version of its operand. 1593 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1594 assert(Op != Parent.first->getOperand(Parent.second) && 1595 "Descaling was a no-op?"); 1596 replaceOperand(*Parent.first, Parent.second, Op); 1597 Worklist.push(Parent.first); 1598 1599 // Now work back up the expression correcting nsw flags. The logic is based 1600 // on the following observation: if X * Y is known not to overflow as a signed 1601 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1602 // then X * Z will not overflow as a signed multiplication either. As we work 1603 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1604 // current level has strictly smaller absolute value than the original. 1605 Instruction *Ancestor = Parent.first; 1606 do { 1607 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1608 // If the multiplication wasn't nsw then we can't say anything about the 1609 // value of the descaled multiplication, and we have to clear nsw flags 1610 // from this point on up. 1611 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1612 NoSignedWrap &= OpNoSignedWrap; 1613 if (NoSignedWrap != OpNoSignedWrap) { 1614 BO->setHasNoSignedWrap(NoSignedWrap); 1615 Worklist.push(Ancestor); 1616 } 1617 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1618 // The fact that the descaled input to the trunc has smaller absolute 1619 // value than the original input doesn't tell us anything useful about 1620 // the absolute values of the truncations. 1621 NoSignedWrap = false; 1622 } 1623 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1624 "Failed to keep proper track of nsw flags while drilling down?"); 1625 1626 if (Ancestor == Val) 1627 // Got to the top, all done! 1628 return Val; 1629 1630 // Move up one level in the expression. 1631 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1632 Ancestor = Ancestor->user_back(); 1633 } while (true); 1634 } 1635 1636 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 1637 if (!isa<VectorType>(Inst.getType())) 1638 return nullptr; 1639 1640 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1641 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1642 assert(cast<VectorType>(LHS->getType())->getElementCount() == 1643 cast<VectorType>(Inst.getType())->getElementCount()); 1644 assert(cast<VectorType>(RHS->getType())->getElementCount() == 1645 cast<VectorType>(Inst.getType())->getElementCount()); 1646 1647 // If both operands of the binop are vector concatenations, then perform the 1648 // narrow binop on each pair of the source operands followed by concatenation 1649 // of the results. 1650 Value *L0, *L1, *R0, *R1; 1651 ArrayRef<int> Mask; 1652 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 1653 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 1654 LHS->hasOneUse() && RHS->hasOneUse() && 1655 cast<ShuffleVectorInst>(LHS)->isConcat() && 1656 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1657 // This transform does not have the speculative execution constraint as 1658 // below because the shuffle is a concatenation. The new binops are 1659 // operating on exactly the same elements as the existing binop. 1660 // TODO: We could ease the mask requirement to allow different undef lanes, 1661 // but that requires an analysis of the binop-with-undef output value. 1662 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1663 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1664 BO->copyIRFlags(&Inst); 1665 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1666 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1667 BO->copyIRFlags(&Inst); 1668 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1669 } 1670 1671 // It may not be safe to reorder shuffles and things like div, urem, etc. 1672 // because we may trap when executing those ops on unknown vector elements. 1673 // See PR20059. 1674 if (!isSafeToSpeculativelyExecute(&Inst)) 1675 return nullptr; 1676 1677 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 1678 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1679 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1680 BO->copyIRFlags(&Inst); 1681 return new ShuffleVectorInst(XY, M); 1682 }; 1683 1684 // If both arguments of the binary operation are shuffles that use the same 1685 // mask and shuffle within a single vector, move the shuffle after the binop. 1686 Value *V1, *V2; 1687 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) && 1688 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) && 1689 V1->getType() == V2->getType() && 1690 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1691 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1692 return createBinOpShuffle(V1, V2, Mask); 1693 } 1694 1695 // If both arguments of a commutative binop are select-shuffles that use the 1696 // same mask with commuted operands, the shuffles are unnecessary. 1697 if (Inst.isCommutative() && 1698 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 1699 match(RHS, 1700 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 1701 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1702 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1703 // TODO: Allow shuffles that contain undefs in the mask? 1704 // That is legal, but it reduces undef knowledge. 1705 // TODO: Allow arbitrary shuffles by shuffling after binop? 1706 // That might be legal, but we have to deal with poison. 1707 if (LShuf->isSelect() && 1708 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) && 1709 RShuf->isSelect() && 1710 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) { 1711 // Example: 1712 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1713 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1714 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1715 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1716 NewBO->copyIRFlags(&Inst); 1717 return NewBO; 1718 } 1719 } 1720 1721 // If one argument is a shuffle within one vector and the other is a constant, 1722 // try moving the shuffle after the binary operation. This canonicalization 1723 // intends to move shuffles closer to other shuffles and binops closer to 1724 // other binops, so they can be folded. It may also enable demanded elements 1725 // transforms. 1726 Constant *C; 1727 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 1728 if (InstVTy && 1729 match(&Inst, 1730 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))), 1731 m_ImmConstant(C))) && 1732 cast<FixedVectorType>(V1->getType())->getNumElements() <= 1733 InstVTy->getNumElements()) { 1734 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 1735 "Shuffle should not change scalar type"); 1736 1737 // Find constant NewC that has property: 1738 // shuffle(NewC, ShMask) = C 1739 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1740 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1741 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1742 bool ConstOp1 = isa<Constant>(RHS); 1743 ArrayRef<int> ShMask = Mask; 1744 unsigned SrcVecNumElts = 1745 cast<FixedVectorType>(V1->getType())->getNumElements(); 1746 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1747 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1748 bool MayChange = true; 1749 unsigned NumElts = InstVTy->getNumElements(); 1750 for (unsigned I = 0; I < NumElts; ++I) { 1751 Constant *CElt = C->getAggregateElement(I); 1752 if (ShMask[I] >= 0) { 1753 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1754 Constant *NewCElt = NewVecC[ShMask[I]]; 1755 // Bail out if: 1756 // 1. The constant vector contains a constant expression. 1757 // 2. The shuffle needs an element of the constant vector that can't 1758 // be mapped to a new constant vector. 1759 // 3. This is a widening shuffle that copies elements of V1 into the 1760 // extended elements (extending with undef is allowed). 1761 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1762 I >= SrcVecNumElts) { 1763 MayChange = false; 1764 break; 1765 } 1766 NewVecC[ShMask[I]] = CElt; 1767 } 1768 // If this is a widening shuffle, we must be able to extend with undef 1769 // elements. If the original binop does not produce an undef in the high 1770 // lanes, then this transform is not safe. 1771 // Similarly for undef lanes due to the shuffle mask, we can only 1772 // transform binops that preserve undef. 1773 // TODO: We could shuffle those non-undef constant values into the 1774 // result by using a constant vector (rather than an undef vector) 1775 // as operand 1 of the new binop, but that might be too aggressive 1776 // for target-independent shuffle creation. 1777 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1778 Constant *MaybeUndef = 1779 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1780 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1781 if (!match(MaybeUndef, m_Undef())) { 1782 MayChange = false; 1783 break; 1784 } 1785 } 1786 } 1787 if (MayChange) { 1788 Constant *NewC = ConstantVector::get(NewVecC); 1789 // It may not be safe to execute a binop on a vector with undef elements 1790 // because the entire instruction can be folded to undef or create poison 1791 // that did not exist in the original code. 1792 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1793 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1794 1795 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1796 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1797 Value *NewLHS = ConstOp1 ? V1 : NewC; 1798 Value *NewRHS = ConstOp1 ? NewC : V1; 1799 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1800 } 1801 } 1802 1803 // Try to reassociate to sink a splat shuffle after a binary operation. 1804 if (Inst.isAssociative() && Inst.isCommutative()) { 1805 // Canonicalize shuffle operand as LHS. 1806 if (isa<ShuffleVectorInst>(RHS)) 1807 std::swap(LHS, RHS); 1808 1809 Value *X; 1810 ArrayRef<int> MaskC; 1811 int SplatIndex; 1812 Value *Y, *OtherOp; 1813 if (!match(LHS, 1814 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 1815 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || 1816 X->getType() != Inst.getType() || 1817 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp))))) 1818 return nullptr; 1819 1820 // FIXME: This may not be safe if the analysis allows undef elements. By 1821 // moving 'Y' before the splat shuffle, we are implicitly assuming 1822 // that it is not undef/poison at the splat index. 1823 if (isSplatValue(OtherOp, SplatIndex)) { 1824 std::swap(Y, OtherOp); 1825 } else if (!isSplatValue(Y, SplatIndex)) { 1826 return nullptr; 1827 } 1828 1829 // X and Y are splatted values, so perform the binary operation on those 1830 // values followed by a splat followed by the 2nd binary operation: 1831 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 1832 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 1833 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 1834 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 1835 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 1836 1837 // Intersect FMF on both new binops. Other (poison-generating) flags are 1838 // dropped to be safe. 1839 if (isa<FPMathOperator>(R)) { 1840 R->copyFastMathFlags(&Inst); 1841 R->andIRFlags(RHS); 1842 } 1843 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 1844 NewInstBO->copyIRFlags(R); 1845 return R; 1846 } 1847 1848 return nullptr; 1849 } 1850 1851 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1852 /// of a value. This requires a potentially expensive known bits check to make 1853 /// sure the narrow op does not overflow. 1854 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 1855 // We need at least one extended operand. 1856 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1857 1858 // If this is a sub, we swap the operands since we always want an extension 1859 // on the RHS. The LHS can be an extension or a constant. 1860 if (BO.getOpcode() == Instruction::Sub) 1861 std::swap(Op0, Op1); 1862 1863 Value *X; 1864 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1865 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1866 return nullptr; 1867 1868 // If both operands are the same extension from the same source type and we 1869 // can eliminate at least one (hasOneUse), this might work. 1870 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1871 Value *Y; 1872 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1873 cast<Operator>(Op1)->getOpcode() == CastOpc && 1874 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1875 // If that did not match, see if we have a suitable constant operand. 1876 // Truncating and extending must produce the same constant. 1877 Constant *WideC; 1878 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1879 return nullptr; 1880 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1881 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1882 return nullptr; 1883 Y = NarrowC; 1884 } 1885 1886 // Swap back now that we found our operands. 1887 if (BO.getOpcode() == Instruction::Sub) 1888 std::swap(X, Y); 1889 1890 // Both operands have narrow versions. Last step: the math must not overflow 1891 // in the narrow width. 1892 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1893 return nullptr; 1894 1895 // bo (ext X), (ext Y) --> ext (bo X, Y) 1896 // bo (ext X), C --> ext (bo X, C') 1897 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1898 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1899 if (IsSext) 1900 NewBinOp->setHasNoSignedWrap(); 1901 else 1902 NewBinOp->setHasNoUnsignedWrap(); 1903 } 1904 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1905 } 1906 1907 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 1908 // At least one GEP must be inbounds. 1909 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 1910 return false; 1911 1912 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 1913 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 1914 } 1915 1916 /// Thread a GEP operation with constant indices through the constant true/false 1917 /// arms of a select. 1918 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 1919 InstCombiner::BuilderTy &Builder) { 1920 if (!GEP.hasAllConstantIndices()) 1921 return nullptr; 1922 1923 Instruction *Sel; 1924 Value *Cond; 1925 Constant *TrueC, *FalseC; 1926 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 1927 !match(Sel, 1928 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 1929 return nullptr; 1930 1931 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 1932 // Propagate 'inbounds' and metadata from existing instructions. 1933 // Note: using IRBuilder to create the constants for efficiency. 1934 SmallVector<Value *, 4> IndexC(GEP.indices()); 1935 bool IsInBounds = GEP.isInBounds(); 1936 Type *Ty = GEP.getSourceElementType(); 1937 Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", IsInBounds); 1938 Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", IsInBounds); 1939 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 1940 } 1941 1942 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP, 1943 GEPOperator *Src) { 1944 // Combine Indices - If the source pointer to this getelementptr instruction 1945 // is a getelementptr instruction with matching element type, combine the 1946 // indices of the two getelementptr instructions into a single instruction. 1947 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1948 return nullptr; 1949 1950 if (Src->getResultElementType() == GEP.getSourceElementType() && 1951 Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1952 Src->hasOneUse()) { 1953 Value *GO1 = GEP.getOperand(1); 1954 Value *SO1 = Src->getOperand(1); 1955 1956 if (LI) { 1957 // Try to reassociate loop invariant GEP chains to enable LICM. 1958 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1959 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1960 // invariant: this breaks the dependence between GEPs and allows LICM 1961 // to hoist the invariant part out of the loop. 1962 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1963 // The swapped GEPs are inbounds if both original GEPs are inbounds 1964 // and the sign of the offsets is the same. For simplicity, only 1965 // handle both offsets being non-negative. 1966 bool IsInBounds = Src->isInBounds() && GEP.isInBounds() && 1967 isKnownNonNegative(SO1, DL, 0, &AC, &GEP, &DT) && 1968 isKnownNonNegative(GO1, DL, 0, &AC, &GEP, &DT); 1969 // Put NewSrc at same location as %src. 1970 Builder.SetInsertPoint(cast<Instruction>(Src)); 1971 Value *NewSrc = Builder.CreateGEP(GEP.getSourceElementType(), 1972 Src->getPointerOperand(), GO1, 1973 Src->getName(), IsInBounds); 1974 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 1975 GEP.getSourceElementType(), NewSrc, {SO1}); 1976 NewGEP->setIsInBounds(IsInBounds); 1977 return NewGEP; 1978 } 1979 } 1980 } 1981 } 1982 1983 // Note that if our source is a gep chain itself then we wait for that 1984 // chain to be resolved before we perform this transformation. This 1985 // avoids us creating a TON of code in some cases. 1986 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 1987 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1988 return nullptr; // Wait until our source is folded to completion. 1989 1990 // For constant GEPs, use a more general offset-based folding approach. 1991 // Only do this for opaque pointers, as the result element type may change. 1992 Type *PtrTy = Src->getType()->getScalarType(); 1993 if (PtrTy->isOpaquePointerTy() && GEP.hasAllConstantIndices() && 1994 (Src->hasOneUse() || Src->hasAllConstantIndices())) { 1995 // Split Src into a variable part and a constant suffix. 1996 gep_type_iterator GTI = gep_type_begin(*Src); 1997 Type *BaseType = GTI.getIndexedType(); 1998 bool IsFirstType = true; 1999 unsigned NumVarIndices = 0; 2000 for (auto Pair : enumerate(Src->indices())) { 2001 if (!isa<ConstantInt>(Pair.value())) { 2002 BaseType = GTI.getIndexedType(); 2003 IsFirstType = false; 2004 NumVarIndices = Pair.index() + 1; 2005 } 2006 ++GTI; 2007 } 2008 2009 // Determine the offset for the constant suffix of Src. 2010 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0); 2011 if (NumVarIndices != Src->getNumIndices()) { 2012 // FIXME: getIndexedOffsetInType() does not handled scalable vectors. 2013 if (isa<ScalableVectorType>(BaseType)) 2014 return nullptr; 2015 2016 SmallVector<Value *> ConstantIndices; 2017 if (!IsFirstType) 2018 ConstantIndices.push_back( 2019 Constant::getNullValue(Type::getInt32Ty(GEP.getContext()))); 2020 append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices)); 2021 Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices); 2022 } 2023 2024 // Add the offset for GEP (which is fully constant). 2025 if (!GEP.accumulateConstantOffset(DL, Offset)) 2026 return nullptr; 2027 2028 APInt OffsetOld = Offset; 2029 // Convert the total offset back into indices. 2030 SmallVector<APInt> ConstIndices = 2031 DL.getGEPIndicesForOffset(BaseType, Offset); 2032 if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) { 2033 // If both GEP are constant-indexed, and cannot be merged in either way, 2034 // convert them to a GEP of i8. 2035 if (Src->hasAllConstantIndices()) 2036 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2037 ? GetElementPtrInst::CreateInBounds( 2038 Builder.getInt8Ty(), Src->getOperand(0), 2039 Builder.getInt(OffsetOld), GEP.getName()) 2040 : GetElementPtrInst::Create( 2041 Builder.getInt8Ty(), Src->getOperand(0), 2042 Builder.getInt(OffsetOld), GEP.getName()); 2043 return nullptr; 2044 } 2045 2046 bool IsInBounds = isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)); 2047 SmallVector<Value *> Indices; 2048 append_range(Indices, drop_end(Src->indices(), 2049 Src->getNumIndices() - NumVarIndices)); 2050 for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) { 2051 Indices.push_back(ConstantInt::get(GEP.getContext(), Idx)); 2052 // Even if the total offset is inbounds, we may end up representing it 2053 // by first performing a larger negative offset, and then a smaller 2054 // positive one. The large negative offset might go out of bounds. Only 2055 // preserve inbounds if all signs are the same. 2056 IsInBounds &= Idx.isNonNegative() == ConstIndices[0].isNonNegative(); 2057 } 2058 2059 return IsInBounds 2060 ? GetElementPtrInst::CreateInBounds(Src->getSourceElementType(), 2061 Src->getOperand(0), Indices, 2062 GEP.getName()) 2063 : GetElementPtrInst::Create(Src->getSourceElementType(), 2064 Src->getOperand(0), Indices, 2065 GEP.getName()); 2066 } 2067 2068 if (Src->getResultElementType() != GEP.getSourceElementType()) 2069 return nullptr; 2070 2071 SmallVector<Value*, 8> Indices; 2072 2073 // Find out whether the last index in the source GEP is a sequential idx. 2074 bool EndsWithSequential = false; 2075 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 2076 I != E; ++I) 2077 EndsWithSequential = I.isSequential(); 2078 2079 // Can we combine the two pointer arithmetics offsets? 2080 if (EndsWithSequential) { 2081 // Replace: gep (gep %P, long B), long A, ... 2082 // With: T = long A+B; gep %P, T, ... 2083 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 2084 Value *GO1 = GEP.getOperand(1); 2085 2086 // If they aren't the same type, then the input hasn't been processed 2087 // by the loop above yet (which canonicalizes sequential index types to 2088 // intptr_t). Just avoid transforming this until the input has been 2089 // normalized. 2090 if (SO1->getType() != GO1->getType()) 2091 return nullptr; 2092 2093 Value *Sum = 2094 simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 2095 // Only do the combine when we are sure the cost after the 2096 // merge is never more than that before the merge. 2097 if (Sum == nullptr) 2098 return nullptr; 2099 2100 // Update the GEP in place if possible. 2101 if (Src->getNumOperands() == 2) { 2102 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 2103 replaceOperand(GEP, 0, Src->getOperand(0)); 2104 replaceOperand(GEP, 1, Sum); 2105 return &GEP; 2106 } 2107 Indices.append(Src->op_begin()+1, Src->op_end()-1); 2108 Indices.push_back(Sum); 2109 Indices.append(GEP.op_begin()+2, GEP.op_end()); 2110 } else if (isa<Constant>(*GEP.idx_begin()) && 2111 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2112 Src->getNumOperands() != 1) { 2113 // Otherwise we can do the fold if the first index of the GEP is a zero 2114 Indices.append(Src->op_begin()+1, Src->op_end()); 2115 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2116 } 2117 2118 if (!Indices.empty()) 2119 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2120 ? GetElementPtrInst::CreateInBounds( 2121 Src->getSourceElementType(), Src->getOperand(0), Indices, 2122 GEP.getName()) 2123 : GetElementPtrInst::Create(Src->getSourceElementType(), 2124 Src->getOperand(0), Indices, 2125 GEP.getName()); 2126 2127 return nullptr; 2128 } 2129 2130 // Note that we may have also stripped an address space cast in between. 2131 Instruction *InstCombinerImpl::visitGEPOfBitcast(BitCastInst *BCI, 2132 GetElementPtrInst &GEP) { 2133 // With opaque pointers, there is no pointer element type we can use to 2134 // adjust the GEP type. 2135 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2136 if (SrcType->isOpaque()) 2137 return nullptr; 2138 2139 Type *GEPEltType = GEP.getSourceElementType(); 2140 Type *SrcEltType = SrcType->getNonOpaquePointerElementType(); 2141 Value *SrcOp = BCI->getOperand(0); 2142 2143 // GEP directly using the source operand if this GEP is accessing an element 2144 // of a bitcasted pointer to vector or array of the same dimensions: 2145 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2146 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2147 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, 2148 const DataLayout &DL) { 2149 auto *VecVTy = cast<FixedVectorType>(VecTy); 2150 return ArrTy->getArrayElementType() == VecVTy->getElementType() && 2151 ArrTy->getArrayNumElements() == VecVTy->getNumElements() && 2152 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); 2153 }; 2154 if (GEP.getNumOperands() == 3 && 2155 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) && 2156 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || 2157 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() && 2158 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { 2159 2160 // Create a new GEP here, as using `setOperand()` followed by 2161 // `setSourceElementType()` won't actually update the type of the 2162 // existing GEP Value. Causing issues if this Value is accessed when 2163 // constructing an AddrSpaceCastInst 2164 SmallVector<Value *, 8> Indices(GEP.indices()); 2165 Value *NGEP = 2166 Builder.CreateGEP(SrcEltType, SrcOp, Indices, "", GEP.isInBounds()); 2167 NGEP->takeName(&GEP); 2168 2169 // Preserve GEP address space to satisfy users 2170 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2171 return new AddrSpaceCastInst(NGEP, GEP.getType()); 2172 2173 return replaceInstUsesWith(GEP, NGEP); 2174 } 2175 2176 // See if we can simplify: 2177 // X = bitcast A* to B* 2178 // Y = gep X, <...constant indices...> 2179 // into a gep of the original struct. This is important for SROA and alias 2180 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2181 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEP.getType()); 2182 APInt Offset(OffsetBits, 0); 2183 2184 // If the bitcast argument is an allocation, The bitcast is for convertion 2185 // to actual type of allocation. Removing such bitcasts, results in having 2186 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of 2187 // struct or array hierarchy. 2188 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have 2189 // a better chance to succeed. 2190 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) && 2191 !isAllocationFn(SrcOp, &TLI)) { 2192 // If this GEP instruction doesn't move the pointer, just replace the GEP 2193 // with a bitcast of the real input to the dest type. 2194 if (!Offset) { 2195 // If the bitcast is of an allocation, and the allocation will be 2196 // converted to match the type of the cast, don't touch this. 2197 if (isa<AllocaInst>(SrcOp)) { 2198 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2199 if (Instruction *I = visitBitCast(*BCI)) { 2200 if (I != BCI) { 2201 I->takeName(BCI); 2202 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2203 replaceInstUsesWith(*BCI, I); 2204 } 2205 return &GEP; 2206 } 2207 } 2208 2209 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2210 return new AddrSpaceCastInst(SrcOp, GEP.getType()); 2211 return new BitCastInst(SrcOp, GEP.getType()); 2212 } 2213 2214 // Otherwise, if the offset is non-zero, we need to find out if there is a 2215 // field at Offset in 'A's type. If so, we can pull the cast through the 2216 // GEP. 2217 SmallVector<Value *, 8> NewIndices; 2218 if (findElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices, DL)) { 2219 Value *NGEP = Builder.CreateGEP(SrcEltType, SrcOp, NewIndices, "", 2220 GEP.isInBounds()); 2221 2222 if (NGEP->getType() == GEP.getType()) 2223 return replaceInstUsesWith(GEP, NGEP); 2224 NGEP->takeName(&GEP); 2225 2226 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2227 return new AddrSpaceCastInst(NGEP, GEP.getType()); 2228 return new BitCastInst(NGEP, GEP.getType()); 2229 } 2230 } 2231 2232 return nullptr; 2233 } 2234 2235 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 2236 Value *PtrOp = GEP.getOperand(0); 2237 SmallVector<Value *, 8> Indices(GEP.indices()); 2238 Type *GEPType = GEP.getType(); 2239 Type *GEPEltType = GEP.getSourceElementType(); 2240 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType); 2241 if (Value *V = simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(), 2242 SQ.getWithInstruction(&GEP))) 2243 return replaceInstUsesWith(GEP, V); 2244 2245 // For vector geps, use the generic demanded vector support. 2246 // Skip if GEP return type is scalable. The number of elements is unknown at 2247 // compile-time. 2248 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 2249 auto VWidth = GEPFVTy->getNumElements(); 2250 APInt UndefElts(VWidth, 0); 2251 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2252 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 2253 UndefElts)) { 2254 if (V != &GEP) 2255 return replaceInstUsesWith(GEP, V); 2256 return &GEP; 2257 } 2258 2259 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 2260 // possible (decide on canonical form for pointer broadcast), 3) exploit 2261 // undef elements to decrease demanded bits 2262 } 2263 2264 // Eliminate unneeded casts for indices, and replace indices which displace 2265 // by multiples of a zero size type with zero. 2266 bool MadeChange = false; 2267 2268 // Index width may not be the same width as pointer width. 2269 // Data layout chooses the right type based on supported integer types. 2270 Type *NewScalarIndexTy = 2271 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 2272 2273 gep_type_iterator GTI = gep_type_begin(GEP); 2274 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 2275 ++I, ++GTI) { 2276 // Skip indices into struct types. 2277 if (GTI.isStruct()) 2278 continue; 2279 2280 Type *IndexTy = (*I)->getType(); 2281 Type *NewIndexType = 2282 IndexTy->isVectorTy() 2283 ? VectorType::get(NewScalarIndexTy, 2284 cast<VectorType>(IndexTy)->getElementCount()) 2285 : NewScalarIndexTy; 2286 2287 // If the element type has zero size then any index over it is equivalent 2288 // to an index of zero, so replace it with zero if it is not zero already. 2289 Type *EltTy = GTI.getIndexedType(); 2290 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 2291 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 2292 *I = Constant::getNullValue(NewIndexType); 2293 MadeChange = true; 2294 } 2295 2296 if (IndexTy != NewIndexType) { 2297 // If we are using a wider index than needed for this platform, shrink 2298 // it to what we need. If narrower, sign-extend it to what we need. 2299 // This explicit cast can make subsequent optimizations more obvious. 2300 *I = Builder.CreateIntCast(*I, NewIndexType, true); 2301 MadeChange = true; 2302 } 2303 } 2304 if (MadeChange) 2305 return &GEP; 2306 2307 // Check to see if the inputs to the PHI node are getelementptr instructions. 2308 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 2309 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 2310 if (!Op1) 2311 return nullptr; 2312 2313 // Don't fold a GEP into itself through a PHI node. This can only happen 2314 // through the back-edge of a loop. Folding a GEP into itself means that 2315 // the value of the previous iteration needs to be stored in the meantime, 2316 // thus requiring an additional register variable to be live, but not 2317 // actually achieving anything (the GEP still needs to be executed once per 2318 // loop iteration). 2319 if (Op1 == &GEP) 2320 return nullptr; 2321 2322 int DI = -1; 2323 2324 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 2325 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 2326 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() || 2327 Op1->getSourceElementType() != Op2->getSourceElementType()) 2328 return nullptr; 2329 2330 // As for Op1 above, don't try to fold a GEP into itself. 2331 if (Op2 == &GEP) 2332 return nullptr; 2333 2334 // Keep track of the type as we walk the GEP. 2335 Type *CurTy = nullptr; 2336 2337 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 2338 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 2339 return nullptr; 2340 2341 if (Op1->getOperand(J) != Op2->getOperand(J)) { 2342 if (DI == -1) { 2343 // We have not seen any differences yet in the GEPs feeding the 2344 // PHI yet, so we record this one if it is allowed to be a 2345 // variable. 2346 2347 // The first two arguments can vary for any GEP, the rest have to be 2348 // static for struct slots 2349 if (J > 1) { 2350 assert(CurTy && "No current type?"); 2351 if (CurTy->isStructTy()) 2352 return nullptr; 2353 } 2354 2355 DI = J; 2356 } else { 2357 // The GEP is different by more than one input. While this could be 2358 // extended to support GEPs that vary by more than one variable it 2359 // doesn't make sense since it greatly increases the complexity and 2360 // would result in an R+R+R addressing mode which no backend 2361 // directly supports and would need to be broken into several 2362 // simpler instructions anyway. 2363 return nullptr; 2364 } 2365 } 2366 2367 // Sink down a layer of the type for the next iteration. 2368 if (J > 0) { 2369 if (J == 1) { 2370 CurTy = Op1->getSourceElementType(); 2371 } else { 2372 CurTy = 2373 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 2374 } 2375 } 2376 } 2377 } 2378 2379 // If not all GEPs are identical we'll have to create a new PHI node. 2380 // Check that the old PHI node has only one use so that it will get 2381 // removed. 2382 if (DI != -1 && !PN->hasOneUse()) 2383 return nullptr; 2384 2385 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 2386 if (DI == -1) { 2387 // All the GEPs feeding the PHI are identical. Clone one down into our 2388 // BB so that it can be merged with the current GEP. 2389 } else { 2390 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 2391 // into the current block so it can be merged, and create a new PHI to 2392 // set that index. 2393 PHINode *NewPN; 2394 { 2395 IRBuilderBase::InsertPointGuard Guard(Builder); 2396 Builder.SetInsertPoint(PN); 2397 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 2398 PN->getNumOperands()); 2399 } 2400 2401 for (auto &I : PN->operands()) 2402 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 2403 PN->getIncomingBlock(I)); 2404 2405 NewGEP->setOperand(DI, NewPN); 2406 } 2407 2408 GEP.getParent()->getInstList().insert( 2409 GEP.getParent()->getFirstInsertionPt(), NewGEP); 2410 replaceOperand(GEP, 0, NewGEP); 2411 PtrOp = NewGEP; 2412 } 2413 2414 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) 2415 if (Instruction *I = visitGEPOfGEP(GEP, Src)) 2416 return I; 2417 2418 // Skip if GEP source element type is scalable. The type alloc size is unknown 2419 // at compile-time. 2420 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { 2421 unsigned AS = GEP.getPointerAddressSpace(); 2422 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 2423 DL.getIndexSizeInBits(AS)) { 2424 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2425 2426 bool Matched = false; 2427 uint64_t C; 2428 Value *V = nullptr; 2429 if (TyAllocSize == 1) { 2430 V = GEP.getOperand(1); 2431 Matched = true; 2432 } else if (match(GEP.getOperand(1), 2433 m_AShr(m_Value(V), m_ConstantInt(C)))) { 2434 if (TyAllocSize == 1ULL << C) 2435 Matched = true; 2436 } else if (match(GEP.getOperand(1), 2437 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 2438 if (TyAllocSize == C) 2439 Matched = true; 2440 } 2441 2442 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but 2443 // only if both point to the same underlying object (otherwise provenance 2444 // is not necessarily retained). 2445 Value *Y; 2446 Value *X = GEP.getOperand(0); 2447 if (Matched && 2448 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 2449 getUnderlyingObject(X) == getUnderlyingObject(Y)) 2450 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 2451 } 2452 } 2453 2454 // We do not handle pointer-vector geps here. 2455 if (GEPType->isVectorTy()) 2456 return nullptr; 2457 2458 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 2459 Value *StrippedPtr = PtrOp->stripPointerCasts(); 2460 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 2461 2462 // TODO: The basic approach of these folds is not compatible with opaque 2463 // pointers, because we can't use bitcasts as a hint for a desirable GEP 2464 // type. Instead, we should perform canonicalization directly on the GEP 2465 // type. For now, skip these. 2466 if (StrippedPtr != PtrOp && !StrippedPtrTy->isOpaque()) { 2467 bool HasZeroPointerIndex = false; 2468 Type *StrippedPtrEltTy = StrippedPtrTy->getNonOpaquePointerElementType(); 2469 2470 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 2471 HasZeroPointerIndex = C->isZero(); 2472 2473 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2474 // into : GEP [10 x i8]* X, i32 0, ... 2475 // 2476 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2477 // into : GEP i8* X, ... 2478 // 2479 // This occurs when the program declares an array extern like "int X[];" 2480 if (HasZeroPointerIndex) { 2481 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2482 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2483 if (CATy->getElementType() == StrippedPtrEltTy) { 2484 // -> GEP i8* X, ... 2485 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices())); 2486 GetElementPtrInst *Res = GetElementPtrInst::Create( 2487 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2488 Res->setIsInBounds(GEP.isInBounds()); 2489 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2490 return Res; 2491 // Insert Res, and create an addrspacecast. 2492 // e.g., 2493 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2494 // -> 2495 // %0 = GEP i8 addrspace(1)* X, ... 2496 // addrspacecast i8 addrspace(1)* %0 to i8* 2497 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2498 } 2499 2500 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2501 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2502 if (CATy->getElementType() == XATy->getElementType()) { 2503 // -> GEP [10 x i8]* X, i32 0, ... 2504 // At this point, we know that the cast source type is a pointer 2505 // to an array of the same type as the destination pointer 2506 // array. Because the array type is never stepped over (there 2507 // is a leading zero) we can fold the cast into this GEP. 2508 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2509 GEP.setSourceElementType(XATy); 2510 return replaceOperand(GEP, 0, StrippedPtr); 2511 } 2512 // Cannot replace the base pointer directly because StrippedPtr's 2513 // address space is different. Instead, create a new GEP followed by 2514 // an addrspacecast. 2515 // e.g., 2516 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2517 // i32 0, ... 2518 // -> 2519 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2520 // addrspacecast i8 addrspace(1)* %0 to i8* 2521 SmallVector<Value *, 8> Idx(GEP.indices()); 2522 Value *NewGEP = 2523 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2524 GEP.getName(), GEP.isInBounds()); 2525 return new AddrSpaceCastInst(NewGEP, GEPType); 2526 } 2527 } 2528 } 2529 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) { 2530 // Skip if GEP source element type is scalable. The type alloc size is 2531 // unknown at compile-time. 2532 // Transform things like: %t = getelementptr i32* 2533 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2 2534 // x i32]* %str, i32 0, i32 %V; bitcast 2535 if (StrippedPtrEltTy->isArrayTy() && 2536 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2537 DL.getTypeAllocSize(GEPEltType)) { 2538 Type *IdxType = DL.getIndexType(GEPType); 2539 Value *Idx[2] = {Constant::getNullValue(IdxType), GEP.getOperand(1)}; 2540 Value *NewGEP = Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2541 GEP.getName(), GEP.isInBounds()); 2542 2543 // V and GEP are both pointer types --> BitCast 2544 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2545 } 2546 2547 // Transform things like: 2548 // %V = mul i64 %N, 4 2549 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2550 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2551 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2552 // Check that changing the type amounts to dividing the index by a scale 2553 // factor. 2554 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2555 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize(); 2556 if (ResSize && SrcSize % ResSize == 0) { 2557 Value *Idx = GEP.getOperand(1); 2558 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2559 uint64_t Scale = SrcSize / ResSize; 2560 2561 // Earlier transforms ensure that the index has the right type 2562 // according to Data Layout, which considerably simplifies the 2563 // logic by eliminating implicit casts. 2564 assert(Idx->getType() == DL.getIndexType(GEPType) && 2565 "Index type does not match the Data Layout preferences"); 2566 2567 bool NSW; 2568 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2569 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2570 // If the multiplication NewIdx * Scale may overflow then the new 2571 // GEP may not be "inbounds". 2572 Value *NewGEP = 2573 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2574 GEP.getName(), GEP.isInBounds() && NSW); 2575 2576 // The NewGEP must be pointer typed, so must the old one -> BitCast 2577 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2578 GEPType); 2579 } 2580 } 2581 } 2582 2583 // Similarly, transform things like: 2584 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2585 // (where tmp = 8*tmp2) into: 2586 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2587 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2588 StrippedPtrEltTy->isArrayTy()) { 2589 // Check that changing to the array element type amounts to dividing the 2590 // index by a scale factor. 2591 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2592 uint64_t ArrayEltSize = 2593 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) 2594 .getFixedSize(); 2595 if (ResSize && ArrayEltSize % ResSize == 0) { 2596 Value *Idx = GEP.getOperand(1); 2597 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2598 uint64_t Scale = ArrayEltSize / ResSize; 2599 2600 // Earlier transforms ensure that the index has the right type 2601 // according to the Data Layout, which considerably simplifies 2602 // the logic by eliminating implicit casts. 2603 assert(Idx->getType() == DL.getIndexType(GEPType) && 2604 "Index type does not match the Data Layout preferences"); 2605 2606 bool NSW; 2607 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2608 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2609 // If the multiplication NewIdx * Scale may overflow then the new 2610 // GEP may not be "inbounds". 2611 Type *IndTy = DL.getIndexType(GEPType); 2612 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2613 2614 Value *NewGEP = 2615 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2616 GEP.getName(), GEP.isInBounds() && NSW); 2617 // The NewGEP must be pointer typed, so must the old one -> BitCast 2618 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2619 GEPType); 2620 } 2621 } 2622 } 2623 } 2624 } 2625 2626 // addrspacecast between types is canonicalized as a bitcast, then an 2627 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2628 // through the addrspacecast. 2629 Value *ASCStrippedPtrOp = PtrOp; 2630 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2631 // X = bitcast A addrspace(1)* to B addrspace(1)* 2632 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2633 // Z = gep Y, <...constant indices...> 2634 // Into an addrspacecasted GEP of the struct. 2635 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2636 ASCStrippedPtrOp = BC; 2637 } 2638 2639 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) 2640 if (Instruction *I = visitGEPOfBitcast(BCI, GEP)) 2641 return I; 2642 2643 if (!GEP.isInBounds()) { 2644 unsigned IdxWidth = 2645 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2646 APInt BasePtrOffset(IdxWidth, 0); 2647 Value *UnderlyingPtrOp = 2648 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2649 BasePtrOffset); 2650 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2651 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2652 BasePtrOffset.isNonNegative()) { 2653 APInt AllocSize( 2654 IdxWidth, 2655 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize()); 2656 if (BasePtrOffset.ule(AllocSize)) { 2657 return GetElementPtrInst::CreateInBounds( 2658 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName()); 2659 } 2660 } 2661 } 2662 } 2663 2664 if (Instruction *R = foldSelectGEP(GEP, Builder)) 2665 return R; 2666 2667 return nullptr; 2668 } 2669 2670 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, 2671 Instruction *AI) { 2672 if (isa<ConstantPointerNull>(V)) 2673 return true; 2674 if (auto *LI = dyn_cast<LoadInst>(V)) 2675 return isa<GlobalVariable>(LI->getPointerOperand()); 2676 // Two distinct allocations will never be equal. 2677 return isAllocLikeFn(V, &TLI) && V != AI; 2678 } 2679 2680 /// Given a call CB which uses an address UsedV, return true if we can prove the 2681 /// call's only possible effect is storing to V. 2682 static bool isRemovableWrite(CallBase &CB, Value *UsedV, 2683 const TargetLibraryInfo &TLI) { 2684 if (!CB.use_empty()) 2685 // TODO: add recursion if returned attribute is present 2686 return false; 2687 2688 if (CB.isTerminator()) 2689 // TODO: remove implementation restriction 2690 return false; 2691 2692 if (!CB.willReturn() || !CB.doesNotThrow()) 2693 return false; 2694 2695 // If the only possible side effect of the call is writing to the alloca, 2696 // and the result isn't used, we can safely remove any reads implied by the 2697 // call including those which might read the alloca itself. 2698 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI); 2699 return Dest && Dest->Ptr == UsedV; 2700 } 2701 2702 static bool isAllocSiteRemovable(Instruction *AI, 2703 SmallVectorImpl<WeakTrackingVH> &Users, 2704 const TargetLibraryInfo &TLI) { 2705 SmallVector<Instruction*, 4> Worklist; 2706 const Optional<StringRef> Family = getAllocationFamily(AI, &TLI); 2707 Worklist.push_back(AI); 2708 2709 do { 2710 Instruction *PI = Worklist.pop_back_val(); 2711 for (User *U : PI->users()) { 2712 Instruction *I = cast<Instruction>(U); 2713 switch (I->getOpcode()) { 2714 default: 2715 // Give up the moment we see something we can't handle. 2716 return false; 2717 2718 case Instruction::AddrSpaceCast: 2719 case Instruction::BitCast: 2720 case Instruction::GetElementPtr: 2721 Users.emplace_back(I); 2722 Worklist.push_back(I); 2723 continue; 2724 2725 case Instruction::ICmp: { 2726 ICmpInst *ICI = cast<ICmpInst>(I); 2727 // We can fold eq/ne comparisons with null to false/true, respectively. 2728 // We also fold comparisons in some conditions provided the alloc has 2729 // not escaped (see isNeverEqualToUnescapedAlloc). 2730 if (!ICI->isEquality()) 2731 return false; 2732 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2733 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2734 return false; 2735 Users.emplace_back(I); 2736 continue; 2737 } 2738 2739 case Instruction::Call: 2740 // Ignore no-op and store intrinsics. 2741 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2742 switch (II->getIntrinsicID()) { 2743 default: 2744 return false; 2745 2746 case Intrinsic::memmove: 2747 case Intrinsic::memcpy: 2748 case Intrinsic::memset: { 2749 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2750 if (MI->isVolatile() || MI->getRawDest() != PI) 2751 return false; 2752 LLVM_FALLTHROUGH; 2753 } 2754 case Intrinsic::assume: 2755 case Intrinsic::invariant_start: 2756 case Intrinsic::invariant_end: 2757 case Intrinsic::lifetime_start: 2758 case Intrinsic::lifetime_end: 2759 case Intrinsic::objectsize: 2760 Users.emplace_back(I); 2761 continue; 2762 case Intrinsic::launder_invariant_group: 2763 case Intrinsic::strip_invariant_group: 2764 Users.emplace_back(I); 2765 Worklist.push_back(I); 2766 continue; 2767 } 2768 } 2769 2770 if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) { 2771 Users.emplace_back(I); 2772 continue; 2773 } 2774 2775 if (isFreeCall(I, &TLI) && getAllocationFamily(I, &TLI) == Family) { 2776 assert(Family); 2777 Users.emplace_back(I); 2778 continue; 2779 } 2780 2781 if (isReallocLikeFn(I, &TLI) && 2782 getAllocationFamily(I, &TLI) == Family) { 2783 assert(Family); 2784 Users.emplace_back(I); 2785 Worklist.push_back(I); 2786 continue; 2787 } 2788 2789 return false; 2790 2791 case Instruction::Store: { 2792 StoreInst *SI = cast<StoreInst>(I); 2793 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2794 return false; 2795 Users.emplace_back(I); 2796 continue; 2797 } 2798 } 2799 llvm_unreachable("missing a return?"); 2800 } 2801 } while (!Worklist.empty()); 2802 return true; 2803 } 2804 2805 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 2806 assert(isa<AllocaInst>(MI) || isAllocRemovable(&cast<CallBase>(MI), &TLI)); 2807 2808 // If we have a malloc call which is only used in any amount of comparisons to 2809 // null and free calls, delete the calls and replace the comparisons with true 2810 // or false as appropriate. 2811 2812 // This is based on the principle that we can substitute our own allocation 2813 // function (which will never return null) rather than knowledge of the 2814 // specific function being called. In some sense this can change the permitted 2815 // outputs of a program (when we convert a malloc to an alloca, the fact that 2816 // the allocation is now on the stack is potentially visible, for example), 2817 // but we believe in a permissible manner. 2818 SmallVector<WeakTrackingVH, 64> Users; 2819 2820 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2821 // before each store. 2822 SmallVector<DbgVariableIntrinsic *, 8> DVIs; 2823 std::unique_ptr<DIBuilder> DIB; 2824 if (isa<AllocaInst>(MI)) { 2825 findDbgUsers(DVIs, &MI); 2826 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2827 } 2828 2829 if (isAllocSiteRemovable(&MI, Users, TLI)) { 2830 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2831 // Lowering all @llvm.objectsize calls first because they may 2832 // use a bitcast/GEP of the alloca we are removing. 2833 if (!Users[i]) 2834 continue; 2835 2836 Instruction *I = cast<Instruction>(&*Users[i]); 2837 2838 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2839 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2840 Value *Result = 2841 lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/true); 2842 replaceInstUsesWith(*I, Result); 2843 eraseInstFromFunction(*I); 2844 Users[i] = nullptr; // Skip examining in the next loop. 2845 } 2846 } 2847 } 2848 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2849 if (!Users[i]) 2850 continue; 2851 2852 Instruction *I = cast<Instruction>(&*Users[i]); 2853 2854 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2855 replaceInstUsesWith(*C, 2856 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2857 C->isFalseWhenEqual())); 2858 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2859 for (auto *DVI : DVIs) 2860 if (DVI->isAddressOfVariable()) 2861 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 2862 } else { 2863 // Casts, GEP, or anything else: we're about to delete this instruction, 2864 // so it can not have any valid uses. 2865 replaceInstUsesWith(*I, PoisonValue::get(I->getType())); 2866 } 2867 eraseInstFromFunction(*I); 2868 } 2869 2870 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2871 // Replace invoke with a NOP intrinsic to maintain the original CFG 2872 Module *M = II->getModule(); 2873 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2874 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2875 None, "", II->getParent()); 2876 } 2877 2878 // Remove debug intrinsics which describe the value contained within the 2879 // alloca. In addition to removing dbg.{declare,addr} which simply point to 2880 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 2881 // 2882 // ``` 2883 // define void @foo(i32 %0) { 2884 // %a = alloca i32 ; Deleted. 2885 // store i32 %0, i32* %a 2886 // dbg.value(i32 %0, "arg0") ; Not deleted. 2887 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 2888 // call void @trivially_inlinable_no_op(i32* %a) 2889 // ret void 2890 // } 2891 // ``` 2892 // 2893 // This may not be required if we stop describing the contents of allocas 2894 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 2895 // the LowerDbgDeclare utility. 2896 // 2897 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 2898 // "arg0" dbg.value may be stale after the call. However, failing to remove 2899 // the DW_OP_deref dbg.value causes large gaps in location coverage. 2900 for (auto *DVI : DVIs) 2901 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 2902 DVI->eraseFromParent(); 2903 2904 return eraseInstFromFunction(MI); 2905 } 2906 return nullptr; 2907 } 2908 2909 /// Move the call to free before a NULL test. 2910 /// 2911 /// Check if this free is accessed after its argument has been test 2912 /// against NULL (property 0). 2913 /// If yes, it is legal to move this call in its predecessor block. 2914 /// 2915 /// The move is performed only if the block containing the call to free 2916 /// will be removed, i.e.: 2917 /// 1. it has only one predecessor P, and P has two successors 2918 /// 2. it contains the call, noops, and an unconditional branch 2919 /// 3. its successor is the same as its predecessor's successor 2920 /// 2921 /// The profitability is out-of concern here and this function should 2922 /// be called only if the caller knows this transformation would be 2923 /// profitable (e.g., for code size). 2924 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2925 const DataLayout &DL) { 2926 Value *Op = FI.getArgOperand(0); 2927 BasicBlock *FreeInstrBB = FI.getParent(); 2928 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2929 2930 // Validate part of constraint #1: Only one predecessor 2931 // FIXME: We can extend the number of predecessor, but in that case, we 2932 // would duplicate the call to free in each predecessor and it may 2933 // not be profitable even for code size. 2934 if (!PredBB) 2935 return nullptr; 2936 2937 // Validate constraint #2: Does this block contains only the call to 2938 // free, noops, and an unconditional branch? 2939 BasicBlock *SuccBB; 2940 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2941 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2942 return nullptr; 2943 2944 // If there are only 2 instructions in the block, at this point, 2945 // this is the call to free and unconditional. 2946 // If there are more than 2 instructions, check that they are noops 2947 // i.e., they won't hurt the performance of the generated code. 2948 if (FreeInstrBB->size() != 2) { 2949 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 2950 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2951 continue; 2952 auto *Cast = dyn_cast<CastInst>(&Inst); 2953 if (!Cast || !Cast->isNoopCast(DL)) 2954 return nullptr; 2955 } 2956 } 2957 // Validate the rest of constraint #1 by matching on the pred branch. 2958 Instruction *TI = PredBB->getTerminator(); 2959 BasicBlock *TrueBB, *FalseBB; 2960 ICmpInst::Predicate Pred; 2961 if (!match(TI, m_Br(m_ICmp(Pred, 2962 m_CombineOr(m_Specific(Op), 2963 m_Specific(Op->stripPointerCasts())), 2964 m_Zero()), 2965 TrueBB, FalseBB))) 2966 return nullptr; 2967 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2968 return nullptr; 2969 2970 // Validate constraint #3: Ensure the null case just falls through. 2971 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2972 return nullptr; 2973 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2974 "Broken CFG: missing edge from predecessor to successor"); 2975 2976 // At this point, we know that everything in FreeInstrBB can be moved 2977 // before TI. 2978 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) { 2979 if (&Instr == FreeInstrBBTerminator) 2980 break; 2981 Instr.moveBefore(TI); 2982 } 2983 assert(FreeInstrBB->size() == 1 && 2984 "Only the branch instruction should remain"); 2985 2986 // Now that we've moved the call to free before the NULL check, we have to 2987 // remove any attributes on its parameter that imply it's non-null, because 2988 // those attributes might have only been valid because of the NULL check, and 2989 // we can get miscompiles if we keep them. This is conservative if non-null is 2990 // also implied by something other than the NULL check, but it's guaranteed to 2991 // be correct, and the conservativeness won't matter in practice, since the 2992 // attributes are irrelevant for the call to free itself and the pointer 2993 // shouldn't be used after the call. 2994 AttributeList Attrs = FI.getAttributes(); 2995 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull); 2996 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable); 2997 if (Dereferenceable.isValid()) { 2998 uint64_t Bytes = Dereferenceable.getDereferenceableBytes(); 2999 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, 3000 Attribute::Dereferenceable); 3001 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes); 3002 } 3003 FI.setAttributes(Attrs); 3004 3005 return &FI; 3006 } 3007 3008 Instruction *InstCombinerImpl::visitFree(CallInst &FI) { 3009 Value *Op = FI.getArgOperand(0); 3010 3011 // free undef -> unreachable. 3012 if (isa<UndefValue>(Op)) { 3013 // Leave a marker since we can't modify the CFG here. 3014 CreateNonTerminatorUnreachable(&FI); 3015 return eraseInstFromFunction(FI); 3016 } 3017 3018 // If we have 'free null' delete the instruction. This can happen in stl code 3019 // when lots of inlining happens. 3020 if (isa<ConstantPointerNull>(Op)) 3021 return eraseInstFromFunction(FI); 3022 3023 // If we had free(realloc(...)) with no intervening uses, then eliminate the 3024 // realloc() entirely. 3025 if (CallInst *CI = dyn_cast<CallInst>(Op)) { 3026 if (CI->hasOneUse() && isReallocLikeFn(CI, &TLI)) { 3027 return eraseInstFromFunction( 3028 *replaceInstUsesWith(*CI, CI->getOperand(0))); 3029 } 3030 } 3031 3032 // If we optimize for code size, try to move the call to free before the null 3033 // test so that simplify cfg can remove the empty block and dead code 3034 // elimination the branch. I.e., helps to turn something like: 3035 // if (foo) free(foo); 3036 // into 3037 // free(foo); 3038 // 3039 // Note that we can only do this for 'free' and not for any flavor of 3040 // 'operator delete'; there is no 'operator delete' symbol for which we are 3041 // permitted to invent a call, even if we're passing in a null pointer. 3042 if (MinimizeSize) { 3043 LibFunc Func; 3044 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 3045 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 3046 return I; 3047 } 3048 3049 return nullptr; 3050 } 3051 3052 static bool isMustTailCall(Value *V) { 3053 if (auto *CI = dyn_cast<CallInst>(V)) 3054 return CI->isMustTailCall(); 3055 return false; 3056 } 3057 3058 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 3059 if (RI.getNumOperands() == 0) // ret void 3060 return nullptr; 3061 3062 Value *ResultOp = RI.getOperand(0); 3063 Type *VTy = ResultOp->getType(); 3064 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp)) 3065 return nullptr; 3066 3067 // Don't replace result of musttail calls. 3068 if (isMustTailCall(ResultOp)) 3069 return nullptr; 3070 3071 // There might be assume intrinsics dominating this return that completely 3072 // determine the value. If so, constant fold it. 3073 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 3074 if (Known.isConstant()) 3075 return replaceOperand(RI, 0, 3076 Constant::getIntegerValue(VTy, Known.getConstant())); 3077 3078 return nullptr; 3079 } 3080 3081 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! 3082 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 3083 // Try to remove the previous instruction if it must lead to unreachable. 3084 // This includes instructions like stores and "llvm.assume" that may not get 3085 // removed by simple dead code elimination. 3086 while (Instruction *Prev = I.getPrevNonDebugInstruction()) { 3087 // While we theoretically can erase EH, that would result in a block that 3088 // used to start with an EH no longer starting with EH, which is invalid. 3089 // To make it valid, we'd need to fixup predecessors to no longer refer to 3090 // this block, but that changes CFG, which is not allowed in InstCombine. 3091 if (Prev->isEHPad()) 3092 return nullptr; // Can not drop any more instructions. We're done here. 3093 3094 if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) 3095 return nullptr; // Can not drop any more instructions. We're done here. 3096 // Otherwise, this instruction can be freely erased, 3097 // even if it is not side-effect free. 3098 3099 // A value may still have uses before we process it here (for example, in 3100 // another unreachable block), so convert those to poison. 3101 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); 3102 eraseInstFromFunction(*Prev); 3103 } 3104 assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty."); 3105 // FIXME: recurse into unconditional predecessors? 3106 return nullptr; 3107 } 3108 3109 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 3110 assert(BI.isUnconditional() && "Only for unconditional branches."); 3111 3112 // If this store is the second-to-last instruction in the basic block 3113 // (excluding debug info and bitcasts of pointers) and if the block ends with 3114 // an unconditional branch, try to move the store to the successor block. 3115 3116 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 3117 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 3118 return BBI->isDebugOrPseudoInst() || 3119 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 3120 }; 3121 3122 BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 3123 do { 3124 if (BBI != FirstInstr) 3125 --BBI; 3126 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 3127 3128 return dyn_cast<StoreInst>(BBI); 3129 }; 3130 3131 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 3132 if (mergeStoreIntoSuccessor(*SI)) 3133 return &BI; 3134 3135 return nullptr; 3136 } 3137 3138 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 3139 if (BI.isUnconditional()) 3140 return visitUnconditionalBranchInst(BI); 3141 3142 // Change br (not X), label True, label False to: br X, label False, True 3143 Value *X = nullptr; 3144 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 3145 !isa<Constant>(X)) { 3146 // Swap Destinations and condition... 3147 BI.swapSuccessors(); 3148 return replaceOperand(BI, 0, X); 3149 } 3150 3151 // If the condition is irrelevant, remove the use so that other 3152 // transforms on the condition become more effective. 3153 if (!isa<ConstantInt>(BI.getCondition()) && 3154 BI.getSuccessor(0) == BI.getSuccessor(1)) 3155 return replaceOperand( 3156 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType())); 3157 3158 // Canonicalize, for example, fcmp_one -> fcmp_oeq. 3159 CmpInst::Predicate Pred; 3160 if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())), 3161 m_BasicBlock(), m_BasicBlock())) && 3162 !isCanonicalPredicate(Pred)) { 3163 // Swap destinations and condition. 3164 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 3165 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 3166 BI.swapSuccessors(); 3167 Worklist.push(Cond); 3168 return &BI; 3169 } 3170 3171 return nullptr; 3172 } 3173 3174 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 3175 Value *Cond = SI.getCondition(); 3176 Value *Op0; 3177 ConstantInt *AddRHS; 3178 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 3179 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 3180 for (auto Case : SI.cases()) { 3181 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 3182 assert(isa<ConstantInt>(NewCase) && 3183 "Result of expression should be constant"); 3184 Case.setValue(cast<ConstantInt>(NewCase)); 3185 } 3186 return replaceOperand(SI, 0, Op0); 3187 } 3188 3189 KnownBits Known = computeKnownBits(Cond, 0, &SI); 3190 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 3191 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 3192 3193 // Compute the number of leading bits we can ignore. 3194 // TODO: A better way to determine this would use ComputeNumSignBits(). 3195 for (auto &C : SI.cases()) { 3196 LeadingKnownZeros = std::min( 3197 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 3198 LeadingKnownOnes = std::min( 3199 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 3200 } 3201 3202 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 3203 3204 // Shrink the condition operand if the new type is smaller than the old type. 3205 // But do not shrink to a non-standard type, because backend can't generate 3206 // good code for that yet. 3207 // TODO: We can make it aggressive again after fixing PR39569. 3208 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 3209 shouldChangeType(Known.getBitWidth(), NewWidth)) { 3210 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 3211 Builder.SetInsertPoint(&SI); 3212 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 3213 3214 for (auto Case : SI.cases()) { 3215 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3216 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3217 } 3218 return replaceOperand(SI, 0, NewCond); 3219 } 3220 3221 return nullptr; 3222 } 3223 3224 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 3225 Value *Agg = EV.getAggregateOperand(); 3226 3227 if (!EV.hasIndices()) 3228 return replaceInstUsesWith(EV, Agg); 3229 3230 if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(), 3231 SQ.getWithInstruction(&EV))) 3232 return replaceInstUsesWith(EV, V); 3233 3234 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 3235 // We're extracting from an insertvalue instruction, compare the indices 3236 const unsigned *exti, *exte, *insi, *inse; 3237 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 3238 exte = EV.idx_end(), inse = IV->idx_end(); 3239 exti != exte && insi != inse; 3240 ++exti, ++insi) { 3241 if (*insi != *exti) 3242 // The insert and extract both reference distinctly different elements. 3243 // This means the extract is not influenced by the insert, and we can 3244 // replace the aggregate operand of the extract with the aggregate 3245 // operand of the insert. i.e., replace 3246 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3247 // %E = extractvalue { i32, { i32 } } %I, 0 3248 // with 3249 // %E = extractvalue { i32, { i32 } } %A, 0 3250 return ExtractValueInst::Create(IV->getAggregateOperand(), 3251 EV.getIndices()); 3252 } 3253 if (exti == exte && insi == inse) 3254 // Both iterators are at the end: Index lists are identical. Replace 3255 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3256 // %C = extractvalue { i32, { i32 } } %B, 1, 0 3257 // with "i32 42" 3258 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 3259 if (exti == exte) { 3260 // The extract list is a prefix of the insert list. i.e. replace 3261 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3262 // %E = extractvalue { i32, { i32 } } %I, 1 3263 // with 3264 // %X = extractvalue { i32, { i32 } } %A, 1 3265 // %E = insertvalue { i32 } %X, i32 42, 0 3266 // by switching the order of the insert and extract (though the 3267 // insertvalue should be left in, since it may have other uses). 3268 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 3269 EV.getIndices()); 3270 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 3271 makeArrayRef(insi, inse)); 3272 } 3273 if (insi == inse) 3274 // The insert list is a prefix of the extract list 3275 // We can simply remove the common indices from the extract and make it 3276 // operate on the inserted value instead of the insertvalue result. 3277 // i.e., replace 3278 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3279 // %E = extractvalue { i32, { i32 } } %I, 1, 0 3280 // with 3281 // %E extractvalue { i32 } { i32 42 }, 0 3282 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 3283 makeArrayRef(exti, exte)); 3284 } 3285 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 3286 // extractvalue (any_mul_with_overflow X, -1), 0 --> -X 3287 Intrinsic::ID OvID = WO->getIntrinsicID(); 3288 if (*EV.idx_begin() == 0 && 3289 (OvID == Intrinsic::smul_with_overflow || 3290 OvID == Intrinsic::umul_with_overflow) && 3291 match(WO->getArgOperand(1), m_AllOnes())) { 3292 return BinaryOperator::CreateNeg(WO->getArgOperand(0)); 3293 } 3294 3295 // We're extracting from an overflow intrinsic, see if we're the only user, 3296 // which allows us to simplify multiple result intrinsics to simpler 3297 // things that just get one value. 3298 if (WO->hasOneUse()) { 3299 // Check if we're grabbing only the result of a 'with overflow' intrinsic 3300 // and replace it with a traditional binary instruction. 3301 if (*EV.idx_begin() == 0) { 3302 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 3303 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 3304 // Replace the old instruction's uses with poison. 3305 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); 3306 eraseInstFromFunction(*WO); 3307 return BinaryOperator::Create(BinOp, LHS, RHS); 3308 } 3309 3310 assert(*EV.idx_begin() == 1 && 3311 "unexpected extract index for overflow inst"); 3312 3313 // If only the overflow result is used, and the right hand side is a 3314 // constant (or constant splat), we can remove the intrinsic by directly 3315 // checking for overflow. 3316 const APInt *C; 3317 if (match(WO->getRHS(), m_APInt(C))) { 3318 // Compute the no-wrap range for LHS given RHS=C, then construct an 3319 // equivalent icmp, potentially using an offset. 3320 ConstantRange NWR = 3321 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 3322 WO->getNoWrapKind()); 3323 3324 CmpInst::Predicate Pred; 3325 APInt NewRHSC, Offset; 3326 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 3327 auto *OpTy = WO->getRHS()->getType(); 3328 auto *NewLHS = WO->getLHS(); 3329 if (Offset != 0) 3330 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset)); 3331 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, 3332 ConstantInt::get(OpTy, NewRHSC)); 3333 } 3334 } 3335 } 3336 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 3337 // If the (non-volatile) load only has one use, we can rewrite this to a 3338 // load from a GEP. This reduces the size of the load. If a load is used 3339 // only by extractvalue instructions then this either must have been 3340 // optimized before, or it is a struct with padding, in which case we 3341 // don't want to do the transformation as it loses padding knowledge. 3342 if (L->isSimple() && L->hasOneUse()) { 3343 // extractvalue has integer indices, getelementptr has Value*s. Convert. 3344 SmallVector<Value*, 4> Indices; 3345 // Prefix an i32 0 since we need the first element. 3346 Indices.push_back(Builder.getInt32(0)); 3347 for (unsigned Idx : EV.indices()) 3348 Indices.push_back(Builder.getInt32(Idx)); 3349 3350 // We need to insert these at the location of the old load, not at that of 3351 // the extractvalue. 3352 Builder.SetInsertPoint(L); 3353 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 3354 L->getPointerOperand(), Indices); 3355 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 3356 // Whatever aliasing information we had for the orignal load must also 3357 // hold for the smaller load, so propagate the annotations. 3358 NL->setAAMetadata(L->getAAMetadata()); 3359 // Returning the load directly will cause the main loop to insert it in 3360 // the wrong spot, so use replaceInstUsesWith(). 3361 return replaceInstUsesWith(EV, NL); 3362 } 3363 // We could simplify extracts from other values. Note that nested extracts may 3364 // already be simplified implicitly by the above: extract (extract (insert) ) 3365 // will be translated into extract ( insert ( extract ) ) first and then just 3366 // the value inserted, if appropriate. Similarly for extracts from single-use 3367 // loads: extract (extract (load)) will be translated to extract (load (gep)) 3368 // and if again single-use then via load (gep (gep)) to load (gep). 3369 // However, double extracts from e.g. function arguments or return values 3370 // aren't handled yet. 3371 return nullptr; 3372 } 3373 3374 /// Return 'true' if the given typeinfo will match anything. 3375 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 3376 switch (Personality) { 3377 case EHPersonality::GNU_C: 3378 case EHPersonality::GNU_C_SjLj: 3379 case EHPersonality::Rust: 3380 // The GCC C EH and Rust personality only exists to support cleanups, so 3381 // it's not clear what the semantics of catch clauses are. 3382 return false; 3383 case EHPersonality::Unknown: 3384 return false; 3385 case EHPersonality::GNU_Ada: 3386 // While __gnat_all_others_value will match any Ada exception, it doesn't 3387 // match foreign exceptions (or didn't, before gcc-4.7). 3388 return false; 3389 case EHPersonality::GNU_CXX: 3390 case EHPersonality::GNU_CXX_SjLj: 3391 case EHPersonality::GNU_ObjC: 3392 case EHPersonality::MSVC_X86SEH: 3393 case EHPersonality::MSVC_TableSEH: 3394 case EHPersonality::MSVC_CXX: 3395 case EHPersonality::CoreCLR: 3396 case EHPersonality::Wasm_CXX: 3397 case EHPersonality::XL_CXX: 3398 return TypeInfo->isNullValue(); 3399 } 3400 llvm_unreachable("invalid enum"); 3401 } 3402 3403 static bool shorter_filter(const Value *LHS, const Value *RHS) { 3404 return 3405 cast<ArrayType>(LHS->getType())->getNumElements() 3406 < 3407 cast<ArrayType>(RHS->getType())->getNumElements(); 3408 } 3409 3410 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 3411 // The logic here should be correct for any real-world personality function. 3412 // However if that turns out not to be true, the offending logic can always 3413 // be conditioned on the personality function, like the catch-all logic is. 3414 EHPersonality Personality = 3415 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 3416 3417 // Simplify the list of clauses, eg by removing repeated catch clauses 3418 // (these are often created by inlining). 3419 bool MakeNewInstruction = false; // If true, recreate using the following: 3420 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 3421 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 3422 3423 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 3424 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 3425 bool isLastClause = i + 1 == e; 3426 if (LI.isCatch(i)) { 3427 // A catch clause. 3428 Constant *CatchClause = LI.getClause(i); 3429 Constant *TypeInfo = CatchClause->stripPointerCasts(); 3430 3431 // If we already saw this clause, there is no point in having a second 3432 // copy of it. 3433 if (AlreadyCaught.insert(TypeInfo).second) { 3434 // This catch clause was not already seen. 3435 NewClauses.push_back(CatchClause); 3436 } else { 3437 // Repeated catch clause - drop the redundant copy. 3438 MakeNewInstruction = true; 3439 } 3440 3441 // If this is a catch-all then there is no point in keeping any following 3442 // clauses or marking the landingpad as having a cleanup. 3443 if (isCatchAll(Personality, TypeInfo)) { 3444 if (!isLastClause) 3445 MakeNewInstruction = true; 3446 CleanupFlag = false; 3447 break; 3448 } 3449 } else { 3450 // A filter clause. If any of the filter elements were already caught 3451 // then they can be dropped from the filter. It is tempting to try to 3452 // exploit the filter further by saying that any typeinfo that does not 3453 // occur in the filter can't be caught later (and thus can be dropped). 3454 // However this would be wrong, since typeinfos can match without being 3455 // equal (for example if one represents a C++ class, and the other some 3456 // class derived from it). 3457 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 3458 Constant *FilterClause = LI.getClause(i); 3459 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 3460 unsigned NumTypeInfos = FilterType->getNumElements(); 3461 3462 // An empty filter catches everything, so there is no point in keeping any 3463 // following clauses or marking the landingpad as having a cleanup. By 3464 // dealing with this case here the following code is made a bit simpler. 3465 if (!NumTypeInfos) { 3466 NewClauses.push_back(FilterClause); 3467 if (!isLastClause) 3468 MakeNewInstruction = true; 3469 CleanupFlag = false; 3470 break; 3471 } 3472 3473 bool MakeNewFilter = false; // If true, make a new filter. 3474 SmallVector<Constant *, 16> NewFilterElts; // New elements. 3475 if (isa<ConstantAggregateZero>(FilterClause)) { 3476 // Not an empty filter - it contains at least one null typeinfo. 3477 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 3478 Constant *TypeInfo = 3479 Constant::getNullValue(FilterType->getElementType()); 3480 // If this typeinfo is a catch-all then the filter can never match. 3481 if (isCatchAll(Personality, TypeInfo)) { 3482 // Throw the filter away. 3483 MakeNewInstruction = true; 3484 continue; 3485 } 3486 3487 // There is no point in having multiple copies of this typeinfo, so 3488 // discard all but the first copy if there is more than one. 3489 NewFilterElts.push_back(TypeInfo); 3490 if (NumTypeInfos > 1) 3491 MakeNewFilter = true; 3492 } else { 3493 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 3494 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 3495 NewFilterElts.reserve(NumTypeInfos); 3496 3497 // Remove any filter elements that were already caught or that already 3498 // occurred in the filter. While there, see if any of the elements are 3499 // catch-alls. If so, the filter can be discarded. 3500 bool SawCatchAll = false; 3501 for (unsigned j = 0; j != NumTypeInfos; ++j) { 3502 Constant *Elt = Filter->getOperand(j); 3503 Constant *TypeInfo = Elt->stripPointerCasts(); 3504 if (isCatchAll(Personality, TypeInfo)) { 3505 // This element is a catch-all. Bail out, noting this fact. 3506 SawCatchAll = true; 3507 break; 3508 } 3509 3510 // Even if we've seen a type in a catch clause, we don't want to 3511 // remove it from the filter. An unexpected type handler may be 3512 // set up for a call site which throws an exception of the same 3513 // type caught. In order for the exception thrown by the unexpected 3514 // handler to propagate correctly, the filter must be correctly 3515 // described for the call site. 3516 // 3517 // Example: 3518 // 3519 // void unexpected() { throw 1;} 3520 // void foo() throw (int) { 3521 // std::set_unexpected(unexpected); 3522 // try { 3523 // throw 2.0; 3524 // } catch (int i) {} 3525 // } 3526 3527 // There is no point in having multiple copies of the same typeinfo in 3528 // a filter, so only add it if we didn't already. 3529 if (SeenInFilter.insert(TypeInfo).second) 3530 NewFilterElts.push_back(cast<Constant>(Elt)); 3531 } 3532 // A filter containing a catch-all cannot match anything by definition. 3533 if (SawCatchAll) { 3534 // Throw the filter away. 3535 MakeNewInstruction = true; 3536 continue; 3537 } 3538 3539 // If we dropped something from the filter, make a new one. 3540 if (NewFilterElts.size() < NumTypeInfos) 3541 MakeNewFilter = true; 3542 } 3543 if (MakeNewFilter) { 3544 FilterType = ArrayType::get(FilterType->getElementType(), 3545 NewFilterElts.size()); 3546 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 3547 MakeNewInstruction = true; 3548 } 3549 3550 NewClauses.push_back(FilterClause); 3551 3552 // If the new filter is empty then it will catch everything so there is 3553 // no point in keeping any following clauses or marking the landingpad 3554 // as having a cleanup. The case of the original filter being empty was 3555 // already handled above. 3556 if (MakeNewFilter && !NewFilterElts.size()) { 3557 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3558 CleanupFlag = false; 3559 break; 3560 } 3561 } 3562 } 3563 3564 // If several filters occur in a row then reorder them so that the shortest 3565 // filters come first (those with the smallest number of elements). This is 3566 // advantageous because shorter filters are more likely to match, speeding up 3567 // unwinding, but mostly because it increases the effectiveness of the other 3568 // filter optimizations below. 3569 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3570 unsigned j; 3571 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3572 for (j = i; j != e; ++j) 3573 if (!isa<ArrayType>(NewClauses[j]->getType())) 3574 break; 3575 3576 // Check whether the filters are already sorted by length. We need to know 3577 // if sorting them is actually going to do anything so that we only make a 3578 // new landingpad instruction if it does. 3579 for (unsigned k = i; k + 1 < j; ++k) 3580 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3581 // Not sorted, so sort the filters now. Doing an unstable sort would be 3582 // correct too but reordering filters pointlessly might confuse users. 3583 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3584 shorter_filter); 3585 MakeNewInstruction = true; 3586 break; 3587 } 3588 3589 // Look for the next batch of filters. 3590 i = j + 1; 3591 } 3592 3593 // If typeinfos matched if and only if equal, then the elements of a filter L 3594 // that occurs later than a filter F could be replaced by the intersection of 3595 // the elements of F and L. In reality two typeinfos can match without being 3596 // equal (for example if one represents a C++ class, and the other some class 3597 // derived from it) so it would be wrong to perform this transform in general. 3598 // However the transform is correct and useful if F is a subset of L. In that 3599 // case L can be replaced by F, and thus removed altogether since repeating a 3600 // filter is pointless. So here we look at all pairs of filters F and L where 3601 // L follows F in the list of clauses, and remove L if every element of F is 3602 // an element of L. This can occur when inlining C++ functions with exception 3603 // specifications. 3604 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3605 // Examine each filter in turn. 3606 Value *Filter = NewClauses[i]; 3607 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3608 if (!FTy) 3609 // Not a filter - skip it. 3610 continue; 3611 unsigned FElts = FTy->getNumElements(); 3612 // Examine each filter following this one. Doing this backwards means that 3613 // we don't have to worry about filters disappearing under us when removed. 3614 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3615 Value *LFilter = NewClauses[j]; 3616 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3617 if (!LTy) 3618 // Not a filter - skip it. 3619 continue; 3620 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3621 // an element of LFilter, then discard LFilter. 3622 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3623 // If Filter is empty then it is a subset of LFilter. 3624 if (!FElts) { 3625 // Discard LFilter. 3626 NewClauses.erase(J); 3627 MakeNewInstruction = true; 3628 // Move on to the next filter. 3629 continue; 3630 } 3631 unsigned LElts = LTy->getNumElements(); 3632 // If Filter is longer than LFilter then it cannot be a subset of it. 3633 if (FElts > LElts) 3634 // Move on to the next filter. 3635 continue; 3636 // At this point we know that LFilter has at least one element. 3637 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3638 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3639 // already know that Filter is not longer than LFilter). 3640 if (isa<ConstantAggregateZero>(Filter)) { 3641 assert(FElts <= LElts && "Should have handled this case earlier!"); 3642 // Discard LFilter. 3643 NewClauses.erase(J); 3644 MakeNewInstruction = true; 3645 } 3646 // Move on to the next filter. 3647 continue; 3648 } 3649 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3650 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3651 // Since Filter is non-empty and contains only zeros, it is a subset of 3652 // LFilter iff LFilter contains a zero. 3653 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3654 for (unsigned l = 0; l != LElts; ++l) 3655 if (LArray->getOperand(l)->isNullValue()) { 3656 // LFilter contains a zero - discard it. 3657 NewClauses.erase(J); 3658 MakeNewInstruction = true; 3659 break; 3660 } 3661 // Move on to the next filter. 3662 continue; 3663 } 3664 // At this point we know that both filters are ConstantArrays. Loop over 3665 // operands to see whether every element of Filter is also an element of 3666 // LFilter. Since filters tend to be short this is probably faster than 3667 // using a method that scales nicely. 3668 ConstantArray *FArray = cast<ConstantArray>(Filter); 3669 bool AllFound = true; 3670 for (unsigned f = 0; f != FElts; ++f) { 3671 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3672 AllFound = false; 3673 for (unsigned l = 0; l != LElts; ++l) { 3674 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3675 if (LTypeInfo == FTypeInfo) { 3676 AllFound = true; 3677 break; 3678 } 3679 } 3680 if (!AllFound) 3681 break; 3682 } 3683 if (AllFound) { 3684 // Discard LFilter. 3685 NewClauses.erase(J); 3686 MakeNewInstruction = true; 3687 } 3688 // Move on to the next filter. 3689 } 3690 } 3691 3692 // If we changed any of the clauses, replace the old landingpad instruction 3693 // with a new one. 3694 if (MakeNewInstruction) { 3695 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3696 NewClauses.size()); 3697 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3698 NLI->addClause(NewClauses[i]); 3699 // A landing pad with no clauses must have the cleanup flag set. It is 3700 // theoretically possible, though highly unlikely, that we eliminated all 3701 // clauses. If so, force the cleanup flag to true. 3702 if (NewClauses.empty()) 3703 CleanupFlag = true; 3704 NLI->setCleanup(CleanupFlag); 3705 return NLI; 3706 } 3707 3708 // Even if none of the clauses changed, we may nonetheless have understood 3709 // that the cleanup flag is pointless. Clear it if so. 3710 if (LI.isCleanup() != CleanupFlag) { 3711 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3712 LI.setCleanup(CleanupFlag); 3713 return &LI; 3714 } 3715 3716 return nullptr; 3717 } 3718 3719 Value * 3720 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { 3721 // Try to push freeze through instructions that propagate but don't produce 3722 // poison as far as possible. If an operand of freeze follows three 3723 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one 3724 // guaranteed-non-poison operands then push the freeze through to the one 3725 // operand that is not guaranteed non-poison. The actual transform is as 3726 // follows. 3727 // Op1 = ... ; Op1 can be posion 3728 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have 3729 // ; single guaranteed-non-poison operands 3730 // ... = Freeze(Op0) 3731 // => 3732 // Op1 = ... 3733 // Op1.fr = Freeze(Op1) 3734 // ... = Inst(Op1.fr, NonPoisonOps...) 3735 auto *OrigOp = OrigFI.getOperand(0); 3736 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp); 3737 3738 // While we could change the other users of OrigOp to use freeze(OrigOp), that 3739 // potentially reduces their optimization potential, so let's only do this iff 3740 // the OrigOp is only used by the freeze. 3741 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp)) 3742 return nullptr; 3743 3744 // We can't push the freeze through an instruction which can itself create 3745 // poison. If the only source of new poison is flags, we can simply 3746 // strip them (since we know the only use is the freeze and nothing can 3747 // benefit from them.) 3748 if (canCreateUndefOrPoison(cast<Operator>(OrigOp), /*ConsiderFlags*/ false)) 3749 return nullptr; 3750 3751 // If operand is guaranteed not to be poison, there is no need to add freeze 3752 // to the operand. So we first find the operand that is not guaranteed to be 3753 // poison. 3754 Use *MaybePoisonOperand = nullptr; 3755 for (Use &U : OrigOpInst->operands()) { 3756 if (isGuaranteedNotToBeUndefOrPoison(U.get())) 3757 continue; 3758 if (!MaybePoisonOperand) 3759 MaybePoisonOperand = &U; 3760 else 3761 return nullptr; 3762 } 3763 3764 OrigOpInst->dropPoisonGeneratingFlags(); 3765 3766 // If all operands are guaranteed to be non-poison, we can drop freeze. 3767 if (!MaybePoisonOperand) 3768 return OrigOp; 3769 3770 Builder.SetInsertPoint(OrigOpInst); 3771 auto *FrozenMaybePoisonOperand = Builder.CreateFreeze( 3772 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); 3773 3774 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); 3775 return OrigOp; 3776 } 3777 3778 Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI, 3779 PHINode *PN) { 3780 // Detect whether this is a recurrence with a start value and some number of 3781 // backedge values. We'll check whether we can push the freeze through the 3782 // backedge values (possibly dropping poison flags along the way) until we 3783 // reach the phi again. In that case, we can move the freeze to the start 3784 // value. 3785 Use *StartU = nullptr; 3786 SmallVector<Value *> Worklist; 3787 for (Use &U : PN->incoming_values()) { 3788 if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) { 3789 // Add backedge value to worklist. 3790 Worklist.push_back(U.get()); 3791 continue; 3792 } 3793 3794 // Don't bother handling multiple start values. 3795 if (StartU) 3796 return nullptr; 3797 StartU = &U; 3798 } 3799 3800 if (!StartU || Worklist.empty()) 3801 return nullptr; // Not a recurrence. 3802 3803 Value *StartV = StartU->get(); 3804 BasicBlock *StartBB = PN->getIncomingBlock(*StartU); 3805 bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV); 3806 // We can't insert freeze if the the start value is the result of the 3807 // terminator (e.g. an invoke). 3808 if (StartNeedsFreeze && StartBB->getTerminator() == StartV) 3809 return nullptr; 3810 3811 SmallPtrSet<Value *, 32> Visited; 3812 SmallVector<Instruction *> DropFlags; 3813 while (!Worklist.empty()) { 3814 Value *V = Worklist.pop_back_val(); 3815 if (!Visited.insert(V).second) 3816 continue; 3817 3818 if (Visited.size() > 32) 3819 return nullptr; // Limit the total number of values we inspect. 3820 3821 // Assume that PN is non-poison, because it will be after the transform. 3822 if (V == PN || isGuaranteedNotToBeUndefOrPoison(V)) 3823 continue; 3824 3825 Instruction *I = dyn_cast<Instruction>(V); 3826 if (!I || canCreateUndefOrPoison(cast<Operator>(I), 3827 /*ConsiderFlags*/ false)) 3828 return nullptr; 3829 3830 DropFlags.push_back(I); 3831 append_range(Worklist, I->operands()); 3832 } 3833 3834 for (Instruction *I : DropFlags) 3835 I->dropPoisonGeneratingFlags(); 3836 3837 if (StartNeedsFreeze) { 3838 Builder.SetInsertPoint(StartBB->getTerminator()); 3839 Value *FrozenStartV = Builder.CreateFreeze(StartV, 3840 StartV->getName() + ".fr"); 3841 replaceUse(*StartU, FrozenStartV); 3842 } 3843 return replaceInstUsesWith(FI, PN); 3844 } 3845 3846 bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) { 3847 Value *Op = FI.getOperand(0); 3848 3849 if (isa<Constant>(Op) || Op->hasOneUse()) 3850 return false; 3851 3852 // Move the freeze directly after the definition of its operand, so that 3853 // it dominates the maximum number of uses. Note that it may not dominate 3854 // *all* uses if the operand is an invoke/callbr and the use is in a phi on 3855 // the normal/default destination. This is why the domination check in the 3856 // replacement below is still necessary. 3857 Instruction *MoveBefore = nullptr; 3858 if (isa<Argument>(Op)) { 3859 MoveBefore = &FI.getFunction()->getEntryBlock().front(); 3860 while (isa<AllocaInst>(MoveBefore)) 3861 MoveBefore = MoveBefore->getNextNode(); 3862 } else if (auto *PN = dyn_cast<PHINode>(Op)) { 3863 MoveBefore = PN->getParent()->getFirstNonPHI(); 3864 } else if (auto *II = dyn_cast<InvokeInst>(Op)) { 3865 MoveBefore = II->getNormalDest()->getFirstNonPHI(); 3866 } else if (auto *CB = dyn_cast<CallBrInst>(Op)) { 3867 MoveBefore = CB->getDefaultDest()->getFirstNonPHI(); 3868 } else { 3869 auto *I = cast<Instruction>(Op); 3870 assert(!I->isTerminator() && "Cannot be a terminator"); 3871 MoveBefore = I->getNextNode(); 3872 } 3873 3874 bool Changed = false; 3875 if (&FI != MoveBefore) { 3876 FI.moveBefore(MoveBefore); 3877 Changed = true; 3878 } 3879 3880 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { 3881 bool Dominates = DT.dominates(&FI, U); 3882 Changed |= Dominates; 3883 return Dominates; 3884 }); 3885 3886 return Changed; 3887 } 3888 3889 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 3890 Value *Op0 = I.getOperand(0); 3891 3892 if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3893 return replaceInstUsesWith(I, V); 3894 3895 // freeze (phi const, x) --> phi const, (freeze x) 3896 if (auto *PN = dyn_cast<PHINode>(Op0)) { 3897 if (Instruction *NV = foldOpIntoPhi(I, PN)) 3898 return NV; 3899 if (Instruction *NV = foldFreezeIntoRecurrence(I, PN)) 3900 return NV; 3901 } 3902 3903 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) 3904 return replaceInstUsesWith(I, NI); 3905 3906 // If I is freeze(undef), check its uses and fold it to a fixed constant. 3907 // - or: pick -1 3908 // - select's condition: if the true value is constant, choose it by making 3909 // the condition true. 3910 // - default: pick 0 3911 // 3912 // Note that this transform is intentionally done here rather than 3913 // via an analysis in InstSimplify or at individual user sites. That is 3914 // because we must produce the same value for all uses of the freeze - 3915 // it's the reason "freeze" exists! 3916 // 3917 // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid 3918 // duplicating logic for binops at least. 3919 auto getUndefReplacement = [&I](Type *Ty) { 3920 Constant *BestValue = nullptr; 3921 Constant *NullValue = Constant::getNullValue(Ty); 3922 for (const auto *U : I.users()) { 3923 Constant *C = NullValue; 3924 if (match(U, m_Or(m_Value(), m_Value()))) 3925 C = ConstantInt::getAllOnesValue(Ty); 3926 else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value()))) 3927 C = ConstantInt::getTrue(Ty); 3928 3929 if (!BestValue) 3930 BestValue = C; 3931 else if (BestValue != C) 3932 BestValue = NullValue; 3933 } 3934 assert(BestValue && "Must have at least one use"); 3935 return BestValue; 3936 }; 3937 3938 if (match(Op0, m_Undef())) 3939 return replaceInstUsesWith(I, getUndefReplacement(I.getType())); 3940 3941 Constant *C; 3942 if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) { 3943 Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType()); 3944 return replaceInstUsesWith(I, Constant::replaceUndefsWith(C, ReplaceC)); 3945 } 3946 3947 // Replace uses of Op with freeze(Op). 3948 if (freezeOtherUses(I)) 3949 return &I; 3950 3951 return nullptr; 3952 } 3953 3954 /// Check for case where the call writes to an otherwise dead alloca. This 3955 /// shows up for unused out-params in idiomatic C/C++ code. Note that this 3956 /// helper *only* analyzes the write; doesn't check any other legality aspect. 3957 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) { 3958 auto *CB = dyn_cast<CallBase>(I); 3959 if (!CB) 3960 // TODO: handle e.g. store to alloca here - only worth doing if we extend 3961 // to allow reload along used path as described below. Otherwise, this 3962 // is simply a store to a dead allocation which will be removed. 3963 return false; 3964 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI); 3965 if (!Dest) 3966 return false; 3967 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr)); 3968 if (!AI) 3969 // TODO: allow malloc? 3970 return false; 3971 // TODO: allow memory access dominated by move point? Note that since AI 3972 // could have a reference to itself captured by the call, we would need to 3973 // account for cycles in doing so. 3974 SmallVector<const User *> AllocaUsers; 3975 SmallPtrSet<const User *, 4> Visited; 3976 auto pushUsers = [&](const Instruction &I) { 3977 for (const User *U : I.users()) { 3978 if (Visited.insert(U).second) 3979 AllocaUsers.push_back(U); 3980 } 3981 }; 3982 pushUsers(*AI); 3983 while (!AllocaUsers.empty()) { 3984 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val()); 3985 if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) || 3986 isa<AddrSpaceCastInst>(UserI)) { 3987 pushUsers(*UserI); 3988 continue; 3989 } 3990 if (UserI == CB) 3991 continue; 3992 // TODO: support lifetime.start/end here 3993 return false; 3994 } 3995 return true; 3996 } 3997 3998 /// Try to move the specified instruction from its current block into the 3999 /// beginning of DestBlock, which can only happen if it's safe to move the 4000 /// instruction past all of the instructions between it and the end of its 4001 /// block. 4002 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock, 4003 TargetLibraryInfo &TLI) { 4004 BasicBlock *SrcBlock = I->getParent(); 4005 4006 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 4007 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || 4008 I->isTerminator()) 4009 return false; 4010 4011 // Do not sink static or dynamic alloca instructions. Static allocas must 4012 // remain in the entry block, and dynamic allocas must not be sunk in between 4013 // a stacksave / stackrestore pair, which would incorrectly shorten its 4014 // lifetime. 4015 if (isa<AllocaInst>(I)) 4016 return false; 4017 4018 // Do not sink into catchswitch blocks. 4019 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 4020 return false; 4021 4022 // Do not sink convergent call instructions. 4023 if (auto *CI = dyn_cast<CallInst>(I)) { 4024 if (CI->isConvergent()) 4025 return false; 4026 } 4027 4028 // Unless we can prove that the memory write isn't visibile except on the 4029 // path we're sinking to, we must bail. 4030 if (I->mayWriteToMemory()) { 4031 if (!SoleWriteToDeadLocal(I, TLI)) 4032 return false; 4033 } 4034 4035 // We can only sink load instructions if there is nothing between the load and 4036 // the end of block that could change the value. 4037 if (I->mayReadFromMemory()) { 4038 // We don't want to do any sophisticated alias analysis, so we only check 4039 // the instructions after I in I's parent block if we try to sink to its 4040 // successor block. 4041 if (DestBlock->getUniquePredecessor() != I->getParent()) 4042 return false; 4043 for (BasicBlock::iterator Scan = std::next(I->getIterator()), 4044 E = I->getParent()->end(); 4045 Scan != E; ++Scan) 4046 if (Scan->mayWriteToMemory()) 4047 return false; 4048 } 4049 4050 I->dropDroppableUses([DestBlock](const Use *U) { 4051 if (auto *I = dyn_cast<Instruction>(U->getUser())) 4052 return I->getParent() != DestBlock; 4053 return true; 4054 }); 4055 /// FIXME: We could remove droppable uses that are not dominated by 4056 /// the new position. 4057 4058 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 4059 I->moveBefore(&*InsertPos); 4060 ++NumSunkInst; 4061 4062 // Also sink all related debug uses from the source basic block. Otherwise we 4063 // get debug use before the def. Attempt to salvage debug uses first, to 4064 // maximise the range variables have location for. If we cannot salvage, then 4065 // mark the location undef: we know it was supposed to receive a new location 4066 // here, but that computation has been sunk. 4067 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 4068 findDbgUsers(DbgUsers, I); 4069 // Process the sinking DbgUsers in reverse order, as we only want to clone the 4070 // last appearing debug intrinsic for each given variable. 4071 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 4072 for (DbgVariableIntrinsic *DVI : DbgUsers) 4073 if (DVI->getParent() == SrcBlock) 4074 DbgUsersToSink.push_back(DVI); 4075 llvm::sort(DbgUsersToSink, 4076 [](auto *A, auto *B) { return B->comesBefore(A); }); 4077 4078 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 4079 SmallSet<DebugVariable, 4> SunkVariables; 4080 for (auto User : DbgUsersToSink) { 4081 // A dbg.declare instruction should not be cloned, since there can only be 4082 // one per variable fragment. It should be left in the original place 4083 // because the sunk instruction is not an alloca (otherwise we could not be 4084 // here). 4085 if (isa<DbgDeclareInst>(User)) 4086 continue; 4087 4088 DebugVariable DbgUserVariable = 4089 DebugVariable(User->getVariable(), User->getExpression(), 4090 User->getDebugLoc()->getInlinedAt()); 4091 4092 if (!SunkVariables.insert(DbgUserVariable).second) 4093 continue; 4094 4095 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 4096 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 4097 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 4098 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 4099 } 4100 4101 // Perform salvaging without the clones, then sink the clones. 4102 if (!DIIClones.empty()) { 4103 salvageDebugInfoForDbgValues(*I, DbgUsers); 4104 // The clones are in reverse order of original appearance, reverse again to 4105 // maintain the original order. 4106 for (auto &DIIClone : llvm::reverse(DIIClones)) { 4107 DIIClone->insertBefore(&*InsertPos); 4108 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 4109 } 4110 } 4111 4112 return true; 4113 } 4114 4115 bool InstCombinerImpl::run() { 4116 while (!Worklist.isEmpty()) { 4117 // Walk deferred instructions in reverse order, and push them to the 4118 // worklist, which means they'll end up popped from the worklist in-order. 4119 while (Instruction *I = Worklist.popDeferred()) { 4120 // Check to see if we can DCE the instruction. We do this already here to 4121 // reduce the number of uses and thus allow other folds to trigger. 4122 // Note that eraseInstFromFunction() may push additional instructions on 4123 // the deferred worklist, so this will DCE whole instruction chains. 4124 if (isInstructionTriviallyDead(I, &TLI)) { 4125 eraseInstFromFunction(*I); 4126 ++NumDeadInst; 4127 continue; 4128 } 4129 4130 Worklist.push(I); 4131 } 4132 4133 Instruction *I = Worklist.removeOne(); 4134 if (I == nullptr) continue; // skip null values. 4135 4136 // Check to see if we can DCE the instruction. 4137 if (isInstructionTriviallyDead(I, &TLI)) { 4138 eraseInstFromFunction(*I); 4139 ++NumDeadInst; 4140 continue; 4141 } 4142 4143 if (!DebugCounter::shouldExecute(VisitCounter)) 4144 continue; 4145 4146 // Instruction isn't dead, see if we can constant propagate it. 4147 if (!I->use_empty() && 4148 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 4149 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 4150 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 4151 << '\n'); 4152 4153 // Add operands to the worklist. 4154 replaceInstUsesWith(*I, C); 4155 ++NumConstProp; 4156 if (isInstructionTriviallyDead(I, &TLI)) 4157 eraseInstFromFunction(*I); 4158 MadeIRChange = true; 4159 continue; 4160 } 4161 } 4162 4163 // See if we can trivially sink this instruction to its user if we can 4164 // prove that the successor is not executed more frequently than our block. 4165 // Return the UserBlock if successful. 4166 auto getOptionalSinkBlockForInst = 4167 [this](Instruction *I) -> Optional<BasicBlock *> { 4168 if (!EnableCodeSinking) 4169 return None; 4170 4171 BasicBlock *BB = I->getParent(); 4172 BasicBlock *UserParent = nullptr; 4173 unsigned NumUsers = 0; 4174 4175 for (auto *U : I->users()) { 4176 if (U->isDroppable()) 4177 continue; 4178 if (NumUsers > MaxSinkNumUsers) 4179 return None; 4180 4181 Instruction *UserInst = cast<Instruction>(U); 4182 // Special handling for Phi nodes - get the block the use occurs in. 4183 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) { 4184 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 4185 if (PN->getIncomingValue(i) == I) { 4186 // Bail out if we have uses in different blocks. We don't do any 4187 // sophisticated analysis (i.e finding NearestCommonDominator of 4188 // these use blocks). 4189 if (UserParent && UserParent != PN->getIncomingBlock(i)) 4190 return None; 4191 UserParent = PN->getIncomingBlock(i); 4192 } 4193 } 4194 assert(UserParent && "expected to find user block!"); 4195 } else { 4196 if (UserParent && UserParent != UserInst->getParent()) 4197 return None; 4198 UserParent = UserInst->getParent(); 4199 } 4200 4201 // Make sure these checks are done only once, naturally we do the checks 4202 // the first time we get the userparent, this will save compile time. 4203 if (NumUsers == 0) { 4204 // Try sinking to another block. If that block is unreachable, then do 4205 // not bother. SimplifyCFG should handle it. 4206 if (UserParent == BB || !DT.isReachableFromEntry(UserParent)) 4207 return None; 4208 4209 auto *Term = UserParent->getTerminator(); 4210 // See if the user is one of our successors that has only one 4211 // predecessor, so that we don't have to split the critical edge. 4212 // Another option where we can sink is a block that ends with a 4213 // terminator that does not pass control to other block (such as 4214 // return or unreachable or resume). In this case: 4215 // - I dominates the User (by SSA form); 4216 // - the User will be executed at most once. 4217 // So sinking I down to User is always profitable or neutral. 4218 if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term)) 4219 return None; 4220 4221 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?"); 4222 } 4223 4224 NumUsers++; 4225 } 4226 4227 // No user or only has droppable users. 4228 if (!UserParent) 4229 return None; 4230 4231 return UserParent; 4232 }; 4233 4234 auto OptBB = getOptionalSinkBlockForInst(I); 4235 if (OptBB) { 4236 auto *UserParent = *OptBB; 4237 // Okay, the CFG is simple enough, try to sink this instruction. 4238 if (TryToSinkInstruction(I, UserParent, TLI)) { 4239 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 4240 MadeIRChange = true; 4241 // We'll add uses of the sunk instruction below, but since 4242 // sinking can expose opportunities for it's *operands* add 4243 // them to the worklist 4244 for (Use &U : I->operands()) 4245 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 4246 Worklist.push(OpI); 4247 } 4248 } 4249 4250 // Now that we have an instruction, try combining it to simplify it. 4251 Builder.SetInsertPoint(I); 4252 Builder.CollectMetadataToCopy( 4253 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4254 4255 #ifndef NDEBUG 4256 std::string OrigI; 4257 #endif 4258 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 4259 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 4260 4261 if (Instruction *Result = visit(*I)) { 4262 ++NumCombined; 4263 // Should we replace the old instruction with a new one? 4264 if (Result != I) { 4265 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 4266 << " New = " << *Result << '\n'); 4267 4268 Result->copyMetadata(*I, 4269 {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4270 // Everything uses the new instruction now. 4271 I->replaceAllUsesWith(Result); 4272 4273 // Move the name to the new instruction first. 4274 Result->takeName(I); 4275 4276 // Insert the new instruction into the basic block... 4277 BasicBlock *InstParent = I->getParent(); 4278 BasicBlock::iterator InsertPos = I->getIterator(); 4279 4280 // Are we replace a PHI with something that isn't a PHI, or vice versa? 4281 if (isa<PHINode>(Result) != isa<PHINode>(I)) { 4282 // We need to fix up the insertion point. 4283 if (isa<PHINode>(I)) // PHI -> Non-PHI 4284 InsertPos = InstParent->getFirstInsertionPt(); 4285 else // Non-PHI -> PHI 4286 InsertPos = InstParent->getFirstNonPHI()->getIterator(); 4287 } 4288 4289 InstParent->getInstList().insert(InsertPos, Result); 4290 4291 // Push the new instruction and any users onto the worklist. 4292 Worklist.pushUsersToWorkList(*Result); 4293 Worklist.push(Result); 4294 4295 eraseInstFromFunction(*I); 4296 } else { 4297 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 4298 << " New = " << *I << '\n'); 4299 4300 // If the instruction was modified, it's possible that it is now dead. 4301 // if so, remove it. 4302 if (isInstructionTriviallyDead(I, &TLI)) { 4303 eraseInstFromFunction(*I); 4304 } else { 4305 Worklist.pushUsersToWorkList(*I); 4306 Worklist.push(I); 4307 } 4308 } 4309 MadeIRChange = true; 4310 } 4311 } 4312 4313 Worklist.zap(); 4314 return MadeIRChange; 4315 } 4316 4317 // Track the scopes used by !alias.scope and !noalias. In a function, a 4318 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 4319 // by both sets. If not, the declaration of the scope can be safely omitted. 4320 // The MDNode of the scope can be omitted as well for the instructions that are 4321 // part of this function. We do not do that at this point, as this might become 4322 // too time consuming to do. 4323 class AliasScopeTracker { 4324 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 4325 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 4326 4327 public: 4328 void analyse(Instruction *I) { 4329 // This seems to be faster than checking 'mayReadOrWriteMemory()'. 4330 if (!I->hasMetadataOtherThanDebugLoc()) 4331 return; 4332 4333 auto Track = [](Metadata *ScopeList, auto &Container) { 4334 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 4335 if (!MDScopeList || !Container.insert(MDScopeList).second) 4336 return; 4337 for (auto &MDOperand : MDScopeList->operands()) 4338 if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 4339 Container.insert(MDScope); 4340 }; 4341 4342 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 4343 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 4344 } 4345 4346 bool isNoAliasScopeDeclDead(Instruction *Inst) { 4347 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 4348 if (!Decl) 4349 return false; 4350 4351 assert(Decl->use_empty() && 4352 "llvm.experimental.noalias.scope.decl in use ?"); 4353 const MDNode *MDSL = Decl->getScopeList(); 4354 assert(MDSL->getNumOperands() == 1 && 4355 "llvm.experimental.noalias.scope should refer to a single scope"); 4356 auto &MDOperand = MDSL->getOperand(0); 4357 if (auto *MD = dyn_cast<MDNode>(MDOperand)) 4358 return !UsedAliasScopesAndLists.contains(MD) || 4359 !UsedNoAliasScopesAndLists.contains(MD); 4360 4361 // Not an MDNode ? throw away. 4362 return true; 4363 } 4364 }; 4365 4366 /// Populate the IC worklist from a function, by walking it in depth-first 4367 /// order and adding all reachable code to the worklist. 4368 /// 4369 /// This has a couple of tricks to make the code faster and more powerful. In 4370 /// particular, we constant fold and DCE instructions as we go, to avoid adding 4371 /// them to the worklist (this significantly speeds up instcombine on code where 4372 /// many instructions are dead or constant). Additionally, if we find a branch 4373 /// whose condition is a known constant, we only visit the reachable successors. 4374 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 4375 const TargetLibraryInfo *TLI, 4376 InstructionWorklist &ICWorklist) { 4377 bool MadeIRChange = false; 4378 SmallPtrSet<BasicBlock *, 32> Visited; 4379 SmallVector<BasicBlock*, 256> Worklist; 4380 Worklist.push_back(&F.front()); 4381 4382 SmallVector<Instruction *, 128> InstrsForInstructionWorklist; 4383 DenseMap<Constant *, Constant *> FoldedConstants; 4384 AliasScopeTracker SeenAliasScopes; 4385 4386 do { 4387 BasicBlock *BB = Worklist.pop_back_val(); 4388 4389 // We have now visited this block! If we've already been here, ignore it. 4390 if (!Visited.insert(BB).second) 4391 continue; 4392 4393 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 4394 // ConstantProp instruction if trivially constant. 4395 if (!Inst.use_empty() && 4396 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0)))) 4397 if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) { 4398 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst 4399 << '\n'); 4400 Inst.replaceAllUsesWith(C); 4401 ++NumConstProp; 4402 if (isInstructionTriviallyDead(&Inst, TLI)) 4403 Inst.eraseFromParent(); 4404 MadeIRChange = true; 4405 continue; 4406 } 4407 4408 // See if we can constant fold its operands. 4409 for (Use &U : Inst.operands()) { 4410 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 4411 continue; 4412 4413 auto *C = cast<Constant>(U); 4414 Constant *&FoldRes = FoldedConstants[C]; 4415 if (!FoldRes) 4416 FoldRes = ConstantFoldConstant(C, DL, TLI); 4417 4418 if (FoldRes != C) { 4419 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst 4420 << "\n Old = " << *C 4421 << "\n New = " << *FoldRes << '\n'); 4422 U = FoldRes; 4423 MadeIRChange = true; 4424 } 4425 } 4426 4427 // Skip processing debug and pseudo intrinsics in InstCombine. Processing 4428 // these call instructions consumes non-trivial amount of time and 4429 // provides no value for the optimization. 4430 if (!Inst.isDebugOrPseudoInst()) { 4431 InstrsForInstructionWorklist.push_back(&Inst); 4432 SeenAliasScopes.analyse(&Inst); 4433 } 4434 } 4435 4436 // Recursively visit successors. If this is a branch or switch on a 4437 // constant, only visit the reachable successor. 4438 Instruction *TI = BB->getTerminator(); 4439 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 4440 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 4441 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 4442 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 4443 Worklist.push_back(ReachableBB); 4444 continue; 4445 } 4446 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 4447 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 4448 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 4449 continue; 4450 } 4451 } 4452 4453 append_range(Worklist, successors(TI)); 4454 } while (!Worklist.empty()); 4455 4456 // Remove instructions inside unreachable blocks. This prevents the 4457 // instcombine code from having to deal with some bad special cases, and 4458 // reduces use counts of instructions. 4459 for (BasicBlock &BB : F) { 4460 if (Visited.count(&BB)) 4461 continue; 4462 4463 unsigned NumDeadInstInBB; 4464 unsigned NumDeadDbgInstInBB; 4465 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 4466 removeAllNonTerminatorAndEHPadInstructions(&BB); 4467 4468 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 4469 NumDeadInst += NumDeadInstInBB; 4470 } 4471 4472 // Once we've found all of the instructions to add to instcombine's worklist, 4473 // add them in reverse order. This way instcombine will visit from the top 4474 // of the function down. This jives well with the way that it adds all uses 4475 // of instructions to the worklist after doing a transformation, thus avoiding 4476 // some N^2 behavior in pathological cases. 4477 ICWorklist.reserve(InstrsForInstructionWorklist.size()); 4478 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) { 4479 // DCE instruction if trivially dead. As we iterate in reverse program 4480 // order here, we will clean up whole chains of dead instructions. 4481 if (isInstructionTriviallyDead(Inst, TLI) || 4482 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 4483 ++NumDeadInst; 4484 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 4485 salvageDebugInfo(*Inst); 4486 Inst->eraseFromParent(); 4487 MadeIRChange = true; 4488 continue; 4489 } 4490 4491 ICWorklist.push(Inst); 4492 } 4493 4494 return MadeIRChange; 4495 } 4496 4497 static bool combineInstructionsOverFunction( 4498 Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, 4499 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 4500 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 4501 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) { 4502 auto &DL = F.getParent()->getDataLayout(); 4503 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 4504 4505 /// Builder - This is an IRBuilder that automatically inserts new 4506 /// instructions into the worklist when they are created. 4507 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 4508 F.getContext(), TargetFolder(DL), 4509 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 4510 Worklist.add(I); 4511 if (auto *Assume = dyn_cast<AssumeInst>(I)) 4512 AC.registerAssumption(Assume); 4513 })); 4514 4515 // Lower dbg.declare intrinsics otherwise their value may be clobbered 4516 // by instcombiner. 4517 bool MadeIRChange = false; 4518 if (ShouldLowerDbgDeclare) 4519 MadeIRChange = LowerDbgDeclare(F); 4520 4521 // Iterate while there is work to do. 4522 unsigned Iteration = 0; 4523 while (true) { 4524 ++NumWorklistIterations; 4525 ++Iteration; 4526 4527 if (Iteration > InfiniteLoopDetectionThreshold) { 4528 report_fatal_error( 4529 "Instruction Combining seems stuck in an infinite loop after " + 4530 Twine(InfiniteLoopDetectionThreshold) + " iterations."); 4531 } 4532 4533 if (Iteration > MaxIterations) { 4534 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 4535 << " on " << F.getName() 4536 << " reached; stopping before reaching a fixpoint\n"); 4537 break; 4538 } 4539 4540 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 4541 << F.getName() << "\n"); 4542 4543 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 4544 4545 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 4546 ORE, BFI, PSI, DL, LI); 4547 IC.MaxArraySizeForCombine = MaxArraySize; 4548 4549 if (!IC.run()) 4550 break; 4551 4552 MadeIRChange = true; 4553 } 4554 4555 return MadeIRChange; 4556 } 4557 4558 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {} 4559 4560 InstCombinePass::InstCombinePass(unsigned MaxIterations) 4561 : MaxIterations(MaxIterations) {} 4562 4563 PreservedAnalyses InstCombinePass::run(Function &F, 4564 FunctionAnalysisManager &AM) { 4565 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4566 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4567 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4568 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4569 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 4570 4571 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 4572 4573 auto *AA = &AM.getResult<AAManager>(F); 4574 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 4575 ProfileSummaryInfo *PSI = 4576 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 4577 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 4578 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 4579 4580 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4581 BFI, PSI, MaxIterations, LI)) 4582 // No changes, all analyses are preserved. 4583 return PreservedAnalyses::all(); 4584 4585 // Mark all the analyses that instcombine updates as preserved. 4586 PreservedAnalyses PA; 4587 PA.preserveSet<CFGAnalyses>(); 4588 return PA; 4589 } 4590 4591 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 4592 AU.setPreservesCFG(); 4593 AU.addRequired<AAResultsWrapperPass>(); 4594 AU.addRequired<AssumptionCacheTracker>(); 4595 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4596 AU.addRequired<TargetTransformInfoWrapperPass>(); 4597 AU.addRequired<DominatorTreeWrapperPass>(); 4598 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4599 AU.addPreserved<DominatorTreeWrapperPass>(); 4600 AU.addPreserved<AAResultsWrapperPass>(); 4601 AU.addPreserved<BasicAAWrapperPass>(); 4602 AU.addPreserved<GlobalsAAWrapperPass>(); 4603 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 4604 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 4605 } 4606 4607 bool InstructionCombiningPass::runOnFunction(Function &F) { 4608 if (skipFunction(F)) 4609 return false; 4610 4611 // Required analyses. 4612 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4613 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4614 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 4615 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4616 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4617 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4618 4619 // Optional analyses. 4620 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 4621 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 4622 ProfileSummaryInfo *PSI = 4623 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 4624 BlockFrequencyInfo *BFI = 4625 (PSI && PSI->hasProfileSummary()) ? 4626 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 4627 nullptr; 4628 4629 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4630 BFI, PSI, MaxIterations, LI); 4631 } 4632 4633 char InstructionCombiningPass::ID = 0; 4634 4635 InstructionCombiningPass::InstructionCombiningPass() 4636 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) { 4637 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4638 } 4639 4640 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations) 4641 : FunctionPass(ID), MaxIterations(MaxIterations) { 4642 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4643 } 4644 4645 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 4646 "Combine redundant instructions", false, false) 4647 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4648 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4649 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4650 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4651 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4652 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4653 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 4654 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 4655 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 4656 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 4657 "Combine redundant instructions", false, false) 4658 4659 // Initialization Routines 4660 void llvm::initializeInstCombine(PassRegistry &Registry) { 4661 initializeInstructionCombiningPassPass(Registry); 4662 } 4663 4664 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 4665 initializeInstructionCombiningPassPass(*unwrap(R)); 4666 } 4667 4668 FunctionPass *llvm::createInstructionCombiningPass() { 4669 return new InstructionCombiningPass(); 4670 } 4671 4672 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) { 4673 return new InstructionCombiningPass(MaxIterations); 4674 } 4675 4676 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 4677 unwrap(PM)->add(createInstructionCombiningPass()); 4678 } 4679