1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // InstructionCombining - Combine instructions to form fewer, simple 11 // instructions. This pass does not modify the CFG. This pass is where 12 // algebraic simplification happens. 13 // 14 // This pass combines things like: 15 // %Y = add i32 %X, 1 16 // %Z = add i32 %Y, 1 17 // into: 18 // %Z = add i32 %X, 2 19 // 20 // This is a simple worklist driven algorithm. 21 // 22 // This pass guarantees that the following canonicalizations are performed on 23 // the program: 24 // 1. If a binary operator has a constant operand, it is moved to the RHS 25 // 2. Bitwise operators with constant operands are always grouped so that 26 // shifts are performed first, then or's, then and's, then xor's. 27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 28 // 4. All cmp instructions on boolean values are replaced with logical ops 29 // 5. add X, X is represented as (X*2) => (X << 1) 30 // 6. Multiplies with a power-of-two constant argument are transformed into 31 // shifts. 32 // ... etc. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "InstCombineInternal.h" 37 #include "llvm-c/Initialization.h" 38 #include "llvm-c/Transforms/InstCombine.h" 39 #include "llvm/ADT/APInt.h" 40 #include "llvm/ADT/ArrayRef.h" 41 #include "llvm/ADT/DenseMap.h" 42 #include "llvm/ADT/None.h" 43 #include "llvm/ADT/SmallPtrSet.h" 44 #include "llvm/ADT/SmallVector.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/ADT/TinyPtrVector.h" 47 #include "llvm/Analysis/AliasAnalysis.h" 48 #include "llvm/Analysis/AssumptionCache.h" 49 #include "llvm/Analysis/BasicAliasAnalysis.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LoopInfo.h" 56 #include "llvm/Analysis/MemoryBuiltins.h" 57 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 58 #include "llvm/Analysis/TargetFolder.h" 59 #include "llvm/Analysis/TargetLibraryInfo.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include "llvm/Analysis/ValueTracking.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/CFG.h" 64 #include "llvm/IR/Constant.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DIBuilder.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Dominators.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GetElementPtrTypeIterator.h" 72 #include "llvm/IR/IRBuilder.h" 73 #include "llvm/IR/InstrTypes.h" 74 #include "llvm/IR/Instruction.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Intrinsics.h" 78 #include "llvm/IR/LegacyPassManager.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Operator.h" 81 #include "llvm/IR/PassManager.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Use.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/IR/ValueHandle.h" 88 #include "llvm/Pass.h" 89 #include "llvm/Support/CBindingWrapping.h" 90 #include "llvm/Support/Casting.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Compiler.h" 93 #include "llvm/Support/Debug.h" 94 #include "llvm/Support/DebugCounter.h" 95 #include "llvm/Support/ErrorHandling.h" 96 #include "llvm/Support/KnownBits.h" 97 #include "llvm/Support/raw_ostream.h" 98 #include "llvm/Transforms/InstCombine/InstCombine.h" 99 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 100 #include <algorithm> 101 #include <cassert> 102 #include <cstdint> 103 #include <memory> 104 #include <string> 105 #include <utility> 106 107 using namespace llvm; 108 using namespace llvm::PatternMatch; 109 110 #define DEBUG_TYPE "instcombine" 111 112 STATISTIC(NumCombined , "Number of insts combined"); 113 STATISTIC(NumConstProp, "Number of constant folds"); 114 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 115 STATISTIC(NumSunkInst , "Number of instructions sunk"); 116 STATISTIC(NumExpand, "Number of expansions"); 117 STATISTIC(NumFactor , "Number of factorizations"); 118 STATISTIC(NumReassoc , "Number of reassociations"); 119 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 120 "Controls which instructions are visited"); 121 122 static cl::opt<bool> 123 EnableExpensiveCombines("expensive-combines", 124 cl::desc("Enable expensive instruction combines")); 125 126 static cl::opt<unsigned> 127 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 128 cl::desc("Maximum array size considered when doing a combine")); 129 130 // FIXME: Remove this flag when it is no longer necessary to convert 131 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 132 // increases variable availability at the cost of accuracy. Variables that 133 // cannot be promoted by mem2reg or SROA will be described as living in memory 134 // for their entire lifetime. However, passes like DSE and instcombine can 135 // delete stores to the alloca, leading to misleading and inaccurate debug 136 // information. This flag can be removed when those passes are fixed. 137 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 138 cl::Hidden, cl::init(true)); 139 140 Value *InstCombiner::EmitGEPOffset(User *GEP) { 141 return llvm::EmitGEPOffset(&Builder, DL, GEP); 142 } 143 144 /// Return true if it is desirable to convert an integer computation from a 145 /// given bit width to a new bit width. 146 /// We don't want to convert from a legal to an illegal type or from a smaller 147 /// to a larger illegal type. A width of '1' is always treated as a legal type 148 /// because i1 is a fundamental type in IR, and there are many specialized 149 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as 150 /// legal to convert to, in order to open up more combining opportunities. 151 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common 152 /// from frontend languages. 153 bool InstCombiner::shouldChangeType(unsigned FromWidth, 154 unsigned ToWidth) const { 155 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 156 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 157 158 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only 159 // shrink types, to prevent infinite loops. 160 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32)) 161 return true; 162 163 // If this is a legal integer from type, and the result would be an illegal 164 // type, don't do the transformation. 165 if (FromLegal && !ToLegal) 166 return false; 167 168 // Otherwise, if both are illegal, do not increase the size of the result. We 169 // do allow things like i160 -> i64, but not i64 -> i160. 170 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 171 return false; 172 173 return true; 174 } 175 176 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 177 /// We don't want to convert from a legal to an illegal type or from a smaller 178 /// to a larger illegal type. i1 is always treated as a legal type because it is 179 /// a fundamental type in IR, and there are many specialized optimizations for 180 /// i1 types. 181 bool InstCombiner::shouldChangeType(Type *From, Type *To) const { 182 assert(From->isIntegerTy() && To->isIntegerTy()); 183 184 unsigned FromWidth = From->getPrimitiveSizeInBits(); 185 unsigned ToWidth = To->getPrimitiveSizeInBits(); 186 return shouldChangeType(FromWidth, ToWidth); 187 } 188 189 // Return true, if No Signed Wrap should be maintained for I. 190 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 191 // where both B and C should be ConstantInts, results in a constant that does 192 // not overflow. This function only handles the Add and Sub opcodes. For 193 // all other opcodes, the function conservatively returns false. 194 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 195 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 196 if (!OBO || !OBO->hasNoSignedWrap()) 197 return false; 198 199 // We reason about Add and Sub Only. 200 Instruction::BinaryOps Opcode = I.getOpcode(); 201 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 202 return false; 203 204 const APInt *BVal, *CVal; 205 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 206 return false; 207 208 bool Overflow = false; 209 if (Opcode == Instruction::Add) 210 (void)BVal->sadd_ov(*CVal, Overflow); 211 else 212 (void)BVal->ssub_ov(*CVal, Overflow); 213 214 return !Overflow; 215 } 216 217 /// Conservatively clears subclassOptionalData after a reassociation or 218 /// commutation. We preserve fast-math flags when applicable as they can be 219 /// preserved. 220 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 221 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 222 if (!FPMO) { 223 I.clearSubclassOptionalData(); 224 return; 225 } 226 227 FastMathFlags FMF = I.getFastMathFlags(); 228 I.clearSubclassOptionalData(); 229 I.setFastMathFlags(FMF); 230 } 231 232 /// Combine constant operands of associative operations either before or after a 233 /// cast to eliminate one of the associative operations: 234 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 235 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 236 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) { 237 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 238 if (!Cast || !Cast->hasOneUse()) 239 return false; 240 241 // TODO: Enhance logic for other casts and remove this check. 242 auto CastOpcode = Cast->getOpcode(); 243 if (CastOpcode != Instruction::ZExt) 244 return false; 245 246 // TODO: Enhance logic for other BinOps and remove this check. 247 if (!BinOp1->isBitwiseLogicOp()) 248 return false; 249 250 auto AssocOpcode = BinOp1->getOpcode(); 251 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 252 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 253 return false; 254 255 Constant *C1, *C2; 256 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 257 !match(BinOp2->getOperand(1), m_Constant(C2))) 258 return false; 259 260 // TODO: This assumes a zext cast. 261 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 262 // to the destination type might lose bits. 263 264 // Fold the constants together in the destination type: 265 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 266 Type *DestTy = C1->getType(); 267 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 268 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 269 Cast->setOperand(0, BinOp2->getOperand(0)); 270 BinOp1->setOperand(1, FoldedC); 271 return true; 272 } 273 274 /// This performs a few simplifications for operators that are associative or 275 /// commutative: 276 /// 277 /// Commutative operators: 278 /// 279 /// 1. Order operands such that they are listed from right (least complex) to 280 /// left (most complex). This puts constants before unary operators before 281 /// binary operators. 282 /// 283 /// Associative operators: 284 /// 285 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 286 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 287 /// 288 /// Associative and commutative operators: 289 /// 290 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 291 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 292 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 293 /// if C1 and C2 are constants. 294 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 295 Instruction::BinaryOps Opcode = I.getOpcode(); 296 bool Changed = false; 297 298 do { 299 // Order operands such that they are listed from right (least complex) to 300 // left (most complex). This puts constants before unary operators before 301 // binary operators. 302 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 303 getComplexity(I.getOperand(1))) 304 Changed = !I.swapOperands(); 305 306 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 307 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 308 309 if (I.isAssociative()) { 310 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 311 if (Op0 && Op0->getOpcode() == Opcode) { 312 Value *A = Op0->getOperand(0); 313 Value *B = Op0->getOperand(1); 314 Value *C = I.getOperand(1); 315 316 // Does "B op C" simplify? 317 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 318 // It simplifies to V. Form "A op V". 319 I.setOperand(0, A); 320 I.setOperand(1, V); 321 // Conservatively clear the optional flags, since they may not be 322 // preserved by the reassociation. 323 if (MaintainNoSignedWrap(I, B, C) && 324 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { 325 // Note: this is only valid because SimplifyBinOp doesn't look at 326 // the operands to Op0. 327 I.clearSubclassOptionalData(); 328 I.setHasNoSignedWrap(true); 329 } else { 330 ClearSubclassDataAfterReassociation(I); 331 } 332 333 Changed = true; 334 ++NumReassoc; 335 continue; 336 } 337 } 338 339 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 340 if (Op1 && Op1->getOpcode() == Opcode) { 341 Value *A = I.getOperand(0); 342 Value *B = Op1->getOperand(0); 343 Value *C = Op1->getOperand(1); 344 345 // Does "A op B" simplify? 346 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 347 // It simplifies to V. Form "V op C". 348 I.setOperand(0, V); 349 I.setOperand(1, C); 350 // Conservatively clear the optional flags, since they may not be 351 // preserved by the reassociation. 352 ClearSubclassDataAfterReassociation(I); 353 Changed = true; 354 ++NumReassoc; 355 continue; 356 } 357 } 358 } 359 360 if (I.isAssociative() && I.isCommutative()) { 361 if (simplifyAssocCastAssoc(&I)) { 362 Changed = true; 363 ++NumReassoc; 364 continue; 365 } 366 367 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 368 if (Op0 && Op0->getOpcode() == Opcode) { 369 Value *A = Op0->getOperand(0); 370 Value *B = Op0->getOperand(1); 371 Value *C = I.getOperand(1); 372 373 // Does "C op A" simplify? 374 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 375 // It simplifies to V. Form "V op B". 376 I.setOperand(0, V); 377 I.setOperand(1, B); 378 // Conservatively clear the optional flags, since they may not be 379 // preserved by the reassociation. 380 ClearSubclassDataAfterReassociation(I); 381 Changed = true; 382 ++NumReassoc; 383 continue; 384 } 385 } 386 387 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 388 if (Op1 && Op1->getOpcode() == Opcode) { 389 Value *A = I.getOperand(0); 390 Value *B = Op1->getOperand(0); 391 Value *C = Op1->getOperand(1); 392 393 // Does "C op A" simplify? 394 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 395 // It simplifies to V. Form "B op V". 396 I.setOperand(0, B); 397 I.setOperand(1, V); 398 // Conservatively clear the optional flags, since they may not be 399 // preserved by the reassociation. 400 ClearSubclassDataAfterReassociation(I); 401 Changed = true; 402 ++NumReassoc; 403 continue; 404 } 405 } 406 407 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 408 // if C1 and C2 are constants. 409 Value *A, *B; 410 Constant *C1, *C2; 411 if (Op0 && Op1 && 412 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 413 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 414 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 415 BinaryOperator *NewBO = BinaryOperator::Create(Opcode, A, B); 416 if (isa<FPMathOperator>(NewBO)) { 417 FastMathFlags Flags = I.getFastMathFlags(); 418 Flags &= Op0->getFastMathFlags(); 419 Flags &= Op1->getFastMathFlags(); 420 NewBO->setFastMathFlags(Flags); 421 } 422 InsertNewInstWith(NewBO, I); 423 NewBO->takeName(Op1); 424 I.setOperand(0, NewBO); 425 I.setOperand(1, ConstantExpr::get(Opcode, C1, C2)); 426 // Conservatively clear the optional flags, since they may not be 427 // preserved by the reassociation. 428 ClearSubclassDataAfterReassociation(I); 429 430 Changed = true; 431 continue; 432 } 433 } 434 435 // No further simplifications. 436 return Changed; 437 } while (true); 438 } 439 440 /// Return whether "X LOp (Y ROp Z)" is always equal to 441 /// "(X LOp Y) ROp (X LOp Z)". 442 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 443 Instruction::BinaryOps ROp) { 444 // X & (Y | Z) <--> (X & Y) | (X & Z) 445 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 446 if (LOp == Instruction::And) 447 return ROp == Instruction::Or || ROp == Instruction::Xor; 448 449 // X | (Y & Z) <--> (X | Y) & (X | Z) 450 if (LOp == Instruction::Or) 451 return ROp == Instruction::And; 452 453 // X * (Y + Z) <--> (X * Y) + (X * Z) 454 // X * (Y - Z) <--> (X * Y) - (X * Z) 455 if (LOp == Instruction::Mul) 456 return ROp == Instruction::Add || ROp == Instruction::Sub; 457 458 return false; 459 } 460 461 /// Return whether "(X LOp Y) ROp Z" is always equal to 462 /// "(X ROp Z) LOp (Y ROp Z)". 463 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 464 Instruction::BinaryOps ROp) { 465 if (Instruction::isCommutative(ROp)) 466 return leftDistributesOverRight(ROp, LOp); 467 468 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 469 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 470 471 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 472 // but this requires knowing that the addition does not overflow and other 473 // such subtleties. 474 } 475 476 /// This function returns identity value for given opcode, which can be used to 477 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 478 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 479 if (isa<Constant>(V)) 480 return nullptr; 481 482 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 483 } 484 485 /// This function predicates factorization using distributive laws. By default, 486 /// it just returns the 'Op' inputs. But for special-cases like 487 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 488 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 489 /// allow more factorization opportunities. 490 static Instruction::BinaryOps 491 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 492 Value *&LHS, Value *&RHS) { 493 assert(Op && "Expected a binary operator"); 494 LHS = Op->getOperand(0); 495 RHS = Op->getOperand(1); 496 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 497 Constant *C; 498 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 499 // X << C --> X * (1 << C) 500 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 501 return Instruction::Mul; 502 } 503 // TODO: We can add other conversions e.g. shr => div etc. 504 } 505 return Op->getOpcode(); 506 } 507 508 /// This tries to simplify binary operations by factorizing out common terms 509 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 510 Value *InstCombiner::tryFactorization(BinaryOperator &I, 511 Instruction::BinaryOps InnerOpcode, 512 Value *A, Value *B, Value *C, Value *D) { 513 assert(A && B && C && D && "All values must be provided"); 514 515 Value *V = nullptr; 516 Value *SimplifiedInst = nullptr; 517 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 518 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 519 520 // Does "X op' Y" always equal "Y op' X"? 521 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 522 523 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 524 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 525 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 526 // commutative case, "(A op' B) op (C op' A)"? 527 if (A == C || (InnerCommutative && A == D)) { 528 if (A != C) 529 std::swap(C, D); 530 // Consider forming "A op' (B op D)". 531 // If "B op D" simplifies then it can be formed with no cost. 532 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 533 // If "B op D" doesn't simplify then only go on if both of the existing 534 // operations "A op' B" and "C op' D" will be zapped as no longer used. 535 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 536 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 537 if (V) { 538 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 539 } 540 } 541 542 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 543 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 544 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 545 // commutative case, "(A op' B) op (B op' D)"? 546 if (B == D || (InnerCommutative && B == C)) { 547 if (B != D) 548 std::swap(C, D); 549 // Consider forming "(A op C) op' B". 550 // If "A op C" simplifies then it can be formed with no cost. 551 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 552 553 // If "A op C" doesn't simplify then only go on if both of the existing 554 // operations "A op' B" and "C op' D" will be zapped as no longer used. 555 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 556 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 557 if (V) { 558 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 559 } 560 } 561 562 if (SimplifiedInst) { 563 ++NumFactor; 564 SimplifiedInst->takeName(&I); 565 566 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag. 567 // TODO: Check for NUW. 568 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 569 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 570 bool HasNSW = false; 571 if (isa<OverflowingBinaryOperator>(&I)) 572 HasNSW = I.hasNoSignedWrap(); 573 574 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) 575 HasNSW &= LOBO->hasNoSignedWrap(); 576 577 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) 578 HasNSW &= ROBO->hasNoSignedWrap(); 579 580 // We can propagate 'nsw' if we know that 581 // %Y = mul nsw i16 %X, C 582 // %Z = add nsw i16 %Y, %X 583 // => 584 // %Z = mul nsw i16 %X, C+1 585 // 586 // iff C+1 isn't INT_MIN 587 const APInt *CInt; 588 if (TopLevelOpcode == Instruction::Add && 589 InnerOpcode == Instruction::Mul) 590 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) 591 BO->setHasNoSignedWrap(HasNSW); 592 } 593 } 594 } 595 return SimplifiedInst; 596 } 597 598 /// This tries to simplify binary operations which some other binary operation 599 /// distributes over either by factorizing out common terms 600 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 601 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 602 /// Returns the simplified value, or null if it didn't simplify. 603 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 604 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 605 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 606 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 607 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 608 609 { 610 // Factorization. 611 Value *A, *B, *C, *D; 612 Instruction::BinaryOps LHSOpcode, RHSOpcode; 613 if (Op0) 614 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 615 if (Op1) 616 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 617 618 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 619 // a common term. 620 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 621 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 622 return V; 623 624 // The instruction has the form "(A op' B) op (C)". Try to factorize common 625 // term. 626 if (Op0) 627 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 628 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 629 return V; 630 631 // The instruction has the form "(B) op (C op' D)". Try to factorize common 632 // term. 633 if (Op1) 634 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 635 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 636 return V; 637 } 638 639 // Expansion. 640 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 641 // The instruction has the form "(A op' B) op C". See if expanding it out 642 // to "(A op C) op' (B op C)" results in simplifications. 643 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 644 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 645 646 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 647 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I)); 648 649 // Do "A op C" and "B op C" both simplify? 650 if (L && R) { 651 // They do! Return "L op' R". 652 ++NumExpand; 653 C = Builder.CreateBinOp(InnerOpcode, L, R); 654 C->takeName(&I); 655 return C; 656 } 657 658 // Does "A op C" simplify to the identity value for the inner opcode? 659 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 660 // They do! Return "B op C". 661 ++NumExpand; 662 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 663 C->takeName(&I); 664 return C; 665 } 666 667 // Does "B op C" simplify to the identity value for the inner opcode? 668 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 669 // They do! Return "A op C". 670 ++NumExpand; 671 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 672 C->takeName(&I); 673 return C; 674 } 675 } 676 677 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 678 // The instruction has the form "A op (B op' C)". See if expanding it out 679 // to "(A op B) op' (A op C)" results in simplifications. 680 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 681 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 682 683 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I)); 684 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 685 686 // Do "A op B" and "A op C" both simplify? 687 if (L && R) { 688 // They do! Return "L op' R". 689 ++NumExpand; 690 A = Builder.CreateBinOp(InnerOpcode, L, R); 691 A->takeName(&I); 692 return A; 693 } 694 695 // Does "A op B" simplify to the identity value for the inner opcode? 696 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 697 // They do! Return "A op C". 698 ++NumExpand; 699 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 700 A->takeName(&I); 701 return A; 702 } 703 704 // Does "A op C" simplify to the identity value for the inner opcode? 705 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 706 // They do! Return "A op B". 707 ++NumExpand; 708 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 709 A->takeName(&I); 710 return A; 711 } 712 } 713 714 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 715 } 716 717 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 718 Value *LHS, Value *RHS) { 719 Instruction::BinaryOps Opcode = I.getOpcode(); 720 // (op (select (a, b, c)), (select (a, d, e))) -> (select (a, (op b, d), (op 721 // c, e))) 722 Value *A, *B, *C, *D, *E; 723 Value *SI = nullptr; 724 if (match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))) && 725 match(RHS, m_Select(m_Specific(A), m_Value(D), m_Value(E)))) { 726 bool SelectsHaveOneUse = LHS->hasOneUse() && RHS->hasOneUse(); 727 BuilderTy::FastMathFlagGuard Guard(Builder); 728 if (isa<FPMathOperator>(&I)) 729 Builder.setFastMathFlags(I.getFastMathFlags()); 730 731 Value *V1 = SimplifyBinOp(Opcode, C, E, SQ.getWithInstruction(&I)); 732 Value *V2 = SimplifyBinOp(Opcode, B, D, SQ.getWithInstruction(&I)); 733 if (V1 && V2) 734 SI = Builder.CreateSelect(A, V2, V1); 735 else if (V2 && SelectsHaveOneUse) 736 SI = Builder.CreateSelect(A, V2, Builder.CreateBinOp(Opcode, C, E)); 737 else if (V1 && SelectsHaveOneUse) 738 SI = Builder.CreateSelect(A, Builder.CreateBinOp(Opcode, B, D), V1); 739 740 if (SI) 741 SI->takeName(&I); 742 } 743 744 return SI; 745 } 746 747 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 748 /// constant zero (which is the 'negate' form). 749 Value *InstCombiner::dyn_castNegVal(Value *V) const { 750 if (BinaryOperator::isNeg(V)) 751 return BinaryOperator::getNegArgument(V); 752 753 // Constants can be considered to be negated values if they can be folded. 754 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 755 return ConstantExpr::getNeg(C); 756 757 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 758 if (C->getType()->getElementType()->isIntegerTy()) 759 return ConstantExpr::getNeg(C); 760 761 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 762 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 763 Constant *Elt = CV->getAggregateElement(i); 764 if (!Elt) 765 return nullptr; 766 767 if (isa<UndefValue>(Elt)) 768 continue; 769 770 if (!isa<ConstantInt>(Elt)) 771 return nullptr; 772 } 773 return ConstantExpr::getNeg(CV); 774 } 775 776 return nullptr; 777 } 778 779 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 780 InstCombiner::BuilderTy &Builder) { 781 if (auto *Cast = dyn_cast<CastInst>(&I)) 782 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 783 784 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 785 786 // Figure out if the constant is the left or the right argument. 787 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 788 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 789 790 if (auto *SOC = dyn_cast<Constant>(SO)) { 791 if (ConstIsRHS) 792 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 793 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 794 } 795 796 Value *Op0 = SO, *Op1 = ConstOperand; 797 if (!ConstIsRHS) 798 std::swap(Op0, Op1); 799 800 auto *BO = cast<BinaryOperator>(&I); 801 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 802 SO->getName() + ".op"); 803 auto *FPInst = dyn_cast<Instruction>(RI); 804 if (FPInst && isa<FPMathOperator>(FPInst)) 805 FPInst->copyFastMathFlags(BO); 806 return RI; 807 } 808 809 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 810 // Don't modify shared select instructions. 811 if (!SI->hasOneUse()) 812 return nullptr; 813 814 Value *TV = SI->getTrueValue(); 815 Value *FV = SI->getFalseValue(); 816 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 817 return nullptr; 818 819 // Bool selects with constant operands can be folded to logical ops. 820 if (SI->getType()->isIntOrIntVectorTy(1)) 821 return nullptr; 822 823 // If it's a bitcast involving vectors, make sure it has the same number of 824 // elements on both sides. 825 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 826 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 827 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 828 829 // Verify that either both or neither are vectors. 830 if ((SrcTy == nullptr) != (DestTy == nullptr)) 831 return nullptr; 832 833 // If vectors, verify that they have the same number of elements. 834 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 835 return nullptr; 836 } 837 838 // Test if a CmpInst instruction is used exclusively by a select as 839 // part of a minimum or maximum operation. If so, refrain from doing 840 // any other folding. This helps out other analyses which understand 841 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 842 // and CodeGen. And in this case, at least one of the comparison 843 // operands has at least one user besides the compare (the select), 844 // which would often largely negate the benefit of folding anyway. 845 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 846 if (CI->hasOneUse()) { 847 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 848 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 849 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 850 return nullptr; 851 } 852 } 853 854 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 855 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 856 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 857 } 858 859 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 860 InstCombiner::BuilderTy &Builder) { 861 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 862 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 863 864 if (auto *InC = dyn_cast<Constant>(InV)) { 865 if (ConstIsRHS) 866 return ConstantExpr::get(I->getOpcode(), InC, C); 867 return ConstantExpr::get(I->getOpcode(), C, InC); 868 } 869 870 Value *Op0 = InV, *Op1 = C; 871 if (!ConstIsRHS) 872 std::swap(Op0, Op1); 873 874 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp"); 875 auto *FPInst = dyn_cast<Instruction>(RI); 876 if (FPInst && isa<FPMathOperator>(FPInst)) 877 FPInst->copyFastMathFlags(I); 878 return RI; 879 } 880 881 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) { 882 unsigned NumPHIValues = PN->getNumIncomingValues(); 883 if (NumPHIValues == 0) 884 return nullptr; 885 886 // We normally only transform phis with a single use. However, if a PHI has 887 // multiple uses and they are all the same operation, we can fold *all* of the 888 // uses into the PHI. 889 if (!PN->hasOneUse()) { 890 // Walk the use list for the instruction, comparing them to I. 891 for (User *U : PN->users()) { 892 Instruction *UI = cast<Instruction>(U); 893 if (UI != &I && !I.isIdenticalTo(UI)) 894 return nullptr; 895 } 896 // Otherwise, we can replace *all* users with the new PHI we form. 897 } 898 899 // Check to see if all of the operands of the PHI are simple constants 900 // (constantint/constantfp/undef). If there is one non-constant value, 901 // remember the BB it is in. If there is more than one or if *it* is a PHI, 902 // bail out. We don't do arbitrary constant expressions here because moving 903 // their computation can be expensive without a cost model. 904 BasicBlock *NonConstBB = nullptr; 905 for (unsigned i = 0; i != NumPHIValues; ++i) { 906 Value *InVal = PN->getIncomingValue(i); 907 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 908 continue; 909 910 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 911 if (NonConstBB) return nullptr; // More than one non-const value. 912 913 NonConstBB = PN->getIncomingBlock(i); 914 915 // If the InVal is an invoke at the end of the pred block, then we can't 916 // insert a computation after it without breaking the edge. 917 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal)) 918 if (II->getParent() == NonConstBB) 919 return nullptr; 920 921 // If the incoming non-constant value is in I's block, we will remove one 922 // instruction, but insert another equivalent one, leading to infinite 923 // instcombine. 924 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI)) 925 return nullptr; 926 } 927 928 // If there is exactly one non-constant value, we can insert a copy of the 929 // operation in that block. However, if this is a critical edge, we would be 930 // inserting the computation on some other paths (e.g. inside a loop). Only 931 // do this if the pred block is unconditionally branching into the phi block. 932 if (NonConstBB != nullptr) { 933 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 934 if (!BI || !BI->isUnconditional()) return nullptr; 935 } 936 937 // Okay, we can do the transformation: create the new PHI node. 938 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 939 InsertNewInstBefore(NewPN, *PN); 940 NewPN->takeName(PN); 941 942 // If we are going to have to insert a new computation, do so right before the 943 // predecessor's terminator. 944 if (NonConstBB) 945 Builder.SetInsertPoint(NonConstBB->getTerminator()); 946 947 // Next, add all of the operands to the PHI. 948 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 949 // We only currently try to fold the condition of a select when it is a phi, 950 // not the true/false values. 951 Value *TrueV = SI->getTrueValue(); 952 Value *FalseV = SI->getFalseValue(); 953 BasicBlock *PhiTransBB = PN->getParent(); 954 for (unsigned i = 0; i != NumPHIValues; ++i) { 955 BasicBlock *ThisBB = PN->getIncomingBlock(i); 956 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 957 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 958 Value *InV = nullptr; 959 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 960 // even if currently isNullValue gives false. 961 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 962 // For vector constants, we cannot use isNullValue to fold into 963 // FalseVInPred versus TrueVInPred. When we have individual nonzero 964 // elements in the vector, we will incorrectly fold InC to 965 // `TrueVInPred`. 966 if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC)) 967 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 968 else { 969 // Generate the select in the same block as PN's current incoming block. 970 // Note: ThisBB need not be the NonConstBB because vector constants 971 // which are constants by definition are handled here. 972 // FIXME: This can lead to an increase in IR generation because we might 973 // generate selects for vector constant phi operand, that could not be 974 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 975 // non-vector phis, this transformation was always profitable because 976 // the select would be generated exactly once in the NonConstBB. 977 Builder.SetInsertPoint(ThisBB->getTerminator()); 978 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 979 FalseVInPred, "phitmp"); 980 } 981 NewPN->addIncoming(InV, ThisBB); 982 } 983 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 984 Constant *C = cast<Constant>(I.getOperand(1)); 985 for (unsigned i = 0; i != NumPHIValues; ++i) { 986 Value *InV = nullptr; 987 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 988 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 989 else if (isa<ICmpInst>(CI)) 990 InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 991 C, "phitmp"); 992 else 993 InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 994 C, "phitmp"); 995 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 996 } 997 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 998 for (unsigned i = 0; i != NumPHIValues; ++i) { 999 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1000 Builder); 1001 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1002 } 1003 } else { 1004 CastInst *CI = cast<CastInst>(&I); 1005 Type *RetTy = CI->getType(); 1006 for (unsigned i = 0; i != NumPHIValues; ++i) { 1007 Value *InV; 1008 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1009 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1010 else 1011 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1012 I.getType(), "phitmp"); 1013 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1014 } 1015 } 1016 1017 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1018 Instruction *User = cast<Instruction>(*UI++); 1019 if (User == &I) continue; 1020 replaceInstUsesWith(*User, NewPN); 1021 eraseInstFromFunction(*User); 1022 } 1023 return replaceInstUsesWith(I, NewPN); 1024 } 1025 1026 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1027 if (!isa<Constant>(I.getOperand(1))) 1028 return nullptr; 1029 1030 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1031 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1032 return NewSel; 1033 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1034 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1035 return NewPhi; 1036 } 1037 return nullptr; 1038 } 1039 1040 /// Given a pointer type and a constant offset, determine whether or not there 1041 /// is a sequence of GEP indices into the pointed type that will land us at the 1042 /// specified offset. If so, fill them into NewIndices and return the resultant 1043 /// element type, otherwise return null. 1044 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 1045 SmallVectorImpl<Value *> &NewIndices) { 1046 Type *Ty = PtrTy->getElementType(); 1047 if (!Ty->isSized()) 1048 return nullptr; 1049 1050 // Start with the index over the outer type. Note that the type size 1051 // might be zero (even if the offset isn't zero) if the indexed type 1052 // is something like [0 x {int, int}] 1053 Type *IndexTy = DL.getIndexType(PtrTy); 1054 int64_t FirstIdx = 0; 1055 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 1056 FirstIdx = Offset/TySize; 1057 Offset -= FirstIdx*TySize; 1058 1059 // Handle hosts where % returns negative instead of values [0..TySize). 1060 if (Offset < 0) { 1061 --FirstIdx; 1062 Offset += TySize; 1063 assert(Offset >= 0); 1064 } 1065 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 1066 } 1067 1068 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx)); 1069 1070 // Index into the types. If we fail, set OrigBase to null. 1071 while (Offset) { 1072 // Indexing into tail padding between struct/array elements. 1073 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1074 return nullptr; 1075 1076 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1077 const StructLayout *SL = DL.getStructLayout(STy); 1078 assert(Offset < (int64_t)SL->getSizeInBytes() && 1079 "Offset must stay within the indexed type"); 1080 1081 unsigned Elt = SL->getElementContainingOffset(Offset); 1082 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1083 Elt)); 1084 1085 Offset -= SL->getElementOffset(Elt); 1086 Ty = STy->getElementType(Elt); 1087 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1088 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1089 assert(EltSize && "Cannot index into a zero-sized array"); 1090 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize)); 1091 Offset %= EltSize; 1092 Ty = AT->getElementType(); 1093 } else { 1094 // Otherwise, we can't index into the middle of this atomic type, bail. 1095 return nullptr; 1096 } 1097 } 1098 1099 return Ty; 1100 } 1101 1102 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1103 // If this GEP has only 0 indices, it is the same pointer as 1104 // Src. If Src is not a trivial GEP too, don't combine 1105 // the indices. 1106 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1107 !Src.hasOneUse()) 1108 return false; 1109 return true; 1110 } 1111 1112 /// Return a value X such that Val = X * Scale, or null if none. 1113 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1114 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1115 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1116 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1117 Scale.getBitWidth() && "Scale not compatible with value!"); 1118 1119 // If Val is zero or Scale is one then Val = Val * Scale. 1120 if (match(Val, m_Zero()) || Scale == 1) { 1121 NoSignedWrap = true; 1122 return Val; 1123 } 1124 1125 // If Scale is zero then it does not divide Val. 1126 if (Scale.isMinValue()) 1127 return nullptr; 1128 1129 // Look through chains of multiplications, searching for a constant that is 1130 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1131 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1132 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1133 // down from Val: 1134 // 1135 // Val = M1 * X || Analysis starts here and works down 1136 // M1 = M2 * Y || Doesn't descend into terms with more 1137 // M2 = Z * 4 \/ than one use 1138 // 1139 // Then to modify a term at the bottom: 1140 // 1141 // Val = M1 * X 1142 // M1 = Z * Y || Replaced M2 with Z 1143 // 1144 // Then to work back up correcting nsw flags. 1145 1146 // Op - the term we are currently analyzing. Starts at Val then drills down. 1147 // Replaced with its descaled value before exiting from the drill down loop. 1148 Value *Op = Val; 1149 1150 // Parent - initially null, but after drilling down notes where Op came from. 1151 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1152 // 0'th operand of Val. 1153 std::pair<Instruction *, unsigned> Parent; 1154 1155 // Set if the transform requires a descaling at deeper levels that doesn't 1156 // overflow. 1157 bool RequireNoSignedWrap = false; 1158 1159 // Log base 2 of the scale. Negative if not a power of 2. 1160 int32_t logScale = Scale.exactLogBase2(); 1161 1162 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1163 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1164 // If Op is a constant divisible by Scale then descale to the quotient. 1165 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1166 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1167 if (!Remainder.isMinValue()) 1168 // Not divisible by Scale. 1169 return nullptr; 1170 // Replace with the quotient in the parent. 1171 Op = ConstantInt::get(CI->getType(), Quotient); 1172 NoSignedWrap = true; 1173 break; 1174 } 1175 1176 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1177 if (BO->getOpcode() == Instruction::Mul) { 1178 // Multiplication. 1179 NoSignedWrap = BO->hasNoSignedWrap(); 1180 if (RequireNoSignedWrap && !NoSignedWrap) 1181 return nullptr; 1182 1183 // There are three cases for multiplication: multiplication by exactly 1184 // the scale, multiplication by a constant different to the scale, and 1185 // multiplication by something else. 1186 Value *LHS = BO->getOperand(0); 1187 Value *RHS = BO->getOperand(1); 1188 1189 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1190 // Multiplication by a constant. 1191 if (CI->getValue() == Scale) { 1192 // Multiplication by exactly the scale, replace the multiplication 1193 // by its left-hand side in the parent. 1194 Op = LHS; 1195 break; 1196 } 1197 1198 // Otherwise drill down into the constant. 1199 if (!Op->hasOneUse()) 1200 return nullptr; 1201 1202 Parent = std::make_pair(BO, 1); 1203 continue; 1204 } 1205 1206 // Multiplication by something else. Drill down into the left-hand side 1207 // since that's where the reassociate pass puts the good stuff. 1208 if (!Op->hasOneUse()) 1209 return nullptr; 1210 1211 Parent = std::make_pair(BO, 0); 1212 continue; 1213 } 1214 1215 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1216 isa<ConstantInt>(BO->getOperand(1))) { 1217 // Multiplication by a power of 2. 1218 NoSignedWrap = BO->hasNoSignedWrap(); 1219 if (RequireNoSignedWrap && !NoSignedWrap) 1220 return nullptr; 1221 1222 Value *LHS = BO->getOperand(0); 1223 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1224 getLimitedValue(Scale.getBitWidth()); 1225 // Op = LHS << Amt. 1226 1227 if (Amt == logScale) { 1228 // Multiplication by exactly the scale, replace the multiplication 1229 // by its left-hand side in the parent. 1230 Op = LHS; 1231 break; 1232 } 1233 if (Amt < logScale || !Op->hasOneUse()) 1234 return nullptr; 1235 1236 // Multiplication by more than the scale. Reduce the multiplying amount 1237 // by the scale in the parent. 1238 Parent = std::make_pair(BO, 1); 1239 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1240 break; 1241 } 1242 } 1243 1244 if (!Op->hasOneUse()) 1245 return nullptr; 1246 1247 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1248 if (Cast->getOpcode() == Instruction::SExt) { 1249 // Op is sign-extended from a smaller type, descale in the smaller type. 1250 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1251 APInt SmallScale = Scale.trunc(SmallSize); 1252 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1253 // descale Op as (sext Y) * Scale. In order to have 1254 // sext (Y * SmallScale) = (sext Y) * Scale 1255 // some conditions need to hold however: SmallScale must sign-extend to 1256 // Scale and the multiplication Y * SmallScale should not overflow. 1257 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1258 // SmallScale does not sign-extend to Scale. 1259 return nullptr; 1260 assert(SmallScale.exactLogBase2() == logScale); 1261 // Require that Y * SmallScale must not overflow. 1262 RequireNoSignedWrap = true; 1263 1264 // Drill down through the cast. 1265 Parent = std::make_pair(Cast, 0); 1266 Scale = SmallScale; 1267 continue; 1268 } 1269 1270 if (Cast->getOpcode() == Instruction::Trunc) { 1271 // Op is truncated from a larger type, descale in the larger type. 1272 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1273 // trunc (Y * sext Scale) = (trunc Y) * Scale 1274 // always holds. However (trunc Y) * Scale may overflow even if 1275 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1276 // from this point up in the expression (see later). 1277 if (RequireNoSignedWrap) 1278 return nullptr; 1279 1280 // Drill down through the cast. 1281 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1282 Parent = std::make_pair(Cast, 0); 1283 Scale = Scale.sext(LargeSize); 1284 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1285 logScale = -1; 1286 assert(Scale.exactLogBase2() == logScale); 1287 continue; 1288 } 1289 } 1290 1291 // Unsupported expression, bail out. 1292 return nullptr; 1293 } 1294 1295 // If Op is zero then Val = Op * Scale. 1296 if (match(Op, m_Zero())) { 1297 NoSignedWrap = true; 1298 return Op; 1299 } 1300 1301 // We know that we can successfully descale, so from here on we can safely 1302 // modify the IR. Op holds the descaled version of the deepest term in the 1303 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1304 // not to overflow. 1305 1306 if (!Parent.first) 1307 // The expression only had one term. 1308 return Op; 1309 1310 // Rewrite the parent using the descaled version of its operand. 1311 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1312 assert(Op != Parent.first->getOperand(Parent.second) && 1313 "Descaling was a no-op?"); 1314 Parent.first->setOperand(Parent.second, Op); 1315 Worklist.Add(Parent.first); 1316 1317 // Now work back up the expression correcting nsw flags. The logic is based 1318 // on the following observation: if X * Y is known not to overflow as a signed 1319 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1320 // then X * Z will not overflow as a signed multiplication either. As we work 1321 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1322 // current level has strictly smaller absolute value than the original. 1323 Instruction *Ancestor = Parent.first; 1324 do { 1325 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1326 // If the multiplication wasn't nsw then we can't say anything about the 1327 // value of the descaled multiplication, and we have to clear nsw flags 1328 // from this point on up. 1329 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1330 NoSignedWrap &= OpNoSignedWrap; 1331 if (NoSignedWrap != OpNoSignedWrap) { 1332 BO->setHasNoSignedWrap(NoSignedWrap); 1333 Worklist.Add(Ancestor); 1334 } 1335 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1336 // The fact that the descaled input to the trunc has smaller absolute 1337 // value than the original input doesn't tell us anything useful about 1338 // the absolute values of the truncations. 1339 NoSignedWrap = false; 1340 } 1341 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1342 "Failed to keep proper track of nsw flags while drilling down?"); 1343 1344 if (Ancestor == Val) 1345 // Got to the top, all done! 1346 return Val; 1347 1348 // Move up one level in the expression. 1349 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1350 Ancestor = Ancestor->user_back(); 1351 } while (true); 1352 } 1353 1354 Instruction *InstCombiner::foldShuffledBinop(BinaryOperator &Inst) { 1355 if (!Inst.getType()->isVectorTy()) return nullptr; 1356 1357 // It may not be safe to reorder shuffles and things like div, urem, etc. 1358 // because we may trap when executing those ops on unknown vector elements. 1359 // See PR20059. 1360 if (!isSafeToSpeculativelyExecute(&Inst)) 1361 return nullptr; 1362 1363 unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements(); 1364 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1365 assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth); 1366 assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth); 1367 1368 auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) { 1369 Value *XY = Builder.CreateBinOp(Inst.getOpcode(), X, Y); 1370 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1371 BO->copyIRFlags(&Inst); 1372 return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M); 1373 }; 1374 1375 // If both arguments of the binary operation are shuffles that use the same 1376 // mask and shuffle within a single vector, move the shuffle after the binop. 1377 Value *V1, *V2; 1378 Constant *Mask; 1379 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) && 1380 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) && 1381 V1->getType() == V2->getType() && 1382 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1383 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1384 return createBinOpShuffle(V1, V2, Mask); 1385 } 1386 1387 // If one argument is a shuffle within one vector and the other is a constant, 1388 // try moving the shuffle after the binary operation. This canonicalization 1389 // intends to move shuffles closer to other shuffles and binops closer to 1390 // other binops, so they can be folded. It may also enable demanded elements 1391 // transforms. 1392 Constant *C; 1393 if (match(&Inst, m_c_BinOp( 1394 m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))), 1395 m_Constant(C))) && 1396 V1->getType()->getVectorNumElements() <= VWidth) { 1397 assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() && 1398 "Shuffle should not change scalar type"); 1399 unsigned V1Width = V1->getType()->getVectorNumElements(); 1400 // Find constant NewC that has property: 1401 // shuffle(NewC, ShMask) = C 1402 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1403 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1404 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1405 SmallVector<int, 16> ShMask; 1406 ShuffleVectorInst::getShuffleMask(Mask, ShMask); 1407 SmallVector<Constant *, 16> 1408 NewVecC(V1Width, UndefValue::get(C->getType()->getScalarType())); 1409 bool MayChange = true; 1410 for (unsigned I = 0; I < VWidth; ++I) { 1411 if (ShMask[I] >= 0) { 1412 assert(ShMask[I] < (int)VWidth && "Not expecting narrowing shuffle"); 1413 Constant *CElt = C->getAggregateElement(I); 1414 Constant *NewCElt = NewVecC[ShMask[I]]; 1415 // Bail out if: 1416 // 1. The constant vector contains a constant expression. 1417 // 2. The shuffle needs an element of the constant vector that can't 1418 // be mapped to a new constant vector. 1419 // 3. This is a widening shuffle that copies elements of V1 into the 1420 // extended elements (extending with undef is allowed). 1421 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1422 I >= V1Width) { 1423 MayChange = false; 1424 break; 1425 } 1426 NewVecC[ShMask[I]] = CElt; 1427 } 1428 } 1429 if (MayChange) { 1430 Constant *NewC = ConstantVector::get(NewVecC); 1431 // It may not be safe to execute a binop on a vector with undef elements 1432 // because the entire instruction can be folded to undef or create poison 1433 // that did not exist in the original code. 1434 bool ConstOp1 = isa<Constant>(Inst.getOperand(1)); 1435 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1436 NewC = getSafeVectorConstantForBinop(Inst.getOpcode(), NewC, ConstOp1); 1437 1438 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1439 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1440 Value *NewLHS = isa<Constant>(LHS) ? NewC : V1; 1441 Value *NewRHS = isa<Constant>(LHS) ? V1 : NewC; 1442 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1443 } 1444 } 1445 1446 return nullptr; 1447 } 1448 1449 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1450 /// of a value. This requires a potentially expensive known bits check to make 1451 /// sure the narrow op does not overflow. 1452 Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) { 1453 // We need at least one extended operand. 1454 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1455 1456 // If this is a sub, we swap the operands since we always want an extension 1457 // on the RHS. The LHS can be an extension or a constant. 1458 if (BO.getOpcode() == Instruction::Sub) 1459 std::swap(Op0, Op1); 1460 1461 Value *X; 1462 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1463 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1464 return nullptr; 1465 1466 // If both operands are the same extension from the same source type and we 1467 // can eliminate at least one (hasOneUse), this might work. 1468 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1469 Value *Y; 1470 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1471 cast<Operator>(Op1)->getOpcode() == CastOpc && 1472 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1473 // If that did not match, see if we have a suitable constant operand. 1474 // Truncating and extending must produce the same constant. 1475 Constant *WideC; 1476 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1477 return nullptr; 1478 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1479 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1480 return nullptr; 1481 Y = NarrowC; 1482 } 1483 1484 // Swap back now that we found our operands. 1485 if (BO.getOpcode() == Instruction::Sub) 1486 std::swap(X, Y); 1487 1488 // Both operands have narrow versions. Last step: the math must not overflow 1489 // in the narrow width. 1490 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1491 return nullptr; 1492 1493 // bo (ext X), (ext Y) --> ext (bo X, Y) 1494 // bo (ext X), C --> ext (bo X, C') 1495 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1496 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1497 if (IsSext) 1498 NewBinOp->setHasNoSignedWrap(); 1499 else 1500 NewBinOp->setHasNoUnsignedWrap(); 1501 } 1502 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1503 } 1504 1505 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1506 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1507 Type *GEPType = GEP.getType(); 1508 Type *GEPEltType = GEP.getSourceElementType(); 1509 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP))) 1510 return replaceInstUsesWith(GEP, V); 1511 1512 Value *PtrOp = GEP.getOperand(0); 1513 1514 // Eliminate unneeded casts for indices, and replace indices which displace 1515 // by multiples of a zero size type with zero. 1516 bool MadeChange = false; 1517 1518 // Index width may not be the same width as pointer width. 1519 // Data layout chooses the right type based on supported integer types. 1520 Type *NewScalarIndexTy = 1521 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 1522 1523 gep_type_iterator GTI = gep_type_begin(GEP); 1524 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1525 ++I, ++GTI) { 1526 // Skip indices into struct types. 1527 if (GTI.isStruct()) 1528 continue; 1529 1530 Type *IndexTy = (*I)->getType(); 1531 Type *NewIndexType = 1532 IndexTy->isVectorTy() 1533 ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements()) 1534 : NewScalarIndexTy; 1535 1536 // If the element type has zero size then any index over it is equivalent 1537 // to an index of zero, so replace it with zero if it is not zero already. 1538 Type *EltTy = GTI.getIndexedType(); 1539 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0) 1540 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { 1541 *I = Constant::getNullValue(NewIndexType); 1542 MadeChange = true; 1543 } 1544 1545 if (IndexTy != NewIndexType) { 1546 // If we are using a wider index than needed for this platform, shrink 1547 // it to what we need. If narrower, sign-extend it to what we need. 1548 // This explicit cast can make subsequent optimizations more obvious. 1549 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1550 MadeChange = true; 1551 } 1552 } 1553 if (MadeChange) 1554 return &GEP; 1555 1556 // Check to see if the inputs to the PHI node are getelementptr instructions. 1557 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 1558 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1559 if (!Op1) 1560 return nullptr; 1561 1562 // Don't fold a GEP into itself through a PHI node. This can only happen 1563 // through the back-edge of a loop. Folding a GEP into itself means that 1564 // the value of the previous iteration needs to be stored in the meantime, 1565 // thus requiring an additional register variable to be live, but not 1566 // actually achieving anything (the GEP still needs to be executed once per 1567 // loop iteration). 1568 if (Op1 == &GEP) 1569 return nullptr; 1570 1571 int DI = -1; 1572 1573 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1574 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 1575 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1576 return nullptr; 1577 1578 // As for Op1 above, don't try to fold a GEP into itself. 1579 if (Op2 == &GEP) 1580 return nullptr; 1581 1582 // Keep track of the type as we walk the GEP. 1583 Type *CurTy = nullptr; 1584 1585 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1586 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1587 return nullptr; 1588 1589 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1590 if (DI == -1) { 1591 // We have not seen any differences yet in the GEPs feeding the 1592 // PHI yet, so we record this one if it is allowed to be a 1593 // variable. 1594 1595 // The first two arguments can vary for any GEP, the rest have to be 1596 // static for struct slots 1597 if (J > 1 && CurTy->isStructTy()) 1598 return nullptr; 1599 1600 DI = J; 1601 } else { 1602 // The GEP is different by more than one input. While this could be 1603 // extended to support GEPs that vary by more than one variable it 1604 // doesn't make sense since it greatly increases the complexity and 1605 // would result in an R+R+R addressing mode which no backend 1606 // directly supports and would need to be broken into several 1607 // simpler instructions anyway. 1608 return nullptr; 1609 } 1610 } 1611 1612 // Sink down a layer of the type for the next iteration. 1613 if (J > 0) { 1614 if (J == 1) { 1615 CurTy = Op1->getSourceElementType(); 1616 } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) { 1617 CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); 1618 } else { 1619 CurTy = nullptr; 1620 } 1621 } 1622 } 1623 } 1624 1625 // If not all GEPs are identical we'll have to create a new PHI node. 1626 // Check that the old PHI node has only one use so that it will get 1627 // removed. 1628 if (DI != -1 && !PN->hasOneUse()) 1629 return nullptr; 1630 1631 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1632 if (DI == -1) { 1633 // All the GEPs feeding the PHI are identical. Clone one down into our 1634 // BB so that it can be merged with the current GEP. 1635 GEP.getParent()->getInstList().insert( 1636 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1637 } else { 1638 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1639 // into the current block so it can be merged, and create a new PHI to 1640 // set that index. 1641 PHINode *NewPN; 1642 { 1643 IRBuilderBase::InsertPointGuard Guard(Builder); 1644 Builder.SetInsertPoint(PN); 1645 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 1646 PN->getNumOperands()); 1647 } 1648 1649 for (auto &I : PN->operands()) 1650 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1651 PN->getIncomingBlock(I)); 1652 1653 NewGEP->setOperand(DI, NewPN); 1654 GEP.getParent()->getInstList().insert( 1655 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1656 NewGEP->setOperand(DI, NewPN); 1657 } 1658 1659 GEP.setOperand(0, NewGEP); 1660 PtrOp = NewGEP; 1661 } 1662 1663 // Combine Indices - If the source pointer to this getelementptr instruction 1664 // is a getelementptr instruction, combine the indices of the two 1665 // getelementptr instructions into a single instruction. 1666 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { 1667 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1668 return nullptr; 1669 1670 // Try to reassociate loop invariant GEP chains to enable LICM. 1671 if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1672 Src->hasOneUse()) { 1673 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1674 Value *GO1 = GEP.getOperand(1); 1675 Value *SO1 = Src->getOperand(1); 1676 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1677 // invariant: this breaks the dependence between GEPs and allows LICM 1678 // to hoist the invariant part out of the loop. 1679 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1680 // We have to be careful here. 1681 // We have something like: 1682 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 1683 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 1684 // If we just swap idx & idx2 then we could inadvertantly 1685 // change %src from a vector to a scalar, or vice versa. 1686 // Cases: 1687 // 1) %base a scalar & idx a scalar & idx2 a vector 1688 // => Swapping idx & idx2 turns %src into a vector type. 1689 // 2) %base a scalar & idx a vector & idx2 a scalar 1690 // => Swapping idx & idx2 turns %src in a scalar type 1691 // 3) %base, %idx, and %idx2 are scalars 1692 // => %src & %gep are scalars 1693 // => swapping idx & idx2 is safe 1694 // 4) %base a vector 1695 // => %src is a vector 1696 // => swapping idx & idx2 is safe. 1697 auto *SO0 = Src->getOperand(0); 1698 auto *SO0Ty = SO0->getType(); 1699 if (!isa<VectorType>(GEPType) || // case 3 1700 isa<VectorType>(SO0Ty)) { // case 4 1701 Src->setOperand(1, GO1); 1702 GEP.setOperand(1, SO1); 1703 return &GEP; 1704 } else { 1705 // Case 1 or 2 1706 // -- have to recreate %src & %gep 1707 // put NewSrc at same location as %src 1708 Builder.SetInsertPoint(cast<Instruction>(PtrOp)); 1709 auto *NewSrc = cast<GetElementPtrInst>( 1710 Builder.CreateGEP(SO0, GO1, Src->getName())); 1711 NewSrc->setIsInBounds(Src->isInBounds()); 1712 auto *NewGEP = GetElementPtrInst::Create(nullptr, NewSrc, {SO1}); 1713 NewGEP->setIsInBounds(GEP.isInBounds()); 1714 return NewGEP; 1715 } 1716 } 1717 } 1718 } 1719 1720 // Note that if our source is a gep chain itself then we wait for that 1721 // chain to be resolved before we perform this transformation. This 1722 // avoids us creating a TON of code in some cases. 1723 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 1724 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1725 return nullptr; // Wait until our source is folded to completion. 1726 1727 SmallVector<Value*, 8> Indices; 1728 1729 // Find out whether the last index in the source GEP is a sequential idx. 1730 bool EndsWithSequential = false; 1731 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1732 I != E; ++I) 1733 EndsWithSequential = I.isSequential(); 1734 1735 // Can we combine the two pointer arithmetics offsets? 1736 if (EndsWithSequential) { 1737 // Replace: gep (gep %P, long B), long A, ... 1738 // With: T = long A+B; gep %P, T, ... 1739 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1740 Value *GO1 = GEP.getOperand(1); 1741 1742 // If they aren't the same type, then the input hasn't been processed 1743 // by the loop above yet (which canonicalizes sequential index types to 1744 // intptr_t). Just avoid transforming this until the input has been 1745 // normalized. 1746 if (SO1->getType() != GO1->getType()) 1747 return nullptr; 1748 1749 Value *Sum = 1750 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 1751 // Only do the combine when we are sure the cost after the 1752 // merge is never more than that before the merge. 1753 if (Sum == nullptr) 1754 return nullptr; 1755 1756 // Update the GEP in place if possible. 1757 if (Src->getNumOperands() == 2) { 1758 GEP.setOperand(0, Src->getOperand(0)); 1759 GEP.setOperand(1, Sum); 1760 return &GEP; 1761 } 1762 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1763 Indices.push_back(Sum); 1764 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1765 } else if (isa<Constant>(*GEP.idx_begin()) && 1766 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1767 Src->getNumOperands() != 1) { 1768 // Otherwise we can do the fold if the first index of the GEP is a zero 1769 Indices.append(Src->op_begin()+1, Src->op_end()); 1770 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1771 } 1772 1773 if (!Indices.empty()) 1774 return GEP.isInBounds() && Src->isInBounds() 1775 ? GetElementPtrInst::CreateInBounds( 1776 Src->getSourceElementType(), Src->getOperand(0), Indices, 1777 GEP.getName()) 1778 : GetElementPtrInst::Create(Src->getSourceElementType(), 1779 Src->getOperand(0), Indices, 1780 GEP.getName()); 1781 } 1782 1783 if (GEP.getNumIndices() == 1) { 1784 unsigned AS = GEP.getPointerAddressSpace(); 1785 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 1786 DL.getIndexSizeInBits(AS)) { 1787 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType); 1788 1789 bool Matched = false; 1790 uint64_t C; 1791 Value *V = nullptr; 1792 if (TyAllocSize == 1) { 1793 V = GEP.getOperand(1); 1794 Matched = true; 1795 } else if (match(GEP.getOperand(1), 1796 m_AShr(m_Value(V), m_ConstantInt(C)))) { 1797 if (TyAllocSize == 1ULL << C) 1798 Matched = true; 1799 } else if (match(GEP.getOperand(1), 1800 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 1801 if (TyAllocSize == C) 1802 Matched = true; 1803 } 1804 1805 if (Matched) { 1806 // Canonicalize (gep i8* X, -(ptrtoint Y)) 1807 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) 1808 // The GEP pattern is emitted by the SCEV expander for certain kinds of 1809 // pointer arithmetic. 1810 if (match(V, m_Neg(m_PtrToInt(m_Value())))) { 1811 Operator *Index = cast<Operator>(V); 1812 Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType()); 1813 Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1)); 1814 return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType); 1815 } 1816 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) 1817 // to (bitcast Y) 1818 Value *Y; 1819 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), 1820 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) 1821 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 1822 } 1823 } 1824 } 1825 1826 // We do not handle pointer-vector geps here. 1827 if (GEPType->isVectorTy()) 1828 return nullptr; 1829 1830 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 1831 Value *StrippedPtr = PtrOp->stripPointerCasts(); 1832 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 1833 1834 if (StrippedPtr != PtrOp) { 1835 bool HasZeroPointerIndex = false; 1836 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 1837 HasZeroPointerIndex = C->isZero(); 1838 1839 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 1840 // into : GEP [10 x i8]* X, i32 0, ... 1841 // 1842 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 1843 // into : GEP i8* X, ... 1844 // 1845 // This occurs when the program declares an array extern like "int X[];" 1846 if (HasZeroPointerIndex) { 1847 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 1848 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 1849 if (CATy->getElementType() == StrippedPtrTy->getElementType()) { 1850 // -> GEP i8* X, ... 1851 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 1852 GetElementPtrInst *Res = GetElementPtrInst::Create( 1853 StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName()); 1854 Res->setIsInBounds(GEP.isInBounds()); 1855 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 1856 return Res; 1857 // Insert Res, and create an addrspacecast. 1858 // e.g., 1859 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 1860 // -> 1861 // %0 = GEP i8 addrspace(1)* X, ... 1862 // addrspacecast i8 addrspace(1)* %0 to i8* 1863 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 1864 } 1865 1866 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrTy->getElementType())) { 1867 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 1868 if (CATy->getElementType() == XATy->getElementType()) { 1869 // -> GEP [10 x i8]* X, i32 0, ... 1870 // At this point, we know that the cast source type is a pointer 1871 // to an array of the same type as the destination pointer 1872 // array. Because the array type is never stepped over (there 1873 // is a leading zero) we can fold the cast into this GEP. 1874 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 1875 GEP.setOperand(0, StrippedPtr); 1876 GEP.setSourceElementType(XATy); 1877 return &GEP; 1878 } 1879 // Cannot replace the base pointer directly because StrippedPtr's 1880 // address space is different. Instead, create a new GEP followed by 1881 // an addrspacecast. 1882 // e.g., 1883 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 1884 // i32 0, ... 1885 // -> 1886 // %0 = GEP [10 x i8] addrspace(1)* X, ... 1887 // addrspacecast i8 addrspace(1)* %0 to i8* 1888 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 1889 Value *NewGEP = GEP.isInBounds() 1890 ? Builder.CreateInBoundsGEP( 1891 nullptr, StrippedPtr, Idx, GEP.getName()) 1892 : Builder.CreateGEP(nullptr, StrippedPtr, Idx, 1893 GEP.getName()); 1894 return new AddrSpaceCastInst(NewGEP, GEPType); 1895 } 1896 } 1897 } 1898 } else if (GEP.getNumOperands() == 2) { 1899 // Transform things like: 1900 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 1901 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 1902 Type *SrcEltTy = StrippedPtrTy->getElementType(); 1903 if (SrcEltTy->isArrayTy() && 1904 DL.getTypeAllocSize(SrcEltTy->getArrayElementType()) == 1905 DL.getTypeAllocSize(GEPEltType)) { 1906 Type *IdxType = DL.getIndexType(GEPType); 1907 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 1908 Value *NewGEP = 1909 GEP.isInBounds() 1910 ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, Idx, 1911 GEP.getName()) 1912 : Builder.CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName()); 1913 1914 // V and GEP are both pointer types --> BitCast 1915 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 1916 } 1917 1918 // Transform things like: 1919 // %V = mul i64 %N, 4 1920 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 1921 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 1922 if (GEPEltType->isSized() && SrcEltTy->isSized()) { 1923 // Check that changing the type amounts to dividing the index by a scale 1924 // factor. 1925 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 1926 uint64_t SrcSize = DL.getTypeAllocSize(SrcEltTy); 1927 if (ResSize && SrcSize % ResSize == 0) { 1928 Value *Idx = GEP.getOperand(1); 1929 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1930 uint64_t Scale = SrcSize / ResSize; 1931 1932 // Earlier transforms ensure that the index has the right type 1933 // according to Data Layout, which considerably simplifies the 1934 // logic by eliminating implicit casts. 1935 assert(Idx->getType() == DL.getIndexType(GEPType) && 1936 "Index type does not match the Data Layout preferences"); 1937 1938 bool NSW; 1939 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1940 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1941 // If the multiplication NewIdx * Scale may overflow then the new 1942 // GEP may not be "inbounds". 1943 Value *NewGEP = 1944 GEP.isInBounds() && NSW 1945 ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx, 1946 GEP.getName()) 1947 : Builder.CreateGEP(nullptr, StrippedPtr, NewIdx, 1948 GEP.getName()); 1949 1950 // The NewGEP must be pointer typed, so must the old one -> BitCast 1951 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1952 GEPType); 1953 } 1954 } 1955 } 1956 1957 // Similarly, transform things like: 1958 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 1959 // (where tmp = 8*tmp2) into: 1960 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 1961 if (GEPEltType->isSized() && SrcEltTy->isSized() && 1962 SrcEltTy->isArrayTy()) { 1963 // Check that changing to the array element type amounts to dividing the 1964 // index by a scale factor. 1965 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 1966 uint64_t ArrayEltSize = 1967 DL.getTypeAllocSize(SrcEltTy->getArrayElementType()); 1968 if (ResSize && ArrayEltSize % ResSize == 0) { 1969 Value *Idx = GEP.getOperand(1); 1970 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1971 uint64_t Scale = ArrayEltSize / ResSize; 1972 1973 // Earlier transforms ensure that the index has the right type 1974 // according to the Data Layout, which considerably simplifies 1975 // the logic by eliminating implicit casts. 1976 assert(Idx->getType() == DL.getIndexType(GEPType) && 1977 "Index type does not match the Data Layout preferences"); 1978 1979 bool NSW; 1980 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1981 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1982 // If the multiplication NewIdx * Scale may overflow then the new 1983 // GEP may not be "inbounds". 1984 Type *IndTy = DL.getIndexType(GEPType); 1985 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 1986 1987 Value *NewGEP = GEP.isInBounds() && NSW 1988 ? Builder.CreateInBoundsGEP( 1989 SrcEltTy, StrippedPtr, Off, GEP.getName()) 1990 : Builder.CreateGEP(SrcEltTy, StrippedPtr, Off, 1991 GEP.getName()); 1992 // The NewGEP must be pointer typed, so must the old one -> BitCast 1993 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1994 GEPType); 1995 } 1996 } 1997 } 1998 } 1999 } 2000 2001 // addrspacecast between types is canonicalized as a bitcast, then an 2002 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2003 // through the addrspacecast. 2004 Value *ASCStrippedPtrOp = PtrOp; 2005 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2006 // X = bitcast A addrspace(1)* to B addrspace(1)* 2007 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2008 // Z = gep Y, <...constant indices...> 2009 // Into an addrspacecasted GEP of the struct. 2010 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2011 ASCStrippedPtrOp = BC; 2012 } 2013 2014 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 2015 Value *SrcOp = BCI->getOperand(0); 2016 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2017 Type *SrcEltType = SrcType->getElementType(); 2018 2019 // GEP directly using the source operand if this GEP is accessing an element 2020 // of a bitcasted pointer to vector or array of the same dimensions: 2021 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2022 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2023 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy) { 2024 return ArrTy->getArrayElementType() == VecTy->getVectorElementType() && 2025 ArrTy->getArrayNumElements() == VecTy->getVectorNumElements(); 2026 }; 2027 if (GEP.getNumOperands() == 3 && 2028 ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() && 2029 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType)) || 2030 (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() && 2031 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType)))) { 2032 GEP.setOperand(0, SrcOp); 2033 GEP.setSourceElementType(SrcEltType); 2034 return &GEP; 2035 } 2036 2037 // See if we can simplify: 2038 // X = bitcast A* to B* 2039 // Y = gep X, <...constant indices...> 2040 // into a gep of the original struct. This is important for SROA and alias 2041 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2042 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 2043 APInt Offset(OffsetBits, 0); 2044 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) { 2045 // If this GEP instruction doesn't move the pointer, just replace the GEP 2046 // with a bitcast of the real input to the dest type. 2047 if (!Offset) { 2048 // If the bitcast is of an allocation, and the allocation will be 2049 // converted to match the type of the cast, don't touch this. 2050 if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) { 2051 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2052 if (Instruction *I = visitBitCast(*BCI)) { 2053 if (I != BCI) { 2054 I->takeName(BCI); 2055 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2056 replaceInstUsesWith(*BCI, I); 2057 } 2058 return &GEP; 2059 } 2060 } 2061 2062 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2063 return new AddrSpaceCastInst(SrcOp, GEPType); 2064 return new BitCastInst(SrcOp, GEPType); 2065 } 2066 2067 // Otherwise, if the offset is non-zero, we need to find out if there is a 2068 // field at Offset in 'A's type. If so, we can pull the cast through the 2069 // GEP. 2070 SmallVector<Value*, 8> NewIndices; 2071 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2072 Value *NGEP = 2073 GEP.isInBounds() 2074 ? Builder.CreateInBoundsGEP(nullptr, SrcOp, NewIndices) 2075 : Builder.CreateGEP(nullptr, SrcOp, NewIndices); 2076 2077 if (NGEP->getType() == GEPType) 2078 return replaceInstUsesWith(GEP, NGEP); 2079 NGEP->takeName(&GEP); 2080 2081 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2082 return new AddrSpaceCastInst(NGEP, GEPType); 2083 return new BitCastInst(NGEP, GEPType); 2084 } 2085 } 2086 } 2087 2088 if (!GEP.isInBounds()) { 2089 unsigned IdxWidth = 2090 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2091 APInt BasePtrOffset(IdxWidth, 0); 2092 Value *UnderlyingPtrOp = 2093 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2094 BasePtrOffset); 2095 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2096 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2097 BasePtrOffset.isNonNegative()) { 2098 APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType())); 2099 if (BasePtrOffset.ule(AllocSize)) { 2100 return GetElementPtrInst::CreateInBounds( 2101 PtrOp, makeArrayRef(Ops).slice(1), GEP.getName()); 2102 } 2103 } 2104 } 2105 } 2106 2107 return nullptr; 2108 } 2109 2110 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 2111 Instruction *AI) { 2112 if (isa<ConstantPointerNull>(V)) 2113 return true; 2114 if (auto *LI = dyn_cast<LoadInst>(V)) 2115 return isa<GlobalVariable>(LI->getPointerOperand()); 2116 // Two distinct allocations will never be equal. 2117 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2118 // through bitcasts of V can cause 2119 // the result statement below to be true, even when AI and V (ex: 2120 // i8* ->i32* ->i8* of AI) are the same allocations. 2121 return isAllocLikeFn(V, TLI) && V != AI; 2122 } 2123 2124 static bool isAllocSiteRemovable(Instruction *AI, 2125 SmallVectorImpl<WeakTrackingVH> &Users, 2126 const TargetLibraryInfo *TLI) { 2127 SmallVector<Instruction*, 4> Worklist; 2128 Worklist.push_back(AI); 2129 2130 do { 2131 Instruction *PI = Worklist.pop_back_val(); 2132 for (User *U : PI->users()) { 2133 Instruction *I = cast<Instruction>(U); 2134 switch (I->getOpcode()) { 2135 default: 2136 // Give up the moment we see something we can't handle. 2137 return false; 2138 2139 case Instruction::AddrSpaceCast: 2140 case Instruction::BitCast: 2141 case Instruction::GetElementPtr: 2142 Users.emplace_back(I); 2143 Worklist.push_back(I); 2144 continue; 2145 2146 case Instruction::ICmp: { 2147 ICmpInst *ICI = cast<ICmpInst>(I); 2148 // We can fold eq/ne comparisons with null to false/true, respectively. 2149 // We also fold comparisons in some conditions provided the alloc has 2150 // not escaped (see isNeverEqualToUnescapedAlloc). 2151 if (!ICI->isEquality()) 2152 return false; 2153 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2154 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2155 return false; 2156 Users.emplace_back(I); 2157 continue; 2158 } 2159 2160 case Instruction::Call: 2161 // Ignore no-op and store intrinsics. 2162 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2163 switch (II->getIntrinsicID()) { 2164 default: 2165 return false; 2166 2167 case Intrinsic::memmove: 2168 case Intrinsic::memcpy: 2169 case Intrinsic::memset: { 2170 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2171 if (MI->isVolatile() || MI->getRawDest() != PI) 2172 return false; 2173 LLVM_FALLTHROUGH; 2174 } 2175 case Intrinsic::invariant_start: 2176 case Intrinsic::invariant_end: 2177 case Intrinsic::lifetime_start: 2178 case Intrinsic::lifetime_end: 2179 case Intrinsic::objectsize: 2180 Users.emplace_back(I); 2181 continue; 2182 } 2183 } 2184 2185 if (isFreeCall(I, TLI)) { 2186 Users.emplace_back(I); 2187 continue; 2188 } 2189 return false; 2190 2191 case Instruction::Store: { 2192 StoreInst *SI = cast<StoreInst>(I); 2193 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2194 return false; 2195 Users.emplace_back(I); 2196 continue; 2197 } 2198 } 2199 llvm_unreachable("missing a return?"); 2200 } 2201 } while (!Worklist.empty()); 2202 return true; 2203 } 2204 2205 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 2206 // If we have a malloc call which is only used in any amount of comparisons 2207 // to null and free calls, delete the calls and replace the comparisons with 2208 // true or false as appropriate. 2209 SmallVector<WeakTrackingVH, 64> Users; 2210 2211 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2212 // before each store. 2213 TinyPtrVector<DbgVariableIntrinsic *> DIIs; 2214 std::unique_ptr<DIBuilder> DIB; 2215 if (isa<AllocaInst>(MI)) { 2216 DIIs = FindDbgAddrUses(&MI); 2217 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2218 } 2219 2220 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2221 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2222 // Lowering all @llvm.objectsize calls first because they may 2223 // use a bitcast/GEP of the alloca we are removing. 2224 if (!Users[i]) 2225 continue; 2226 2227 Instruction *I = cast<Instruction>(&*Users[i]); 2228 2229 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2230 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2231 ConstantInt *Result = lowerObjectSizeCall(II, DL, &TLI, 2232 /*MustSucceed=*/true); 2233 replaceInstUsesWith(*I, Result); 2234 eraseInstFromFunction(*I); 2235 Users[i] = nullptr; // Skip examining in the next loop. 2236 } 2237 } 2238 } 2239 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2240 if (!Users[i]) 2241 continue; 2242 2243 Instruction *I = cast<Instruction>(&*Users[i]); 2244 2245 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2246 replaceInstUsesWith(*C, 2247 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2248 C->isFalseWhenEqual())); 2249 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) || 2250 isa<AddrSpaceCastInst>(I)) { 2251 replaceInstUsesWith(*I, UndefValue::get(I->getType())); 2252 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2253 for (auto *DII : DIIs) 2254 ConvertDebugDeclareToDebugValue(DII, SI, *DIB); 2255 } 2256 eraseInstFromFunction(*I); 2257 } 2258 2259 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2260 // Replace invoke with a NOP intrinsic to maintain the original CFG 2261 Module *M = II->getModule(); 2262 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2263 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2264 None, "", II->getParent()); 2265 } 2266 2267 for (auto *DII : DIIs) 2268 eraseInstFromFunction(*DII); 2269 2270 return eraseInstFromFunction(MI); 2271 } 2272 return nullptr; 2273 } 2274 2275 /// Move the call to free before a NULL test. 2276 /// 2277 /// Check if this free is accessed after its argument has been test 2278 /// against NULL (property 0). 2279 /// If yes, it is legal to move this call in its predecessor block. 2280 /// 2281 /// The move is performed only if the block containing the call to free 2282 /// will be removed, i.e.: 2283 /// 1. it has only one predecessor P, and P has two successors 2284 /// 2. it contains the call and an unconditional branch 2285 /// 3. its successor is the same as its predecessor's successor 2286 /// 2287 /// The profitability is out-of concern here and this function should 2288 /// be called only if the caller knows this transformation would be 2289 /// profitable (e.g., for code size). 2290 static Instruction * 2291 tryToMoveFreeBeforeNullTest(CallInst &FI) { 2292 Value *Op = FI.getArgOperand(0); 2293 BasicBlock *FreeInstrBB = FI.getParent(); 2294 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2295 2296 // Validate part of constraint #1: Only one predecessor 2297 // FIXME: We can extend the number of predecessor, but in that case, we 2298 // would duplicate the call to free in each predecessor and it may 2299 // not be profitable even for code size. 2300 if (!PredBB) 2301 return nullptr; 2302 2303 // Validate constraint #2: Does this block contains only the call to 2304 // free and an unconditional branch? 2305 // FIXME: We could check if we can speculate everything in the 2306 // predecessor block 2307 if (FreeInstrBB->size() != 2) 2308 return nullptr; 2309 BasicBlock *SuccBB; 2310 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB))) 2311 return nullptr; 2312 2313 // Validate the rest of constraint #1 by matching on the pred branch. 2314 TerminatorInst *TI = PredBB->getTerminator(); 2315 BasicBlock *TrueBB, *FalseBB; 2316 ICmpInst::Predicate Pred; 2317 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB))) 2318 return nullptr; 2319 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2320 return nullptr; 2321 2322 // Validate constraint #3: Ensure the null case just falls through. 2323 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2324 return nullptr; 2325 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2326 "Broken CFG: missing edge from predecessor to successor"); 2327 2328 FI.moveBefore(TI); 2329 return &FI; 2330 } 2331 2332 Instruction *InstCombiner::visitFree(CallInst &FI) { 2333 Value *Op = FI.getArgOperand(0); 2334 2335 // free undef -> unreachable. 2336 if (isa<UndefValue>(Op)) { 2337 // Insert a new store to null because we cannot modify the CFG here. 2338 Builder.CreateStore(ConstantInt::getTrue(FI.getContext()), 2339 UndefValue::get(Type::getInt1PtrTy(FI.getContext()))); 2340 return eraseInstFromFunction(FI); 2341 } 2342 2343 // If we have 'free null' delete the instruction. This can happen in stl code 2344 // when lots of inlining happens. 2345 if (isa<ConstantPointerNull>(Op)) 2346 return eraseInstFromFunction(FI); 2347 2348 // If we optimize for code size, try to move the call to free before the null 2349 // test so that simplify cfg can remove the empty block and dead code 2350 // elimination the branch. I.e., helps to turn something like: 2351 // if (foo) free(foo); 2352 // into 2353 // free(foo); 2354 if (MinimizeSize) 2355 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI)) 2356 return I; 2357 2358 return nullptr; 2359 } 2360 2361 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { 2362 if (RI.getNumOperands() == 0) // ret void 2363 return nullptr; 2364 2365 Value *ResultOp = RI.getOperand(0); 2366 Type *VTy = ResultOp->getType(); 2367 if (!VTy->isIntegerTy()) 2368 return nullptr; 2369 2370 // There might be assume intrinsics dominating this return that completely 2371 // determine the value. If so, constant fold it. 2372 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2373 if (Known.isConstant()) 2374 RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant())); 2375 2376 return nullptr; 2377 } 2378 2379 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 2380 // Change br (not X), label True, label False to: br X, label False, True 2381 Value *X = nullptr; 2382 BasicBlock *TrueDest; 2383 BasicBlock *FalseDest; 2384 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && 2385 !isa<Constant>(X)) { 2386 // Swap Destinations and condition... 2387 BI.setCondition(X); 2388 BI.swapSuccessors(); 2389 return &BI; 2390 } 2391 2392 // If the condition is irrelevant, remove the use so that other 2393 // transforms on the condition become more effective. 2394 if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) && 2395 BI.getSuccessor(0) == BI.getSuccessor(1)) { 2396 BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType())); 2397 return &BI; 2398 } 2399 2400 // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq. 2401 CmpInst::Predicate Pred; 2402 if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), TrueDest, 2403 FalseDest)) && 2404 !isCanonicalPredicate(Pred)) { 2405 // Swap destinations and condition. 2406 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 2407 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2408 BI.swapSuccessors(); 2409 Worklist.Add(Cond); 2410 return &BI; 2411 } 2412 2413 return nullptr; 2414 } 2415 2416 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 2417 Value *Cond = SI.getCondition(); 2418 Value *Op0; 2419 ConstantInt *AddRHS; 2420 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 2421 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2422 for (auto Case : SI.cases()) { 2423 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 2424 assert(isa<ConstantInt>(NewCase) && 2425 "Result of expression should be constant"); 2426 Case.setValue(cast<ConstantInt>(NewCase)); 2427 } 2428 SI.setCondition(Op0); 2429 return &SI; 2430 } 2431 2432 KnownBits Known = computeKnownBits(Cond, 0, &SI); 2433 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 2434 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 2435 2436 // Compute the number of leading bits we can ignore. 2437 // TODO: A better way to determine this would use ComputeNumSignBits(). 2438 for (auto &C : SI.cases()) { 2439 LeadingKnownZeros = std::min( 2440 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2441 LeadingKnownOnes = std::min( 2442 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2443 } 2444 2445 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 2446 2447 // Shrink the condition operand if the new type is smaller than the old type. 2448 // This may produce a non-standard type for the switch, but that's ok because 2449 // the backend should extend back to a legal type for the target. 2450 if (NewWidth > 0 && NewWidth < Known.getBitWidth()) { 2451 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2452 Builder.SetInsertPoint(&SI); 2453 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 2454 SI.setCondition(NewCond); 2455 2456 for (auto Case : SI.cases()) { 2457 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 2458 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 2459 } 2460 return &SI; 2461 } 2462 2463 return nullptr; 2464 } 2465 2466 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 2467 Value *Agg = EV.getAggregateOperand(); 2468 2469 if (!EV.hasIndices()) 2470 return replaceInstUsesWith(EV, Agg); 2471 2472 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 2473 SQ.getWithInstruction(&EV))) 2474 return replaceInstUsesWith(EV, V); 2475 2476 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 2477 // We're extracting from an insertvalue instruction, compare the indices 2478 const unsigned *exti, *exte, *insi, *inse; 2479 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 2480 exte = EV.idx_end(), inse = IV->idx_end(); 2481 exti != exte && insi != inse; 2482 ++exti, ++insi) { 2483 if (*insi != *exti) 2484 // The insert and extract both reference distinctly different elements. 2485 // This means the extract is not influenced by the insert, and we can 2486 // replace the aggregate operand of the extract with the aggregate 2487 // operand of the insert. i.e., replace 2488 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2489 // %E = extractvalue { i32, { i32 } } %I, 0 2490 // with 2491 // %E = extractvalue { i32, { i32 } } %A, 0 2492 return ExtractValueInst::Create(IV->getAggregateOperand(), 2493 EV.getIndices()); 2494 } 2495 if (exti == exte && insi == inse) 2496 // Both iterators are at the end: Index lists are identical. Replace 2497 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2498 // %C = extractvalue { i32, { i32 } } %B, 1, 0 2499 // with "i32 42" 2500 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 2501 if (exti == exte) { 2502 // The extract list is a prefix of the insert list. i.e. replace 2503 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2504 // %E = extractvalue { i32, { i32 } } %I, 1 2505 // with 2506 // %X = extractvalue { i32, { i32 } } %A, 1 2507 // %E = insertvalue { i32 } %X, i32 42, 0 2508 // by switching the order of the insert and extract (though the 2509 // insertvalue should be left in, since it may have other uses). 2510 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 2511 EV.getIndices()); 2512 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 2513 makeArrayRef(insi, inse)); 2514 } 2515 if (insi == inse) 2516 // The insert list is a prefix of the extract list 2517 // We can simply remove the common indices from the extract and make it 2518 // operate on the inserted value instead of the insertvalue result. 2519 // i.e., replace 2520 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2521 // %E = extractvalue { i32, { i32 } } %I, 1, 0 2522 // with 2523 // %E extractvalue { i32 } { i32 42 }, 0 2524 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 2525 makeArrayRef(exti, exte)); 2526 } 2527 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { 2528 // We're extracting from an intrinsic, see if we're the only user, which 2529 // allows us to simplify multiple result intrinsics to simpler things that 2530 // just get one value. 2531 if (II->hasOneUse()) { 2532 // Check if we're grabbing the overflow bit or the result of a 'with 2533 // overflow' intrinsic. If it's the latter we can remove the intrinsic 2534 // and replace it with a traditional binary instruction. 2535 switch (II->getIntrinsicID()) { 2536 case Intrinsic::uadd_with_overflow: 2537 case Intrinsic::sadd_with_overflow: 2538 if (*EV.idx_begin() == 0) { // Normal result. 2539 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2540 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2541 eraseInstFromFunction(*II); 2542 return BinaryOperator::CreateAdd(LHS, RHS); 2543 } 2544 2545 // If the normal result of the add is dead, and the RHS is a constant, 2546 // we can transform this into a range comparison. 2547 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 2548 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) 2549 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1))) 2550 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0), 2551 ConstantExpr::getNot(CI)); 2552 break; 2553 case Intrinsic::usub_with_overflow: 2554 case Intrinsic::ssub_with_overflow: 2555 if (*EV.idx_begin() == 0) { // Normal result. 2556 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2557 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2558 eraseInstFromFunction(*II); 2559 return BinaryOperator::CreateSub(LHS, RHS); 2560 } 2561 break; 2562 case Intrinsic::umul_with_overflow: 2563 case Intrinsic::smul_with_overflow: 2564 if (*EV.idx_begin() == 0) { // Normal result. 2565 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2566 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2567 eraseInstFromFunction(*II); 2568 return BinaryOperator::CreateMul(LHS, RHS); 2569 } 2570 break; 2571 default: 2572 break; 2573 } 2574 } 2575 } 2576 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2577 // If the (non-volatile) load only has one use, we can rewrite this to a 2578 // load from a GEP. This reduces the size of the load. If a load is used 2579 // only by extractvalue instructions then this either must have been 2580 // optimized before, or it is a struct with padding, in which case we 2581 // don't want to do the transformation as it loses padding knowledge. 2582 if (L->isSimple() && L->hasOneUse()) { 2583 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2584 SmallVector<Value*, 4> Indices; 2585 // Prefix an i32 0 since we need the first element. 2586 Indices.push_back(Builder.getInt32(0)); 2587 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2588 I != E; ++I) 2589 Indices.push_back(Builder.getInt32(*I)); 2590 2591 // We need to insert these at the location of the old load, not at that of 2592 // the extractvalue. 2593 Builder.SetInsertPoint(L); 2594 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 2595 L->getPointerOperand(), Indices); 2596 Instruction *NL = Builder.CreateLoad(GEP); 2597 // Whatever aliasing information we had for the orignal load must also 2598 // hold for the smaller load, so propagate the annotations. 2599 AAMDNodes Nodes; 2600 L->getAAMetadata(Nodes); 2601 NL->setAAMetadata(Nodes); 2602 // Returning the load directly will cause the main loop to insert it in 2603 // the wrong spot, so use replaceInstUsesWith(). 2604 return replaceInstUsesWith(EV, NL); 2605 } 2606 // We could simplify extracts from other values. Note that nested extracts may 2607 // already be simplified implicitly by the above: extract (extract (insert) ) 2608 // will be translated into extract ( insert ( extract ) ) first and then just 2609 // the value inserted, if appropriate. Similarly for extracts from single-use 2610 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2611 // and if again single-use then via load (gep (gep)) to load (gep). 2612 // However, double extracts from e.g. function arguments or return values 2613 // aren't handled yet. 2614 return nullptr; 2615 } 2616 2617 /// Return 'true' if the given typeinfo will match anything. 2618 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 2619 switch (Personality) { 2620 case EHPersonality::GNU_C: 2621 case EHPersonality::GNU_C_SjLj: 2622 case EHPersonality::Rust: 2623 // The GCC C EH and Rust personality only exists to support cleanups, so 2624 // it's not clear what the semantics of catch clauses are. 2625 return false; 2626 case EHPersonality::Unknown: 2627 return false; 2628 case EHPersonality::GNU_Ada: 2629 // While __gnat_all_others_value will match any Ada exception, it doesn't 2630 // match foreign exceptions (or didn't, before gcc-4.7). 2631 return false; 2632 case EHPersonality::GNU_CXX: 2633 case EHPersonality::GNU_CXX_SjLj: 2634 case EHPersonality::GNU_ObjC: 2635 case EHPersonality::MSVC_X86SEH: 2636 case EHPersonality::MSVC_Win64SEH: 2637 case EHPersonality::MSVC_CXX: 2638 case EHPersonality::CoreCLR: 2639 case EHPersonality::Wasm_CXX: 2640 return TypeInfo->isNullValue(); 2641 } 2642 llvm_unreachable("invalid enum"); 2643 } 2644 2645 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2646 return 2647 cast<ArrayType>(LHS->getType())->getNumElements() 2648 < 2649 cast<ArrayType>(RHS->getType())->getNumElements(); 2650 } 2651 2652 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2653 // The logic here should be correct for any real-world personality function. 2654 // However if that turns out not to be true, the offending logic can always 2655 // be conditioned on the personality function, like the catch-all logic is. 2656 EHPersonality Personality = 2657 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 2658 2659 // Simplify the list of clauses, eg by removing repeated catch clauses 2660 // (these are often created by inlining). 2661 bool MakeNewInstruction = false; // If true, recreate using the following: 2662 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2663 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2664 2665 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 2666 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 2667 bool isLastClause = i + 1 == e; 2668 if (LI.isCatch(i)) { 2669 // A catch clause. 2670 Constant *CatchClause = LI.getClause(i); 2671 Constant *TypeInfo = CatchClause->stripPointerCasts(); 2672 2673 // If we already saw this clause, there is no point in having a second 2674 // copy of it. 2675 if (AlreadyCaught.insert(TypeInfo).second) { 2676 // This catch clause was not already seen. 2677 NewClauses.push_back(CatchClause); 2678 } else { 2679 // Repeated catch clause - drop the redundant copy. 2680 MakeNewInstruction = true; 2681 } 2682 2683 // If this is a catch-all then there is no point in keeping any following 2684 // clauses or marking the landingpad as having a cleanup. 2685 if (isCatchAll(Personality, TypeInfo)) { 2686 if (!isLastClause) 2687 MakeNewInstruction = true; 2688 CleanupFlag = false; 2689 break; 2690 } 2691 } else { 2692 // A filter clause. If any of the filter elements were already caught 2693 // then they can be dropped from the filter. It is tempting to try to 2694 // exploit the filter further by saying that any typeinfo that does not 2695 // occur in the filter can't be caught later (and thus can be dropped). 2696 // However this would be wrong, since typeinfos can match without being 2697 // equal (for example if one represents a C++ class, and the other some 2698 // class derived from it). 2699 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 2700 Constant *FilterClause = LI.getClause(i); 2701 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 2702 unsigned NumTypeInfos = FilterType->getNumElements(); 2703 2704 // An empty filter catches everything, so there is no point in keeping any 2705 // following clauses or marking the landingpad as having a cleanup. By 2706 // dealing with this case here the following code is made a bit simpler. 2707 if (!NumTypeInfos) { 2708 NewClauses.push_back(FilterClause); 2709 if (!isLastClause) 2710 MakeNewInstruction = true; 2711 CleanupFlag = false; 2712 break; 2713 } 2714 2715 bool MakeNewFilter = false; // If true, make a new filter. 2716 SmallVector<Constant *, 16> NewFilterElts; // New elements. 2717 if (isa<ConstantAggregateZero>(FilterClause)) { 2718 // Not an empty filter - it contains at least one null typeinfo. 2719 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 2720 Constant *TypeInfo = 2721 Constant::getNullValue(FilterType->getElementType()); 2722 // If this typeinfo is a catch-all then the filter can never match. 2723 if (isCatchAll(Personality, TypeInfo)) { 2724 // Throw the filter away. 2725 MakeNewInstruction = true; 2726 continue; 2727 } 2728 2729 // There is no point in having multiple copies of this typeinfo, so 2730 // discard all but the first copy if there is more than one. 2731 NewFilterElts.push_back(TypeInfo); 2732 if (NumTypeInfos > 1) 2733 MakeNewFilter = true; 2734 } else { 2735 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 2736 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 2737 NewFilterElts.reserve(NumTypeInfos); 2738 2739 // Remove any filter elements that were already caught or that already 2740 // occurred in the filter. While there, see if any of the elements are 2741 // catch-alls. If so, the filter can be discarded. 2742 bool SawCatchAll = false; 2743 for (unsigned j = 0; j != NumTypeInfos; ++j) { 2744 Constant *Elt = Filter->getOperand(j); 2745 Constant *TypeInfo = Elt->stripPointerCasts(); 2746 if (isCatchAll(Personality, TypeInfo)) { 2747 // This element is a catch-all. Bail out, noting this fact. 2748 SawCatchAll = true; 2749 break; 2750 } 2751 2752 // Even if we've seen a type in a catch clause, we don't want to 2753 // remove it from the filter. An unexpected type handler may be 2754 // set up for a call site which throws an exception of the same 2755 // type caught. In order for the exception thrown by the unexpected 2756 // handler to propagate correctly, the filter must be correctly 2757 // described for the call site. 2758 // 2759 // Example: 2760 // 2761 // void unexpected() { throw 1;} 2762 // void foo() throw (int) { 2763 // std::set_unexpected(unexpected); 2764 // try { 2765 // throw 2.0; 2766 // } catch (int i) {} 2767 // } 2768 2769 // There is no point in having multiple copies of the same typeinfo in 2770 // a filter, so only add it if we didn't already. 2771 if (SeenInFilter.insert(TypeInfo).second) 2772 NewFilterElts.push_back(cast<Constant>(Elt)); 2773 } 2774 // A filter containing a catch-all cannot match anything by definition. 2775 if (SawCatchAll) { 2776 // Throw the filter away. 2777 MakeNewInstruction = true; 2778 continue; 2779 } 2780 2781 // If we dropped something from the filter, make a new one. 2782 if (NewFilterElts.size() < NumTypeInfos) 2783 MakeNewFilter = true; 2784 } 2785 if (MakeNewFilter) { 2786 FilterType = ArrayType::get(FilterType->getElementType(), 2787 NewFilterElts.size()); 2788 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 2789 MakeNewInstruction = true; 2790 } 2791 2792 NewClauses.push_back(FilterClause); 2793 2794 // If the new filter is empty then it will catch everything so there is 2795 // no point in keeping any following clauses or marking the landingpad 2796 // as having a cleanup. The case of the original filter being empty was 2797 // already handled above. 2798 if (MakeNewFilter && !NewFilterElts.size()) { 2799 assert(MakeNewInstruction && "New filter but not a new instruction!"); 2800 CleanupFlag = false; 2801 break; 2802 } 2803 } 2804 } 2805 2806 // If several filters occur in a row then reorder them so that the shortest 2807 // filters come first (those with the smallest number of elements). This is 2808 // advantageous because shorter filters are more likely to match, speeding up 2809 // unwinding, but mostly because it increases the effectiveness of the other 2810 // filter optimizations below. 2811 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 2812 unsigned j; 2813 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 2814 for (j = i; j != e; ++j) 2815 if (!isa<ArrayType>(NewClauses[j]->getType())) 2816 break; 2817 2818 // Check whether the filters are already sorted by length. We need to know 2819 // if sorting them is actually going to do anything so that we only make a 2820 // new landingpad instruction if it does. 2821 for (unsigned k = i; k + 1 < j; ++k) 2822 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 2823 // Not sorted, so sort the filters now. Doing an unstable sort would be 2824 // correct too but reordering filters pointlessly might confuse users. 2825 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 2826 shorter_filter); 2827 MakeNewInstruction = true; 2828 break; 2829 } 2830 2831 // Look for the next batch of filters. 2832 i = j + 1; 2833 } 2834 2835 // If typeinfos matched if and only if equal, then the elements of a filter L 2836 // that occurs later than a filter F could be replaced by the intersection of 2837 // the elements of F and L. In reality two typeinfos can match without being 2838 // equal (for example if one represents a C++ class, and the other some class 2839 // derived from it) so it would be wrong to perform this transform in general. 2840 // However the transform is correct and useful if F is a subset of L. In that 2841 // case L can be replaced by F, and thus removed altogether since repeating a 2842 // filter is pointless. So here we look at all pairs of filters F and L where 2843 // L follows F in the list of clauses, and remove L if every element of F is 2844 // an element of L. This can occur when inlining C++ functions with exception 2845 // specifications. 2846 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 2847 // Examine each filter in turn. 2848 Value *Filter = NewClauses[i]; 2849 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 2850 if (!FTy) 2851 // Not a filter - skip it. 2852 continue; 2853 unsigned FElts = FTy->getNumElements(); 2854 // Examine each filter following this one. Doing this backwards means that 2855 // we don't have to worry about filters disappearing under us when removed. 2856 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 2857 Value *LFilter = NewClauses[j]; 2858 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 2859 if (!LTy) 2860 // Not a filter - skip it. 2861 continue; 2862 // If Filter is a subset of LFilter, i.e. every element of Filter is also 2863 // an element of LFilter, then discard LFilter. 2864 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 2865 // If Filter is empty then it is a subset of LFilter. 2866 if (!FElts) { 2867 // Discard LFilter. 2868 NewClauses.erase(J); 2869 MakeNewInstruction = true; 2870 // Move on to the next filter. 2871 continue; 2872 } 2873 unsigned LElts = LTy->getNumElements(); 2874 // If Filter is longer than LFilter then it cannot be a subset of it. 2875 if (FElts > LElts) 2876 // Move on to the next filter. 2877 continue; 2878 // At this point we know that LFilter has at least one element. 2879 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 2880 // Filter is a subset of LFilter iff Filter contains only zeros (as we 2881 // already know that Filter is not longer than LFilter). 2882 if (isa<ConstantAggregateZero>(Filter)) { 2883 assert(FElts <= LElts && "Should have handled this case earlier!"); 2884 // Discard LFilter. 2885 NewClauses.erase(J); 2886 MakeNewInstruction = true; 2887 } 2888 // Move on to the next filter. 2889 continue; 2890 } 2891 ConstantArray *LArray = cast<ConstantArray>(LFilter); 2892 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 2893 // Since Filter is non-empty and contains only zeros, it is a subset of 2894 // LFilter iff LFilter contains a zero. 2895 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 2896 for (unsigned l = 0; l != LElts; ++l) 2897 if (LArray->getOperand(l)->isNullValue()) { 2898 // LFilter contains a zero - discard it. 2899 NewClauses.erase(J); 2900 MakeNewInstruction = true; 2901 break; 2902 } 2903 // Move on to the next filter. 2904 continue; 2905 } 2906 // At this point we know that both filters are ConstantArrays. Loop over 2907 // operands to see whether every element of Filter is also an element of 2908 // LFilter. Since filters tend to be short this is probably faster than 2909 // using a method that scales nicely. 2910 ConstantArray *FArray = cast<ConstantArray>(Filter); 2911 bool AllFound = true; 2912 for (unsigned f = 0; f != FElts; ++f) { 2913 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 2914 AllFound = false; 2915 for (unsigned l = 0; l != LElts; ++l) { 2916 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 2917 if (LTypeInfo == FTypeInfo) { 2918 AllFound = true; 2919 break; 2920 } 2921 } 2922 if (!AllFound) 2923 break; 2924 } 2925 if (AllFound) { 2926 // Discard LFilter. 2927 NewClauses.erase(J); 2928 MakeNewInstruction = true; 2929 } 2930 // Move on to the next filter. 2931 } 2932 } 2933 2934 // If we changed any of the clauses, replace the old landingpad instruction 2935 // with a new one. 2936 if (MakeNewInstruction) { 2937 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 2938 NewClauses.size()); 2939 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 2940 NLI->addClause(NewClauses[i]); 2941 // A landing pad with no clauses must have the cleanup flag set. It is 2942 // theoretically possible, though highly unlikely, that we eliminated all 2943 // clauses. If so, force the cleanup flag to true. 2944 if (NewClauses.empty()) 2945 CleanupFlag = true; 2946 NLI->setCleanup(CleanupFlag); 2947 return NLI; 2948 } 2949 2950 // Even if none of the clauses changed, we may nonetheless have understood 2951 // that the cleanup flag is pointless. Clear it if so. 2952 if (LI.isCleanup() != CleanupFlag) { 2953 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 2954 LI.setCleanup(CleanupFlag); 2955 return &LI; 2956 } 2957 2958 return nullptr; 2959 } 2960 2961 /// Try to move the specified instruction from its current block into the 2962 /// beginning of DestBlock, which can only happen if it's safe to move the 2963 /// instruction past all of the instructions between it and the end of its 2964 /// block. 2965 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 2966 assert(I->hasOneUse() && "Invariants didn't hold!"); 2967 BasicBlock *SrcBlock = I->getParent(); 2968 2969 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 2970 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 2971 I->isTerminator()) 2972 return false; 2973 2974 // Do not sink alloca instructions out of the entry block. 2975 if (isa<AllocaInst>(I) && I->getParent() == 2976 &DestBlock->getParent()->getEntryBlock()) 2977 return false; 2978 2979 // Do not sink into catchswitch blocks. 2980 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 2981 return false; 2982 2983 // Do not sink convergent call instructions. 2984 if (auto *CI = dyn_cast<CallInst>(I)) { 2985 if (CI->isConvergent()) 2986 return false; 2987 } 2988 // We can only sink load instructions if there is nothing between the load and 2989 // the end of block that could change the value. 2990 if (I->mayReadFromMemory()) { 2991 for (BasicBlock::iterator Scan = I->getIterator(), 2992 E = I->getParent()->end(); 2993 Scan != E; ++Scan) 2994 if (Scan->mayWriteToMemory()) 2995 return false; 2996 } 2997 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 2998 I->moveBefore(&*InsertPos); 2999 ++NumSunkInst; 3000 3001 // Also sink all related debug uses from the source basic block. Otherwise we 3002 // get debug use before the def. 3003 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 3004 findDbgUsers(DbgUsers, I); 3005 for (auto *DII : DbgUsers) { 3006 if (DII->getParent() == SrcBlock) { 3007 DII->moveBefore(&*InsertPos); 3008 LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n'); 3009 } 3010 } 3011 return true; 3012 } 3013 3014 bool InstCombiner::run() { 3015 while (!Worklist.isEmpty()) { 3016 Instruction *I = Worklist.RemoveOne(); 3017 if (I == nullptr) continue; // skip null values. 3018 3019 // Check to see if we can DCE the instruction. 3020 if (isInstructionTriviallyDead(I, &TLI)) { 3021 LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); 3022 eraseInstFromFunction(*I); 3023 ++NumDeadInst; 3024 MadeIRChange = true; 3025 continue; 3026 } 3027 3028 if (!DebugCounter::shouldExecute(VisitCounter)) 3029 continue; 3030 3031 // Instruction isn't dead, see if we can constant propagate it. 3032 if (!I->use_empty() && 3033 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 3034 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 3035 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 3036 << '\n'); 3037 3038 // Add operands to the worklist. 3039 replaceInstUsesWith(*I, C); 3040 ++NumConstProp; 3041 if (isInstructionTriviallyDead(I, &TLI)) 3042 eraseInstFromFunction(*I); 3043 MadeIRChange = true; 3044 continue; 3045 } 3046 } 3047 3048 // In general, it is possible for computeKnownBits to determine all bits in 3049 // a value even when the operands are not all constants. 3050 Type *Ty = I->getType(); 3051 if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) { 3052 KnownBits Known = computeKnownBits(I, /*Depth*/0, I); 3053 if (Known.isConstant()) { 3054 Constant *C = ConstantInt::get(Ty, Known.getConstant()); 3055 LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C 3056 << " from: " << *I << '\n'); 3057 3058 // Add operands to the worklist. 3059 replaceInstUsesWith(*I, C); 3060 ++NumConstProp; 3061 if (isInstructionTriviallyDead(I, &TLI)) 3062 eraseInstFromFunction(*I); 3063 MadeIRChange = true; 3064 continue; 3065 } 3066 } 3067 3068 // See if we can trivially sink this instruction to a successor basic block. 3069 if (I->hasOneUse()) { 3070 BasicBlock *BB = I->getParent(); 3071 Instruction *UserInst = cast<Instruction>(*I->user_begin()); 3072 BasicBlock *UserParent; 3073 3074 // Get the block the use occurs in. 3075 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 3076 UserParent = PN->getIncomingBlock(*I->use_begin()); 3077 else 3078 UserParent = UserInst->getParent(); 3079 3080 if (UserParent != BB) { 3081 bool UserIsSuccessor = false; 3082 // See if the user is one of our successors. 3083 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 3084 if (*SI == UserParent) { 3085 UserIsSuccessor = true; 3086 break; 3087 } 3088 3089 // If the user is one of our immediate successors, and if that successor 3090 // only has us as a predecessors (we'd have to split the critical edge 3091 // otherwise), we can keep going. 3092 if (UserIsSuccessor && UserParent->getUniquePredecessor()) { 3093 // Okay, the CFG is simple enough, try to sink this instruction. 3094 if (TryToSinkInstruction(I, UserParent)) { 3095 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3096 MadeIRChange = true; 3097 // We'll add uses of the sunk instruction below, but since sinking 3098 // can expose opportunities for it's *operands* add them to the 3099 // worklist 3100 for (Use &U : I->operands()) 3101 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3102 Worklist.Add(OpI); 3103 } 3104 } 3105 } 3106 } 3107 3108 // Now that we have an instruction, try combining it to simplify it. 3109 Builder.SetInsertPoint(I); 3110 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 3111 3112 #ifndef NDEBUG 3113 std::string OrigI; 3114 #endif 3115 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 3116 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 3117 3118 if (Instruction *Result = visit(*I)) { 3119 ++NumCombined; 3120 // Should we replace the old instruction with a new one? 3121 if (Result != I) { 3122 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 3123 << " New = " << *Result << '\n'); 3124 3125 if (I->getDebugLoc()) 3126 Result->setDebugLoc(I->getDebugLoc()); 3127 // Everything uses the new instruction now. 3128 I->replaceAllUsesWith(Result); 3129 3130 // Move the name to the new instruction first. 3131 Result->takeName(I); 3132 3133 // Push the new instruction and any users onto the worklist. 3134 Worklist.AddUsersToWorkList(*Result); 3135 Worklist.Add(Result); 3136 3137 // Insert the new instruction into the basic block... 3138 BasicBlock *InstParent = I->getParent(); 3139 BasicBlock::iterator InsertPos = I->getIterator(); 3140 3141 // If we replace a PHI with something that isn't a PHI, fix up the 3142 // insertion point. 3143 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 3144 InsertPos = InstParent->getFirstInsertionPt(); 3145 3146 InstParent->getInstList().insert(InsertPos, Result); 3147 3148 eraseInstFromFunction(*I); 3149 } else { 3150 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3151 << " New = " << *I << '\n'); 3152 3153 // If the instruction was modified, it's possible that it is now dead. 3154 // if so, remove it. 3155 if (isInstructionTriviallyDead(I, &TLI)) { 3156 eraseInstFromFunction(*I); 3157 } else { 3158 Worklist.AddUsersToWorkList(*I); 3159 Worklist.Add(I); 3160 } 3161 } 3162 MadeIRChange = true; 3163 } 3164 } 3165 3166 Worklist.Zap(); 3167 return MadeIRChange; 3168 } 3169 3170 /// Walk the function in depth-first order, adding all reachable code to the 3171 /// worklist. 3172 /// 3173 /// This has a couple of tricks to make the code faster and more powerful. In 3174 /// particular, we constant fold and DCE instructions as we go, to avoid adding 3175 /// them to the worklist (this significantly speeds up instcombine on code where 3176 /// many instructions are dead or constant). Additionally, if we find a branch 3177 /// whose condition is a known constant, we only visit the reachable successors. 3178 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, 3179 SmallPtrSetImpl<BasicBlock *> &Visited, 3180 InstCombineWorklist &ICWorklist, 3181 const TargetLibraryInfo *TLI) { 3182 bool MadeIRChange = false; 3183 SmallVector<BasicBlock*, 256> Worklist; 3184 Worklist.push_back(BB); 3185 3186 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 3187 DenseMap<Constant *, Constant *> FoldedConstants; 3188 3189 do { 3190 BB = Worklist.pop_back_val(); 3191 3192 // We have now visited this block! If we've already been here, ignore it. 3193 if (!Visited.insert(BB).second) 3194 continue; 3195 3196 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 3197 Instruction *Inst = &*BBI++; 3198 3199 // DCE instruction if trivially dead. 3200 if (isInstructionTriviallyDead(Inst, TLI)) { 3201 ++NumDeadInst; 3202 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 3203 salvageDebugInfo(*Inst); 3204 Inst->eraseFromParent(); 3205 MadeIRChange = true; 3206 continue; 3207 } 3208 3209 // ConstantProp instruction if trivially constant. 3210 if (!Inst->use_empty() && 3211 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 3212 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 3213 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst 3214 << '\n'); 3215 Inst->replaceAllUsesWith(C); 3216 ++NumConstProp; 3217 if (isInstructionTriviallyDead(Inst, TLI)) 3218 Inst->eraseFromParent(); 3219 MadeIRChange = true; 3220 continue; 3221 } 3222 3223 // See if we can constant fold its operands. 3224 for (Use &U : Inst->operands()) { 3225 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 3226 continue; 3227 3228 auto *C = cast<Constant>(U); 3229 Constant *&FoldRes = FoldedConstants[C]; 3230 if (!FoldRes) 3231 FoldRes = ConstantFoldConstant(C, DL, TLI); 3232 if (!FoldRes) 3233 FoldRes = C; 3234 3235 if (FoldRes != C) { 3236 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst 3237 << "\n Old = " << *C 3238 << "\n New = " << *FoldRes << '\n'); 3239 U = FoldRes; 3240 MadeIRChange = true; 3241 } 3242 } 3243 3244 // Skip processing debug intrinsics in InstCombine. Processing these call instructions 3245 // consumes non-trivial amount of time and provides no value for the optimization. 3246 if (!isa<DbgInfoIntrinsic>(Inst)) 3247 InstrsForInstCombineWorklist.push_back(Inst); 3248 } 3249 3250 // Recursively visit successors. If this is a branch or switch on a 3251 // constant, only visit the reachable successor. 3252 TerminatorInst *TI = BB->getTerminator(); 3253 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3254 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 3255 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 3256 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 3257 Worklist.push_back(ReachableBB); 3258 continue; 3259 } 3260 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3261 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 3262 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 3263 continue; 3264 } 3265 } 3266 3267 for (BasicBlock *SuccBB : successors(TI)) 3268 Worklist.push_back(SuccBB); 3269 } while (!Worklist.empty()); 3270 3271 // Once we've found all of the instructions to add to instcombine's worklist, 3272 // add them in reverse order. This way instcombine will visit from the top 3273 // of the function down. This jives well with the way that it adds all uses 3274 // of instructions to the worklist after doing a transformation, thus avoiding 3275 // some N^2 behavior in pathological cases. 3276 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist); 3277 3278 return MadeIRChange; 3279 } 3280 3281 /// Populate the IC worklist from a function, and prune any dead basic 3282 /// blocks discovered in the process. 3283 /// 3284 /// This also does basic constant propagation and other forward fixing to make 3285 /// the combiner itself run much faster. 3286 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 3287 TargetLibraryInfo *TLI, 3288 InstCombineWorklist &ICWorklist) { 3289 bool MadeIRChange = false; 3290 3291 // Do a depth-first traversal of the function, populate the worklist with 3292 // the reachable instructions. Ignore blocks that are not reachable. Keep 3293 // track of which blocks we visit. 3294 SmallPtrSet<BasicBlock *, 32> Visited; 3295 MadeIRChange |= 3296 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI); 3297 3298 // Do a quick scan over the function. If we find any blocks that are 3299 // unreachable, remove any instructions inside of them. This prevents 3300 // the instcombine code from having to deal with some bad special cases. 3301 for (BasicBlock &BB : F) { 3302 if (Visited.count(&BB)) 3303 continue; 3304 3305 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB); 3306 MadeIRChange |= NumDeadInstInBB > 0; 3307 NumDeadInst += NumDeadInstInBB; 3308 } 3309 3310 return MadeIRChange; 3311 } 3312 3313 static bool combineInstructionsOverFunction( 3314 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, 3315 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, 3316 OptimizationRemarkEmitter &ORE, bool ExpensiveCombines = true, 3317 LoopInfo *LI = nullptr) { 3318 auto &DL = F.getParent()->getDataLayout(); 3319 ExpensiveCombines |= EnableExpensiveCombines; 3320 3321 /// Builder - This is an IRBuilder that automatically inserts new 3322 /// instructions into the worklist when they are created. 3323 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 3324 F.getContext(), TargetFolder(DL), 3325 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 3326 Worklist.Add(I); 3327 if (match(I, m_Intrinsic<Intrinsic::assume>())) 3328 AC.registerAssumption(cast<CallInst>(I)); 3329 })); 3330 3331 // Lower dbg.declare intrinsics otherwise their value may be clobbered 3332 // by instcombiner. 3333 bool MadeIRChange = false; 3334 if (ShouldLowerDbgDeclare) 3335 MadeIRChange = LowerDbgDeclare(F); 3336 3337 // Iterate while there is work to do. 3338 int Iteration = 0; 3339 while (true) { 3340 ++Iteration; 3341 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 3342 << F.getName() << "\n"); 3343 3344 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 3345 3346 InstCombiner IC(Worklist, Builder, F.optForMinSize(), ExpensiveCombines, AA, 3347 AC, TLI, DT, ORE, DL, LI); 3348 IC.MaxArraySizeForCombine = MaxArraySize; 3349 3350 if (!IC.run()) 3351 break; 3352 } 3353 3354 return MadeIRChange || Iteration > 1; 3355 } 3356 3357 PreservedAnalyses InstCombinePass::run(Function &F, 3358 FunctionAnalysisManager &AM) { 3359 auto &AC = AM.getResult<AssumptionAnalysis>(F); 3360 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 3361 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 3362 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3363 3364 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 3365 3366 auto *AA = &AM.getResult<AAManager>(F); 3367 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, 3368 ExpensiveCombines, LI)) 3369 // No changes, all analyses are preserved. 3370 return PreservedAnalyses::all(); 3371 3372 // Mark all the analyses that instcombine updates as preserved. 3373 PreservedAnalyses PA; 3374 PA.preserveSet<CFGAnalyses>(); 3375 PA.preserve<AAManager>(); 3376 PA.preserve<BasicAA>(); 3377 PA.preserve<GlobalsAA>(); 3378 return PA; 3379 } 3380 3381 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 3382 AU.setPreservesCFG(); 3383 AU.addRequired<AAResultsWrapperPass>(); 3384 AU.addRequired<AssumptionCacheTracker>(); 3385 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3386 AU.addRequired<DominatorTreeWrapperPass>(); 3387 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3388 AU.addPreserved<DominatorTreeWrapperPass>(); 3389 AU.addPreserved<AAResultsWrapperPass>(); 3390 AU.addPreserved<BasicAAWrapperPass>(); 3391 AU.addPreserved<GlobalsAAWrapperPass>(); 3392 } 3393 3394 bool InstructionCombiningPass::runOnFunction(Function &F) { 3395 if (skipFunction(F)) 3396 return false; 3397 3398 // Required analyses. 3399 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3400 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3401 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 3402 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3403 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 3404 3405 // Optional analyses. 3406 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3407 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 3408 3409 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, 3410 ExpensiveCombines, LI); 3411 } 3412 3413 char InstructionCombiningPass::ID = 0; 3414 3415 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 3416 "Combine redundant instructions", false, false) 3417 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3418 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3419 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3420 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3421 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3422 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3423 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 3424 "Combine redundant instructions", false, false) 3425 3426 // Initialization Routines 3427 void llvm::initializeInstCombine(PassRegistry &Registry) { 3428 initializeInstructionCombiningPassPass(Registry); 3429 } 3430 3431 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 3432 initializeInstructionCombiningPassPass(*unwrap(R)); 3433 } 3434 3435 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) { 3436 return new InstructionCombiningPass(ExpensiveCombines); 3437 } 3438 3439 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 3440 unwrap(PM)->add(createInstructionCombiningPass()); 3441 } 3442