1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/TinyPtrVector.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/BlockFrequencyInfo.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/MemoryBuiltins.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ProfileSummaryInfo.h" 60 #include "llvm/Analysis/TargetFolder.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/ValueTracking.h" 63 #include "llvm/Analysis/VectorUtils.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/CFG.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DIBuilder.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/Dominators.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/IRBuilder.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/Intrinsics.h" 80 #include "llvm/IR/LegacyPassManager.h" 81 #include "llvm/IR/Metadata.h" 82 #include "llvm/IR/Operator.h" 83 #include "llvm/IR/PassManager.h" 84 #include "llvm/IR/PatternMatch.h" 85 #include "llvm/IR/Type.h" 86 #include "llvm/IR/Use.h" 87 #include "llvm/IR/User.h" 88 #include "llvm/IR/Value.h" 89 #include "llvm/IR/ValueHandle.h" 90 #include "llvm/InitializePasses.h" 91 #include "llvm/Pass.h" 92 #include "llvm/Support/CBindingWrapping.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/DebugCounter.h" 98 #include "llvm/Support/ErrorHandling.h" 99 #include "llvm/Support/KnownBits.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Transforms/InstCombine/InstCombine.h" 102 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <algorithm> 105 #include <cassert> 106 #include <cstdint> 107 #include <memory> 108 #include <string> 109 #include <utility> 110 111 using namespace llvm; 112 using namespace llvm::PatternMatch; 113 114 #define DEBUG_TYPE "instcombine" 115 116 STATISTIC(NumCombined , "Number of insts combined"); 117 STATISTIC(NumConstProp, "Number of constant folds"); 118 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 119 STATISTIC(NumSunkInst , "Number of instructions sunk"); 120 STATISTIC(NumExpand, "Number of expansions"); 121 STATISTIC(NumFactor , "Number of factorizations"); 122 STATISTIC(NumReassoc , "Number of reassociations"); 123 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 124 "Controls which instructions are visited"); 125 126 static constexpr unsigned InstCombineDefaultMaxIterations = 1000; 127 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; 128 129 static cl::opt<bool> 130 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 131 cl::init(true)); 132 133 static cl::opt<unsigned> LimitMaxIterations( 134 "instcombine-max-iterations", 135 cl::desc("Limit the maximum number of instruction combining iterations"), 136 cl::init(InstCombineDefaultMaxIterations)); 137 138 static cl::opt<unsigned> InfiniteLoopDetectionThreshold( 139 "instcombine-infinite-loop-threshold", 140 cl::desc("Number of instruction combining iterations considered an " 141 "infinite loop"), 142 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); 143 144 static cl::opt<unsigned> 145 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 146 cl::desc("Maximum array size considered when doing a combine")); 147 148 // FIXME: Remove this flag when it is no longer necessary to convert 149 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 150 // increases variable availability at the cost of accuracy. Variables that 151 // cannot be promoted by mem2reg or SROA will be described as living in memory 152 // for their entire lifetime. However, passes like DSE and instcombine can 153 // delete stores to the alloca, leading to misleading and inaccurate debug 154 // information. This flag can be removed when those passes are fixed. 155 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 156 cl::Hidden, cl::init(true)); 157 158 Value *InstCombiner::EmitGEPOffset(User *GEP) { 159 return llvm::EmitGEPOffset(&Builder, DL, GEP); 160 } 161 162 /// Return true if it is desirable to convert an integer computation from a 163 /// given bit width to a new bit width. 164 /// We don't want to convert from a legal to an illegal type or from a smaller 165 /// to a larger illegal type. A width of '1' is always treated as a legal type 166 /// because i1 is a fundamental type in IR, and there are many specialized 167 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as 168 /// legal to convert to, in order to open up more combining opportunities. 169 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common 170 /// from frontend languages. 171 bool InstCombiner::shouldChangeType(unsigned FromWidth, 172 unsigned ToWidth) const { 173 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 174 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 175 176 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only 177 // shrink types, to prevent infinite loops. 178 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32)) 179 return true; 180 181 // If this is a legal integer from type, and the result would be an illegal 182 // type, don't do the transformation. 183 if (FromLegal && !ToLegal) 184 return false; 185 186 // Otherwise, if both are illegal, do not increase the size of the result. We 187 // do allow things like i160 -> i64, but not i64 -> i160. 188 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 189 return false; 190 191 return true; 192 } 193 194 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 195 /// We don't want to convert from a legal to an illegal type or from a smaller 196 /// to a larger illegal type. i1 is always treated as a legal type because it is 197 /// a fundamental type in IR, and there are many specialized optimizations for 198 /// i1 types. 199 bool InstCombiner::shouldChangeType(Type *From, Type *To) const { 200 // TODO: This could be extended to allow vectors. Datalayout changes might be 201 // needed to properly support that. 202 if (!From->isIntegerTy() || !To->isIntegerTy()) 203 return false; 204 205 unsigned FromWidth = From->getPrimitiveSizeInBits(); 206 unsigned ToWidth = To->getPrimitiveSizeInBits(); 207 return shouldChangeType(FromWidth, ToWidth); 208 } 209 210 // Return true, if No Signed Wrap should be maintained for I. 211 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 212 // where both B and C should be ConstantInts, results in a constant that does 213 // not overflow. This function only handles the Add and Sub opcodes. For 214 // all other opcodes, the function conservatively returns false. 215 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 216 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 217 if (!OBO || !OBO->hasNoSignedWrap()) 218 return false; 219 220 // We reason about Add and Sub Only. 221 Instruction::BinaryOps Opcode = I.getOpcode(); 222 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 223 return false; 224 225 const APInt *BVal, *CVal; 226 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 227 return false; 228 229 bool Overflow = false; 230 if (Opcode == Instruction::Add) 231 (void)BVal->sadd_ov(*CVal, Overflow); 232 else 233 (void)BVal->ssub_ov(*CVal, Overflow); 234 235 return !Overflow; 236 } 237 238 static bool hasNoUnsignedWrap(BinaryOperator &I) { 239 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 240 return OBO && OBO->hasNoUnsignedWrap(); 241 } 242 243 static bool hasNoSignedWrap(BinaryOperator &I) { 244 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 245 return OBO && OBO->hasNoSignedWrap(); 246 } 247 248 /// Conservatively clears subclassOptionalData after a reassociation or 249 /// commutation. We preserve fast-math flags when applicable as they can be 250 /// preserved. 251 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 252 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 253 if (!FPMO) { 254 I.clearSubclassOptionalData(); 255 return; 256 } 257 258 FastMathFlags FMF = I.getFastMathFlags(); 259 I.clearSubclassOptionalData(); 260 I.setFastMathFlags(FMF); 261 } 262 263 /// Combine constant operands of associative operations either before or after a 264 /// cast to eliminate one of the associative operations: 265 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 266 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 267 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, InstCombiner &IC) { 268 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 269 if (!Cast || !Cast->hasOneUse()) 270 return false; 271 272 // TODO: Enhance logic for other casts and remove this check. 273 auto CastOpcode = Cast->getOpcode(); 274 if (CastOpcode != Instruction::ZExt) 275 return false; 276 277 // TODO: Enhance logic for other BinOps and remove this check. 278 if (!BinOp1->isBitwiseLogicOp()) 279 return false; 280 281 auto AssocOpcode = BinOp1->getOpcode(); 282 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 283 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 284 return false; 285 286 Constant *C1, *C2; 287 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 288 !match(BinOp2->getOperand(1), m_Constant(C2))) 289 return false; 290 291 // TODO: This assumes a zext cast. 292 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 293 // to the destination type might lose bits. 294 295 // Fold the constants together in the destination type: 296 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 297 Type *DestTy = C1->getType(); 298 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 299 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 300 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 301 IC.replaceOperand(*BinOp1, 1, FoldedC); 302 return true; 303 } 304 305 /// This performs a few simplifications for operators that are associative or 306 /// commutative: 307 /// 308 /// Commutative operators: 309 /// 310 /// 1. Order operands such that they are listed from right (least complex) to 311 /// left (most complex). This puts constants before unary operators before 312 /// binary operators. 313 /// 314 /// Associative operators: 315 /// 316 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 317 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 318 /// 319 /// Associative and commutative operators: 320 /// 321 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 322 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 323 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 324 /// if C1 and C2 are constants. 325 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 326 Instruction::BinaryOps Opcode = I.getOpcode(); 327 bool Changed = false; 328 329 do { 330 // Order operands such that they are listed from right (least complex) to 331 // left (most complex). This puts constants before unary operators before 332 // binary operators. 333 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 334 getComplexity(I.getOperand(1))) 335 Changed = !I.swapOperands(); 336 337 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 338 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 339 340 if (I.isAssociative()) { 341 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 342 if (Op0 && Op0->getOpcode() == Opcode) { 343 Value *A = Op0->getOperand(0); 344 Value *B = Op0->getOperand(1); 345 Value *C = I.getOperand(1); 346 347 // Does "B op C" simplify? 348 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 349 // It simplifies to V. Form "A op V". 350 replaceOperand(I, 0, A); 351 replaceOperand(I, 1, V); 352 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 353 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 354 355 // Conservatively clear all optional flags since they may not be 356 // preserved by the reassociation. Reset nsw/nuw based on the above 357 // analysis. 358 ClearSubclassDataAfterReassociation(I); 359 360 // Note: this is only valid because SimplifyBinOp doesn't look at 361 // the operands to Op0. 362 if (IsNUW) 363 I.setHasNoUnsignedWrap(true); 364 365 if (IsNSW) 366 I.setHasNoSignedWrap(true); 367 368 Changed = true; 369 ++NumReassoc; 370 continue; 371 } 372 } 373 374 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 375 if (Op1 && Op1->getOpcode() == Opcode) { 376 Value *A = I.getOperand(0); 377 Value *B = Op1->getOperand(0); 378 Value *C = Op1->getOperand(1); 379 380 // Does "A op B" simplify? 381 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 382 // It simplifies to V. Form "V op C". 383 replaceOperand(I, 0, V); 384 replaceOperand(I, 1, C); 385 // Conservatively clear the optional flags, since they may not be 386 // preserved by the reassociation. 387 ClearSubclassDataAfterReassociation(I); 388 Changed = true; 389 ++NumReassoc; 390 continue; 391 } 392 } 393 } 394 395 if (I.isAssociative() && I.isCommutative()) { 396 if (simplifyAssocCastAssoc(&I, *this)) { 397 Changed = true; 398 ++NumReassoc; 399 continue; 400 } 401 402 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 403 if (Op0 && Op0->getOpcode() == Opcode) { 404 Value *A = Op0->getOperand(0); 405 Value *B = Op0->getOperand(1); 406 Value *C = I.getOperand(1); 407 408 // Does "C op A" simplify? 409 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 410 // It simplifies to V. Form "V op B". 411 replaceOperand(I, 0, V); 412 replaceOperand(I, 1, B); 413 // Conservatively clear the optional flags, since they may not be 414 // preserved by the reassociation. 415 ClearSubclassDataAfterReassociation(I); 416 Changed = true; 417 ++NumReassoc; 418 continue; 419 } 420 } 421 422 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 423 if (Op1 && Op1->getOpcode() == Opcode) { 424 Value *A = I.getOperand(0); 425 Value *B = Op1->getOperand(0); 426 Value *C = Op1->getOperand(1); 427 428 // Does "C op A" simplify? 429 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 430 // It simplifies to V. Form "B op V". 431 replaceOperand(I, 0, B); 432 replaceOperand(I, 1, V); 433 // Conservatively clear the optional flags, since they may not be 434 // preserved by the reassociation. 435 ClearSubclassDataAfterReassociation(I); 436 Changed = true; 437 ++NumReassoc; 438 continue; 439 } 440 } 441 442 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 443 // if C1 and C2 are constants. 444 Value *A, *B; 445 Constant *C1, *C2; 446 if (Op0 && Op1 && 447 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 448 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 449 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 450 bool IsNUW = hasNoUnsignedWrap(I) && 451 hasNoUnsignedWrap(*Op0) && 452 hasNoUnsignedWrap(*Op1); 453 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 454 BinaryOperator::CreateNUW(Opcode, A, B) : 455 BinaryOperator::Create(Opcode, A, B); 456 457 if (isa<FPMathOperator>(NewBO)) { 458 FastMathFlags Flags = I.getFastMathFlags(); 459 Flags &= Op0->getFastMathFlags(); 460 Flags &= Op1->getFastMathFlags(); 461 NewBO->setFastMathFlags(Flags); 462 } 463 InsertNewInstWith(NewBO, I); 464 NewBO->takeName(Op1); 465 replaceOperand(I, 0, NewBO); 466 replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2)); 467 // Conservatively clear the optional flags, since they may not be 468 // preserved by the reassociation. 469 ClearSubclassDataAfterReassociation(I); 470 if (IsNUW) 471 I.setHasNoUnsignedWrap(true); 472 473 Changed = true; 474 continue; 475 } 476 } 477 478 // No further simplifications. 479 return Changed; 480 } while (true); 481 } 482 483 /// Return whether "X LOp (Y ROp Z)" is always equal to 484 /// "(X LOp Y) ROp (X LOp Z)". 485 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 486 Instruction::BinaryOps ROp) { 487 // X & (Y | Z) <--> (X & Y) | (X & Z) 488 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 489 if (LOp == Instruction::And) 490 return ROp == Instruction::Or || ROp == Instruction::Xor; 491 492 // X | (Y & Z) <--> (X | Y) & (X | Z) 493 if (LOp == Instruction::Or) 494 return ROp == Instruction::And; 495 496 // X * (Y + Z) <--> (X * Y) + (X * Z) 497 // X * (Y - Z) <--> (X * Y) - (X * Z) 498 if (LOp == Instruction::Mul) 499 return ROp == Instruction::Add || ROp == Instruction::Sub; 500 501 return false; 502 } 503 504 /// Return whether "(X LOp Y) ROp Z" is always equal to 505 /// "(X ROp Z) LOp (Y ROp Z)". 506 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 507 Instruction::BinaryOps ROp) { 508 if (Instruction::isCommutative(ROp)) 509 return leftDistributesOverRight(ROp, LOp); 510 511 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 512 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 513 514 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 515 // but this requires knowing that the addition does not overflow and other 516 // such subtleties. 517 } 518 519 /// This function returns identity value for given opcode, which can be used to 520 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 521 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 522 if (isa<Constant>(V)) 523 return nullptr; 524 525 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 526 } 527 528 /// This function predicates factorization using distributive laws. By default, 529 /// it just returns the 'Op' inputs. But for special-cases like 530 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 531 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 532 /// allow more factorization opportunities. 533 static Instruction::BinaryOps 534 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 535 Value *&LHS, Value *&RHS) { 536 assert(Op && "Expected a binary operator"); 537 LHS = Op->getOperand(0); 538 RHS = Op->getOperand(1); 539 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 540 Constant *C; 541 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 542 // X << C --> X * (1 << C) 543 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 544 return Instruction::Mul; 545 } 546 // TODO: We can add other conversions e.g. shr => div etc. 547 } 548 return Op->getOpcode(); 549 } 550 551 /// This tries to simplify binary operations by factorizing out common terms 552 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 553 Value *InstCombiner::tryFactorization(BinaryOperator &I, 554 Instruction::BinaryOps InnerOpcode, 555 Value *A, Value *B, Value *C, Value *D) { 556 assert(A && B && C && D && "All values must be provided"); 557 558 Value *V = nullptr; 559 Value *SimplifiedInst = nullptr; 560 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 561 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 562 563 // Does "X op' Y" always equal "Y op' X"? 564 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 565 566 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 567 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 568 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 569 // commutative case, "(A op' B) op (C op' A)"? 570 if (A == C || (InnerCommutative && A == D)) { 571 if (A != C) 572 std::swap(C, D); 573 // Consider forming "A op' (B op D)". 574 // If "B op D" simplifies then it can be formed with no cost. 575 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 576 // If "B op D" doesn't simplify then only go on if both of the existing 577 // operations "A op' B" and "C op' D" will be zapped as no longer used. 578 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 579 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 580 if (V) { 581 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 582 } 583 } 584 585 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 586 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 587 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 588 // commutative case, "(A op' B) op (B op' D)"? 589 if (B == D || (InnerCommutative && B == C)) { 590 if (B != D) 591 std::swap(C, D); 592 // Consider forming "(A op C) op' B". 593 // If "A op C" simplifies then it can be formed with no cost. 594 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 595 596 // If "A op C" doesn't simplify then only go on if both of the existing 597 // operations "A op' B" and "C op' D" will be zapped as no longer used. 598 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 599 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 600 if (V) { 601 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 602 } 603 } 604 605 if (SimplifiedInst) { 606 ++NumFactor; 607 SimplifiedInst->takeName(&I); 608 609 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 610 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 611 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 612 bool HasNSW = false; 613 bool HasNUW = false; 614 if (isa<OverflowingBinaryOperator>(&I)) { 615 HasNSW = I.hasNoSignedWrap(); 616 HasNUW = I.hasNoUnsignedWrap(); 617 } 618 619 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 620 HasNSW &= LOBO->hasNoSignedWrap(); 621 HasNUW &= LOBO->hasNoUnsignedWrap(); 622 } 623 624 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 625 HasNSW &= ROBO->hasNoSignedWrap(); 626 HasNUW &= ROBO->hasNoUnsignedWrap(); 627 } 628 629 if (TopLevelOpcode == Instruction::Add && 630 InnerOpcode == Instruction::Mul) { 631 // We can propagate 'nsw' if we know that 632 // %Y = mul nsw i16 %X, C 633 // %Z = add nsw i16 %Y, %X 634 // => 635 // %Z = mul nsw i16 %X, C+1 636 // 637 // iff C+1 isn't INT_MIN 638 const APInt *CInt; 639 if (match(V, m_APInt(CInt))) { 640 if (!CInt->isMinSignedValue()) 641 BO->setHasNoSignedWrap(HasNSW); 642 } 643 644 // nuw can be propagated with any constant or nuw value. 645 BO->setHasNoUnsignedWrap(HasNUW); 646 } 647 } 648 } 649 } 650 return SimplifiedInst; 651 } 652 653 /// This tries to simplify binary operations which some other binary operation 654 /// distributes over either by factorizing out common terms 655 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 656 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 657 /// Returns the simplified value, or null if it didn't simplify. 658 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 659 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 660 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 661 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 662 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 663 664 { 665 // Factorization. 666 Value *A, *B, *C, *D; 667 Instruction::BinaryOps LHSOpcode, RHSOpcode; 668 if (Op0) 669 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 670 if (Op1) 671 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 672 673 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 674 // a common term. 675 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 676 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 677 return V; 678 679 // The instruction has the form "(A op' B) op (C)". Try to factorize common 680 // term. 681 if (Op0) 682 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 683 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 684 return V; 685 686 // The instruction has the form "(B) op (C op' D)". Try to factorize common 687 // term. 688 if (Op1) 689 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 690 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 691 return V; 692 } 693 694 // Expansion. 695 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 696 // The instruction has the form "(A op' B) op C". See if expanding it out 697 // to "(A op C) op' (B op C)" results in simplifications. 698 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 699 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 700 701 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 702 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I)); 703 704 // Do "A op C" and "B op C" both simplify? 705 if (L && R) { 706 // They do! Return "L op' R". 707 ++NumExpand; 708 C = Builder.CreateBinOp(InnerOpcode, L, R); 709 C->takeName(&I); 710 return C; 711 } 712 713 // Does "A op C" simplify to the identity value for the inner opcode? 714 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 715 // They do! Return "B op C". 716 ++NumExpand; 717 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 718 C->takeName(&I); 719 return C; 720 } 721 722 // Does "B op C" simplify to the identity value for the inner opcode? 723 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 724 // They do! Return "A op C". 725 ++NumExpand; 726 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 727 C->takeName(&I); 728 return C; 729 } 730 } 731 732 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 733 // The instruction has the form "A op (B op' C)". See if expanding it out 734 // to "(A op B) op' (A op C)" results in simplifications. 735 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 736 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 737 738 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I)); 739 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 740 741 // Do "A op B" and "A op C" both simplify? 742 if (L && R) { 743 // They do! Return "L op' R". 744 ++NumExpand; 745 A = Builder.CreateBinOp(InnerOpcode, L, R); 746 A->takeName(&I); 747 return A; 748 } 749 750 // Does "A op B" simplify to the identity value for the inner opcode? 751 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 752 // They do! Return "A op C". 753 ++NumExpand; 754 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 755 A->takeName(&I); 756 return A; 757 } 758 759 // Does "A op C" simplify to the identity value for the inner opcode? 760 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 761 // They do! Return "A op B". 762 ++NumExpand; 763 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 764 A->takeName(&I); 765 return A; 766 } 767 } 768 769 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 770 } 771 772 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 773 Value *LHS, Value *RHS) { 774 Value *A, *B, *C, *D, *E, *F; 775 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 776 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 777 if (!LHSIsSelect && !RHSIsSelect) 778 return nullptr; 779 780 FastMathFlags FMF; 781 BuilderTy::FastMathFlagGuard Guard(Builder); 782 if (isa<FPMathOperator>(&I)) { 783 FMF = I.getFastMathFlags(); 784 Builder.setFastMathFlags(FMF); 785 } 786 787 Instruction::BinaryOps Opcode = I.getOpcode(); 788 SimplifyQuery Q = SQ.getWithInstruction(&I); 789 790 Value *Cond, *True = nullptr, *False = nullptr; 791 if (LHSIsSelect && RHSIsSelect && A == D) { 792 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 793 Cond = A; 794 True = SimplifyBinOp(Opcode, B, E, FMF, Q); 795 False = SimplifyBinOp(Opcode, C, F, FMF, Q); 796 797 if (LHS->hasOneUse() && RHS->hasOneUse()) { 798 if (False && !True) 799 True = Builder.CreateBinOp(Opcode, B, E); 800 else if (True && !False) 801 False = Builder.CreateBinOp(Opcode, C, F); 802 } 803 } else if (LHSIsSelect && LHS->hasOneUse()) { 804 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 805 Cond = A; 806 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q); 807 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q); 808 } else if (RHSIsSelect && RHS->hasOneUse()) { 809 // X op (D ? E : F) -> D ? (X op E) : (X op F) 810 Cond = D; 811 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q); 812 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q); 813 } 814 815 if (!True || !False) 816 return nullptr; 817 818 Value *SI = Builder.CreateSelect(Cond, True, False); 819 SI->takeName(&I); 820 return SI; 821 } 822 823 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 824 /// constant zero (which is the 'negate' form). 825 Value *InstCombiner::dyn_castNegVal(Value *V) const { 826 Value *NegV; 827 if (match(V, m_Neg(m_Value(NegV)))) 828 return NegV; 829 830 // Constants can be considered to be negated values if they can be folded. 831 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 832 return ConstantExpr::getNeg(C); 833 834 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 835 if (C->getType()->getElementType()->isIntegerTy()) 836 return ConstantExpr::getNeg(C); 837 838 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 839 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 840 Constant *Elt = CV->getAggregateElement(i); 841 if (!Elt) 842 return nullptr; 843 844 if (isa<UndefValue>(Elt)) 845 continue; 846 847 if (!isa<ConstantInt>(Elt)) 848 return nullptr; 849 } 850 return ConstantExpr::getNeg(CV); 851 } 852 853 return nullptr; 854 } 855 856 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 857 InstCombiner::BuilderTy &Builder) { 858 if (auto *Cast = dyn_cast<CastInst>(&I)) 859 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 860 861 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 862 863 // Figure out if the constant is the left or the right argument. 864 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 865 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 866 867 if (auto *SOC = dyn_cast<Constant>(SO)) { 868 if (ConstIsRHS) 869 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 870 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 871 } 872 873 Value *Op0 = SO, *Op1 = ConstOperand; 874 if (!ConstIsRHS) 875 std::swap(Op0, Op1); 876 877 auto *BO = cast<BinaryOperator>(&I); 878 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 879 SO->getName() + ".op"); 880 auto *FPInst = dyn_cast<Instruction>(RI); 881 if (FPInst && isa<FPMathOperator>(FPInst)) 882 FPInst->copyFastMathFlags(BO); 883 return RI; 884 } 885 886 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 887 // Don't modify shared select instructions. 888 if (!SI->hasOneUse()) 889 return nullptr; 890 891 Value *TV = SI->getTrueValue(); 892 Value *FV = SI->getFalseValue(); 893 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 894 return nullptr; 895 896 // Bool selects with constant operands can be folded to logical ops. 897 if (SI->getType()->isIntOrIntVectorTy(1)) 898 return nullptr; 899 900 // If it's a bitcast involving vectors, make sure it has the same number of 901 // elements on both sides. 902 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 903 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 904 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 905 906 // Verify that either both or neither are vectors. 907 if ((SrcTy == nullptr) != (DestTy == nullptr)) 908 return nullptr; 909 910 // If vectors, verify that they have the same number of elements. 911 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 912 return nullptr; 913 } 914 915 // Test if a CmpInst instruction is used exclusively by a select as 916 // part of a minimum or maximum operation. If so, refrain from doing 917 // any other folding. This helps out other analyses which understand 918 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 919 // and CodeGen. And in this case, at least one of the comparison 920 // operands has at least one user besides the compare (the select), 921 // which would often largely negate the benefit of folding anyway. 922 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 923 if (CI->hasOneUse()) { 924 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 925 926 // FIXME: This is a hack to avoid infinite looping with min/max patterns. 927 // We have to ensure that vector constants that only differ with 928 // undef elements are treated as equivalent. 929 auto areLooselyEqual = [](Value *A, Value *B) { 930 if (A == B) 931 return true; 932 933 // Test for vector constants. 934 Constant *ConstA, *ConstB; 935 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB))) 936 return false; 937 938 // TODO: Deal with FP constants? 939 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType()) 940 return false; 941 942 // Compare for equality including undefs as equal. 943 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB); 944 const APInt *C; 945 return match(Cmp, m_APIntAllowUndef(C)) && C->isOneValue(); 946 }; 947 948 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) || 949 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1))) 950 return nullptr; 951 } 952 } 953 954 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 955 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 956 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 957 } 958 959 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 960 InstCombiner::BuilderTy &Builder) { 961 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 962 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 963 964 if (auto *InC = dyn_cast<Constant>(InV)) { 965 if (ConstIsRHS) 966 return ConstantExpr::get(I->getOpcode(), InC, C); 967 return ConstantExpr::get(I->getOpcode(), C, InC); 968 } 969 970 Value *Op0 = InV, *Op1 = C; 971 if (!ConstIsRHS) 972 std::swap(Op0, Op1); 973 974 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp"); 975 auto *FPInst = dyn_cast<Instruction>(RI); 976 if (FPInst && isa<FPMathOperator>(FPInst)) 977 FPInst->copyFastMathFlags(I); 978 return RI; 979 } 980 981 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) { 982 unsigned NumPHIValues = PN->getNumIncomingValues(); 983 if (NumPHIValues == 0) 984 return nullptr; 985 986 // We normally only transform phis with a single use. However, if a PHI has 987 // multiple uses and they are all the same operation, we can fold *all* of the 988 // uses into the PHI. 989 if (!PN->hasOneUse()) { 990 // Walk the use list for the instruction, comparing them to I. 991 for (User *U : PN->users()) { 992 Instruction *UI = cast<Instruction>(U); 993 if (UI != &I && !I.isIdenticalTo(UI)) 994 return nullptr; 995 } 996 // Otherwise, we can replace *all* users with the new PHI we form. 997 } 998 999 // Check to see if all of the operands of the PHI are simple constants 1000 // (constantint/constantfp/undef). If there is one non-constant value, 1001 // remember the BB it is in. If there is more than one or if *it* is a PHI, 1002 // bail out. We don't do arbitrary constant expressions here because moving 1003 // their computation can be expensive without a cost model. 1004 BasicBlock *NonConstBB = nullptr; 1005 for (unsigned i = 0; i != NumPHIValues; ++i) { 1006 Value *InVal = PN->getIncomingValue(i); 1007 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 1008 continue; 1009 1010 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 1011 if (NonConstBB) return nullptr; // More than one non-const value. 1012 1013 NonConstBB = PN->getIncomingBlock(i); 1014 1015 // If the InVal is an invoke at the end of the pred block, then we can't 1016 // insert a computation after it without breaking the edge. 1017 if (isa<InvokeInst>(InVal)) 1018 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 1019 return nullptr; 1020 1021 // If the incoming non-constant value is in I's block, we will remove one 1022 // instruction, but insert another equivalent one, leading to infinite 1023 // instcombine. 1024 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI)) 1025 return nullptr; 1026 } 1027 1028 // If there is exactly one non-constant value, we can insert a copy of the 1029 // operation in that block. However, if this is a critical edge, we would be 1030 // inserting the computation on some other paths (e.g. inside a loop). Only 1031 // do this if the pred block is unconditionally branching into the phi block. 1032 if (NonConstBB != nullptr) { 1033 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1034 if (!BI || !BI->isUnconditional()) return nullptr; 1035 } 1036 1037 // Okay, we can do the transformation: create the new PHI node. 1038 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1039 InsertNewInstBefore(NewPN, *PN); 1040 NewPN->takeName(PN); 1041 1042 // If we are going to have to insert a new computation, do so right before the 1043 // predecessor's terminator. 1044 if (NonConstBB) 1045 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1046 1047 // Next, add all of the operands to the PHI. 1048 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1049 // We only currently try to fold the condition of a select when it is a phi, 1050 // not the true/false values. 1051 Value *TrueV = SI->getTrueValue(); 1052 Value *FalseV = SI->getFalseValue(); 1053 BasicBlock *PhiTransBB = PN->getParent(); 1054 for (unsigned i = 0; i != NumPHIValues; ++i) { 1055 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1056 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1057 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1058 Value *InV = nullptr; 1059 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1060 // even if currently isNullValue gives false. 1061 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1062 // For vector constants, we cannot use isNullValue to fold into 1063 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1064 // elements in the vector, we will incorrectly fold InC to 1065 // `TrueVInPred`. 1066 if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC)) 1067 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1068 else { 1069 // Generate the select in the same block as PN's current incoming block. 1070 // Note: ThisBB need not be the NonConstBB because vector constants 1071 // which are constants by definition are handled here. 1072 // FIXME: This can lead to an increase in IR generation because we might 1073 // generate selects for vector constant phi operand, that could not be 1074 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1075 // non-vector phis, this transformation was always profitable because 1076 // the select would be generated exactly once in the NonConstBB. 1077 Builder.SetInsertPoint(ThisBB->getTerminator()); 1078 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1079 FalseVInPred, "phitmp"); 1080 } 1081 NewPN->addIncoming(InV, ThisBB); 1082 } 1083 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1084 Constant *C = cast<Constant>(I.getOperand(1)); 1085 for (unsigned i = 0; i != NumPHIValues; ++i) { 1086 Value *InV = nullptr; 1087 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1088 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1089 else if (isa<ICmpInst>(CI)) 1090 InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 1091 C, "phitmp"); 1092 else 1093 InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 1094 C, "phitmp"); 1095 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1096 } 1097 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1098 for (unsigned i = 0; i != NumPHIValues; ++i) { 1099 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1100 Builder); 1101 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1102 } 1103 } else { 1104 CastInst *CI = cast<CastInst>(&I); 1105 Type *RetTy = CI->getType(); 1106 for (unsigned i = 0; i != NumPHIValues; ++i) { 1107 Value *InV; 1108 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1109 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1110 else 1111 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1112 I.getType(), "phitmp"); 1113 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1114 } 1115 } 1116 1117 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1118 Instruction *User = cast<Instruction>(*UI++); 1119 if (User == &I) continue; 1120 replaceInstUsesWith(*User, NewPN); 1121 eraseInstFromFunction(*User); 1122 } 1123 return replaceInstUsesWith(I, NewPN); 1124 } 1125 1126 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1127 if (!isa<Constant>(I.getOperand(1))) 1128 return nullptr; 1129 1130 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1131 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1132 return NewSel; 1133 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1134 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1135 return NewPhi; 1136 } 1137 return nullptr; 1138 } 1139 1140 /// Given a pointer type and a constant offset, determine whether or not there 1141 /// is a sequence of GEP indices into the pointed type that will land us at the 1142 /// specified offset. If so, fill them into NewIndices and return the resultant 1143 /// element type, otherwise return null. 1144 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 1145 SmallVectorImpl<Value *> &NewIndices) { 1146 Type *Ty = PtrTy->getElementType(); 1147 if (!Ty->isSized()) 1148 return nullptr; 1149 1150 // Start with the index over the outer type. Note that the type size 1151 // might be zero (even if the offset isn't zero) if the indexed type 1152 // is something like [0 x {int, int}] 1153 Type *IndexTy = DL.getIndexType(PtrTy); 1154 int64_t FirstIdx = 0; 1155 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 1156 FirstIdx = Offset/TySize; 1157 Offset -= FirstIdx*TySize; 1158 1159 // Handle hosts where % returns negative instead of values [0..TySize). 1160 if (Offset < 0) { 1161 --FirstIdx; 1162 Offset += TySize; 1163 assert(Offset >= 0); 1164 } 1165 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 1166 } 1167 1168 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx)); 1169 1170 // Index into the types. If we fail, set OrigBase to null. 1171 while (Offset) { 1172 // Indexing into tail padding between struct/array elements. 1173 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1174 return nullptr; 1175 1176 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1177 const StructLayout *SL = DL.getStructLayout(STy); 1178 assert(Offset < (int64_t)SL->getSizeInBytes() && 1179 "Offset must stay within the indexed type"); 1180 1181 unsigned Elt = SL->getElementContainingOffset(Offset); 1182 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1183 Elt)); 1184 1185 Offset -= SL->getElementOffset(Elt); 1186 Ty = STy->getElementType(Elt); 1187 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1188 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1189 assert(EltSize && "Cannot index into a zero-sized array"); 1190 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize)); 1191 Offset %= EltSize; 1192 Ty = AT->getElementType(); 1193 } else { 1194 // Otherwise, we can't index into the middle of this atomic type, bail. 1195 return nullptr; 1196 } 1197 } 1198 1199 return Ty; 1200 } 1201 1202 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1203 // If this GEP has only 0 indices, it is the same pointer as 1204 // Src. If Src is not a trivial GEP too, don't combine 1205 // the indices. 1206 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1207 !Src.hasOneUse()) 1208 return false; 1209 return true; 1210 } 1211 1212 /// Return a value X such that Val = X * Scale, or null if none. 1213 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1214 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1215 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1216 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1217 Scale.getBitWidth() && "Scale not compatible with value!"); 1218 1219 // If Val is zero or Scale is one then Val = Val * Scale. 1220 if (match(Val, m_Zero()) || Scale == 1) { 1221 NoSignedWrap = true; 1222 return Val; 1223 } 1224 1225 // If Scale is zero then it does not divide Val. 1226 if (Scale.isMinValue()) 1227 return nullptr; 1228 1229 // Look through chains of multiplications, searching for a constant that is 1230 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1231 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1232 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1233 // down from Val: 1234 // 1235 // Val = M1 * X || Analysis starts here and works down 1236 // M1 = M2 * Y || Doesn't descend into terms with more 1237 // M2 = Z * 4 \/ than one use 1238 // 1239 // Then to modify a term at the bottom: 1240 // 1241 // Val = M1 * X 1242 // M1 = Z * Y || Replaced M2 with Z 1243 // 1244 // Then to work back up correcting nsw flags. 1245 1246 // Op - the term we are currently analyzing. Starts at Val then drills down. 1247 // Replaced with its descaled value before exiting from the drill down loop. 1248 Value *Op = Val; 1249 1250 // Parent - initially null, but after drilling down notes where Op came from. 1251 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1252 // 0'th operand of Val. 1253 std::pair<Instruction *, unsigned> Parent; 1254 1255 // Set if the transform requires a descaling at deeper levels that doesn't 1256 // overflow. 1257 bool RequireNoSignedWrap = false; 1258 1259 // Log base 2 of the scale. Negative if not a power of 2. 1260 int32_t logScale = Scale.exactLogBase2(); 1261 1262 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1263 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1264 // If Op is a constant divisible by Scale then descale to the quotient. 1265 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1266 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1267 if (!Remainder.isMinValue()) 1268 // Not divisible by Scale. 1269 return nullptr; 1270 // Replace with the quotient in the parent. 1271 Op = ConstantInt::get(CI->getType(), Quotient); 1272 NoSignedWrap = true; 1273 break; 1274 } 1275 1276 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1277 if (BO->getOpcode() == Instruction::Mul) { 1278 // Multiplication. 1279 NoSignedWrap = BO->hasNoSignedWrap(); 1280 if (RequireNoSignedWrap && !NoSignedWrap) 1281 return nullptr; 1282 1283 // There are three cases for multiplication: multiplication by exactly 1284 // the scale, multiplication by a constant different to the scale, and 1285 // multiplication by something else. 1286 Value *LHS = BO->getOperand(0); 1287 Value *RHS = BO->getOperand(1); 1288 1289 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1290 // Multiplication by a constant. 1291 if (CI->getValue() == Scale) { 1292 // Multiplication by exactly the scale, replace the multiplication 1293 // by its left-hand side in the parent. 1294 Op = LHS; 1295 break; 1296 } 1297 1298 // Otherwise drill down into the constant. 1299 if (!Op->hasOneUse()) 1300 return nullptr; 1301 1302 Parent = std::make_pair(BO, 1); 1303 continue; 1304 } 1305 1306 // Multiplication by something else. Drill down into the left-hand side 1307 // since that's where the reassociate pass puts the good stuff. 1308 if (!Op->hasOneUse()) 1309 return nullptr; 1310 1311 Parent = std::make_pair(BO, 0); 1312 continue; 1313 } 1314 1315 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1316 isa<ConstantInt>(BO->getOperand(1))) { 1317 // Multiplication by a power of 2. 1318 NoSignedWrap = BO->hasNoSignedWrap(); 1319 if (RequireNoSignedWrap && !NoSignedWrap) 1320 return nullptr; 1321 1322 Value *LHS = BO->getOperand(0); 1323 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1324 getLimitedValue(Scale.getBitWidth()); 1325 // Op = LHS << Amt. 1326 1327 if (Amt == logScale) { 1328 // Multiplication by exactly the scale, replace the multiplication 1329 // by its left-hand side in the parent. 1330 Op = LHS; 1331 break; 1332 } 1333 if (Amt < logScale || !Op->hasOneUse()) 1334 return nullptr; 1335 1336 // Multiplication by more than the scale. Reduce the multiplying amount 1337 // by the scale in the parent. 1338 Parent = std::make_pair(BO, 1); 1339 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1340 break; 1341 } 1342 } 1343 1344 if (!Op->hasOneUse()) 1345 return nullptr; 1346 1347 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1348 if (Cast->getOpcode() == Instruction::SExt) { 1349 // Op is sign-extended from a smaller type, descale in the smaller type. 1350 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1351 APInt SmallScale = Scale.trunc(SmallSize); 1352 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1353 // descale Op as (sext Y) * Scale. In order to have 1354 // sext (Y * SmallScale) = (sext Y) * Scale 1355 // some conditions need to hold however: SmallScale must sign-extend to 1356 // Scale and the multiplication Y * SmallScale should not overflow. 1357 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1358 // SmallScale does not sign-extend to Scale. 1359 return nullptr; 1360 assert(SmallScale.exactLogBase2() == logScale); 1361 // Require that Y * SmallScale must not overflow. 1362 RequireNoSignedWrap = true; 1363 1364 // Drill down through the cast. 1365 Parent = std::make_pair(Cast, 0); 1366 Scale = SmallScale; 1367 continue; 1368 } 1369 1370 if (Cast->getOpcode() == Instruction::Trunc) { 1371 // Op is truncated from a larger type, descale in the larger type. 1372 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1373 // trunc (Y * sext Scale) = (trunc Y) * Scale 1374 // always holds. However (trunc Y) * Scale may overflow even if 1375 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1376 // from this point up in the expression (see later). 1377 if (RequireNoSignedWrap) 1378 return nullptr; 1379 1380 // Drill down through the cast. 1381 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1382 Parent = std::make_pair(Cast, 0); 1383 Scale = Scale.sext(LargeSize); 1384 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1385 logScale = -1; 1386 assert(Scale.exactLogBase2() == logScale); 1387 continue; 1388 } 1389 } 1390 1391 // Unsupported expression, bail out. 1392 return nullptr; 1393 } 1394 1395 // If Op is zero then Val = Op * Scale. 1396 if (match(Op, m_Zero())) { 1397 NoSignedWrap = true; 1398 return Op; 1399 } 1400 1401 // We know that we can successfully descale, so from here on we can safely 1402 // modify the IR. Op holds the descaled version of the deepest term in the 1403 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1404 // not to overflow. 1405 1406 if (!Parent.first) 1407 // The expression only had one term. 1408 return Op; 1409 1410 // Rewrite the parent using the descaled version of its operand. 1411 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1412 assert(Op != Parent.first->getOperand(Parent.second) && 1413 "Descaling was a no-op?"); 1414 replaceOperand(*Parent.first, Parent.second, Op); 1415 Worklist.push(Parent.first); 1416 1417 // Now work back up the expression correcting nsw flags. The logic is based 1418 // on the following observation: if X * Y is known not to overflow as a signed 1419 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1420 // then X * Z will not overflow as a signed multiplication either. As we work 1421 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1422 // current level has strictly smaller absolute value than the original. 1423 Instruction *Ancestor = Parent.first; 1424 do { 1425 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1426 // If the multiplication wasn't nsw then we can't say anything about the 1427 // value of the descaled multiplication, and we have to clear nsw flags 1428 // from this point on up. 1429 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1430 NoSignedWrap &= OpNoSignedWrap; 1431 if (NoSignedWrap != OpNoSignedWrap) { 1432 BO->setHasNoSignedWrap(NoSignedWrap); 1433 Worklist.push(Ancestor); 1434 } 1435 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1436 // The fact that the descaled input to the trunc has smaller absolute 1437 // value than the original input doesn't tell us anything useful about 1438 // the absolute values of the truncations. 1439 NoSignedWrap = false; 1440 } 1441 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1442 "Failed to keep proper track of nsw flags while drilling down?"); 1443 1444 if (Ancestor == Val) 1445 // Got to the top, all done! 1446 return Val; 1447 1448 // Move up one level in the expression. 1449 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1450 Ancestor = Ancestor->user_back(); 1451 } while (true); 1452 } 1453 1454 Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) { 1455 // FIXME: some of this is likely fine for scalable vectors 1456 if (!isa<FixedVectorType>(Inst.getType())) 1457 return nullptr; 1458 1459 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1460 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1461 assert(cast<VectorType>(LHS->getType())->getElementCount() == 1462 cast<VectorType>(Inst.getType())->getElementCount()); 1463 assert(cast<VectorType>(RHS->getType())->getElementCount() == 1464 cast<VectorType>(Inst.getType())->getElementCount()); 1465 1466 // If both operands of the binop are vector concatenations, then perform the 1467 // narrow binop on each pair of the source operands followed by concatenation 1468 // of the results. 1469 Value *L0, *L1, *R0, *R1; 1470 ArrayRef<int> Mask; 1471 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 1472 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 1473 LHS->hasOneUse() && RHS->hasOneUse() && 1474 cast<ShuffleVectorInst>(LHS)->isConcat() && 1475 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1476 // This transform does not have the speculative execution constraint as 1477 // below because the shuffle is a concatenation. The new binops are 1478 // operating on exactly the same elements as the existing binop. 1479 // TODO: We could ease the mask requirement to allow different undef lanes, 1480 // but that requires an analysis of the binop-with-undef output value. 1481 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1482 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1483 BO->copyIRFlags(&Inst); 1484 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1485 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1486 BO->copyIRFlags(&Inst); 1487 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1488 } 1489 1490 // It may not be safe to reorder shuffles and things like div, urem, etc. 1491 // because we may trap when executing those ops on unknown vector elements. 1492 // See PR20059. 1493 if (!isSafeToSpeculativelyExecute(&Inst)) 1494 return nullptr; 1495 1496 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 1497 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1498 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1499 BO->copyIRFlags(&Inst); 1500 return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M); 1501 }; 1502 1503 // If both arguments of the binary operation are shuffles that use the same 1504 // mask and shuffle within a single vector, move the shuffle after the binop. 1505 Value *V1, *V2; 1506 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) && 1507 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) && 1508 V1->getType() == V2->getType() && 1509 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1510 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1511 return createBinOpShuffle(V1, V2, Mask); 1512 } 1513 1514 // If both arguments of a commutative binop are select-shuffles that use the 1515 // same mask with commuted operands, the shuffles are unnecessary. 1516 if (Inst.isCommutative() && 1517 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 1518 match(RHS, 1519 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 1520 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1521 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1522 // TODO: Allow shuffles that contain undefs in the mask? 1523 // That is legal, but it reduces undef knowledge. 1524 // TODO: Allow arbitrary shuffles by shuffling after binop? 1525 // That might be legal, but we have to deal with poison. 1526 if (LShuf->isSelect() && 1527 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) && 1528 RShuf->isSelect() && 1529 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) { 1530 // Example: 1531 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1532 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1533 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1534 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1535 NewBO->copyIRFlags(&Inst); 1536 return NewBO; 1537 } 1538 } 1539 1540 // If one argument is a shuffle within one vector and the other is a constant, 1541 // try moving the shuffle after the binary operation. This canonicalization 1542 // intends to move shuffles closer to other shuffles and binops closer to 1543 // other binops, so they can be folded. It may also enable demanded elements 1544 // transforms. 1545 unsigned NumElts = cast<FixedVectorType>(Inst.getType())->getNumElements(); 1546 Constant *C; 1547 if (match(&Inst, 1548 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))), 1549 m_Constant(C))) && 1550 cast<FixedVectorType>(V1->getType())->getNumElements() <= NumElts) { 1551 assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() && 1552 "Shuffle should not change scalar type"); 1553 1554 // Find constant NewC that has property: 1555 // shuffle(NewC, ShMask) = C 1556 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1557 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1558 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1559 bool ConstOp1 = isa<Constant>(RHS); 1560 ArrayRef<int> ShMask = Mask; 1561 unsigned SrcVecNumElts = 1562 cast<FixedVectorType>(V1->getType())->getNumElements(); 1563 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1564 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1565 bool MayChange = true; 1566 for (unsigned I = 0; I < NumElts; ++I) { 1567 Constant *CElt = C->getAggregateElement(I); 1568 if (ShMask[I] >= 0) { 1569 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1570 Constant *NewCElt = NewVecC[ShMask[I]]; 1571 // Bail out if: 1572 // 1. The constant vector contains a constant expression. 1573 // 2. The shuffle needs an element of the constant vector that can't 1574 // be mapped to a new constant vector. 1575 // 3. This is a widening shuffle that copies elements of V1 into the 1576 // extended elements (extending with undef is allowed). 1577 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1578 I >= SrcVecNumElts) { 1579 MayChange = false; 1580 break; 1581 } 1582 NewVecC[ShMask[I]] = CElt; 1583 } 1584 // If this is a widening shuffle, we must be able to extend with undef 1585 // elements. If the original binop does not produce an undef in the high 1586 // lanes, then this transform is not safe. 1587 // Similarly for undef lanes due to the shuffle mask, we can only 1588 // transform binops that preserve undef. 1589 // TODO: We could shuffle those non-undef constant values into the 1590 // result by using a constant vector (rather than an undef vector) 1591 // as operand 1 of the new binop, but that might be too aggressive 1592 // for target-independent shuffle creation. 1593 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1594 Constant *MaybeUndef = 1595 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1596 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1597 if (!isa<UndefValue>(MaybeUndef)) { 1598 MayChange = false; 1599 break; 1600 } 1601 } 1602 } 1603 if (MayChange) { 1604 Constant *NewC = ConstantVector::get(NewVecC); 1605 // It may not be safe to execute a binop on a vector with undef elements 1606 // because the entire instruction can be folded to undef or create poison 1607 // that did not exist in the original code. 1608 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1609 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1610 1611 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1612 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1613 Value *NewLHS = ConstOp1 ? V1 : NewC; 1614 Value *NewRHS = ConstOp1 ? NewC : V1; 1615 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1616 } 1617 } 1618 1619 // Try to reassociate to sink a splat shuffle after a binary operation. 1620 if (Inst.isAssociative() && Inst.isCommutative()) { 1621 // Canonicalize shuffle operand as LHS. 1622 if (isa<ShuffleVectorInst>(RHS)) 1623 std::swap(LHS, RHS); 1624 1625 Value *X; 1626 ArrayRef<int> MaskC; 1627 int SplatIndex; 1628 BinaryOperator *BO; 1629 if (!match(LHS, 1630 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 1631 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || 1632 X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) || 1633 BO->getOpcode() != Opcode) 1634 return nullptr; 1635 1636 // FIXME: This may not be safe if the analysis allows undef elements. By 1637 // moving 'Y' before the splat shuffle, we are implicitly assuming 1638 // that it is not undef/poison at the splat index. 1639 Value *Y, *OtherOp; 1640 if (isSplatValue(BO->getOperand(0), SplatIndex)) { 1641 Y = BO->getOperand(0); 1642 OtherOp = BO->getOperand(1); 1643 } else if (isSplatValue(BO->getOperand(1), SplatIndex)) { 1644 Y = BO->getOperand(1); 1645 OtherOp = BO->getOperand(0); 1646 } else { 1647 return nullptr; 1648 } 1649 1650 // X and Y are splatted values, so perform the binary operation on those 1651 // values followed by a splat followed by the 2nd binary operation: 1652 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 1653 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 1654 UndefValue *Undef = UndefValue::get(Inst.getType()); 1655 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 1656 Value *NewSplat = Builder.CreateShuffleVector(NewBO, Undef, NewMask); 1657 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 1658 1659 // Intersect FMF on both new binops. Other (poison-generating) flags are 1660 // dropped to be safe. 1661 if (isa<FPMathOperator>(R)) { 1662 R->copyFastMathFlags(&Inst); 1663 R->andIRFlags(BO); 1664 } 1665 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 1666 NewInstBO->copyIRFlags(R); 1667 return R; 1668 } 1669 1670 return nullptr; 1671 } 1672 1673 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1674 /// of a value. This requires a potentially expensive known bits check to make 1675 /// sure the narrow op does not overflow. 1676 Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) { 1677 // We need at least one extended operand. 1678 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1679 1680 // If this is a sub, we swap the operands since we always want an extension 1681 // on the RHS. The LHS can be an extension or a constant. 1682 if (BO.getOpcode() == Instruction::Sub) 1683 std::swap(Op0, Op1); 1684 1685 Value *X; 1686 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1687 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1688 return nullptr; 1689 1690 // If both operands are the same extension from the same source type and we 1691 // can eliminate at least one (hasOneUse), this might work. 1692 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1693 Value *Y; 1694 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1695 cast<Operator>(Op1)->getOpcode() == CastOpc && 1696 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1697 // If that did not match, see if we have a suitable constant operand. 1698 // Truncating and extending must produce the same constant. 1699 Constant *WideC; 1700 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1701 return nullptr; 1702 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1703 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1704 return nullptr; 1705 Y = NarrowC; 1706 } 1707 1708 // Swap back now that we found our operands. 1709 if (BO.getOpcode() == Instruction::Sub) 1710 std::swap(X, Y); 1711 1712 // Both operands have narrow versions. Last step: the math must not overflow 1713 // in the narrow width. 1714 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1715 return nullptr; 1716 1717 // bo (ext X), (ext Y) --> ext (bo X, Y) 1718 // bo (ext X), C --> ext (bo X, C') 1719 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1720 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1721 if (IsSext) 1722 NewBinOp->setHasNoSignedWrap(); 1723 else 1724 NewBinOp->setHasNoUnsignedWrap(); 1725 } 1726 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1727 } 1728 1729 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 1730 // At least one GEP must be inbounds. 1731 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 1732 return false; 1733 1734 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 1735 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 1736 } 1737 1738 /// Thread a GEP operation with constant indices through the constant true/false 1739 /// arms of a select. 1740 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 1741 InstCombiner::BuilderTy &Builder) { 1742 if (!GEP.hasAllConstantIndices()) 1743 return nullptr; 1744 1745 Instruction *Sel; 1746 Value *Cond; 1747 Constant *TrueC, *FalseC; 1748 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 1749 !match(Sel, 1750 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 1751 return nullptr; 1752 1753 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 1754 // Propagate 'inbounds' and metadata from existing instructions. 1755 // Note: using IRBuilder to create the constants for efficiency. 1756 SmallVector<Value *, 4> IndexC(GEP.idx_begin(), GEP.idx_end()); 1757 bool IsInBounds = GEP.isInBounds(); 1758 Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(TrueC, IndexC) 1759 : Builder.CreateGEP(TrueC, IndexC); 1760 Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(FalseC, IndexC) 1761 : Builder.CreateGEP(FalseC, IndexC); 1762 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 1763 } 1764 1765 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1766 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1767 Type *GEPType = GEP.getType(); 1768 Type *GEPEltType = GEP.getSourceElementType(); 1769 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType); 1770 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP))) 1771 return replaceInstUsesWith(GEP, V); 1772 1773 // For vector geps, use the generic demanded vector support. 1774 // Skip if GEP return type is scalable. The number of elements is unknown at 1775 // compile-time. 1776 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 1777 auto VWidth = GEPFVTy->getNumElements(); 1778 APInt UndefElts(VWidth, 0); 1779 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1780 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 1781 UndefElts)) { 1782 if (V != &GEP) 1783 return replaceInstUsesWith(GEP, V); 1784 return &GEP; 1785 } 1786 1787 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 1788 // possible (decide on canonical form for pointer broadcast), 3) exploit 1789 // undef elements to decrease demanded bits 1790 } 1791 1792 Value *PtrOp = GEP.getOperand(0); 1793 1794 // Eliminate unneeded casts for indices, and replace indices which displace 1795 // by multiples of a zero size type with zero. 1796 bool MadeChange = false; 1797 1798 // Index width may not be the same width as pointer width. 1799 // Data layout chooses the right type based on supported integer types. 1800 Type *NewScalarIndexTy = 1801 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 1802 1803 gep_type_iterator GTI = gep_type_begin(GEP); 1804 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1805 ++I, ++GTI) { 1806 // Skip indices into struct types. 1807 if (GTI.isStruct()) 1808 continue; 1809 1810 Type *IndexTy = (*I)->getType(); 1811 Type *NewIndexType = 1812 IndexTy->isVectorTy() 1813 ? VectorType::get(NewScalarIndexTy, 1814 cast<VectorType>(IndexTy)->getElementCount()) 1815 : NewScalarIndexTy; 1816 1817 // If the element type has zero size then any index over it is equivalent 1818 // to an index of zero, so replace it with zero if it is not zero already. 1819 Type *EltTy = GTI.getIndexedType(); 1820 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 1821 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 1822 *I = Constant::getNullValue(NewIndexType); 1823 MadeChange = true; 1824 } 1825 1826 if (IndexTy != NewIndexType) { 1827 // If we are using a wider index than needed for this platform, shrink 1828 // it to what we need. If narrower, sign-extend it to what we need. 1829 // This explicit cast can make subsequent optimizations more obvious. 1830 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1831 MadeChange = true; 1832 } 1833 } 1834 if (MadeChange) 1835 return &GEP; 1836 1837 // Check to see if the inputs to the PHI node are getelementptr instructions. 1838 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 1839 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1840 if (!Op1) 1841 return nullptr; 1842 1843 // Don't fold a GEP into itself through a PHI node. This can only happen 1844 // through the back-edge of a loop. Folding a GEP into itself means that 1845 // the value of the previous iteration needs to be stored in the meantime, 1846 // thus requiring an additional register variable to be live, but not 1847 // actually achieving anything (the GEP still needs to be executed once per 1848 // loop iteration). 1849 if (Op1 == &GEP) 1850 return nullptr; 1851 1852 int DI = -1; 1853 1854 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1855 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 1856 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1857 return nullptr; 1858 1859 // As for Op1 above, don't try to fold a GEP into itself. 1860 if (Op2 == &GEP) 1861 return nullptr; 1862 1863 // Keep track of the type as we walk the GEP. 1864 Type *CurTy = nullptr; 1865 1866 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1867 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1868 return nullptr; 1869 1870 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1871 if (DI == -1) { 1872 // We have not seen any differences yet in the GEPs feeding the 1873 // PHI yet, so we record this one if it is allowed to be a 1874 // variable. 1875 1876 // The first two arguments can vary for any GEP, the rest have to be 1877 // static for struct slots 1878 if (J > 1) { 1879 assert(CurTy && "No current type?"); 1880 if (CurTy->isStructTy()) 1881 return nullptr; 1882 } 1883 1884 DI = J; 1885 } else { 1886 // The GEP is different by more than one input. While this could be 1887 // extended to support GEPs that vary by more than one variable it 1888 // doesn't make sense since it greatly increases the complexity and 1889 // would result in an R+R+R addressing mode which no backend 1890 // directly supports and would need to be broken into several 1891 // simpler instructions anyway. 1892 return nullptr; 1893 } 1894 } 1895 1896 // Sink down a layer of the type for the next iteration. 1897 if (J > 0) { 1898 if (J == 1) { 1899 CurTy = Op1->getSourceElementType(); 1900 } else { 1901 CurTy = 1902 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 1903 } 1904 } 1905 } 1906 } 1907 1908 // If not all GEPs are identical we'll have to create a new PHI node. 1909 // Check that the old PHI node has only one use so that it will get 1910 // removed. 1911 if (DI != -1 && !PN->hasOneUse()) 1912 return nullptr; 1913 1914 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1915 if (DI == -1) { 1916 // All the GEPs feeding the PHI are identical. Clone one down into our 1917 // BB so that it can be merged with the current GEP. 1918 } else { 1919 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1920 // into the current block so it can be merged, and create a new PHI to 1921 // set that index. 1922 PHINode *NewPN; 1923 { 1924 IRBuilderBase::InsertPointGuard Guard(Builder); 1925 Builder.SetInsertPoint(PN); 1926 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 1927 PN->getNumOperands()); 1928 } 1929 1930 for (auto &I : PN->operands()) 1931 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1932 PN->getIncomingBlock(I)); 1933 1934 NewGEP->setOperand(DI, NewPN); 1935 } 1936 1937 GEP.getParent()->getInstList().insert( 1938 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1939 replaceOperand(GEP, 0, NewGEP); 1940 PtrOp = NewGEP; 1941 } 1942 1943 // Combine Indices - If the source pointer to this getelementptr instruction 1944 // is a getelementptr instruction, combine the indices of the two 1945 // getelementptr instructions into a single instruction. 1946 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { 1947 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1948 return nullptr; 1949 1950 // Try to reassociate loop invariant GEP chains to enable LICM. 1951 if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1952 Src->hasOneUse()) { 1953 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1954 Value *GO1 = GEP.getOperand(1); 1955 Value *SO1 = Src->getOperand(1); 1956 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1957 // invariant: this breaks the dependence between GEPs and allows LICM 1958 // to hoist the invariant part out of the loop. 1959 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1960 // We have to be careful here. 1961 // We have something like: 1962 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 1963 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 1964 // If we just swap idx & idx2 then we could inadvertantly 1965 // change %src from a vector to a scalar, or vice versa. 1966 // Cases: 1967 // 1) %base a scalar & idx a scalar & idx2 a vector 1968 // => Swapping idx & idx2 turns %src into a vector type. 1969 // 2) %base a scalar & idx a vector & idx2 a scalar 1970 // => Swapping idx & idx2 turns %src in a scalar type 1971 // 3) %base, %idx, and %idx2 are scalars 1972 // => %src & %gep are scalars 1973 // => swapping idx & idx2 is safe 1974 // 4) %base a vector 1975 // => %src is a vector 1976 // => swapping idx & idx2 is safe. 1977 auto *SO0 = Src->getOperand(0); 1978 auto *SO0Ty = SO0->getType(); 1979 if (!isa<VectorType>(GEPType) || // case 3 1980 isa<VectorType>(SO0Ty)) { // case 4 1981 Src->setOperand(1, GO1); 1982 GEP.setOperand(1, SO1); 1983 return &GEP; 1984 } else { 1985 // Case 1 or 2 1986 // -- have to recreate %src & %gep 1987 // put NewSrc at same location as %src 1988 Builder.SetInsertPoint(cast<Instruction>(PtrOp)); 1989 auto *NewSrc = cast<GetElementPtrInst>( 1990 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName())); 1991 NewSrc->setIsInBounds(Src->isInBounds()); 1992 auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1}); 1993 NewGEP->setIsInBounds(GEP.isInBounds()); 1994 return NewGEP; 1995 } 1996 } 1997 } 1998 } 1999 2000 // Note that if our source is a gep chain itself then we wait for that 2001 // chain to be resolved before we perform this transformation. This 2002 // avoids us creating a TON of code in some cases. 2003 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 2004 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 2005 return nullptr; // Wait until our source is folded to completion. 2006 2007 SmallVector<Value*, 8> Indices; 2008 2009 // Find out whether the last index in the source GEP is a sequential idx. 2010 bool EndsWithSequential = false; 2011 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 2012 I != E; ++I) 2013 EndsWithSequential = I.isSequential(); 2014 2015 // Can we combine the two pointer arithmetics offsets? 2016 if (EndsWithSequential) { 2017 // Replace: gep (gep %P, long B), long A, ... 2018 // With: T = long A+B; gep %P, T, ... 2019 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 2020 Value *GO1 = GEP.getOperand(1); 2021 2022 // If they aren't the same type, then the input hasn't been processed 2023 // by the loop above yet (which canonicalizes sequential index types to 2024 // intptr_t). Just avoid transforming this until the input has been 2025 // normalized. 2026 if (SO1->getType() != GO1->getType()) 2027 return nullptr; 2028 2029 Value *Sum = 2030 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 2031 // Only do the combine when we are sure the cost after the 2032 // merge is never more than that before the merge. 2033 if (Sum == nullptr) 2034 return nullptr; 2035 2036 // Update the GEP in place if possible. 2037 if (Src->getNumOperands() == 2) { 2038 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 2039 replaceOperand(GEP, 0, Src->getOperand(0)); 2040 replaceOperand(GEP, 1, Sum); 2041 return &GEP; 2042 } 2043 Indices.append(Src->op_begin()+1, Src->op_end()-1); 2044 Indices.push_back(Sum); 2045 Indices.append(GEP.op_begin()+2, GEP.op_end()); 2046 } else if (isa<Constant>(*GEP.idx_begin()) && 2047 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2048 Src->getNumOperands() != 1) { 2049 // Otherwise we can do the fold if the first index of the GEP is a zero 2050 Indices.append(Src->op_begin()+1, Src->op_end()); 2051 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2052 } 2053 2054 if (!Indices.empty()) 2055 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2056 ? GetElementPtrInst::CreateInBounds( 2057 Src->getSourceElementType(), Src->getOperand(0), Indices, 2058 GEP.getName()) 2059 : GetElementPtrInst::Create(Src->getSourceElementType(), 2060 Src->getOperand(0), Indices, 2061 GEP.getName()); 2062 } 2063 2064 // Skip if GEP source element type is scalable. The type alloc size is unknown 2065 // at compile-time. 2066 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { 2067 unsigned AS = GEP.getPointerAddressSpace(); 2068 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 2069 DL.getIndexSizeInBits(AS)) { 2070 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2071 2072 bool Matched = false; 2073 uint64_t C; 2074 Value *V = nullptr; 2075 if (TyAllocSize == 1) { 2076 V = GEP.getOperand(1); 2077 Matched = true; 2078 } else if (match(GEP.getOperand(1), 2079 m_AShr(m_Value(V), m_ConstantInt(C)))) { 2080 if (TyAllocSize == 1ULL << C) 2081 Matched = true; 2082 } else if (match(GEP.getOperand(1), 2083 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 2084 if (TyAllocSize == C) 2085 Matched = true; 2086 } 2087 2088 if (Matched) { 2089 // Canonicalize (gep i8* X, -(ptrtoint Y)) 2090 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) 2091 // The GEP pattern is emitted by the SCEV expander for certain kinds of 2092 // pointer arithmetic. 2093 if (match(V, m_Neg(m_PtrToInt(m_Value())))) { 2094 Operator *Index = cast<Operator>(V); 2095 Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType()); 2096 Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1)); 2097 return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType); 2098 } 2099 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) 2100 // to (bitcast Y) 2101 Value *Y; 2102 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), 2103 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) 2104 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 2105 } 2106 } 2107 } 2108 2109 // We do not handle pointer-vector geps here. 2110 if (GEPType->isVectorTy()) 2111 return nullptr; 2112 2113 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 2114 Value *StrippedPtr = PtrOp->stripPointerCasts(); 2115 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 2116 2117 if (StrippedPtr != PtrOp) { 2118 bool HasZeroPointerIndex = false; 2119 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType(); 2120 2121 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 2122 HasZeroPointerIndex = C->isZero(); 2123 2124 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2125 // into : GEP [10 x i8]* X, i32 0, ... 2126 // 2127 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2128 // into : GEP i8* X, ... 2129 // 2130 // This occurs when the program declares an array extern like "int X[];" 2131 if (HasZeroPointerIndex) { 2132 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2133 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2134 if (CATy->getElementType() == StrippedPtrEltTy) { 2135 // -> GEP i8* X, ... 2136 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 2137 GetElementPtrInst *Res = GetElementPtrInst::Create( 2138 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2139 Res->setIsInBounds(GEP.isInBounds()); 2140 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2141 return Res; 2142 // Insert Res, and create an addrspacecast. 2143 // e.g., 2144 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2145 // -> 2146 // %0 = GEP i8 addrspace(1)* X, ... 2147 // addrspacecast i8 addrspace(1)* %0 to i8* 2148 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2149 } 2150 2151 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2152 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2153 if (CATy->getElementType() == XATy->getElementType()) { 2154 // -> GEP [10 x i8]* X, i32 0, ... 2155 // At this point, we know that the cast source type is a pointer 2156 // to an array of the same type as the destination pointer 2157 // array. Because the array type is never stepped over (there 2158 // is a leading zero) we can fold the cast into this GEP. 2159 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2160 GEP.setSourceElementType(XATy); 2161 return replaceOperand(GEP, 0, StrippedPtr); 2162 } 2163 // Cannot replace the base pointer directly because StrippedPtr's 2164 // address space is different. Instead, create a new GEP followed by 2165 // an addrspacecast. 2166 // e.g., 2167 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2168 // i32 0, ... 2169 // -> 2170 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2171 // addrspacecast i8 addrspace(1)* %0 to i8* 2172 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 2173 Value *NewGEP = 2174 GEP.isInBounds() 2175 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2176 Idx, GEP.getName()) 2177 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2178 GEP.getName()); 2179 return new AddrSpaceCastInst(NewGEP, GEPType); 2180 } 2181 } 2182 } 2183 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) { 2184 // Skip if GEP source element type is scalable. The type alloc size is 2185 // unknown at compile-time. 2186 // Transform things like: %t = getelementptr i32* 2187 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2 2188 // x i32]* %str, i32 0, i32 %V; bitcast 2189 if (StrippedPtrEltTy->isArrayTy() && 2190 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2191 DL.getTypeAllocSize(GEPEltType)) { 2192 Type *IdxType = DL.getIndexType(GEPType); 2193 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 2194 Value *NewGEP = 2195 GEP.isInBounds() 2196 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2197 GEP.getName()) 2198 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2199 GEP.getName()); 2200 2201 // V and GEP are both pointer types --> BitCast 2202 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2203 } 2204 2205 // Transform things like: 2206 // %V = mul i64 %N, 4 2207 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2208 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2209 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2210 // Check that changing the type amounts to dividing the index by a scale 2211 // factor. 2212 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2213 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize(); 2214 if (ResSize && SrcSize % ResSize == 0) { 2215 Value *Idx = GEP.getOperand(1); 2216 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2217 uint64_t Scale = SrcSize / ResSize; 2218 2219 // Earlier transforms ensure that the index has the right type 2220 // according to Data Layout, which considerably simplifies the 2221 // logic by eliminating implicit casts. 2222 assert(Idx->getType() == DL.getIndexType(GEPType) && 2223 "Index type does not match the Data Layout preferences"); 2224 2225 bool NSW; 2226 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2227 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2228 // If the multiplication NewIdx * Scale may overflow then the new 2229 // GEP may not be "inbounds". 2230 Value *NewGEP = 2231 GEP.isInBounds() && NSW 2232 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2233 NewIdx, GEP.getName()) 2234 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2235 GEP.getName()); 2236 2237 // The NewGEP must be pointer typed, so must the old one -> BitCast 2238 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2239 GEPType); 2240 } 2241 } 2242 } 2243 2244 // Similarly, transform things like: 2245 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2246 // (where tmp = 8*tmp2) into: 2247 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2248 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2249 StrippedPtrEltTy->isArrayTy()) { 2250 // Check that changing to the array element type amounts to dividing the 2251 // index by a scale factor. 2252 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2253 uint64_t ArrayEltSize = 2254 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) 2255 .getFixedSize(); 2256 if (ResSize && ArrayEltSize % ResSize == 0) { 2257 Value *Idx = GEP.getOperand(1); 2258 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2259 uint64_t Scale = ArrayEltSize / ResSize; 2260 2261 // Earlier transforms ensure that the index has the right type 2262 // according to the Data Layout, which considerably simplifies 2263 // the logic by eliminating implicit casts. 2264 assert(Idx->getType() == DL.getIndexType(GEPType) && 2265 "Index type does not match the Data Layout preferences"); 2266 2267 bool NSW; 2268 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2269 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2270 // If the multiplication NewIdx * Scale may overflow then the new 2271 // GEP may not be "inbounds". 2272 Type *IndTy = DL.getIndexType(GEPType); 2273 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2274 2275 Value *NewGEP = 2276 GEP.isInBounds() && NSW 2277 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2278 Off, GEP.getName()) 2279 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2280 GEP.getName()); 2281 // The NewGEP must be pointer typed, so must the old one -> BitCast 2282 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2283 GEPType); 2284 } 2285 } 2286 } 2287 } 2288 } 2289 2290 // addrspacecast between types is canonicalized as a bitcast, then an 2291 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2292 // through the addrspacecast. 2293 Value *ASCStrippedPtrOp = PtrOp; 2294 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2295 // X = bitcast A addrspace(1)* to B addrspace(1)* 2296 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2297 // Z = gep Y, <...constant indices...> 2298 // Into an addrspacecasted GEP of the struct. 2299 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2300 ASCStrippedPtrOp = BC; 2301 } 2302 2303 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 2304 Value *SrcOp = BCI->getOperand(0); 2305 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2306 Type *SrcEltType = SrcType->getElementType(); 2307 2308 // GEP directly using the source operand if this GEP is accessing an element 2309 // of a bitcasted pointer to vector or array of the same dimensions: 2310 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2311 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2312 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, 2313 const DataLayout &DL) { 2314 auto *VecVTy = cast<VectorType>(VecTy); 2315 return ArrTy->getArrayElementType() == VecVTy->getElementType() && 2316 ArrTy->getArrayNumElements() == VecVTy->getNumElements() && 2317 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); 2318 }; 2319 if (GEP.getNumOperands() == 3 && 2320 ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() && 2321 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || 2322 (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() && 2323 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { 2324 2325 // Create a new GEP here, as using `setOperand()` followed by 2326 // `setSourceElementType()` won't actually update the type of the 2327 // existing GEP Value. Causing issues if this Value is accessed when 2328 // constructing an AddrSpaceCastInst 2329 Value *NGEP = 2330 GEP.isInBounds() 2331 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}) 2332 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}); 2333 NGEP->takeName(&GEP); 2334 2335 // Preserve GEP address space to satisfy users 2336 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2337 return new AddrSpaceCastInst(NGEP, GEPType); 2338 2339 return replaceInstUsesWith(GEP, NGEP); 2340 } 2341 2342 // See if we can simplify: 2343 // X = bitcast A* to B* 2344 // Y = gep X, <...constant indices...> 2345 // into a gep of the original struct. This is important for SROA and alias 2346 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2347 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 2348 APInt Offset(OffsetBits, 0); 2349 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) { 2350 // If this GEP instruction doesn't move the pointer, just replace the GEP 2351 // with a bitcast of the real input to the dest type. 2352 if (!Offset) { 2353 // If the bitcast is of an allocation, and the allocation will be 2354 // converted to match the type of the cast, don't touch this. 2355 if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) { 2356 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2357 if (Instruction *I = visitBitCast(*BCI)) { 2358 if (I != BCI) { 2359 I->takeName(BCI); 2360 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2361 replaceInstUsesWith(*BCI, I); 2362 } 2363 return &GEP; 2364 } 2365 } 2366 2367 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2368 return new AddrSpaceCastInst(SrcOp, GEPType); 2369 return new BitCastInst(SrcOp, GEPType); 2370 } 2371 2372 // Otherwise, if the offset is non-zero, we need to find out if there is a 2373 // field at Offset in 'A's type. If so, we can pull the cast through the 2374 // GEP. 2375 SmallVector<Value*, 8> NewIndices; 2376 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2377 Value *NGEP = 2378 GEP.isInBounds() 2379 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) 2380 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); 2381 2382 if (NGEP->getType() == GEPType) 2383 return replaceInstUsesWith(GEP, NGEP); 2384 NGEP->takeName(&GEP); 2385 2386 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2387 return new AddrSpaceCastInst(NGEP, GEPType); 2388 return new BitCastInst(NGEP, GEPType); 2389 } 2390 } 2391 } 2392 2393 if (!GEP.isInBounds()) { 2394 unsigned IdxWidth = 2395 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2396 APInt BasePtrOffset(IdxWidth, 0); 2397 Value *UnderlyingPtrOp = 2398 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2399 BasePtrOffset); 2400 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2401 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2402 BasePtrOffset.isNonNegative()) { 2403 APInt AllocSize( 2404 IdxWidth, 2405 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize()); 2406 if (BasePtrOffset.ule(AllocSize)) { 2407 return GetElementPtrInst::CreateInBounds( 2408 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1), 2409 GEP.getName()); 2410 } 2411 } 2412 } 2413 } 2414 2415 if (Instruction *R = foldSelectGEP(GEP, Builder)) 2416 return R; 2417 2418 return nullptr; 2419 } 2420 2421 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 2422 Instruction *AI) { 2423 if (isa<ConstantPointerNull>(V)) 2424 return true; 2425 if (auto *LI = dyn_cast<LoadInst>(V)) 2426 return isa<GlobalVariable>(LI->getPointerOperand()); 2427 // Two distinct allocations will never be equal. 2428 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2429 // through bitcasts of V can cause 2430 // the result statement below to be true, even when AI and V (ex: 2431 // i8* ->i32* ->i8* of AI) are the same allocations. 2432 return isAllocLikeFn(V, TLI) && V != AI; 2433 } 2434 2435 static bool isAllocSiteRemovable(Instruction *AI, 2436 SmallVectorImpl<WeakTrackingVH> &Users, 2437 const TargetLibraryInfo *TLI) { 2438 SmallVector<Instruction*, 4> Worklist; 2439 Worklist.push_back(AI); 2440 2441 do { 2442 Instruction *PI = Worklist.pop_back_val(); 2443 for (User *U : PI->users()) { 2444 Instruction *I = cast<Instruction>(U); 2445 switch (I->getOpcode()) { 2446 default: 2447 // Give up the moment we see something we can't handle. 2448 return false; 2449 2450 case Instruction::AddrSpaceCast: 2451 case Instruction::BitCast: 2452 case Instruction::GetElementPtr: 2453 Users.emplace_back(I); 2454 Worklist.push_back(I); 2455 continue; 2456 2457 case Instruction::ICmp: { 2458 ICmpInst *ICI = cast<ICmpInst>(I); 2459 // We can fold eq/ne comparisons with null to false/true, respectively. 2460 // We also fold comparisons in some conditions provided the alloc has 2461 // not escaped (see isNeverEqualToUnescapedAlloc). 2462 if (!ICI->isEquality()) 2463 return false; 2464 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2465 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2466 return false; 2467 Users.emplace_back(I); 2468 continue; 2469 } 2470 2471 case Instruction::Call: 2472 // Ignore no-op and store intrinsics. 2473 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2474 switch (II->getIntrinsicID()) { 2475 default: 2476 return false; 2477 2478 case Intrinsic::memmove: 2479 case Intrinsic::memcpy: 2480 case Intrinsic::memset: { 2481 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2482 if (MI->isVolatile() || MI->getRawDest() != PI) 2483 return false; 2484 LLVM_FALLTHROUGH; 2485 } 2486 case Intrinsic::invariant_start: 2487 case Intrinsic::invariant_end: 2488 case Intrinsic::lifetime_start: 2489 case Intrinsic::lifetime_end: 2490 case Intrinsic::objectsize: 2491 Users.emplace_back(I); 2492 continue; 2493 } 2494 } 2495 2496 if (isFreeCall(I, TLI)) { 2497 Users.emplace_back(I); 2498 continue; 2499 } 2500 return false; 2501 2502 case Instruction::Store: { 2503 StoreInst *SI = cast<StoreInst>(I); 2504 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2505 return false; 2506 Users.emplace_back(I); 2507 continue; 2508 } 2509 } 2510 llvm_unreachable("missing a return?"); 2511 } 2512 } while (!Worklist.empty()); 2513 return true; 2514 } 2515 2516 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 2517 // If we have a malloc call which is only used in any amount of comparisons to 2518 // null and free calls, delete the calls and replace the comparisons with true 2519 // or false as appropriate. 2520 2521 // This is based on the principle that we can substitute our own allocation 2522 // function (which will never return null) rather than knowledge of the 2523 // specific function being called. In some sense this can change the permitted 2524 // outputs of a program (when we convert a malloc to an alloca, the fact that 2525 // the allocation is now on the stack is potentially visible, for example), 2526 // but we believe in a permissible manner. 2527 SmallVector<WeakTrackingVH, 64> Users; 2528 2529 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2530 // before each store. 2531 TinyPtrVector<DbgVariableIntrinsic *> DIIs; 2532 std::unique_ptr<DIBuilder> DIB; 2533 if (isa<AllocaInst>(MI)) { 2534 DIIs = FindDbgAddrUses(&MI); 2535 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2536 } 2537 2538 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2539 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2540 // Lowering all @llvm.objectsize calls first because they may 2541 // use a bitcast/GEP of the alloca we are removing. 2542 if (!Users[i]) 2543 continue; 2544 2545 Instruction *I = cast<Instruction>(&*Users[i]); 2546 2547 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2548 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2549 Value *Result = 2550 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); 2551 replaceInstUsesWith(*I, Result); 2552 eraseInstFromFunction(*I); 2553 Users[i] = nullptr; // Skip examining in the next loop. 2554 } 2555 } 2556 } 2557 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2558 if (!Users[i]) 2559 continue; 2560 2561 Instruction *I = cast<Instruction>(&*Users[i]); 2562 2563 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2564 replaceInstUsesWith(*C, 2565 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2566 C->isFalseWhenEqual())); 2567 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2568 for (auto *DII : DIIs) 2569 ConvertDebugDeclareToDebugValue(DII, SI, *DIB); 2570 } else { 2571 // Casts, GEP, or anything else: we're about to delete this instruction, 2572 // so it can not have any valid uses. 2573 replaceInstUsesWith(*I, UndefValue::get(I->getType())); 2574 } 2575 eraseInstFromFunction(*I); 2576 } 2577 2578 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2579 // Replace invoke with a NOP intrinsic to maintain the original CFG 2580 Module *M = II->getModule(); 2581 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2582 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2583 None, "", II->getParent()); 2584 } 2585 2586 for (auto *DII : DIIs) 2587 eraseInstFromFunction(*DII); 2588 2589 return eraseInstFromFunction(MI); 2590 } 2591 return nullptr; 2592 } 2593 2594 /// Move the call to free before a NULL test. 2595 /// 2596 /// Check if this free is accessed after its argument has been test 2597 /// against NULL (property 0). 2598 /// If yes, it is legal to move this call in its predecessor block. 2599 /// 2600 /// The move is performed only if the block containing the call to free 2601 /// will be removed, i.e.: 2602 /// 1. it has only one predecessor P, and P has two successors 2603 /// 2. it contains the call, noops, and an unconditional branch 2604 /// 3. its successor is the same as its predecessor's successor 2605 /// 2606 /// The profitability is out-of concern here and this function should 2607 /// be called only if the caller knows this transformation would be 2608 /// profitable (e.g., for code size). 2609 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2610 const DataLayout &DL) { 2611 Value *Op = FI.getArgOperand(0); 2612 BasicBlock *FreeInstrBB = FI.getParent(); 2613 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2614 2615 // Validate part of constraint #1: Only one predecessor 2616 // FIXME: We can extend the number of predecessor, but in that case, we 2617 // would duplicate the call to free in each predecessor and it may 2618 // not be profitable even for code size. 2619 if (!PredBB) 2620 return nullptr; 2621 2622 // Validate constraint #2: Does this block contains only the call to 2623 // free, noops, and an unconditional branch? 2624 BasicBlock *SuccBB; 2625 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2626 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2627 return nullptr; 2628 2629 // If there are only 2 instructions in the block, at this point, 2630 // this is the call to free and unconditional. 2631 // If there are more than 2 instructions, check that they are noops 2632 // i.e., they won't hurt the performance of the generated code. 2633 if (FreeInstrBB->size() != 2) { 2634 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 2635 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2636 continue; 2637 auto *Cast = dyn_cast<CastInst>(&Inst); 2638 if (!Cast || !Cast->isNoopCast(DL)) 2639 return nullptr; 2640 } 2641 } 2642 // Validate the rest of constraint #1 by matching on the pred branch. 2643 Instruction *TI = PredBB->getTerminator(); 2644 BasicBlock *TrueBB, *FalseBB; 2645 ICmpInst::Predicate Pred; 2646 if (!match(TI, m_Br(m_ICmp(Pred, 2647 m_CombineOr(m_Specific(Op), 2648 m_Specific(Op->stripPointerCasts())), 2649 m_Zero()), 2650 TrueBB, FalseBB))) 2651 return nullptr; 2652 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2653 return nullptr; 2654 2655 // Validate constraint #3: Ensure the null case just falls through. 2656 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2657 return nullptr; 2658 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2659 "Broken CFG: missing edge from predecessor to successor"); 2660 2661 // At this point, we know that everything in FreeInstrBB can be moved 2662 // before TI. 2663 for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end(); 2664 It != End;) { 2665 Instruction &Instr = *It++; 2666 if (&Instr == FreeInstrBBTerminator) 2667 break; 2668 Instr.moveBefore(TI); 2669 } 2670 assert(FreeInstrBB->size() == 1 && 2671 "Only the branch instruction should remain"); 2672 return &FI; 2673 } 2674 2675 Instruction *InstCombiner::visitFree(CallInst &FI) { 2676 Value *Op = FI.getArgOperand(0); 2677 2678 // free undef -> unreachable. 2679 if (isa<UndefValue>(Op)) { 2680 // Leave a marker since we can't modify the CFG here. 2681 CreateNonTerminatorUnreachable(&FI); 2682 return eraseInstFromFunction(FI); 2683 } 2684 2685 // If we have 'free null' delete the instruction. This can happen in stl code 2686 // when lots of inlining happens. 2687 if (isa<ConstantPointerNull>(Op)) 2688 return eraseInstFromFunction(FI); 2689 2690 // If we optimize for code size, try to move the call to free before the null 2691 // test so that simplify cfg can remove the empty block and dead code 2692 // elimination the branch. I.e., helps to turn something like: 2693 // if (foo) free(foo); 2694 // into 2695 // free(foo); 2696 // 2697 // Note that we can only do this for 'free' and not for any flavor of 2698 // 'operator delete'; there is no 'operator delete' symbol for which we are 2699 // permitted to invent a call, even if we're passing in a null pointer. 2700 if (MinimizeSize) { 2701 LibFunc Func; 2702 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 2703 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 2704 return I; 2705 } 2706 2707 return nullptr; 2708 } 2709 2710 static bool isMustTailCall(Value *V) { 2711 if (auto *CI = dyn_cast<CallInst>(V)) 2712 return CI->isMustTailCall(); 2713 return false; 2714 } 2715 2716 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { 2717 if (RI.getNumOperands() == 0) // ret void 2718 return nullptr; 2719 2720 Value *ResultOp = RI.getOperand(0); 2721 Type *VTy = ResultOp->getType(); 2722 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp)) 2723 return nullptr; 2724 2725 // Don't replace result of musttail calls. 2726 if (isMustTailCall(ResultOp)) 2727 return nullptr; 2728 2729 // There might be assume intrinsics dominating this return that completely 2730 // determine the value. If so, constant fold it. 2731 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2732 if (Known.isConstant()) 2733 return replaceOperand(RI, 0, 2734 Constant::getIntegerValue(VTy, Known.getConstant())); 2735 2736 return nullptr; 2737 } 2738 2739 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 2740 // Nothing to do about unconditional branches. 2741 if (BI.isUnconditional()) 2742 return nullptr; 2743 2744 // Change br (not X), label True, label False to: br X, label False, True 2745 Value *X = nullptr; 2746 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 2747 !isa<Constant>(X)) { 2748 // Swap Destinations and condition... 2749 BI.swapSuccessors(); 2750 return replaceOperand(BI, 0, X); 2751 } 2752 2753 // If the condition is irrelevant, remove the use so that other 2754 // transforms on the condition become more effective. 2755 if (!isa<ConstantInt>(BI.getCondition()) && 2756 BI.getSuccessor(0) == BI.getSuccessor(1)) 2757 return replaceOperand( 2758 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType())); 2759 2760 // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq. 2761 CmpInst::Predicate Pred; 2762 if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), 2763 m_BasicBlock(), m_BasicBlock())) && 2764 !isCanonicalPredicate(Pred)) { 2765 // Swap destinations and condition. 2766 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 2767 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2768 BI.swapSuccessors(); 2769 Worklist.push(Cond); 2770 return &BI; 2771 } 2772 2773 return nullptr; 2774 } 2775 2776 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 2777 Value *Cond = SI.getCondition(); 2778 Value *Op0; 2779 ConstantInt *AddRHS; 2780 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 2781 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2782 for (auto Case : SI.cases()) { 2783 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 2784 assert(isa<ConstantInt>(NewCase) && 2785 "Result of expression should be constant"); 2786 Case.setValue(cast<ConstantInt>(NewCase)); 2787 } 2788 return replaceOperand(SI, 0, Op0); 2789 } 2790 2791 KnownBits Known = computeKnownBits(Cond, 0, &SI); 2792 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 2793 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 2794 2795 // Compute the number of leading bits we can ignore. 2796 // TODO: A better way to determine this would use ComputeNumSignBits(). 2797 for (auto &C : SI.cases()) { 2798 LeadingKnownZeros = std::min( 2799 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2800 LeadingKnownOnes = std::min( 2801 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2802 } 2803 2804 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 2805 2806 // Shrink the condition operand if the new type is smaller than the old type. 2807 // But do not shrink to a non-standard type, because backend can't generate 2808 // good code for that yet. 2809 // TODO: We can make it aggressive again after fixing PR39569. 2810 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 2811 shouldChangeType(Known.getBitWidth(), NewWidth)) { 2812 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2813 Builder.SetInsertPoint(&SI); 2814 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 2815 2816 for (auto Case : SI.cases()) { 2817 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 2818 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 2819 } 2820 return replaceOperand(SI, 0, NewCond); 2821 } 2822 2823 return nullptr; 2824 } 2825 2826 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 2827 Value *Agg = EV.getAggregateOperand(); 2828 2829 if (!EV.hasIndices()) 2830 return replaceInstUsesWith(EV, Agg); 2831 2832 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 2833 SQ.getWithInstruction(&EV))) 2834 return replaceInstUsesWith(EV, V); 2835 2836 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 2837 // We're extracting from an insertvalue instruction, compare the indices 2838 const unsigned *exti, *exte, *insi, *inse; 2839 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 2840 exte = EV.idx_end(), inse = IV->idx_end(); 2841 exti != exte && insi != inse; 2842 ++exti, ++insi) { 2843 if (*insi != *exti) 2844 // The insert and extract both reference distinctly different elements. 2845 // This means the extract is not influenced by the insert, and we can 2846 // replace the aggregate operand of the extract with the aggregate 2847 // operand of the insert. i.e., replace 2848 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2849 // %E = extractvalue { i32, { i32 } } %I, 0 2850 // with 2851 // %E = extractvalue { i32, { i32 } } %A, 0 2852 return ExtractValueInst::Create(IV->getAggregateOperand(), 2853 EV.getIndices()); 2854 } 2855 if (exti == exte && insi == inse) 2856 // Both iterators are at the end: Index lists are identical. Replace 2857 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2858 // %C = extractvalue { i32, { i32 } } %B, 1, 0 2859 // with "i32 42" 2860 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 2861 if (exti == exte) { 2862 // The extract list is a prefix of the insert list. i.e. replace 2863 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2864 // %E = extractvalue { i32, { i32 } } %I, 1 2865 // with 2866 // %X = extractvalue { i32, { i32 } } %A, 1 2867 // %E = insertvalue { i32 } %X, i32 42, 0 2868 // by switching the order of the insert and extract (though the 2869 // insertvalue should be left in, since it may have other uses). 2870 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 2871 EV.getIndices()); 2872 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 2873 makeArrayRef(insi, inse)); 2874 } 2875 if (insi == inse) 2876 // The insert list is a prefix of the extract list 2877 // We can simply remove the common indices from the extract and make it 2878 // operate on the inserted value instead of the insertvalue result. 2879 // i.e., replace 2880 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2881 // %E = extractvalue { i32, { i32 } } %I, 1, 0 2882 // with 2883 // %E extractvalue { i32 } { i32 42 }, 0 2884 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 2885 makeArrayRef(exti, exte)); 2886 } 2887 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 2888 // We're extracting from an overflow intrinsic, see if we're the only user, 2889 // which allows us to simplify multiple result intrinsics to simpler 2890 // things that just get one value. 2891 if (WO->hasOneUse()) { 2892 // Check if we're grabbing only the result of a 'with overflow' intrinsic 2893 // and replace it with a traditional binary instruction. 2894 if (*EV.idx_begin() == 0) { 2895 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 2896 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 2897 replaceInstUsesWith(*WO, UndefValue::get(WO->getType())); 2898 eraseInstFromFunction(*WO); 2899 return BinaryOperator::Create(BinOp, LHS, RHS); 2900 } 2901 2902 // If the normal result of the add is dead, and the RHS is a constant, 2903 // we can transform this into a range comparison. 2904 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 2905 if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow) 2906 if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS())) 2907 return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(), 2908 ConstantExpr::getNot(CI)); 2909 } 2910 } 2911 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2912 // If the (non-volatile) load only has one use, we can rewrite this to a 2913 // load from a GEP. This reduces the size of the load. If a load is used 2914 // only by extractvalue instructions then this either must have been 2915 // optimized before, or it is a struct with padding, in which case we 2916 // don't want to do the transformation as it loses padding knowledge. 2917 if (L->isSimple() && L->hasOneUse()) { 2918 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2919 SmallVector<Value*, 4> Indices; 2920 // Prefix an i32 0 since we need the first element. 2921 Indices.push_back(Builder.getInt32(0)); 2922 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2923 I != E; ++I) 2924 Indices.push_back(Builder.getInt32(*I)); 2925 2926 // We need to insert these at the location of the old load, not at that of 2927 // the extractvalue. 2928 Builder.SetInsertPoint(L); 2929 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 2930 L->getPointerOperand(), Indices); 2931 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 2932 // Whatever aliasing information we had for the orignal load must also 2933 // hold for the smaller load, so propagate the annotations. 2934 AAMDNodes Nodes; 2935 L->getAAMetadata(Nodes); 2936 NL->setAAMetadata(Nodes); 2937 // Returning the load directly will cause the main loop to insert it in 2938 // the wrong spot, so use replaceInstUsesWith(). 2939 return replaceInstUsesWith(EV, NL); 2940 } 2941 // We could simplify extracts from other values. Note that nested extracts may 2942 // already be simplified implicitly by the above: extract (extract (insert) ) 2943 // will be translated into extract ( insert ( extract ) ) first and then just 2944 // the value inserted, if appropriate. Similarly for extracts from single-use 2945 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2946 // and if again single-use then via load (gep (gep)) to load (gep). 2947 // However, double extracts from e.g. function arguments or return values 2948 // aren't handled yet. 2949 return nullptr; 2950 } 2951 2952 /// Return 'true' if the given typeinfo will match anything. 2953 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 2954 switch (Personality) { 2955 case EHPersonality::GNU_C: 2956 case EHPersonality::GNU_C_SjLj: 2957 case EHPersonality::Rust: 2958 // The GCC C EH and Rust personality only exists to support cleanups, so 2959 // it's not clear what the semantics of catch clauses are. 2960 return false; 2961 case EHPersonality::Unknown: 2962 return false; 2963 case EHPersonality::GNU_Ada: 2964 // While __gnat_all_others_value will match any Ada exception, it doesn't 2965 // match foreign exceptions (or didn't, before gcc-4.7). 2966 return false; 2967 case EHPersonality::GNU_CXX: 2968 case EHPersonality::GNU_CXX_SjLj: 2969 case EHPersonality::GNU_ObjC: 2970 case EHPersonality::MSVC_X86SEH: 2971 case EHPersonality::MSVC_Win64SEH: 2972 case EHPersonality::MSVC_CXX: 2973 case EHPersonality::CoreCLR: 2974 case EHPersonality::Wasm_CXX: 2975 return TypeInfo->isNullValue(); 2976 } 2977 llvm_unreachable("invalid enum"); 2978 } 2979 2980 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2981 return 2982 cast<ArrayType>(LHS->getType())->getNumElements() 2983 < 2984 cast<ArrayType>(RHS->getType())->getNumElements(); 2985 } 2986 2987 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2988 // The logic here should be correct for any real-world personality function. 2989 // However if that turns out not to be true, the offending logic can always 2990 // be conditioned on the personality function, like the catch-all logic is. 2991 EHPersonality Personality = 2992 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 2993 2994 // Simplify the list of clauses, eg by removing repeated catch clauses 2995 // (these are often created by inlining). 2996 bool MakeNewInstruction = false; // If true, recreate using the following: 2997 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2998 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2999 3000 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 3001 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 3002 bool isLastClause = i + 1 == e; 3003 if (LI.isCatch(i)) { 3004 // A catch clause. 3005 Constant *CatchClause = LI.getClause(i); 3006 Constant *TypeInfo = CatchClause->stripPointerCasts(); 3007 3008 // If we already saw this clause, there is no point in having a second 3009 // copy of it. 3010 if (AlreadyCaught.insert(TypeInfo).second) { 3011 // This catch clause was not already seen. 3012 NewClauses.push_back(CatchClause); 3013 } else { 3014 // Repeated catch clause - drop the redundant copy. 3015 MakeNewInstruction = true; 3016 } 3017 3018 // If this is a catch-all then there is no point in keeping any following 3019 // clauses or marking the landingpad as having a cleanup. 3020 if (isCatchAll(Personality, TypeInfo)) { 3021 if (!isLastClause) 3022 MakeNewInstruction = true; 3023 CleanupFlag = false; 3024 break; 3025 } 3026 } else { 3027 // A filter clause. If any of the filter elements were already caught 3028 // then they can be dropped from the filter. It is tempting to try to 3029 // exploit the filter further by saying that any typeinfo that does not 3030 // occur in the filter can't be caught later (and thus can be dropped). 3031 // However this would be wrong, since typeinfos can match without being 3032 // equal (for example if one represents a C++ class, and the other some 3033 // class derived from it). 3034 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 3035 Constant *FilterClause = LI.getClause(i); 3036 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 3037 unsigned NumTypeInfos = FilterType->getNumElements(); 3038 3039 // An empty filter catches everything, so there is no point in keeping any 3040 // following clauses or marking the landingpad as having a cleanup. By 3041 // dealing with this case here the following code is made a bit simpler. 3042 if (!NumTypeInfos) { 3043 NewClauses.push_back(FilterClause); 3044 if (!isLastClause) 3045 MakeNewInstruction = true; 3046 CleanupFlag = false; 3047 break; 3048 } 3049 3050 bool MakeNewFilter = false; // If true, make a new filter. 3051 SmallVector<Constant *, 16> NewFilterElts; // New elements. 3052 if (isa<ConstantAggregateZero>(FilterClause)) { 3053 // Not an empty filter - it contains at least one null typeinfo. 3054 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 3055 Constant *TypeInfo = 3056 Constant::getNullValue(FilterType->getElementType()); 3057 // If this typeinfo is a catch-all then the filter can never match. 3058 if (isCatchAll(Personality, TypeInfo)) { 3059 // Throw the filter away. 3060 MakeNewInstruction = true; 3061 continue; 3062 } 3063 3064 // There is no point in having multiple copies of this typeinfo, so 3065 // discard all but the first copy if there is more than one. 3066 NewFilterElts.push_back(TypeInfo); 3067 if (NumTypeInfos > 1) 3068 MakeNewFilter = true; 3069 } else { 3070 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 3071 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 3072 NewFilterElts.reserve(NumTypeInfos); 3073 3074 // Remove any filter elements that were already caught or that already 3075 // occurred in the filter. While there, see if any of the elements are 3076 // catch-alls. If so, the filter can be discarded. 3077 bool SawCatchAll = false; 3078 for (unsigned j = 0; j != NumTypeInfos; ++j) { 3079 Constant *Elt = Filter->getOperand(j); 3080 Constant *TypeInfo = Elt->stripPointerCasts(); 3081 if (isCatchAll(Personality, TypeInfo)) { 3082 // This element is a catch-all. Bail out, noting this fact. 3083 SawCatchAll = true; 3084 break; 3085 } 3086 3087 // Even if we've seen a type in a catch clause, we don't want to 3088 // remove it from the filter. An unexpected type handler may be 3089 // set up for a call site which throws an exception of the same 3090 // type caught. In order for the exception thrown by the unexpected 3091 // handler to propagate correctly, the filter must be correctly 3092 // described for the call site. 3093 // 3094 // Example: 3095 // 3096 // void unexpected() { throw 1;} 3097 // void foo() throw (int) { 3098 // std::set_unexpected(unexpected); 3099 // try { 3100 // throw 2.0; 3101 // } catch (int i) {} 3102 // } 3103 3104 // There is no point in having multiple copies of the same typeinfo in 3105 // a filter, so only add it if we didn't already. 3106 if (SeenInFilter.insert(TypeInfo).second) 3107 NewFilterElts.push_back(cast<Constant>(Elt)); 3108 } 3109 // A filter containing a catch-all cannot match anything by definition. 3110 if (SawCatchAll) { 3111 // Throw the filter away. 3112 MakeNewInstruction = true; 3113 continue; 3114 } 3115 3116 // If we dropped something from the filter, make a new one. 3117 if (NewFilterElts.size() < NumTypeInfos) 3118 MakeNewFilter = true; 3119 } 3120 if (MakeNewFilter) { 3121 FilterType = ArrayType::get(FilterType->getElementType(), 3122 NewFilterElts.size()); 3123 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 3124 MakeNewInstruction = true; 3125 } 3126 3127 NewClauses.push_back(FilterClause); 3128 3129 // If the new filter is empty then it will catch everything so there is 3130 // no point in keeping any following clauses or marking the landingpad 3131 // as having a cleanup. The case of the original filter being empty was 3132 // already handled above. 3133 if (MakeNewFilter && !NewFilterElts.size()) { 3134 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3135 CleanupFlag = false; 3136 break; 3137 } 3138 } 3139 } 3140 3141 // If several filters occur in a row then reorder them so that the shortest 3142 // filters come first (those with the smallest number of elements). This is 3143 // advantageous because shorter filters are more likely to match, speeding up 3144 // unwinding, but mostly because it increases the effectiveness of the other 3145 // filter optimizations below. 3146 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3147 unsigned j; 3148 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3149 for (j = i; j != e; ++j) 3150 if (!isa<ArrayType>(NewClauses[j]->getType())) 3151 break; 3152 3153 // Check whether the filters are already sorted by length. We need to know 3154 // if sorting them is actually going to do anything so that we only make a 3155 // new landingpad instruction if it does. 3156 for (unsigned k = i; k + 1 < j; ++k) 3157 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3158 // Not sorted, so sort the filters now. Doing an unstable sort would be 3159 // correct too but reordering filters pointlessly might confuse users. 3160 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3161 shorter_filter); 3162 MakeNewInstruction = true; 3163 break; 3164 } 3165 3166 // Look for the next batch of filters. 3167 i = j + 1; 3168 } 3169 3170 // If typeinfos matched if and only if equal, then the elements of a filter L 3171 // that occurs later than a filter F could be replaced by the intersection of 3172 // the elements of F and L. In reality two typeinfos can match without being 3173 // equal (for example if one represents a C++ class, and the other some class 3174 // derived from it) so it would be wrong to perform this transform in general. 3175 // However the transform is correct and useful if F is a subset of L. In that 3176 // case L can be replaced by F, and thus removed altogether since repeating a 3177 // filter is pointless. So here we look at all pairs of filters F and L where 3178 // L follows F in the list of clauses, and remove L if every element of F is 3179 // an element of L. This can occur when inlining C++ functions with exception 3180 // specifications. 3181 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3182 // Examine each filter in turn. 3183 Value *Filter = NewClauses[i]; 3184 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3185 if (!FTy) 3186 // Not a filter - skip it. 3187 continue; 3188 unsigned FElts = FTy->getNumElements(); 3189 // Examine each filter following this one. Doing this backwards means that 3190 // we don't have to worry about filters disappearing under us when removed. 3191 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3192 Value *LFilter = NewClauses[j]; 3193 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3194 if (!LTy) 3195 // Not a filter - skip it. 3196 continue; 3197 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3198 // an element of LFilter, then discard LFilter. 3199 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3200 // If Filter is empty then it is a subset of LFilter. 3201 if (!FElts) { 3202 // Discard LFilter. 3203 NewClauses.erase(J); 3204 MakeNewInstruction = true; 3205 // Move on to the next filter. 3206 continue; 3207 } 3208 unsigned LElts = LTy->getNumElements(); 3209 // If Filter is longer than LFilter then it cannot be a subset of it. 3210 if (FElts > LElts) 3211 // Move on to the next filter. 3212 continue; 3213 // At this point we know that LFilter has at least one element. 3214 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3215 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3216 // already know that Filter is not longer than LFilter). 3217 if (isa<ConstantAggregateZero>(Filter)) { 3218 assert(FElts <= LElts && "Should have handled this case earlier!"); 3219 // Discard LFilter. 3220 NewClauses.erase(J); 3221 MakeNewInstruction = true; 3222 } 3223 // Move on to the next filter. 3224 continue; 3225 } 3226 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3227 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3228 // Since Filter is non-empty and contains only zeros, it is a subset of 3229 // LFilter iff LFilter contains a zero. 3230 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3231 for (unsigned l = 0; l != LElts; ++l) 3232 if (LArray->getOperand(l)->isNullValue()) { 3233 // LFilter contains a zero - discard it. 3234 NewClauses.erase(J); 3235 MakeNewInstruction = true; 3236 break; 3237 } 3238 // Move on to the next filter. 3239 continue; 3240 } 3241 // At this point we know that both filters are ConstantArrays. Loop over 3242 // operands to see whether every element of Filter is also an element of 3243 // LFilter. Since filters tend to be short this is probably faster than 3244 // using a method that scales nicely. 3245 ConstantArray *FArray = cast<ConstantArray>(Filter); 3246 bool AllFound = true; 3247 for (unsigned f = 0; f != FElts; ++f) { 3248 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3249 AllFound = false; 3250 for (unsigned l = 0; l != LElts; ++l) { 3251 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3252 if (LTypeInfo == FTypeInfo) { 3253 AllFound = true; 3254 break; 3255 } 3256 } 3257 if (!AllFound) 3258 break; 3259 } 3260 if (AllFound) { 3261 // Discard LFilter. 3262 NewClauses.erase(J); 3263 MakeNewInstruction = true; 3264 } 3265 // Move on to the next filter. 3266 } 3267 } 3268 3269 // If we changed any of the clauses, replace the old landingpad instruction 3270 // with a new one. 3271 if (MakeNewInstruction) { 3272 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3273 NewClauses.size()); 3274 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3275 NLI->addClause(NewClauses[i]); 3276 // A landing pad with no clauses must have the cleanup flag set. It is 3277 // theoretically possible, though highly unlikely, that we eliminated all 3278 // clauses. If so, force the cleanup flag to true. 3279 if (NewClauses.empty()) 3280 CleanupFlag = true; 3281 NLI->setCleanup(CleanupFlag); 3282 return NLI; 3283 } 3284 3285 // Even if none of the clauses changed, we may nonetheless have understood 3286 // that the cleanup flag is pointless. Clear it if so. 3287 if (LI.isCleanup() != CleanupFlag) { 3288 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3289 LI.setCleanup(CleanupFlag); 3290 return &LI; 3291 } 3292 3293 return nullptr; 3294 } 3295 3296 Instruction *InstCombiner::visitFreeze(FreezeInst &I) { 3297 Value *Op0 = I.getOperand(0); 3298 3299 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3300 return replaceInstUsesWith(I, V); 3301 3302 return nullptr; 3303 } 3304 3305 /// Try to move the specified instruction from its current block into the 3306 /// beginning of DestBlock, which can only happen if it's safe to move the 3307 /// instruction past all of the instructions between it and the end of its 3308 /// block. 3309 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 3310 assert(I->getSingleUndroppableUse() && "Invariants didn't hold!"); 3311 BasicBlock *SrcBlock = I->getParent(); 3312 3313 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3314 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 3315 I->isTerminator()) 3316 return false; 3317 3318 // Do not sink static or dynamic alloca instructions. Static allocas must 3319 // remain in the entry block, and dynamic allocas must not be sunk in between 3320 // a stacksave / stackrestore pair, which would incorrectly shorten its 3321 // lifetime. 3322 if (isa<AllocaInst>(I)) 3323 return false; 3324 3325 // Do not sink into catchswitch blocks. 3326 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 3327 return false; 3328 3329 // Do not sink convergent call instructions. 3330 if (auto *CI = dyn_cast<CallInst>(I)) { 3331 if (CI->isConvergent()) 3332 return false; 3333 } 3334 // We can only sink load instructions if there is nothing between the load and 3335 // the end of block that could change the value. 3336 if (I->mayReadFromMemory()) { 3337 // We don't want to do any sophisticated alias analysis, so we only check 3338 // the instructions after I in I's parent block if we try to sink to its 3339 // successor block. 3340 if (DestBlock->getUniquePredecessor() != I->getParent()) 3341 return false; 3342 for (BasicBlock::iterator Scan = I->getIterator(), 3343 E = I->getParent()->end(); 3344 Scan != E; ++Scan) 3345 if (Scan->mayWriteToMemory()) 3346 return false; 3347 } 3348 3349 I->dropDroppableUses([DestBlock](const Use *U) { 3350 if (auto *I = dyn_cast<Instruction>(U->getUser())) 3351 return I->getParent() != DestBlock; 3352 return true; 3353 }); 3354 /// FIXME: We could remove droppable uses that are not dominated by 3355 /// the new position. 3356 3357 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 3358 I->moveBefore(&*InsertPos); 3359 ++NumSunkInst; 3360 3361 // Also sink all related debug uses from the source basic block. Otherwise we 3362 // get debug use before the def. Attempt to salvage debug uses first, to 3363 // maximise the range variables have location for. If we cannot salvage, then 3364 // mark the location undef: we know it was supposed to receive a new location 3365 // here, but that computation has been sunk. 3366 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 3367 findDbgUsers(DbgUsers, I); 3368 3369 // Update the arguments of a dbg.declare instruction, so that it 3370 // does not point into a sunk instruction. 3371 auto updateDbgDeclare = [&I](DbgVariableIntrinsic *DII) { 3372 if (!isa<DbgDeclareInst>(DII)) 3373 return false; 3374 3375 if (isa<CastInst>(I)) 3376 DII->setOperand( 3377 0, MetadataAsValue::get(I->getContext(), 3378 ValueAsMetadata::get(I->getOperand(0)))); 3379 return true; 3380 }; 3381 3382 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 3383 for (auto User : DbgUsers) { 3384 // A dbg.declare instruction should not be cloned, since there can only be 3385 // one per variable fragment. It should be left in the original place 3386 // because the sunk instruction is not an alloca (otherwise we could not be 3387 // here). 3388 if (User->getParent() != SrcBlock || updateDbgDeclare(User)) 3389 continue; 3390 3391 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 3392 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 3393 } 3394 3395 // Perform salvaging without the clones, then sink the clones. 3396 if (!DIIClones.empty()) { 3397 salvageDebugInfoForDbgValues(*I, DbgUsers); 3398 for (auto &DIIClone : DIIClones) { 3399 DIIClone->insertBefore(&*InsertPos); 3400 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 3401 } 3402 } 3403 3404 return true; 3405 } 3406 3407 bool InstCombiner::run() { 3408 while (!Worklist.isEmpty()) { 3409 // Walk deferred instructions in reverse order, and push them to the 3410 // worklist, which means they'll end up popped from the worklist in-order. 3411 while (Instruction *I = Worklist.popDeferred()) { 3412 // Check to see if we can DCE the instruction. We do this already here to 3413 // reduce the number of uses and thus allow other folds to trigger. 3414 // Note that eraseInstFromFunction() may push additional instructions on 3415 // the deferred worklist, so this will DCE whole instruction chains. 3416 if (isInstructionTriviallyDead(I, &TLI)) { 3417 eraseInstFromFunction(*I); 3418 ++NumDeadInst; 3419 continue; 3420 } 3421 3422 Worklist.push(I); 3423 } 3424 3425 Instruction *I = Worklist.removeOne(); 3426 if (I == nullptr) continue; // skip null values. 3427 3428 // Check to see if we can DCE the instruction. 3429 if (isInstructionTriviallyDead(I, &TLI)) { 3430 eraseInstFromFunction(*I); 3431 ++NumDeadInst; 3432 continue; 3433 } 3434 3435 if (!DebugCounter::shouldExecute(VisitCounter)) 3436 continue; 3437 3438 // Instruction isn't dead, see if we can constant propagate it. 3439 if (!I->use_empty() && 3440 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 3441 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 3442 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 3443 << '\n'); 3444 3445 // Add operands to the worklist. 3446 replaceInstUsesWith(*I, C); 3447 ++NumConstProp; 3448 if (isInstructionTriviallyDead(I, &TLI)) 3449 eraseInstFromFunction(*I); 3450 MadeIRChange = true; 3451 continue; 3452 } 3453 } 3454 3455 // See if we can trivially sink this instruction to its user if we can 3456 // prove that the successor is not executed more frequently than our block. 3457 if (EnableCodeSinking) 3458 if (Use *SingleUse = I->getSingleUndroppableUse()) { 3459 BasicBlock *BB = I->getParent(); 3460 Instruction *UserInst = cast<Instruction>(SingleUse->getUser()); 3461 BasicBlock *UserParent; 3462 3463 // Get the block the use occurs in. 3464 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 3465 UserParent = PN->getIncomingBlock(*SingleUse); 3466 else 3467 UserParent = UserInst->getParent(); 3468 3469 if (UserParent != BB) { 3470 // See if the user is one of our successors that has only one 3471 // predecessor, so that we don't have to split the critical edge. 3472 bool ShouldSink = UserParent->getUniquePredecessor() == BB; 3473 // Another option where we can sink is a block that ends with a 3474 // terminator that does not pass control to other block (such as 3475 // return or unreachable). In this case: 3476 // - I dominates the User (by SSA form); 3477 // - the User will be executed at most once. 3478 // So sinking I down to User is always profitable or neutral. 3479 if (!ShouldSink) { 3480 auto *Term = UserParent->getTerminator(); 3481 ShouldSink = isa<ReturnInst>(Term) || isa<UnreachableInst>(Term); 3482 } 3483 if (ShouldSink) { 3484 assert(DT.dominates(BB, UserParent) && 3485 "Dominance relation broken?"); 3486 // Okay, the CFG is simple enough, try to sink this instruction. 3487 if (TryToSinkInstruction(I, UserParent)) { 3488 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3489 MadeIRChange = true; 3490 // We'll add uses of the sunk instruction below, but since sinking 3491 // can expose opportunities for it's *operands* add them to the 3492 // worklist 3493 for (Use &U : I->operands()) 3494 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3495 Worklist.push(OpI); 3496 } 3497 } 3498 } 3499 } 3500 3501 // Now that we have an instruction, try combining it to simplify it. 3502 Builder.SetInsertPoint(I); 3503 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 3504 3505 #ifndef NDEBUG 3506 std::string OrigI; 3507 #endif 3508 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 3509 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 3510 3511 if (Instruction *Result = visit(*I)) { 3512 ++NumCombined; 3513 // Should we replace the old instruction with a new one? 3514 if (Result != I) { 3515 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 3516 << " New = " << *Result << '\n'); 3517 3518 if (I->getDebugLoc()) 3519 Result->setDebugLoc(I->getDebugLoc()); 3520 // Everything uses the new instruction now. 3521 I->replaceAllUsesWith(Result); 3522 3523 // Move the name to the new instruction first. 3524 Result->takeName(I); 3525 3526 // Insert the new instruction into the basic block... 3527 BasicBlock *InstParent = I->getParent(); 3528 BasicBlock::iterator InsertPos = I->getIterator(); 3529 3530 // If we replace a PHI with something that isn't a PHI, fix up the 3531 // insertion point. 3532 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 3533 InsertPos = InstParent->getFirstInsertionPt(); 3534 3535 InstParent->getInstList().insert(InsertPos, Result); 3536 3537 // Push the new instruction and any users onto the worklist. 3538 Worklist.pushUsersToWorkList(*Result); 3539 Worklist.push(Result); 3540 3541 eraseInstFromFunction(*I); 3542 } else { 3543 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3544 << " New = " << *I << '\n'); 3545 3546 // If the instruction was modified, it's possible that it is now dead. 3547 // if so, remove it. 3548 if (isInstructionTriviallyDead(I, &TLI)) { 3549 eraseInstFromFunction(*I); 3550 } else { 3551 Worklist.pushUsersToWorkList(*I); 3552 Worklist.push(I); 3553 } 3554 } 3555 MadeIRChange = true; 3556 } 3557 } 3558 3559 Worklist.zap(); 3560 return MadeIRChange; 3561 } 3562 3563 /// Populate the IC worklist from a function, by walking it in depth-first 3564 /// order and adding all reachable code to the worklist. 3565 /// 3566 /// This has a couple of tricks to make the code faster and more powerful. In 3567 /// particular, we constant fold and DCE instructions as we go, to avoid adding 3568 /// them to the worklist (this significantly speeds up instcombine on code where 3569 /// many instructions are dead or constant). Additionally, if we find a branch 3570 /// whose condition is a known constant, we only visit the reachable successors. 3571 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 3572 const TargetLibraryInfo *TLI, 3573 InstCombineWorklist &ICWorklist) { 3574 bool MadeIRChange = false; 3575 SmallPtrSet<BasicBlock *, 32> Visited; 3576 SmallVector<BasicBlock*, 256> Worklist; 3577 Worklist.push_back(&F.front()); 3578 3579 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 3580 DenseMap<Constant *, Constant *> FoldedConstants; 3581 3582 do { 3583 BasicBlock *BB = Worklist.pop_back_val(); 3584 3585 // We have now visited this block! If we've already been here, ignore it. 3586 if (!Visited.insert(BB).second) 3587 continue; 3588 3589 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 3590 Instruction *Inst = &*BBI++; 3591 3592 // ConstantProp instruction if trivially constant. 3593 if (!Inst->use_empty() && 3594 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 3595 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 3596 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst 3597 << '\n'); 3598 Inst->replaceAllUsesWith(C); 3599 ++NumConstProp; 3600 if (isInstructionTriviallyDead(Inst, TLI)) 3601 Inst->eraseFromParent(); 3602 MadeIRChange = true; 3603 continue; 3604 } 3605 3606 // See if we can constant fold its operands. 3607 for (Use &U : Inst->operands()) { 3608 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 3609 continue; 3610 3611 auto *C = cast<Constant>(U); 3612 Constant *&FoldRes = FoldedConstants[C]; 3613 if (!FoldRes) 3614 FoldRes = ConstantFoldConstant(C, DL, TLI); 3615 3616 if (FoldRes != C) { 3617 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst 3618 << "\n Old = " << *C 3619 << "\n New = " << *FoldRes << '\n'); 3620 U = FoldRes; 3621 MadeIRChange = true; 3622 } 3623 } 3624 3625 // Skip processing debug intrinsics in InstCombine. Processing these call instructions 3626 // consumes non-trivial amount of time and provides no value for the optimization. 3627 if (!isa<DbgInfoIntrinsic>(Inst)) 3628 InstrsForInstCombineWorklist.push_back(Inst); 3629 } 3630 3631 // Recursively visit successors. If this is a branch or switch on a 3632 // constant, only visit the reachable successor. 3633 Instruction *TI = BB->getTerminator(); 3634 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3635 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 3636 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 3637 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 3638 Worklist.push_back(ReachableBB); 3639 continue; 3640 } 3641 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3642 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 3643 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 3644 continue; 3645 } 3646 } 3647 3648 for (BasicBlock *SuccBB : successors(TI)) 3649 Worklist.push_back(SuccBB); 3650 } while (!Worklist.empty()); 3651 3652 // Remove instructions inside unreachable blocks. This prevents the 3653 // instcombine code from having to deal with some bad special cases, and 3654 // reduces use counts of instructions. 3655 for (BasicBlock &BB : F) { 3656 if (Visited.count(&BB)) 3657 continue; 3658 3659 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB); 3660 MadeIRChange |= NumDeadInstInBB > 0; 3661 NumDeadInst += NumDeadInstInBB; 3662 } 3663 3664 // Once we've found all of the instructions to add to instcombine's worklist, 3665 // add them in reverse order. This way instcombine will visit from the top 3666 // of the function down. This jives well with the way that it adds all uses 3667 // of instructions to the worklist after doing a transformation, thus avoiding 3668 // some N^2 behavior in pathological cases. 3669 ICWorklist.reserve(InstrsForInstCombineWorklist.size()); 3670 for (Instruction *Inst : reverse(InstrsForInstCombineWorklist)) { 3671 // DCE instruction if trivially dead. As we iterate in reverse program 3672 // order here, we will clean up whole chains of dead instructions. 3673 if (isInstructionTriviallyDead(Inst, TLI)) { 3674 ++NumDeadInst; 3675 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 3676 salvageDebugInfo(*Inst); 3677 Inst->eraseFromParent(); 3678 MadeIRChange = true; 3679 continue; 3680 } 3681 3682 ICWorklist.push(Inst); 3683 } 3684 3685 return MadeIRChange; 3686 } 3687 3688 static bool combineInstructionsOverFunction( 3689 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, 3690 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, 3691 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 3692 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) { 3693 auto &DL = F.getParent()->getDataLayout(); 3694 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 3695 3696 /// Builder - This is an IRBuilder that automatically inserts new 3697 /// instructions into the worklist when they are created. 3698 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 3699 F.getContext(), TargetFolder(DL), 3700 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 3701 Worklist.add(I); 3702 if (match(I, m_Intrinsic<Intrinsic::assume>())) 3703 AC.registerAssumption(cast<CallInst>(I)); 3704 })); 3705 3706 // Lower dbg.declare intrinsics otherwise their value may be clobbered 3707 // by instcombiner. 3708 bool MadeIRChange = false; 3709 if (ShouldLowerDbgDeclare) 3710 MadeIRChange = LowerDbgDeclare(F); 3711 3712 // Iterate while there is work to do. 3713 unsigned Iteration = 0; 3714 while (true) { 3715 ++Iteration; 3716 3717 if (Iteration > InfiniteLoopDetectionThreshold) { 3718 report_fatal_error( 3719 "Instruction Combining seems stuck in an infinite loop after " + 3720 Twine(InfiniteLoopDetectionThreshold) + " iterations."); 3721 } 3722 3723 if (Iteration > MaxIterations) { 3724 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 3725 << " on " << F.getName() 3726 << " reached; stopping before reaching a fixpoint\n"); 3727 break; 3728 } 3729 3730 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 3731 << F.getName() << "\n"); 3732 3733 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 3734 3735 InstCombiner IC(Worklist, Builder, F.hasMinSize(), AA, 3736 AC, TLI, DT, ORE, BFI, PSI, DL, LI); 3737 IC.MaxArraySizeForCombine = MaxArraySize; 3738 3739 if (!IC.run()) 3740 break; 3741 3742 MadeIRChange = true; 3743 } 3744 3745 return MadeIRChange; 3746 } 3747 3748 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {} 3749 3750 InstCombinePass::InstCombinePass(unsigned MaxIterations) 3751 : MaxIterations(MaxIterations) {} 3752 3753 PreservedAnalyses InstCombinePass::run(Function &F, 3754 FunctionAnalysisManager &AM) { 3755 auto &AC = AM.getResult<AssumptionAnalysis>(F); 3756 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 3757 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 3758 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3759 3760 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 3761 3762 auto *AA = &AM.getResult<AAManager>(F); 3763 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 3764 ProfileSummaryInfo *PSI = 3765 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 3766 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 3767 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 3768 3769 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI, 3770 PSI, MaxIterations, LI)) 3771 // No changes, all analyses are preserved. 3772 return PreservedAnalyses::all(); 3773 3774 // Mark all the analyses that instcombine updates as preserved. 3775 PreservedAnalyses PA; 3776 PA.preserveSet<CFGAnalyses>(); 3777 PA.preserve<AAManager>(); 3778 PA.preserve<BasicAA>(); 3779 PA.preserve<GlobalsAA>(); 3780 return PA; 3781 } 3782 3783 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 3784 AU.setPreservesCFG(); 3785 AU.addRequired<AAResultsWrapperPass>(); 3786 AU.addRequired<AssumptionCacheTracker>(); 3787 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3788 AU.addRequired<DominatorTreeWrapperPass>(); 3789 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3790 AU.addPreserved<DominatorTreeWrapperPass>(); 3791 AU.addPreserved<AAResultsWrapperPass>(); 3792 AU.addPreserved<BasicAAWrapperPass>(); 3793 AU.addPreserved<GlobalsAAWrapperPass>(); 3794 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 3795 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 3796 } 3797 3798 bool InstructionCombiningPass::runOnFunction(Function &F) { 3799 if (skipFunction(F)) 3800 return false; 3801 3802 // Required analyses. 3803 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3804 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3805 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 3806 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3807 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 3808 3809 // Optional analyses. 3810 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3811 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 3812 ProfileSummaryInfo *PSI = 3813 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 3814 BlockFrequencyInfo *BFI = 3815 (PSI && PSI->hasProfileSummary()) ? 3816 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 3817 nullptr; 3818 3819 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI, 3820 PSI, MaxIterations, LI); 3821 } 3822 3823 char InstructionCombiningPass::ID = 0; 3824 3825 InstructionCombiningPass::InstructionCombiningPass() 3826 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) { 3827 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 3828 } 3829 3830 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations) 3831 : FunctionPass(ID), MaxIterations(MaxIterations) { 3832 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 3833 } 3834 3835 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 3836 "Combine redundant instructions", false, false) 3837 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3838 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3839 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3840 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3841 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3842 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3843 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 3844 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 3845 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 3846 "Combine redundant instructions", false, false) 3847 3848 // Initialization Routines 3849 void llvm::initializeInstCombine(PassRegistry &Registry) { 3850 initializeInstructionCombiningPassPass(Registry); 3851 } 3852 3853 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 3854 initializeInstructionCombiningPassPass(*unwrap(R)); 3855 } 3856 3857 FunctionPass *llvm::createInstructionCombiningPass() { 3858 return new InstructionCombiningPass(); 3859 } 3860 3861 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) { 3862 return new InstructionCombiningPass(MaxIterations); 3863 } 3864 3865 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 3866 unwrap(PM)->add(createInstructionCombiningPass()); 3867 } 3868