1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // InstructionCombining - Combine instructions to form fewer, simple 11 // instructions. This pass does not modify the CFG. This pass is where 12 // algebraic simplification happens. 13 // 14 // This pass combines things like: 15 // %Y = add i32 %X, 1 16 // %Z = add i32 %Y, 1 17 // into: 18 // %Z = add i32 %X, 2 19 // 20 // This is a simple worklist driven algorithm. 21 // 22 // This pass guarantees that the following canonicalizations are performed on 23 // the program: 24 // 1. If a binary operator has a constant operand, it is moved to the RHS 25 // 2. Bitwise operators with constant operands are always grouped so that 26 // shifts are performed first, then or's, then and's, then xor's. 27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 28 // 4. All cmp instructions on boolean values are replaced with logical ops 29 // 5. add X, X is represented as (X*2) => (X << 1) 30 // 6. Multiplies with a power-of-two constant argument are transformed into 31 // shifts. 32 // ... etc. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "InstCombineInternal.h" 37 #include "llvm-c/Initialization.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 #include "llvm/ADT/Statistic.h" 40 #include "llvm/ADT/StringSwitch.h" 41 #include "llvm/Analysis/AliasAnalysis.h" 42 #include "llvm/Analysis/AssumptionCache.h" 43 #include "llvm/Analysis/BasicAliasAnalysis.h" 44 #include "llvm/Analysis/CFG.h" 45 #include "llvm/Analysis/ConstantFolding.h" 46 #include "llvm/Analysis/EHPersonalities.h" 47 #include "llvm/Analysis/GlobalsModRef.h" 48 #include "llvm/Analysis/InstructionSimplify.h" 49 #include "llvm/Analysis/LoopInfo.h" 50 #include "llvm/Analysis/MemoryBuiltins.h" 51 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/Analysis/ValueTracking.h" 54 #include "llvm/IR/CFG.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/GetElementPtrTypeIterator.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/ValueHandle.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/DebugCounter.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Transforms/InstCombine/InstCombine.h" 67 #include "llvm/Transforms/Scalar.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include <algorithm> 70 #include <climits> 71 using namespace llvm; 72 using namespace llvm::PatternMatch; 73 74 #define DEBUG_TYPE "instcombine" 75 76 STATISTIC(NumCombined , "Number of insts combined"); 77 STATISTIC(NumConstProp, "Number of constant folds"); 78 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 79 STATISTIC(NumSunkInst , "Number of instructions sunk"); 80 STATISTIC(NumExpand, "Number of expansions"); 81 STATISTIC(NumFactor , "Number of factorizations"); 82 STATISTIC(NumReassoc , "Number of reassociations"); 83 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 84 "Controls which instructions are visited"); 85 86 static cl::opt<bool> 87 EnableExpensiveCombines("expensive-combines", 88 cl::desc("Enable expensive instruction combines")); 89 90 static cl::opt<unsigned> 91 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 92 cl::desc("Maximum array size considered when doing a combine")); 93 94 Value *InstCombiner::EmitGEPOffset(User *GEP) { 95 return llvm::EmitGEPOffset(&Builder, DL, GEP); 96 } 97 98 /// Return true if it is desirable to convert an integer computation from a 99 /// given bit width to a new bit width. 100 /// We don't want to convert from a legal to an illegal type or from a smaller 101 /// to a larger illegal type. A width of '1' is always treated as a legal type 102 /// because i1 is a fundamental type in IR, and there are many specialized 103 /// optimizations for i1 types. 104 bool InstCombiner::shouldChangeType(unsigned FromWidth, 105 unsigned ToWidth) const { 106 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 107 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 108 109 // If this is a legal integer from type, and the result would be an illegal 110 // type, don't do the transformation. 111 if (FromLegal && !ToLegal) 112 return false; 113 114 // Otherwise, if both are illegal, do not increase the size of the result. We 115 // do allow things like i160 -> i64, but not i64 -> i160. 116 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 117 return false; 118 119 return true; 120 } 121 122 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 123 /// We don't want to convert from a legal to an illegal type or from a smaller 124 /// to a larger illegal type. i1 is always treated as a legal type because it is 125 /// a fundamental type in IR, and there are many specialized optimizations for 126 /// i1 types. 127 bool InstCombiner::shouldChangeType(Type *From, Type *To) const { 128 assert(From->isIntegerTy() && To->isIntegerTy()); 129 130 unsigned FromWidth = From->getPrimitiveSizeInBits(); 131 unsigned ToWidth = To->getPrimitiveSizeInBits(); 132 return shouldChangeType(FromWidth, ToWidth); 133 } 134 135 // Return true, if No Signed Wrap should be maintained for I. 136 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 137 // where both B and C should be ConstantInts, results in a constant that does 138 // not overflow. This function only handles the Add and Sub opcodes. For 139 // all other opcodes, the function conservatively returns false. 140 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 141 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 142 if (!OBO || !OBO->hasNoSignedWrap()) 143 return false; 144 145 // We reason about Add and Sub Only. 146 Instruction::BinaryOps Opcode = I.getOpcode(); 147 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 148 return false; 149 150 const APInt *BVal, *CVal; 151 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 152 return false; 153 154 bool Overflow = false; 155 if (Opcode == Instruction::Add) 156 (void)BVal->sadd_ov(*CVal, Overflow); 157 else 158 (void)BVal->ssub_ov(*CVal, Overflow); 159 160 return !Overflow; 161 } 162 163 /// Conservatively clears subclassOptionalData after a reassociation or 164 /// commutation. We preserve fast-math flags when applicable as they can be 165 /// preserved. 166 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 167 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 168 if (!FPMO) { 169 I.clearSubclassOptionalData(); 170 return; 171 } 172 173 FastMathFlags FMF = I.getFastMathFlags(); 174 I.clearSubclassOptionalData(); 175 I.setFastMathFlags(FMF); 176 } 177 178 /// Combine constant operands of associative operations either before or after a 179 /// cast to eliminate one of the associative operations: 180 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 181 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 182 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) { 183 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 184 if (!Cast || !Cast->hasOneUse()) 185 return false; 186 187 // TODO: Enhance logic for other casts and remove this check. 188 auto CastOpcode = Cast->getOpcode(); 189 if (CastOpcode != Instruction::ZExt) 190 return false; 191 192 // TODO: Enhance logic for other BinOps and remove this check. 193 if (!BinOp1->isBitwiseLogicOp()) 194 return false; 195 196 auto AssocOpcode = BinOp1->getOpcode(); 197 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 198 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 199 return false; 200 201 Constant *C1, *C2; 202 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 203 !match(BinOp2->getOperand(1), m_Constant(C2))) 204 return false; 205 206 // TODO: This assumes a zext cast. 207 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 208 // to the destination type might lose bits. 209 210 // Fold the constants together in the destination type: 211 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 212 Type *DestTy = C1->getType(); 213 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 214 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 215 Cast->setOperand(0, BinOp2->getOperand(0)); 216 BinOp1->setOperand(1, FoldedC); 217 return true; 218 } 219 220 /// This performs a few simplifications for operators that are associative or 221 /// commutative: 222 /// 223 /// Commutative operators: 224 /// 225 /// 1. Order operands such that they are listed from right (least complex) to 226 /// left (most complex). This puts constants before unary operators before 227 /// binary operators. 228 /// 229 /// Associative operators: 230 /// 231 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 232 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 233 /// 234 /// Associative and commutative operators: 235 /// 236 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 237 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 238 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 239 /// if C1 and C2 are constants. 240 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 241 Instruction::BinaryOps Opcode = I.getOpcode(); 242 bool Changed = false; 243 244 do { 245 // Order operands such that they are listed from right (least complex) to 246 // left (most complex). This puts constants before unary operators before 247 // binary operators. 248 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 249 getComplexity(I.getOperand(1))) 250 Changed = !I.swapOperands(); 251 252 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 253 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 254 255 if (I.isAssociative()) { 256 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 257 if (Op0 && Op0->getOpcode() == Opcode) { 258 Value *A = Op0->getOperand(0); 259 Value *B = Op0->getOperand(1); 260 Value *C = I.getOperand(1); 261 262 // Does "B op C" simplify? 263 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 264 // It simplifies to V. Form "A op V". 265 I.setOperand(0, A); 266 I.setOperand(1, V); 267 // Conservatively clear the optional flags, since they may not be 268 // preserved by the reassociation. 269 if (MaintainNoSignedWrap(I, B, C) && 270 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { 271 // Note: this is only valid because SimplifyBinOp doesn't look at 272 // the operands to Op0. 273 I.clearSubclassOptionalData(); 274 I.setHasNoSignedWrap(true); 275 } else { 276 ClearSubclassDataAfterReassociation(I); 277 } 278 279 Changed = true; 280 ++NumReassoc; 281 continue; 282 } 283 } 284 285 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 286 if (Op1 && Op1->getOpcode() == Opcode) { 287 Value *A = I.getOperand(0); 288 Value *B = Op1->getOperand(0); 289 Value *C = Op1->getOperand(1); 290 291 // Does "A op B" simplify? 292 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 293 // It simplifies to V. Form "V op C". 294 I.setOperand(0, V); 295 I.setOperand(1, C); 296 // Conservatively clear the optional flags, since they may not be 297 // preserved by the reassociation. 298 ClearSubclassDataAfterReassociation(I); 299 Changed = true; 300 ++NumReassoc; 301 continue; 302 } 303 } 304 } 305 306 if (I.isAssociative() && I.isCommutative()) { 307 if (simplifyAssocCastAssoc(&I)) { 308 Changed = true; 309 ++NumReassoc; 310 continue; 311 } 312 313 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 314 if (Op0 && Op0->getOpcode() == Opcode) { 315 Value *A = Op0->getOperand(0); 316 Value *B = Op0->getOperand(1); 317 Value *C = I.getOperand(1); 318 319 // Does "C op A" simplify? 320 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 321 // It simplifies to V. Form "V op B". 322 I.setOperand(0, V); 323 I.setOperand(1, B); 324 // Conservatively clear the optional flags, since they may not be 325 // preserved by the reassociation. 326 ClearSubclassDataAfterReassociation(I); 327 Changed = true; 328 ++NumReassoc; 329 continue; 330 } 331 } 332 333 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 334 if (Op1 && Op1->getOpcode() == Opcode) { 335 Value *A = I.getOperand(0); 336 Value *B = Op1->getOperand(0); 337 Value *C = Op1->getOperand(1); 338 339 // Does "C op A" simplify? 340 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 341 // It simplifies to V. Form "B op V". 342 I.setOperand(0, B); 343 I.setOperand(1, V); 344 // Conservatively clear the optional flags, since they may not be 345 // preserved by the reassociation. 346 ClearSubclassDataAfterReassociation(I); 347 Changed = true; 348 ++NumReassoc; 349 continue; 350 } 351 } 352 353 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 354 // if C1 and C2 are constants. 355 if (Op0 && Op1 && 356 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 357 isa<Constant>(Op0->getOperand(1)) && 358 isa<Constant>(Op1->getOperand(1)) && 359 Op0->hasOneUse() && Op1->hasOneUse()) { 360 Value *A = Op0->getOperand(0); 361 Constant *C1 = cast<Constant>(Op0->getOperand(1)); 362 Value *B = Op1->getOperand(0); 363 Constant *C2 = cast<Constant>(Op1->getOperand(1)); 364 365 Constant *Folded = ConstantExpr::get(Opcode, C1, C2); 366 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B); 367 if (isa<FPMathOperator>(New)) { 368 FastMathFlags Flags = I.getFastMathFlags(); 369 Flags &= Op0->getFastMathFlags(); 370 Flags &= Op1->getFastMathFlags(); 371 New->setFastMathFlags(Flags); 372 } 373 InsertNewInstWith(New, I); 374 New->takeName(Op1); 375 I.setOperand(0, New); 376 I.setOperand(1, Folded); 377 // Conservatively clear the optional flags, since they may not be 378 // preserved by the reassociation. 379 ClearSubclassDataAfterReassociation(I); 380 381 Changed = true; 382 continue; 383 } 384 } 385 386 // No further simplifications. 387 return Changed; 388 } while (1); 389 } 390 391 /// Return whether "X LOp (Y ROp Z)" is always equal to 392 /// "(X LOp Y) ROp (X LOp Z)". 393 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp, 394 Instruction::BinaryOps ROp) { 395 switch (LOp) { 396 default: 397 return false; 398 399 case Instruction::And: 400 // And distributes over Or and Xor. 401 switch (ROp) { 402 default: 403 return false; 404 case Instruction::Or: 405 case Instruction::Xor: 406 return true; 407 } 408 409 case Instruction::Mul: 410 // Multiplication distributes over addition and subtraction. 411 switch (ROp) { 412 default: 413 return false; 414 case Instruction::Add: 415 case Instruction::Sub: 416 return true; 417 } 418 419 case Instruction::Or: 420 // Or distributes over And. 421 switch (ROp) { 422 default: 423 return false; 424 case Instruction::And: 425 return true; 426 } 427 } 428 } 429 430 /// Return whether "(X LOp Y) ROp Z" is always equal to 431 /// "(X ROp Z) LOp (Y ROp Z)". 432 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp, 433 Instruction::BinaryOps ROp) { 434 if (Instruction::isCommutative(ROp)) 435 return LeftDistributesOverRight(ROp, LOp); 436 437 switch (LOp) { 438 default: 439 return false; 440 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts. 441 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts. 442 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts. 443 case Instruction::And: 444 case Instruction::Or: 445 case Instruction::Xor: 446 switch (ROp) { 447 default: 448 return false; 449 case Instruction::Shl: 450 case Instruction::LShr: 451 case Instruction::AShr: 452 return true; 453 } 454 } 455 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 456 // but this requires knowing that the addition does not overflow and other 457 // such subtleties. 458 return false; 459 } 460 461 /// This function returns identity value for given opcode, which can be used to 462 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 463 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 464 if (isa<Constant>(V)) 465 return nullptr; 466 467 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 468 } 469 470 /// This function factors binary ops which can be combined using distributive 471 /// laws. This function tries to transform 'Op' based TopLevelOpcode to enable 472 /// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called 473 /// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms 474 /// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and 475 /// RHS to 4. 476 static Instruction::BinaryOps 477 getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode, 478 BinaryOperator *Op, Value *&LHS, Value *&RHS) { 479 assert(Op && "Expected a binary operator"); 480 481 LHS = Op->getOperand(0); 482 RHS = Op->getOperand(1); 483 484 switch (TopLevelOpcode) { 485 default: 486 return Op->getOpcode(); 487 488 case Instruction::Add: 489 case Instruction::Sub: 490 if (Op->getOpcode() == Instruction::Shl) { 491 if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) { 492 // The multiplier is really 1 << CST. 493 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST); 494 return Instruction::Mul; 495 } 496 } 497 return Op->getOpcode(); 498 } 499 500 // TODO: We can add other conversions e.g. shr => div etc. 501 } 502 503 /// This tries to simplify binary operations by factorizing out common terms 504 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 505 Value *InstCombiner::tryFactorization(BinaryOperator &I, 506 Instruction::BinaryOps InnerOpcode, 507 Value *A, Value *B, Value *C, Value *D) { 508 assert(A && B && C && D && "All values must be provided"); 509 510 Value *V = nullptr; 511 Value *SimplifiedInst = nullptr; 512 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 513 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 514 515 // Does "X op' Y" always equal "Y op' X"? 516 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 517 518 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 519 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 520 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 521 // commutative case, "(A op' B) op (C op' A)"? 522 if (A == C || (InnerCommutative && A == D)) { 523 if (A != C) 524 std::swap(C, D); 525 // Consider forming "A op' (B op D)". 526 // If "B op D" simplifies then it can be formed with no cost. 527 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 528 // If "B op D" doesn't simplify then only go on if both of the existing 529 // operations "A op' B" and "C op' D" will be zapped as no longer used. 530 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 531 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 532 if (V) { 533 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 534 } 535 } 536 537 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 538 if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 539 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 540 // commutative case, "(A op' B) op (B op' D)"? 541 if (B == D || (InnerCommutative && B == C)) { 542 if (B != D) 543 std::swap(C, D); 544 // Consider forming "(A op C) op' B". 545 // If "A op C" simplifies then it can be formed with no cost. 546 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 547 548 // If "A op C" doesn't simplify then only go on if both of the existing 549 // operations "A op' B" and "C op' D" will be zapped as no longer used. 550 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 551 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 552 if (V) { 553 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 554 } 555 } 556 557 if (SimplifiedInst) { 558 ++NumFactor; 559 SimplifiedInst->takeName(&I); 560 561 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag. 562 // TODO: Check for NUW. 563 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 564 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 565 bool HasNSW = false; 566 if (isa<OverflowingBinaryOperator>(&I)) 567 HasNSW = I.hasNoSignedWrap(); 568 569 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) 570 HasNSW &= LOBO->hasNoSignedWrap(); 571 572 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) 573 HasNSW &= ROBO->hasNoSignedWrap(); 574 575 // We can propagate 'nsw' if we know that 576 // %Y = mul nsw i16 %X, C 577 // %Z = add nsw i16 %Y, %X 578 // => 579 // %Z = mul nsw i16 %X, C+1 580 // 581 // iff C+1 isn't INT_MIN 582 const APInt *CInt; 583 if (TopLevelOpcode == Instruction::Add && 584 InnerOpcode == Instruction::Mul) 585 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) 586 BO->setHasNoSignedWrap(HasNSW); 587 } 588 } 589 } 590 return SimplifiedInst; 591 } 592 593 /// This tries to simplify binary operations which some other binary operation 594 /// distributes over either by factorizing out common terms 595 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 596 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 597 /// Returns the simplified value, or null if it didn't simplify. 598 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 599 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 600 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 601 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 602 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 603 604 { 605 // Factorization. 606 Value *A, *B, *C, *D; 607 Instruction::BinaryOps LHSOpcode, RHSOpcode; 608 if (Op0) 609 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 610 if (Op1) 611 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 612 613 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 614 // a common term. 615 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 616 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 617 return V; 618 619 // The instruction has the form "(A op' B) op (C)". Try to factorize common 620 // term. 621 if (Op0) 622 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 623 if (Value *V = 624 tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 625 return V; 626 627 // The instruction has the form "(B) op (C op' D)". Try to factorize common 628 // term. 629 if (Op1) 630 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 631 if (Value *V = 632 tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 633 return V; 634 } 635 636 // Expansion. 637 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 638 // The instruction has the form "(A op' B) op C". See if expanding it out 639 // to "(A op C) op' (B op C)" results in simplifications. 640 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 641 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 642 643 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 644 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I)); 645 646 // Do "A op C" and "B op C" both simplify? 647 if (L && R) { 648 // They do! Return "L op' R". 649 ++NumExpand; 650 C = Builder.CreateBinOp(InnerOpcode, L, R); 651 C->takeName(&I); 652 return C; 653 } 654 655 // Does "A op C" simplify to the identity value for the inner opcode? 656 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 657 // They do! Return "B op C". 658 ++NumExpand; 659 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 660 C->takeName(&I); 661 return C; 662 } 663 664 // Does "B op C" simplify to the identity value for the inner opcode? 665 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 666 // They do! Return "A op C". 667 ++NumExpand; 668 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 669 C->takeName(&I); 670 return C; 671 } 672 } 673 674 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 675 // The instruction has the form "A op (B op' C)". See if expanding it out 676 // to "(A op B) op' (A op C)" results in simplifications. 677 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 678 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 679 680 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I)); 681 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 682 683 // Do "A op B" and "A op C" both simplify? 684 if (L && R) { 685 // They do! Return "L op' R". 686 ++NumExpand; 687 A = Builder.CreateBinOp(InnerOpcode, L, R); 688 A->takeName(&I); 689 return A; 690 } 691 692 // Does "A op B" simplify to the identity value for the inner opcode? 693 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 694 // They do! Return "A op C". 695 ++NumExpand; 696 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 697 A->takeName(&I); 698 return A; 699 } 700 701 // Does "A op C" simplify to the identity value for the inner opcode? 702 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 703 // They do! Return "A op B". 704 ++NumExpand; 705 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 706 A->takeName(&I); 707 return A; 708 } 709 } 710 711 // (op (select (a, c, b)), (select (a, d, b))) -> (select (a, (op c, d), 0)) 712 // (op (select (a, b, c)), (select (a, b, d))) -> (select (a, 0, (op c, d))) 713 if (auto *SI0 = dyn_cast<SelectInst>(LHS)) { 714 if (auto *SI1 = dyn_cast<SelectInst>(RHS)) { 715 if (SI0->getCondition() == SI1->getCondition()) { 716 Value *SI = nullptr; 717 if (Value *V = 718 SimplifyBinOp(TopLevelOpcode, SI0->getFalseValue(), 719 SI1->getFalseValue(), SQ.getWithInstruction(&I))) 720 SI = Builder.CreateSelect(SI0->getCondition(), 721 Builder.CreateBinOp(TopLevelOpcode, 722 SI0->getTrueValue(), 723 SI1->getTrueValue()), 724 V); 725 if (Value *V = 726 SimplifyBinOp(TopLevelOpcode, SI0->getTrueValue(), 727 SI1->getTrueValue(), SQ.getWithInstruction(&I))) 728 SI = Builder.CreateSelect( 729 SI0->getCondition(), V, 730 Builder.CreateBinOp(TopLevelOpcode, SI0->getFalseValue(), 731 SI1->getFalseValue())); 732 if (SI) { 733 SI->takeName(&I); 734 return SI; 735 } 736 } 737 } 738 } 739 740 return nullptr; 741 } 742 743 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 744 /// constant zero (which is the 'negate' form). 745 Value *InstCombiner::dyn_castNegVal(Value *V) const { 746 if (BinaryOperator::isNeg(V)) 747 return BinaryOperator::getNegArgument(V); 748 749 // Constants can be considered to be negated values if they can be folded. 750 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 751 return ConstantExpr::getNeg(C); 752 753 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 754 if (C->getType()->getElementType()->isIntegerTy()) 755 return ConstantExpr::getNeg(C); 756 757 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 758 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 759 Constant *Elt = CV->getAggregateElement(i); 760 if (!Elt) 761 return nullptr; 762 763 if (isa<UndefValue>(Elt)) 764 continue; 765 766 if (!isa<ConstantInt>(Elt)) 767 return nullptr; 768 } 769 return ConstantExpr::getNeg(CV); 770 } 771 772 return nullptr; 773 } 774 775 /// Given a 'fsub' instruction, return the RHS of the instruction if the LHS is 776 /// a constant negative zero (which is the 'negate' form). 777 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const { 778 if (BinaryOperator::isFNeg(V, IgnoreZeroSign)) 779 return BinaryOperator::getFNegArgument(V); 780 781 // Constants can be considered to be negated values if they can be folded. 782 if (ConstantFP *C = dyn_cast<ConstantFP>(V)) 783 return ConstantExpr::getFNeg(C); 784 785 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 786 if (C->getType()->getElementType()->isFloatingPointTy()) 787 return ConstantExpr::getFNeg(C); 788 789 return nullptr; 790 } 791 792 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 793 InstCombiner::BuilderTy &Builder) { 794 if (auto *Cast = dyn_cast<CastInst>(&I)) 795 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 796 797 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 798 799 // Figure out if the constant is the left or the right argument. 800 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 801 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 802 803 if (auto *SOC = dyn_cast<Constant>(SO)) { 804 if (ConstIsRHS) 805 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 806 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 807 } 808 809 Value *Op0 = SO, *Op1 = ConstOperand; 810 if (!ConstIsRHS) 811 std::swap(Op0, Op1); 812 813 auto *BO = cast<BinaryOperator>(&I); 814 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 815 SO->getName() + ".op"); 816 auto *FPInst = dyn_cast<Instruction>(RI); 817 if (FPInst && isa<FPMathOperator>(FPInst)) 818 FPInst->copyFastMathFlags(BO); 819 return RI; 820 } 821 822 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 823 // Don't modify shared select instructions. 824 if (!SI->hasOneUse()) 825 return nullptr; 826 827 Value *TV = SI->getTrueValue(); 828 Value *FV = SI->getFalseValue(); 829 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 830 return nullptr; 831 832 // Bool selects with constant operands can be folded to logical ops. 833 if (SI->getType()->isIntOrIntVectorTy(1)) 834 return nullptr; 835 836 // If it's a bitcast involving vectors, make sure it has the same number of 837 // elements on both sides. 838 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 839 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 840 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 841 842 // Verify that either both or neither are vectors. 843 if ((SrcTy == nullptr) != (DestTy == nullptr)) 844 return nullptr; 845 846 // If vectors, verify that they have the same number of elements. 847 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 848 return nullptr; 849 } 850 851 // Test if a CmpInst instruction is used exclusively by a select as 852 // part of a minimum or maximum operation. If so, refrain from doing 853 // any other folding. This helps out other analyses which understand 854 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 855 // and CodeGen. And in this case, at least one of the comparison 856 // operands has at least one user besides the compare (the select), 857 // which would often largely negate the benefit of folding anyway. 858 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 859 if (CI->hasOneUse()) { 860 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 861 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 862 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 863 return nullptr; 864 } 865 } 866 867 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 868 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 869 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 870 } 871 872 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 873 InstCombiner::BuilderTy &Builder) { 874 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 875 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 876 877 if (auto *InC = dyn_cast<Constant>(InV)) { 878 if (ConstIsRHS) 879 return ConstantExpr::get(I->getOpcode(), InC, C); 880 return ConstantExpr::get(I->getOpcode(), C, InC); 881 } 882 883 Value *Op0 = InV, *Op1 = C; 884 if (!ConstIsRHS) 885 std::swap(Op0, Op1); 886 887 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp"); 888 auto *FPInst = dyn_cast<Instruction>(RI); 889 if (FPInst && isa<FPMathOperator>(FPInst)) 890 FPInst->copyFastMathFlags(I); 891 return RI; 892 } 893 894 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) { 895 unsigned NumPHIValues = PN->getNumIncomingValues(); 896 if (NumPHIValues == 0) 897 return nullptr; 898 899 // We normally only transform phis with a single use. However, if a PHI has 900 // multiple uses and they are all the same operation, we can fold *all* of the 901 // uses into the PHI. 902 if (!PN->hasOneUse()) { 903 // Walk the use list for the instruction, comparing them to I. 904 for (User *U : PN->users()) { 905 Instruction *UI = cast<Instruction>(U); 906 if (UI != &I && !I.isIdenticalTo(UI)) 907 return nullptr; 908 } 909 // Otherwise, we can replace *all* users with the new PHI we form. 910 } 911 912 // Check to see if all of the operands of the PHI are simple constants 913 // (constantint/constantfp/undef). If there is one non-constant value, 914 // remember the BB it is in. If there is more than one or if *it* is a PHI, 915 // bail out. We don't do arbitrary constant expressions here because moving 916 // their computation can be expensive without a cost model. 917 BasicBlock *NonConstBB = nullptr; 918 for (unsigned i = 0; i != NumPHIValues; ++i) { 919 Value *InVal = PN->getIncomingValue(i); 920 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 921 continue; 922 923 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 924 if (NonConstBB) return nullptr; // More than one non-const value. 925 926 NonConstBB = PN->getIncomingBlock(i); 927 928 // If the InVal is an invoke at the end of the pred block, then we can't 929 // insert a computation after it without breaking the edge. 930 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal)) 931 if (II->getParent() == NonConstBB) 932 return nullptr; 933 934 // If the incoming non-constant value is in I's block, we will remove one 935 // instruction, but insert another equivalent one, leading to infinite 936 // instcombine. 937 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI)) 938 return nullptr; 939 } 940 941 // If there is exactly one non-constant value, we can insert a copy of the 942 // operation in that block. However, if this is a critical edge, we would be 943 // inserting the computation on some other paths (e.g. inside a loop). Only 944 // do this if the pred block is unconditionally branching into the phi block. 945 if (NonConstBB != nullptr) { 946 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 947 if (!BI || !BI->isUnconditional()) return nullptr; 948 } 949 950 // Okay, we can do the transformation: create the new PHI node. 951 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 952 InsertNewInstBefore(NewPN, *PN); 953 NewPN->takeName(PN); 954 955 // If we are going to have to insert a new computation, do so right before the 956 // predecessor's terminator. 957 if (NonConstBB) 958 Builder.SetInsertPoint(NonConstBB->getTerminator()); 959 960 // Next, add all of the operands to the PHI. 961 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 962 // We only currently try to fold the condition of a select when it is a phi, 963 // not the true/false values. 964 Value *TrueV = SI->getTrueValue(); 965 Value *FalseV = SI->getFalseValue(); 966 BasicBlock *PhiTransBB = PN->getParent(); 967 for (unsigned i = 0; i != NumPHIValues; ++i) { 968 BasicBlock *ThisBB = PN->getIncomingBlock(i); 969 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 970 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 971 Value *InV = nullptr; 972 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 973 // even if currently isNullValue gives false. 974 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 975 // For vector constants, we cannot use isNullValue to fold into 976 // FalseVInPred versus TrueVInPred. When we have individual nonzero 977 // elements in the vector, we will incorrectly fold InC to 978 // `TrueVInPred`. 979 if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC)) 980 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 981 else { 982 // Generate the select in the same block as PN's current incoming block. 983 // Note: ThisBB need not be the NonConstBB because vector constants 984 // which are constants by definition are handled here. 985 // FIXME: This can lead to an increase in IR generation because we might 986 // generate selects for vector constant phi operand, that could not be 987 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 988 // non-vector phis, this transformation was always profitable because 989 // the select would be generated exactly once in the NonConstBB. 990 Builder.SetInsertPoint(ThisBB->getTerminator()); 991 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 992 FalseVInPred, "phitmp"); 993 } 994 NewPN->addIncoming(InV, ThisBB); 995 } 996 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 997 Constant *C = cast<Constant>(I.getOperand(1)); 998 for (unsigned i = 0; i != NumPHIValues; ++i) { 999 Value *InV = nullptr; 1000 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1001 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1002 else if (isa<ICmpInst>(CI)) 1003 InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 1004 C, "phitmp"); 1005 else 1006 InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 1007 C, "phitmp"); 1008 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1009 } 1010 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1011 for (unsigned i = 0; i != NumPHIValues; ++i) { 1012 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1013 Builder); 1014 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1015 } 1016 } else { 1017 CastInst *CI = cast<CastInst>(&I); 1018 Type *RetTy = CI->getType(); 1019 for (unsigned i = 0; i != NumPHIValues; ++i) { 1020 Value *InV; 1021 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1022 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1023 else 1024 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1025 I.getType(), "phitmp"); 1026 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1027 } 1028 } 1029 1030 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1031 Instruction *User = cast<Instruction>(*UI++); 1032 if (User == &I) continue; 1033 replaceInstUsesWith(*User, NewPN); 1034 eraseInstFromFunction(*User); 1035 } 1036 return replaceInstUsesWith(I, NewPN); 1037 } 1038 1039 Instruction *InstCombiner::foldOpWithConstantIntoOperand(BinaryOperator &I) { 1040 assert(isa<Constant>(I.getOperand(1)) && "Unexpected operand type"); 1041 1042 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1043 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1044 return NewSel; 1045 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1046 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1047 return NewPhi; 1048 } 1049 return nullptr; 1050 } 1051 1052 /// Given a pointer type and a constant offset, determine whether or not there 1053 /// is a sequence of GEP indices into the pointed type that will land us at the 1054 /// specified offset. If so, fill them into NewIndices and return the resultant 1055 /// element type, otherwise return null. 1056 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 1057 SmallVectorImpl<Value *> &NewIndices) { 1058 Type *Ty = PtrTy->getElementType(); 1059 if (!Ty->isSized()) 1060 return nullptr; 1061 1062 // Start with the index over the outer type. Note that the type size 1063 // might be zero (even if the offset isn't zero) if the indexed type 1064 // is something like [0 x {int, int}] 1065 Type *IntPtrTy = DL.getIntPtrType(PtrTy); 1066 int64_t FirstIdx = 0; 1067 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 1068 FirstIdx = Offset/TySize; 1069 Offset -= FirstIdx*TySize; 1070 1071 // Handle hosts where % returns negative instead of values [0..TySize). 1072 if (Offset < 0) { 1073 --FirstIdx; 1074 Offset += TySize; 1075 assert(Offset >= 0); 1076 } 1077 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 1078 } 1079 1080 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx)); 1081 1082 // Index into the types. If we fail, set OrigBase to null. 1083 while (Offset) { 1084 // Indexing into tail padding between struct/array elements. 1085 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1086 return nullptr; 1087 1088 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1089 const StructLayout *SL = DL.getStructLayout(STy); 1090 assert(Offset < (int64_t)SL->getSizeInBytes() && 1091 "Offset must stay within the indexed type"); 1092 1093 unsigned Elt = SL->getElementContainingOffset(Offset); 1094 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1095 Elt)); 1096 1097 Offset -= SL->getElementOffset(Elt); 1098 Ty = STy->getElementType(Elt); 1099 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1100 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1101 assert(EltSize && "Cannot index into a zero-sized array"); 1102 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize)); 1103 Offset %= EltSize; 1104 Ty = AT->getElementType(); 1105 } else { 1106 // Otherwise, we can't index into the middle of this atomic type, bail. 1107 return nullptr; 1108 } 1109 } 1110 1111 return Ty; 1112 } 1113 1114 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1115 // If this GEP has only 0 indices, it is the same pointer as 1116 // Src. If Src is not a trivial GEP too, don't combine 1117 // the indices. 1118 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1119 !Src.hasOneUse()) 1120 return false; 1121 return true; 1122 } 1123 1124 /// Return a value X such that Val = X * Scale, or null if none. 1125 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1126 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1127 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1128 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1129 Scale.getBitWidth() && "Scale not compatible with value!"); 1130 1131 // If Val is zero or Scale is one then Val = Val * Scale. 1132 if (match(Val, m_Zero()) || Scale == 1) { 1133 NoSignedWrap = true; 1134 return Val; 1135 } 1136 1137 // If Scale is zero then it does not divide Val. 1138 if (Scale.isMinValue()) 1139 return nullptr; 1140 1141 // Look through chains of multiplications, searching for a constant that is 1142 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1143 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1144 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1145 // down from Val: 1146 // 1147 // Val = M1 * X || Analysis starts here and works down 1148 // M1 = M2 * Y || Doesn't descend into terms with more 1149 // M2 = Z * 4 \/ than one use 1150 // 1151 // Then to modify a term at the bottom: 1152 // 1153 // Val = M1 * X 1154 // M1 = Z * Y || Replaced M2 with Z 1155 // 1156 // Then to work back up correcting nsw flags. 1157 1158 // Op - the term we are currently analyzing. Starts at Val then drills down. 1159 // Replaced with its descaled value before exiting from the drill down loop. 1160 Value *Op = Val; 1161 1162 // Parent - initially null, but after drilling down notes where Op came from. 1163 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1164 // 0'th operand of Val. 1165 std::pair<Instruction*, unsigned> Parent; 1166 1167 // Set if the transform requires a descaling at deeper levels that doesn't 1168 // overflow. 1169 bool RequireNoSignedWrap = false; 1170 1171 // Log base 2 of the scale. Negative if not a power of 2. 1172 int32_t logScale = Scale.exactLogBase2(); 1173 1174 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1175 1176 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1177 // If Op is a constant divisible by Scale then descale to the quotient. 1178 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1179 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1180 if (!Remainder.isMinValue()) 1181 // Not divisible by Scale. 1182 return nullptr; 1183 // Replace with the quotient in the parent. 1184 Op = ConstantInt::get(CI->getType(), Quotient); 1185 NoSignedWrap = true; 1186 break; 1187 } 1188 1189 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1190 1191 if (BO->getOpcode() == Instruction::Mul) { 1192 // Multiplication. 1193 NoSignedWrap = BO->hasNoSignedWrap(); 1194 if (RequireNoSignedWrap && !NoSignedWrap) 1195 return nullptr; 1196 1197 // There are three cases for multiplication: multiplication by exactly 1198 // the scale, multiplication by a constant different to the scale, and 1199 // multiplication by something else. 1200 Value *LHS = BO->getOperand(0); 1201 Value *RHS = BO->getOperand(1); 1202 1203 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1204 // Multiplication by a constant. 1205 if (CI->getValue() == Scale) { 1206 // Multiplication by exactly the scale, replace the multiplication 1207 // by its left-hand side in the parent. 1208 Op = LHS; 1209 break; 1210 } 1211 1212 // Otherwise drill down into the constant. 1213 if (!Op->hasOneUse()) 1214 return nullptr; 1215 1216 Parent = std::make_pair(BO, 1); 1217 continue; 1218 } 1219 1220 // Multiplication by something else. Drill down into the left-hand side 1221 // since that's where the reassociate pass puts the good stuff. 1222 if (!Op->hasOneUse()) 1223 return nullptr; 1224 1225 Parent = std::make_pair(BO, 0); 1226 continue; 1227 } 1228 1229 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1230 isa<ConstantInt>(BO->getOperand(1))) { 1231 // Multiplication by a power of 2. 1232 NoSignedWrap = BO->hasNoSignedWrap(); 1233 if (RequireNoSignedWrap && !NoSignedWrap) 1234 return nullptr; 1235 1236 Value *LHS = BO->getOperand(0); 1237 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1238 getLimitedValue(Scale.getBitWidth()); 1239 // Op = LHS << Amt. 1240 1241 if (Amt == logScale) { 1242 // Multiplication by exactly the scale, replace the multiplication 1243 // by its left-hand side in the parent. 1244 Op = LHS; 1245 break; 1246 } 1247 if (Amt < logScale || !Op->hasOneUse()) 1248 return nullptr; 1249 1250 // Multiplication by more than the scale. Reduce the multiplying amount 1251 // by the scale in the parent. 1252 Parent = std::make_pair(BO, 1); 1253 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1254 break; 1255 } 1256 } 1257 1258 if (!Op->hasOneUse()) 1259 return nullptr; 1260 1261 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1262 if (Cast->getOpcode() == Instruction::SExt) { 1263 // Op is sign-extended from a smaller type, descale in the smaller type. 1264 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1265 APInt SmallScale = Scale.trunc(SmallSize); 1266 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1267 // descale Op as (sext Y) * Scale. In order to have 1268 // sext (Y * SmallScale) = (sext Y) * Scale 1269 // some conditions need to hold however: SmallScale must sign-extend to 1270 // Scale and the multiplication Y * SmallScale should not overflow. 1271 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1272 // SmallScale does not sign-extend to Scale. 1273 return nullptr; 1274 assert(SmallScale.exactLogBase2() == logScale); 1275 // Require that Y * SmallScale must not overflow. 1276 RequireNoSignedWrap = true; 1277 1278 // Drill down through the cast. 1279 Parent = std::make_pair(Cast, 0); 1280 Scale = SmallScale; 1281 continue; 1282 } 1283 1284 if (Cast->getOpcode() == Instruction::Trunc) { 1285 // Op is truncated from a larger type, descale in the larger type. 1286 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1287 // trunc (Y * sext Scale) = (trunc Y) * Scale 1288 // always holds. However (trunc Y) * Scale may overflow even if 1289 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1290 // from this point up in the expression (see later). 1291 if (RequireNoSignedWrap) 1292 return nullptr; 1293 1294 // Drill down through the cast. 1295 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1296 Parent = std::make_pair(Cast, 0); 1297 Scale = Scale.sext(LargeSize); 1298 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1299 logScale = -1; 1300 assert(Scale.exactLogBase2() == logScale); 1301 continue; 1302 } 1303 } 1304 1305 // Unsupported expression, bail out. 1306 return nullptr; 1307 } 1308 1309 // If Op is zero then Val = Op * Scale. 1310 if (match(Op, m_Zero())) { 1311 NoSignedWrap = true; 1312 return Op; 1313 } 1314 1315 // We know that we can successfully descale, so from here on we can safely 1316 // modify the IR. Op holds the descaled version of the deepest term in the 1317 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1318 // not to overflow. 1319 1320 if (!Parent.first) 1321 // The expression only had one term. 1322 return Op; 1323 1324 // Rewrite the parent using the descaled version of its operand. 1325 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1326 assert(Op != Parent.first->getOperand(Parent.second) && 1327 "Descaling was a no-op?"); 1328 Parent.first->setOperand(Parent.second, Op); 1329 Worklist.Add(Parent.first); 1330 1331 // Now work back up the expression correcting nsw flags. The logic is based 1332 // on the following observation: if X * Y is known not to overflow as a signed 1333 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1334 // then X * Z will not overflow as a signed multiplication either. As we work 1335 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1336 // current level has strictly smaller absolute value than the original. 1337 Instruction *Ancestor = Parent.first; 1338 do { 1339 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1340 // If the multiplication wasn't nsw then we can't say anything about the 1341 // value of the descaled multiplication, and we have to clear nsw flags 1342 // from this point on up. 1343 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1344 NoSignedWrap &= OpNoSignedWrap; 1345 if (NoSignedWrap != OpNoSignedWrap) { 1346 BO->setHasNoSignedWrap(NoSignedWrap); 1347 Worklist.Add(Ancestor); 1348 } 1349 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1350 // The fact that the descaled input to the trunc has smaller absolute 1351 // value than the original input doesn't tell us anything useful about 1352 // the absolute values of the truncations. 1353 NoSignedWrap = false; 1354 } 1355 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1356 "Failed to keep proper track of nsw flags while drilling down?"); 1357 1358 if (Ancestor == Val) 1359 // Got to the top, all done! 1360 return Val; 1361 1362 // Move up one level in the expression. 1363 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1364 Ancestor = Ancestor->user_back(); 1365 } while (1); 1366 } 1367 1368 /// \brief Creates node of binary operation with the same attributes as the 1369 /// specified one but with other operands. 1370 static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS, 1371 InstCombiner::BuilderTy &B) { 1372 Value *BO = B.CreateBinOp(Inst.getOpcode(), LHS, RHS); 1373 // If LHS and RHS are constant, BO won't be a binary operator. 1374 if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BO)) 1375 NewBO->copyIRFlags(&Inst); 1376 return BO; 1377 } 1378 1379 /// \brief Makes transformation of binary operation specific for vector types. 1380 /// \param Inst Binary operator to transform. 1381 /// \return Pointer to node that must replace the original binary operator, or 1382 /// null pointer if no transformation was made. 1383 Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) { 1384 if (!Inst.getType()->isVectorTy()) return nullptr; 1385 1386 // It may not be safe to reorder shuffles and things like div, urem, etc. 1387 // because we may trap when executing those ops on unknown vector elements. 1388 // See PR20059. 1389 if (!isSafeToSpeculativelyExecute(&Inst)) 1390 return nullptr; 1391 1392 unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements(); 1393 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1394 assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth); 1395 assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth); 1396 1397 // If both arguments of the binary operation are shuffles that use the same 1398 // mask and shuffle within a single vector, move the shuffle after the binop: 1399 // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m) 1400 auto *LShuf = dyn_cast<ShuffleVectorInst>(LHS); 1401 auto *RShuf = dyn_cast<ShuffleVectorInst>(RHS); 1402 if (LShuf && RShuf && LShuf->getMask() == RShuf->getMask() && 1403 isa<UndefValue>(LShuf->getOperand(1)) && 1404 isa<UndefValue>(RShuf->getOperand(1)) && 1405 LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType()) { 1406 Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0), 1407 RShuf->getOperand(0), Builder); 1408 return Builder.CreateShuffleVector( 1409 NewBO, UndefValue::get(NewBO->getType()), LShuf->getMask()); 1410 } 1411 1412 // If one argument is a shuffle within one vector, the other is a constant, 1413 // try moving the shuffle after the binary operation. 1414 ShuffleVectorInst *Shuffle = nullptr; 1415 Constant *C1 = nullptr; 1416 if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS); 1417 if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS); 1418 if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS); 1419 if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS); 1420 if (Shuffle && C1 && 1421 (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) && 1422 isa<UndefValue>(Shuffle->getOperand(1)) && 1423 Shuffle->getType() == Shuffle->getOperand(0)->getType()) { 1424 SmallVector<int, 16> ShMask = Shuffle->getShuffleMask(); 1425 // Find constant C2 that has property: 1426 // shuffle(C2, ShMask) = C1 1427 // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>) 1428 // reorder is not possible. 1429 SmallVector<Constant*, 16> C2M(VWidth, 1430 UndefValue::get(C1->getType()->getScalarType())); 1431 bool MayChange = true; 1432 for (unsigned I = 0; I < VWidth; ++I) { 1433 if (ShMask[I] >= 0) { 1434 assert(ShMask[I] < (int)VWidth); 1435 if (!isa<UndefValue>(C2M[ShMask[I]])) { 1436 MayChange = false; 1437 break; 1438 } 1439 C2M[ShMask[I]] = C1->getAggregateElement(I); 1440 } 1441 } 1442 if (MayChange) { 1443 Constant *C2 = ConstantVector::get(C2M); 1444 Value *NewLHS = isa<Constant>(LHS) ? C2 : Shuffle->getOperand(0); 1445 Value *NewRHS = isa<Constant>(LHS) ? Shuffle->getOperand(0) : C2; 1446 Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder); 1447 return Builder.CreateShuffleVector(NewBO, 1448 UndefValue::get(Inst.getType()), Shuffle->getMask()); 1449 } 1450 } 1451 1452 return nullptr; 1453 } 1454 1455 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1456 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1457 1458 if (Value *V = SimplifyGEPInst(GEP.getSourceElementType(), Ops, 1459 SQ.getWithInstruction(&GEP))) 1460 return replaceInstUsesWith(GEP, V); 1461 1462 Value *PtrOp = GEP.getOperand(0); 1463 1464 // Eliminate unneeded casts for indices, and replace indices which displace 1465 // by multiples of a zero size type with zero. 1466 bool MadeChange = false; 1467 Type *IntPtrTy = 1468 DL.getIntPtrType(GEP.getPointerOperandType()->getScalarType()); 1469 1470 gep_type_iterator GTI = gep_type_begin(GEP); 1471 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1472 ++I, ++GTI) { 1473 // Skip indices into struct types. 1474 if (GTI.isStruct()) 1475 continue; 1476 1477 // Index type should have the same width as IntPtr 1478 Type *IndexTy = (*I)->getType(); 1479 Type *NewIndexType = IndexTy->isVectorTy() ? 1480 VectorType::get(IntPtrTy, IndexTy->getVectorNumElements()) : IntPtrTy; 1481 1482 // If the element type has zero size then any index over it is equivalent 1483 // to an index of zero, so replace it with zero if it is not zero already. 1484 Type *EltTy = GTI.getIndexedType(); 1485 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0) 1486 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { 1487 *I = Constant::getNullValue(NewIndexType); 1488 MadeChange = true; 1489 } 1490 1491 if (IndexTy != NewIndexType) { 1492 // If we are using a wider index than needed for this platform, shrink 1493 // it to what we need. If narrower, sign-extend it to what we need. 1494 // This explicit cast can make subsequent optimizations more obvious. 1495 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1496 MadeChange = true; 1497 } 1498 } 1499 if (MadeChange) 1500 return &GEP; 1501 1502 // Check to see if the inputs to the PHI node are getelementptr instructions. 1503 if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) { 1504 GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1505 if (!Op1) 1506 return nullptr; 1507 1508 // Don't fold a GEP into itself through a PHI node. This can only happen 1509 // through the back-edge of a loop. Folding a GEP into itself means that 1510 // the value of the previous iteration needs to be stored in the meantime, 1511 // thus requiring an additional register variable to be live, but not 1512 // actually achieving anything (the GEP still needs to be executed once per 1513 // loop iteration). 1514 if (Op1 == &GEP) 1515 return nullptr; 1516 1517 int DI = -1; 1518 1519 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1520 GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I); 1521 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1522 return nullptr; 1523 1524 // As for Op1 above, don't try to fold a GEP into itself. 1525 if (Op2 == &GEP) 1526 return nullptr; 1527 1528 // Keep track of the type as we walk the GEP. 1529 Type *CurTy = nullptr; 1530 1531 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1532 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1533 return nullptr; 1534 1535 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1536 if (DI == -1) { 1537 // We have not seen any differences yet in the GEPs feeding the 1538 // PHI yet, so we record this one if it is allowed to be a 1539 // variable. 1540 1541 // The first two arguments can vary for any GEP, the rest have to be 1542 // static for struct slots 1543 if (J > 1 && CurTy->isStructTy()) 1544 return nullptr; 1545 1546 DI = J; 1547 } else { 1548 // The GEP is different by more than one input. While this could be 1549 // extended to support GEPs that vary by more than one variable it 1550 // doesn't make sense since it greatly increases the complexity and 1551 // would result in an R+R+R addressing mode which no backend 1552 // directly supports and would need to be broken into several 1553 // simpler instructions anyway. 1554 return nullptr; 1555 } 1556 } 1557 1558 // Sink down a layer of the type for the next iteration. 1559 if (J > 0) { 1560 if (J == 1) { 1561 CurTy = Op1->getSourceElementType(); 1562 } else if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) { 1563 CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); 1564 } else { 1565 CurTy = nullptr; 1566 } 1567 } 1568 } 1569 } 1570 1571 // If not all GEPs are identical we'll have to create a new PHI node. 1572 // Check that the old PHI node has only one use so that it will get 1573 // removed. 1574 if (DI != -1 && !PN->hasOneUse()) 1575 return nullptr; 1576 1577 GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1578 if (DI == -1) { 1579 // All the GEPs feeding the PHI are identical. Clone one down into our 1580 // BB so that it can be merged with the current GEP. 1581 GEP.getParent()->getInstList().insert( 1582 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1583 } else { 1584 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1585 // into the current block so it can be merged, and create a new PHI to 1586 // set that index. 1587 PHINode *NewPN; 1588 { 1589 IRBuilderBase::InsertPointGuard Guard(Builder); 1590 Builder.SetInsertPoint(PN); 1591 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 1592 PN->getNumOperands()); 1593 } 1594 1595 for (auto &I : PN->operands()) 1596 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1597 PN->getIncomingBlock(I)); 1598 1599 NewGEP->setOperand(DI, NewPN); 1600 GEP.getParent()->getInstList().insert( 1601 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1602 NewGEP->setOperand(DI, NewPN); 1603 } 1604 1605 GEP.setOperand(0, NewGEP); 1606 PtrOp = NewGEP; 1607 } 1608 1609 // Combine Indices - If the source pointer to this getelementptr instruction 1610 // is a getelementptr instruction, combine the indices of the two 1611 // getelementptr instructions into a single instruction. 1612 // 1613 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) { 1614 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1615 return nullptr; 1616 1617 // Note that if our source is a gep chain itself then we wait for that 1618 // chain to be resolved before we perform this transformation. This 1619 // avoids us creating a TON of code in some cases. 1620 if (GEPOperator *SrcGEP = 1621 dyn_cast<GEPOperator>(Src->getOperand(0))) 1622 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1623 return nullptr; // Wait until our source is folded to completion. 1624 1625 SmallVector<Value*, 8> Indices; 1626 1627 // Find out whether the last index in the source GEP is a sequential idx. 1628 bool EndsWithSequential = false; 1629 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1630 I != E; ++I) 1631 EndsWithSequential = I.isSequential(); 1632 1633 // Can we combine the two pointer arithmetics offsets? 1634 if (EndsWithSequential) { 1635 // Replace: gep (gep %P, long B), long A, ... 1636 // With: T = long A+B; gep %P, T, ... 1637 // 1638 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1639 Value *GO1 = GEP.getOperand(1); 1640 1641 // If they aren't the same type, then the input hasn't been processed 1642 // by the loop above yet (which canonicalizes sequential index types to 1643 // intptr_t). Just avoid transforming this until the input has been 1644 // normalized. 1645 if (SO1->getType() != GO1->getType()) 1646 return nullptr; 1647 1648 Value *Sum = 1649 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 1650 // Only do the combine when we are sure the cost after the 1651 // merge is never more than that before the merge. 1652 if (Sum == nullptr) 1653 return nullptr; 1654 1655 // Update the GEP in place if possible. 1656 if (Src->getNumOperands() == 2) { 1657 GEP.setOperand(0, Src->getOperand(0)); 1658 GEP.setOperand(1, Sum); 1659 return &GEP; 1660 } 1661 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1662 Indices.push_back(Sum); 1663 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1664 } else if (isa<Constant>(*GEP.idx_begin()) && 1665 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1666 Src->getNumOperands() != 1) { 1667 // Otherwise we can do the fold if the first index of the GEP is a zero 1668 Indices.append(Src->op_begin()+1, Src->op_end()); 1669 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1670 } 1671 1672 if (!Indices.empty()) 1673 return GEP.isInBounds() && Src->isInBounds() 1674 ? GetElementPtrInst::CreateInBounds( 1675 Src->getSourceElementType(), Src->getOperand(0), Indices, 1676 GEP.getName()) 1677 : GetElementPtrInst::Create(Src->getSourceElementType(), 1678 Src->getOperand(0), Indices, 1679 GEP.getName()); 1680 } 1681 1682 if (GEP.getNumIndices() == 1) { 1683 unsigned AS = GEP.getPointerAddressSpace(); 1684 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 1685 DL.getPointerSizeInBits(AS)) { 1686 Type *Ty = GEP.getSourceElementType(); 1687 uint64_t TyAllocSize = DL.getTypeAllocSize(Ty); 1688 1689 bool Matched = false; 1690 uint64_t C; 1691 Value *V = nullptr; 1692 if (TyAllocSize == 1) { 1693 V = GEP.getOperand(1); 1694 Matched = true; 1695 } else if (match(GEP.getOperand(1), 1696 m_AShr(m_Value(V), m_ConstantInt(C)))) { 1697 if (TyAllocSize == 1ULL << C) 1698 Matched = true; 1699 } else if (match(GEP.getOperand(1), 1700 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 1701 if (TyAllocSize == C) 1702 Matched = true; 1703 } 1704 1705 if (Matched) { 1706 // Canonicalize (gep i8* X, -(ptrtoint Y)) 1707 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) 1708 // The GEP pattern is emitted by the SCEV expander for certain kinds of 1709 // pointer arithmetic. 1710 if (match(V, m_Neg(m_PtrToInt(m_Value())))) { 1711 Operator *Index = cast<Operator>(V); 1712 Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType()); 1713 Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1)); 1714 return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType()); 1715 } 1716 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) 1717 // to (bitcast Y) 1718 Value *Y; 1719 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), 1720 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) { 1721 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, 1722 GEP.getType()); 1723 } 1724 } 1725 } 1726 } 1727 1728 // We do not handle pointer-vector geps here. 1729 if (GEP.getType()->isVectorTy()) 1730 return nullptr; 1731 1732 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 1733 Value *StrippedPtr = PtrOp->stripPointerCasts(); 1734 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 1735 1736 if (StrippedPtr != PtrOp) { 1737 bool HasZeroPointerIndex = false; 1738 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 1739 HasZeroPointerIndex = C->isZero(); 1740 1741 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 1742 // into : GEP [10 x i8]* X, i32 0, ... 1743 // 1744 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 1745 // into : GEP i8* X, ... 1746 // 1747 // This occurs when the program declares an array extern like "int X[];" 1748 if (HasZeroPointerIndex) { 1749 if (ArrayType *CATy = 1750 dyn_cast<ArrayType>(GEP.getSourceElementType())) { 1751 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 1752 if (CATy->getElementType() == StrippedPtrTy->getElementType()) { 1753 // -> GEP i8* X, ... 1754 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 1755 GetElementPtrInst *Res = GetElementPtrInst::Create( 1756 StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName()); 1757 Res->setIsInBounds(GEP.isInBounds()); 1758 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 1759 return Res; 1760 // Insert Res, and create an addrspacecast. 1761 // e.g., 1762 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 1763 // -> 1764 // %0 = GEP i8 addrspace(1)* X, ... 1765 // addrspacecast i8 addrspace(1)* %0 to i8* 1766 return new AddrSpaceCastInst(Builder.Insert(Res), GEP.getType()); 1767 } 1768 1769 if (ArrayType *XATy = 1770 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){ 1771 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 1772 if (CATy->getElementType() == XATy->getElementType()) { 1773 // -> GEP [10 x i8]* X, i32 0, ... 1774 // At this point, we know that the cast source type is a pointer 1775 // to an array of the same type as the destination pointer 1776 // array. Because the array type is never stepped over (there 1777 // is a leading zero) we can fold the cast into this GEP. 1778 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 1779 GEP.setOperand(0, StrippedPtr); 1780 GEP.setSourceElementType(XATy); 1781 return &GEP; 1782 } 1783 // Cannot replace the base pointer directly because StrippedPtr's 1784 // address space is different. Instead, create a new GEP followed by 1785 // an addrspacecast. 1786 // e.g., 1787 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 1788 // i32 0, ... 1789 // -> 1790 // %0 = GEP [10 x i8] addrspace(1)* X, ... 1791 // addrspacecast i8 addrspace(1)* %0 to i8* 1792 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 1793 Value *NewGEP = GEP.isInBounds() 1794 ? Builder.CreateInBoundsGEP( 1795 nullptr, StrippedPtr, Idx, GEP.getName()) 1796 : Builder.CreateGEP(nullptr, StrippedPtr, Idx, 1797 GEP.getName()); 1798 return new AddrSpaceCastInst(NewGEP, GEP.getType()); 1799 } 1800 } 1801 } 1802 } else if (GEP.getNumOperands() == 2) { 1803 // Transform things like: 1804 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 1805 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 1806 Type *SrcElTy = StrippedPtrTy->getElementType(); 1807 Type *ResElTy = GEP.getSourceElementType(); 1808 if (SrcElTy->isArrayTy() && 1809 DL.getTypeAllocSize(SrcElTy->getArrayElementType()) == 1810 DL.getTypeAllocSize(ResElTy)) { 1811 Type *IdxType = DL.getIntPtrType(GEP.getType()); 1812 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 1813 Value *NewGEP = 1814 GEP.isInBounds() 1815 ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, Idx, 1816 GEP.getName()) 1817 : Builder.CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName()); 1818 1819 // V and GEP are both pointer types --> BitCast 1820 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1821 GEP.getType()); 1822 } 1823 1824 // Transform things like: 1825 // %V = mul i64 %N, 4 1826 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 1827 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 1828 if (ResElTy->isSized() && SrcElTy->isSized()) { 1829 // Check that changing the type amounts to dividing the index by a scale 1830 // factor. 1831 uint64_t ResSize = DL.getTypeAllocSize(ResElTy); 1832 uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy); 1833 if (ResSize && SrcSize % ResSize == 0) { 1834 Value *Idx = GEP.getOperand(1); 1835 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1836 uint64_t Scale = SrcSize / ResSize; 1837 1838 // Earlier transforms ensure that the index has type IntPtrType, which 1839 // considerably simplifies the logic by eliminating implicit casts. 1840 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) && 1841 "Index not cast to pointer width?"); 1842 1843 bool NSW; 1844 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1845 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1846 // If the multiplication NewIdx * Scale may overflow then the new 1847 // GEP may not be "inbounds". 1848 Value *NewGEP = 1849 GEP.isInBounds() && NSW 1850 ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx, 1851 GEP.getName()) 1852 : Builder.CreateGEP(nullptr, StrippedPtr, NewIdx, 1853 GEP.getName()); 1854 1855 // The NewGEP must be pointer typed, so must the old one -> BitCast 1856 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1857 GEP.getType()); 1858 } 1859 } 1860 } 1861 1862 // Similarly, transform things like: 1863 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 1864 // (where tmp = 8*tmp2) into: 1865 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 1866 if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) { 1867 // Check that changing to the array element type amounts to dividing the 1868 // index by a scale factor. 1869 uint64_t ResSize = DL.getTypeAllocSize(ResElTy); 1870 uint64_t ArrayEltSize = 1871 DL.getTypeAllocSize(SrcElTy->getArrayElementType()); 1872 if (ResSize && ArrayEltSize % ResSize == 0) { 1873 Value *Idx = GEP.getOperand(1); 1874 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1875 uint64_t Scale = ArrayEltSize / ResSize; 1876 1877 // Earlier transforms ensure that the index has type IntPtrType, which 1878 // considerably simplifies the logic by eliminating implicit casts. 1879 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) && 1880 "Index not cast to pointer width?"); 1881 1882 bool NSW; 1883 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1884 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1885 // If the multiplication NewIdx * Scale may overflow then the new 1886 // GEP may not be "inbounds". 1887 Value *Off[2] = { 1888 Constant::getNullValue(DL.getIntPtrType(GEP.getType())), 1889 NewIdx}; 1890 1891 Value *NewGEP = GEP.isInBounds() && NSW 1892 ? Builder.CreateInBoundsGEP( 1893 SrcElTy, StrippedPtr, Off, GEP.getName()) 1894 : Builder.CreateGEP(SrcElTy, StrippedPtr, Off, 1895 GEP.getName()); 1896 // The NewGEP must be pointer typed, so must the old one -> BitCast 1897 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1898 GEP.getType()); 1899 } 1900 } 1901 } 1902 } 1903 } 1904 1905 // addrspacecast between types is canonicalized as a bitcast, then an 1906 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 1907 // through the addrspacecast. 1908 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 1909 // X = bitcast A addrspace(1)* to B addrspace(1)* 1910 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 1911 // Z = gep Y, <...constant indices...> 1912 // Into an addrspacecasted GEP of the struct. 1913 if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 1914 PtrOp = BC; 1915 } 1916 1917 /// See if we can simplify: 1918 /// X = bitcast A* to B* 1919 /// Y = gep X, <...constant indices...> 1920 /// into a gep of the original struct. This is important for SROA and alias 1921 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 1922 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) { 1923 Value *Operand = BCI->getOperand(0); 1924 PointerType *OpType = cast<PointerType>(Operand->getType()); 1925 unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType()); 1926 APInt Offset(OffsetBits, 0); 1927 if (!isa<BitCastInst>(Operand) && 1928 GEP.accumulateConstantOffset(DL, Offset)) { 1929 1930 // If this GEP instruction doesn't move the pointer, just replace the GEP 1931 // with a bitcast of the real input to the dest type. 1932 if (!Offset) { 1933 // If the bitcast is of an allocation, and the allocation will be 1934 // converted to match the type of the cast, don't touch this. 1935 if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, &TLI)) { 1936 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 1937 if (Instruction *I = visitBitCast(*BCI)) { 1938 if (I != BCI) { 1939 I->takeName(BCI); 1940 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 1941 replaceInstUsesWith(*BCI, I); 1942 } 1943 return &GEP; 1944 } 1945 } 1946 1947 if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 1948 return new AddrSpaceCastInst(Operand, GEP.getType()); 1949 return new BitCastInst(Operand, GEP.getType()); 1950 } 1951 1952 // Otherwise, if the offset is non-zero, we need to find out if there is a 1953 // field at Offset in 'A's type. If so, we can pull the cast through the 1954 // GEP. 1955 SmallVector<Value*, 8> NewIndices; 1956 if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) { 1957 Value *NGEP = 1958 GEP.isInBounds() 1959 ? Builder.CreateInBoundsGEP(nullptr, Operand, NewIndices) 1960 : Builder.CreateGEP(nullptr, Operand, NewIndices); 1961 1962 if (NGEP->getType() == GEP.getType()) 1963 return replaceInstUsesWith(GEP, NGEP); 1964 NGEP->takeName(&GEP); 1965 1966 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 1967 return new AddrSpaceCastInst(NGEP, GEP.getType()); 1968 return new BitCastInst(NGEP, GEP.getType()); 1969 } 1970 } 1971 } 1972 1973 if (!GEP.isInBounds()) { 1974 unsigned PtrWidth = 1975 DL.getPointerSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 1976 APInt BasePtrOffset(PtrWidth, 0); 1977 Value *UnderlyingPtrOp = 1978 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 1979 BasePtrOffset); 1980 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 1981 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 1982 BasePtrOffset.isNonNegative()) { 1983 APInt AllocSize(PtrWidth, DL.getTypeAllocSize(AI->getAllocatedType())); 1984 if (BasePtrOffset.ule(AllocSize)) { 1985 return GetElementPtrInst::CreateInBounds( 1986 PtrOp, makeArrayRef(Ops).slice(1), GEP.getName()); 1987 } 1988 } 1989 } 1990 } 1991 1992 return nullptr; 1993 } 1994 1995 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 1996 Instruction *AI) { 1997 if (isa<ConstantPointerNull>(V)) 1998 return true; 1999 if (auto *LI = dyn_cast<LoadInst>(V)) 2000 return isa<GlobalVariable>(LI->getPointerOperand()); 2001 // Two distinct allocations will never be equal. 2002 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2003 // through bitcasts of V can cause 2004 // the result statement below to be true, even when AI and V (ex: 2005 // i8* ->i32* ->i8* of AI) are the same allocations. 2006 return isAllocLikeFn(V, TLI) && V != AI; 2007 } 2008 2009 static bool isAllocSiteRemovable(Instruction *AI, 2010 SmallVectorImpl<WeakTrackingVH> &Users, 2011 const TargetLibraryInfo *TLI) { 2012 SmallVector<Instruction*, 4> Worklist; 2013 Worklist.push_back(AI); 2014 2015 do { 2016 Instruction *PI = Worklist.pop_back_val(); 2017 for (User *U : PI->users()) { 2018 Instruction *I = cast<Instruction>(U); 2019 switch (I->getOpcode()) { 2020 default: 2021 // Give up the moment we see something we can't handle. 2022 return false; 2023 2024 case Instruction::AddrSpaceCast: 2025 case Instruction::BitCast: 2026 case Instruction::GetElementPtr: 2027 Users.emplace_back(I); 2028 Worklist.push_back(I); 2029 continue; 2030 2031 case Instruction::ICmp: { 2032 ICmpInst *ICI = cast<ICmpInst>(I); 2033 // We can fold eq/ne comparisons with null to false/true, respectively. 2034 // We also fold comparisons in some conditions provided the alloc has 2035 // not escaped (see isNeverEqualToUnescapedAlloc). 2036 if (!ICI->isEquality()) 2037 return false; 2038 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2039 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2040 return false; 2041 Users.emplace_back(I); 2042 continue; 2043 } 2044 2045 case Instruction::Call: 2046 // Ignore no-op and store intrinsics. 2047 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2048 switch (II->getIntrinsicID()) { 2049 default: 2050 return false; 2051 2052 case Intrinsic::memmove: 2053 case Intrinsic::memcpy: 2054 case Intrinsic::memset: { 2055 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2056 if (MI->isVolatile() || MI->getRawDest() != PI) 2057 return false; 2058 LLVM_FALLTHROUGH; 2059 } 2060 case Intrinsic::invariant_start: 2061 case Intrinsic::invariant_end: 2062 case Intrinsic::lifetime_start: 2063 case Intrinsic::lifetime_end: 2064 case Intrinsic::objectsize: 2065 Users.emplace_back(I); 2066 continue; 2067 } 2068 } 2069 2070 if (isFreeCall(I, TLI)) { 2071 Users.emplace_back(I); 2072 continue; 2073 } 2074 return false; 2075 2076 case Instruction::Store: { 2077 StoreInst *SI = cast<StoreInst>(I); 2078 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2079 return false; 2080 Users.emplace_back(I); 2081 continue; 2082 } 2083 } 2084 llvm_unreachable("missing a return?"); 2085 } 2086 } while (!Worklist.empty()); 2087 return true; 2088 } 2089 2090 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 2091 // If we have a malloc call which is only used in any amount of comparisons 2092 // to null and free calls, delete the calls and replace the comparisons with 2093 // true or false as appropriate. 2094 SmallVector<WeakTrackingVH, 64> Users; 2095 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2096 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2097 // Lowering all @llvm.objectsize calls first because they may 2098 // use a bitcast/GEP of the alloca we are removing. 2099 if (!Users[i]) 2100 continue; 2101 2102 Instruction *I = cast<Instruction>(&*Users[i]); 2103 2104 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2105 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2106 ConstantInt *Result = lowerObjectSizeCall(II, DL, &TLI, 2107 /*MustSucceed=*/true); 2108 replaceInstUsesWith(*I, Result); 2109 eraseInstFromFunction(*I); 2110 Users[i] = nullptr; // Skip examining in the next loop. 2111 } 2112 } 2113 } 2114 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2115 if (!Users[i]) 2116 continue; 2117 2118 Instruction *I = cast<Instruction>(&*Users[i]); 2119 2120 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2121 replaceInstUsesWith(*C, 2122 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2123 C->isFalseWhenEqual())); 2124 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) || 2125 isa<AddrSpaceCastInst>(I)) { 2126 replaceInstUsesWith(*I, UndefValue::get(I->getType())); 2127 } 2128 eraseInstFromFunction(*I); 2129 } 2130 2131 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2132 // Replace invoke with a NOP intrinsic to maintain the original CFG 2133 Module *M = II->getModule(); 2134 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2135 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2136 None, "", II->getParent()); 2137 } 2138 return eraseInstFromFunction(MI); 2139 } 2140 return nullptr; 2141 } 2142 2143 /// \brief Move the call to free before a NULL test. 2144 /// 2145 /// Check if this free is accessed after its argument has been test 2146 /// against NULL (property 0). 2147 /// If yes, it is legal to move this call in its predecessor block. 2148 /// 2149 /// The move is performed only if the block containing the call to free 2150 /// will be removed, i.e.: 2151 /// 1. it has only one predecessor P, and P has two successors 2152 /// 2. it contains the call and an unconditional branch 2153 /// 3. its successor is the same as its predecessor's successor 2154 /// 2155 /// The profitability is out-of concern here and this function should 2156 /// be called only if the caller knows this transformation would be 2157 /// profitable (e.g., for code size). 2158 static Instruction * 2159 tryToMoveFreeBeforeNullTest(CallInst &FI) { 2160 Value *Op = FI.getArgOperand(0); 2161 BasicBlock *FreeInstrBB = FI.getParent(); 2162 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2163 2164 // Validate part of constraint #1: Only one predecessor 2165 // FIXME: We can extend the number of predecessor, but in that case, we 2166 // would duplicate the call to free in each predecessor and it may 2167 // not be profitable even for code size. 2168 if (!PredBB) 2169 return nullptr; 2170 2171 // Validate constraint #2: Does this block contains only the call to 2172 // free and an unconditional branch? 2173 // FIXME: We could check if we can speculate everything in the 2174 // predecessor block 2175 if (FreeInstrBB->size() != 2) 2176 return nullptr; 2177 BasicBlock *SuccBB; 2178 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB))) 2179 return nullptr; 2180 2181 // Validate the rest of constraint #1 by matching on the pred branch. 2182 TerminatorInst *TI = PredBB->getTerminator(); 2183 BasicBlock *TrueBB, *FalseBB; 2184 ICmpInst::Predicate Pred; 2185 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB))) 2186 return nullptr; 2187 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2188 return nullptr; 2189 2190 // Validate constraint #3: Ensure the null case just falls through. 2191 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2192 return nullptr; 2193 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2194 "Broken CFG: missing edge from predecessor to successor"); 2195 2196 FI.moveBefore(TI); 2197 return &FI; 2198 } 2199 2200 2201 Instruction *InstCombiner::visitFree(CallInst &FI) { 2202 Value *Op = FI.getArgOperand(0); 2203 2204 // free undef -> unreachable. 2205 if (isa<UndefValue>(Op)) { 2206 // Insert a new store to null because we cannot modify the CFG here. 2207 Builder.CreateStore(ConstantInt::getTrue(FI.getContext()), 2208 UndefValue::get(Type::getInt1PtrTy(FI.getContext()))); 2209 return eraseInstFromFunction(FI); 2210 } 2211 2212 // If we have 'free null' delete the instruction. This can happen in stl code 2213 // when lots of inlining happens. 2214 if (isa<ConstantPointerNull>(Op)) 2215 return eraseInstFromFunction(FI); 2216 2217 // If we optimize for code size, try to move the call to free before the null 2218 // test so that simplify cfg can remove the empty block and dead code 2219 // elimination the branch. I.e., helps to turn something like: 2220 // if (foo) free(foo); 2221 // into 2222 // free(foo); 2223 if (MinimizeSize) 2224 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI)) 2225 return I; 2226 2227 return nullptr; 2228 } 2229 2230 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { 2231 if (RI.getNumOperands() == 0) // ret void 2232 return nullptr; 2233 2234 Value *ResultOp = RI.getOperand(0); 2235 Type *VTy = ResultOp->getType(); 2236 if (!VTy->isIntegerTy()) 2237 return nullptr; 2238 2239 // There might be assume intrinsics dominating this return that completely 2240 // determine the value. If so, constant fold it. 2241 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2242 if (Known.isConstant()) 2243 RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant())); 2244 2245 return nullptr; 2246 } 2247 2248 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 2249 // Change br (not X), label True, label False to: br X, label False, True 2250 Value *X = nullptr; 2251 BasicBlock *TrueDest; 2252 BasicBlock *FalseDest; 2253 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && 2254 !isa<Constant>(X)) { 2255 // Swap Destinations and condition... 2256 BI.setCondition(X); 2257 BI.swapSuccessors(); 2258 return &BI; 2259 } 2260 2261 // If the condition is irrelevant, remove the use so that other 2262 // transforms on the condition become more effective. 2263 if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) && 2264 BI.getSuccessor(0) == BI.getSuccessor(1)) { 2265 BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType())); 2266 return &BI; 2267 } 2268 2269 // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq. 2270 CmpInst::Predicate Pred; 2271 if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), TrueDest, 2272 FalseDest)) && 2273 !isCanonicalPredicate(Pred)) { 2274 // Swap destinations and condition. 2275 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 2276 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2277 BI.swapSuccessors(); 2278 Worklist.Add(Cond); 2279 return &BI; 2280 } 2281 2282 return nullptr; 2283 } 2284 2285 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 2286 Value *Cond = SI.getCondition(); 2287 Value *Op0; 2288 ConstantInt *AddRHS; 2289 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 2290 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2291 for (auto Case : SI.cases()) { 2292 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 2293 assert(isa<ConstantInt>(NewCase) && 2294 "Result of expression should be constant"); 2295 Case.setValue(cast<ConstantInt>(NewCase)); 2296 } 2297 SI.setCondition(Op0); 2298 return &SI; 2299 } 2300 2301 KnownBits Known = computeKnownBits(Cond, 0, &SI); 2302 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 2303 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 2304 2305 // Compute the number of leading bits we can ignore. 2306 // TODO: A better way to determine this would use ComputeNumSignBits(). 2307 for (auto &C : SI.cases()) { 2308 LeadingKnownZeros = std::min( 2309 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2310 LeadingKnownOnes = std::min( 2311 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2312 } 2313 2314 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 2315 2316 // Shrink the condition operand if the new type is smaller than the old type. 2317 // This may produce a non-standard type for the switch, but that's ok because 2318 // the backend should extend back to a legal type for the target. 2319 if (NewWidth > 0 && NewWidth < Known.getBitWidth()) { 2320 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2321 Builder.SetInsertPoint(&SI); 2322 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 2323 SI.setCondition(NewCond); 2324 2325 for (auto Case : SI.cases()) { 2326 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 2327 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 2328 } 2329 return &SI; 2330 } 2331 2332 return nullptr; 2333 } 2334 2335 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 2336 Value *Agg = EV.getAggregateOperand(); 2337 2338 if (!EV.hasIndices()) 2339 return replaceInstUsesWith(EV, Agg); 2340 2341 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 2342 SQ.getWithInstruction(&EV))) 2343 return replaceInstUsesWith(EV, V); 2344 2345 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 2346 // We're extracting from an insertvalue instruction, compare the indices 2347 const unsigned *exti, *exte, *insi, *inse; 2348 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 2349 exte = EV.idx_end(), inse = IV->idx_end(); 2350 exti != exte && insi != inse; 2351 ++exti, ++insi) { 2352 if (*insi != *exti) 2353 // The insert and extract both reference distinctly different elements. 2354 // This means the extract is not influenced by the insert, and we can 2355 // replace the aggregate operand of the extract with the aggregate 2356 // operand of the insert. i.e., replace 2357 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2358 // %E = extractvalue { i32, { i32 } } %I, 0 2359 // with 2360 // %E = extractvalue { i32, { i32 } } %A, 0 2361 return ExtractValueInst::Create(IV->getAggregateOperand(), 2362 EV.getIndices()); 2363 } 2364 if (exti == exte && insi == inse) 2365 // Both iterators are at the end: Index lists are identical. Replace 2366 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2367 // %C = extractvalue { i32, { i32 } } %B, 1, 0 2368 // with "i32 42" 2369 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 2370 if (exti == exte) { 2371 // The extract list is a prefix of the insert list. i.e. replace 2372 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2373 // %E = extractvalue { i32, { i32 } } %I, 1 2374 // with 2375 // %X = extractvalue { i32, { i32 } } %A, 1 2376 // %E = insertvalue { i32 } %X, i32 42, 0 2377 // by switching the order of the insert and extract (though the 2378 // insertvalue should be left in, since it may have other uses). 2379 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 2380 EV.getIndices()); 2381 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 2382 makeArrayRef(insi, inse)); 2383 } 2384 if (insi == inse) 2385 // The insert list is a prefix of the extract list 2386 // We can simply remove the common indices from the extract and make it 2387 // operate on the inserted value instead of the insertvalue result. 2388 // i.e., replace 2389 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2390 // %E = extractvalue { i32, { i32 } } %I, 1, 0 2391 // with 2392 // %E extractvalue { i32 } { i32 42 }, 0 2393 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 2394 makeArrayRef(exti, exte)); 2395 } 2396 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { 2397 // We're extracting from an intrinsic, see if we're the only user, which 2398 // allows us to simplify multiple result intrinsics to simpler things that 2399 // just get one value. 2400 if (II->hasOneUse()) { 2401 // Check if we're grabbing the overflow bit or the result of a 'with 2402 // overflow' intrinsic. If it's the latter we can remove the intrinsic 2403 // and replace it with a traditional binary instruction. 2404 switch (II->getIntrinsicID()) { 2405 case Intrinsic::uadd_with_overflow: 2406 case Intrinsic::sadd_with_overflow: 2407 if (*EV.idx_begin() == 0) { // Normal result. 2408 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2409 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2410 eraseInstFromFunction(*II); 2411 return BinaryOperator::CreateAdd(LHS, RHS); 2412 } 2413 2414 // If the normal result of the add is dead, and the RHS is a constant, 2415 // we can transform this into a range comparison. 2416 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 2417 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) 2418 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1))) 2419 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0), 2420 ConstantExpr::getNot(CI)); 2421 break; 2422 case Intrinsic::usub_with_overflow: 2423 case Intrinsic::ssub_with_overflow: 2424 if (*EV.idx_begin() == 0) { // Normal result. 2425 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2426 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2427 eraseInstFromFunction(*II); 2428 return BinaryOperator::CreateSub(LHS, RHS); 2429 } 2430 break; 2431 case Intrinsic::umul_with_overflow: 2432 case Intrinsic::smul_with_overflow: 2433 if (*EV.idx_begin() == 0) { // Normal result. 2434 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2435 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2436 eraseInstFromFunction(*II); 2437 return BinaryOperator::CreateMul(LHS, RHS); 2438 } 2439 break; 2440 default: 2441 break; 2442 } 2443 } 2444 } 2445 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2446 // If the (non-volatile) load only has one use, we can rewrite this to a 2447 // load from a GEP. This reduces the size of the load. If a load is used 2448 // only by extractvalue instructions then this either must have been 2449 // optimized before, or it is a struct with padding, in which case we 2450 // don't want to do the transformation as it loses padding knowledge. 2451 if (L->isSimple() && L->hasOneUse()) { 2452 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2453 SmallVector<Value*, 4> Indices; 2454 // Prefix an i32 0 since we need the first element. 2455 Indices.push_back(Builder.getInt32(0)); 2456 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2457 I != E; ++I) 2458 Indices.push_back(Builder.getInt32(*I)); 2459 2460 // We need to insert these at the location of the old load, not at that of 2461 // the extractvalue. 2462 Builder.SetInsertPoint(L); 2463 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 2464 L->getPointerOperand(), Indices); 2465 Instruction *NL = Builder.CreateLoad(GEP); 2466 // Whatever aliasing information we had for the orignal load must also 2467 // hold for the smaller load, so propagate the annotations. 2468 AAMDNodes Nodes; 2469 L->getAAMetadata(Nodes); 2470 NL->setAAMetadata(Nodes); 2471 // Returning the load directly will cause the main loop to insert it in 2472 // the wrong spot, so use replaceInstUsesWith(). 2473 return replaceInstUsesWith(EV, NL); 2474 } 2475 // We could simplify extracts from other values. Note that nested extracts may 2476 // already be simplified implicitly by the above: extract (extract (insert) ) 2477 // will be translated into extract ( insert ( extract ) ) first and then just 2478 // the value inserted, if appropriate. Similarly for extracts from single-use 2479 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2480 // and if again single-use then via load (gep (gep)) to load (gep). 2481 // However, double extracts from e.g. function arguments or return values 2482 // aren't handled yet. 2483 return nullptr; 2484 } 2485 2486 /// Return 'true' if the given typeinfo will match anything. 2487 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 2488 switch (Personality) { 2489 case EHPersonality::GNU_C: 2490 case EHPersonality::GNU_C_SjLj: 2491 case EHPersonality::Rust: 2492 // The GCC C EH and Rust personality only exists to support cleanups, so 2493 // it's not clear what the semantics of catch clauses are. 2494 return false; 2495 case EHPersonality::Unknown: 2496 return false; 2497 case EHPersonality::GNU_Ada: 2498 // While __gnat_all_others_value will match any Ada exception, it doesn't 2499 // match foreign exceptions (or didn't, before gcc-4.7). 2500 return false; 2501 case EHPersonality::GNU_CXX: 2502 case EHPersonality::GNU_CXX_SjLj: 2503 case EHPersonality::GNU_ObjC: 2504 case EHPersonality::MSVC_X86SEH: 2505 case EHPersonality::MSVC_Win64SEH: 2506 case EHPersonality::MSVC_CXX: 2507 case EHPersonality::CoreCLR: 2508 return TypeInfo->isNullValue(); 2509 } 2510 llvm_unreachable("invalid enum"); 2511 } 2512 2513 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2514 return 2515 cast<ArrayType>(LHS->getType())->getNumElements() 2516 < 2517 cast<ArrayType>(RHS->getType())->getNumElements(); 2518 } 2519 2520 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2521 // The logic here should be correct for any real-world personality function. 2522 // However if that turns out not to be true, the offending logic can always 2523 // be conditioned on the personality function, like the catch-all logic is. 2524 EHPersonality Personality = 2525 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 2526 2527 // Simplify the list of clauses, eg by removing repeated catch clauses 2528 // (these are often created by inlining). 2529 bool MakeNewInstruction = false; // If true, recreate using the following: 2530 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2531 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2532 2533 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 2534 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 2535 bool isLastClause = i + 1 == e; 2536 if (LI.isCatch(i)) { 2537 // A catch clause. 2538 Constant *CatchClause = LI.getClause(i); 2539 Constant *TypeInfo = CatchClause->stripPointerCasts(); 2540 2541 // If we already saw this clause, there is no point in having a second 2542 // copy of it. 2543 if (AlreadyCaught.insert(TypeInfo).second) { 2544 // This catch clause was not already seen. 2545 NewClauses.push_back(CatchClause); 2546 } else { 2547 // Repeated catch clause - drop the redundant copy. 2548 MakeNewInstruction = true; 2549 } 2550 2551 // If this is a catch-all then there is no point in keeping any following 2552 // clauses or marking the landingpad as having a cleanup. 2553 if (isCatchAll(Personality, TypeInfo)) { 2554 if (!isLastClause) 2555 MakeNewInstruction = true; 2556 CleanupFlag = false; 2557 break; 2558 } 2559 } else { 2560 // A filter clause. If any of the filter elements were already caught 2561 // then they can be dropped from the filter. It is tempting to try to 2562 // exploit the filter further by saying that any typeinfo that does not 2563 // occur in the filter can't be caught later (and thus can be dropped). 2564 // However this would be wrong, since typeinfos can match without being 2565 // equal (for example if one represents a C++ class, and the other some 2566 // class derived from it). 2567 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 2568 Constant *FilterClause = LI.getClause(i); 2569 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 2570 unsigned NumTypeInfos = FilterType->getNumElements(); 2571 2572 // An empty filter catches everything, so there is no point in keeping any 2573 // following clauses or marking the landingpad as having a cleanup. By 2574 // dealing with this case here the following code is made a bit simpler. 2575 if (!NumTypeInfos) { 2576 NewClauses.push_back(FilterClause); 2577 if (!isLastClause) 2578 MakeNewInstruction = true; 2579 CleanupFlag = false; 2580 break; 2581 } 2582 2583 bool MakeNewFilter = false; // If true, make a new filter. 2584 SmallVector<Constant *, 16> NewFilterElts; // New elements. 2585 if (isa<ConstantAggregateZero>(FilterClause)) { 2586 // Not an empty filter - it contains at least one null typeinfo. 2587 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 2588 Constant *TypeInfo = 2589 Constant::getNullValue(FilterType->getElementType()); 2590 // If this typeinfo is a catch-all then the filter can never match. 2591 if (isCatchAll(Personality, TypeInfo)) { 2592 // Throw the filter away. 2593 MakeNewInstruction = true; 2594 continue; 2595 } 2596 2597 // There is no point in having multiple copies of this typeinfo, so 2598 // discard all but the first copy if there is more than one. 2599 NewFilterElts.push_back(TypeInfo); 2600 if (NumTypeInfos > 1) 2601 MakeNewFilter = true; 2602 } else { 2603 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 2604 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 2605 NewFilterElts.reserve(NumTypeInfos); 2606 2607 // Remove any filter elements that were already caught or that already 2608 // occurred in the filter. While there, see if any of the elements are 2609 // catch-alls. If so, the filter can be discarded. 2610 bool SawCatchAll = false; 2611 for (unsigned j = 0; j != NumTypeInfos; ++j) { 2612 Constant *Elt = Filter->getOperand(j); 2613 Constant *TypeInfo = Elt->stripPointerCasts(); 2614 if (isCatchAll(Personality, TypeInfo)) { 2615 // This element is a catch-all. Bail out, noting this fact. 2616 SawCatchAll = true; 2617 break; 2618 } 2619 2620 // Even if we've seen a type in a catch clause, we don't want to 2621 // remove it from the filter. An unexpected type handler may be 2622 // set up for a call site which throws an exception of the same 2623 // type caught. In order for the exception thrown by the unexpected 2624 // handler to propagate correctly, the filter must be correctly 2625 // described for the call site. 2626 // 2627 // Example: 2628 // 2629 // void unexpected() { throw 1;} 2630 // void foo() throw (int) { 2631 // std::set_unexpected(unexpected); 2632 // try { 2633 // throw 2.0; 2634 // } catch (int i) {} 2635 // } 2636 2637 // There is no point in having multiple copies of the same typeinfo in 2638 // a filter, so only add it if we didn't already. 2639 if (SeenInFilter.insert(TypeInfo).second) 2640 NewFilterElts.push_back(cast<Constant>(Elt)); 2641 } 2642 // A filter containing a catch-all cannot match anything by definition. 2643 if (SawCatchAll) { 2644 // Throw the filter away. 2645 MakeNewInstruction = true; 2646 continue; 2647 } 2648 2649 // If we dropped something from the filter, make a new one. 2650 if (NewFilterElts.size() < NumTypeInfos) 2651 MakeNewFilter = true; 2652 } 2653 if (MakeNewFilter) { 2654 FilterType = ArrayType::get(FilterType->getElementType(), 2655 NewFilterElts.size()); 2656 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 2657 MakeNewInstruction = true; 2658 } 2659 2660 NewClauses.push_back(FilterClause); 2661 2662 // If the new filter is empty then it will catch everything so there is 2663 // no point in keeping any following clauses or marking the landingpad 2664 // as having a cleanup. The case of the original filter being empty was 2665 // already handled above. 2666 if (MakeNewFilter && !NewFilterElts.size()) { 2667 assert(MakeNewInstruction && "New filter but not a new instruction!"); 2668 CleanupFlag = false; 2669 break; 2670 } 2671 } 2672 } 2673 2674 // If several filters occur in a row then reorder them so that the shortest 2675 // filters come first (those with the smallest number of elements). This is 2676 // advantageous because shorter filters are more likely to match, speeding up 2677 // unwinding, but mostly because it increases the effectiveness of the other 2678 // filter optimizations below. 2679 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 2680 unsigned j; 2681 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 2682 for (j = i; j != e; ++j) 2683 if (!isa<ArrayType>(NewClauses[j]->getType())) 2684 break; 2685 2686 // Check whether the filters are already sorted by length. We need to know 2687 // if sorting them is actually going to do anything so that we only make a 2688 // new landingpad instruction if it does. 2689 for (unsigned k = i; k + 1 < j; ++k) 2690 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 2691 // Not sorted, so sort the filters now. Doing an unstable sort would be 2692 // correct too but reordering filters pointlessly might confuse users. 2693 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 2694 shorter_filter); 2695 MakeNewInstruction = true; 2696 break; 2697 } 2698 2699 // Look for the next batch of filters. 2700 i = j + 1; 2701 } 2702 2703 // If typeinfos matched if and only if equal, then the elements of a filter L 2704 // that occurs later than a filter F could be replaced by the intersection of 2705 // the elements of F and L. In reality two typeinfos can match without being 2706 // equal (for example if one represents a C++ class, and the other some class 2707 // derived from it) so it would be wrong to perform this transform in general. 2708 // However the transform is correct and useful if F is a subset of L. In that 2709 // case L can be replaced by F, and thus removed altogether since repeating a 2710 // filter is pointless. So here we look at all pairs of filters F and L where 2711 // L follows F in the list of clauses, and remove L if every element of F is 2712 // an element of L. This can occur when inlining C++ functions with exception 2713 // specifications. 2714 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 2715 // Examine each filter in turn. 2716 Value *Filter = NewClauses[i]; 2717 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 2718 if (!FTy) 2719 // Not a filter - skip it. 2720 continue; 2721 unsigned FElts = FTy->getNumElements(); 2722 // Examine each filter following this one. Doing this backwards means that 2723 // we don't have to worry about filters disappearing under us when removed. 2724 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 2725 Value *LFilter = NewClauses[j]; 2726 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 2727 if (!LTy) 2728 // Not a filter - skip it. 2729 continue; 2730 // If Filter is a subset of LFilter, i.e. every element of Filter is also 2731 // an element of LFilter, then discard LFilter. 2732 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 2733 // If Filter is empty then it is a subset of LFilter. 2734 if (!FElts) { 2735 // Discard LFilter. 2736 NewClauses.erase(J); 2737 MakeNewInstruction = true; 2738 // Move on to the next filter. 2739 continue; 2740 } 2741 unsigned LElts = LTy->getNumElements(); 2742 // If Filter is longer than LFilter then it cannot be a subset of it. 2743 if (FElts > LElts) 2744 // Move on to the next filter. 2745 continue; 2746 // At this point we know that LFilter has at least one element. 2747 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 2748 // Filter is a subset of LFilter iff Filter contains only zeros (as we 2749 // already know that Filter is not longer than LFilter). 2750 if (isa<ConstantAggregateZero>(Filter)) { 2751 assert(FElts <= LElts && "Should have handled this case earlier!"); 2752 // Discard LFilter. 2753 NewClauses.erase(J); 2754 MakeNewInstruction = true; 2755 } 2756 // Move on to the next filter. 2757 continue; 2758 } 2759 ConstantArray *LArray = cast<ConstantArray>(LFilter); 2760 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 2761 // Since Filter is non-empty and contains only zeros, it is a subset of 2762 // LFilter iff LFilter contains a zero. 2763 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 2764 for (unsigned l = 0; l != LElts; ++l) 2765 if (LArray->getOperand(l)->isNullValue()) { 2766 // LFilter contains a zero - discard it. 2767 NewClauses.erase(J); 2768 MakeNewInstruction = true; 2769 break; 2770 } 2771 // Move on to the next filter. 2772 continue; 2773 } 2774 // At this point we know that both filters are ConstantArrays. Loop over 2775 // operands to see whether every element of Filter is also an element of 2776 // LFilter. Since filters tend to be short this is probably faster than 2777 // using a method that scales nicely. 2778 ConstantArray *FArray = cast<ConstantArray>(Filter); 2779 bool AllFound = true; 2780 for (unsigned f = 0; f != FElts; ++f) { 2781 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 2782 AllFound = false; 2783 for (unsigned l = 0; l != LElts; ++l) { 2784 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 2785 if (LTypeInfo == FTypeInfo) { 2786 AllFound = true; 2787 break; 2788 } 2789 } 2790 if (!AllFound) 2791 break; 2792 } 2793 if (AllFound) { 2794 // Discard LFilter. 2795 NewClauses.erase(J); 2796 MakeNewInstruction = true; 2797 } 2798 // Move on to the next filter. 2799 } 2800 } 2801 2802 // If we changed any of the clauses, replace the old landingpad instruction 2803 // with a new one. 2804 if (MakeNewInstruction) { 2805 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 2806 NewClauses.size()); 2807 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 2808 NLI->addClause(NewClauses[i]); 2809 // A landing pad with no clauses must have the cleanup flag set. It is 2810 // theoretically possible, though highly unlikely, that we eliminated all 2811 // clauses. If so, force the cleanup flag to true. 2812 if (NewClauses.empty()) 2813 CleanupFlag = true; 2814 NLI->setCleanup(CleanupFlag); 2815 return NLI; 2816 } 2817 2818 // Even if none of the clauses changed, we may nonetheless have understood 2819 // that the cleanup flag is pointless. Clear it if so. 2820 if (LI.isCleanup() != CleanupFlag) { 2821 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 2822 LI.setCleanup(CleanupFlag); 2823 return &LI; 2824 } 2825 2826 return nullptr; 2827 } 2828 2829 /// Try to move the specified instruction from its current block into the 2830 /// beginning of DestBlock, which can only happen if it's safe to move the 2831 /// instruction past all of the instructions between it and the end of its 2832 /// block. 2833 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 2834 assert(I->hasOneUse() && "Invariants didn't hold!"); 2835 2836 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 2837 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 2838 isa<TerminatorInst>(I)) 2839 return false; 2840 2841 // Do not sink alloca instructions out of the entry block. 2842 if (isa<AllocaInst>(I) && I->getParent() == 2843 &DestBlock->getParent()->getEntryBlock()) 2844 return false; 2845 2846 // Do not sink into catchswitch blocks. 2847 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 2848 return false; 2849 2850 // Do not sink convergent call instructions. 2851 if (auto *CI = dyn_cast<CallInst>(I)) { 2852 if (CI->isConvergent()) 2853 return false; 2854 } 2855 // We can only sink load instructions if there is nothing between the load and 2856 // the end of block that could change the value. 2857 if (I->mayReadFromMemory()) { 2858 for (BasicBlock::iterator Scan = I->getIterator(), 2859 E = I->getParent()->end(); 2860 Scan != E; ++Scan) 2861 if (Scan->mayWriteToMemory()) 2862 return false; 2863 } 2864 2865 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 2866 I->moveBefore(&*InsertPos); 2867 ++NumSunkInst; 2868 return true; 2869 } 2870 2871 bool InstCombiner::run() { 2872 while (!Worklist.isEmpty()) { 2873 Instruction *I = Worklist.RemoveOne(); 2874 if (I == nullptr) continue; // skip null values. 2875 2876 // Check to see if we can DCE the instruction. 2877 if (isInstructionTriviallyDead(I, &TLI)) { 2878 DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); 2879 eraseInstFromFunction(*I); 2880 ++NumDeadInst; 2881 MadeIRChange = true; 2882 continue; 2883 } 2884 2885 if (!DebugCounter::shouldExecute(VisitCounter)) 2886 continue; 2887 2888 // Instruction isn't dead, see if we can constant propagate it. 2889 if (!I->use_empty() && 2890 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 2891 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 2892 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n'); 2893 2894 // Add operands to the worklist. 2895 replaceInstUsesWith(*I, C); 2896 ++NumConstProp; 2897 if (isInstructionTriviallyDead(I, &TLI)) 2898 eraseInstFromFunction(*I); 2899 MadeIRChange = true; 2900 continue; 2901 } 2902 } 2903 2904 // In general, it is possible for computeKnownBits to determine all bits in 2905 // a value even when the operands are not all constants. 2906 Type *Ty = I->getType(); 2907 if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) { 2908 KnownBits Known = computeKnownBits(I, /*Depth*/0, I); 2909 if (Known.isConstant()) { 2910 Constant *C = ConstantInt::get(Ty, Known.getConstant()); 2911 DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C << 2912 " from: " << *I << '\n'); 2913 2914 // Add operands to the worklist. 2915 replaceInstUsesWith(*I, C); 2916 ++NumConstProp; 2917 if (isInstructionTriviallyDead(I, &TLI)) 2918 eraseInstFromFunction(*I); 2919 MadeIRChange = true; 2920 continue; 2921 } 2922 } 2923 2924 // See if we can trivially sink this instruction to a successor basic block. 2925 if (I->hasOneUse()) { 2926 BasicBlock *BB = I->getParent(); 2927 Instruction *UserInst = cast<Instruction>(*I->user_begin()); 2928 BasicBlock *UserParent; 2929 2930 // Get the block the use occurs in. 2931 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 2932 UserParent = PN->getIncomingBlock(*I->use_begin()); 2933 else 2934 UserParent = UserInst->getParent(); 2935 2936 if (UserParent != BB) { 2937 bool UserIsSuccessor = false; 2938 // See if the user is one of our successors. 2939 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 2940 if (*SI == UserParent) { 2941 UserIsSuccessor = true; 2942 break; 2943 } 2944 2945 // If the user is one of our immediate successors, and if that successor 2946 // only has us as a predecessors (we'd have to split the critical edge 2947 // otherwise), we can keep going. 2948 if (UserIsSuccessor && UserParent->getUniquePredecessor()) { 2949 // Okay, the CFG is simple enough, try to sink this instruction. 2950 if (TryToSinkInstruction(I, UserParent)) { 2951 DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 2952 MadeIRChange = true; 2953 // We'll add uses of the sunk instruction below, but since sinking 2954 // can expose opportunities for it's *operands* add them to the 2955 // worklist 2956 for (Use &U : I->operands()) 2957 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 2958 Worklist.Add(OpI); 2959 } 2960 } 2961 } 2962 } 2963 2964 // Now that we have an instruction, try combining it to simplify it. 2965 Builder.SetInsertPoint(I); 2966 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 2967 2968 #ifndef NDEBUG 2969 std::string OrigI; 2970 #endif 2971 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 2972 DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 2973 2974 if (Instruction *Result = visit(*I)) { 2975 ++NumCombined; 2976 // Should we replace the old instruction with a new one? 2977 if (Result != I) { 2978 DEBUG(dbgs() << "IC: Old = " << *I << '\n' 2979 << " New = " << *Result << '\n'); 2980 2981 if (I->getDebugLoc()) 2982 Result->setDebugLoc(I->getDebugLoc()); 2983 // Everything uses the new instruction now. 2984 I->replaceAllUsesWith(Result); 2985 2986 // Move the name to the new instruction first. 2987 Result->takeName(I); 2988 2989 // Push the new instruction and any users onto the worklist. 2990 Worklist.AddUsersToWorkList(*Result); 2991 Worklist.Add(Result); 2992 2993 // Insert the new instruction into the basic block... 2994 BasicBlock *InstParent = I->getParent(); 2995 BasicBlock::iterator InsertPos = I->getIterator(); 2996 2997 // If we replace a PHI with something that isn't a PHI, fix up the 2998 // insertion point. 2999 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 3000 InsertPos = InstParent->getFirstInsertionPt(); 3001 3002 InstParent->getInstList().insert(InsertPos, Result); 3003 3004 eraseInstFromFunction(*I); 3005 } else { 3006 DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3007 << " New = " << *I << '\n'); 3008 3009 // If the instruction was modified, it's possible that it is now dead. 3010 // if so, remove it. 3011 if (isInstructionTriviallyDead(I, &TLI)) { 3012 eraseInstFromFunction(*I); 3013 } else { 3014 Worklist.AddUsersToWorkList(*I); 3015 Worklist.Add(I); 3016 } 3017 } 3018 MadeIRChange = true; 3019 } 3020 } 3021 3022 Worklist.Zap(); 3023 return MadeIRChange; 3024 } 3025 3026 /// Walk the function in depth-first order, adding all reachable code to the 3027 /// worklist. 3028 /// 3029 /// This has a couple of tricks to make the code faster and more powerful. In 3030 /// particular, we constant fold and DCE instructions as we go, to avoid adding 3031 /// them to the worklist (this significantly speeds up instcombine on code where 3032 /// many instructions are dead or constant). Additionally, if we find a branch 3033 /// whose condition is a known constant, we only visit the reachable successors. 3034 /// 3035 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, 3036 SmallPtrSetImpl<BasicBlock *> &Visited, 3037 InstCombineWorklist &ICWorklist, 3038 const TargetLibraryInfo *TLI) { 3039 bool MadeIRChange = false; 3040 SmallVector<BasicBlock*, 256> Worklist; 3041 Worklist.push_back(BB); 3042 3043 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 3044 DenseMap<Constant *, Constant *> FoldedConstants; 3045 3046 do { 3047 BB = Worklist.pop_back_val(); 3048 3049 // We have now visited this block! If we've already been here, ignore it. 3050 if (!Visited.insert(BB).second) 3051 continue; 3052 3053 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 3054 Instruction *Inst = &*BBI++; 3055 3056 // DCE instruction if trivially dead. 3057 if (isInstructionTriviallyDead(Inst, TLI)) { 3058 ++NumDeadInst; 3059 DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 3060 Inst->eraseFromParent(); 3061 MadeIRChange = true; 3062 continue; 3063 } 3064 3065 // ConstantProp instruction if trivially constant. 3066 if (!Inst->use_empty() && 3067 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 3068 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 3069 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " 3070 << *Inst << '\n'); 3071 Inst->replaceAllUsesWith(C); 3072 ++NumConstProp; 3073 if (isInstructionTriviallyDead(Inst, TLI)) 3074 Inst->eraseFromParent(); 3075 MadeIRChange = true; 3076 continue; 3077 } 3078 3079 // See if we can constant fold its operands. 3080 for (Use &U : Inst->operands()) { 3081 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 3082 continue; 3083 3084 auto *C = cast<Constant>(U); 3085 Constant *&FoldRes = FoldedConstants[C]; 3086 if (!FoldRes) 3087 FoldRes = ConstantFoldConstant(C, DL, TLI); 3088 if (!FoldRes) 3089 FoldRes = C; 3090 3091 if (FoldRes != C) { 3092 DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst 3093 << "\n Old = " << *C 3094 << "\n New = " << *FoldRes << '\n'); 3095 U = FoldRes; 3096 MadeIRChange = true; 3097 } 3098 } 3099 3100 // Skip processing debug intrinsics in InstCombine. Processing these call instructions 3101 // consumes non-trivial amount of time and provides no value for the optimization. 3102 if (!isa<DbgInfoIntrinsic>(Inst)) 3103 InstrsForInstCombineWorklist.push_back(Inst); 3104 } 3105 3106 // Recursively visit successors. If this is a branch or switch on a 3107 // constant, only visit the reachable successor. 3108 TerminatorInst *TI = BB->getTerminator(); 3109 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3110 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 3111 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 3112 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 3113 Worklist.push_back(ReachableBB); 3114 continue; 3115 } 3116 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3117 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 3118 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 3119 continue; 3120 } 3121 } 3122 3123 for (BasicBlock *SuccBB : TI->successors()) 3124 Worklist.push_back(SuccBB); 3125 } while (!Worklist.empty()); 3126 3127 // Once we've found all of the instructions to add to instcombine's worklist, 3128 // add them in reverse order. This way instcombine will visit from the top 3129 // of the function down. This jives well with the way that it adds all uses 3130 // of instructions to the worklist after doing a transformation, thus avoiding 3131 // some N^2 behavior in pathological cases. 3132 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist); 3133 3134 return MadeIRChange; 3135 } 3136 3137 /// \brief Populate the IC worklist from a function, and prune any dead basic 3138 /// blocks discovered in the process. 3139 /// 3140 /// This also does basic constant propagation and other forward fixing to make 3141 /// the combiner itself run much faster. 3142 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 3143 TargetLibraryInfo *TLI, 3144 InstCombineWorklist &ICWorklist) { 3145 bool MadeIRChange = false; 3146 3147 // Do a depth-first traversal of the function, populate the worklist with 3148 // the reachable instructions. Ignore blocks that are not reachable. Keep 3149 // track of which blocks we visit. 3150 SmallPtrSet<BasicBlock *, 32> Visited; 3151 MadeIRChange |= 3152 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI); 3153 3154 // Do a quick scan over the function. If we find any blocks that are 3155 // unreachable, remove any instructions inside of them. This prevents 3156 // the instcombine code from having to deal with some bad special cases. 3157 for (BasicBlock &BB : F) { 3158 if (Visited.count(&BB)) 3159 continue; 3160 3161 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB); 3162 MadeIRChange |= NumDeadInstInBB > 0; 3163 NumDeadInst += NumDeadInstInBB; 3164 } 3165 3166 return MadeIRChange; 3167 } 3168 3169 static bool combineInstructionsOverFunction( 3170 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, 3171 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, 3172 OptimizationRemarkEmitter &ORE, bool ExpensiveCombines = true, 3173 LoopInfo *LI = nullptr) { 3174 auto &DL = F.getParent()->getDataLayout(); 3175 ExpensiveCombines |= EnableExpensiveCombines; 3176 3177 /// Builder - This is an IRBuilder that automatically inserts new 3178 /// instructions into the worklist when they are created. 3179 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 3180 F.getContext(), TargetFolder(DL), 3181 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 3182 Worklist.Add(I); 3183 3184 using namespace llvm::PatternMatch; 3185 if (match(I, m_Intrinsic<Intrinsic::assume>())) 3186 AC.registerAssumption(cast<CallInst>(I)); 3187 })); 3188 3189 // Lower dbg.declare intrinsics otherwise their value may be clobbered 3190 // by instcombiner. 3191 bool MadeIRChange = LowerDbgDeclare(F); 3192 3193 // Iterate while there is work to do. 3194 int Iteration = 0; 3195 for (;;) { 3196 ++Iteration; 3197 DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 3198 << F.getName() << "\n"); 3199 3200 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 3201 3202 InstCombiner IC(Worklist, Builder, F.optForMinSize(), ExpensiveCombines, AA, 3203 AC, TLI, DT, ORE, DL, LI); 3204 IC.MaxArraySizeForCombine = MaxArraySize; 3205 3206 if (!IC.run()) 3207 break; 3208 } 3209 3210 return MadeIRChange || Iteration > 1; 3211 } 3212 3213 PreservedAnalyses InstCombinePass::run(Function &F, 3214 FunctionAnalysisManager &AM) { 3215 auto &AC = AM.getResult<AssumptionAnalysis>(F); 3216 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 3217 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 3218 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3219 3220 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 3221 3222 // FIXME: The AliasAnalysis is not yet supported in the new pass manager 3223 if (!combineInstructionsOverFunction(F, Worklist, nullptr, AC, TLI, DT, ORE, 3224 ExpensiveCombines, LI)) 3225 // No changes, all analyses are preserved. 3226 return PreservedAnalyses::all(); 3227 3228 // Mark all the analyses that instcombine updates as preserved. 3229 PreservedAnalyses PA; 3230 PA.preserveSet<CFGAnalyses>(); 3231 PA.preserve<AAManager>(); 3232 PA.preserve<GlobalsAA>(); 3233 return PA; 3234 } 3235 3236 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 3237 AU.setPreservesCFG(); 3238 AU.addRequired<AAResultsWrapperPass>(); 3239 AU.addRequired<AssumptionCacheTracker>(); 3240 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3241 AU.addRequired<DominatorTreeWrapperPass>(); 3242 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3243 AU.addPreserved<DominatorTreeWrapperPass>(); 3244 AU.addPreserved<AAResultsWrapperPass>(); 3245 AU.addPreserved<BasicAAWrapperPass>(); 3246 AU.addPreserved<GlobalsAAWrapperPass>(); 3247 } 3248 3249 bool InstructionCombiningPass::runOnFunction(Function &F) { 3250 if (skipFunction(F)) 3251 return false; 3252 3253 // Required analyses. 3254 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3255 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3256 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 3257 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3258 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 3259 3260 // Optional analyses. 3261 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3262 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 3263 3264 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, 3265 ExpensiveCombines, LI); 3266 } 3267 3268 char InstructionCombiningPass::ID = 0; 3269 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 3270 "Combine redundant instructions", false, false) 3271 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3272 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3273 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3274 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3275 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3276 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3277 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 3278 "Combine redundant instructions", false, false) 3279 3280 // Initialization Routines 3281 void llvm::initializeInstCombine(PassRegistry &Registry) { 3282 initializeInstructionCombiningPassPass(Registry); 3283 } 3284 3285 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 3286 initializeInstructionCombiningPassPass(*unwrap(R)); 3287 } 3288 3289 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) { 3290 return new InstructionCombiningPass(ExpensiveCombines); 3291 } 3292