1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // InstructionCombining - Combine instructions to form fewer, simple 11 // instructions. This pass does not modify the CFG. This pass is where 12 // algebraic simplification happens. 13 // 14 // This pass combines things like: 15 // %Y = add i32 %X, 1 16 // %Z = add i32 %Y, 1 17 // into: 18 // %Z = add i32 %X, 2 19 // 20 // This is a simple worklist driven algorithm. 21 // 22 // This pass guarantees that the following canonicalizations are performed on 23 // the program: 24 // 1. If a binary operator has a constant operand, it is moved to the RHS 25 // 2. Bitwise operators with constant operands are always grouped so that 26 // shifts are performed first, then or's, then and's, then xor's. 27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 28 // 4. All cmp instructions on boolean values are replaced with logical ops 29 // 5. add X, X is represented as (X*2) => (X << 1) 30 // 6. Multiplies with a power-of-two constant argument are transformed into 31 // shifts. 32 // ... etc. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/Transforms/InstCombine/InstCombine.h" 37 #include "InstCombineInternal.h" 38 #include "llvm-c/Initialization.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/Statistic.h" 41 #include "llvm/ADT/StringSwitch.h" 42 #include "llvm/Analysis/AliasAnalysis.h" 43 #include "llvm/Analysis/AssumptionCache.h" 44 #include "llvm/Analysis/BasicAliasAnalysis.h" 45 #include "llvm/Analysis/CFG.h" 46 #include "llvm/Analysis/ConstantFolding.h" 47 #include "llvm/Analysis/EHPersonalities.h" 48 #include "llvm/Analysis/GlobalsModRef.h" 49 #include "llvm/Analysis/InstructionSimplify.h" 50 #include "llvm/Analysis/LoopInfo.h" 51 #include "llvm/Analysis/MemoryBuiltins.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/Analysis/ValueTracking.h" 54 #include "llvm/IR/CFG.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/GetElementPtrTypeIterator.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/ValueHandle.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Scalar.h" 65 #include "llvm/Transforms/Utils/Local.h" 66 #include <algorithm> 67 #include <climits> 68 using namespace llvm; 69 using namespace llvm::PatternMatch; 70 71 #define DEBUG_TYPE "instcombine" 72 73 STATISTIC(NumCombined , "Number of insts combined"); 74 STATISTIC(NumConstProp, "Number of constant folds"); 75 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 76 STATISTIC(NumSunkInst , "Number of instructions sunk"); 77 STATISTIC(NumExpand, "Number of expansions"); 78 STATISTIC(NumFactor , "Number of factorizations"); 79 STATISTIC(NumReassoc , "Number of reassociations"); 80 81 static cl::opt<bool> 82 EnableExpensiveCombines("expensive-combines", 83 cl::desc("Enable expensive instruction combines")); 84 85 static cl::opt<unsigned> 86 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 87 cl::desc("Maximum array size considered when doing a combine")); 88 89 Value *InstCombiner::EmitGEPOffset(User *GEP) { 90 return llvm::EmitGEPOffset(Builder, DL, GEP); 91 } 92 93 /// Return true if it is desirable to convert an integer computation from a 94 /// given bit width to a new bit width. 95 /// We don't want to convert from a legal to an illegal type or from a smaller 96 /// to a larger illegal type. A width of '1' is always treated as a legal type 97 /// because i1 is a fundamental type in IR, and there are many specialized 98 /// optimizations for i1 types. 99 bool InstCombiner::shouldChangeType(unsigned FromWidth, 100 unsigned ToWidth) const { 101 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 102 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 103 104 // If this is a legal integer from type, and the result would be an illegal 105 // type, don't do the transformation. 106 if (FromLegal && !ToLegal) 107 return false; 108 109 // Otherwise, if both are illegal, do not increase the size of the result. We 110 // do allow things like i160 -> i64, but not i64 -> i160. 111 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 112 return false; 113 114 return true; 115 } 116 117 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 118 /// We don't want to convert from a legal to an illegal type or from a smaller 119 /// to a larger illegal type. i1 is always treated as a legal type because it is 120 /// a fundamental type in IR, and there are many specialized optimizations for 121 /// i1 types. 122 bool InstCombiner::shouldChangeType(Type *From, Type *To) const { 123 assert(From->isIntegerTy() && To->isIntegerTy()); 124 125 unsigned FromWidth = From->getPrimitiveSizeInBits(); 126 unsigned ToWidth = To->getPrimitiveSizeInBits(); 127 return shouldChangeType(FromWidth, ToWidth); 128 } 129 130 // Return true, if No Signed Wrap should be maintained for I. 131 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 132 // where both B and C should be ConstantInts, results in a constant that does 133 // not overflow. This function only handles the Add and Sub opcodes. For 134 // all other opcodes, the function conservatively returns false. 135 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 136 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 137 if (!OBO || !OBO->hasNoSignedWrap()) 138 return false; 139 140 // We reason about Add and Sub Only. 141 Instruction::BinaryOps Opcode = I.getOpcode(); 142 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 143 return false; 144 145 const APInt *BVal, *CVal; 146 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 147 return false; 148 149 bool Overflow = false; 150 if (Opcode == Instruction::Add) 151 BVal->sadd_ov(*CVal, Overflow); 152 else 153 BVal->ssub_ov(*CVal, Overflow); 154 155 return !Overflow; 156 } 157 158 /// Conservatively clears subclassOptionalData after a reassociation or 159 /// commutation. We preserve fast-math flags when applicable as they can be 160 /// preserved. 161 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 162 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 163 if (!FPMO) { 164 I.clearSubclassOptionalData(); 165 return; 166 } 167 168 FastMathFlags FMF = I.getFastMathFlags(); 169 I.clearSubclassOptionalData(); 170 I.setFastMathFlags(FMF); 171 } 172 173 /// Combine constant operands of associative operations either before or after a 174 /// cast to eliminate one of the associative operations: 175 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 176 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 177 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) { 178 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 179 if (!Cast || !Cast->hasOneUse()) 180 return false; 181 182 // TODO: Enhance logic for other casts and remove this check. 183 auto CastOpcode = Cast->getOpcode(); 184 if (CastOpcode != Instruction::ZExt) 185 return false; 186 187 // TODO: Enhance logic for other BinOps and remove this check. 188 if (!BinOp1->isBitwiseLogicOp()) 189 return false; 190 191 auto AssocOpcode = BinOp1->getOpcode(); 192 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 193 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 194 return false; 195 196 Constant *C1, *C2; 197 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 198 !match(BinOp2->getOperand(1), m_Constant(C2))) 199 return false; 200 201 // TODO: This assumes a zext cast. 202 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 203 // to the destination type might lose bits. 204 205 // Fold the constants together in the destination type: 206 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 207 Type *DestTy = C1->getType(); 208 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 209 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 210 Cast->setOperand(0, BinOp2->getOperand(0)); 211 BinOp1->setOperand(1, FoldedC); 212 return true; 213 } 214 215 /// This performs a few simplifications for operators that are associative or 216 /// commutative: 217 /// 218 /// Commutative operators: 219 /// 220 /// 1. Order operands such that they are listed from right (least complex) to 221 /// left (most complex). This puts constants before unary operators before 222 /// binary operators. 223 /// 224 /// Associative operators: 225 /// 226 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 227 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 228 /// 229 /// Associative and commutative operators: 230 /// 231 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 232 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 233 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 234 /// if C1 and C2 are constants. 235 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 236 Instruction::BinaryOps Opcode = I.getOpcode(); 237 bool Changed = false; 238 239 do { 240 // Order operands such that they are listed from right (least complex) to 241 // left (most complex). This puts constants before unary operators before 242 // binary operators. 243 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 244 getComplexity(I.getOperand(1))) 245 Changed = !I.swapOperands(); 246 247 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 248 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 249 250 if (I.isAssociative()) { 251 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 252 if (Op0 && Op0->getOpcode() == Opcode) { 253 Value *A = Op0->getOperand(0); 254 Value *B = Op0->getOperand(1); 255 Value *C = I.getOperand(1); 256 257 // Does "B op C" simplify? 258 if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) { 259 // It simplifies to V. Form "A op V". 260 I.setOperand(0, A); 261 I.setOperand(1, V); 262 // Conservatively clear the optional flags, since they may not be 263 // preserved by the reassociation. 264 if (MaintainNoSignedWrap(I, B, C) && 265 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { 266 // Note: this is only valid because SimplifyBinOp doesn't look at 267 // the operands to Op0. 268 I.clearSubclassOptionalData(); 269 I.setHasNoSignedWrap(true); 270 } else { 271 ClearSubclassDataAfterReassociation(I); 272 } 273 274 Changed = true; 275 ++NumReassoc; 276 continue; 277 } 278 } 279 280 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 281 if (Op1 && Op1->getOpcode() == Opcode) { 282 Value *A = I.getOperand(0); 283 Value *B = Op1->getOperand(0); 284 Value *C = Op1->getOperand(1); 285 286 // Does "A op B" simplify? 287 if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) { 288 // It simplifies to V. Form "V op C". 289 I.setOperand(0, V); 290 I.setOperand(1, C); 291 // Conservatively clear the optional flags, since they may not be 292 // preserved by the reassociation. 293 ClearSubclassDataAfterReassociation(I); 294 Changed = true; 295 ++NumReassoc; 296 continue; 297 } 298 } 299 } 300 301 if (I.isAssociative() && I.isCommutative()) { 302 if (simplifyAssocCastAssoc(&I)) { 303 Changed = true; 304 ++NumReassoc; 305 continue; 306 } 307 308 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 309 if (Op0 && Op0->getOpcode() == Opcode) { 310 Value *A = Op0->getOperand(0); 311 Value *B = Op0->getOperand(1); 312 Value *C = I.getOperand(1); 313 314 // Does "C op A" simplify? 315 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) { 316 // It simplifies to V. Form "V op B". 317 I.setOperand(0, V); 318 I.setOperand(1, B); 319 // Conservatively clear the optional flags, since they may not be 320 // preserved by the reassociation. 321 ClearSubclassDataAfterReassociation(I); 322 Changed = true; 323 ++NumReassoc; 324 continue; 325 } 326 } 327 328 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 329 if (Op1 && Op1->getOpcode() == Opcode) { 330 Value *A = I.getOperand(0); 331 Value *B = Op1->getOperand(0); 332 Value *C = Op1->getOperand(1); 333 334 // Does "C op A" simplify? 335 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) { 336 // It simplifies to V. Form "B op V". 337 I.setOperand(0, B); 338 I.setOperand(1, V); 339 // Conservatively clear the optional flags, since they may not be 340 // preserved by the reassociation. 341 ClearSubclassDataAfterReassociation(I); 342 Changed = true; 343 ++NumReassoc; 344 continue; 345 } 346 } 347 348 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 349 // if C1 and C2 are constants. 350 if (Op0 && Op1 && 351 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 352 isa<Constant>(Op0->getOperand(1)) && 353 isa<Constant>(Op1->getOperand(1)) && 354 Op0->hasOneUse() && Op1->hasOneUse()) { 355 Value *A = Op0->getOperand(0); 356 Constant *C1 = cast<Constant>(Op0->getOperand(1)); 357 Value *B = Op1->getOperand(0); 358 Constant *C2 = cast<Constant>(Op1->getOperand(1)); 359 360 Constant *Folded = ConstantExpr::get(Opcode, C1, C2); 361 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B); 362 if (isa<FPMathOperator>(New)) { 363 FastMathFlags Flags = I.getFastMathFlags(); 364 Flags &= Op0->getFastMathFlags(); 365 Flags &= Op1->getFastMathFlags(); 366 New->setFastMathFlags(Flags); 367 } 368 InsertNewInstWith(New, I); 369 New->takeName(Op1); 370 I.setOperand(0, New); 371 I.setOperand(1, Folded); 372 // Conservatively clear the optional flags, since they may not be 373 // preserved by the reassociation. 374 ClearSubclassDataAfterReassociation(I); 375 376 Changed = true; 377 continue; 378 } 379 } 380 381 // No further simplifications. 382 return Changed; 383 } while (1); 384 } 385 386 /// Return whether "X LOp (Y ROp Z)" is always equal to 387 /// "(X LOp Y) ROp (X LOp Z)". 388 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp, 389 Instruction::BinaryOps ROp) { 390 switch (LOp) { 391 default: 392 return false; 393 394 case Instruction::And: 395 // And distributes over Or and Xor. 396 switch (ROp) { 397 default: 398 return false; 399 case Instruction::Or: 400 case Instruction::Xor: 401 return true; 402 } 403 404 case Instruction::Mul: 405 // Multiplication distributes over addition and subtraction. 406 switch (ROp) { 407 default: 408 return false; 409 case Instruction::Add: 410 case Instruction::Sub: 411 return true; 412 } 413 414 case Instruction::Or: 415 // Or distributes over And. 416 switch (ROp) { 417 default: 418 return false; 419 case Instruction::And: 420 return true; 421 } 422 } 423 } 424 425 /// Return whether "(X LOp Y) ROp Z" is always equal to 426 /// "(X ROp Z) LOp (Y ROp Z)". 427 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp, 428 Instruction::BinaryOps ROp) { 429 if (Instruction::isCommutative(ROp)) 430 return LeftDistributesOverRight(ROp, LOp); 431 432 switch (LOp) { 433 default: 434 return false; 435 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts. 436 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts. 437 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts. 438 case Instruction::And: 439 case Instruction::Or: 440 case Instruction::Xor: 441 switch (ROp) { 442 default: 443 return false; 444 case Instruction::Shl: 445 case Instruction::LShr: 446 case Instruction::AShr: 447 return true; 448 } 449 } 450 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 451 // but this requires knowing that the addition does not overflow and other 452 // such subtleties. 453 return false; 454 } 455 456 /// This function returns identity value for given opcode, which can be used to 457 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 458 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 459 if (isa<Constant>(V)) 460 return nullptr; 461 462 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 463 } 464 465 /// This function factors binary ops which can be combined using distributive 466 /// laws. This function tries to transform 'Op' based TopLevelOpcode to enable 467 /// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called 468 /// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms 469 /// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and 470 /// RHS to 4. 471 static Instruction::BinaryOps 472 getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode, 473 BinaryOperator *Op, Value *&LHS, Value *&RHS) { 474 assert(Op && "Expected a binary operator"); 475 476 LHS = Op->getOperand(0); 477 RHS = Op->getOperand(1); 478 479 switch (TopLevelOpcode) { 480 default: 481 return Op->getOpcode(); 482 483 case Instruction::Add: 484 case Instruction::Sub: 485 if (Op->getOpcode() == Instruction::Shl) { 486 if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) { 487 // The multiplier is really 1 << CST. 488 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST); 489 return Instruction::Mul; 490 } 491 } 492 return Op->getOpcode(); 493 } 494 495 // TODO: We can add other conversions e.g. shr => div etc. 496 } 497 498 /// This tries to simplify binary operations by factorizing out common terms 499 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 500 static Value *tryFactorization(InstCombiner::BuilderTy *Builder, 501 const DataLayout &DL, BinaryOperator &I, 502 Instruction::BinaryOps InnerOpcode, Value *A, 503 Value *B, Value *C, Value *D) { 504 assert(A && B && C && D && "All values must be provided"); 505 506 Value *V = nullptr; 507 Value *SimplifiedInst = nullptr; 508 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 509 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 510 511 // Does "X op' Y" always equal "Y op' X"? 512 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 513 514 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 515 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 516 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 517 // commutative case, "(A op' B) op (C op' A)"? 518 if (A == C || (InnerCommutative && A == D)) { 519 if (A != C) 520 std::swap(C, D); 521 // Consider forming "A op' (B op D)". 522 // If "B op D" simplifies then it can be formed with no cost. 523 V = SimplifyBinOp(TopLevelOpcode, B, D, DL); 524 // If "B op D" doesn't simplify then only go on if both of the existing 525 // operations "A op' B" and "C op' D" will be zapped as no longer used. 526 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 527 V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 528 if (V) { 529 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V); 530 } 531 } 532 533 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 534 if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 535 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 536 // commutative case, "(A op' B) op (B op' D)"? 537 if (B == D || (InnerCommutative && B == C)) { 538 if (B != D) 539 std::swap(C, D); 540 // Consider forming "(A op C) op' B". 541 // If "A op C" simplifies then it can be formed with no cost. 542 V = SimplifyBinOp(TopLevelOpcode, A, C, DL); 543 544 // If "A op C" doesn't simplify then only go on if both of the existing 545 // operations "A op' B" and "C op' D" will be zapped as no longer used. 546 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 547 V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 548 if (V) { 549 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B); 550 } 551 } 552 553 if (SimplifiedInst) { 554 ++NumFactor; 555 SimplifiedInst->takeName(&I); 556 557 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag. 558 // TODO: Check for NUW. 559 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 560 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 561 bool HasNSW = false; 562 if (isa<OverflowingBinaryOperator>(&I)) 563 HasNSW = I.hasNoSignedWrap(); 564 565 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) 566 HasNSW &= LOBO->hasNoSignedWrap(); 567 568 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) 569 HasNSW &= ROBO->hasNoSignedWrap(); 570 571 // We can propagate 'nsw' if we know that 572 // %Y = mul nsw i16 %X, C 573 // %Z = add nsw i16 %Y, %X 574 // => 575 // %Z = mul nsw i16 %X, C+1 576 // 577 // iff C+1 isn't INT_MIN 578 const APInt *CInt; 579 if (TopLevelOpcode == Instruction::Add && 580 InnerOpcode == Instruction::Mul) 581 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) 582 BO->setHasNoSignedWrap(HasNSW); 583 } 584 } 585 } 586 return SimplifiedInst; 587 } 588 589 /// This tries to simplify binary operations which some other binary operation 590 /// distributes over either by factorizing out common terms 591 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 592 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 593 /// Returns the simplified value, or null if it didn't simplify. 594 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 595 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 596 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 597 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 598 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 599 600 { 601 // Factorization. 602 Value *A, *B, *C, *D; 603 Instruction::BinaryOps LHSOpcode, RHSOpcode; 604 if (Op0) 605 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 606 if (Op1) 607 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 608 609 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 610 // a common term. 611 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 612 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D)) 613 return V; 614 615 // The instruction has the form "(A op' B) op (C)". Try to factorize common 616 // term. 617 if (Op0) 618 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 619 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS, 620 Ident)) 621 return V; 622 623 // The instruction has the form "(B) op (C op' D)". Try to factorize common 624 // term. 625 if (Op1) 626 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 627 if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS, Ident, 628 C, D)) 629 return V; 630 } 631 632 // Expansion. 633 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 634 // The instruction has the form "(A op' B) op C". See if expanding it out 635 // to "(A op C) op' (B op C)" results in simplifications. 636 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 637 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 638 639 // Do "A op C" and "B op C" both simplify? 640 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL)) 641 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) { 642 // They do! Return "L op' R". 643 ++NumExpand; 644 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 645 if ((L == A && R == B) || 646 (Instruction::isCommutative(InnerOpcode) && L == B && R == A)) 647 return Op0; 648 // Otherwise return "L op' R" if it simplifies. 649 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL)) 650 return V; 651 // Otherwise, create a new instruction. 652 C = Builder->CreateBinOp(InnerOpcode, L, R); 653 C->takeName(&I); 654 return C; 655 } 656 } 657 658 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 659 // The instruction has the form "A op (B op' C)". See if expanding it out 660 // to "(A op B) op' (A op C)" results in simplifications. 661 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 662 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 663 664 // Do "A op B" and "A op C" both simplify? 665 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL)) 666 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) { 667 // They do! Return "L op' R". 668 ++NumExpand; 669 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 670 if ((L == B && R == C) || 671 (Instruction::isCommutative(InnerOpcode) && L == C && R == B)) 672 return Op1; 673 // Otherwise return "L op' R" if it simplifies. 674 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL)) 675 return V; 676 // Otherwise, create a new instruction. 677 A = Builder->CreateBinOp(InnerOpcode, L, R); 678 A->takeName(&I); 679 return A; 680 } 681 } 682 683 // (op (select (a, c, b)), (select (a, d, b))) -> (select (a, (op c, d), 0)) 684 // (op (select (a, b, c)), (select (a, b, d))) -> (select (a, 0, (op c, d))) 685 if (auto *SI0 = dyn_cast<SelectInst>(LHS)) { 686 if (auto *SI1 = dyn_cast<SelectInst>(RHS)) { 687 if (SI0->getCondition() == SI1->getCondition()) { 688 Value *SI = nullptr; 689 if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getFalseValue(), 690 SI1->getFalseValue(), DL, &TLI, &DT, &AC)) 691 SI = Builder->CreateSelect(SI0->getCondition(), 692 Builder->CreateBinOp(TopLevelOpcode, 693 SI0->getTrueValue(), 694 SI1->getTrueValue()), 695 V); 696 if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getTrueValue(), 697 SI1->getTrueValue(), DL, &TLI, &DT, &AC)) 698 SI = Builder->CreateSelect( 699 SI0->getCondition(), V, 700 Builder->CreateBinOp(TopLevelOpcode, SI0->getFalseValue(), 701 SI1->getFalseValue())); 702 if (SI) { 703 SI->takeName(&I); 704 return SI; 705 } 706 } 707 } 708 } 709 710 return nullptr; 711 } 712 713 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 714 /// constant zero (which is the 'negate' form). 715 Value *InstCombiner::dyn_castNegVal(Value *V) const { 716 if (BinaryOperator::isNeg(V)) 717 return BinaryOperator::getNegArgument(V); 718 719 // Constants can be considered to be negated values if they can be folded. 720 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 721 return ConstantExpr::getNeg(C); 722 723 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 724 if (C->getType()->getElementType()->isIntegerTy()) 725 return ConstantExpr::getNeg(C); 726 727 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 728 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 729 Constant *Elt = CV->getAggregateElement(i); 730 if (!Elt) 731 return nullptr; 732 733 if (isa<UndefValue>(Elt)) 734 continue; 735 736 if (!isa<ConstantInt>(Elt)) 737 return nullptr; 738 } 739 return ConstantExpr::getNeg(CV); 740 } 741 742 return nullptr; 743 } 744 745 /// Given a 'fsub' instruction, return the RHS of the instruction if the LHS is 746 /// a constant negative zero (which is the 'negate' form). 747 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const { 748 if (BinaryOperator::isFNeg(V, IgnoreZeroSign)) 749 return BinaryOperator::getFNegArgument(V); 750 751 // Constants can be considered to be negated values if they can be folded. 752 if (ConstantFP *C = dyn_cast<ConstantFP>(V)) 753 return ConstantExpr::getFNeg(C); 754 755 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 756 if (C->getType()->getElementType()->isFloatingPointTy()) 757 return ConstantExpr::getFNeg(C); 758 759 return nullptr; 760 } 761 762 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 763 InstCombiner *IC) { 764 if (auto *Cast = dyn_cast<CastInst>(&I)) 765 return IC->Builder->CreateCast(Cast->getOpcode(), SO, I.getType()); 766 767 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 768 769 // Figure out if the constant is the left or the right argument. 770 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 771 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 772 773 if (auto *SOC = dyn_cast<Constant>(SO)) { 774 if (ConstIsRHS) 775 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 776 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 777 } 778 779 Value *Op0 = SO, *Op1 = ConstOperand; 780 if (!ConstIsRHS) 781 std::swap(Op0, Op1); 782 783 auto *BO = cast<BinaryOperator>(&I); 784 Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1, 785 SO->getName() + ".op"); 786 auto *FPInst = dyn_cast<Instruction>(RI); 787 if (FPInst && isa<FPMathOperator>(FPInst)) 788 FPInst->copyFastMathFlags(BO); 789 return RI; 790 } 791 792 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 793 // Don't modify shared select instructions. 794 if (!SI->hasOneUse()) 795 return nullptr; 796 797 Value *TV = SI->getTrueValue(); 798 Value *FV = SI->getFalseValue(); 799 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 800 return nullptr; 801 802 // Bool selects with constant operands can be folded to logical ops. 803 if (SI->getType()->getScalarType()->isIntegerTy(1)) 804 return nullptr; 805 806 // If it's a bitcast involving vectors, make sure it has the same number of 807 // elements on both sides. 808 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 809 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 810 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 811 812 // Verify that either both or neither are vectors. 813 if ((SrcTy == nullptr) != (DestTy == nullptr)) 814 return nullptr; 815 816 // If vectors, verify that they have the same number of elements. 817 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 818 return nullptr; 819 } 820 821 // Test if a CmpInst instruction is used exclusively by a select as 822 // part of a minimum or maximum operation. If so, refrain from doing 823 // any other folding. This helps out other analyses which understand 824 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 825 // and CodeGen. And in this case, at least one of the comparison 826 // operands has at least one user besides the compare (the select), 827 // which would often largely negate the benefit of folding anyway. 828 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 829 if (CI->hasOneUse()) { 830 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 831 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 832 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 833 return nullptr; 834 } 835 } 836 837 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, this); 838 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, this); 839 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 840 } 841 842 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 843 InstCombiner *IC) { 844 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 845 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 846 847 if (auto *InC = dyn_cast<Constant>(InV)) { 848 if (ConstIsRHS) 849 return ConstantExpr::get(I->getOpcode(), InC, C); 850 return ConstantExpr::get(I->getOpcode(), C, InC); 851 } 852 853 Value *Op0 = InV, *Op1 = C; 854 if (!ConstIsRHS) 855 std::swap(Op0, Op1); 856 857 Value *RI = IC->Builder->CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp"); 858 auto *FPInst = dyn_cast<Instruction>(RI); 859 if (FPInst && isa<FPMathOperator>(FPInst)) 860 FPInst->copyFastMathFlags(I); 861 return RI; 862 } 863 864 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) { 865 unsigned NumPHIValues = PN->getNumIncomingValues(); 866 if (NumPHIValues == 0) 867 return nullptr; 868 869 // We normally only transform phis with a single use. However, if a PHI has 870 // multiple uses and they are all the same operation, we can fold *all* of the 871 // uses into the PHI. 872 if (!PN->hasOneUse()) { 873 // Walk the use list for the instruction, comparing them to I. 874 for (User *U : PN->users()) { 875 Instruction *UI = cast<Instruction>(U); 876 if (UI != &I && !I.isIdenticalTo(UI)) 877 return nullptr; 878 } 879 // Otherwise, we can replace *all* users with the new PHI we form. 880 } 881 882 // Check to see if all of the operands of the PHI are simple constants 883 // (constantint/constantfp/undef). If there is one non-constant value, 884 // remember the BB it is in. If there is more than one or if *it* is a PHI, 885 // bail out. We don't do arbitrary constant expressions here because moving 886 // their computation can be expensive without a cost model. 887 BasicBlock *NonConstBB = nullptr; 888 for (unsigned i = 0; i != NumPHIValues; ++i) { 889 Value *InVal = PN->getIncomingValue(i); 890 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 891 continue; 892 893 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 894 if (NonConstBB) return nullptr; // More than one non-const value. 895 896 NonConstBB = PN->getIncomingBlock(i); 897 898 // If the InVal is an invoke at the end of the pred block, then we can't 899 // insert a computation after it without breaking the edge. 900 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal)) 901 if (II->getParent() == NonConstBB) 902 return nullptr; 903 904 // If the incoming non-constant value is in I's block, we will remove one 905 // instruction, but insert another equivalent one, leading to infinite 906 // instcombine. 907 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI)) 908 return nullptr; 909 } 910 911 // If there is exactly one non-constant value, we can insert a copy of the 912 // operation in that block. However, if this is a critical edge, we would be 913 // inserting the computation on some other paths (e.g. inside a loop). Only 914 // do this if the pred block is unconditionally branching into the phi block. 915 if (NonConstBB != nullptr) { 916 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 917 if (!BI || !BI->isUnconditional()) return nullptr; 918 } 919 920 // Okay, we can do the transformation: create the new PHI node. 921 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 922 InsertNewInstBefore(NewPN, *PN); 923 NewPN->takeName(PN); 924 925 // If we are going to have to insert a new computation, do so right before the 926 // predecessor's terminator. 927 if (NonConstBB) 928 Builder->SetInsertPoint(NonConstBB->getTerminator()); 929 930 // Next, add all of the operands to the PHI. 931 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 932 // We only currently try to fold the condition of a select when it is a phi, 933 // not the true/false values. 934 Value *TrueV = SI->getTrueValue(); 935 Value *FalseV = SI->getFalseValue(); 936 BasicBlock *PhiTransBB = PN->getParent(); 937 for (unsigned i = 0; i != NumPHIValues; ++i) { 938 BasicBlock *ThisBB = PN->getIncomingBlock(i); 939 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 940 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 941 Value *InV = nullptr; 942 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 943 // even if currently isNullValue gives false. 944 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 945 // For vector constants, we cannot use isNullValue to fold into 946 // FalseVInPred versus TrueVInPred. When we have individual nonzero 947 // elements in the vector, we will incorrectly fold InC to 948 // `TrueVInPred`. 949 if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC)) 950 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 951 else 952 InV = Builder->CreateSelect(PN->getIncomingValue(i), 953 TrueVInPred, FalseVInPred, "phitmp"); 954 NewPN->addIncoming(InV, ThisBB); 955 } 956 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 957 Constant *C = cast<Constant>(I.getOperand(1)); 958 for (unsigned i = 0; i != NumPHIValues; ++i) { 959 Value *InV = nullptr; 960 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 961 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 962 else if (isa<ICmpInst>(CI)) 963 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 964 C, "phitmp"); 965 else 966 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 967 C, "phitmp"); 968 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 969 } 970 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 971 for (unsigned i = 0; i != NumPHIValues; ++i) { 972 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), this); 973 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 974 } 975 } else { 976 CastInst *CI = cast<CastInst>(&I); 977 Type *RetTy = CI->getType(); 978 for (unsigned i = 0; i != NumPHIValues; ++i) { 979 Value *InV; 980 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 981 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 982 else 983 InV = Builder->CreateCast(CI->getOpcode(), 984 PN->getIncomingValue(i), I.getType(), "phitmp"); 985 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 986 } 987 } 988 989 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 990 Instruction *User = cast<Instruction>(*UI++); 991 if (User == &I) continue; 992 replaceInstUsesWith(*User, NewPN); 993 eraseInstFromFunction(*User); 994 } 995 return replaceInstUsesWith(I, NewPN); 996 } 997 998 Instruction *InstCombiner::foldOpWithConstantIntoOperand(BinaryOperator &I) { 999 assert(isa<Constant>(I.getOperand(1)) && "Unexpected operand type"); 1000 1001 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1002 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1003 return NewSel; 1004 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1005 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1006 return NewPhi; 1007 } 1008 return nullptr; 1009 } 1010 1011 /// Given a pointer type and a constant offset, determine whether or not there 1012 /// is a sequence of GEP indices into the pointed type that will land us at the 1013 /// specified offset. If so, fill them into NewIndices and return the resultant 1014 /// element type, otherwise return null. 1015 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 1016 SmallVectorImpl<Value *> &NewIndices) { 1017 Type *Ty = PtrTy->getElementType(); 1018 if (!Ty->isSized()) 1019 return nullptr; 1020 1021 // Start with the index over the outer type. Note that the type size 1022 // might be zero (even if the offset isn't zero) if the indexed type 1023 // is something like [0 x {int, int}] 1024 Type *IntPtrTy = DL.getIntPtrType(PtrTy); 1025 int64_t FirstIdx = 0; 1026 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 1027 FirstIdx = Offset/TySize; 1028 Offset -= FirstIdx*TySize; 1029 1030 // Handle hosts where % returns negative instead of values [0..TySize). 1031 if (Offset < 0) { 1032 --FirstIdx; 1033 Offset += TySize; 1034 assert(Offset >= 0); 1035 } 1036 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 1037 } 1038 1039 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx)); 1040 1041 // Index into the types. If we fail, set OrigBase to null. 1042 while (Offset) { 1043 // Indexing into tail padding between struct/array elements. 1044 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1045 return nullptr; 1046 1047 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1048 const StructLayout *SL = DL.getStructLayout(STy); 1049 assert(Offset < (int64_t)SL->getSizeInBytes() && 1050 "Offset must stay within the indexed type"); 1051 1052 unsigned Elt = SL->getElementContainingOffset(Offset); 1053 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1054 Elt)); 1055 1056 Offset -= SL->getElementOffset(Elt); 1057 Ty = STy->getElementType(Elt); 1058 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1059 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1060 assert(EltSize && "Cannot index into a zero-sized array"); 1061 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize)); 1062 Offset %= EltSize; 1063 Ty = AT->getElementType(); 1064 } else { 1065 // Otherwise, we can't index into the middle of this atomic type, bail. 1066 return nullptr; 1067 } 1068 } 1069 1070 return Ty; 1071 } 1072 1073 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1074 // If this GEP has only 0 indices, it is the same pointer as 1075 // Src. If Src is not a trivial GEP too, don't combine 1076 // the indices. 1077 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1078 !Src.hasOneUse()) 1079 return false; 1080 return true; 1081 } 1082 1083 /// Return a value X such that Val = X * Scale, or null if none. 1084 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1085 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1086 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1087 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1088 Scale.getBitWidth() && "Scale not compatible with value!"); 1089 1090 // If Val is zero or Scale is one then Val = Val * Scale. 1091 if (match(Val, m_Zero()) || Scale == 1) { 1092 NoSignedWrap = true; 1093 return Val; 1094 } 1095 1096 // If Scale is zero then it does not divide Val. 1097 if (Scale.isMinValue()) 1098 return nullptr; 1099 1100 // Look through chains of multiplications, searching for a constant that is 1101 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1102 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1103 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1104 // down from Val: 1105 // 1106 // Val = M1 * X || Analysis starts here and works down 1107 // M1 = M2 * Y || Doesn't descend into terms with more 1108 // M2 = Z * 4 \/ than one use 1109 // 1110 // Then to modify a term at the bottom: 1111 // 1112 // Val = M1 * X 1113 // M1 = Z * Y || Replaced M2 with Z 1114 // 1115 // Then to work back up correcting nsw flags. 1116 1117 // Op - the term we are currently analyzing. Starts at Val then drills down. 1118 // Replaced with its descaled value before exiting from the drill down loop. 1119 Value *Op = Val; 1120 1121 // Parent - initially null, but after drilling down notes where Op came from. 1122 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1123 // 0'th operand of Val. 1124 std::pair<Instruction*, unsigned> Parent; 1125 1126 // Set if the transform requires a descaling at deeper levels that doesn't 1127 // overflow. 1128 bool RequireNoSignedWrap = false; 1129 1130 // Log base 2 of the scale. Negative if not a power of 2. 1131 int32_t logScale = Scale.exactLogBase2(); 1132 1133 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1134 1135 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1136 // If Op is a constant divisible by Scale then descale to the quotient. 1137 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1138 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1139 if (!Remainder.isMinValue()) 1140 // Not divisible by Scale. 1141 return nullptr; 1142 // Replace with the quotient in the parent. 1143 Op = ConstantInt::get(CI->getType(), Quotient); 1144 NoSignedWrap = true; 1145 break; 1146 } 1147 1148 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1149 1150 if (BO->getOpcode() == Instruction::Mul) { 1151 // Multiplication. 1152 NoSignedWrap = BO->hasNoSignedWrap(); 1153 if (RequireNoSignedWrap && !NoSignedWrap) 1154 return nullptr; 1155 1156 // There are three cases for multiplication: multiplication by exactly 1157 // the scale, multiplication by a constant different to the scale, and 1158 // multiplication by something else. 1159 Value *LHS = BO->getOperand(0); 1160 Value *RHS = BO->getOperand(1); 1161 1162 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1163 // Multiplication by a constant. 1164 if (CI->getValue() == Scale) { 1165 // Multiplication by exactly the scale, replace the multiplication 1166 // by its left-hand side in the parent. 1167 Op = LHS; 1168 break; 1169 } 1170 1171 // Otherwise drill down into the constant. 1172 if (!Op->hasOneUse()) 1173 return nullptr; 1174 1175 Parent = std::make_pair(BO, 1); 1176 continue; 1177 } 1178 1179 // Multiplication by something else. Drill down into the left-hand side 1180 // since that's where the reassociate pass puts the good stuff. 1181 if (!Op->hasOneUse()) 1182 return nullptr; 1183 1184 Parent = std::make_pair(BO, 0); 1185 continue; 1186 } 1187 1188 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1189 isa<ConstantInt>(BO->getOperand(1))) { 1190 // Multiplication by a power of 2. 1191 NoSignedWrap = BO->hasNoSignedWrap(); 1192 if (RequireNoSignedWrap && !NoSignedWrap) 1193 return nullptr; 1194 1195 Value *LHS = BO->getOperand(0); 1196 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1197 getLimitedValue(Scale.getBitWidth()); 1198 // Op = LHS << Amt. 1199 1200 if (Amt == logScale) { 1201 // Multiplication by exactly the scale, replace the multiplication 1202 // by its left-hand side in the parent. 1203 Op = LHS; 1204 break; 1205 } 1206 if (Amt < logScale || !Op->hasOneUse()) 1207 return nullptr; 1208 1209 // Multiplication by more than the scale. Reduce the multiplying amount 1210 // by the scale in the parent. 1211 Parent = std::make_pair(BO, 1); 1212 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1213 break; 1214 } 1215 } 1216 1217 if (!Op->hasOneUse()) 1218 return nullptr; 1219 1220 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1221 if (Cast->getOpcode() == Instruction::SExt) { 1222 // Op is sign-extended from a smaller type, descale in the smaller type. 1223 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1224 APInt SmallScale = Scale.trunc(SmallSize); 1225 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1226 // descale Op as (sext Y) * Scale. In order to have 1227 // sext (Y * SmallScale) = (sext Y) * Scale 1228 // some conditions need to hold however: SmallScale must sign-extend to 1229 // Scale and the multiplication Y * SmallScale should not overflow. 1230 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1231 // SmallScale does not sign-extend to Scale. 1232 return nullptr; 1233 assert(SmallScale.exactLogBase2() == logScale); 1234 // Require that Y * SmallScale must not overflow. 1235 RequireNoSignedWrap = true; 1236 1237 // Drill down through the cast. 1238 Parent = std::make_pair(Cast, 0); 1239 Scale = SmallScale; 1240 continue; 1241 } 1242 1243 if (Cast->getOpcode() == Instruction::Trunc) { 1244 // Op is truncated from a larger type, descale in the larger type. 1245 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1246 // trunc (Y * sext Scale) = (trunc Y) * Scale 1247 // always holds. However (trunc Y) * Scale may overflow even if 1248 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1249 // from this point up in the expression (see later). 1250 if (RequireNoSignedWrap) 1251 return nullptr; 1252 1253 // Drill down through the cast. 1254 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1255 Parent = std::make_pair(Cast, 0); 1256 Scale = Scale.sext(LargeSize); 1257 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1258 logScale = -1; 1259 assert(Scale.exactLogBase2() == logScale); 1260 continue; 1261 } 1262 } 1263 1264 // Unsupported expression, bail out. 1265 return nullptr; 1266 } 1267 1268 // If Op is zero then Val = Op * Scale. 1269 if (match(Op, m_Zero())) { 1270 NoSignedWrap = true; 1271 return Op; 1272 } 1273 1274 // We know that we can successfully descale, so from here on we can safely 1275 // modify the IR. Op holds the descaled version of the deepest term in the 1276 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1277 // not to overflow. 1278 1279 if (!Parent.first) 1280 // The expression only had one term. 1281 return Op; 1282 1283 // Rewrite the parent using the descaled version of its operand. 1284 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1285 assert(Op != Parent.first->getOperand(Parent.second) && 1286 "Descaling was a no-op?"); 1287 Parent.first->setOperand(Parent.second, Op); 1288 Worklist.Add(Parent.first); 1289 1290 // Now work back up the expression correcting nsw flags. The logic is based 1291 // on the following observation: if X * Y is known not to overflow as a signed 1292 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1293 // then X * Z will not overflow as a signed multiplication either. As we work 1294 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1295 // current level has strictly smaller absolute value than the original. 1296 Instruction *Ancestor = Parent.first; 1297 do { 1298 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1299 // If the multiplication wasn't nsw then we can't say anything about the 1300 // value of the descaled multiplication, and we have to clear nsw flags 1301 // from this point on up. 1302 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1303 NoSignedWrap &= OpNoSignedWrap; 1304 if (NoSignedWrap != OpNoSignedWrap) { 1305 BO->setHasNoSignedWrap(NoSignedWrap); 1306 Worklist.Add(Ancestor); 1307 } 1308 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1309 // The fact that the descaled input to the trunc has smaller absolute 1310 // value than the original input doesn't tell us anything useful about 1311 // the absolute values of the truncations. 1312 NoSignedWrap = false; 1313 } 1314 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1315 "Failed to keep proper track of nsw flags while drilling down?"); 1316 1317 if (Ancestor == Val) 1318 // Got to the top, all done! 1319 return Val; 1320 1321 // Move up one level in the expression. 1322 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1323 Ancestor = Ancestor->user_back(); 1324 } while (1); 1325 } 1326 1327 /// \brief Creates node of binary operation with the same attributes as the 1328 /// specified one but with other operands. 1329 static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS, 1330 InstCombiner::BuilderTy *B) { 1331 Value *BO = B->CreateBinOp(Inst.getOpcode(), LHS, RHS); 1332 // If LHS and RHS are constant, BO won't be a binary operator. 1333 if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BO)) 1334 NewBO->copyIRFlags(&Inst); 1335 return BO; 1336 } 1337 1338 /// \brief Makes transformation of binary operation specific for vector types. 1339 /// \param Inst Binary operator to transform. 1340 /// \return Pointer to node that must replace the original binary operator, or 1341 /// null pointer if no transformation was made. 1342 Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) { 1343 if (!Inst.getType()->isVectorTy()) return nullptr; 1344 1345 // It may not be safe to reorder shuffles and things like div, urem, etc. 1346 // because we may trap when executing those ops on unknown vector elements. 1347 // See PR20059. 1348 if (!isSafeToSpeculativelyExecute(&Inst)) 1349 return nullptr; 1350 1351 unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements(); 1352 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1353 assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth); 1354 assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth); 1355 1356 // If both arguments of the binary operation are shuffles that use the same 1357 // mask and shuffle within a single vector, move the shuffle after the binop: 1358 // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m) 1359 auto *LShuf = dyn_cast<ShuffleVectorInst>(LHS); 1360 auto *RShuf = dyn_cast<ShuffleVectorInst>(RHS); 1361 if (LShuf && RShuf && LShuf->getMask() == RShuf->getMask() && 1362 isa<UndefValue>(LShuf->getOperand(1)) && 1363 isa<UndefValue>(RShuf->getOperand(1)) && 1364 LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType()) { 1365 Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0), 1366 RShuf->getOperand(0), Builder); 1367 return Builder->CreateShuffleVector( 1368 NewBO, UndefValue::get(NewBO->getType()), LShuf->getMask()); 1369 } 1370 1371 // If one argument is a shuffle within one vector, the other is a constant, 1372 // try moving the shuffle after the binary operation. 1373 ShuffleVectorInst *Shuffle = nullptr; 1374 Constant *C1 = nullptr; 1375 if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS); 1376 if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS); 1377 if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS); 1378 if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS); 1379 if (Shuffle && C1 && 1380 (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) && 1381 isa<UndefValue>(Shuffle->getOperand(1)) && 1382 Shuffle->getType() == Shuffle->getOperand(0)->getType()) { 1383 SmallVector<int, 16> ShMask = Shuffle->getShuffleMask(); 1384 // Find constant C2 that has property: 1385 // shuffle(C2, ShMask) = C1 1386 // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>) 1387 // reorder is not possible. 1388 SmallVector<Constant*, 16> C2M(VWidth, 1389 UndefValue::get(C1->getType()->getScalarType())); 1390 bool MayChange = true; 1391 for (unsigned I = 0; I < VWidth; ++I) { 1392 if (ShMask[I] >= 0) { 1393 assert(ShMask[I] < (int)VWidth); 1394 if (!isa<UndefValue>(C2M[ShMask[I]])) { 1395 MayChange = false; 1396 break; 1397 } 1398 C2M[ShMask[I]] = C1->getAggregateElement(I); 1399 } 1400 } 1401 if (MayChange) { 1402 Constant *C2 = ConstantVector::get(C2M); 1403 Value *NewLHS = isa<Constant>(LHS) ? C2 : Shuffle->getOperand(0); 1404 Value *NewRHS = isa<Constant>(LHS) ? Shuffle->getOperand(0) : C2; 1405 Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder); 1406 return Builder->CreateShuffleVector(NewBO, 1407 UndefValue::get(Inst.getType()), Shuffle->getMask()); 1408 } 1409 } 1410 1411 return nullptr; 1412 } 1413 1414 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1415 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1416 1417 if (Value *V = 1418 SimplifyGEPInst(GEP.getSourceElementType(), Ops, DL, &TLI, &DT, &AC)) 1419 return replaceInstUsesWith(GEP, V); 1420 1421 Value *PtrOp = GEP.getOperand(0); 1422 1423 // Eliminate unneeded casts for indices, and replace indices which displace 1424 // by multiples of a zero size type with zero. 1425 bool MadeChange = false; 1426 Type *IntPtrTy = 1427 DL.getIntPtrType(GEP.getPointerOperandType()->getScalarType()); 1428 1429 gep_type_iterator GTI = gep_type_begin(GEP); 1430 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1431 ++I, ++GTI) { 1432 // Skip indices into struct types. 1433 if (GTI.isStruct()) 1434 continue; 1435 1436 // Index type should have the same width as IntPtr 1437 Type *IndexTy = (*I)->getType(); 1438 Type *NewIndexType = IndexTy->isVectorTy() ? 1439 VectorType::get(IntPtrTy, IndexTy->getVectorNumElements()) : IntPtrTy; 1440 1441 // If the element type has zero size then any index over it is equivalent 1442 // to an index of zero, so replace it with zero if it is not zero already. 1443 Type *EltTy = GTI.getIndexedType(); 1444 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0) 1445 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { 1446 *I = Constant::getNullValue(NewIndexType); 1447 MadeChange = true; 1448 } 1449 1450 if (IndexTy != NewIndexType) { 1451 // If we are using a wider index than needed for this platform, shrink 1452 // it to what we need. If narrower, sign-extend it to what we need. 1453 // This explicit cast can make subsequent optimizations more obvious. 1454 *I = Builder->CreateIntCast(*I, NewIndexType, true); 1455 MadeChange = true; 1456 } 1457 } 1458 if (MadeChange) 1459 return &GEP; 1460 1461 // Check to see if the inputs to the PHI node are getelementptr instructions. 1462 if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) { 1463 GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1464 if (!Op1) 1465 return nullptr; 1466 1467 // Don't fold a GEP into itself through a PHI node. This can only happen 1468 // through the back-edge of a loop. Folding a GEP into itself means that 1469 // the value of the previous iteration needs to be stored in the meantime, 1470 // thus requiring an additional register variable to be live, but not 1471 // actually achieving anything (the GEP still needs to be executed once per 1472 // loop iteration). 1473 if (Op1 == &GEP) 1474 return nullptr; 1475 1476 int DI = -1; 1477 1478 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1479 GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I); 1480 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1481 return nullptr; 1482 1483 // As for Op1 above, don't try to fold a GEP into itself. 1484 if (Op2 == &GEP) 1485 return nullptr; 1486 1487 // Keep track of the type as we walk the GEP. 1488 Type *CurTy = nullptr; 1489 1490 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1491 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1492 return nullptr; 1493 1494 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1495 if (DI == -1) { 1496 // We have not seen any differences yet in the GEPs feeding the 1497 // PHI yet, so we record this one if it is allowed to be a 1498 // variable. 1499 1500 // The first two arguments can vary for any GEP, the rest have to be 1501 // static for struct slots 1502 if (J > 1 && CurTy->isStructTy()) 1503 return nullptr; 1504 1505 DI = J; 1506 } else { 1507 // The GEP is different by more than one input. While this could be 1508 // extended to support GEPs that vary by more than one variable it 1509 // doesn't make sense since it greatly increases the complexity and 1510 // would result in an R+R+R addressing mode which no backend 1511 // directly supports and would need to be broken into several 1512 // simpler instructions anyway. 1513 return nullptr; 1514 } 1515 } 1516 1517 // Sink down a layer of the type for the next iteration. 1518 if (J > 0) { 1519 if (J == 1) { 1520 CurTy = Op1->getSourceElementType(); 1521 } else if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) { 1522 CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); 1523 } else { 1524 CurTy = nullptr; 1525 } 1526 } 1527 } 1528 } 1529 1530 // If not all GEPs are identical we'll have to create a new PHI node. 1531 // Check that the old PHI node has only one use so that it will get 1532 // removed. 1533 if (DI != -1 && !PN->hasOneUse()) 1534 return nullptr; 1535 1536 GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1537 if (DI == -1) { 1538 // All the GEPs feeding the PHI are identical. Clone one down into our 1539 // BB so that it can be merged with the current GEP. 1540 GEP.getParent()->getInstList().insert( 1541 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1542 } else { 1543 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1544 // into the current block so it can be merged, and create a new PHI to 1545 // set that index. 1546 PHINode *NewPN; 1547 { 1548 IRBuilderBase::InsertPointGuard Guard(*Builder); 1549 Builder->SetInsertPoint(PN); 1550 NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(), 1551 PN->getNumOperands()); 1552 } 1553 1554 for (auto &I : PN->operands()) 1555 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1556 PN->getIncomingBlock(I)); 1557 1558 NewGEP->setOperand(DI, NewPN); 1559 GEP.getParent()->getInstList().insert( 1560 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1561 NewGEP->setOperand(DI, NewPN); 1562 } 1563 1564 GEP.setOperand(0, NewGEP); 1565 PtrOp = NewGEP; 1566 } 1567 1568 // Combine Indices - If the source pointer to this getelementptr instruction 1569 // is a getelementptr instruction, combine the indices of the two 1570 // getelementptr instructions into a single instruction. 1571 // 1572 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) { 1573 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1574 return nullptr; 1575 1576 // Note that if our source is a gep chain itself then we wait for that 1577 // chain to be resolved before we perform this transformation. This 1578 // avoids us creating a TON of code in some cases. 1579 if (GEPOperator *SrcGEP = 1580 dyn_cast<GEPOperator>(Src->getOperand(0))) 1581 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1582 return nullptr; // Wait until our source is folded to completion. 1583 1584 SmallVector<Value*, 8> Indices; 1585 1586 // Find out whether the last index in the source GEP is a sequential idx. 1587 bool EndsWithSequential = false; 1588 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1589 I != E; ++I) 1590 EndsWithSequential = I.isSequential(); 1591 1592 // Can we combine the two pointer arithmetics offsets? 1593 if (EndsWithSequential) { 1594 // Replace: gep (gep %P, long B), long A, ... 1595 // With: T = long A+B; gep %P, T, ... 1596 // 1597 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1598 Value *GO1 = GEP.getOperand(1); 1599 1600 // If they aren't the same type, then the input hasn't been processed 1601 // by the loop above yet (which canonicalizes sequential index types to 1602 // intptr_t). Just avoid transforming this until the input has been 1603 // normalized. 1604 if (SO1->getType() != GO1->getType()) 1605 return nullptr; 1606 1607 Value* Sum = SimplifyAddInst(GO1, SO1, false, false, DL, &TLI, &DT, &AC); 1608 // Only do the combine when we are sure the cost after the 1609 // merge is never more than that before the merge. 1610 if (Sum == nullptr) 1611 return nullptr; 1612 1613 // Update the GEP in place if possible. 1614 if (Src->getNumOperands() == 2) { 1615 GEP.setOperand(0, Src->getOperand(0)); 1616 GEP.setOperand(1, Sum); 1617 return &GEP; 1618 } 1619 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1620 Indices.push_back(Sum); 1621 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1622 } else if (isa<Constant>(*GEP.idx_begin()) && 1623 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1624 Src->getNumOperands() != 1) { 1625 // Otherwise we can do the fold if the first index of the GEP is a zero 1626 Indices.append(Src->op_begin()+1, Src->op_end()); 1627 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1628 } 1629 1630 if (!Indices.empty()) 1631 return GEP.isInBounds() && Src->isInBounds() 1632 ? GetElementPtrInst::CreateInBounds( 1633 Src->getSourceElementType(), Src->getOperand(0), Indices, 1634 GEP.getName()) 1635 : GetElementPtrInst::Create(Src->getSourceElementType(), 1636 Src->getOperand(0), Indices, 1637 GEP.getName()); 1638 } 1639 1640 if (GEP.getNumIndices() == 1) { 1641 unsigned AS = GEP.getPointerAddressSpace(); 1642 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 1643 DL.getPointerSizeInBits(AS)) { 1644 Type *Ty = GEP.getSourceElementType(); 1645 uint64_t TyAllocSize = DL.getTypeAllocSize(Ty); 1646 1647 bool Matched = false; 1648 uint64_t C; 1649 Value *V = nullptr; 1650 if (TyAllocSize == 1) { 1651 V = GEP.getOperand(1); 1652 Matched = true; 1653 } else if (match(GEP.getOperand(1), 1654 m_AShr(m_Value(V), m_ConstantInt(C)))) { 1655 if (TyAllocSize == 1ULL << C) 1656 Matched = true; 1657 } else if (match(GEP.getOperand(1), 1658 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 1659 if (TyAllocSize == C) 1660 Matched = true; 1661 } 1662 1663 if (Matched) { 1664 // Canonicalize (gep i8* X, -(ptrtoint Y)) 1665 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) 1666 // The GEP pattern is emitted by the SCEV expander for certain kinds of 1667 // pointer arithmetic. 1668 if (match(V, m_Neg(m_PtrToInt(m_Value())))) { 1669 Operator *Index = cast<Operator>(V); 1670 Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType()); 1671 Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1)); 1672 return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType()); 1673 } 1674 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) 1675 // to (bitcast Y) 1676 Value *Y; 1677 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), 1678 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) { 1679 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, 1680 GEP.getType()); 1681 } 1682 } 1683 } 1684 } 1685 1686 // We do not handle pointer-vector geps here. 1687 if (GEP.getType()->isVectorTy()) 1688 return nullptr; 1689 1690 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 1691 Value *StrippedPtr = PtrOp->stripPointerCasts(); 1692 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 1693 1694 if (StrippedPtr != PtrOp) { 1695 bool HasZeroPointerIndex = false; 1696 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 1697 HasZeroPointerIndex = C->isZero(); 1698 1699 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 1700 // into : GEP [10 x i8]* X, i32 0, ... 1701 // 1702 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 1703 // into : GEP i8* X, ... 1704 // 1705 // This occurs when the program declares an array extern like "int X[];" 1706 if (HasZeroPointerIndex) { 1707 if (ArrayType *CATy = 1708 dyn_cast<ArrayType>(GEP.getSourceElementType())) { 1709 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 1710 if (CATy->getElementType() == StrippedPtrTy->getElementType()) { 1711 // -> GEP i8* X, ... 1712 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 1713 GetElementPtrInst *Res = GetElementPtrInst::Create( 1714 StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName()); 1715 Res->setIsInBounds(GEP.isInBounds()); 1716 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 1717 return Res; 1718 // Insert Res, and create an addrspacecast. 1719 // e.g., 1720 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 1721 // -> 1722 // %0 = GEP i8 addrspace(1)* X, ... 1723 // addrspacecast i8 addrspace(1)* %0 to i8* 1724 return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType()); 1725 } 1726 1727 if (ArrayType *XATy = 1728 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){ 1729 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 1730 if (CATy->getElementType() == XATy->getElementType()) { 1731 // -> GEP [10 x i8]* X, i32 0, ... 1732 // At this point, we know that the cast source type is a pointer 1733 // to an array of the same type as the destination pointer 1734 // array. Because the array type is never stepped over (there 1735 // is a leading zero) we can fold the cast into this GEP. 1736 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 1737 GEP.setOperand(0, StrippedPtr); 1738 GEP.setSourceElementType(XATy); 1739 return &GEP; 1740 } 1741 // Cannot replace the base pointer directly because StrippedPtr's 1742 // address space is different. Instead, create a new GEP followed by 1743 // an addrspacecast. 1744 // e.g., 1745 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 1746 // i32 0, ... 1747 // -> 1748 // %0 = GEP [10 x i8] addrspace(1)* X, ... 1749 // addrspacecast i8 addrspace(1)* %0 to i8* 1750 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 1751 Value *NewGEP = GEP.isInBounds() 1752 ? Builder->CreateInBoundsGEP( 1753 nullptr, StrippedPtr, Idx, GEP.getName()) 1754 : Builder->CreateGEP(nullptr, StrippedPtr, Idx, 1755 GEP.getName()); 1756 return new AddrSpaceCastInst(NewGEP, GEP.getType()); 1757 } 1758 } 1759 } 1760 } else if (GEP.getNumOperands() == 2) { 1761 // Transform things like: 1762 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 1763 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 1764 Type *SrcElTy = StrippedPtrTy->getElementType(); 1765 Type *ResElTy = GEP.getSourceElementType(); 1766 if (SrcElTy->isArrayTy() && 1767 DL.getTypeAllocSize(SrcElTy->getArrayElementType()) == 1768 DL.getTypeAllocSize(ResElTy)) { 1769 Type *IdxType = DL.getIntPtrType(GEP.getType()); 1770 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 1771 Value *NewGEP = 1772 GEP.isInBounds() 1773 ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, Idx, 1774 GEP.getName()) 1775 : Builder->CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName()); 1776 1777 // V and GEP are both pointer types --> BitCast 1778 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1779 GEP.getType()); 1780 } 1781 1782 // Transform things like: 1783 // %V = mul i64 %N, 4 1784 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 1785 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 1786 if (ResElTy->isSized() && SrcElTy->isSized()) { 1787 // Check that changing the type amounts to dividing the index by a scale 1788 // factor. 1789 uint64_t ResSize = DL.getTypeAllocSize(ResElTy); 1790 uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy); 1791 if (ResSize && SrcSize % ResSize == 0) { 1792 Value *Idx = GEP.getOperand(1); 1793 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1794 uint64_t Scale = SrcSize / ResSize; 1795 1796 // Earlier transforms ensure that the index has type IntPtrType, which 1797 // considerably simplifies the logic by eliminating implicit casts. 1798 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) && 1799 "Index not cast to pointer width?"); 1800 1801 bool NSW; 1802 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1803 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1804 // If the multiplication NewIdx * Scale may overflow then the new 1805 // GEP may not be "inbounds". 1806 Value *NewGEP = 1807 GEP.isInBounds() && NSW 1808 ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx, 1809 GEP.getName()) 1810 : Builder->CreateGEP(nullptr, StrippedPtr, NewIdx, 1811 GEP.getName()); 1812 1813 // The NewGEP must be pointer typed, so must the old one -> BitCast 1814 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1815 GEP.getType()); 1816 } 1817 } 1818 } 1819 1820 // Similarly, transform things like: 1821 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 1822 // (where tmp = 8*tmp2) into: 1823 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 1824 if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) { 1825 // Check that changing to the array element type amounts to dividing the 1826 // index by a scale factor. 1827 uint64_t ResSize = DL.getTypeAllocSize(ResElTy); 1828 uint64_t ArrayEltSize = 1829 DL.getTypeAllocSize(SrcElTy->getArrayElementType()); 1830 if (ResSize && ArrayEltSize % ResSize == 0) { 1831 Value *Idx = GEP.getOperand(1); 1832 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1833 uint64_t Scale = ArrayEltSize / ResSize; 1834 1835 // Earlier transforms ensure that the index has type IntPtrType, which 1836 // considerably simplifies the logic by eliminating implicit casts. 1837 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) && 1838 "Index not cast to pointer width?"); 1839 1840 bool NSW; 1841 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1842 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1843 // If the multiplication NewIdx * Scale may overflow then the new 1844 // GEP may not be "inbounds". 1845 Value *Off[2] = { 1846 Constant::getNullValue(DL.getIntPtrType(GEP.getType())), 1847 NewIdx}; 1848 1849 Value *NewGEP = GEP.isInBounds() && NSW 1850 ? Builder->CreateInBoundsGEP( 1851 SrcElTy, StrippedPtr, Off, GEP.getName()) 1852 : Builder->CreateGEP(SrcElTy, StrippedPtr, Off, 1853 GEP.getName()); 1854 // The NewGEP must be pointer typed, so must the old one -> BitCast 1855 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1856 GEP.getType()); 1857 } 1858 } 1859 } 1860 } 1861 } 1862 1863 // addrspacecast between types is canonicalized as a bitcast, then an 1864 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 1865 // through the addrspacecast. 1866 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 1867 // X = bitcast A addrspace(1)* to B addrspace(1)* 1868 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 1869 // Z = gep Y, <...constant indices...> 1870 // Into an addrspacecasted GEP of the struct. 1871 if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 1872 PtrOp = BC; 1873 } 1874 1875 /// See if we can simplify: 1876 /// X = bitcast A* to B* 1877 /// Y = gep X, <...constant indices...> 1878 /// into a gep of the original struct. This is important for SROA and alias 1879 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 1880 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) { 1881 Value *Operand = BCI->getOperand(0); 1882 PointerType *OpType = cast<PointerType>(Operand->getType()); 1883 unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType()); 1884 APInt Offset(OffsetBits, 0); 1885 if (!isa<BitCastInst>(Operand) && 1886 GEP.accumulateConstantOffset(DL, Offset)) { 1887 1888 // If this GEP instruction doesn't move the pointer, just replace the GEP 1889 // with a bitcast of the real input to the dest type. 1890 if (!Offset) { 1891 // If the bitcast is of an allocation, and the allocation will be 1892 // converted to match the type of the cast, don't touch this. 1893 if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, &TLI)) { 1894 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 1895 if (Instruction *I = visitBitCast(*BCI)) { 1896 if (I != BCI) { 1897 I->takeName(BCI); 1898 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 1899 replaceInstUsesWith(*BCI, I); 1900 } 1901 return &GEP; 1902 } 1903 } 1904 1905 if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 1906 return new AddrSpaceCastInst(Operand, GEP.getType()); 1907 return new BitCastInst(Operand, GEP.getType()); 1908 } 1909 1910 // Otherwise, if the offset is non-zero, we need to find out if there is a 1911 // field at Offset in 'A's type. If so, we can pull the cast through the 1912 // GEP. 1913 SmallVector<Value*, 8> NewIndices; 1914 if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) { 1915 Value *NGEP = 1916 GEP.isInBounds() 1917 ? Builder->CreateInBoundsGEP(nullptr, Operand, NewIndices) 1918 : Builder->CreateGEP(nullptr, Operand, NewIndices); 1919 1920 if (NGEP->getType() == GEP.getType()) 1921 return replaceInstUsesWith(GEP, NGEP); 1922 NGEP->takeName(&GEP); 1923 1924 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 1925 return new AddrSpaceCastInst(NGEP, GEP.getType()); 1926 return new BitCastInst(NGEP, GEP.getType()); 1927 } 1928 } 1929 } 1930 1931 if (!GEP.isInBounds()) { 1932 unsigned PtrWidth = 1933 DL.getPointerSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 1934 APInt BasePtrOffset(PtrWidth, 0); 1935 Value *UnderlyingPtrOp = 1936 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 1937 BasePtrOffset); 1938 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 1939 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 1940 BasePtrOffset.isNonNegative()) { 1941 APInt AllocSize(PtrWidth, DL.getTypeAllocSize(AI->getAllocatedType())); 1942 if (BasePtrOffset.ule(AllocSize)) { 1943 return GetElementPtrInst::CreateInBounds( 1944 PtrOp, makeArrayRef(Ops).slice(1), GEP.getName()); 1945 } 1946 } 1947 } 1948 } 1949 1950 return nullptr; 1951 } 1952 1953 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 1954 Instruction *AI) { 1955 if (isa<ConstantPointerNull>(V)) 1956 return true; 1957 if (auto *LI = dyn_cast<LoadInst>(V)) 1958 return isa<GlobalVariable>(LI->getPointerOperand()); 1959 // Two distinct allocations will never be equal. 1960 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 1961 // through bitcasts of V can cause 1962 // the result statement below to be true, even when AI and V (ex: 1963 // i8* ->i32* ->i8* of AI) are the same allocations. 1964 return isAllocLikeFn(V, TLI) && V != AI; 1965 } 1966 1967 static bool 1968 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users, 1969 const TargetLibraryInfo *TLI) { 1970 SmallVector<Instruction*, 4> Worklist; 1971 Worklist.push_back(AI); 1972 1973 do { 1974 Instruction *PI = Worklist.pop_back_val(); 1975 for (User *U : PI->users()) { 1976 Instruction *I = cast<Instruction>(U); 1977 switch (I->getOpcode()) { 1978 default: 1979 // Give up the moment we see something we can't handle. 1980 return false; 1981 1982 case Instruction::BitCast: 1983 case Instruction::GetElementPtr: 1984 Users.emplace_back(I); 1985 Worklist.push_back(I); 1986 continue; 1987 1988 case Instruction::ICmp: { 1989 ICmpInst *ICI = cast<ICmpInst>(I); 1990 // We can fold eq/ne comparisons with null to false/true, respectively. 1991 // We also fold comparisons in some conditions provided the alloc has 1992 // not escaped (see isNeverEqualToUnescapedAlloc). 1993 if (!ICI->isEquality()) 1994 return false; 1995 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 1996 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 1997 return false; 1998 Users.emplace_back(I); 1999 continue; 2000 } 2001 2002 case Instruction::Call: 2003 // Ignore no-op and store intrinsics. 2004 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2005 switch (II->getIntrinsicID()) { 2006 default: 2007 return false; 2008 2009 case Intrinsic::memmove: 2010 case Intrinsic::memcpy: 2011 case Intrinsic::memset: { 2012 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2013 if (MI->isVolatile() || MI->getRawDest() != PI) 2014 return false; 2015 LLVM_FALLTHROUGH; 2016 } 2017 case Intrinsic::dbg_declare: 2018 case Intrinsic::dbg_value: 2019 case Intrinsic::invariant_start: 2020 case Intrinsic::invariant_end: 2021 case Intrinsic::lifetime_start: 2022 case Intrinsic::lifetime_end: 2023 case Intrinsic::objectsize: 2024 Users.emplace_back(I); 2025 continue; 2026 } 2027 } 2028 2029 if (isFreeCall(I, TLI)) { 2030 Users.emplace_back(I); 2031 continue; 2032 } 2033 return false; 2034 2035 case Instruction::Store: { 2036 StoreInst *SI = cast<StoreInst>(I); 2037 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2038 return false; 2039 Users.emplace_back(I); 2040 continue; 2041 } 2042 } 2043 llvm_unreachable("missing a return?"); 2044 } 2045 } while (!Worklist.empty()); 2046 return true; 2047 } 2048 2049 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 2050 // If we have a malloc call which is only used in any amount of comparisons 2051 // to null and free calls, delete the calls and replace the comparisons with 2052 // true or false as appropriate. 2053 SmallVector<WeakVH, 64> Users; 2054 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2055 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2056 // Lowering all @llvm.objectsize calls first because they may 2057 // use a bitcast/GEP of the alloca we are removing. 2058 if (!Users[i]) 2059 continue; 2060 2061 Instruction *I = cast<Instruction>(&*Users[i]); 2062 2063 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2064 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2065 ConstantInt *Result = lowerObjectSizeCall(II, DL, &TLI, 2066 /*MustSucceed=*/true); 2067 replaceInstUsesWith(*I, Result); 2068 eraseInstFromFunction(*I); 2069 Users[i] = nullptr; // Skip examining in the next loop. 2070 } 2071 } 2072 } 2073 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2074 if (!Users[i]) 2075 continue; 2076 2077 Instruction *I = cast<Instruction>(&*Users[i]); 2078 2079 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2080 replaceInstUsesWith(*C, 2081 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2082 C->isFalseWhenEqual())); 2083 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) { 2084 replaceInstUsesWith(*I, UndefValue::get(I->getType())); 2085 } 2086 eraseInstFromFunction(*I); 2087 } 2088 2089 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2090 // Replace invoke with a NOP intrinsic to maintain the original CFG 2091 Module *M = II->getModule(); 2092 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2093 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2094 None, "", II->getParent()); 2095 } 2096 return eraseInstFromFunction(MI); 2097 } 2098 return nullptr; 2099 } 2100 2101 /// \brief Move the call to free before a NULL test. 2102 /// 2103 /// Check if this free is accessed after its argument has been test 2104 /// against NULL (property 0). 2105 /// If yes, it is legal to move this call in its predecessor block. 2106 /// 2107 /// The move is performed only if the block containing the call to free 2108 /// will be removed, i.e.: 2109 /// 1. it has only one predecessor P, and P has two successors 2110 /// 2. it contains the call and an unconditional branch 2111 /// 3. its successor is the same as its predecessor's successor 2112 /// 2113 /// The profitability is out-of concern here and this function should 2114 /// be called only if the caller knows this transformation would be 2115 /// profitable (e.g., for code size). 2116 static Instruction * 2117 tryToMoveFreeBeforeNullTest(CallInst &FI) { 2118 Value *Op = FI.getArgOperand(0); 2119 BasicBlock *FreeInstrBB = FI.getParent(); 2120 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2121 2122 // Validate part of constraint #1: Only one predecessor 2123 // FIXME: We can extend the number of predecessor, but in that case, we 2124 // would duplicate the call to free in each predecessor and it may 2125 // not be profitable even for code size. 2126 if (!PredBB) 2127 return nullptr; 2128 2129 // Validate constraint #2: Does this block contains only the call to 2130 // free and an unconditional branch? 2131 // FIXME: We could check if we can speculate everything in the 2132 // predecessor block 2133 if (FreeInstrBB->size() != 2) 2134 return nullptr; 2135 BasicBlock *SuccBB; 2136 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB))) 2137 return nullptr; 2138 2139 // Validate the rest of constraint #1 by matching on the pred branch. 2140 TerminatorInst *TI = PredBB->getTerminator(); 2141 BasicBlock *TrueBB, *FalseBB; 2142 ICmpInst::Predicate Pred; 2143 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB))) 2144 return nullptr; 2145 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2146 return nullptr; 2147 2148 // Validate constraint #3: Ensure the null case just falls through. 2149 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2150 return nullptr; 2151 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2152 "Broken CFG: missing edge from predecessor to successor"); 2153 2154 FI.moveBefore(TI); 2155 return &FI; 2156 } 2157 2158 2159 Instruction *InstCombiner::visitFree(CallInst &FI) { 2160 Value *Op = FI.getArgOperand(0); 2161 2162 // free undef -> unreachable. 2163 if (isa<UndefValue>(Op)) { 2164 // Insert a new store to null because we cannot modify the CFG here. 2165 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()), 2166 UndefValue::get(Type::getInt1PtrTy(FI.getContext()))); 2167 return eraseInstFromFunction(FI); 2168 } 2169 2170 // If we have 'free null' delete the instruction. This can happen in stl code 2171 // when lots of inlining happens. 2172 if (isa<ConstantPointerNull>(Op)) 2173 return eraseInstFromFunction(FI); 2174 2175 // If we optimize for code size, try to move the call to free before the null 2176 // test so that simplify cfg can remove the empty block and dead code 2177 // elimination the branch. I.e., helps to turn something like: 2178 // if (foo) free(foo); 2179 // into 2180 // free(foo); 2181 if (MinimizeSize) 2182 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI)) 2183 return I; 2184 2185 return nullptr; 2186 } 2187 2188 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { 2189 if (RI.getNumOperands() == 0) // ret void 2190 return nullptr; 2191 2192 Value *ResultOp = RI.getOperand(0); 2193 Type *VTy = ResultOp->getType(); 2194 if (!VTy->isIntegerTy()) 2195 return nullptr; 2196 2197 // There might be assume intrinsics dominating this return that completely 2198 // determine the value. If so, constant fold it. 2199 unsigned BitWidth = VTy->getPrimitiveSizeInBits(); 2200 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 2201 computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI); 2202 if ((KnownZero|KnownOne).isAllOnesValue()) 2203 RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne)); 2204 2205 return nullptr; 2206 } 2207 2208 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 2209 // Change br (not X), label True, label False to: br X, label False, True 2210 Value *X = nullptr; 2211 BasicBlock *TrueDest; 2212 BasicBlock *FalseDest; 2213 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && 2214 !isa<Constant>(X)) { 2215 // Swap Destinations and condition... 2216 BI.setCondition(X); 2217 BI.swapSuccessors(); 2218 return &BI; 2219 } 2220 2221 // If the condition is irrelevant, remove the use so that other 2222 // transforms on the condition become more effective. 2223 if (BI.isConditional() && 2224 BI.getSuccessor(0) == BI.getSuccessor(1) && 2225 !isa<UndefValue>(BI.getCondition())) { 2226 BI.setCondition(UndefValue::get(BI.getCondition()->getType())); 2227 return &BI; 2228 } 2229 2230 // Canonicalize fcmp_one -> fcmp_oeq 2231 FCmpInst::Predicate FPred; Value *Y; 2232 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), 2233 TrueDest, FalseDest)) && 2234 BI.getCondition()->hasOneUse()) 2235 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE || 2236 FPred == FCmpInst::FCMP_OGE) { 2237 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition()); 2238 Cond->setPredicate(FCmpInst::getInversePredicate(FPred)); 2239 2240 // Swap Destinations and condition. 2241 BI.swapSuccessors(); 2242 Worklist.Add(Cond); 2243 return &BI; 2244 } 2245 2246 // Canonicalize icmp_ne -> icmp_eq 2247 ICmpInst::Predicate IPred; 2248 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)), 2249 TrueDest, FalseDest)) && 2250 BI.getCondition()->hasOneUse()) 2251 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE || 2252 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE || 2253 IPred == ICmpInst::ICMP_SGE) { 2254 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition()); 2255 Cond->setPredicate(ICmpInst::getInversePredicate(IPred)); 2256 // Swap Destinations and condition. 2257 BI.swapSuccessors(); 2258 Worklist.Add(Cond); 2259 return &BI; 2260 } 2261 2262 return nullptr; 2263 } 2264 2265 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 2266 Value *Cond = SI.getCondition(); 2267 Value *Op0; 2268 ConstantInt *AddRHS; 2269 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 2270 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2271 for (auto Case : SI.cases()) { 2272 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 2273 assert(isa<ConstantInt>(NewCase) && 2274 "Result of expression should be constant"); 2275 Case.setValue(cast<ConstantInt>(NewCase)); 2276 } 2277 SI.setCondition(Op0); 2278 return &SI; 2279 } 2280 2281 unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth(); 2282 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 2283 computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI); 2284 unsigned LeadingKnownZeros = KnownZero.countLeadingOnes(); 2285 unsigned LeadingKnownOnes = KnownOne.countLeadingOnes(); 2286 2287 // Compute the number of leading bits we can ignore. 2288 // TODO: A better way to determine this would use ComputeNumSignBits(). 2289 for (auto &C : SI.cases()) { 2290 LeadingKnownZeros = std::min( 2291 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2292 LeadingKnownOnes = std::min( 2293 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2294 } 2295 2296 unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes); 2297 2298 // Shrink the condition operand if the new type is smaller than the old type. 2299 // This may produce a non-standard type for the switch, but that's ok because 2300 // the backend should extend back to a legal type for the target. 2301 if (NewWidth > 0 && NewWidth < BitWidth) { 2302 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2303 Builder->SetInsertPoint(&SI); 2304 Value *NewCond = Builder->CreateTrunc(Cond, Ty, "trunc"); 2305 SI.setCondition(NewCond); 2306 2307 for (auto Case : SI.cases()) { 2308 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 2309 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 2310 } 2311 return &SI; 2312 } 2313 2314 return nullptr; 2315 } 2316 2317 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 2318 Value *Agg = EV.getAggregateOperand(); 2319 2320 if (!EV.hasIndices()) 2321 return replaceInstUsesWith(EV, Agg); 2322 2323 if (Value *V = 2324 SimplifyExtractValueInst(Agg, EV.getIndices(), DL, &TLI, &DT, &AC)) 2325 return replaceInstUsesWith(EV, V); 2326 2327 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 2328 // We're extracting from an insertvalue instruction, compare the indices 2329 const unsigned *exti, *exte, *insi, *inse; 2330 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 2331 exte = EV.idx_end(), inse = IV->idx_end(); 2332 exti != exte && insi != inse; 2333 ++exti, ++insi) { 2334 if (*insi != *exti) 2335 // The insert and extract both reference distinctly different elements. 2336 // This means the extract is not influenced by the insert, and we can 2337 // replace the aggregate operand of the extract with the aggregate 2338 // operand of the insert. i.e., replace 2339 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2340 // %E = extractvalue { i32, { i32 } } %I, 0 2341 // with 2342 // %E = extractvalue { i32, { i32 } } %A, 0 2343 return ExtractValueInst::Create(IV->getAggregateOperand(), 2344 EV.getIndices()); 2345 } 2346 if (exti == exte && insi == inse) 2347 // Both iterators are at the end: Index lists are identical. Replace 2348 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2349 // %C = extractvalue { i32, { i32 } } %B, 1, 0 2350 // with "i32 42" 2351 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 2352 if (exti == exte) { 2353 // The extract list is a prefix of the insert list. i.e. replace 2354 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2355 // %E = extractvalue { i32, { i32 } } %I, 1 2356 // with 2357 // %X = extractvalue { i32, { i32 } } %A, 1 2358 // %E = insertvalue { i32 } %X, i32 42, 0 2359 // by switching the order of the insert and extract (though the 2360 // insertvalue should be left in, since it may have other uses). 2361 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(), 2362 EV.getIndices()); 2363 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 2364 makeArrayRef(insi, inse)); 2365 } 2366 if (insi == inse) 2367 // The insert list is a prefix of the extract list 2368 // We can simply remove the common indices from the extract and make it 2369 // operate on the inserted value instead of the insertvalue result. 2370 // i.e., replace 2371 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2372 // %E = extractvalue { i32, { i32 } } %I, 1, 0 2373 // with 2374 // %E extractvalue { i32 } { i32 42 }, 0 2375 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 2376 makeArrayRef(exti, exte)); 2377 } 2378 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { 2379 // We're extracting from an intrinsic, see if we're the only user, which 2380 // allows us to simplify multiple result intrinsics to simpler things that 2381 // just get one value. 2382 if (II->hasOneUse()) { 2383 // Check if we're grabbing the overflow bit or the result of a 'with 2384 // overflow' intrinsic. If it's the latter we can remove the intrinsic 2385 // and replace it with a traditional binary instruction. 2386 switch (II->getIntrinsicID()) { 2387 case Intrinsic::uadd_with_overflow: 2388 case Intrinsic::sadd_with_overflow: 2389 if (*EV.idx_begin() == 0) { // Normal result. 2390 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2391 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2392 eraseInstFromFunction(*II); 2393 return BinaryOperator::CreateAdd(LHS, RHS); 2394 } 2395 2396 // If the normal result of the add is dead, and the RHS is a constant, 2397 // we can transform this into a range comparison. 2398 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 2399 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) 2400 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1))) 2401 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0), 2402 ConstantExpr::getNot(CI)); 2403 break; 2404 case Intrinsic::usub_with_overflow: 2405 case Intrinsic::ssub_with_overflow: 2406 if (*EV.idx_begin() == 0) { // Normal result. 2407 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2408 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2409 eraseInstFromFunction(*II); 2410 return BinaryOperator::CreateSub(LHS, RHS); 2411 } 2412 break; 2413 case Intrinsic::umul_with_overflow: 2414 case Intrinsic::smul_with_overflow: 2415 if (*EV.idx_begin() == 0) { // Normal result. 2416 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2417 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2418 eraseInstFromFunction(*II); 2419 return BinaryOperator::CreateMul(LHS, RHS); 2420 } 2421 break; 2422 default: 2423 break; 2424 } 2425 } 2426 } 2427 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2428 // If the (non-volatile) load only has one use, we can rewrite this to a 2429 // load from a GEP. This reduces the size of the load. If a load is used 2430 // only by extractvalue instructions then this either must have been 2431 // optimized before, or it is a struct with padding, in which case we 2432 // don't want to do the transformation as it loses padding knowledge. 2433 if (L->isSimple() && L->hasOneUse()) { 2434 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2435 SmallVector<Value*, 4> Indices; 2436 // Prefix an i32 0 since we need the first element. 2437 Indices.push_back(Builder->getInt32(0)); 2438 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2439 I != E; ++I) 2440 Indices.push_back(Builder->getInt32(*I)); 2441 2442 // We need to insert these at the location of the old load, not at that of 2443 // the extractvalue. 2444 Builder->SetInsertPoint(L); 2445 Value *GEP = Builder->CreateInBoundsGEP(L->getType(), 2446 L->getPointerOperand(), Indices); 2447 // Returning the load directly will cause the main loop to insert it in 2448 // the wrong spot, so use replaceInstUsesWith(). 2449 return replaceInstUsesWith(EV, Builder->CreateLoad(GEP)); 2450 } 2451 // We could simplify extracts from other values. Note that nested extracts may 2452 // already be simplified implicitly by the above: extract (extract (insert) ) 2453 // will be translated into extract ( insert ( extract ) ) first and then just 2454 // the value inserted, if appropriate. Similarly for extracts from single-use 2455 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2456 // and if again single-use then via load (gep (gep)) to load (gep). 2457 // However, double extracts from e.g. function arguments or return values 2458 // aren't handled yet. 2459 return nullptr; 2460 } 2461 2462 /// Return 'true' if the given typeinfo will match anything. 2463 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 2464 switch (Personality) { 2465 case EHPersonality::GNU_C: 2466 case EHPersonality::GNU_C_SjLj: 2467 case EHPersonality::Rust: 2468 // The GCC C EH and Rust personality only exists to support cleanups, so 2469 // it's not clear what the semantics of catch clauses are. 2470 return false; 2471 case EHPersonality::Unknown: 2472 return false; 2473 case EHPersonality::GNU_Ada: 2474 // While __gnat_all_others_value will match any Ada exception, it doesn't 2475 // match foreign exceptions (or didn't, before gcc-4.7). 2476 return false; 2477 case EHPersonality::GNU_CXX: 2478 case EHPersonality::GNU_CXX_SjLj: 2479 case EHPersonality::GNU_ObjC: 2480 case EHPersonality::MSVC_X86SEH: 2481 case EHPersonality::MSVC_Win64SEH: 2482 case EHPersonality::MSVC_CXX: 2483 case EHPersonality::CoreCLR: 2484 return TypeInfo->isNullValue(); 2485 } 2486 llvm_unreachable("invalid enum"); 2487 } 2488 2489 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2490 return 2491 cast<ArrayType>(LHS->getType())->getNumElements() 2492 < 2493 cast<ArrayType>(RHS->getType())->getNumElements(); 2494 } 2495 2496 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2497 // The logic here should be correct for any real-world personality function. 2498 // However if that turns out not to be true, the offending logic can always 2499 // be conditioned on the personality function, like the catch-all logic is. 2500 EHPersonality Personality = 2501 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 2502 2503 // Simplify the list of clauses, eg by removing repeated catch clauses 2504 // (these are often created by inlining). 2505 bool MakeNewInstruction = false; // If true, recreate using the following: 2506 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2507 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2508 2509 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 2510 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 2511 bool isLastClause = i + 1 == e; 2512 if (LI.isCatch(i)) { 2513 // A catch clause. 2514 Constant *CatchClause = LI.getClause(i); 2515 Constant *TypeInfo = CatchClause->stripPointerCasts(); 2516 2517 // If we already saw this clause, there is no point in having a second 2518 // copy of it. 2519 if (AlreadyCaught.insert(TypeInfo).second) { 2520 // This catch clause was not already seen. 2521 NewClauses.push_back(CatchClause); 2522 } else { 2523 // Repeated catch clause - drop the redundant copy. 2524 MakeNewInstruction = true; 2525 } 2526 2527 // If this is a catch-all then there is no point in keeping any following 2528 // clauses or marking the landingpad as having a cleanup. 2529 if (isCatchAll(Personality, TypeInfo)) { 2530 if (!isLastClause) 2531 MakeNewInstruction = true; 2532 CleanupFlag = false; 2533 break; 2534 } 2535 } else { 2536 // A filter clause. If any of the filter elements were already caught 2537 // then they can be dropped from the filter. It is tempting to try to 2538 // exploit the filter further by saying that any typeinfo that does not 2539 // occur in the filter can't be caught later (and thus can be dropped). 2540 // However this would be wrong, since typeinfos can match without being 2541 // equal (for example if one represents a C++ class, and the other some 2542 // class derived from it). 2543 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 2544 Constant *FilterClause = LI.getClause(i); 2545 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 2546 unsigned NumTypeInfos = FilterType->getNumElements(); 2547 2548 // An empty filter catches everything, so there is no point in keeping any 2549 // following clauses or marking the landingpad as having a cleanup. By 2550 // dealing with this case here the following code is made a bit simpler. 2551 if (!NumTypeInfos) { 2552 NewClauses.push_back(FilterClause); 2553 if (!isLastClause) 2554 MakeNewInstruction = true; 2555 CleanupFlag = false; 2556 break; 2557 } 2558 2559 bool MakeNewFilter = false; // If true, make a new filter. 2560 SmallVector<Constant *, 16> NewFilterElts; // New elements. 2561 if (isa<ConstantAggregateZero>(FilterClause)) { 2562 // Not an empty filter - it contains at least one null typeinfo. 2563 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 2564 Constant *TypeInfo = 2565 Constant::getNullValue(FilterType->getElementType()); 2566 // If this typeinfo is a catch-all then the filter can never match. 2567 if (isCatchAll(Personality, TypeInfo)) { 2568 // Throw the filter away. 2569 MakeNewInstruction = true; 2570 continue; 2571 } 2572 2573 // There is no point in having multiple copies of this typeinfo, so 2574 // discard all but the first copy if there is more than one. 2575 NewFilterElts.push_back(TypeInfo); 2576 if (NumTypeInfos > 1) 2577 MakeNewFilter = true; 2578 } else { 2579 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 2580 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 2581 NewFilterElts.reserve(NumTypeInfos); 2582 2583 // Remove any filter elements that were already caught or that already 2584 // occurred in the filter. While there, see if any of the elements are 2585 // catch-alls. If so, the filter can be discarded. 2586 bool SawCatchAll = false; 2587 for (unsigned j = 0; j != NumTypeInfos; ++j) { 2588 Constant *Elt = Filter->getOperand(j); 2589 Constant *TypeInfo = Elt->stripPointerCasts(); 2590 if (isCatchAll(Personality, TypeInfo)) { 2591 // This element is a catch-all. Bail out, noting this fact. 2592 SawCatchAll = true; 2593 break; 2594 } 2595 2596 // Even if we've seen a type in a catch clause, we don't want to 2597 // remove it from the filter. An unexpected type handler may be 2598 // set up for a call site which throws an exception of the same 2599 // type caught. In order for the exception thrown by the unexpected 2600 // handler to propagate correctly, the filter must be correctly 2601 // described for the call site. 2602 // 2603 // Example: 2604 // 2605 // void unexpected() { throw 1;} 2606 // void foo() throw (int) { 2607 // std::set_unexpected(unexpected); 2608 // try { 2609 // throw 2.0; 2610 // } catch (int i) {} 2611 // } 2612 2613 // There is no point in having multiple copies of the same typeinfo in 2614 // a filter, so only add it if we didn't already. 2615 if (SeenInFilter.insert(TypeInfo).second) 2616 NewFilterElts.push_back(cast<Constant>(Elt)); 2617 } 2618 // A filter containing a catch-all cannot match anything by definition. 2619 if (SawCatchAll) { 2620 // Throw the filter away. 2621 MakeNewInstruction = true; 2622 continue; 2623 } 2624 2625 // If we dropped something from the filter, make a new one. 2626 if (NewFilterElts.size() < NumTypeInfos) 2627 MakeNewFilter = true; 2628 } 2629 if (MakeNewFilter) { 2630 FilterType = ArrayType::get(FilterType->getElementType(), 2631 NewFilterElts.size()); 2632 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 2633 MakeNewInstruction = true; 2634 } 2635 2636 NewClauses.push_back(FilterClause); 2637 2638 // If the new filter is empty then it will catch everything so there is 2639 // no point in keeping any following clauses or marking the landingpad 2640 // as having a cleanup. The case of the original filter being empty was 2641 // already handled above. 2642 if (MakeNewFilter && !NewFilterElts.size()) { 2643 assert(MakeNewInstruction && "New filter but not a new instruction!"); 2644 CleanupFlag = false; 2645 break; 2646 } 2647 } 2648 } 2649 2650 // If several filters occur in a row then reorder them so that the shortest 2651 // filters come first (those with the smallest number of elements). This is 2652 // advantageous because shorter filters are more likely to match, speeding up 2653 // unwinding, but mostly because it increases the effectiveness of the other 2654 // filter optimizations below. 2655 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 2656 unsigned j; 2657 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 2658 for (j = i; j != e; ++j) 2659 if (!isa<ArrayType>(NewClauses[j]->getType())) 2660 break; 2661 2662 // Check whether the filters are already sorted by length. We need to know 2663 // if sorting them is actually going to do anything so that we only make a 2664 // new landingpad instruction if it does. 2665 for (unsigned k = i; k + 1 < j; ++k) 2666 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 2667 // Not sorted, so sort the filters now. Doing an unstable sort would be 2668 // correct too but reordering filters pointlessly might confuse users. 2669 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 2670 shorter_filter); 2671 MakeNewInstruction = true; 2672 break; 2673 } 2674 2675 // Look for the next batch of filters. 2676 i = j + 1; 2677 } 2678 2679 // If typeinfos matched if and only if equal, then the elements of a filter L 2680 // that occurs later than a filter F could be replaced by the intersection of 2681 // the elements of F and L. In reality two typeinfos can match without being 2682 // equal (for example if one represents a C++ class, and the other some class 2683 // derived from it) so it would be wrong to perform this transform in general. 2684 // However the transform is correct and useful if F is a subset of L. In that 2685 // case L can be replaced by F, and thus removed altogether since repeating a 2686 // filter is pointless. So here we look at all pairs of filters F and L where 2687 // L follows F in the list of clauses, and remove L if every element of F is 2688 // an element of L. This can occur when inlining C++ functions with exception 2689 // specifications. 2690 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 2691 // Examine each filter in turn. 2692 Value *Filter = NewClauses[i]; 2693 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 2694 if (!FTy) 2695 // Not a filter - skip it. 2696 continue; 2697 unsigned FElts = FTy->getNumElements(); 2698 // Examine each filter following this one. Doing this backwards means that 2699 // we don't have to worry about filters disappearing under us when removed. 2700 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 2701 Value *LFilter = NewClauses[j]; 2702 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 2703 if (!LTy) 2704 // Not a filter - skip it. 2705 continue; 2706 // If Filter is a subset of LFilter, i.e. every element of Filter is also 2707 // an element of LFilter, then discard LFilter. 2708 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 2709 // If Filter is empty then it is a subset of LFilter. 2710 if (!FElts) { 2711 // Discard LFilter. 2712 NewClauses.erase(J); 2713 MakeNewInstruction = true; 2714 // Move on to the next filter. 2715 continue; 2716 } 2717 unsigned LElts = LTy->getNumElements(); 2718 // If Filter is longer than LFilter then it cannot be a subset of it. 2719 if (FElts > LElts) 2720 // Move on to the next filter. 2721 continue; 2722 // At this point we know that LFilter has at least one element. 2723 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 2724 // Filter is a subset of LFilter iff Filter contains only zeros (as we 2725 // already know that Filter is not longer than LFilter). 2726 if (isa<ConstantAggregateZero>(Filter)) { 2727 assert(FElts <= LElts && "Should have handled this case earlier!"); 2728 // Discard LFilter. 2729 NewClauses.erase(J); 2730 MakeNewInstruction = true; 2731 } 2732 // Move on to the next filter. 2733 continue; 2734 } 2735 ConstantArray *LArray = cast<ConstantArray>(LFilter); 2736 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 2737 // Since Filter is non-empty and contains only zeros, it is a subset of 2738 // LFilter iff LFilter contains a zero. 2739 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 2740 for (unsigned l = 0; l != LElts; ++l) 2741 if (LArray->getOperand(l)->isNullValue()) { 2742 // LFilter contains a zero - discard it. 2743 NewClauses.erase(J); 2744 MakeNewInstruction = true; 2745 break; 2746 } 2747 // Move on to the next filter. 2748 continue; 2749 } 2750 // At this point we know that both filters are ConstantArrays. Loop over 2751 // operands to see whether every element of Filter is also an element of 2752 // LFilter. Since filters tend to be short this is probably faster than 2753 // using a method that scales nicely. 2754 ConstantArray *FArray = cast<ConstantArray>(Filter); 2755 bool AllFound = true; 2756 for (unsigned f = 0; f != FElts; ++f) { 2757 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 2758 AllFound = false; 2759 for (unsigned l = 0; l != LElts; ++l) { 2760 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 2761 if (LTypeInfo == FTypeInfo) { 2762 AllFound = true; 2763 break; 2764 } 2765 } 2766 if (!AllFound) 2767 break; 2768 } 2769 if (AllFound) { 2770 // Discard LFilter. 2771 NewClauses.erase(J); 2772 MakeNewInstruction = true; 2773 } 2774 // Move on to the next filter. 2775 } 2776 } 2777 2778 // If we changed any of the clauses, replace the old landingpad instruction 2779 // with a new one. 2780 if (MakeNewInstruction) { 2781 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 2782 NewClauses.size()); 2783 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 2784 NLI->addClause(NewClauses[i]); 2785 // A landing pad with no clauses must have the cleanup flag set. It is 2786 // theoretically possible, though highly unlikely, that we eliminated all 2787 // clauses. If so, force the cleanup flag to true. 2788 if (NewClauses.empty()) 2789 CleanupFlag = true; 2790 NLI->setCleanup(CleanupFlag); 2791 return NLI; 2792 } 2793 2794 // Even if none of the clauses changed, we may nonetheless have understood 2795 // that the cleanup flag is pointless. Clear it if so. 2796 if (LI.isCleanup() != CleanupFlag) { 2797 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 2798 LI.setCleanup(CleanupFlag); 2799 return &LI; 2800 } 2801 2802 return nullptr; 2803 } 2804 2805 /// Try to move the specified instruction from its current block into the 2806 /// beginning of DestBlock, which can only happen if it's safe to move the 2807 /// instruction past all of the instructions between it and the end of its 2808 /// block. 2809 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 2810 assert(I->hasOneUse() && "Invariants didn't hold!"); 2811 2812 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 2813 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 2814 isa<TerminatorInst>(I)) 2815 return false; 2816 2817 // Do not sink alloca instructions out of the entry block. 2818 if (isa<AllocaInst>(I) && I->getParent() == 2819 &DestBlock->getParent()->getEntryBlock()) 2820 return false; 2821 2822 // Do not sink into catchswitch blocks. 2823 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 2824 return false; 2825 2826 // Do not sink convergent call instructions. 2827 if (auto *CI = dyn_cast<CallInst>(I)) { 2828 if (CI->isConvergent()) 2829 return false; 2830 } 2831 // We can only sink load instructions if there is nothing between the load and 2832 // the end of block that could change the value. 2833 if (I->mayReadFromMemory()) { 2834 for (BasicBlock::iterator Scan = I->getIterator(), 2835 E = I->getParent()->end(); 2836 Scan != E; ++Scan) 2837 if (Scan->mayWriteToMemory()) 2838 return false; 2839 } 2840 2841 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 2842 I->moveBefore(&*InsertPos); 2843 ++NumSunkInst; 2844 return true; 2845 } 2846 2847 bool InstCombiner::run() { 2848 while (!Worklist.isEmpty()) { 2849 Instruction *I = Worklist.RemoveOne(); 2850 if (I == nullptr) continue; // skip null values. 2851 2852 // Check to see if we can DCE the instruction. 2853 if (isInstructionTriviallyDead(I, &TLI)) { 2854 DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); 2855 eraseInstFromFunction(*I); 2856 ++NumDeadInst; 2857 MadeIRChange = true; 2858 continue; 2859 } 2860 2861 // Instruction isn't dead, see if we can constant propagate it. 2862 if (!I->use_empty() && 2863 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 2864 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 2865 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n'); 2866 2867 // Add operands to the worklist. 2868 replaceInstUsesWith(*I, C); 2869 ++NumConstProp; 2870 if (isInstructionTriviallyDead(I, &TLI)) 2871 eraseInstFromFunction(*I); 2872 MadeIRChange = true; 2873 continue; 2874 } 2875 } 2876 2877 // In general, it is possible for computeKnownBits to determine all bits in 2878 // a value even when the operands are not all constants. 2879 Type *Ty = I->getType(); 2880 if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) { 2881 unsigned BitWidth = Ty->getScalarSizeInBits(); 2882 APInt KnownZero(BitWidth, 0); 2883 APInt KnownOne(BitWidth, 0); 2884 computeKnownBits(I, KnownZero, KnownOne, /*Depth*/0, I); 2885 if ((KnownZero | KnownOne).isAllOnesValue()) { 2886 Constant *C = ConstantInt::get(Ty, KnownOne); 2887 DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C << 2888 " from: " << *I << '\n'); 2889 2890 // Add operands to the worklist. 2891 replaceInstUsesWith(*I, C); 2892 ++NumConstProp; 2893 if (isInstructionTriviallyDead(I, &TLI)) 2894 eraseInstFromFunction(*I); 2895 MadeIRChange = true; 2896 continue; 2897 } 2898 } 2899 2900 // See if we can trivially sink this instruction to a successor basic block. 2901 if (I->hasOneUse()) { 2902 BasicBlock *BB = I->getParent(); 2903 Instruction *UserInst = cast<Instruction>(*I->user_begin()); 2904 BasicBlock *UserParent; 2905 2906 // Get the block the use occurs in. 2907 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 2908 UserParent = PN->getIncomingBlock(*I->use_begin()); 2909 else 2910 UserParent = UserInst->getParent(); 2911 2912 if (UserParent != BB) { 2913 bool UserIsSuccessor = false; 2914 // See if the user is one of our successors. 2915 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 2916 if (*SI == UserParent) { 2917 UserIsSuccessor = true; 2918 break; 2919 } 2920 2921 // If the user is one of our immediate successors, and if that successor 2922 // only has us as a predecessors (we'd have to split the critical edge 2923 // otherwise), we can keep going. 2924 if (UserIsSuccessor && UserParent->getUniquePredecessor()) { 2925 // Okay, the CFG is simple enough, try to sink this instruction. 2926 if (TryToSinkInstruction(I, UserParent)) { 2927 DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 2928 MadeIRChange = true; 2929 // We'll add uses of the sunk instruction below, but since sinking 2930 // can expose opportunities for it's *operands* add them to the 2931 // worklist 2932 for (Use &U : I->operands()) 2933 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 2934 Worklist.Add(OpI); 2935 } 2936 } 2937 } 2938 } 2939 2940 // Now that we have an instruction, try combining it to simplify it. 2941 Builder->SetInsertPoint(I); 2942 Builder->SetCurrentDebugLocation(I->getDebugLoc()); 2943 2944 #ifndef NDEBUG 2945 std::string OrigI; 2946 #endif 2947 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 2948 DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 2949 2950 if (Instruction *Result = visit(*I)) { 2951 ++NumCombined; 2952 // Should we replace the old instruction with a new one? 2953 if (Result != I) { 2954 DEBUG(dbgs() << "IC: Old = " << *I << '\n' 2955 << " New = " << *Result << '\n'); 2956 2957 if (I->getDebugLoc()) 2958 Result->setDebugLoc(I->getDebugLoc()); 2959 // Everything uses the new instruction now. 2960 I->replaceAllUsesWith(Result); 2961 2962 // Move the name to the new instruction first. 2963 Result->takeName(I); 2964 2965 // Push the new instruction and any users onto the worklist. 2966 Worklist.AddUsersToWorkList(*Result); 2967 Worklist.Add(Result); 2968 2969 // Insert the new instruction into the basic block... 2970 BasicBlock *InstParent = I->getParent(); 2971 BasicBlock::iterator InsertPos = I->getIterator(); 2972 2973 // If we replace a PHI with something that isn't a PHI, fix up the 2974 // insertion point. 2975 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 2976 InsertPos = InstParent->getFirstInsertionPt(); 2977 2978 InstParent->getInstList().insert(InsertPos, Result); 2979 2980 eraseInstFromFunction(*I); 2981 } else { 2982 DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 2983 << " New = " << *I << '\n'); 2984 2985 // If the instruction was modified, it's possible that it is now dead. 2986 // if so, remove it. 2987 if (isInstructionTriviallyDead(I, &TLI)) { 2988 eraseInstFromFunction(*I); 2989 } else { 2990 Worklist.AddUsersToWorkList(*I); 2991 Worklist.Add(I); 2992 } 2993 } 2994 MadeIRChange = true; 2995 } 2996 } 2997 2998 Worklist.Zap(); 2999 return MadeIRChange; 3000 } 3001 3002 /// Walk the function in depth-first order, adding all reachable code to the 3003 /// worklist. 3004 /// 3005 /// This has a couple of tricks to make the code faster and more powerful. In 3006 /// particular, we constant fold and DCE instructions as we go, to avoid adding 3007 /// them to the worklist (this significantly speeds up instcombine on code where 3008 /// many instructions are dead or constant). Additionally, if we find a branch 3009 /// whose condition is a known constant, we only visit the reachable successors. 3010 /// 3011 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, 3012 SmallPtrSetImpl<BasicBlock *> &Visited, 3013 InstCombineWorklist &ICWorklist, 3014 const TargetLibraryInfo *TLI) { 3015 bool MadeIRChange = false; 3016 SmallVector<BasicBlock*, 256> Worklist; 3017 Worklist.push_back(BB); 3018 3019 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 3020 DenseMap<Constant *, Constant *> FoldedConstants; 3021 3022 do { 3023 BB = Worklist.pop_back_val(); 3024 3025 // We have now visited this block! If we've already been here, ignore it. 3026 if (!Visited.insert(BB).second) 3027 continue; 3028 3029 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 3030 Instruction *Inst = &*BBI++; 3031 3032 // DCE instruction if trivially dead. 3033 if (isInstructionTriviallyDead(Inst, TLI)) { 3034 ++NumDeadInst; 3035 DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 3036 Inst->eraseFromParent(); 3037 continue; 3038 } 3039 3040 // ConstantProp instruction if trivially constant. 3041 if (!Inst->use_empty() && 3042 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 3043 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 3044 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " 3045 << *Inst << '\n'); 3046 Inst->replaceAllUsesWith(C); 3047 ++NumConstProp; 3048 if (isInstructionTriviallyDead(Inst, TLI)) 3049 Inst->eraseFromParent(); 3050 continue; 3051 } 3052 3053 // See if we can constant fold its operands. 3054 for (Use &U : Inst->operands()) { 3055 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 3056 continue; 3057 3058 auto *C = cast<Constant>(U); 3059 Constant *&FoldRes = FoldedConstants[C]; 3060 if (!FoldRes) 3061 FoldRes = ConstantFoldConstant(C, DL, TLI); 3062 if (!FoldRes) 3063 FoldRes = C; 3064 3065 if (FoldRes != C) { 3066 DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst 3067 << "\n Old = " << *C 3068 << "\n New = " << *FoldRes << '\n'); 3069 U = FoldRes; 3070 MadeIRChange = true; 3071 } 3072 } 3073 3074 InstrsForInstCombineWorklist.push_back(Inst); 3075 } 3076 3077 // Recursively visit successors. If this is a branch or switch on a 3078 // constant, only visit the reachable successor. 3079 TerminatorInst *TI = BB->getTerminator(); 3080 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3081 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 3082 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 3083 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 3084 Worklist.push_back(ReachableBB); 3085 continue; 3086 } 3087 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3088 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 3089 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 3090 continue; 3091 } 3092 } 3093 3094 for (BasicBlock *SuccBB : TI->successors()) 3095 Worklist.push_back(SuccBB); 3096 } while (!Worklist.empty()); 3097 3098 // Once we've found all of the instructions to add to instcombine's worklist, 3099 // add them in reverse order. This way instcombine will visit from the top 3100 // of the function down. This jives well with the way that it adds all uses 3101 // of instructions to the worklist after doing a transformation, thus avoiding 3102 // some N^2 behavior in pathological cases. 3103 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist); 3104 3105 return MadeIRChange; 3106 } 3107 3108 /// \brief Populate the IC worklist from a function, and prune any dead basic 3109 /// blocks discovered in the process. 3110 /// 3111 /// This also does basic constant propagation and other forward fixing to make 3112 /// the combiner itself run much faster. 3113 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 3114 TargetLibraryInfo *TLI, 3115 InstCombineWorklist &ICWorklist) { 3116 bool MadeIRChange = false; 3117 3118 // Do a depth-first traversal of the function, populate the worklist with 3119 // the reachable instructions. Ignore blocks that are not reachable. Keep 3120 // track of which blocks we visit. 3121 SmallPtrSet<BasicBlock *, 32> Visited; 3122 MadeIRChange |= 3123 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI); 3124 3125 // Do a quick scan over the function. If we find any blocks that are 3126 // unreachable, remove any instructions inside of them. This prevents 3127 // the instcombine code from having to deal with some bad special cases. 3128 for (BasicBlock &BB : F) { 3129 if (Visited.count(&BB)) 3130 continue; 3131 3132 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB); 3133 MadeIRChange |= NumDeadInstInBB > 0; 3134 NumDeadInst += NumDeadInstInBB; 3135 } 3136 3137 return MadeIRChange; 3138 } 3139 3140 static bool 3141 combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist, 3142 AliasAnalysis *AA, AssumptionCache &AC, 3143 TargetLibraryInfo &TLI, DominatorTree &DT, 3144 bool ExpensiveCombines = true, 3145 LoopInfo *LI = nullptr) { 3146 auto &DL = F.getParent()->getDataLayout(); 3147 ExpensiveCombines |= EnableExpensiveCombines; 3148 3149 /// Builder - This is an IRBuilder that automatically inserts new 3150 /// instructions into the worklist when they are created. 3151 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 3152 F.getContext(), TargetFolder(DL), 3153 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 3154 Worklist.Add(I); 3155 3156 using namespace llvm::PatternMatch; 3157 if (match(I, m_Intrinsic<Intrinsic::assume>())) 3158 AC.registerAssumption(cast<CallInst>(I)); 3159 })); 3160 3161 // Lower dbg.declare intrinsics otherwise their value may be clobbered 3162 // by instcombiner. 3163 bool DbgDeclaresChanged = LowerDbgDeclare(F); 3164 3165 // Iterate while there is work to do. 3166 int Iteration = 0; 3167 for (;;) { 3168 ++Iteration; 3169 DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 3170 << F.getName() << "\n"); 3171 3172 bool Changed = prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 3173 3174 InstCombiner IC(Worklist, &Builder, F.optForMinSize(), ExpensiveCombines, 3175 AA, AC, TLI, DT, DL, LI); 3176 IC.MaxArraySizeForCombine = MaxArraySize; 3177 Changed |= IC.run(); 3178 3179 if (!Changed) 3180 break; 3181 } 3182 3183 return DbgDeclaresChanged || Iteration > 1; 3184 } 3185 3186 PreservedAnalyses InstCombinePass::run(Function &F, 3187 FunctionAnalysisManager &AM) { 3188 auto &AC = AM.getResult<AssumptionAnalysis>(F); 3189 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 3190 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 3191 3192 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 3193 3194 // FIXME: The AliasAnalysis is not yet supported in the new pass manager 3195 if (!combineInstructionsOverFunction(F, Worklist, nullptr, AC, TLI, DT, 3196 ExpensiveCombines, LI)) 3197 // No changes, all analyses are preserved. 3198 return PreservedAnalyses::all(); 3199 3200 // Mark all the analyses that instcombine updates as preserved. 3201 PreservedAnalyses PA; 3202 PA.preserveSet<CFGAnalyses>(); 3203 PA.preserve<AAManager>(); 3204 PA.preserve<GlobalsAA>(); 3205 return PA; 3206 } 3207 3208 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 3209 AU.setPreservesCFG(); 3210 AU.addRequired<AAResultsWrapperPass>(); 3211 AU.addRequired<AssumptionCacheTracker>(); 3212 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3213 AU.addRequired<DominatorTreeWrapperPass>(); 3214 AU.addPreserved<DominatorTreeWrapperPass>(); 3215 AU.addPreserved<AAResultsWrapperPass>(); 3216 AU.addPreserved<BasicAAWrapperPass>(); 3217 AU.addPreserved<GlobalsAAWrapperPass>(); 3218 } 3219 3220 bool InstructionCombiningPass::runOnFunction(Function &F) { 3221 if (skipFunction(F)) 3222 return false; 3223 3224 // Required analyses. 3225 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3226 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3227 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 3228 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3229 3230 // Optional analyses. 3231 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3232 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 3233 3234 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, 3235 ExpensiveCombines, LI); 3236 } 3237 3238 char InstructionCombiningPass::ID = 0; 3239 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 3240 "Combine redundant instructions", false, false) 3241 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3242 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3243 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3244 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3245 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3246 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 3247 "Combine redundant instructions", false, false) 3248 3249 // Initialization Routines 3250 void llvm::initializeInstCombine(PassRegistry &Registry) { 3251 initializeInstructionCombiningPassPass(Registry); 3252 } 3253 3254 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 3255 initializeInstructionCombiningPassPass(*unwrap(R)); 3256 } 3257 3258 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) { 3259 return new InstructionCombiningPass(ExpensiveCombines); 3260 } 3261