1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/TinyPtrVector.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/BlockFrequencyInfo.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/MemoryBuiltins.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ProfileSummaryInfo.h" 60 #include "llvm/Analysis/TargetFolder.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/ValueTracking.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DIBuilder.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Dominators.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/IRBuilder.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/LegacyPassManager.h" 80 #include "llvm/IR/Metadata.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PassManager.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/Use.h" 86 #include "llvm/IR/User.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/IR/ValueHandle.h" 89 #include "llvm/InitializePasses.h" 90 #include "llvm/Pass.h" 91 #include "llvm/Support/CBindingWrapping.h" 92 #include "llvm/Support/Casting.h" 93 #include "llvm/Support/CommandLine.h" 94 #include "llvm/Support/Compiler.h" 95 #include "llvm/Support/Debug.h" 96 #include "llvm/Support/DebugCounter.h" 97 #include "llvm/Support/ErrorHandling.h" 98 #include "llvm/Support/KnownBits.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Transforms/InstCombine/InstCombine.h" 101 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <algorithm> 104 #include <cassert> 105 #include <cstdint> 106 #include <memory> 107 #include <string> 108 #include <utility> 109 110 using namespace llvm; 111 using namespace llvm::PatternMatch; 112 113 #define DEBUG_TYPE "instcombine" 114 115 STATISTIC(NumCombined , "Number of insts combined"); 116 STATISTIC(NumConstProp, "Number of constant folds"); 117 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 118 STATISTIC(NumSunkInst , "Number of instructions sunk"); 119 STATISTIC(NumExpand, "Number of expansions"); 120 STATISTIC(NumFactor , "Number of factorizations"); 121 STATISTIC(NumReassoc , "Number of reassociations"); 122 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 123 "Controls which instructions are visited"); 124 125 static cl::opt<bool> 126 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 127 cl::init(true)); 128 129 static cl::opt<bool> 130 EnableExpensiveCombines("expensive-combines", 131 cl::desc("Enable expensive instruction combines")); 132 133 static cl::opt<unsigned> 134 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 135 cl::desc("Maximum array size considered when doing a combine")); 136 137 // FIXME: Remove this flag when it is no longer necessary to convert 138 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 139 // increases variable availability at the cost of accuracy. Variables that 140 // cannot be promoted by mem2reg or SROA will be described as living in memory 141 // for their entire lifetime. However, passes like DSE and instcombine can 142 // delete stores to the alloca, leading to misleading and inaccurate debug 143 // information. This flag can be removed when those passes are fixed. 144 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 145 cl::Hidden, cl::init(true)); 146 147 Value *InstCombiner::EmitGEPOffset(User *GEP) { 148 return llvm::EmitGEPOffset(&Builder, DL, GEP); 149 } 150 151 /// Return true if it is desirable to convert an integer computation from a 152 /// given bit width to a new bit width. 153 /// We don't want to convert from a legal to an illegal type or from a smaller 154 /// to a larger illegal type. A width of '1' is always treated as a legal type 155 /// because i1 is a fundamental type in IR, and there are many specialized 156 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as 157 /// legal to convert to, in order to open up more combining opportunities. 158 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common 159 /// from frontend languages. 160 bool InstCombiner::shouldChangeType(unsigned FromWidth, 161 unsigned ToWidth) const { 162 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 163 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 164 165 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only 166 // shrink types, to prevent infinite loops. 167 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32)) 168 return true; 169 170 // If this is a legal integer from type, and the result would be an illegal 171 // type, don't do the transformation. 172 if (FromLegal && !ToLegal) 173 return false; 174 175 // Otherwise, if both are illegal, do not increase the size of the result. We 176 // do allow things like i160 -> i64, but not i64 -> i160. 177 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 178 return false; 179 180 return true; 181 } 182 183 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 184 /// We don't want to convert from a legal to an illegal type or from a smaller 185 /// to a larger illegal type. i1 is always treated as a legal type because it is 186 /// a fundamental type in IR, and there are many specialized optimizations for 187 /// i1 types. 188 bool InstCombiner::shouldChangeType(Type *From, Type *To) const { 189 // TODO: This could be extended to allow vectors. Datalayout changes might be 190 // needed to properly support that. 191 if (!From->isIntegerTy() || !To->isIntegerTy()) 192 return false; 193 194 unsigned FromWidth = From->getPrimitiveSizeInBits(); 195 unsigned ToWidth = To->getPrimitiveSizeInBits(); 196 return shouldChangeType(FromWidth, ToWidth); 197 } 198 199 // Return true, if No Signed Wrap should be maintained for I. 200 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 201 // where both B and C should be ConstantInts, results in a constant that does 202 // not overflow. This function only handles the Add and Sub opcodes. For 203 // all other opcodes, the function conservatively returns false. 204 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 205 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 206 if (!OBO || !OBO->hasNoSignedWrap()) 207 return false; 208 209 // We reason about Add and Sub Only. 210 Instruction::BinaryOps Opcode = I.getOpcode(); 211 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 212 return false; 213 214 const APInt *BVal, *CVal; 215 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 216 return false; 217 218 bool Overflow = false; 219 if (Opcode == Instruction::Add) 220 (void)BVal->sadd_ov(*CVal, Overflow); 221 else 222 (void)BVal->ssub_ov(*CVal, Overflow); 223 224 return !Overflow; 225 } 226 227 static bool hasNoUnsignedWrap(BinaryOperator &I) { 228 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 229 return OBO && OBO->hasNoUnsignedWrap(); 230 } 231 232 static bool hasNoSignedWrap(BinaryOperator &I) { 233 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 234 return OBO && OBO->hasNoSignedWrap(); 235 } 236 237 /// Conservatively clears subclassOptionalData after a reassociation or 238 /// commutation. We preserve fast-math flags when applicable as they can be 239 /// preserved. 240 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 241 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 242 if (!FPMO) { 243 I.clearSubclassOptionalData(); 244 return; 245 } 246 247 FastMathFlags FMF = I.getFastMathFlags(); 248 I.clearSubclassOptionalData(); 249 I.setFastMathFlags(FMF); 250 } 251 252 /// Combine constant operands of associative operations either before or after a 253 /// cast to eliminate one of the associative operations: 254 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 255 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 256 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) { 257 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 258 if (!Cast || !Cast->hasOneUse()) 259 return false; 260 261 // TODO: Enhance logic for other casts and remove this check. 262 auto CastOpcode = Cast->getOpcode(); 263 if (CastOpcode != Instruction::ZExt) 264 return false; 265 266 // TODO: Enhance logic for other BinOps and remove this check. 267 if (!BinOp1->isBitwiseLogicOp()) 268 return false; 269 270 auto AssocOpcode = BinOp1->getOpcode(); 271 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 272 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 273 return false; 274 275 Constant *C1, *C2; 276 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 277 !match(BinOp2->getOperand(1), m_Constant(C2))) 278 return false; 279 280 // TODO: This assumes a zext cast. 281 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 282 // to the destination type might lose bits. 283 284 // Fold the constants together in the destination type: 285 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 286 Type *DestTy = C1->getType(); 287 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 288 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 289 Cast->setOperand(0, BinOp2->getOperand(0)); 290 BinOp1->setOperand(1, FoldedC); 291 return true; 292 } 293 294 /// This performs a few simplifications for operators that are associative or 295 /// commutative: 296 /// 297 /// Commutative operators: 298 /// 299 /// 1. Order operands such that they are listed from right (least complex) to 300 /// left (most complex). This puts constants before unary operators before 301 /// binary operators. 302 /// 303 /// Associative operators: 304 /// 305 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 306 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 307 /// 308 /// Associative and commutative operators: 309 /// 310 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 311 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 312 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 313 /// if C1 and C2 are constants. 314 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 315 Instruction::BinaryOps Opcode = I.getOpcode(); 316 bool Changed = false; 317 318 do { 319 // Order operands such that they are listed from right (least complex) to 320 // left (most complex). This puts constants before unary operators before 321 // binary operators. 322 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 323 getComplexity(I.getOperand(1))) 324 Changed = !I.swapOperands(); 325 326 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 327 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 328 329 if (I.isAssociative()) { 330 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 331 if (Op0 && Op0->getOpcode() == Opcode) { 332 Value *A = Op0->getOperand(0); 333 Value *B = Op0->getOperand(1); 334 Value *C = I.getOperand(1); 335 336 // Does "B op C" simplify? 337 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 338 // It simplifies to V. Form "A op V". 339 I.setOperand(0, A); 340 I.setOperand(1, V); 341 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 342 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 343 344 // Conservatively clear all optional flags since they may not be 345 // preserved by the reassociation. Reset nsw/nuw based on the above 346 // analysis. 347 ClearSubclassDataAfterReassociation(I); 348 349 // Note: this is only valid because SimplifyBinOp doesn't look at 350 // the operands to Op0. 351 if (IsNUW) 352 I.setHasNoUnsignedWrap(true); 353 354 if (IsNSW) 355 I.setHasNoSignedWrap(true); 356 357 Changed = true; 358 ++NumReassoc; 359 continue; 360 } 361 } 362 363 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 364 if (Op1 && Op1->getOpcode() == Opcode) { 365 Value *A = I.getOperand(0); 366 Value *B = Op1->getOperand(0); 367 Value *C = Op1->getOperand(1); 368 369 // Does "A op B" simplify? 370 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 371 // It simplifies to V. Form "V op C". 372 I.setOperand(0, V); 373 I.setOperand(1, C); 374 // Conservatively clear the optional flags, since they may not be 375 // preserved by the reassociation. 376 ClearSubclassDataAfterReassociation(I); 377 Changed = true; 378 ++NumReassoc; 379 continue; 380 } 381 } 382 } 383 384 if (I.isAssociative() && I.isCommutative()) { 385 if (simplifyAssocCastAssoc(&I)) { 386 Changed = true; 387 ++NumReassoc; 388 continue; 389 } 390 391 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 392 if (Op0 && Op0->getOpcode() == Opcode) { 393 Value *A = Op0->getOperand(0); 394 Value *B = Op0->getOperand(1); 395 Value *C = I.getOperand(1); 396 397 // Does "C op A" simplify? 398 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 399 // It simplifies to V. Form "V op B". 400 I.setOperand(0, V); 401 I.setOperand(1, B); 402 // Conservatively clear the optional flags, since they may not be 403 // preserved by the reassociation. 404 ClearSubclassDataAfterReassociation(I); 405 Changed = true; 406 ++NumReassoc; 407 continue; 408 } 409 } 410 411 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 412 if (Op1 && Op1->getOpcode() == Opcode) { 413 Value *A = I.getOperand(0); 414 Value *B = Op1->getOperand(0); 415 Value *C = Op1->getOperand(1); 416 417 // Does "C op A" simplify? 418 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 419 // It simplifies to V. Form "B op V". 420 I.setOperand(0, B); 421 I.setOperand(1, V); 422 // Conservatively clear the optional flags, since they may not be 423 // preserved by the reassociation. 424 ClearSubclassDataAfterReassociation(I); 425 Changed = true; 426 ++NumReassoc; 427 continue; 428 } 429 } 430 431 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 432 // if C1 and C2 are constants. 433 Value *A, *B; 434 Constant *C1, *C2; 435 if (Op0 && Op1 && 436 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 437 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 438 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 439 bool IsNUW = hasNoUnsignedWrap(I) && 440 hasNoUnsignedWrap(*Op0) && 441 hasNoUnsignedWrap(*Op1); 442 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 443 BinaryOperator::CreateNUW(Opcode, A, B) : 444 BinaryOperator::Create(Opcode, A, B); 445 446 if (isa<FPMathOperator>(NewBO)) { 447 FastMathFlags Flags = I.getFastMathFlags(); 448 Flags &= Op0->getFastMathFlags(); 449 Flags &= Op1->getFastMathFlags(); 450 NewBO->setFastMathFlags(Flags); 451 } 452 InsertNewInstWith(NewBO, I); 453 NewBO->takeName(Op1); 454 I.setOperand(0, NewBO); 455 I.setOperand(1, ConstantExpr::get(Opcode, C1, C2)); 456 // Conservatively clear the optional flags, since they may not be 457 // preserved by the reassociation. 458 ClearSubclassDataAfterReassociation(I); 459 if (IsNUW) 460 I.setHasNoUnsignedWrap(true); 461 462 Changed = true; 463 continue; 464 } 465 } 466 467 // No further simplifications. 468 return Changed; 469 } while (true); 470 } 471 472 /// Return whether "X LOp (Y ROp Z)" is always equal to 473 /// "(X LOp Y) ROp (X LOp Z)". 474 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 475 Instruction::BinaryOps ROp) { 476 // X & (Y | Z) <--> (X & Y) | (X & Z) 477 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 478 if (LOp == Instruction::And) 479 return ROp == Instruction::Or || ROp == Instruction::Xor; 480 481 // X | (Y & Z) <--> (X | Y) & (X | Z) 482 if (LOp == Instruction::Or) 483 return ROp == Instruction::And; 484 485 // X * (Y + Z) <--> (X * Y) + (X * Z) 486 // X * (Y - Z) <--> (X * Y) - (X * Z) 487 if (LOp == Instruction::Mul) 488 return ROp == Instruction::Add || ROp == Instruction::Sub; 489 490 return false; 491 } 492 493 /// Return whether "(X LOp Y) ROp Z" is always equal to 494 /// "(X ROp Z) LOp (Y ROp Z)". 495 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 496 Instruction::BinaryOps ROp) { 497 if (Instruction::isCommutative(ROp)) 498 return leftDistributesOverRight(ROp, LOp); 499 500 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 501 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 502 503 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 504 // but this requires knowing that the addition does not overflow and other 505 // such subtleties. 506 } 507 508 /// This function returns identity value for given opcode, which can be used to 509 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 510 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 511 if (isa<Constant>(V)) 512 return nullptr; 513 514 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 515 } 516 517 /// This function predicates factorization using distributive laws. By default, 518 /// it just returns the 'Op' inputs. But for special-cases like 519 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 520 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 521 /// allow more factorization opportunities. 522 static Instruction::BinaryOps 523 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 524 Value *&LHS, Value *&RHS) { 525 assert(Op && "Expected a binary operator"); 526 LHS = Op->getOperand(0); 527 RHS = Op->getOperand(1); 528 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 529 Constant *C; 530 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 531 // X << C --> X * (1 << C) 532 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 533 return Instruction::Mul; 534 } 535 // TODO: We can add other conversions e.g. shr => div etc. 536 } 537 return Op->getOpcode(); 538 } 539 540 /// This tries to simplify binary operations by factorizing out common terms 541 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 542 Value *InstCombiner::tryFactorization(BinaryOperator &I, 543 Instruction::BinaryOps InnerOpcode, 544 Value *A, Value *B, Value *C, Value *D) { 545 assert(A && B && C && D && "All values must be provided"); 546 547 Value *V = nullptr; 548 Value *SimplifiedInst = nullptr; 549 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 550 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 551 552 // Does "X op' Y" always equal "Y op' X"? 553 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 554 555 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 556 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 557 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 558 // commutative case, "(A op' B) op (C op' A)"? 559 if (A == C || (InnerCommutative && A == D)) { 560 if (A != C) 561 std::swap(C, D); 562 // Consider forming "A op' (B op D)". 563 // If "B op D" simplifies then it can be formed with no cost. 564 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 565 // If "B op D" doesn't simplify then only go on if both of the existing 566 // operations "A op' B" and "C op' D" will be zapped as no longer used. 567 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 568 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 569 if (V) { 570 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 571 } 572 } 573 574 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 575 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 576 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 577 // commutative case, "(A op' B) op (B op' D)"? 578 if (B == D || (InnerCommutative && B == C)) { 579 if (B != D) 580 std::swap(C, D); 581 // Consider forming "(A op C) op' B". 582 // If "A op C" simplifies then it can be formed with no cost. 583 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 584 585 // If "A op C" doesn't simplify then only go on if both of the existing 586 // operations "A op' B" and "C op' D" will be zapped as no longer used. 587 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 588 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 589 if (V) { 590 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 591 } 592 } 593 594 if (SimplifiedInst) { 595 ++NumFactor; 596 SimplifiedInst->takeName(&I); 597 598 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 599 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 600 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 601 bool HasNSW = false; 602 bool HasNUW = false; 603 if (isa<OverflowingBinaryOperator>(&I)) { 604 HasNSW = I.hasNoSignedWrap(); 605 HasNUW = I.hasNoUnsignedWrap(); 606 } 607 608 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 609 HasNSW &= LOBO->hasNoSignedWrap(); 610 HasNUW &= LOBO->hasNoUnsignedWrap(); 611 } 612 613 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 614 HasNSW &= ROBO->hasNoSignedWrap(); 615 HasNUW &= ROBO->hasNoUnsignedWrap(); 616 } 617 618 if (TopLevelOpcode == Instruction::Add && 619 InnerOpcode == Instruction::Mul) { 620 // We can propagate 'nsw' if we know that 621 // %Y = mul nsw i16 %X, C 622 // %Z = add nsw i16 %Y, %X 623 // => 624 // %Z = mul nsw i16 %X, C+1 625 // 626 // iff C+1 isn't INT_MIN 627 const APInt *CInt; 628 if (match(V, m_APInt(CInt))) { 629 if (!CInt->isMinSignedValue()) 630 BO->setHasNoSignedWrap(HasNSW); 631 } 632 633 // nuw can be propagated with any constant or nuw value. 634 BO->setHasNoUnsignedWrap(HasNUW); 635 } 636 } 637 } 638 } 639 return SimplifiedInst; 640 } 641 642 /// This tries to simplify binary operations which some other binary operation 643 /// distributes over either by factorizing out common terms 644 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 645 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 646 /// Returns the simplified value, or null if it didn't simplify. 647 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 648 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 649 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 650 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 651 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 652 653 { 654 // Factorization. 655 Value *A, *B, *C, *D; 656 Instruction::BinaryOps LHSOpcode, RHSOpcode; 657 if (Op0) 658 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 659 if (Op1) 660 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 661 662 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 663 // a common term. 664 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 665 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 666 return V; 667 668 // The instruction has the form "(A op' B) op (C)". Try to factorize common 669 // term. 670 if (Op0) 671 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 672 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 673 return V; 674 675 // The instruction has the form "(B) op (C op' D)". Try to factorize common 676 // term. 677 if (Op1) 678 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 679 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 680 return V; 681 } 682 683 // Expansion. 684 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 685 // The instruction has the form "(A op' B) op C". See if expanding it out 686 // to "(A op C) op' (B op C)" results in simplifications. 687 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 688 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 689 690 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 691 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I)); 692 693 // Do "A op C" and "B op C" both simplify? 694 if (L && R) { 695 // They do! Return "L op' R". 696 ++NumExpand; 697 C = Builder.CreateBinOp(InnerOpcode, L, R); 698 C->takeName(&I); 699 return C; 700 } 701 702 // Does "A op C" simplify to the identity value for the inner opcode? 703 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 704 // They do! Return "B op C". 705 ++NumExpand; 706 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 707 C->takeName(&I); 708 return C; 709 } 710 711 // Does "B op C" simplify to the identity value for the inner opcode? 712 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 713 // They do! Return "A op C". 714 ++NumExpand; 715 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 716 C->takeName(&I); 717 return C; 718 } 719 } 720 721 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 722 // The instruction has the form "A op (B op' C)". See if expanding it out 723 // to "(A op B) op' (A op C)" results in simplifications. 724 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 725 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 726 727 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I)); 728 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 729 730 // Do "A op B" and "A op C" both simplify? 731 if (L && R) { 732 // They do! Return "L op' R". 733 ++NumExpand; 734 A = Builder.CreateBinOp(InnerOpcode, L, R); 735 A->takeName(&I); 736 return A; 737 } 738 739 // Does "A op B" simplify to the identity value for the inner opcode? 740 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 741 // They do! Return "A op C". 742 ++NumExpand; 743 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 744 A->takeName(&I); 745 return A; 746 } 747 748 // Does "A op C" simplify to the identity value for the inner opcode? 749 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 750 // They do! Return "A op B". 751 ++NumExpand; 752 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 753 A->takeName(&I); 754 return A; 755 } 756 } 757 758 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 759 } 760 761 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 762 Value *LHS, Value *RHS) { 763 Value *A, *B, *C, *D, *E, *F; 764 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 765 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 766 if (!LHSIsSelect && !RHSIsSelect) 767 return nullptr; 768 769 FastMathFlags FMF; 770 BuilderTy::FastMathFlagGuard Guard(Builder); 771 if (isa<FPMathOperator>(&I)) { 772 FMF = I.getFastMathFlags(); 773 Builder.setFastMathFlags(FMF); 774 } 775 776 Instruction::BinaryOps Opcode = I.getOpcode(); 777 SimplifyQuery Q = SQ.getWithInstruction(&I); 778 779 Value *Cond, *True = nullptr, *False = nullptr; 780 if (LHSIsSelect && RHSIsSelect && A == D) { 781 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 782 Cond = A; 783 True = SimplifyBinOp(Opcode, B, E, FMF, Q); 784 False = SimplifyBinOp(Opcode, C, F, FMF, Q); 785 786 if (LHS->hasOneUse() && RHS->hasOneUse()) { 787 if (False && !True) 788 True = Builder.CreateBinOp(Opcode, B, E); 789 else if (True && !False) 790 False = Builder.CreateBinOp(Opcode, C, F); 791 } 792 } else if (LHSIsSelect && LHS->hasOneUse()) { 793 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 794 Cond = A; 795 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q); 796 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q); 797 } else if (RHSIsSelect && RHS->hasOneUse()) { 798 // X op (D ? E : F) -> D ? (X op E) : (X op F) 799 Cond = D; 800 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q); 801 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q); 802 } 803 804 if (!True || !False) 805 return nullptr; 806 807 Value *SI = Builder.CreateSelect(Cond, True, False); 808 SI->takeName(&I); 809 return SI; 810 } 811 812 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 813 /// constant zero (which is the 'negate' form). 814 Value *InstCombiner::dyn_castNegVal(Value *V) const { 815 Value *NegV; 816 if (match(V, m_Neg(m_Value(NegV)))) 817 return NegV; 818 819 // Constants can be considered to be negated values if they can be folded. 820 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 821 return ConstantExpr::getNeg(C); 822 823 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 824 if (C->getType()->getElementType()->isIntegerTy()) 825 return ConstantExpr::getNeg(C); 826 827 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 828 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 829 Constant *Elt = CV->getAggregateElement(i); 830 if (!Elt) 831 return nullptr; 832 833 if (isa<UndefValue>(Elt)) 834 continue; 835 836 if (!isa<ConstantInt>(Elt)) 837 return nullptr; 838 } 839 return ConstantExpr::getNeg(CV); 840 } 841 842 return nullptr; 843 } 844 845 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 846 InstCombiner::BuilderTy &Builder) { 847 if (auto *Cast = dyn_cast<CastInst>(&I)) 848 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 849 850 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 851 852 // Figure out if the constant is the left or the right argument. 853 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 854 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 855 856 if (auto *SOC = dyn_cast<Constant>(SO)) { 857 if (ConstIsRHS) 858 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 859 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 860 } 861 862 Value *Op0 = SO, *Op1 = ConstOperand; 863 if (!ConstIsRHS) 864 std::swap(Op0, Op1); 865 866 auto *BO = cast<BinaryOperator>(&I); 867 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 868 SO->getName() + ".op"); 869 auto *FPInst = dyn_cast<Instruction>(RI); 870 if (FPInst && isa<FPMathOperator>(FPInst)) 871 FPInst->copyFastMathFlags(BO); 872 return RI; 873 } 874 875 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 876 // Don't modify shared select instructions. 877 if (!SI->hasOneUse()) 878 return nullptr; 879 880 Value *TV = SI->getTrueValue(); 881 Value *FV = SI->getFalseValue(); 882 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 883 return nullptr; 884 885 // Bool selects with constant operands can be folded to logical ops. 886 if (SI->getType()->isIntOrIntVectorTy(1)) 887 return nullptr; 888 889 // If it's a bitcast involving vectors, make sure it has the same number of 890 // elements on both sides. 891 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 892 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 893 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 894 895 // Verify that either both or neither are vectors. 896 if ((SrcTy == nullptr) != (DestTy == nullptr)) 897 return nullptr; 898 899 // If vectors, verify that they have the same number of elements. 900 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 901 return nullptr; 902 } 903 904 // Test if a CmpInst instruction is used exclusively by a select as 905 // part of a minimum or maximum operation. If so, refrain from doing 906 // any other folding. This helps out other analyses which understand 907 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 908 // and CodeGen. And in this case, at least one of the comparison 909 // operands has at least one user besides the compare (the select), 910 // which would often largely negate the benefit of folding anyway. 911 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 912 if (CI->hasOneUse()) { 913 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 914 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 915 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 916 return nullptr; 917 } 918 } 919 920 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 921 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 922 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 923 } 924 925 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 926 InstCombiner::BuilderTy &Builder) { 927 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 928 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 929 930 if (auto *InC = dyn_cast<Constant>(InV)) { 931 if (ConstIsRHS) 932 return ConstantExpr::get(I->getOpcode(), InC, C); 933 return ConstantExpr::get(I->getOpcode(), C, InC); 934 } 935 936 Value *Op0 = InV, *Op1 = C; 937 if (!ConstIsRHS) 938 std::swap(Op0, Op1); 939 940 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp"); 941 auto *FPInst = dyn_cast<Instruction>(RI); 942 if (FPInst && isa<FPMathOperator>(FPInst)) 943 FPInst->copyFastMathFlags(I); 944 return RI; 945 } 946 947 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) { 948 unsigned NumPHIValues = PN->getNumIncomingValues(); 949 if (NumPHIValues == 0) 950 return nullptr; 951 952 // We normally only transform phis with a single use. However, if a PHI has 953 // multiple uses and they are all the same operation, we can fold *all* of the 954 // uses into the PHI. 955 if (!PN->hasOneUse()) { 956 // Walk the use list for the instruction, comparing them to I. 957 for (User *U : PN->users()) { 958 Instruction *UI = cast<Instruction>(U); 959 if (UI != &I && !I.isIdenticalTo(UI)) 960 return nullptr; 961 } 962 // Otherwise, we can replace *all* users with the new PHI we form. 963 } 964 965 // Check to see if all of the operands of the PHI are simple constants 966 // (constantint/constantfp/undef). If there is one non-constant value, 967 // remember the BB it is in. If there is more than one or if *it* is a PHI, 968 // bail out. We don't do arbitrary constant expressions here because moving 969 // their computation can be expensive without a cost model. 970 BasicBlock *NonConstBB = nullptr; 971 for (unsigned i = 0; i != NumPHIValues; ++i) { 972 Value *InVal = PN->getIncomingValue(i); 973 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 974 continue; 975 976 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 977 if (NonConstBB) return nullptr; // More than one non-const value. 978 979 NonConstBB = PN->getIncomingBlock(i); 980 981 // If the InVal is an invoke at the end of the pred block, then we can't 982 // insert a computation after it without breaking the edge. 983 if (isa<InvokeInst>(InVal)) 984 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 985 return nullptr; 986 987 // If the incoming non-constant value is in I's block, we will remove one 988 // instruction, but insert another equivalent one, leading to infinite 989 // instcombine. 990 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI)) 991 return nullptr; 992 } 993 994 // If there is exactly one non-constant value, we can insert a copy of the 995 // operation in that block. However, if this is a critical edge, we would be 996 // inserting the computation on some other paths (e.g. inside a loop). Only 997 // do this if the pred block is unconditionally branching into the phi block. 998 if (NonConstBB != nullptr) { 999 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1000 if (!BI || !BI->isUnconditional()) return nullptr; 1001 } 1002 1003 // Okay, we can do the transformation: create the new PHI node. 1004 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1005 InsertNewInstBefore(NewPN, *PN); 1006 NewPN->takeName(PN); 1007 1008 // If we are going to have to insert a new computation, do so right before the 1009 // predecessor's terminator. 1010 if (NonConstBB) 1011 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1012 1013 // Next, add all of the operands to the PHI. 1014 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1015 // We only currently try to fold the condition of a select when it is a phi, 1016 // not the true/false values. 1017 Value *TrueV = SI->getTrueValue(); 1018 Value *FalseV = SI->getFalseValue(); 1019 BasicBlock *PhiTransBB = PN->getParent(); 1020 for (unsigned i = 0; i != NumPHIValues; ++i) { 1021 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1022 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1023 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1024 Value *InV = nullptr; 1025 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1026 // even if currently isNullValue gives false. 1027 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1028 // For vector constants, we cannot use isNullValue to fold into 1029 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1030 // elements in the vector, we will incorrectly fold InC to 1031 // `TrueVInPred`. 1032 if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC)) 1033 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1034 else { 1035 // Generate the select in the same block as PN's current incoming block. 1036 // Note: ThisBB need not be the NonConstBB because vector constants 1037 // which are constants by definition are handled here. 1038 // FIXME: This can lead to an increase in IR generation because we might 1039 // generate selects for vector constant phi operand, that could not be 1040 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1041 // non-vector phis, this transformation was always profitable because 1042 // the select would be generated exactly once in the NonConstBB. 1043 Builder.SetInsertPoint(ThisBB->getTerminator()); 1044 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1045 FalseVInPred, "phitmp"); 1046 } 1047 NewPN->addIncoming(InV, ThisBB); 1048 } 1049 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1050 Constant *C = cast<Constant>(I.getOperand(1)); 1051 for (unsigned i = 0; i != NumPHIValues; ++i) { 1052 Value *InV = nullptr; 1053 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1054 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1055 else if (isa<ICmpInst>(CI)) 1056 InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 1057 C, "phitmp"); 1058 else 1059 InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 1060 C, "phitmp"); 1061 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1062 } 1063 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1064 for (unsigned i = 0; i != NumPHIValues; ++i) { 1065 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1066 Builder); 1067 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1068 } 1069 } else { 1070 CastInst *CI = cast<CastInst>(&I); 1071 Type *RetTy = CI->getType(); 1072 for (unsigned i = 0; i != NumPHIValues; ++i) { 1073 Value *InV; 1074 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1075 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1076 else 1077 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1078 I.getType(), "phitmp"); 1079 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1080 } 1081 } 1082 1083 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1084 Instruction *User = cast<Instruction>(*UI++); 1085 if (User == &I) continue; 1086 replaceInstUsesWith(*User, NewPN); 1087 eraseInstFromFunction(*User); 1088 } 1089 return replaceInstUsesWith(I, NewPN); 1090 } 1091 1092 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1093 if (!isa<Constant>(I.getOperand(1))) 1094 return nullptr; 1095 1096 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1097 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1098 return NewSel; 1099 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1100 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1101 return NewPhi; 1102 } 1103 return nullptr; 1104 } 1105 1106 /// Given a pointer type and a constant offset, determine whether or not there 1107 /// is a sequence of GEP indices into the pointed type that will land us at the 1108 /// specified offset. If so, fill them into NewIndices and return the resultant 1109 /// element type, otherwise return null. 1110 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 1111 SmallVectorImpl<Value *> &NewIndices) { 1112 Type *Ty = PtrTy->getElementType(); 1113 if (!Ty->isSized()) 1114 return nullptr; 1115 1116 // Start with the index over the outer type. Note that the type size 1117 // might be zero (even if the offset isn't zero) if the indexed type 1118 // is something like [0 x {int, int}] 1119 Type *IndexTy = DL.getIndexType(PtrTy); 1120 int64_t FirstIdx = 0; 1121 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 1122 FirstIdx = Offset/TySize; 1123 Offset -= FirstIdx*TySize; 1124 1125 // Handle hosts where % returns negative instead of values [0..TySize). 1126 if (Offset < 0) { 1127 --FirstIdx; 1128 Offset += TySize; 1129 assert(Offset >= 0); 1130 } 1131 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 1132 } 1133 1134 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx)); 1135 1136 // Index into the types. If we fail, set OrigBase to null. 1137 while (Offset) { 1138 // Indexing into tail padding between struct/array elements. 1139 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1140 return nullptr; 1141 1142 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1143 const StructLayout *SL = DL.getStructLayout(STy); 1144 assert(Offset < (int64_t)SL->getSizeInBytes() && 1145 "Offset must stay within the indexed type"); 1146 1147 unsigned Elt = SL->getElementContainingOffset(Offset); 1148 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1149 Elt)); 1150 1151 Offset -= SL->getElementOffset(Elt); 1152 Ty = STy->getElementType(Elt); 1153 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1154 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1155 assert(EltSize && "Cannot index into a zero-sized array"); 1156 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize)); 1157 Offset %= EltSize; 1158 Ty = AT->getElementType(); 1159 } else { 1160 // Otherwise, we can't index into the middle of this atomic type, bail. 1161 return nullptr; 1162 } 1163 } 1164 1165 return Ty; 1166 } 1167 1168 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1169 // If this GEP has only 0 indices, it is the same pointer as 1170 // Src. If Src is not a trivial GEP too, don't combine 1171 // the indices. 1172 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1173 !Src.hasOneUse()) 1174 return false; 1175 return true; 1176 } 1177 1178 /// Return a value X such that Val = X * Scale, or null if none. 1179 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1180 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1181 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1182 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1183 Scale.getBitWidth() && "Scale not compatible with value!"); 1184 1185 // If Val is zero or Scale is one then Val = Val * Scale. 1186 if (match(Val, m_Zero()) || Scale == 1) { 1187 NoSignedWrap = true; 1188 return Val; 1189 } 1190 1191 // If Scale is zero then it does not divide Val. 1192 if (Scale.isMinValue()) 1193 return nullptr; 1194 1195 // Look through chains of multiplications, searching for a constant that is 1196 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1197 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1198 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1199 // down from Val: 1200 // 1201 // Val = M1 * X || Analysis starts here and works down 1202 // M1 = M2 * Y || Doesn't descend into terms with more 1203 // M2 = Z * 4 \/ than one use 1204 // 1205 // Then to modify a term at the bottom: 1206 // 1207 // Val = M1 * X 1208 // M1 = Z * Y || Replaced M2 with Z 1209 // 1210 // Then to work back up correcting nsw flags. 1211 1212 // Op - the term we are currently analyzing. Starts at Val then drills down. 1213 // Replaced with its descaled value before exiting from the drill down loop. 1214 Value *Op = Val; 1215 1216 // Parent - initially null, but after drilling down notes where Op came from. 1217 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1218 // 0'th operand of Val. 1219 std::pair<Instruction *, unsigned> Parent; 1220 1221 // Set if the transform requires a descaling at deeper levels that doesn't 1222 // overflow. 1223 bool RequireNoSignedWrap = false; 1224 1225 // Log base 2 of the scale. Negative if not a power of 2. 1226 int32_t logScale = Scale.exactLogBase2(); 1227 1228 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1229 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1230 // If Op is a constant divisible by Scale then descale to the quotient. 1231 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1232 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1233 if (!Remainder.isMinValue()) 1234 // Not divisible by Scale. 1235 return nullptr; 1236 // Replace with the quotient in the parent. 1237 Op = ConstantInt::get(CI->getType(), Quotient); 1238 NoSignedWrap = true; 1239 break; 1240 } 1241 1242 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1243 if (BO->getOpcode() == Instruction::Mul) { 1244 // Multiplication. 1245 NoSignedWrap = BO->hasNoSignedWrap(); 1246 if (RequireNoSignedWrap && !NoSignedWrap) 1247 return nullptr; 1248 1249 // There are three cases for multiplication: multiplication by exactly 1250 // the scale, multiplication by a constant different to the scale, and 1251 // multiplication by something else. 1252 Value *LHS = BO->getOperand(0); 1253 Value *RHS = BO->getOperand(1); 1254 1255 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1256 // Multiplication by a constant. 1257 if (CI->getValue() == Scale) { 1258 // Multiplication by exactly the scale, replace the multiplication 1259 // by its left-hand side in the parent. 1260 Op = LHS; 1261 break; 1262 } 1263 1264 // Otherwise drill down into the constant. 1265 if (!Op->hasOneUse()) 1266 return nullptr; 1267 1268 Parent = std::make_pair(BO, 1); 1269 continue; 1270 } 1271 1272 // Multiplication by something else. Drill down into the left-hand side 1273 // since that's where the reassociate pass puts the good stuff. 1274 if (!Op->hasOneUse()) 1275 return nullptr; 1276 1277 Parent = std::make_pair(BO, 0); 1278 continue; 1279 } 1280 1281 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1282 isa<ConstantInt>(BO->getOperand(1))) { 1283 // Multiplication by a power of 2. 1284 NoSignedWrap = BO->hasNoSignedWrap(); 1285 if (RequireNoSignedWrap && !NoSignedWrap) 1286 return nullptr; 1287 1288 Value *LHS = BO->getOperand(0); 1289 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1290 getLimitedValue(Scale.getBitWidth()); 1291 // Op = LHS << Amt. 1292 1293 if (Amt == logScale) { 1294 // Multiplication by exactly the scale, replace the multiplication 1295 // by its left-hand side in the parent. 1296 Op = LHS; 1297 break; 1298 } 1299 if (Amt < logScale || !Op->hasOneUse()) 1300 return nullptr; 1301 1302 // Multiplication by more than the scale. Reduce the multiplying amount 1303 // by the scale in the parent. 1304 Parent = std::make_pair(BO, 1); 1305 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1306 break; 1307 } 1308 } 1309 1310 if (!Op->hasOneUse()) 1311 return nullptr; 1312 1313 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1314 if (Cast->getOpcode() == Instruction::SExt) { 1315 // Op is sign-extended from a smaller type, descale in the smaller type. 1316 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1317 APInt SmallScale = Scale.trunc(SmallSize); 1318 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1319 // descale Op as (sext Y) * Scale. In order to have 1320 // sext (Y * SmallScale) = (sext Y) * Scale 1321 // some conditions need to hold however: SmallScale must sign-extend to 1322 // Scale and the multiplication Y * SmallScale should not overflow. 1323 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1324 // SmallScale does not sign-extend to Scale. 1325 return nullptr; 1326 assert(SmallScale.exactLogBase2() == logScale); 1327 // Require that Y * SmallScale must not overflow. 1328 RequireNoSignedWrap = true; 1329 1330 // Drill down through the cast. 1331 Parent = std::make_pair(Cast, 0); 1332 Scale = SmallScale; 1333 continue; 1334 } 1335 1336 if (Cast->getOpcode() == Instruction::Trunc) { 1337 // Op is truncated from a larger type, descale in the larger type. 1338 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1339 // trunc (Y * sext Scale) = (trunc Y) * Scale 1340 // always holds. However (trunc Y) * Scale may overflow even if 1341 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1342 // from this point up in the expression (see later). 1343 if (RequireNoSignedWrap) 1344 return nullptr; 1345 1346 // Drill down through the cast. 1347 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1348 Parent = std::make_pair(Cast, 0); 1349 Scale = Scale.sext(LargeSize); 1350 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1351 logScale = -1; 1352 assert(Scale.exactLogBase2() == logScale); 1353 continue; 1354 } 1355 } 1356 1357 // Unsupported expression, bail out. 1358 return nullptr; 1359 } 1360 1361 // If Op is zero then Val = Op * Scale. 1362 if (match(Op, m_Zero())) { 1363 NoSignedWrap = true; 1364 return Op; 1365 } 1366 1367 // We know that we can successfully descale, so from here on we can safely 1368 // modify the IR. Op holds the descaled version of the deepest term in the 1369 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1370 // not to overflow. 1371 1372 if (!Parent.first) 1373 // The expression only had one term. 1374 return Op; 1375 1376 // Rewrite the parent using the descaled version of its operand. 1377 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1378 assert(Op != Parent.first->getOperand(Parent.second) && 1379 "Descaling was a no-op?"); 1380 Parent.first->setOperand(Parent.second, Op); 1381 Worklist.Add(Parent.first); 1382 1383 // Now work back up the expression correcting nsw flags. The logic is based 1384 // on the following observation: if X * Y is known not to overflow as a signed 1385 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1386 // then X * Z will not overflow as a signed multiplication either. As we work 1387 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1388 // current level has strictly smaller absolute value than the original. 1389 Instruction *Ancestor = Parent.first; 1390 do { 1391 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1392 // If the multiplication wasn't nsw then we can't say anything about the 1393 // value of the descaled multiplication, and we have to clear nsw flags 1394 // from this point on up. 1395 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1396 NoSignedWrap &= OpNoSignedWrap; 1397 if (NoSignedWrap != OpNoSignedWrap) { 1398 BO->setHasNoSignedWrap(NoSignedWrap); 1399 Worklist.Add(Ancestor); 1400 } 1401 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1402 // The fact that the descaled input to the trunc has smaller absolute 1403 // value than the original input doesn't tell us anything useful about 1404 // the absolute values of the truncations. 1405 NoSignedWrap = false; 1406 } 1407 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1408 "Failed to keep proper track of nsw flags while drilling down?"); 1409 1410 if (Ancestor == Val) 1411 // Got to the top, all done! 1412 return Val; 1413 1414 // Move up one level in the expression. 1415 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1416 Ancestor = Ancestor->user_back(); 1417 } while (true); 1418 } 1419 1420 Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) { 1421 if (!Inst.getType()->isVectorTy()) return nullptr; 1422 1423 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1424 unsigned NumElts = cast<VectorType>(Inst.getType())->getNumElements(); 1425 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1426 assert(cast<VectorType>(LHS->getType())->getNumElements() == NumElts); 1427 assert(cast<VectorType>(RHS->getType())->getNumElements() == NumElts); 1428 1429 // If both operands of the binop are vector concatenations, then perform the 1430 // narrow binop on each pair of the source operands followed by concatenation 1431 // of the results. 1432 Value *L0, *L1, *R0, *R1; 1433 Constant *Mask; 1434 if (match(LHS, m_ShuffleVector(m_Value(L0), m_Value(L1), m_Constant(Mask))) && 1435 match(RHS, m_ShuffleVector(m_Value(R0), m_Value(R1), m_Specific(Mask))) && 1436 LHS->hasOneUse() && RHS->hasOneUse() && 1437 cast<ShuffleVectorInst>(LHS)->isConcat() && 1438 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1439 // This transform does not have the speculative execution constraint as 1440 // below because the shuffle is a concatenation. The new binops are 1441 // operating on exactly the same elements as the existing binop. 1442 // TODO: We could ease the mask requirement to allow different undef lanes, 1443 // but that requires an analysis of the binop-with-undef output value. 1444 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1445 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1446 BO->copyIRFlags(&Inst); 1447 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1448 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1449 BO->copyIRFlags(&Inst); 1450 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1451 } 1452 1453 // It may not be safe to reorder shuffles and things like div, urem, etc. 1454 // because we may trap when executing those ops on unknown vector elements. 1455 // See PR20059. 1456 if (!isSafeToSpeculativelyExecute(&Inst)) 1457 return nullptr; 1458 1459 auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) { 1460 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1461 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1462 BO->copyIRFlags(&Inst); 1463 return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M); 1464 }; 1465 1466 // If both arguments of the binary operation are shuffles that use the same 1467 // mask and shuffle within a single vector, move the shuffle after the binop. 1468 Value *V1, *V2; 1469 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) && 1470 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) && 1471 V1->getType() == V2->getType() && 1472 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1473 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1474 return createBinOpShuffle(V1, V2, Mask); 1475 } 1476 1477 // If both arguments of a commutative binop are select-shuffles that use the 1478 // same mask with commuted operands, the shuffles are unnecessary. 1479 if (Inst.isCommutative() && 1480 match(LHS, m_ShuffleVector(m_Value(V1), m_Value(V2), m_Constant(Mask))) && 1481 match(RHS, m_ShuffleVector(m_Specific(V2), m_Specific(V1), 1482 m_Specific(Mask)))) { 1483 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1484 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1485 // TODO: Allow shuffles that contain undefs in the mask? 1486 // That is legal, but it reduces undef knowledge. 1487 // TODO: Allow arbitrary shuffles by shuffling after binop? 1488 // That might be legal, but we have to deal with poison. 1489 if (LShuf->isSelect() && !LShuf->getMask()->containsUndefElement() && 1490 RShuf->isSelect() && !RShuf->getMask()->containsUndefElement()) { 1491 // Example: 1492 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1493 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1494 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1495 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1496 NewBO->copyIRFlags(&Inst); 1497 return NewBO; 1498 } 1499 } 1500 1501 // If one argument is a shuffle within one vector and the other is a constant, 1502 // try moving the shuffle after the binary operation. This canonicalization 1503 // intends to move shuffles closer to other shuffles and binops closer to 1504 // other binops, so they can be folded. It may also enable demanded elements 1505 // transforms. 1506 Constant *C; 1507 if (match(&Inst, m_c_BinOp( 1508 m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))), 1509 m_Constant(C))) && 1510 V1->getType()->getVectorNumElements() <= NumElts) { 1511 assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() && 1512 "Shuffle should not change scalar type"); 1513 1514 // Find constant NewC that has property: 1515 // shuffle(NewC, ShMask) = C 1516 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1517 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1518 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1519 bool ConstOp1 = isa<Constant>(RHS); 1520 SmallVector<int, 16> ShMask; 1521 ShuffleVectorInst::getShuffleMask(Mask, ShMask); 1522 unsigned SrcVecNumElts = V1->getType()->getVectorNumElements(); 1523 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1524 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1525 bool MayChange = true; 1526 for (unsigned I = 0; I < NumElts; ++I) { 1527 Constant *CElt = C->getAggregateElement(I); 1528 if (ShMask[I] >= 0) { 1529 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1530 Constant *NewCElt = NewVecC[ShMask[I]]; 1531 // Bail out if: 1532 // 1. The constant vector contains a constant expression. 1533 // 2. The shuffle needs an element of the constant vector that can't 1534 // be mapped to a new constant vector. 1535 // 3. This is a widening shuffle that copies elements of V1 into the 1536 // extended elements (extending with undef is allowed). 1537 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1538 I >= SrcVecNumElts) { 1539 MayChange = false; 1540 break; 1541 } 1542 NewVecC[ShMask[I]] = CElt; 1543 } 1544 // If this is a widening shuffle, we must be able to extend with undef 1545 // elements. If the original binop does not produce an undef in the high 1546 // lanes, then this transform is not safe. 1547 // Similarly for undef lanes due to the shuffle mask, we can only 1548 // transform binops that preserve undef. 1549 // TODO: We could shuffle those non-undef constant values into the 1550 // result by using a constant vector (rather than an undef vector) 1551 // as operand 1 of the new binop, but that might be too aggressive 1552 // for target-independent shuffle creation. 1553 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1554 Constant *MaybeUndef = 1555 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1556 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1557 if (!isa<UndefValue>(MaybeUndef)) { 1558 MayChange = false; 1559 break; 1560 } 1561 } 1562 } 1563 if (MayChange) { 1564 Constant *NewC = ConstantVector::get(NewVecC); 1565 // It may not be safe to execute a binop on a vector with undef elements 1566 // because the entire instruction can be folded to undef or create poison 1567 // that did not exist in the original code. 1568 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1569 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1570 1571 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1572 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1573 Value *NewLHS = ConstOp1 ? V1 : NewC; 1574 Value *NewRHS = ConstOp1 ? NewC : V1; 1575 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1576 } 1577 } 1578 1579 return nullptr; 1580 } 1581 1582 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1583 /// of a value. This requires a potentially expensive known bits check to make 1584 /// sure the narrow op does not overflow. 1585 Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) { 1586 // We need at least one extended operand. 1587 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1588 1589 // If this is a sub, we swap the operands since we always want an extension 1590 // on the RHS. The LHS can be an extension or a constant. 1591 if (BO.getOpcode() == Instruction::Sub) 1592 std::swap(Op0, Op1); 1593 1594 Value *X; 1595 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1596 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1597 return nullptr; 1598 1599 // If both operands are the same extension from the same source type and we 1600 // can eliminate at least one (hasOneUse), this might work. 1601 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1602 Value *Y; 1603 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1604 cast<Operator>(Op1)->getOpcode() == CastOpc && 1605 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1606 // If that did not match, see if we have a suitable constant operand. 1607 // Truncating and extending must produce the same constant. 1608 Constant *WideC; 1609 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1610 return nullptr; 1611 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1612 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1613 return nullptr; 1614 Y = NarrowC; 1615 } 1616 1617 // Swap back now that we found our operands. 1618 if (BO.getOpcode() == Instruction::Sub) 1619 std::swap(X, Y); 1620 1621 // Both operands have narrow versions. Last step: the math must not overflow 1622 // in the narrow width. 1623 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1624 return nullptr; 1625 1626 // bo (ext X), (ext Y) --> ext (bo X, Y) 1627 // bo (ext X), C --> ext (bo X, C') 1628 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1629 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1630 if (IsSext) 1631 NewBinOp->setHasNoSignedWrap(); 1632 else 1633 NewBinOp->setHasNoUnsignedWrap(); 1634 } 1635 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1636 } 1637 1638 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1639 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1640 Type *GEPType = GEP.getType(); 1641 Type *GEPEltType = GEP.getSourceElementType(); 1642 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP))) 1643 return replaceInstUsesWith(GEP, V); 1644 1645 // For vector geps, use the generic demanded vector support. 1646 if (GEP.getType()->isVectorTy()) { 1647 auto VWidth = GEP.getType()->getVectorNumElements(); 1648 APInt UndefElts(VWidth, 0); 1649 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1650 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 1651 UndefElts)) { 1652 if (V != &GEP) 1653 return replaceInstUsesWith(GEP, V); 1654 return &GEP; 1655 } 1656 1657 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 1658 // possible (decide on canonical form for pointer broadcast), 3) exploit 1659 // undef elements to decrease demanded bits 1660 } 1661 1662 Value *PtrOp = GEP.getOperand(0); 1663 1664 // Eliminate unneeded casts for indices, and replace indices which displace 1665 // by multiples of a zero size type with zero. 1666 bool MadeChange = false; 1667 1668 // Index width may not be the same width as pointer width. 1669 // Data layout chooses the right type based on supported integer types. 1670 Type *NewScalarIndexTy = 1671 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 1672 1673 gep_type_iterator GTI = gep_type_begin(GEP); 1674 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1675 ++I, ++GTI) { 1676 // Skip indices into struct types. 1677 if (GTI.isStruct()) 1678 continue; 1679 1680 Type *IndexTy = (*I)->getType(); 1681 Type *NewIndexType = 1682 IndexTy->isVectorTy() 1683 ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements()) 1684 : NewScalarIndexTy; 1685 1686 // If the element type has zero size then any index over it is equivalent 1687 // to an index of zero, so replace it with zero if it is not zero already. 1688 Type *EltTy = GTI.getIndexedType(); 1689 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0) 1690 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 1691 *I = Constant::getNullValue(NewIndexType); 1692 MadeChange = true; 1693 } 1694 1695 if (IndexTy != NewIndexType) { 1696 // If we are using a wider index than needed for this platform, shrink 1697 // it to what we need. If narrower, sign-extend it to what we need. 1698 // This explicit cast can make subsequent optimizations more obvious. 1699 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1700 MadeChange = true; 1701 } 1702 } 1703 if (MadeChange) 1704 return &GEP; 1705 1706 // Check to see if the inputs to the PHI node are getelementptr instructions. 1707 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 1708 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1709 if (!Op1) 1710 return nullptr; 1711 1712 // Don't fold a GEP into itself through a PHI node. This can only happen 1713 // through the back-edge of a loop. Folding a GEP into itself means that 1714 // the value of the previous iteration needs to be stored in the meantime, 1715 // thus requiring an additional register variable to be live, but not 1716 // actually achieving anything (the GEP still needs to be executed once per 1717 // loop iteration). 1718 if (Op1 == &GEP) 1719 return nullptr; 1720 1721 int DI = -1; 1722 1723 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1724 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 1725 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1726 return nullptr; 1727 1728 // As for Op1 above, don't try to fold a GEP into itself. 1729 if (Op2 == &GEP) 1730 return nullptr; 1731 1732 // Keep track of the type as we walk the GEP. 1733 Type *CurTy = nullptr; 1734 1735 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1736 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1737 return nullptr; 1738 1739 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1740 if (DI == -1) { 1741 // We have not seen any differences yet in the GEPs feeding the 1742 // PHI yet, so we record this one if it is allowed to be a 1743 // variable. 1744 1745 // The first two arguments can vary for any GEP, the rest have to be 1746 // static for struct slots 1747 if (J > 1) { 1748 assert(CurTy && "No current type?"); 1749 if (CurTy->isStructTy()) 1750 return nullptr; 1751 } 1752 1753 DI = J; 1754 } else { 1755 // The GEP is different by more than one input. While this could be 1756 // extended to support GEPs that vary by more than one variable it 1757 // doesn't make sense since it greatly increases the complexity and 1758 // would result in an R+R+R addressing mode which no backend 1759 // directly supports and would need to be broken into several 1760 // simpler instructions anyway. 1761 return nullptr; 1762 } 1763 } 1764 1765 // Sink down a layer of the type for the next iteration. 1766 if (J > 0) { 1767 if (J == 1) { 1768 CurTy = Op1->getSourceElementType(); 1769 } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) { 1770 CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); 1771 } else { 1772 CurTy = nullptr; 1773 } 1774 } 1775 } 1776 } 1777 1778 // If not all GEPs are identical we'll have to create a new PHI node. 1779 // Check that the old PHI node has only one use so that it will get 1780 // removed. 1781 if (DI != -1 && !PN->hasOneUse()) 1782 return nullptr; 1783 1784 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1785 if (DI == -1) { 1786 // All the GEPs feeding the PHI are identical. Clone one down into our 1787 // BB so that it can be merged with the current GEP. 1788 GEP.getParent()->getInstList().insert( 1789 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1790 } else { 1791 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1792 // into the current block so it can be merged, and create a new PHI to 1793 // set that index. 1794 PHINode *NewPN; 1795 { 1796 IRBuilderBase::InsertPointGuard Guard(Builder); 1797 Builder.SetInsertPoint(PN); 1798 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 1799 PN->getNumOperands()); 1800 } 1801 1802 for (auto &I : PN->operands()) 1803 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1804 PN->getIncomingBlock(I)); 1805 1806 NewGEP->setOperand(DI, NewPN); 1807 GEP.getParent()->getInstList().insert( 1808 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1809 NewGEP->setOperand(DI, NewPN); 1810 } 1811 1812 GEP.setOperand(0, NewGEP); 1813 PtrOp = NewGEP; 1814 } 1815 1816 // Combine Indices - If the source pointer to this getelementptr instruction 1817 // is a getelementptr instruction, combine the indices of the two 1818 // getelementptr instructions into a single instruction. 1819 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { 1820 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1821 return nullptr; 1822 1823 // Try to reassociate loop invariant GEP chains to enable LICM. 1824 if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1825 Src->hasOneUse()) { 1826 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1827 Value *GO1 = GEP.getOperand(1); 1828 Value *SO1 = Src->getOperand(1); 1829 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1830 // invariant: this breaks the dependence between GEPs and allows LICM 1831 // to hoist the invariant part out of the loop. 1832 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1833 // We have to be careful here. 1834 // We have something like: 1835 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 1836 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 1837 // If we just swap idx & idx2 then we could inadvertantly 1838 // change %src from a vector to a scalar, or vice versa. 1839 // Cases: 1840 // 1) %base a scalar & idx a scalar & idx2 a vector 1841 // => Swapping idx & idx2 turns %src into a vector type. 1842 // 2) %base a scalar & idx a vector & idx2 a scalar 1843 // => Swapping idx & idx2 turns %src in a scalar type 1844 // 3) %base, %idx, and %idx2 are scalars 1845 // => %src & %gep are scalars 1846 // => swapping idx & idx2 is safe 1847 // 4) %base a vector 1848 // => %src is a vector 1849 // => swapping idx & idx2 is safe. 1850 auto *SO0 = Src->getOperand(0); 1851 auto *SO0Ty = SO0->getType(); 1852 if (!isa<VectorType>(GEPType) || // case 3 1853 isa<VectorType>(SO0Ty)) { // case 4 1854 Src->setOperand(1, GO1); 1855 GEP.setOperand(1, SO1); 1856 return &GEP; 1857 } else { 1858 // Case 1 or 2 1859 // -- have to recreate %src & %gep 1860 // put NewSrc at same location as %src 1861 Builder.SetInsertPoint(cast<Instruction>(PtrOp)); 1862 auto *NewSrc = cast<GetElementPtrInst>( 1863 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName())); 1864 NewSrc->setIsInBounds(Src->isInBounds()); 1865 auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1}); 1866 NewGEP->setIsInBounds(GEP.isInBounds()); 1867 return NewGEP; 1868 } 1869 } 1870 } 1871 } 1872 1873 // Note that if our source is a gep chain itself then we wait for that 1874 // chain to be resolved before we perform this transformation. This 1875 // avoids us creating a TON of code in some cases. 1876 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 1877 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1878 return nullptr; // Wait until our source is folded to completion. 1879 1880 SmallVector<Value*, 8> Indices; 1881 1882 // Find out whether the last index in the source GEP is a sequential idx. 1883 bool EndsWithSequential = false; 1884 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1885 I != E; ++I) 1886 EndsWithSequential = I.isSequential(); 1887 1888 // Can we combine the two pointer arithmetics offsets? 1889 if (EndsWithSequential) { 1890 // Replace: gep (gep %P, long B), long A, ... 1891 // With: T = long A+B; gep %P, T, ... 1892 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1893 Value *GO1 = GEP.getOperand(1); 1894 1895 // If they aren't the same type, then the input hasn't been processed 1896 // by the loop above yet (which canonicalizes sequential index types to 1897 // intptr_t). Just avoid transforming this until the input has been 1898 // normalized. 1899 if (SO1->getType() != GO1->getType()) 1900 return nullptr; 1901 1902 Value *Sum = 1903 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 1904 // Only do the combine when we are sure the cost after the 1905 // merge is never more than that before the merge. 1906 if (Sum == nullptr) 1907 return nullptr; 1908 1909 // Update the GEP in place if possible. 1910 if (Src->getNumOperands() == 2) { 1911 GEP.setOperand(0, Src->getOperand(0)); 1912 GEP.setOperand(1, Sum); 1913 return &GEP; 1914 } 1915 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1916 Indices.push_back(Sum); 1917 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1918 } else if (isa<Constant>(*GEP.idx_begin()) && 1919 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1920 Src->getNumOperands() != 1) { 1921 // Otherwise we can do the fold if the first index of the GEP is a zero 1922 Indices.append(Src->op_begin()+1, Src->op_end()); 1923 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1924 } 1925 1926 if (!Indices.empty()) 1927 return GEP.isInBounds() && Src->isInBounds() 1928 ? GetElementPtrInst::CreateInBounds( 1929 Src->getSourceElementType(), Src->getOperand(0), Indices, 1930 GEP.getName()) 1931 : GetElementPtrInst::Create(Src->getSourceElementType(), 1932 Src->getOperand(0), Indices, 1933 GEP.getName()); 1934 } 1935 1936 if (GEP.getNumIndices() == 1) { 1937 unsigned AS = GEP.getPointerAddressSpace(); 1938 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 1939 DL.getIndexSizeInBits(AS)) { 1940 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType); 1941 1942 bool Matched = false; 1943 uint64_t C; 1944 Value *V = nullptr; 1945 if (TyAllocSize == 1) { 1946 V = GEP.getOperand(1); 1947 Matched = true; 1948 } else if (match(GEP.getOperand(1), 1949 m_AShr(m_Value(V), m_ConstantInt(C)))) { 1950 if (TyAllocSize == 1ULL << C) 1951 Matched = true; 1952 } else if (match(GEP.getOperand(1), 1953 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 1954 if (TyAllocSize == C) 1955 Matched = true; 1956 } 1957 1958 if (Matched) { 1959 // Canonicalize (gep i8* X, -(ptrtoint Y)) 1960 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) 1961 // The GEP pattern is emitted by the SCEV expander for certain kinds of 1962 // pointer arithmetic. 1963 if (match(V, m_Neg(m_PtrToInt(m_Value())))) { 1964 Operator *Index = cast<Operator>(V); 1965 Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType()); 1966 Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1)); 1967 return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType); 1968 } 1969 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) 1970 // to (bitcast Y) 1971 Value *Y; 1972 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), 1973 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) 1974 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 1975 } 1976 } 1977 } 1978 1979 // We do not handle pointer-vector geps here. 1980 if (GEPType->isVectorTy()) 1981 return nullptr; 1982 1983 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 1984 Value *StrippedPtr = PtrOp->stripPointerCasts(); 1985 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 1986 1987 if (StrippedPtr != PtrOp) { 1988 bool HasZeroPointerIndex = false; 1989 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType(); 1990 1991 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 1992 HasZeroPointerIndex = C->isZero(); 1993 1994 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 1995 // into : GEP [10 x i8]* X, i32 0, ... 1996 // 1997 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 1998 // into : GEP i8* X, ... 1999 // 2000 // This occurs when the program declares an array extern like "int X[];" 2001 if (HasZeroPointerIndex) { 2002 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2003 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2004 if (CATy->getElementType() == StrippedPtrEltTy) { 2005 // -> GEP i8* X, ... 2006 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 2007 GetElementPtrInst *Res = GetElementPtrInst::Create( 2008 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2009 Res->setIsInBounds(GEP.isInBounds()); 2010 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2011 return Res; 2012 // Insert Res, and create an addrspacecast. 2013 // e.g., 2014 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2015 // -> 2016 // %0 = GEP i8 addrspace(1)* X, ... 2017 // addrspacecast i8 addrspace(1)* %0 to i8* 2018 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2019 } 2020 2021 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2022 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2023 if (CATy->getElementType() == XATy->getElementType()) { 2024 // -> GEP [10 x i8]* X, i32 0, ... 2025 // At this point, we know that the cast source type is a pointer 2026 // to an array of the same type as the destination pointer 2027 // array. Because the array type is never stepped over (there 2028 // is a leading zero) we can fold the cast into this GEP. 2029 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2030 GEP.setOperand(0, StrippedPtr); 2031 GEP.setSourceElementType(XATy); 2032 return &GEP; 2033 } 2034 // Cannot replace the base pointer directly because StrippedPtr's 2035 // address space is different. Instead, create a new GEP followed by 2036 // an addrspacecast. 2037 // e.g., 2038 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2039 // i32 0, ... 2040 // -> 2041 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2042 // addrspacecast i8 addrspace(1)* %0 to i8* 2043 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 2044 Value *NewGEP = 2045 GEP.isInBounds() 2046 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2047 Idx, GEP.getName()) 2048 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2049 GEP.getName()); 2050 return new AddrSpaceCastInst(NewGEP, GEPType); 2051 } 2052 } 2053 } 2054 } else if (GEP.getNumOperands() == 2) { 2055 // Transform things like: 2056 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 2057 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 2058 if (StrippedPtrEltTy->isArrayTy() && 2059 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2060 DL.getTypeAllocSize(GEPEltType)) { 2061 Type *IdxType = DL.getIndexType(GEPType); 2062 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 2063 Value *NewGEP = 2064 GEP.isInBounds() 2065 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2066 GEP.getName()) 2067 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2068 GEP.getName()); 2069 2070 // V and GEP are both pointer types --> BitCast 2071 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2072 } 2073 2074 // Transform things like: 2075 // %V = mul i64 %N, 4 2076 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2077 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2078 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2079 // Check that changing the type amounts to dividing the index by a scale 2080 // factor. 2081 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 2082 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy); 2083 if (ResSize && SrcSize % ResSize == 0) { 2084 Value *Idx = GEP.getOperand(1); 2085 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2086 uint64_t Scale = SrcSize / ResSize; 2087 2088 // Earlier transforms ensure that the index has the right type 2089 // according to Data Layout, which considerably simplifies the 2090 // logic by eliminating implicit casts. 2091 assert(Idx->getType() == DL.getIndexType(GEPType) && 2092 "Index type does not match the Data Layout preferences"); 2093 2094 bool NSW; 2095 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2096 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2097 // If the multiplication NewIdx * Scale may overflow then the new 2098 // GEP may not be "inbounds". 2099 Value *NewGEP = 2100 GEP.isInBounds() && NSW 2101 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2102 NewIdx, GEP.getName()) 2103 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2104 GEP.getName()); 2105 2106 // The NewGEP must be pointer typed, so must the old one -> BitCast 2107 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2108 GEPType); 2109 } 2110 } 2111 } 2112 2113 // Similarly, transform things like: 2114 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2115 // (where tmp = 8*tmp2) into: 2116 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2117 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2118 StrippedPtrEltTy->isArrayTy()) { 2119 // Check that changing to the array element type amounts to dividing the 2120 // index by a scale factor. 2121 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 2122 uint64_t ArrayEltSize = 2123 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()); 2124 if (ResSize && ArrayEltSize % ResSize == 0) { 2125 Value *Idx = GEP.getOperand(1); 2126 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2127 uint64_t Scale = ArrayEltSize / ResSize; 2128 2129 // Earlier transforms ensure that the index has the right type 2130 // according to the Data Layout, which considerably simplifies 2131 // the logic by eliminating implicit casts. 2132 assert(Idx->getType() == DL.getIndexType(GEPType) && 2133 "Index type does not match the Data Layout preferences"); 2134 2135 bool NSW; 2136 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2137 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2138 // If the multiplication NewIdx * Scale may overflow then the new 2139 // GEP may not be "inbounds". 2140 Type *IndTy = DL.getIndexType(GEPType); 2141 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2142 2143 Value *NewGEP = 2144 GEP.isInBounds() && NSW 2145 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2146 Off, GEP.getName()) 2147 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2148 GEP.getName()); 2149 // The NewGEP must be pointer typed, so must the old one -> BitCast 2150 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2151 GEPType); 2152 } 2153 } 2154 } 2155 } 2156 } 2157 2158 // addrspacecast between types is canonicalized as a bitcast, then an 2159 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2160 // through the addrspacecast. 2161 Value *ASCStrippedPtrOp = PtrOp; 2162 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2163 // X = bitcast A addrspace(1)* to B addrspace(1)* 2164 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2165 // Z = gep Y, <...constant indices...> 2166 // Into an addrspacecasted GEP of the struct. 2167 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2168 ASCStrippedPtrOp = BC; 2169 } 2170 2171 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 2172 Value *SrcOp = BCI->getOperand(0); 2173 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2174 Type *SrcEltType = SrcType->getElementType(); 2175 2176 // GEP directly using the source operand if this GEP is accessing an element 2177 // of a bitcasted pointer to vector or array of the same dimensions: 2178 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2179 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2180 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy) { 2181 return ArrTy->getArrayElementType() == VecTy->getVectorElementType() && 2182 ArrTy->getArrayNumElements() == VecTy->getVectorNumElements(); 2183 }; 2184 if (GEP.getNumOperands() == 3 && 2185 ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() && 2186 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType)) || 2187 (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() && 2188 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType)))) { 2189 2190 // Create a new GEP here, as using `setOperand()` followed by 2191 // `setSourceElementType()` won't actually update the type of the 2192 // existing GEP Value. Causing issues if this Value is accessed when 2193 // constructing an AddrSpaceCastInst 2194 Value *NGEP = 2195 GEP.isInBounds() 2196 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}) 2197 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}); 2198 NGEP->takeName(&GEP); 2199 2200 // Preserve GEP address space to satisfy users 2201 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2202 return new AddrSpaceCastInst(NGEP, GEPType); 2203 2204 return replaceInstUsesWith(GEP, NGEP); 2205 } 2206 2207 // See if we can simplify: 2208 // X = bitcast A* to B* 2209 // Y = gep X, <...constant indices...> 2210 // into a gep of the original struct. This is important for SROA and alias 2211 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2212 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 2213 APInt Offset(OffsetBits, 0); 2214 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) { 2215 // If this GEP instruction doesn't move the pointer, just replace the GEP 2216 // with a bitcast of the real input to the dest type. 2217 if (!Offset) { 2218 // If the bitcast is of an allocation, and the allocation will be 2219 // converted to match the type of the cast, don't touch this. 2220 if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) { 2221 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2222 if (Instruction *I = visitBitCast(*BCI)) { 2223 if (I != BCI) { 2224 I->takeName(BCI); 2225 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2226 replaceInstUsesWith(*BCI, I); 2227 } 2228 return &GEP; 2229 } 2230 } 2231 2232 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2233 return new AddrSpaceCastInst(SrcOp, GEPType); 2234 return new BitCastInst(SrcOp, GEPType); 2235 } 2236 2237 // Otherwise, if the offset is non-zero, we need to find out if there is a 2238 // field at Offset in 'A's type. If so, we can pull the cast through the 2239 // GEP. 2240 SmallVector<Value*, 8> NewIndices; 2241 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2242 Value *NGEP = 2243 GEP.isInBounds() 2244 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) 2245 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); 2246 2247 if (NGEP->getType() == GEPType) 2248 return replaceInstUsesWith(GEP, NGEP); 2249 NGEP->takeName(&GEP); 2250 2251 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2252 return new AddrSpaceCastInst(NGEP, GEPType); 2253 return new BitCastInst(NGEP, GEPType); 2254 } 2255 } 2256 } 2257 2258 if (!GEP.isInBounds()) { 2259 unsigned IdxWidth = 2260 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2261 APInt BasePtrOffset(IdxWidth, 0); 2262 Value *UnderlyingPtrOp = 2263 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2264 BasePtrOffset); 2265 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2266 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2267 BasePtrOffset.isNonNegative()) { 2268 APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType())); 2269 if (BasePtrOffset.ule(AllocSize)) { 2270 return GetElementPtrInst::CreateInBounds( 2271 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1), 2272 GEP.getName()); 2273 } 2274 } 2275 } 2276 } 2277 2278 return nullptr; 2279 } 2280 2281 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 2282 Instruction *AI) { 2283 if (isa<ConstantPointerNull>(V)) 2284 return true; 2285 if (auto *LI = dyn_cast<LoadInst>(V)) 2286 return isa<GlobalVariable>(LI->getPointerOperand()); 2287 // Two distinct allocations will never be equal. 2288 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2289 // through bitcasts of V can cause 2290 // the result statement below to be true, even when AI and V (ex: 2291 // i8* ->i32* ->i8* of AI) are the same allocations. 2292 return isAllocLikeFn(V, TLI) && V != AI; 2293 } 2294 2295 static bool isAllocSiteRemovable(Instruction *AI, 2296 SmallVectorImpl<WeakTrackingVH> &Users, 2297 const TargetLibraryInfo *TLI) { 2298 SmallVector<Instruction*, 4> Worklist; 2299 Worklist.push_back(AI); 2300 2301 do { 2302 Instruction *PI = Worklist.pop_back_val(); 2303 for (User *U : PI->users()) { 2304 Instruction *I = cast<Instruction>(U); 2305 switch (I->getOpcode()) { 2306 default: 2307 // Give up the moment we see something we can't handle. 2308 return false; 2309 2310 case Instruction::AddrSpaceCast: 2311 case Instruction::BitCast: 2312 case Instruction::GetElementPtr: 2313 Users.emplace_back(I); 2314 Worklist.push_back(I); 2315 continue; 2316 2317 case Instruction::ICmp: { 2318 ICmpInst *ICI = cast<ICmpInst>(I); 2319 // We can fold eq/ne comparisons with null to false/true, respectively. 2320 // We also fold comparisons in some conditions provided the alloc has 2321 // not escaped (see isNeverEqualToUnescapedAlloc). 2322 if (!ICI->isEquality()) 2323 return false; 2324 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2325 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2326 return false; 2327 Users.emplace_back(I); 2328 continue; 2329 } 2330 2331 case Instruction::Call: 2332 // Ignore no-op and store intrinsics. 2333 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2334 switch (II->getIntrinsicID()) { 2335 default: 2336 return false; 2337 2338 case Intrinsic::memmove: 2339 case Intrinsic::memcpy: 2340 case Intrinsic::memset: { 2341 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2342 if (MI->isVolatile() || MI->getRawDest() != PI) 2343 return false; 2344 LLVM_FALLTHROUGH; 2345 } 2346 case Intrinsic::invariant_start: 2347 case Intrinsic::invariant_end: 2348 case Intrinsic::lifetime_start: 2349 case Intrinsic::lifetime_end: 2350 case Intrinsic::objectsize: 2351 Users.emplace_back(I); 2352 continue; 2353 } 2354 } 2355 2356 if (isFreeCall(I, TLI)) { 2357 Users.emplace_back(I); 2358 continue; 2359 } 2360 return false; 2361 2362 case Instruction::Store: { 2363 StoreInst *SI = cast<StoreInst>(I); 2364 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2365 return false; 2366 Users.emplace_back(I); 2367 continue; 2368 } 2369 } 2370 llvm_unreachable("missing a return?"); 2371 } 2372 } while (!Worklist.empty()); 2373 return true; 2374 } 2375 2376 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 2377 // If we have a malloc call which is only used in any amount of comparisons to 2378 // null and free calls, delete the calls and replace the comparisons with true 2379 // or false as appropriate. 2380 2381 // This is based on the principle that we can substitute our own allocation 2382 // function (which will never return null) rather than knowledge of the 2383 // specific function being called. In some sense this can change the permitted 2384 // outputs of a program (when we convert a malloc to an alloca, the fact that 2385 // the allocation is now on the stack is potentially visible, for example), 2386 // but we believe in a permissible manner. 2387 SmallVector<WeakTrackingVH, 64> Users; 2388 2389 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2390 // before each store. 2391 TinyPtrVector<DbgVariableIntrinsic *> DIIs; 2392 std::unique_ptr<DIBuilder> DIB; 2393 if (isa<AllocaInst>(MI)) { 2394 DIIs = FindDbgAddrUses(&MI); 2395 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2396 } 2397 2398 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2399 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2400 // Lowering all @llvm.objectsize calls first because they may 2401 // use a bitcast/GEP of the alloca we are removing. 2402 if (!Users[i]) 2403 continue; 2404 2405 Instruction *I = cast<Instruction>(&*Users[i]); 2406 2407 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2408 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2409 Value *Result = 2410 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); 2411 replaceInstUsesWith(*I, Result); 2412 eraseInstFromFunction(*I); 2413 Users[i] = nullptr; // Skip examining in the next loop. 2414 } 2415 } 2416 } 2417 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2418 if (!Users[i]) 2419 continue; 2420 2421 Instruction *I = cast<Instruction>(&*Users[i]); 2422 2423 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2424 replaceInstUsesWith(*C, 2425 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2426 C->isFalseWhenEqual())); 2427 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) || 2428 isa<AddrSpaceCastInst>(I)) { 2429 replaceInstUsesWith(*I, UndefValue::get(I->getType())); 2430 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2431 for (auto *DII : DIIs) 2432 ConvertDebugDeclareToDebugValue(DII, SI, *DIB); 2433 } 2434 eraseInstFromFunction(*I); 2435 } 2436 2437 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2438 // Replace invoke with a NOP intrinsic to maintain the original CFG 2439 Module *M = II->getModule(); 2440 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2441 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2442 None, "", II->getParent()); 2443 } 2444 2445 for (auto *DII : DIIs) 2446 eraseInstFromFunction(*DII); 2447 2448 return eraseInstFromFunction(MI); 2449 } 2450 return nullptr; 2451 } 2452 2453 /// Move the call to free before a NULL test. 2454 /// 2455 /// Check if this free is accessed after its argument has been test 2456 /// against NULL (property 0). 2457 /// If yes, it is legal to move this call in its predecessor block. 2458 /// 2459 /// The move is performed only if the block containing the call to free 2460 /// will be removed, i.e.: 2461 /// 1. it has only one predecessor P, and P has two successors 2462 /// 2. it contains the call, noops, and an unconditional branch 2463 /// 3. its successor is the same as its predecessor's successor 2464 /// 2465 /// The profitability is out-of concern here and this function should 2466 /// be called only if the caller knows this transformation would be 2467 /// profitable (e.g., for code size). 2468 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2469 const DataLayout &DL) { 2470 Value *Op = FI.getArgOperand(0); 2471 BasicBlock *FreeInstrBB = FI.getParent(); 2472 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2473 2474 // Validate part of constraint #1: Only one predecessor 2475 // FIXME: We can extend the number of predecessor, but in that case, we 2476 // would duplicate the call to free in each predecessor and it may 2477 // not be profitable even for code size. 2478 if (!PredBB) 2479 return nullptr; 2480 2481 // Validate constraint #2: Does this block contains only the call to 2482 // free, noops, and an unconditional branch? 2483 BasicBlock *SuccBB; 2484 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2485 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2486 return nullptr; 2487 2488 // If there are only 2 instructions in the block, at this point, 2489 // this is the call to free and unconditional. 2490 // If there are more than 2 instructions, check that they are noops 2491 // i.e., they won't hurt the performance of the generated code. 2492 if (FreeInstrBB->size() != 2) { 2493 for (const Instruction &Inst : *FreeInstrBB) { 2494 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2495 continue; 2496 auto *Cast = dyn_cast<CastInst>(&Inst); 2497 if (!Cast || !Cast->isNoopCast(DL)) 2498 return nullptr; 2499 } 2500 } 2501 // Validate the rest of constraint #1 by matching on the pred branch. 2502 Instruction *TI = PredBB->getTerminator(); 2503 BasicBlock *TrueBB, *FalseBB; 2504 ICmpInst::Predicate Pred; 2505 if (!match(TI, m_Br(m_ICmp(Pred, 2506 m_CombineOr(m_Specific(Op), 2507 m_Specific(Op->stripPointerCasts())), 2508 m_Zero()), 2509 TrueBB, FalseBB))) 2510 return nullptr; 2511 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2512 return nullptr; 2513 2514 // Validate constraint #3: Ensure the null case just falls through. 2515 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2516 return nullptr; 2517 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2518 "Broken CFG: missing edge from predecessor to successor"); 2519 2520 // At this point, we know that everything in FreeInstrBB can be moved 2521 // before TI. 2522 for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end(); 2523 It != End;) { 2524 Instruction &Instr = *It++; 2525 if (&Instr == FreeInstrBBTerminator) 2526 break; 2527 Instr.moveBefore(TI); 2528 } 2529 assert(FreeInstrBB->size() == 1 && 2530 "Only the branch instruction should remain"); 2531 return &FI; 2532 } 2533 2534 Instruction *InstCombiner::visitFree(CallInst &FI) { 2535 Value *Op = FI.getArgOperand(0); 2536 2537 // free undef -> unreachable. 2538 if (isa<UndefValue>(Op)) { 2539 // Leave a marker since we can't modify the CFG here. 2540 CreateNonTerminatorUnreachable(&FI); 2541 return eraseInstFromFunction(FI); 2542 } 2543 2544 // If we have 'free null' delete the instruction. This can happen in stl code 2545 // when lots of inlining happens. 2546 if (isa<ConstantPointerNull>(Op)) 2547 return eraseInstFromFunction(FI); 2548 2549 // If we optimize for code size, try to move the call to free before the null 2550 // test so that simplify cfg can remove the empty block and dead code 2551 // elimination the branch. I.e., helps to turn something like: 2552 // if (foo) free(foo); 2553 // into 2554 // free(foo); 2555 if (MinimizeSize) 2556 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 2557 return I; 2558 2559 return nullptr; 2560 } 2561 2562 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { 2563 if (RI.getNumOperands() == 0) // ret void 2564 return nullptr; 2565 2566 Value *ResultOp = RI.getOperand(0); 2567 Type *VTy = ResultOp->getType(); 2568 if (!VTy->isIntegerTy()) 2569 return nullptr; 2570 2571 // There might be assume intrinsics dominating this return that completely 2572 // determine the value. If so, constant fold it. 2573 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2574 if (Known.isConstant()) 2575 RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant())); 2576 2577 return nullptr; 2578 } 2579 2580 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 2581 // Change br (not X), label True, label False to: br X, label False, True 2582 Value *X = nullptr; 2583 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 2584 !isa<Constant>(X)) { 2585 // Swap Destinations and condition... 2586 BI.setCondition(X); 2587 BI.swapSuccessors(); 2588 return &BI; 2589 } 2590 2591 // If the condition is irrelevant, remove the use so that other 2592 // transforms on the condition become more effective. 2593 if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) && 2594 BI.getSuccessor(0) == BI.getSuccessor(1)) { 2595 BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType())); 2596 return &BI; 2597 } 2598 2599 // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq. 2600 CmpInst::Predicate Pred; 2601 if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), 2602 m_BasicBlock(), m_BasicBlock())) && 2603 !isCanonicalPredicate(Pred)) { 2604 // Swap destinations and condition. 2605 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 2606 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2607 BI.swapSuccessors(); 2608 Worklist.Add(Cond); 2609 return &BI; 2610 } 2611 2612 return nullptr; 2613 } 2614 2615 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 2616 Value *Cond = SI.getCondition(); 2617 Value *Op0; 2618 ConstantInt *AddRHS; 2619 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 2620 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2621 for (auto Case : SI.cases()) { 2622 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 2623 assert(isa<ConstantInt>(NewCase) && 2624 "Result of expression should be constant"); 2625 Case.setValue(cast<ConstantInt>(NewCase)); 2626 } 2627 SI.setCondition(Op0); 2628 return &SI; 2629 } 2630 2631 KnownBits Known = computeKnownBits(Cond, 0, &SI); 2632 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 2633 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 2634 2635 // Compute the number of leading bits we can ignore. 2636 // TODO: A better way to determine this would use ComputeNumSignBits(). 2637 for (auto &C : SI.cases()) { 2638 LeadingKnownZeros = std::min( 2639 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2640 LeadingKnownOnes = std::min( 2641 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2642 } 2643 2644 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 2645 2646 // Shrink the condition operand if the new type is smaller than the old type. 2647 // But do not shrink to a non-standard type, because backend can't generate 2648 // good code for that yet. 2649 // TODO: We can make it aggressive again after fixing PR39569. 2650 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 2651 shouldChangeType(Known.getBitWidth(), NewWidth)) { 2652 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2653 Builder.SetInsertPoint(&SI); 2654 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 2655 SI.setCondition(NewCond); 2656 2657 for (auto Case : SI.cases()) { 2658 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 2659 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 2660 } 2661 return &SI; 2662 } 2663 2664 return nullptr; 2665 } 2666 2667 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 2668 Value *Agg = EV.getAggregateOperand(); 2669 2670 if (!EV.hasIndices()) 2671 return replaceInstUsesWith(EV, Agg); 2672 2673 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 2674 SQ.getWithInstruction(&EV))) 2675 return replaceInstUsesWith(EV, V); 2676 2677 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 2678 // We're extracting from an insertvalue instruction, compare the indices 2679 const unsigned *exti, *exte, *insi, *inse; 2680 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 2681 exte = EV.idx_end(), inse = IV->idx_end(); 2682 exti != exte && insi != inse; 2683 ++exti, ++insi) { 2684 if (*insi != *exti) 2685 // The insert and extract both reference distinctly different elements. 2686 // This means the extract is not influenced by the insert, and we can 2687 // replace the aggregate operand of the extract with the aggregate 2688 // operand of the insert. i.e., replace 2689 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2690 // %E = extractvalue { i32, { i32 } } %I, 0 2691 // with 2692 // %E = extractvalue { i32, { i32 } } %A, 0 2693 return ExtractValueInst::Create(IV->getAggregateOperand(), 2694 EV.getIndices()); 2695 } 2696 if (exti == exte && insi == inse) 2697 // Both iterators are at the end: Index lists are identical. Replace 2698 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2699 // %C = extractvalue { i32, { i32 } } %B, 1, 0 2700 // with "i32 42" 2701 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 2702 if (exti == exte) { 2703 // The extract list is a prefix of the insert list. i.e. replace 2704 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2705 // %E = extractvalue { i32, { i32 } } %I, 1 2706 // with 2707 // %X = extractvalue { i32, { i32 } } %A, 1 2708 // %E = insertvalue { i32 } %X, i32 42, 0 2709 // by switching the order of the insert and extract (though the 2710 // insertvalue should be left in, since it may have other uses). 2711 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 2712 EV.getIndices()); 2713 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 2714 makeArrayRef(insi, inse)); 2715 } 2716 if (insi == inse) 2717 // The insert list is a prefix of the extract list 2718 // We can simply remove the common indices from the extract and make it 2719 // operate on the inserted value instead of the insertvalue result. 2720 // i.e., replace 2721 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2722 // %E = extractvalue { i32, { i32 } } %I, 1, 0 2723 // with 2724 // %E extractvalue { i32 } { i32 42 }, 0 2725 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 2726 makeArrayRef(exti, exte)); 2727 } 2728 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 2729 // We're extracting from an overflow intrinsic, see if we're the only user, 2730 // which allows us to simplify multiple result intrinsics to simpler 2731 // things that just get one value. 2732 if (WO->hasOneUse()) { 2733 // Check if we're grabbing only the result of a 'with overflow' intrinsic 2734 // and replace it with a traditional binary instruction. 2735 if (*EV.idx_begin() == 0) { 2736 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 2737 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 2738 replaceInstUsesWith(*WO, UndefValue::get(WO->getType())); 2739 eraseInstFromFunction(*WO); 2740 return BinaryOperator::Create(BinOp, LHS, RHS); 2741 } 2742 2743 // If the normal result of the add is dead, and the RHS is a constant, 2744 // we can transform this into a range comparison. 2745 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 2746 if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow) 2747 if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS())) 2748 return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(), 2749 ConstantExpr::getNot(CI)); 2750 } 2751 } 2752 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2753 // If the (non-volatile) load only has one use, we can rewrite this to a 2754 // load from a GEP. This reduces the size of the load. If a load is used 2755 // only by extractvalue instructions then this either must have been 2756 // optimized before, or it is a struct with padding, in which case we 2757 // don't want to do the transformation as it loses padding knowledge. 2758 if (L->isSimple() && L->hasOneUse()) { 2759 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2760 SmallVector<Value*, 4> Indices; 2761 // Prefix an i32 0 since we need the first element. 2762 Indices.push_back(Builder.getInt32(0)); 2763 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2764 I != E; ++I) 2765 Indices.push_back(Builder.getInt32(*I)); 2766 2767 // We need to insert these at the location of the old load, not at that of 2768 // the extractvalue. 2769 Builder.SetInsertPoint(L); 2770 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 2771 L->getPointerOperand(), Indices); 2772 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 2773 // Whatever aliasing information we had for the orignal load must also 2774 // hold for the smaller load, so propagate the annotations. 2775 AAMDNodes Nodes; 2776 L->getAAMetadata(Nodes); 2777 NL->setAAMetadata(Nodes); 2778 // Returning the load directly will cause the main loop to insert it in 2779 // the wrong spot, so use replaceInstUsesWith(). 2780 return replaceInstUsesWith(EV, NL); 2781 } 2782 // We could simplify extracts from other values. Note that nested extracts may 2783 // already be simplified implicitly by the above: extract (extract (insert) ) 2784 // will be translated into extract ( insert ( extract ) ) first and then just 2785 // the value inserted, if appropriate. Similarly for extracts from single-use 2786 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2787 // and if again single-use then via load (gep (gep)) to load (gep). 2788 // However, double extracts from e.g. function arguments or return values 2789 // aren't handled yet. 2790 return nullptr; 2791 } 2792 2793 /// Return 'true' if the given typeinfo will match anything. 2794 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 2795 switch (Personality) { 2796 case EHPersonality::GNU_C: 2797 case EHPersonality::GNU_C_SjLj: 2798 case EHPersonality::Rust: 2799 // The GCC C EH and Rust personality only exists to support cleanups, so 2800 // it's not clear what the semantics of catch clauses are. 2801 return false; 2802 case EHPersonality::Unknown: 2803 return false; 2804 case EHPersonality::GNU_Ada: 2805 // While __gnat_all_others_value will match any Ada exception, it doesn't 2806 // match foreign exceptions (or didn't, before gcc-4.7). 2807 return false; 2808 case EHPersonality::GNU_CXX: 2809 case EHPersonality::GNU_CXX_SjLj: 2810 case EHPersonality::GNU_ObjC: 2811 case EHPersonality::MSVC_X86SEH: 2812 case EHPersonality::MSVC_Win64SEH: 2813 case EHPersonality::MSVC_CXX: 2814 case EHPersonality::CoreCLR: 2815 case EHPersonality::Wasm_CXX: 2816 return TypeInfo->isNullValue(); 2817 } 2818 llvm_unreachable("invalid enum"); 2819 } 2820 2821 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2822 return 2823 cast<ArrayType>(LHS->getType())->getNumElements() 2824 < 2825 cast<ArrayType>(RHS->getType())->getNumElements(); 2826 } 2827 2828 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2829 // The logic here should be correct for any real-world personality function. 2830 // However if that turns out not to be true, the offending logic can always 2831 // be conditioned on the personality function, like the catch-all logic is. 2832 EHPersonality Personality = 2833 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 2834 2835 // Simplify the list of clauses, eg by removing repeated catch clauses 2836 // (these are often created by inlining). 2837 bool MakeNewInstruction = false; // If true, recreate using the following: 2838 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2839 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2840 2841 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 2842 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 2843 bool isLastClause = i + 1 == e; 2844 if (LI.isCatch(i)) { 2845 // A catch clause. 2846 Constant *CatchClause = LI.getClause(i); 2847 Constant *TypeInfo = CatchClause->stripPointerCasts(); 2848 2849 // If we already saw this clause, there is no point in having a second 2850 // copy of it. 2851 if (AlreadyCaught.insert(TypeInfo).second) { 2852 // This catch clause was not already seen. 2853 NewClauses.push_back(CatchClause); 2854 } else { 2855 // Repeated catch clause - drop the redundant copy. 2856 MakeNewInstruction = true; 2857 } 2858 2859 // If this is a catch-all then there is no point in keeping any following 2860 // clauses or marking the landingpad as having a cleanup. 2861 if (isCatchAll(Personality, TypeInfo)) { 2862 if (!isLastClause) 2863 MakeNewInstruction = true; 2864 CleanupFlag = false; 2865 break; 2866 } 2867 } else { 2868 // A filter clause. If any of the filter elements were already caught 2869 // then they can be dropped from the filter. It is tempting to try to 2870 // exploit the filter further by saying that any typeinfo that does not 2871 // occur in the filter can't be caught later (and thus can be dropped). 2872 // However this would be wrong, since typeinfos can match without being 2873 // equal (for example if one represents a C++ class, and the other some 2874 // class derived from it). 2875 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 2876 Constant *FilterClause = LI.getClause(i); 2877 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 2878 unsigned NumTypeInfos = FilterType->getNumElements(); 2879 2880 // An empty filter catches everything, so there is no point in keeping any 2881 // following clauses or marking the landingpad as having a cleanup. By 2882 // dealing with this case here the following code is made a bit simpler. 2883 if (!NumTypeInfos) { 2884 NewClauses.push_back(FilterClause); 2885 if (!isLastClause) 2886 MakeNewInstruction = true; 2887 CleanupFlag = false; 2888 break; 2889 } 2890 2891 bool MakeNewFilter = false; // If true, make a new filter. 2892 SmallVector<Constant *, 16> NewFilterElts; // New elements. 2893 if (isa<ConstantAggregateZero>(FilterClause)) { 2894 // Not an empty filter - it contains at least one null typeinfo. 2895 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 2896 Constant *TypeInfo = 2897 Constant::getNullValue(FilterType->getElementType()); 2898 // If this typeinfo is a catch-all then the filter can never match. 2899 if (isCatchAll(Personality, TypeInfo)) { 2900 // Throw the filter away. 2901 MakeNewInstruction = true; 2902 continue; 2903 } 2904 2905 // There is no point in having multiple copies of this typeinfo, so 2906 // discard all but the first copy if there is more than one. 2907 NewFilterElts.push_back(TypeInfo); 2908 if (NumTypeInfos > 1) 2909 MakeNewFilter = true; 2910 } else { 2911 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 2912 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 2913 NewFilterElts.reserve(NumTypeInfos); 2914 2915 // Remove any filter elements that were already caught or that already 2916 // occurred in the filter. While there, see if any of the elements are 2917 // catch-alls. If so, the filter can be discarded. 2918 bool SawCatchAll = false; 2919 for (unsigned j = 0; j != NumTypeInfos; ++j) { 2920 Constant *Elt = Filter->getOperand(j); 2921 Constant *TypeInfo = Elt->stripPointerCasts(); 2922 if (isCatchAll(Personality, TypeInfo)) { 2923 // This element is a catch-all. Bail out, noting this fact. 2924 SawCatchAll = true; 2925 break; 2926 } 2927 2928 // Even if we've seen a type in a catch clause, we don't want to 2929 // remove it from the filter. An unexpected type handler may be 2930 // set up for a call site which throws an exception of the same 2931 // type caught. In order for the exception thrown by the unexpected 2932 // handler to propagate correctly, the filter must be correctly 2933 // described for the call site. 2934 // 2935 // Example: 2936 // 2937 // void unexpected() { throw 1;} 2938 // void foo() throw (int) { 2939 // std::set_unexpected(unexpected); 2940 // try { 2941 // throw 2.0; 2942 // } catch (int i) {} 2943 // } 2944 2945 // There is no point in having multiple copies of the same typeinfo in 2946 // a filter, so only add it if we didn't already. 2947 if (SeenInFilter.insert(TypeInfo).second) 2948 NewFilterElts.push_back(cast<Constant>(Elt)); 2949 } 2950 // A filter containing a catch-all cannot match anything by definition. 2951 if (SawCatchAll) { 2952 // Throw the filter away. 2953 MakeNewInstruction = true; 2954 continue; 2955 } 2956 2957 // If we dropped something from the filter, make a new one. 2958 if (NewFilterElts.size() < NumTypeInfos) 2959 MakeNewFilter = true; 2960 } 2961 if (MakeNewFilter) { 2962 FilterType = ArrayType::get(FilterType->getElementType(), 2963 NewFilterElts.size()); 2964 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 2965 MakeNewInstruction = true; 2966 } 2967 2968 NewClauses.push_back(FilterClause); 2969 2970 // If the new filter is empty then it will catch everything so there is 2971 // no point in keeping any following clauses or marking the landingpad 2972 // as having a cleanup. The case of the original filter being empty was 2973 // already handled above. 2974 if (MakeNewFilter && !NewFilterElts.size()) { 2975 assert(MakeNewInstruction && "New filter but not a new instruction!"); 2976 CleanupFlag = false; 2977 break; 2978 } 2979 } 2980 } 2981 2982 // If several filters occur in a row then reorder them so that the shortest 2983 // filters come first (those with the smallest number of elements). This is 2984 // advantageous because shorter filters are more likely to match, speeding up 2985 // unwinding, but mostly because it increases the effectiveness of the other 2986 // filter optimizations below. 2987 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 2988 unsigned j; 2989 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 2990 for (j = i; j != e; ++j) 2991 if (!isa<ArrayType>(NewClauses[j]->getType())) 2992 break; 2993 2994 // Check whether the filters are already sorted by length. We need to know 2995 // if sorting them is actually going to do anything so that we only make a 2996 // new landingpad instruction if it does. 2997 for (unsigned k = i; k + 1 < j; ++k) 2998 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 2999 // Not sorted, so sort the filters now. Doing an unstable sort would be 3000 // correct too but reordering filters pointlessly might confuse users. 3001 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3002 shorter_filter); 3003 MakeNewInstruction = true; 3004 break; 3005 } 3006 3007 // Look for the next batch of filters. 3008 i = j + 1; 3009 } 3010 3011 // If typeinfos matched if and only if equal, then the elements of a filter L 3012 // that occurs later than a filter F could be replaced by the intersection of 3013 // the elements of F and L. In reality two typeinfos can match without being 3014 // equal (for example if one represents a C++ class, and the other some class 3015 // derived from it) so it would be wrong to perform this transform in general. 3016 // However the transform is correct and useful if F is a subset of L. In that 3017 // case L can be replaced by F, and thus removed altogether since repeating a 3018 // filter is pointless. So here we look at all pairs of filters F and L where 3019 // L follows F in the list of clauses, and remove L if every element of F is 3020 // an element of L. This can occur when inlining C++ functions with exception 3021 // specifications. 3022 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3023 // Examine each filter in turn. 3024 Value *Filter = NewClauses[i]; 3025 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3026 if (!FTy) 3027 // Not a filter - skip it. 3028 continue; 3029 unsigned FElts = FTy->getNumElements(); 3030 // Examine each filter following this one. Doing this backwards means that 3031 // we don't have to worry about filters disappearing under us when removed. 3032 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3033 Value *LFilter = NewClauses[j]; 3034 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3035 if (!LTy) 3036 // Not a filter - skip it. 3037 continue; 3038 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3039 // an element of LFilter, then discard LFilter. 3040 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3041 // If Filter is empty then it is a subset of LFilter. 3042 if (!FElts) { 3043 // Discard LFilter. 3044 NewClauses.erase(J); 3045 MakeNewInstruction = true; 3046 // Move on to the next filter. 3047 continue; 3048 } 3049 unsigned LElts = LTy->getNumElements(); 3050 // If Filter is longer than LFilter then it cannot be a subset of it. 3051 if (FElts > LElts) 3052 // Move on to the next filter. 3053 continue; 3054 // At this point we know that LFilter has at least one element. 3055 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3056 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3057 // already know that Filter is not longer than LFilter). 3058 if (isa<ConstantAggregateZero>(Filter)) { 3059 assert(FElts <= LElts && "Should have handled this case earlier!"); 3060 // Discard LFilter. 3061 NewClauses.erase(J); 3062 MakeNewInstruction = true; 3063 } 3064 // Move on to the next filter. 3065 continue; 3066 } 3067 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3068 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3069 // Since Filter is non-empty and contains only zeros, it is a subset of 3070 // LFilter iff LFilter contains a zero. 3071 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3072 for (unsigned l = 0; l != LElts; ++l) 3073 if (LArray->getOperand(l)->isNullValue()) { 3074 // LFilter contains a zero - discard it. 3075 NewClauses.erase(J); 3076 MakeNewInstruction = true; 3077 break; 3078 } 3079 // Move on to the next filter. 3080 continue; 3081 } 3082 // At this point we know that both filters are ConstantArrays. Loop over 3083 // operands to see whether every element of Filter is also an element of 3084 // LFilter. Since filters tend to be short this is probably faster than 3085 // using a method that scales nicely. 3086 ConstantArray *FArray = cast<ConstantArray>(Filter); 3087 bool AllFound = true; 3088 for (unsigned f = 0; f != FElts; ++f) { 3089 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3090 AllFound = false; 3091 for (unsigned l = 0; l != LElts; ++l) { 3092 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3093 if (LTypeInfo == FTypeInfo) { 3094 AllFound = true; 3095 break; 3096 } 3097 } 3098 if (!AllFound) 3099 break; 3100 } 3101 if (AllFound) { 3102 // Discard LFilter. 3103 NewClauses.erase(J); 3104 MakeNewInstruction = true; 3105 } 3106 // Move on to the next filter. 3107 } 3108 } 3109 3110 // If we changed any of the clauses, replace the old landingpad instruction 3111 // with a new one. 3112 if (MakeNewInstruction) { 3113 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3114 NewClauses.size()); 3115 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3116 NLI->addClause(NewClauses[i]); 3117 // A landing pad with no clauses must have the cleanup flag set. It is 3118 // theoretically possible, though highly unlikely, that we eliminated all 3119 // clauses. If so, force the cleanup flag to true. 3120 if (NewClauses.empty()) 3121 CleanupFlag = true; 3122 NLI->setCleanup(CleanupFlag); 3123 return NLI; 3124 } 3125 3126 // Even if none of the clauses changed, we may nonetheless have understood 3127 // that the cleanup flag is pointless. Clear it if so. 3128 if (LI.isCleanup() != CleanupFlag) { 3129 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3130 LI.setCleanup(CleanupFlag); 3131 return &LI; 3132 } 3133 3134 return nullptr; 3135 } 3136 3137 Instruction *InstCombiner::visitFreeze(FreezeInst &I) { 3138 Value *Op0 = I.getOperand(0); 3139 3140 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3141 return replaceInstUsesWith(I, V); 3142 3143 return nullptr; 3144 } 3145 3146 /// Try to move the specified instruction from its current block into the 3147 /// beginning of DestBlock, which can only happen if it's safe to move the 3148 /// instruction past all of the instructions between it and the end of its 3149 /// block. 3150 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock, 3151 InstCombiner::BuilderTy &Builder) { 3152 assert(I->hasOneUse() && "Invariants didn't hold!"); 3153 BasicBlock *SrcBlock = I->getParent(); 3154 3155 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3156 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 3157 I->isTerminator()) 3158 return false; 3159 3160 // Do not sink static or dynamic alloca instructions. Static allocas must 3161 // remain in the entry block, and dynamic allocas must not be sunk in between 3162 // a stacksave / stackrestore pair, which would incorrectly shorten its 3163 // lifetime. 3164 if (isa<AllocaInst>(I)) 3165 return false; 3166 3167 // Do not sink into catchswitch blocks. 3168 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 3169 return false; 3170 3171 // Do not sink convergent call instructions. 3172 if (auto *CI = dyn_cast<CallInst>(I)) { 3173 if (CI->isConvergent()) 3174 return false; 3175 } 3176 // We can only sink load instructions if there is nothing between the load and 3177 // the end of block that could change the value. 3178 if (I->mayReadFromMemory()) { 3179 for (BasicBlock::iterator Scan = I->getIterator(), 3180 E = I->getParent()->end(); 3181 Scan != E; ++Scan) 3182 if (Scan->mayWriteToMemory()) 3183 return false; 3184 } 3185 3186 // If this instruction was providing nonnull guarantees insert assumptions for 3187 // nonnull call site arguments. 3188 if (auto CS = dyn_cast<CallBase>(I)) { 3189 for (unsigned Idx = 0; Idx != CS->getNumArgOperands(); Idx++) 3190 if (CS->paramHasAttr(Idx, Attribute::NonNull) || 3191 (CS->paramHasAttr(Idx, Attribute::Dereferenceable) && 3192 !llvm::NullPointerIsDefined(CS->getFunction(), 3193 CS->getArgOperand(Idx) 3194 ->getType() 3195 ->getPointerAddressSpace()))) { 3196 Value *V = CS->getArgOperand(Idx); 3197 3198 Builder.SetInsertPoint(I->getParent(), I->getIterator()); 3199 Builder.CreateAssumption(Builder.CreateIsNotNull(V)); 3200 } 3201 } 3202 3203 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 3204 I->moveBefore(&*InsertPos); 3205 ++NumSunkInst; 3206 3207 // Also sink all related debug uses from the source basic block. Otherwise we 3208 // get debug use before the def. Attempt to salvage debug uses first, to 3209 // maximise the range variables have location for. If we cannot salvage, then 3210 // mark the location undef: we know it was supposed to receive a new location 3211 // here, but that computation has been sunk. 3212 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 3213 findDbgUsers(DbgUsers, I); 3214 for (auto *DII : reverse(DbgUsers)) { 3215 if (DII->getParent() == SrcBlock) { 3216 if (isa<DbgDeclareInst>(DII)) { 3217 // A dbg.declare instruction should not be cloned, since there can only be 3218 // one per variable fragment. It should be left in the original place since 3219 // sunk instruction is not an alloca(otherwise we could not be here). 3220 // But we need to update arguments of dbg.declare instruction, so that it 3221 // would not point into sunk instruction. 3222 if (!isa<CastInst>(I)) 3223 continue; // dbg.declare points at something it shouldn't 3224 3225 DII->setOperand( 3226 0, MetadataAsValue::get(I->getContext(), 3227 ValueAsMetadata::get(I->getOperand(0)))); 3228 continue; 3229 } 3230 3231 // dbg.value is in the same basic block as the sunk inst, see if we can 3232 // salvage it. Clone a new copy of the instruction: on success we need 3233 // both salvaged and unsalvaged copies. 3234 SmallVector<DbgVariableIntrinsic *, 1> TmpUser{ 3235 cast<DbgVariableIntrinsic>(DII->clone())}; 3236 3237 if (!salvageDebugInfoForDbgValues(*I, TmpUser)) { 3238 // We are unable to salvage: sink the cloned dbg.value, and mark the 3239 // original as undef, terminating any earlier variable location. 3240 LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n'); 3241 TmpUser[0]->insertBefore(&*InsertPos); 3242 Value *Undef = UndefValue::get(I->getType()); 3243 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 3244 ValueAsMetadata::get(Undef))); 3245 } else { 3246 // We successfully salvaged: place the salvaged dbg.value in the 3247 // original location, and move the unmodified dbg.value to sink with 3248 // the sunk inst. 3249 TmpUser[0]->insertBefore(DII); 3250 DII->moveBefore(&*InsertPos); 3251 } 3252 } 3253 } 3254 return true; 3255 } 3256 3257 bool InstCombiner::run() { 3258 while (!Worklist.isEmpty()) { 3259 Instruction *I = Worklist.RemoveOne(); 3260 if (I == nullptr) continue; // skip null values. 3261 3262 // Check to see if we can DCE the instruction. 3263 if (isInstructionTriviallyDead(I, &TLI)) { 3264 LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); 3265 eraseInstFromFunction(*I); 3266 ++NumDeadInst; 3267 MadeIRChange = true; 3268 continue; 3269 } 3270 3271 if (!DebugCounter::shouldExecute(VisitCounter)) 3272 continue; 3273 3274 // Instruction isn't dead, see if we can constant propagate it. 3275 if (!I->use_empty() && 3276 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 3277 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 3278 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 3279 << '\n'); 3280 3281 // Add operands to the worklist. 3282 replaceInstUsesWith(*I, C); 3283 ++NumConstProp; 3284 if (isInstructionTriviallyDead(I, &TLI)) 3285 eraseInstFromFunction(*I); 3286 MadeIRChange = true; 3287 continue; 3288 } 3289 } 3290 3291 // In general, it is possible for computeKnownBits to determine all bits in 3292 // a value even when the operands are not all constants. 3293 Type *Ty = I->getType(); 3294 if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) { 3295 KnownBits Known = computeKnownBits(I, /*Depth*/0, I); 3296 if (Known.isConstant()) { 3297 Constant *C = ConstantInt::get(Ty, Known.getConstant()); 3298 LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C 3299 << " from: " << *I << '\n'); 3300 3301 // Add operands to the worklist. 3302 replaceInstUsesWith(*I, C); 3303 ++NumConstProp; 3304 if (isInstructionTriviallyDead(I, &TLI)) 3305 eraseInstFromFunction(*I); 3306 MadeIRChange = true; 3307 continue; 3308 } 3309 } 3310 3311 // See if we can trivially sink this instruction to a successor basic block. 3312 if (EnableCodeSinking && I->hasOneUse()) { 3313 BasicBlock *BB = I->getParent(); 3314 Instruction *UserInst = cast<Instruction>(*I->user_begin()); 3315 BasicBlock *UserParent; 3316 3317 // Get the block the use occurs in. 3318 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 3319 UserParent = PN->getIncomingBlock(*I->use_begin()); 3320 else 3321 UserParent = UserInst->getParent(); 3322 3323 if (UserParent != BB) { 3324 bool UserIsSuccessor = false; 3325 // See if the user is one of our successors. 3326 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 3327 if (*SI == UserParent) { 3328 UserIsSuccessor = true; 3329 break; 3330 } 3331 3332 // If the user is one of our immediate successors, and if that successor 3333 // only has us as a predecessors (we'd have to split the critical edge 3334 // otherwise), we can keep going. 3335 if (UserIsSuccessor && UserParent->getUniquePredecessor()) { 3336 // Okay, the CFG is simple enough, try to sink this instruction. 3337 if (TryToSinkInstruction(I, UserParent, Builder)) { 3338 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3339 MadeIRChange = true; 3340 // We'll add uses of the sunk instruction below, but since sinking 3341 // can expose opportunities for it's *operands* add them to the 3342 // worklist 3343 for (Use &U : I->operands()) 3344 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3345 Worklist.Add(OpI); 3346 } 3347 } 3348 } 3349 } 3350 3351 // Now that we have an instruction, try combining it to simplify it. 3352 Builder.SetInsertPoint(I); 3353 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 3354 3355 #ifndef NDEBUG 3356 std::string OrigI; 3357 #endif 3358 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 3359 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 3360 3361 if (Instruction *Result = visit(*I)) { 3362 ++NumCombined; 3363 // Should we replace the old instruction with a new one? 3364 if (Result != I) { 3365 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 3366 << " New = " << *Result << '\n'); 3367 3368 if (I->getDebugLoc()) 3369 Result->setDebugLoc(I->getDebugLoc()); 3370 // Everything uses the new instruction now. 3371 I->replaceAllUsesWith(Result); 3372 3373 // Move the name to the new instruction first. 3374 Result->takeName(I); 3375 3376 // Push the new instruction and any users onto the worklist. 3377 Worklist.AddUsersToWorkList(*Result); 3378 Worklist.Add(Result); 3379 3380 // Insert the new instruction into the basic block... 3381 BasicBlock *InstParent = I->getParent(); 3382 BasicBlock::iterator InsertPos = I->getIterator(); 3383 3384 // If we replace a PHI with something that isn't a PHI, fix up the 3385 // insertion point. 3386 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 3387 InsertPos = InstParent->getFirstInsertionPt(); 3388 3389 InstParent->getInstList().insert(InsertPos, Result); 3390 3391 eraseInstFromFunction(*I); 3392 } else { 3393 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3394 << " New = " << *I << '\n'); 3395 3396 // If the instruction was modified, it's possible that it is now dead. 3397 // if so, remove it. 3398 if (isInstructionTriviallyDead(I, &TLI)) { 3399 eraseInstFromFunction(*I); 3400 } else { 3401 Worklist.AddUsersToWorkList(*I); 3402 Worklist.Add(I); 3403 } 3404 } 3405 MadeIRChange = true; 3406 } 3407 } 3408 3409 Worklist.Zap(); 3410 return MadeIRChange; 3411 } 3412 3413 /// Walk the function in depth-first order, adding all reachable code to the 3414 /// worklist. 3415 /// 3416 /// This has a couple of tricks to make the code faster and more powerful. In 3417 /// particular, we constant fold and DCE instructions as we go, to avoid adding 3418 /// them to the worklist (this significantly speeds up instcombine on code where 3419 /// many instructions are dead or constant). Additionally, if we find a branch 3420 /// whose condition is a known constant, we only visit the reachable successors. 3421 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, 3422 SmallPtrSetImpl<BasicBlock *> &Visited, 3423 InstCombineWorklist &ICWorklist, 3424 const TargetLibraryInfo *TLI) { 3425 bool MadeIRChange = false; 3426 SmallVector<BasicBlock*, 256> Worklist; 3427 Worklist.push_back(BB); 3428 3429 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 3430 DenseMap<Constant *, Constant *> FoldedConstants; 3431 3432 do { 3433 BB = Worklist.pop_back_val(); 3434 3435 // We have now visited this block! If we've already been here, ignore it. 3436 if (!Visited.insert(BB).second) 3437 continue; 3438 3439 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 3440 Instruction *Inst = &*BBI++; 3441 3442 // DCE instruction if trivially dead. 3443 if (isInstructionTriviallyDead(Inst, TLI)) { 3444 ++NumDeadInst; 3445 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 3446 salvageDebugInfoOrMarkUndef(*Inst); 3447 Inst->eraseFromParent(); 3448 MadeIRChange = true; 3449 continue; 3450 } 3451 3452 // ConstantProp instruction if trivially constant. 3453 if (!Inst->use_empty() && 3454 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 3455 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 3456 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst 3457 << '\n'); 3458 Inst->replaceAllUsesWith(C); 3459 ++NumConstProp; 3460 if (isInstructionTriviallyDead(Inst, TLI)) 3461 Inst->eraseFromParent(); 3462 MadeIRChange = true; 3463 continue; 3464 } 3465 3466 // See if we can constant fold its operands. 3467 for (Use &U : Inst->operands()) { 3468 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 3469 continue; 3470 3471 auto *C = cast<Constant>(U); 3472 Constant *&FoldRes = FoldedConstants[C]; 3473 if (!FoldRes) 3474 FoldRes = ConstantFoldConstant(C, DL, TLI); 3475 if (!FoldRes) 3476 FoldRes = C; 3477 3478 if (FoldRes != C) { 3479 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst 3480 << "\n Old = " << *C 3481 << "\n New = " << *FoldRes << '\n'); 3482 U = FoldRes; 3483 MadeIRChange = true; 3484 } 3485 } 3486 3487 // Skip processing debug intrinsics in InstCombine. Processing these call instructions 3488 // consumes non-trivial amount of time and provides no value for the optimization. 3489 if (!isa<DbgInfoIntrinsic>(Inst)) 3490 InstrsForInstCombineWorklist.push_back(Inst); 3491 } 3492 3493 // Recursively visit successors. If this is a branch or switch on a 3494 // constant, only visit the reachable successor. 3495 Instruction *TI = BB->getTerminator(); 3496 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3497 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 3498 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 3499 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 3500 Worklist.push_back(ReachableBB); 3501 continue; 3502 } 3503 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3504 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 3505 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 3506 continue; 3507 } 3508 } 3509 3510 for (BasicBlock *SuccBB : successors(TI)) 3511 Worklist.push_back(SuccBB); 3512 } while (!Worklist.empty()); 3513 3514 // Once we've found all of the instructions to add to instcombine's worklist, 3515 // add them in reverse order. This way instcombine will visit from the top 3516 // of the function down. This jives well with the way that it adds all uses 3517 // of instructions to the worklist after doing a transformation, thus avoiding 3518 // some N^2 behavior in pathological cases. 3519 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist); 3520 3521 return MadeIRChange; 3522 } 3523 3524 /// Populate the IC worklist from a function, and prune any dead basic 3525 /// blocks discovered in the process. 3526 /// 3527 /// This also does basic constant propagation and other forward fixing to make 3528 /// the combiner itself run much faster. 3529 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 3530 TargetLibraryInfo *TLI, 3531 InstCombineWorklist &ICWorklist) { 3532 bool MadeIRChange = false; 3533 3534 // Do a depth-first traversal of the function, populate the worklist with 3535 // the reachable instructions. Ignore blocks that are not reachable. Keep 3536 // track of which blocks we visit. 3537 SmallPtrSet<BasicBlock *, 32> Visited; 3538 MadeIRChange |= 3539 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI); 3540 3541 // Do a quick scan over the function. If we find any blocks that are 3542 // unreachable, remove any instructions inside of them. This prevents 3543 // the instcombine code from having to deal with some bad special cases. 3544 for (BasicBlock &BB : F) { 3545 if (Visited.count(&BB)) 3546 continue; 3547 3548 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB); 3549 MadeIRChange |= NumDeadInstInBB > 0; 3550 NumDeadInst += NumDeadInstInBB; 3551 } 3552 3553 return MadeIRChange; 3554 } 3555 3556 static bool combineInstructionsOverFunction( 3557 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, 3558 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, 3559 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 3560 ProfileSummaryInfo *PSI, bool ExpensiveCombines = true, 3561 LoopInfo *LI = nullptr) { 3562 auto &DL = F.getParent()->getDataLayout(); 3563 ExpensiveCombines |= EnableExpensiveCombines; 3564 3565 /// Builder - This is an IRBuilder that automatically inserts new 3566 /// instructions into the worklist when they are created. 3567 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 3568 F.getContext(), TargetFolder(DL), 3569 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 3570 Worklist.Add(I); 3571 if (match(I, m_Intrinsic<Intrinsic::assume>())) 3572 AC.registerAssumption(cast<CallInst>(I)); 3573 })); 3574 3575 // Lower dbg.declare intrinsics otherwise their value may be clobbered 3576 // by instcombiner. 3577 bool MadeIRChange = false; 3578 if (ShouldLowerDbgDeclare) 3579 MadeIRChange = LowerDbgDeclare(F); 3580 3581 // Iterate while there is work to do. 3582 int Iteration = 0; 3583 while (true) { 3584 ++Iteration; 3585 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 3586 << F.getName() << "\n"); 3587 3588 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 3589 3590 InstCombiner IC(Worklist, Builder, F.hasMinSize(), ExpensiveCombines, AA, 3591 AC, TLI, DT, ORE, BFI, PSI, DL, LI); 3592 IC.MaxArraySizeForCombine = MaxArraySize; 3593 3594 if (!IC.run()) 3595 break; 3596 } 3597 3598 return MadeIRChange || Iteration > 1; 3599 } 3600 3601 PreservedAnalyses InstCombinePass::run(Function &F, 3602 FunctionAnalysisManager &AM) { 3603 auto &AC = AM.getResult<AssumptionAnalysis>(F); 3604 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 3605 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 3606 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3607 3608 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 3609 3610 auto *AA = &AM.getResult<AAManager>(F); 3611 const ModuleAnalysisManager &MAM = 3612 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 3613 ProfileSummaryInfo *PSI = 3614 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 3615 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 3616 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 3617 3618 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, 3619 BFI, PSI, ExpensiveCombines, LI)) 3620 // No changes, all analyses are preserved. 3621 return PreservedAnalyses::all(); 3622 3623 // Mark all the analyses that instcombine updates as preserved. 3624 PreservedAnalyses PA; 3625 PA.preserveSet<CFGAnalyses>(); 3626 PA.preserve<AAManager>(); 3627 PA.preserve<BasicAA>(); 3628 PA.preserve<GlobalsAA>(); 3629 return PA; 3630 } 3631 3632 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 3633 AU.setPreservesCFG(); 3634 AU.addRequired<AAResultsWrapperPass>(); 3635 AU.addRequired<AssumptionCacheTracker>(); 3636 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3637 AU.addRequired<DominatorTreeWrapperPass>(); 3638 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3639 AU.addPreserved<DominatorTreeWrapperPass>(); 3640 AU.addPreserved<AAResultsWrapperPass>(); 3641 AU.addPreserved<BasicAAWrapperPass>(); 3642 AU.addPreserved<GlobalsAAWrapperPass>(); 3643 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 3644 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 3645 } 3646 3647 bool InstructionCombiningPass::runOnFunction(Function &F) { 3648 if (skipFunction(F)) 3649 return false; 3650 3651 // Required analyses. 3652 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3653 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3654 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 3655 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3656 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 3657 3658 // Optional analyses. 3659 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3660 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 3661 ProfileSummaryInfo *PSI = 3662 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 3663 BlockFrequencyInfo *BFI = 3664 (PSI && PSI->hasProfileSummary()) ? 3665 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 3666 nullptr; 3667 3668 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, 3669 BFI, PSI, ExpensiveCombines, LI); 3670 } 3671 3672 char InstructionCombiningPass::ID = 0; 3673 3674 InstructionCombiningPass::InstructionCombiningPass(bool ExpensiveCombines) 3675 : FunctionPass(ID), ExpensiveCombines(ExpensiveCombines) { 3676 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 3677 } 3678 3679 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 3680 "Combine redundant instructions", false, false) 3681 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3682 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3683 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3684 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3685 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3686 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3687 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 3688 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 3689 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 3690 "Combine redundant instructions", false, false) 3691 3692 // Initialization Routines 3693 void llvm::initializeInstCombine(PassRegistry &Registry) { 3694 initializeInstructionCombiningPassPass(Registry); 3695 } 3696 3697 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 3698 initializeInstructionCombiningPassPass(*unwrap(R)); 3699 } 3700 3701 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) { 3702 return new InstructionCombiningPass(ExpensiveCombines); 3703 } 3704 3705 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 3706 unwrap(PM)->add(createInstructionCombiningPass()); 3707 } 3708