1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/TinyPtrVector.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/BlockFrequencyInfo.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/MemoryBuiltins.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ProfileSummaryInfo.h" 60 #include "llvm/Analysis/TargetFolder.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/ValueTracking.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DIBuilder.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Dominators.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/IRBuilder.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/LegacyPassManager.h" 80 #include "llvm/IR/Metadata.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PassManager.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/Use.h" 86 #include "llvm/IR/User.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/IR/ValueHandle.h" 89 #include "llvm/InitializePasses.h" 90 #include "llvm/Pass.h" 91 #include "llvm/Support/CBindingWrapping.h" 92 #include "llvm/Support/Casting.h" 93 #include "llvm/Support/CommandLine.h" 94 #include "llvm/Support/Compiler.h" 95 #include "llvm/Support/Debug.h" 96 #include "llvm/Support/DebugCounter.h" 97 #include "llvm/Support/ErrorHandling.h" 98 #include "llvm/Support/KnownBits.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Transforms/InstCombine/InstCombine.h" 101 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <algorithm> 104 #include <cassert> 105 #include <cstdint> 106 #include <memory> 107 #include <string> 108 #include <utility> 109 110 using namespace llvm; 111 using namespace llvm::PatternMatch; 112 113 #define DEBUG_TYPE "instcombine" 114 115 STATISTIC(NumCombined , "Number of insts combined"); 116 STATISTIC(NumConstProp, "Number of constant folds"); 117 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 118 STATISTIC(NumSunkInst , "Number of instructions sunk"); 119 STATISTIC(NumExpand, "Number of expansions"); 120 STATISTIC(NumFactor , "Number of factorizations"); 121 STATISTIC(NumReassoc , "Number of reassociations"); 122 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 123 "Controls which instructions are visited"); 124 125 static constexpr unsigned InstCombineDefaultMaxIterations = 1000; 126 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; 127 128 static cl::opt<bool> 129 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 130 cl::init(true)); 131 132 static cl::opt<bool> 133 EnableExpensiveCombines("expensive-combines", 134 cl::desc("Enable expensive instruction combines")); 135 136 static cl::opt<unsigned> LimitMaxIterations( 137 "instcombine-max-iterations", 138 cl::desc("Limit the maximum number of instruction combining iterations"), 139 cl::init(InstCombineDefaultMaxIterations)); 140 141 static cl::opt<unsigned> InfiniteLoopDetectionThreshold( 142 "instcombine-infinite-loop-threshold", 143 cl::desc("Number of instruction combining iterations considered an " 144 "infinite loop"), 145 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); 146 147 static cl::opt<unsigned> 148 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 149 cl::desc("Maximum array size considered when doing a combine")); 150 151 // FIXME: Remove this flag when it is no longer necessary to convert 152 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 153 // increases variable availability at the cost of accuracy. Variables that 154 // cannot be promoted by mem2reg or SROA will be described as living in memory 155 // for their entire lifetime. However, passes like DSE and instcombine can 156 // delete stores to the alloca, leading to misleading and inaccurate debug 157 // information. This flag can be removed when those passes are fixed. 158 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 159 cl::Hidden, cl::init(true)); 160 161 Value *InstCombiner::EmitGEPOffset(User *GEP) { 162 return llvm::EmitGEPOffset(&Builder, DL, GEP); 163 } 164 165 /// Return true if it is desirable to convert an integer computation from a 166 /// given bit width to a new bit width. 167 /// We don't want to convert from a legal to an illegal type or from a smaller 168 /// to a larger illegal type. A width of '1' is always treated as a legal type 169 /// because i1 is a fundamental type in IR, and there are many specialized 170 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as 171 /// legal to convert to, in order to open up more combining opportunities. 172 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common 173 /// from frontend languages. 174 bool InstCombiner::shouldChangeType(unsigned FromWidth, 175 unsigned ToWidth) const { 176 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 177 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 178 179 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only 180 // shrink types, to prevent infinite loops. 181 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32)) 182 return true; 183 184 // If this is a legal integer from type, and the result would be an illegal 185 // type, don't do the transformation. 186 if (FromLegal && !ToLegal) 187 return false; 188 189 // Otherwise, if both are illegal, do not increase the size of the result. We 190 // do allow things like i160 -> i64, but not i64 -> i160. 191 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 192 return false; 193 194 return true; 195 } 196 197 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 198 /// We don't want to convert from a legal to an illegal type or from a smaller 199 /// to a larger illegal type. i1 is always treated as a legal type because it is 200 /// a fundamental type in IR, and there are many specialized optimizations for 201 /// i1 types. 202 bool InstCombiner::shouldChangeType(Type *From, Type *To) const { 203 // TODO: This could be extended to allow vectors. Datalayout changes might be 204 // needed to properly support that. 205 if (!From->isIntegerTy() || !To->isIntegerTy()) 206 return false; 207 208 unsigned FromWidth = From->getPrimitiveSizeInBits(); 209 unsigned ToWidth = To->getPrimitiveSizeInBits(); 210 return shouldChangeType(FromWidth, ToWidth); 211 } 212 213 // Return true, if No Signed Wrap should be maintained for I. 214 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 215 // where both B and C should be ConstantInts, results in a constant that does 216 // not overflow. This function only handles the Add and Sub opcodes. For 217 // all other opcodes, the function conservatively returns false. 218 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 219 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 220 if (!OBO || !OBO->hasNoSignedWrap()) 221 return false; 222 223 // We reason about Add and Sub Only. 224 Instruction::BinaryOps Opcode = I.getOpcode(); 225 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 226 return false; 227 228 const APInt *BVal, *CVal; 229 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 230 return false; 231 232 bool Overflow = false; 233 if (Opcode == Instruction::Add) 234 (void)BVal->sadd_ov(*CVal, Overflow); 235 else 236 (void)BVal->ssub_ov(*CVal, Overflow); 237 238 return !Overflow; 239 } 240 241 static bool hasNoUnsignedWrap(BinaryOperator &I) { 242 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 243 return OBO && OBO->hasNoUnsignedWrap(); 244 } 245 246 static bool hasNoSignedWrap(BinaryOperator &I) { 247 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 248 return OBO && OBO->hasNoSignedWrap(); 249 } 250 251 /// Conservatively clears subclassOptionalData after a reassociation or 252 /// commutation. We preserve fast-math flags when applicable as they can be 253 /// preserved. 254 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 255 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 256 if (!FPMO) { 257 I.clearSubclassOptionalData(); 258 return; 259 } 260 261 FastMathFlags FMF = I.getFastMathFlags(); 262 I.clearSubclassOptionalData(); 263 I.setFastMathFlags(FMF); 264 } 265 266 /// Combine constant operands of associative operations either before or after a 267 /// cast to eliminate one of the associative operations: 268 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 269 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 270 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) { 271 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 272 if (!Cast || !Cast->hasOneUse()) 273 return false; 274 275 // TODO: Enhance logic for other casts and remove this check. 276 auto CastOpcode = Cast->getOpcode(); 277 if (CastOpcode != Instruction::ZExt) 278 return false; 279 280 // TODO: Enhance logic for other BinOps and remove this check. 281 if (!BinOp1->isBitwiseLogicOp()) 282 return false; 283 284 auto AssocOpcode = BinOp1->getOpcode(); 285 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 286 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 287 return false; 288 289 Constant *C1, *C2; 290 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 291 !match(BinOp2->getOperand(1), m_Constant(C2))) 292 return false; 293 294 // TODO: This assumes a zext cast. 295 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 296 // to the destination type might lose bits. 297 298 // Fold the constants together in the destination type: 299 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 300 Type *DestTy = C1->getType(); 301 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 302 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 303 Cast->setOperand(0, BinOp2->getOperand(0)); 304 BinOp1->setOperand(1, FoldedC); 305 return true; 306 } 307 308 /// This performs a few simplifications for operators that are associative or 309 /// commutative: 310 /// 311 /// Commutative operators: 312 /// 313 /// 1. Order operands such that they are listed from right (least complex) to 314 /// left (most complex). This puts constants before unary operators before 315 /// binary operators. 316 /// 317 /// Associative operators: 318 /// 319 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 320 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 321 /// 322 /// Associative and commutative operators: 323 /// 324 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 325 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 326 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 327 /// if C1 and C2 are constants. 328 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 329 Instruction::BinaryOps Opcode = I.getOpcode(); 330 bool Changed = false; 331 332 do { 333 // Order operands such that they are listed from right (least complex) to 334 // left (most complex). This puts constants before unary operators before 335 // binary operators. 336 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 337 getComplexity(I.getOperand(1))) 338 Changed = !I.swapOperands(); 339 340 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 341 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 342 343 if (I.isAssociative()) { 344 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 345 if (Op0 && Op0->getOpcode() == Opcode) { 346 Value *A = Op0->getOperand(0); 347 Value *B = Op0->getOperand(1); 348 Value *C = I.getOperand(1); 349 350 // Does "B op C" simplify? 351 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 352 // It simplifies to V. Form "A op V". 353 I.setOperand(0, A); 354 I.setOperand(1, V); 355 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 356 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 357 358 // Conservatively clear all optional flags since they may not be 359 // preserved by the reassociation. Reset nsw/nuw based on the above 360 // analysis. 361 ClearSubclassDataAfterReassociation(I); 362 363 // Note: this is only valid because SimplifyBinOp doesn't look at 364 // the operands to Op0. 365 if (IsNUW) 366 I.setHasNoUnsignedWrap(true); 367 368 if (IsNSW) 369 I.setHasNoSignedWrap(true); 370 371 Changed = true; 372 ++NumReassoc; 373 continue; 374 } 375 } 376 377 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 378 if (Op1 && Op1->getOpcode() == Opcode) { 379 Value *A = I.getOperand(0); 380 Value *B = Op1->getOperand(0); 381 Value *C = Op1->getOperand(1); 382 383 // Does "A op B" simplify? 384 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 385 // It simplifies to V. Form "V op C". 386 I.setOperand(0, V); 387 I.setOperand(1, C); 388 // Conservatively clear the optional flags, since they may not be 389 // preserved by the reassociation. 390 ClearSubclassDataAfterReassociation(I); 391 Changed = true; 392 ++NumReassoc; 393 continue; 394 } 395 } 396 } 397 398 if (I.isAssociative() && I.isCommutative()) { 399 if (simplifyAssocCastAssoc(&I)) { 400 Changed = true; 401 ++NumReassoc; 402 continue; 403 } 404 405 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 406 if (Op0 && Op0->getOpcode() == Opcode) { 407 Value *A = Op0->getOperand(0); 408 Value *B = Op0->getOperand(1); 409 Value *C = I.getOperand(1); 410 411 // Does "C op A" simplify? 412 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 413 // It simplifies to V. Form "V op B". 414 I.setOperand(0, V); 415 I.setOperand(1, B); 416 // Conservatively clear the optional flags, since they may not be 417 // preserved by the reassociation. 418 ClearSubclassDataAfterReassociation(I); 419 Changed = true; 420 ++NumReassoc; 421 continue; 422 } 423 } 424 425 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 426 if (Op1 && Op1->getOpcode() == Opcode) { 427 Value *A = I.getOperand(0); 428 Value *B = Op1->getOperand(0); 429 Value *C = Op1->getOperand(1); 430 431 // Does "C op A" simplify? 432 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 433 // It simplifies to V. Form "B op V". 434 I.setOperand(0, B); 435 I.setOperand(1, V); 436 // Conservatively clear the optional flags, since they may not be 437 // preserved by the reassociation. 438 ClearSubclassDataAfterReassociation(I); 439 Changed = true; 440 ++NumReassoc; 441 continue; 442 } 443 } 444 445 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 446 // if C1 and C2 are constants. 447 Value *A, *B; 448 Constant *C1, *C2; 449 if (Op0 && Op1 && 450 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 451 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 452 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 453 bool IsNUW = hasNoUnsignedWrap(I) && 454 hasNoUnsignedWrap(*Op0) && 455 hasNoUnsignedWrap(*Op1); 456 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 457 BinaryOperator::CreateNUW(Opcode, A, B) : 458 BinaryOperator::Create(Opcode, A, B); 459 460 if (isa<FPMathOperator>(NewBO)) { 461 FastMathFlags Flags = I.getFastMathFlags(); 462 Flags &= Op0->getFastMathFlags(); 463 Flags &= Op1->getFastMathFlags(); 464 NewBO->setFastMathFlags(Flags); 465 } 466 InsertNewInstWith(NewBO, I); 467 NewBO->takeName(Op1); 468 I.setOperand(0, NewBO); 469 I.setOperand(1, ConstantExpr::get(Opcode, C1, C2)); 470 // Conservatively clear the optional flags, since they may not be 471 // preserved by the reassociation. 472 ClearSubclassDataAfterReassociation(I); 473 if (IsNUW) 474 I.setHasNoUnsignedWrap(true); 475 476 Changed = true; 477 continue; 478 } 479 } 480 481 // No further simplifications. 482 return Changed; 483 } while (true); 484 } 485 486 /// Return whether "X LOp (Y ROp Z)" is always equal to 487 /// "(X LOp Y) ROp (X LOp Z)". 488 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 489 Instruction::BinaryOps ROp) { 490 // X & (Y | Z) <--> (X & Y) | (X & Z) 491 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 492 if (LOp == Instruction::And) 493 return ROp == Instruction::Or || ROp == Instruction::Xor; 494 495 // X | (Y & Z) <--> (X | Y) & (X | Z) 496 if (LOp == Instruction::Or) 497 return ROp == Instruction::And; 498 499 // X * (Y + Z) <--> (X * Y) + (X * Z) 500 // X * (Y - Z) <--> (X * Y) - (X * Z) 501 if (LOp == Instruction::Mul) 502 return ROp == Instruction::Add || ROp == Instruction::Sub; 503 504 return false; 505 } 506 507 /// Return whether "(X LOp Y) ROp Z" is always equal to 508 /// "(X ROp Z) LOp (Y ROp Z)". 509 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 510 Instruction::BinaryOps ROp) { 511 if (Instruction::isCommutative(ROp)) 512 return leftDistributesOverRight(ROp, LOp); 513 514 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 515 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 516 517 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 518 // but this requires knowing that the addition does not overflow and other 519 // such subtleties. 520 } 521 522 /// This function returns identity value for given opcode, which can be used to 523 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 524 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 525 if (isa<Constant>(V)) 526 return nullptr; 527 528 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 529 } 530 531 /// This function predicates factorization using distributive laws. By default, 532 /// it just returns the 'Op' inputs. But for special-cases like 533 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 534 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 535 /// allow more factorization opportunities. 536 static Instruction::BinaryOps 537 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 538 Value *&LHS, Value *&RHS) { 539 assert(Op && "Expected a binary operator"); 540 LHS = Op->getOperand(0); 541 RHS = Op->getOperand(1); 542 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 543 Constant *C; 544 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 545 // X << C --> X * (1 << C) 546 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 547 return Instruction::Mul; 548 } 549 // TODO: We can add other conversions e.g. shr => div etc. 550 } 551 return Op->getOpcode(); 552 } 553 554 /// This tries to simplify binary operations by factorizing out common terms 555 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 556 Value *InstCombiner::tryFactorization(BinaryOperator &I, 557 Instruction::BinaryOps InnerOpcode, 558 Value *A, Value *B, Value *C, Value *D) { 559 assert(A && B && C && D && "All values must be provided"); 560 561 Value *V = nullptr; 562 Value *SimplifiedInst = nullptr; 563 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 564 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 565 566 // Does "X op' Y" always equal "Y op' X"? 567 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 568 569 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 570 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 571 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 572 // commutative case, "(A op' B) op (C op' A)"? 573 if (A == C || (InnerCommutative && A == D)) { 574 if (A != C) 575 std::swap(C, D); 576 // Consider forming "A op' (B op D)". 577 // If "B op D" simplifies then it can be formed with no cost. 578 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 579 // If "B op D" doesn't simplify then only go on if both of the existing 580 // operations "A op' B" and "C op' D" will be zapped as no longer used. 581 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 582 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 583 if (V) { 584 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 585 } 586 } 587 588 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 589 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 590 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 591 // commutative case, "(A op' B) op (B op' D)"? 592 if (B == D || (InnerCommutative && B == C)) { 593 if (B != D) 594 std::swap(C, D); 595 // Consider forming "(A op C) op' B". 596 // If "A op C" simplifies then it can be formed with no cost. 597 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 598 599 // If "A op C" doesn't simplify then only go on if both of the existing 600 // operations "A op' B" and "C op' D" will be zapped as no longer used. 601 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 602 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 603 if (V) { 604 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 605 } 606 } 607 608 if (SimplifiedInst) { 609 ++NumFactor; 610 SimplifiedInst->takeName(&I); 611 612 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 613 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 614 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 615 bool HasNSW = false; 616 bool HasNUW = false; 617 if (isa<OverflowingBinaryOperator>(&I)) { 618 HasNSW = I.hasNoSignedWrap(); 619 HasNUW = I.hasNoUnsignedWrap(); 620 } 621 622 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 623 HasNSW &= LOBO->hasNoSignedWrap(); 624 HasNUW &= LOBO->hasNoUnsignedWrap(); 625 } 626 627 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 628 HasNSW &= ROBO->hasNoSignedWrap(); 629 HasNUW &= ROBO->hasNoUnsignedWrap(); 630 } 631 632 if (TopLevelOpcode == Instruction::Add && 633 InnerOpcode == Instruction::Mul) { 634 // We can propagate 'nsw' if we know that 635 // %Y = mul nsw i16 %X, C 636 // %Z = add nsw i16 %Y, %X 637 // => 638 // %Z = mul nsw i16 %X, C+1 639 // 640 // iff C+1 isn't INT_MIN 641 const APInt *CInt; 642 if (match(V, m_APInt(CInt))) { 643 if (!CInt->isMinSignedValue()) 644 BO->setHasNoSignedWrap(HasNSW); 645 } 646 647 // nuw can be propagated with any constant or nuw value. 648 BO->setHasNoUnsignedWrap(HasNUW); 649 } 650 } 651 } 652 } 653 return SimplifiedInst; 654 } 655 656 /// This tries to simplify binary operations which some other binary operation 657 /// distributes over either by factorizing out common terms 658 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 659 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 660 /// Returns the simplified value, or null if it didn't simplify. 661 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 662 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 663 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 664 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 665 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 666 667 { 668 // Factorization. 669 Value *A, *B, *C, *D; 670 Instruction::BinaryOps LHSOpcode, RHSOpcode; 671 if (Op0) 672 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 673 if (Op1) 674 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 675 676 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 677 // a common term. 678 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 679 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 680 return V; 681 682 // The instruction has the form "(A op' B) op (C)". Try to factorize common 683 // term. 684 if (Op0) 685 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 686 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 687 return V; 688 689 // The instruction has the form "(B) op (C op' D)". Try to factorize common 690 // term. 691 if (Op1) 692 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 693 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 694 return V; 695 } 696 697 // Expansion. 698 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 699 // The instruction has the form "(A op' B) op C". See if expanding it out 700 // to "(A op C) op' (B op C)" results in simplifications. 701 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 702 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 703 704 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 705 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I)); 706 707 // Do "A op C" and "B op C" both simplify? 708 if (L && R) { 709 // They do! Return "L op' R". 710 ++NumExpand; 711 C = Builder.CreateBinOp(InnerOpcode, L, R); 712 C->takeName(&I); 713 return C; 714 } 715 716 // Does "A op C" simplify to the identity value for the inner opcode? 717 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 718 // They do! Return "B op C". 719 ++NumExpand; 720 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 721 C->takeName(&I); 722 return C; 723 } 724 725 // Does "B op C" simplify to the identity value for the inner opcode? 726 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 727 // They do! Return "A op C". 728 ++NumExpand; 729 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 730 C->takeName(&I); 731 return C; 732 } 733 } 734 735 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 736 // The instruction has the form "A op (B op' C)". See if expanding it out 737 // to "(A op B) op' (A op C)" results in simplifications. 738 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 739 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 740 741 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I)); 742 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 743 744 // Do "A op B" and "A op C" both simplify? 745 if (L && R) { 746 // They do! Return "L op' R". 747 ++NumExpand; 748 A = Builder.CreateBinOp(InnerOpcode, L, R); 749 A->takeName(&I); 750 return A; 751 } 752 753 // Does "A op B" simplify to the identity value for the inner opcode? 754 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 755 // They do! Return "A op C". 756 ++NumExpand; 757 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 758 A->takeName(&I); 759 return A; 760 } 761 762 // Does "A op C" simplify to the identity value for the inner opcode? 763 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 764 // They do! Return "A op B". 765 ++NumExpand; 766 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 767 A->takeName(&I); 768 return A; 769 } 770 } 771 772 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 773 } 774 775 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 776 Value *LHS, Value *RHS) { 777 Value *A, *B, *C, *D, *E, *F; 778 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 779 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 780 if (!LHSIsSelect && !RHSIsSelect) 781 return nullptr; 782 783 FastMathFlags FMF; 784 BuilderTy::FastMathFlagGuard Guard(Builder); 785 if (isa<FPMathOperator>(&I)) { 786 FMF = I.getFastMathFlags(); 787 Builder.setFastMathFlags(FMF); 788 } 789 790 Instruction::BinaryOps Opcode = I.getOpcode(); 791 SimplifyQuery Q = SQ.getWithInstruction(&I); 792 793 Value *Cond, *True = nullptr, *False = nullptr; 794 if (LHSIsSelect && RHSIsSelect && A == D) { 795 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 796 Cond = A; 797 True = SimplifyBinOp(Opcode, B, E, FMF, Q); 798 False = SimplifyBinOp(Opcode, C, F, FMF, Q); 799 800 if (LHS->hasOneUse() && RHS->hasOneUse()) { 801 if (False && !True) 802 True = Builder.CreateBinOp(Opcode, B, E); 803 else if (True && !False) 804 False = Builder.CreateBinOp(Opcode, C, F); 805 } 806 } else if (LHSIsSelect && LHS->hasOneUse()) { 807 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 808 Cond = A; 809 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q); 810 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q); 811 } else if (RHSIsSelect && RHS->hasOneUse()) { 812 // X op (D ? E : F) -> D ? (X op E) : (X op F) 813 Cond = D; 814 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q); 815 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q); 816 } 817 818 if (!True || !False) 819 return nullptr; 820 821 Value *SI = Builder.CreateSelect(Cond, True, False); 822 SI->takeName(&I); 823 return SI; 824 } 825 826 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 827 /// constant zero (which is the 'negate' form). 828 Value *InstCombiner::dyn_castNegVal(Value *V) const { 829 Value *NegV; 830 if (match(V, m_Neg(m_Value(NegV)))) 831 return NegV; 832 833 // Constants can be considered to be negated values if they can be folded. 834 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 835 return ConstantExpr::getNeg(C); 836 837 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 838 if (C->getType()->getElementType()->isIntegerTy()) 839 return ConstantExpr::getNeg(C); 840 841 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 842 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 843 Constant *Elt = CV->getAggregateElement(i); 844 if (!Elt) 845 return nullptr; 846 847 if (isa<UndefValue>(Elt)) 848 continue; 849 850 if (!isa<ConstantInt>(Elt)) 851 return nullptr; 852 } 853 return ConstantExpr::getNeg(CV); 854 } 855 856 return nullptr; 857 } 858 859 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 860 InstCombiner::BuilderTy &Builder) { 861 if (auto *Cast = dyn_cast<CastInst>(&I)) 862 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 863 864 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 865 866 // Figure out if the constant is the left or the right argument. 867 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 868 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 869 870 if (auto *SOC = dyn_cast<Constant>(SO)) { 871 if (ConstIsRHS) 872 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 873 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 874 } 875 876 Value *Op0 = SO, *Op1 = ConstOperand; 877 if (!ConstIsRHS) 878 std::swap(Op0, Op1); 879 880 auto *BO = cast<BinaryOperator>(&I); 881 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 882 SO->getName() + ".op"); 883 auto *FPInst = dyn_cast<Instruction>(RI); 884 if (FPInst && isa<FPMathOperator>(FPInst)) 885 FPInst->copyFastMathFlags(BO); 886 return RI; 887 } 888 889 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 890 // Don't modify shared select instructions. 891 if (!SI->hasOneUse()) 892 return nullptr; 893 894 Value *TV = SI->getTrueValue(); 895 Value *FV = SI->getFalseValue(); 896 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 897 return nullptr; 898 899 // Bool selects with constant operands can be folded to logical ops. 900 if (SI->getType()->isIntOrIntVectorTy(1)) 901 return nullptr; 902 903 // If it's a bitcast involving vectors, make sure it has the same number of 904 // elements on both sides. 905 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 906 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 907 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 908 909 // Verify that either both or neither are vectors. 910 if ((SrcTy == nullptr) != (DestTy == nullptr)) 911 return nullptr; 912 913 // If vectors, verify that they have the same number of elements. 914 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 915 return nullptr; 916 } 917 918 // Test if a CmpInst instruction is used exclusively by a select as 919 // part of a minimum or maximum operation. If so, refrain from doing 920 // any other folding. This helps out other analyses which understand 921 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 922 // and CodeGen. And in this case, at least one of the comparison 923 // operands has at least one user besides the compare (the select), 924 // which would often largely negate the benefit of folding anyway. 925 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 926 if (CI->hasOneUse()) { 927 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 928 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 929 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 930 return nullptr; 931 } 932 } 933 934 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 935 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 936 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 937 } 938 939 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 940 InstCombiner::BuilderTy &Builder) { 941 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 942 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 943 944 if (auto *InC = dyn_cast<Constant>(InV)) { 945 if (ConstIsRHS) 946 return ConstantExpr::get(I->getOpcode(), InC, C); 947 return ConstantExpr::get(I->getOpcode(), C, InC); 948 } 949 950 Value *Op0 = InV, *Op1 = C; 951 if (!ConstIsRHS) 952 std::swap(Op0, Op1); 953 954 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp"); 955 auto *FPInst = dyn_cast<Instruction>(RI); 956 if (FPInst && isa<FPMathOperator>(FPInst)) 957 FPInst->copyFastMathFlags(I); 958 return RI; 959 } 960 961 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) { 962 unsigned NumPHIValues = PN->getNumIncomingValues(); 963 if (NumPHIValues == 0) 964 return nullptr; 965 966 // We normally only transform phis with a single use. However, if a PHI has 967 // multiple uses and they are all the same operation, we can fold *all* of the 968 // uses into the PHI. 969 if (!PN->hasOneUse()) { 970 // Walk the use list for the instruction, comparing them to I. 971 for (User *U : PN->users()) { 972 Instruction *UI = cast<Instruction>(U); 973 if (UI != &I && !I.isIdenticalTo(UI)) 974 return nullptr; 975 } 976 // Otherwise, we can replace *all* users with the new PHI we form. 977 } 978 979 // Check to see if all of the operands of the PHI are simple constants 980 // (constantint/constantfp/undef). If there is one non-constant value, 981 // remember the BB it is in. If there is more than one or if *it* is a PHI, 982 // bail out. We don't do arbitrary constant expressions here because moving 983 // their computation can be expensive without a cost model. 984 BasicBlock *NonConstBB = nullptr; 985 for (unsigned i = 0; i != NumPHIValues; ++i) { 986 Value *InVal = PN->getIncomingValue(i); 987 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 988 continue; 989 990 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 991 if (NonConstBB) return nullptr; // More than one non-const value. 992 993 NonConstBB = PN->getIncomingBlock(i); 994 995 // If the InVal is an invoke at the end of the pred block, then we can't 996 // insert a computation after it without breaking the edge. 997 if (isa<InvokeInst>(InVal)) 998 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 999 return nullptr; 1000 1001 // If the incoming non-constant value is in I's block, we will remove one 1002 // instruction, but insert another equivalent one, leading to infinite 1003 // instcombine. 1004 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI)) 1005 return nullptr; 1006 } 1007 1008 // If there is exactly one non-constant value, we can insert a copy of the 1009 // operation in that block. However, if this is a critical edge, we would be 1010 // inserting the computation on some other paths (e.g. inside a loop). Only 1011 // do this if the pred block is unconditionally branching into the phi block. 1012 if (NonConstBB != nullptr) { 1013 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1014 if (!BI || !BI->isUnconditional()) return nullptr; 1015 } 1016 1017 // Okay, we can do the transformation: create the new PHI node. 1018 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1019 InsertNewInstBefore(NewPN, *PN); 1020 NewPN->takeName(PN); 1021 1022 // If we are going to have to insert a new computation, do so right before the 1023 // predecessor's terminator. 1024 if (NonConstBB) 1025 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1026 1027 // Next, add all of the operands to the PHI. 1028 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1029 // We only currently try to fold the condition of a select when it is a phi, 1030 // not the true/false values. 1031 Value *TrueV = SI->getTrueValue(); 1032 Value *FalseV = SI->getFalseValue(); 1033 BasicBlock *PhiTransBB = PN->getParent(); 1034 for (unsigned i = 0; i != NumPHIValues; ++i) { 1035 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1036 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1037 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1038 Value *InV = nullptr; 1039 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1040 // even if currently isNullValue gives false. 1041 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1042 // For vector constants, we cannot use isNullValue to fold into 1043 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1044 // elements in the vector, we will incorrectly fold InC to 1045 // `TrueVInPred`. 1046 if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC)) 1047 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1048 else { 1049 // Generate the select in the same block as PN's current incoming block. 1050 // Note: ThisBB need not be the NonConstBB because vector constants 1051 // which are constants by definition are handled here. 1052 // FIXME: This can lead to an increase in IR generation because we might 1053 // generate selects for vector constant phi operand, that could not be 1054 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1055 // non-vector phis, this transformation was always profitable because 1056 // the select would be generated exactly once in the NonConstBB. 1057 Builder.SetInsertPoint(ThisBB->getTerminator()); 1058 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1059 FalseVInPred, "phitmp"); 1060 } 1061 NewPN->addIncoming(InV, ThisBB); 1062 } 1063 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1064 Constant *C = cast<Constant>(I.getOperand(1)); 1065 for (unsigned i = 0; i != NumPHIValues; ++i) { 1066 Value *InV = nullptr; 1067 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1068 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1069 else if (isa<ICmpInst>(CI)) 1070 InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 1071 C, "phitmp"); 1072 else 1073 InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 1074 C, "phitmp"); 1075 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1076 } 1077 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1078 for (unsigned i = 0; i != NumPHIValues; ++i) { 1079 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1080 Builder); 1081 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1082 } 1083 } else { 1084 CastInst *CI = cast<CastInst>(&I); 1085 Type *RetTy = CI->getType(); 1086 for (unsigned i = 0; i != NumPHIValues; ++i) { 1087 Value *InV; 1088 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1089 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1090 else 1091 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1092 I.getType(), "phitmp"); 1093 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1094 } 1095 } 1096 1097 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1098 Instruction *User = cast<Instruction>(*UI++); 1099 if (User == &I) continue; 1100 replaceInstUsesWith(*User, NewPN); 1101 eraseInstFromFunction(*User); 1102 } 1103 return replaceInstUsesWith(I, NewPN); 1104 } 1105 1106 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1107 if (!isa<Constant>(I.getOperand(1))) 1108 return nullptr; 1109 1110 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1111 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1112 return NewSel; 1113 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1114 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1115 return NewPhi; 1116 } 1117 return nullptr; 1118 } 1119 1120 /// Given a pointer type and a constant offset, determine whether or not there 1121 /// is a sequence of GEP indices into the pointed type that will land us at the 1122 /// specified offset. If so, fill them into NewIndices and return the resultant 1123 /// element type, otherwise return null. 1124 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 1125 SmallVectorImpl<Value *> &NewIndices) { 1126 Type *Ty = PtrTy->getElementType(); 1127 if (!Ty->isSized()) 1128 return nullptr; 1129 1130 // Start with the index over the outer type. Note that the type size 1131 // might be zero (even if the offset isn't zero) if the indexed type 1132 // is something like [0 x {int, int}] 1133 Type *IndexTy = DL.getIndexType(PtrTy); 1134 int64_t FirstIdx = 0; 1135 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 1136 FirstIdx = Offset/TySize; 1137 Offset -= FirstIdx*TySize; 1138 1139 // Handle hosts where % returns negative instead of values [0..TySize). 1140 if (Offset < 0) { 1141 --FirstIdx; 1142 Offset += TySize; 1143 assert(Offset >= 0); 1144 } 1145 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 1146 } 1147 1148 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx)); 1149 1150 // Index into the types. If we fail, set OrigBase to null. 1151 while (Offset) { 1152 // Indexing into tail padding between struct/array elements. 1153 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1154 return nullptr; 1155 1156 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1157 const StructLayout *SL = DL.getStructLayout(STy); 1158 assert(Offset < (int64_t)SL->getSizeInBytes() && 1159 "Offset must stay within the indexed type"); 1160 1161 unsigned Elt = SL->getElementContainingOffset(Offset); 1162 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1163 Elt)); 1164 1165 Offset -= SL->getElementOffset(Elt); 1166 Ty = STy->getElementType(Elt); 1167 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1168 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1169 assert(EltSize && "Cannot index into a zero-sized array"); 1170 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize)); 1171 Offset %= EltSize; 1172 Ty = AT->getElementType(); 1173 } else { 1174 // Otherwise, we can't index into the middle of this atomic type, bail. 1175 return nullptr; 1176 } 1177 } 1178 1179 return Ty; 1180 } 1181 1182 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1183 // If this GEP has only 0 indices, it is the same pointer as 1184 // Src. If Src is not a trivial GEP too, don't combine 1185 // the indices. 1186 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1187 !Src.hasOneUse()) 1188 return false; 1189 return true; 1190 } 1191 1192 /// Return a value X such that Val = X * Scale, or null if none. 1193 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1194 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1195 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1196 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1197 Scale.getBitWidth() && "Scale not compatible with value!"); 1198 1199 // If Val is zero or Scale is one then Val = Val * Scale. 1200 if (match(Val, m_Zero()) || Scale == 1) { 1201 NoSignedWrap = true; 1202 return Val; 1203 } 1204 1205 // If Scale is zero then it does not divide Val. 1206 if (Scale.isMinValue()) 1207 return nullptr; 1208 1209 // Look through chains of multiplications, searching for a constant that is 1210 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1211 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1212 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1213 // down from Val: 1214 // 1215 // Val = M1 * X || Analysis starts here and works down 1216 // M1 = M2 * Y || Doesn't descend into terms with more 1217 // M2 = Z * 4 \/ than one use 1218 // 1219 // Then to modify a term at the bottom: 1220 // 1221 // Val = M1 * X 1222 // M1 = Z * Y || Replaced M2 with Z 1223 // 1224 // Then to work back up correcting nsw flags. 1225 1226 // Op - the term we are currently analyzing. Starts at Val then drills down. 1227 // Replaced with its descaled value before exiting from the drill down loop. 1228 Value *Op = Val; 1229 1230 // Parent - initially null, but after drilling down notes where Op came from. 1231 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1232 // 0'th operand of Val. 1233 std::pair<Instruction *, unsigned> Parent; 1234 1235 // Set if the transform requires a descaling at deeper levels that doesn't 1236 // overflow. 1237 bool RequireNoSignedWrap = false; 1238 1239 // Log base 2 of the scale. Negative if not a power of 2. 1240 int32_t logScale = Scale.exactLogBase2(); 1241 1242 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1243 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1244 // If Op is a constant divisible by Scale then descale to the quotient. 1245 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1246 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1247 if (!Remainder.isMinValue()) 1248 // Not divisible by Scale. 1249 return nullptr; 1250 // Replace with the quotient in the parent. 1251 Op = ConstantInt::get(CI->getType(), Quotient); 1252 NoSignedWrap = true; 1253 break; 1254 } 1255 1256 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1257 if (BO->getOpcode() == Instruction::Mul) { 1258 // Multiplication. 1259 NoSignedWrap = BO->hasNoSignedWrap(); 1260 if (RequireNoSignedWrap && !NoSignedWrap) 1261 return nullptr; 1262 1263 // There are three cases for multiplication: multiplication by exactly 1264 // the scale, multiplication by a constant different to the scale, and 1265 // multiplication by something else. 1266 Value *LHS = BO->getOperand(0); 1267 Value *RHS = BO->getOperand(1); 1268 1269 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1270 // Multiplication by a constant. 1271 if (CI->getValue() == Scale) { 1272 // Multiplication by exactly the scale, replace the multiplication 1273 // by its left-hand side in the parent. 1274 Op = LHS; 1275 break; 1276 } 1277 1278 // Otherwise drill down into the constant. 1279 if (!Op->hasOneUse()) 1280 return nullptr; 1281 1282 Parent = std::make_pair(BO, 1); 1283 continue; 1284 } 1285 1286 // Multiplication by something else. Drill down into the left-hand side 1287 // since that's where the reassociate pass puts the good stuff. 1288 if (!Op->hasOneUse()) 1289 return nullptr; 1290 1291 Parent = std::make_pair(BO, 0); 1292 continue; 1293 } 1294 1295 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1296 isa<ConstantInt>(BO->getOperand(1))) { 1297 // Multiplication by a power of 2. 1298 NoSignedWrap = BO->hasNoSignedWrap(); 1299 if (RequireNoSignedWrap && !NoSignedWrap) 1300 return nullptr; 1301 1302 Value *LHS = BO->getOperand(0); 1303 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1304 getLimitedValue(Scale.getBitWidth()); 1305 // Op = LHS << Amt. 1306 1307 if (Amt == logScale) { 1308 // Multiplication by exactly the scale, replace the multiplication 1309 // by its left-hand side in the parent. 1310 Op = LHS; 1311 break; 1312 } 1313 if (Amt < logScale || !Op->hasOneUse()) 1314 return nullptr; 1315 1316 // Multiplication by more than the scale. Reduce the multiplying amount 1317 // by the scale in the parent. 1318 Parent = std::make_pair(BO, 1); 1319 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1320 break; 1321 } 1322 } 1323 1324 if (!Op->hasOneUse()) 1325 return nullptr; 1326 1327 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1328 if (Cast->getOpcode() == Instruction::SExt) { 1329 // Op is sign-extended from a smaller type, descale in the smaller type. 1330 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1331 APInt SmallScale = Scale.trunc(SmallSize); 1332 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1333 // descale Op as (sext Y) * Scale. In order to have 1334 // sext (Y * SmallScale) = (sext Y) * Scale 1335 // some conditions need to hold however: SmallScale must sign-extend to 1336 // Scale and the multiplication Y * SmallScale should not overflow. 1337 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1338 // SmallScale does not sign-extend to Scale. 1339 return nullptr; 1340 assert(SmallScale.exactLogBase2() == logScale); 1341 // Require that Y * SmallScale must not overflow. 1342 RequireNoSignedWrap = true; 1343 1344 // Drill down through the cast. 1345 Parent = std::make_pair(Cast, 0); 1346 Scale = SmallScale; 1347 continue; 1348 } 1349 1350 if (Cast->getOpcode() == Instruction::Trunc) { 1351 // Op is truncated from a larger type, descale in the larger type. 1352 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1353 // trunc (Y * sext Scale) = (trunc Y) * Scale 1354 // always holds. However (trunc Y) * Scale may overflow even if 1355 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1356 // from this point up in the expression (see later). 1357 if (RequireNoSignedWrap) 1358 return nullptr; 1359 1360 // Drill down through the cast. 1361 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1362 Parent = std::make_pair(Cast, 0); 1363 Scale = Scale.sext(LargeSize); 1364 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1365 logScale = -1; 1366 assert(Scale.exactLogBase2() == logScale); 1367 continue; 1368 } 1369 } 1370 1371 // Unsupported expression, bail out. 1372 return nullptr; 1373 } 1374 1375 // If Op is zero then Val = Op * Scale. 1376 if (match(Op, m_Zero())) { 1377 NoSignedWrap = true; 1378 return Op; 1379 } 1380 1381 // We know that we can successfully descale, so from here on we can safely 1382 // modify the IR. Op holds the descaled version of the deepest term in the 1383 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1384 // not to overflow. 1385 1386 if (!Parent.first) 1387 // The expression only had one term. 1388 return Op; 1389 1390 // Rewrite the parent using the descaled version of its operand. 1391 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1392 assert(Op != Parent.first->getOperand(Parent.second) && 1393 "Descaling was a no-op?"); 1394 Parent.first->setOperand(Parent.second, Op); 1395 Worklist.Add(Parent.first); 1396 1397 // Now work back up the expression correcting nsw flags. The logic is based 1398 // on the following observation: if X * Y is known not to overflow as a signed 1399 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1400 // then X * Z will not overflow as a signed multiplication either. As we work 1401 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1402 // current level has strictly smaller absolute value than the original. 1403 Instruction *Ancestor = Parent.first; 1404 do { 1405 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1406 // If the multiplication wasn't nsw then we can't say anything about the 1407 // value of the descaled multiplication, and we have to clear nsw flags 1408 // from this point on up. 1409 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1410 NoSignedWrap &= OpNoSignedWrap; 1411 if (NoSignedWrap != OpNoSignedWrap) { 1412 BO->setHasNoSignedWrap(NoSignedWrap); 1413 Worklist.Add(Ancestor); 1414 } 1415 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1416 // The fact that the descaled input to the trunc has smaller absolute 1417 // value than the original input doesn't tell us anything useful about 1418 // the absolute values of the truncations. 1419 NoSignedWrap = false; 1420 } 1421 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1422 "Failed to keep proper track of nsw flags while drilling down?"); 1423 1424 if (Ancestor == Val) 1425 // Got to the top, all done! 1426 return Val; 1427 1428 // Move up one level in the expression. 1429 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1430 Ancestor = Ancestor->user_back(); 1431 } while (true); 1432 } 1433 1434 Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) { 1435 if (!Inst.getType()->isVectorTy()) return nullptr; 1436 1437 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1438 unsigned NumElts = cast<VectorType>(Inst.getType())->getNumElements(); 1439 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1440 assert(cast<VectorType>(LHS->getType())->getNumElements() == NumElts); 1441 assert(cast<VectorType>(RHS->getType())->getNumElements() == NumElts); 1442 1443 // If both operands of the binop are vector concatenations, then perform the 1444 // narrow binop on each pair of the source operands followed by concatenation 1445 // of the results. 1446 Value *L0, *L1, *R0, *R1; 1447 Constant *Mask; 1448 if (match(LHS, m_ShuffleVector(m_Value(L0), m_Value(L1), m_Constant(Mask))) && 1449 match(RHS, m_ShuffleVector(m_Value(R0), m_Value(R1), m_Specific(Mask))) && 1450 LHS->hasOneUse() && RHS->hasOneUse() && 1451 cast<ShuffleVectorInst>(LHS)->isConcat() && 1452 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1453 // This transform does not have the speculative execution constraint as 1454 // below because the shuffle is a concatenation. The new binops are 1455 // operating on exactly the same elements as the existing binop. 1456 // TODO: We could ease the mask requirement to allow different undef lanes, 1457 // but that requires an analysis of the binop-with-undef output value. 1458 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1459 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1460 BO->copyIRFlags(&Inst); 1461 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1462 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1463 BO->copyIRFlags(&Inst); 1464 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1465 } 1466 1467 // It may not be safe to reorder shuffles and things like div, urem, etc. 1468 // because we may trap when executing those ops on unknown vector elements. 1469 // See PR20059. 1470 if (!isSafeToSpeculativelyExecute(&Inst)) 1471 return nullptr; 1472 1473 auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) { 1474 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1475 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1476 BO->copyIRFlags(&Inst); 1477 return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M); 1478 }; 1479 1480 // If both arguments of the binary operation are shuffles that use the same 1481 // mask and shuffle within a single vector, move the shuffle after the binop. 1482 Value *V1, *V2; 1483 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) && 1484 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) && 1485 V1->getType() == V2->getType() && 1486 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1487 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1488 return createBinOpShuffle(V1, V2, Mask); 1489 } 1490 1491 // If both arguments of a commutative binop are select-shuffles that use the 1492 // same mask with commuted operands, the shuffles are unnecessary. 1493 if (Inst.isCommutative() && 1494 match(LHS, m_ShuffleVector(m_Value(V1), m_Value(V2), m_Constant(Mask))) && 1495 match(RHS, m_ShuffleVector(m_Specific(V2), m_Specific(V1), 1496 m_Specific(Mask)))) { 1497 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1498 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1499 // TODO: Allow shuffles that contain undefs in the mask? 1500 // That is legal, but it reduces undef knowledge. 1501 // TODO: Allow arbitrary shuffles by shuffling after binop? 1502 // That might be legal, but we have to deal with poison. 1503 if (LShuf->isSelect() && !LShuf->getMask()->containsUndefElement() && 1504 RShuf->isSelect() && !RShuf->getMask()->containsUndefElement()) { 1505 // Example: 1506 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1507 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1508 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1509 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1510 NewBO->copyIRFlags(&Inst); 1511 return NewBO; 1512 } 1513 } 1514 1515 // If one argument is a shuffle within one vector and the other is a constant, 1516 // try moving the shuffle after the binary operation. This canonicalization 1517 // intends to move shuffles closer to other shuffles and binops closer to 1518 // other binops, so they can be folded. It may also enable demanded elements 1519 // transforms. 1520 Constant *C; 1521 if (match(&Inst, m_c_BinOp( 1522 m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))), 1523 m_Constant(C))) && 1524 V1->getType()->getVectorNumElements() <= NumElts) { 1525 assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() && 1526 "Shuffle should not change scalar type"); 1527 1528 // Find constant NewC that has property: 1529 // shuffle(NewC, ShMask) = C 1530 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1531 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1532 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1533 bool ConstOp1 = isa<Constant>(RHS); 1534 SmallVector<int, 16> ShMask; 1535 ShuffleVectorInst::getShuffleMask(Mask, ShMask); 1536 unsigned SrcVecNumElts = V1->getType()->getVectorNumElements(); 1537 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1538 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1539 bool MayChange = true; 1540 for (unsigned I = 0; I < NumElts; ++I) { 1541 Constant *CElt = C->getAggregateElement(I); 1542 if (ShMask[I] >= 0) { 1543 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1544 Constant *NewCElt = NewVecC[ShMask[I]]; 1545 // Bail out if: 1546 // 1. The constant vector contains a constant expression. 1547 // 2. The shuffle needs an element of the constant vector that can't 1548 // be mapped to a new constant vector. 1549 // 3. This is a widening shuffle that copies elements of V1 into the 1550 // extended elements (extending with undef is allowed). 1551 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1552 I >= SrcVecNumElts) { 1553 MayChange = false; 1554 break; 1555 } 1556 NewVecC[ShMask[I]] = CElt; 1557 } 1558 // If this is a widening shuffle, we must be able to extend with undef 1559 // elements. If the original binop does not produce an undef in the high 1560 // lanes, then this transform is not safe. 1561 // Similarly for undef lanes due to the shuffle mask, we can only 1562 // transform binops that preserve undef. 1563 // TODO: We could shuffle those non-undef constant values into the 1564 // result by using a constant vector (rather than an undef vector) 1565 // as operand 1 of the new binop, but that might be too aggressive 1566 // for target-independent shuffle creation. 1567 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1568 Constant *MaybeUndef = 1569 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1570 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1571 if (!isa<UndefValue>(MaybeUndef)) { 1572 MayChange = false; 1573 break; 1574 } 1575 } 1576 } 1577 if (MayChange) { 1578 Constant *NewC = ConstantVector::get(NewVecC); 1579 // It may not be safe to execute a binop on a vector with undef elements 1580 // because the entire instruction can be folded to undef or create poison 1581 // that did not exist in the original code. 1582 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1583 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1584 1585 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1586 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1587 Value *NewLHS = ConstOp1 ? V1 : NewC; 1588 Value *NewRHS = ConstOp1 ? NewC : V1; 1589 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1590 } 1591 } 1592 1593 return nullptr; 1594 } 1595 1596 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1597 /// of a value. This requires a potentially expensive known bits check to make 1598 /// sure the narrow op does not overflow. 1599 Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) { 1600 // We need at least one extended operand. 1601 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1602 1603 // If this is a sub, we swap the operands since we always want an extension 1604 // on the RHS. The LHS can be an extension or a constant. 1605 if (BO.getOpcode() == Instruction::Sub) 1606 std::swap(Op0, Op1); 1607 1608 Value *X; 1609 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1610 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1611 return nullptr; 1612 1613 // If both operands are the same extension from the same source type and we 1614 // can eliminate at least one (hasOneUse), this might work. 1615 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1616 Value *Y; 1617 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1618 cast<Operator>(Op1)->getOpcode() == CastOpc && 1619 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1620 // If that did not match, see if we have a suitable constant operand. 1621 // Truncating and extending must produce the same constant. 1622 Constant *WideC; 1623 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1624 return nullptr; 1625 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1626 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1627 return nullptr; 1628 Y = NarrowC; 1629 } 1630 1631 // Swap back now that we found our operands. 1632 if (BO.getOpcode() == Instruction::Sub) 1633 std::swap(X, Y); 1634 1635 // Both operands have narrow versions. Last step: the math must not overflow 1636 // in the narrow width. 1637 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1638 return nullptr; 1639 1640 // bo (ext X), (ext Y) --> ext (bo X, Y) 1641 // bo (ext X), C --> ext (bo X, C') 1642 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1643 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1644 if (IsSext) 1645 NewBinOp->setHasNoSignedWrap(); 1646 else 1647 NewBinOp->setHasNoUnsignedWrap(); 1648 } 1649 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1650 } 1651 1652 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1653 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1654 Type *GEPType = GEP.getType(); 1655 Type *GEPEltType = GEP.getSourceElementType(); 1656 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP))) 1657 return replaceInstUsesWith(GEP, V); 1658 1659 // For vector geps, use the generic demanded vector support. 1660 if (GEP.getType()->isVectorTy()) { 1661 auto VWidth = GEP.getType()->getVectorNumElements(); 1662 APInt UndefElts(VWidth, 0); 1663 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1664 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 1665 UndefElts)) { 1666 if (V != &GEP) 1667 return replaceInstUsesWith(GEP, V); 1668 return &GEP; 1669 } 1670 1671 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 1672 // possible (decide on canonical form for pointer broadcast), 3) exploit 1673 // undef elements to decrease demanded bits 1674 } 1675 1676 Value *PtrOp = GEP.getOperand(0); 1677 1678 // Eliminate unneeded casts for indices, and replace indices which displace 1679 // by multiples of a zero size type with zero. 1680 bool MadeChange = false; 1681 1682 // Index width may not be the same width as pointer width. 1683 // Data layout chooses the right type based on supported integer types. 1684 Type *NewScalarIndexTy = 1685 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 1686 1687 gep_type_iterator GTI = gep_type_begin(GEP); 1688 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1689 ++I, ++GTI) { 1690 // Skip indices into struct types. 1691 if (GTI.isStruct()) 1692 continue; 1693 1694 Type *IndexTy = (*I)->getType(); 1695 Type *NewIndexType = 1696 IndexTy->isVectorTy() 1697 ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements()) 1698 : NewScalarIndexTy; 1699 1700 // If the element type has zero size then any index over it is equivalent 1701 // to an index of zero, so replace it with zero if it is not zero already. 1702 Type *EltTy = GTI.getIndexedType(); 1703 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0) 1704 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 1705 *I = Constant::getNullValue(NewIndexType); 1706 MadeChange = true; 1707 } 1708 1709 if (IndexTy != NewIndexType) { 1710 // If we are using a wider index than needed for this platform, shrink 1711 // it to what we need. If narrower, sign-extend it to what we need. 1712 // This explicit cast can make subsequent optimizations more obvious. 1713 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1714 MadeChange = true; 1715 } 1716 } 1717 if (MadeChange) 1718 return &GEP; 1719 1720 // Check to see if the inputs to the PHI node are getelementptr instructions. 1721 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 1722 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1723 if (!Op1) 1724 return nullptr; 1725 1726 // Don't fold a GEP into itself through a PHI node. This can only happen 1727 // through the back-edge of a loop. Folding a GEP into itself means that 1728 // the value of the previous iteration needs to be stored in the meantime, 1729 // thus requiring an additional register variable to be live, but not 1730 // actually achieving anything (the GEP still needs to be executed once per 1731 // loop iteration). 1732 if (Op1 == &GEP) 1733 return nullptr; 1734 1735 int DI = -1; 1736 1737 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1738 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 1739 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1740 return nullptr; 1741 1742 // As for Op1 above, don't try to fold a GEP into itself. 1743 if (Op2 == &GEP) 1744 return nullptr; 1745 1746 // Keep track of the type as we walk the GEP. 1747 Type *CurTy = nullptr; 1748 1749 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1750 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1751 return nullptr; 1752 1753 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1754 if (DI == -1) { 1755 // We have not seen any differences yet in the GEPs feeding the 1756 // PHI yet, so we record this one if it is allowed to be a 1757 // variable. 1758 1759 // The first two arguments can vary for any GEP, the rest have to be 1760 // static for struct slots 1761 if (J > 1) { 1762 assert(CurTy && "No current type?"); 1763 if (CurTy->isStructTy()) 1764 return nullptr; 1765 } 1766 1767 DI = J; 1768 } else { 1769 // The GEP is different by more than one input. While this could be 1770 // extended to support GEPs that vary by more than one variable it 1771 // doesn't make sense since it greatly increases the complexity and 1772 // would result in an R+R+R addressing mode which no backend 1773 // directly supports and would need to be broken into several 1774 // simpler instructions anyway. 1775 return nullptr; 1776 } 1777 } 1778 1779 // Sink down a layer of the type for the next iteration. 1780 if (J > 0) { 1781 if (J == 1) { 1782 CurTy = Op1->getSourceElementType(); 1783 } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) { 1784 CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); 1785 } else { 1786 CurTy = nullptr; 1787 } 1788 } 1789 } 1790 } 1791 1792 // If not all GEPs are identical we'll have to create a new PHI node. 1793 // Check that the old PHI node has only one use so that it will get 1794 // removed. 1795 if (DI != -1 && !PN->hasOneUse()) 1796 return nullptr; 1797 1798 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1799 if (DI == -1) { 1800 // All the GEPs feeding the PHI are identical. Clone one down into our 1801 // BB so that it can be merged with the current GEP. 1802 GEP.getParent()->getInstList().insert( 1803 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1804 } else { 1805 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1806 // into the current block so it can be merged, and create a new PHI to 1807 // set that index. 1808 PHINode *NewPN; 1809 { 1810 IRBuilderBase::InsertPointGuard Guard(Builder); 1811 Builder.SetInsertPoint(PN); 1812 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 1813 PN->getNumOperands()); 1814 } 1815 1816 for (auto &I : PN->operands()) 1817 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1818 PN->getIncomingBlock(I)); 1819 1820 NewGEP->setOperand(DI, NewPN); 1821 GEP.getParent()->getInstList().insert( 1822 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1823 NewGEP->setOperand(DI, NewPN); 1824 } 1825 1826 GEP.setOperand(0, NewGEP); 1827 PtrOp = NewGEP; 1828 } 1829 1830 // Combine Indices - If the source pointer to this getelementptr instruction 1831 // is a getelementptr instruction, combine the indices of the two 1832 // getelementptr instructions into a single instruction. 1833 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { 1834 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1835 return nullptr; 1836 1837 // Try to reassociate loop invariant GEP chains to enable LICM. 1838 if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1839 Src->hasOneUse()) { 1840 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1841 Value *GO1 = GEP.getOperand(1); 1842 Value *SO1 = Src->getOperand(1); 1843 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1844 // invariant: this breaks the dependence between GEPs and allows LICM 1845 // to hoist the invariant part out of the loop. 1846 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1847 // We have to be careful here. 1848 // We have something like: 1849 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 1850 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 1851 // If we just swap idx & idx2 then we could inadvertantly 1852 // change %src from a vector to a scalar, or vice versa. 1853 // Cases: 1854 // 1) %base a scalar & idx a scalar & idx2 a vector 1855 // => Swapping idx & idx2 turns %src into a vector type. 1856 // 2) %base a scalar & idx a vector & idx2 a scalar 1857 // => Swapping idx & idx2 turns %src in a scalar type 1858 // 3) %base, %idx, and %idx2 are scalars 1859 // => %src & %gep are scalars 1860 // => swapping idx & idx2 is safe 1861 // 4) %base a vector 1862 // => %src is a vector 1863 // => swapping idx & idx2 is safe. 1864 auto *SO0 = Src->getOperand(0); 1865 auto *SO0Ty = SO0->getType(); 1866 if (!isa<VectorType>(GEPType) || // case 3 1867 isa<VectorType>(SO0Ty)) { // case 4 1868 Src->setOperand(1, GO1); 1869 GEP.setOperand(1, SO1); 1870 return &GEP; 1871 } else { 1872 // Case 1 or 2 1873 // -- have to recreate %src & %gep 1874 // put NewSrc at same location as %src 1875 Builder.SetInsertPoint(cast<Instruction>(PtrOp)); 1876 auto *NewSrc = cast<GetElementPtrInst>( 1877 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName())); 1878 NewSrc->setIsInBounds(Src->isInBounds()); 1879 auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1}); 1880 NewGEP->setIsInBounds(GEP.isInBounds()); 1881 return NewGEP; 1882 } 1883 } 1884 } 1885 } 1886 1887 // Note that if our source is a gep chain itself then we wait for that 1888 // chain to be resolved before we perform this transformation. This 1889 // avoids us creating a TON of code in some cases. 1890 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 1891 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1892 return nullptr; // Wait until our source is folded to completion. 1893 1894 SmallVector<Value*, 8> Indices; 1895 1896 // Find out whether the last index in the source GEP is a sequential idx. 1897 bool EndsWithSequential = false; 1898 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1899 I != E; ++I) 1900 EndsWithSequential = I.isSequential(); 1901 1902 // Can we combine the two pointer arithmetics offsets? 1903 if (EndsWithSequential) { 1904 // Replace: gep (gep %P, long B), long A, ... 1905 // With: T = long A+B; gep %P, T, ... 1906 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1907 Value *GO1 = GEP.getOperand(1); 1908 1909 // If they aren't the same type, then the input hasn't been processed 1910 // by the loop above yet (which canonicalizes sequential index types to 1911 // intptr_t). Just avoid transforming this until the input has been 1912 // normalized. 1913 if (SO1->getType() != GO1->getType()) 1914 return nullptr; 1915 1916 Value *Sum = 1917 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 1918 // Only do the combine when we are sure the cost after the 1919 // merge is never more than that before the merge. 1920 if (Sum == nullptr) 1921 return nullptr; 1922 1923 // Update the GEP in place if possible. 1924 if (Src->getNumOperands() == 2) { 1925 GEP.setOperand(0, Src->getOperand(0)); 1926 GEP.setOperand(1, Sum); 1927 return &GEP; 1928 } 1929 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1930 Indices.push_back(Sum); 1931 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1932 } else if (isa<Constant>(*GEP.idx_begin()) && 1933 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1934 Src->getNumOperands() != 1) { 1935 // Otherwise we can do the fold if the first index of the GEP is a zero 1936 Indices.append(Src->op_begin()+1, Src->op_end()); 1937 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1938 } 1939 1940 if (!Indices.empty()) 1941 return GEP.isInBounds() && Src->isInBounds() 1942 ? GetElementPtrInst::CreateInBounds( 1943 Src->getSourceElementType(), Src->getOperand(0), Indices, 1944 GEP.getName()) 1945 : GetElementPtrInst::Create(Src->getSourceElementType(), 1946 Src->getOperand(0), Indices, 1947 GEP.getName()); 1948 } 1949 1950 if (GEP.getNumIndices() == 1) { 1951 unsigned AS = GEP.getPointerAddressSpace(); 1952 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 1953 DL.getIndexSizeInBits(AS)) { 1954 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType); 1955 1956 bool Matched = false; 1957 uint64_t C; 1958 Value *V = nullptr; 1959 if (TyAllocSize == 1) { 1960 V = GEP.getOperand(1); 1961 Matched = true; 1962 } else if (match(GEP.getOperand(1), 1963 m_AShr(m_Value(V), m_ConstantInt(C)))) { 1964 if (TyAllocSize == 1ULL << C) 1965 Matched = true; 1966 } else if (match(GEP.getOperand(1), 1967 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 1968 if (TyAllocSize == C) 1969 Matched = true; 1970 } 1971 1972 if (Matched) { 1973 // Canonicalize (gep i8* X, -(ptrtoint Y)) 1974 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) 1975 // The GEP pattern is emitted by the SCEV expander for certain kinds of 1976 // pointer arithmetic. 1977 if (match(V, m_Neg(m_PtrToInt(m_Value())))) { 1978 Operator *Index = cast<Operator>(V); 1979 Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType()); 1980 Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1)); 1981 return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType); 1982 } 1983 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) 1984 // to (bitcast Y) 1985 Value *Y; 1986 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), 1987 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) 1988 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 1989 } 1990 } 1991 } 1992 1993 // We do not handle pointer-vector geps here. 1994 if (GEPType->isVectorTy()) 1995 return nullptr; 1996 1997 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 1998 Value *StrippedPtr = PtrOp->stripPointerCasts(); 1999 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 2000 2001 if (StrippedPtr != PtrOp) { 2002 bool HasZeroPointerIndex = false; 2003 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType(); 2004 2005 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 2006 HasZeroPointerIndex = C->isZero(); 2007 2008 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2009 // into : GEP [10 x i8]* X, i32 0, ... 2010 // 2011 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2012 // into : GEP i8* X, ... 2013 // 2014 // This occurs when the program declares an array extern like "int X[];" 2015 if (HasZeroPointerIndex) { 2016 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2017 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2018 if (CATy->getElementType() == StrippedPtrEltTy) { 2019 // -> GEP i8* X, ... 2020 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 2021 GetElementPtrInst *Res = GetElementPtrInst::Create( 2022 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2023 Res->setIsInBounds(GEP.isInBounds()); 2024 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2025 return Res; 2026 // Insert Res, and create an addrspacecast. 2027 // e.g., 2028 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2029 // -> 2030 // %0 = GEP i8 addrspace(1)* X, ... 2031 // addrspacecast i8 addrspace(1)* %0 to i8* 2032 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2033 } 2034 2035 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2036 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2037 if (CATy->getElementType() == XATy->getElementType()) { 2038 // -> GEP [10 x i8]* X, i32 0, ... 2039 // At this point, we know that the cast source type is a pointer 2040 // to an array of the same type as the destination pointer 2041 // array. Because the array type is never stepped over (there 2042 // is a leading zero) we can fold the cast into this GEP. 2043 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2044 GEP.setOperand(0, StrippedPtr); 2045 GEP.setSourceElementType(XATy); 2046 return &GEP; 2047 } 2048 // Cannot replace the base pointer directly because StrippedPtr's 2049 // address space is different. Instead, create a new GEP followed by 2050 // an addrspacecast. 2051 // e.g., 2052 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2053 // i32 0, ... 2054 // -> 2055 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2056 // addrspacecast i8 addrspace(1)* %0 to i8* 2057 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 2058 Value *NewGEP = 2059 GEP.isInBounds() 2060 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2061 Idx, GEP.getName()) 2062 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2063 GEP.getName()); 2064 return new AddrSpaceCastInst(NewGEP, GEPType); 2065 } 2066 } 2067 } 2068 } else if (GEP.getNumOperands() == 2) { 2069 // Transform things like: 2070 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 2071 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 2072 if (StrippedPtrEltTy->isArrayTy() && 2073 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2074 DL.getTypeAllocSize(GEPEltType)) { 2075 Type *IdxType = DL.getIndexType(GEPType); 2076 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 2077 Value *NewGEP = 2078 GEP.isInBounds() 2079 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2080 GEP.getName()) 2081 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2082 GEP.getName()); 2083 2084 // V and GEP are both pointer types --> BitCast 2085 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2086 } 2087 2088 // Transform things like: 2089 // %V = mul i64 %N, 4 2090 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2091 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2092 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2093 // Check that changing the type amounts to dividing the index by a scale 2094 // factor. 2095 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 2096 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy); 2097 if (ResSize && SrcSize % ResSize == 0) { 2098 Value *Idx = GEP.getOperand(1); 2099 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2100 uint64_t Scale = SrcSize / ResSize; 2101 2102 // Earlier transforms ensure that the index has the right type 2103 // according to Data Layout, which considerably simplifies the 2104 // logic by eliminating implicit casts. 2105 assert(Idx->getType() == DL.getIndexType(GEPType) && 2106 "Index type does not match the Data Layout preferences"); 2107 2108 bool NSW; 2109 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2110 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2111 // If the multiplication NewIdx * Scale may overflow then the new 2112 // GEP may not be "inbounds". 2113 Value *NewGEP = 2114 GEP.isInBounds() && NSW 2115 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2116 NewIdx, GEP.getName()) 2117 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2118 GEP.getName()); 2119 2120 // The NewGEP must be pointer typed, so must the old one -> BitCast 2121 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2122 GEPType); 2123 } 2124 } 2125 } 2126 2127 // Similarly, transform things like: 2128 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2129 // (where tmp = 8*tmp2) into: 2130 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2131 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2132 StrippedPtrEltTy->isArrayTy()) { 2133 // Check that changing to the array element type amounts to dividing the 2134 // index by a scale factor. 2135 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 2136 uint64_t ArrayEltSize = 2137 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()); 2138 if (ResSize && ArrayEltSize % ResSize == 0) { 2139 Value *Idx = GEP.getOperand(1); 2140 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2141 uint64_t Scale = ArrayEltSize / ResSize; 2142 2143 // Earlier transforms ensure that the index has the right type 2144 // according to the Data Layout, which considerably simplifies 2145 // the logic by eliminating implicit casts. 2146 assert(Idx->getType() == DL.getIndexType(GEPType) && 2147 "Index type does not match the Data Layout preferences"); 2148 2149 bool NSW; 2150 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2151 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2152 // If the multiplication NewIdx * Scale may overflow then the new 2153 // GEP may not be "inbounds". 2154 Type *IndTy = DL.getIndexType(GEPType); 2155 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2156 2157 Value *NewGEP = 2158 GEP.isInBounds() && NSW 2159 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2160 Off, GEP.getName()) 2161 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2162 GEP.getName()); 2163 // The NewGEP must be pointer typed, so must the old one -> BitCast 2164 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2165 GEPType); 2166 } 2167 } 2168 } 2169 } 2170 } 2171 2172 // addrspacecast between types is canonicalized as a bitcast, then an 2173 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2174 // through the addrspacecast. 2175 Value *ASCStrippedPtrOp = PtrOp; 2176 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2177 // X = bitcast A addrspace(1)* to B addrspace(1)* 2178 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2179 // Z = gep Y, <...constant indices...> 2180 // Into an addrspacecasted GEP of the struct. 2181 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2182 ASCStrippedPtrOp = BC; 2183 } 2184 2185 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 2186 Value *SrcOp = BCI->getOperand(0); 2187 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2188 Type *SrcEltType = SrcType->getElementType(); 2189 2190 // GEP directly using the source operand if this GEP is accessing an element 2191 // of a bitcasted pointer to vector or array of the same dimensions: 2192 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2193 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2194 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, 2195 const DataLayout &DL) { 2196 return ArrTy->getArrayElementType() == VecTy->getVectorElementType() && 2197 ArrTy->getArrayNumElements() == VecTy->getVectorNumElements() && 2198 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); 2199 }; 2200 if (GEP.getNumOperands() == 3 && 2201 ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() && 2202 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || 2203 (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() && 2204 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { 2205 2206 // Create a new GEP here, as using `setOperand()` followed by 2207 // `setSourceElementType()` won't actually update the type of the 2208 // existing GEP Value. Causing issues if this Value is accessed when 2209 // constructing an AddrSpaceCastInst 2210 Value *NGEP = 2211 GEP.isInBounds() 2212 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}) 2213 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}); 2214 NGEP->takeName(&GEP); 2215 2216 // Preserve GEP address space to satisfy users 2217 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2218 return new AddrSpaceCastInst(NGEP, GEPType); 2219 2220 return replaceInstUsesWith(GEP, NGEP); 2221 } 2222 2223 // See if we can simplify: 2224 // X = bitcast A* to B* 2225 // Y = gep X, <...constant indices...> 2226 // into a gep of the original struct. This is important for SROA and alias 2227 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2228 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 2229 APInt Offset(OffsetBits, 0); 2230 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) { 2231 // If this GEP instruction doesn't move the pointer, just replace the GEP 2232 // with a bitcast of the real input to the dest type. 2233 if (!Offset) { 2234 // If the bitcast is of an allocation, and the allocation will be 2235 // converted to match the type of the cast, don't touch this. 2236 if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) { 2237 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2238 if (Instruction *I = visitBitCast(*BCI)) { 2239 if (I != BCI) { 2240 I->takeName(BCI); 2241 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2242 replaceInstUsesWith(*BCI, I); 2243 } 2244 return &GEP; 2245 } 2246 } 2247 2248 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2249 return new AddrSpaceCastInst(SrcOp, GEPType); 2250 return new BitCastInst(SrcOp, GEPType); 2251 } 2252 2253 // Otherwise, if the offset is non-zero, we need to find out if there is a 2254 // field at Offset in 'A's type. If so, we can pull the cast through the 2255 // GEP. 2256 SmallVector<Value*, 8> NewIndices; 2257 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2258 Value *NGEP = 2259 GEP.isInBounds() 2260 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) 2261 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); 2262 2263 if (NGEP->getType() == GEPType) 2264 return replaceInstUsesWith(GEP, NGEP); 2265 NGEP->takeName(&GEP); 2266 2267 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2268 return new AddrSpaceCastInst(NGEP, GEPType); 2269 return new BitCastInst(NGEP, GEPType); 2270 } 2271 } 2272 } 2273 2274 if (!GEP.isInBounds()) { 2275 unsigned IdxWidth = 2276 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2277 APInt BasePtrOffset(IdxWidth, 0); 2278 Value *UnderlyingPtrOp = 2279 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2280 BasePtrOffset); 2281 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2282 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2283 BasePtrOffset.isNonNegative()) { 2284 APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType())); 2285 if (BasePtrOffset.ule(AllocSize)) { 2286 return GetElementPtrInst::CreateInBounds( 2287 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1), 2288 GEP.getName()); 2289 } 2290 } 2291 } 2292 } 2293 2294 return nullptr; 2295 } 2296 2297 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 2298 Instruction *AI) { 2299 if (isa<ConstantPointerNull>(V)) 2300 return true; 2301 if (auto *LI = dyn_cast<LoadInst>(V)) 2302 return isa<GlobalVariable>(LI->getPointerOperand()); 2303 // Two distinct allocations will never be equal. 2304 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2305 // through bitcasts of V can cause 2306 // the result statement below to be true, even when AI and V (ex: 2307 // i8* ->i32* ->i8* of AI) are the same allocations. 2308 return isAllocLikeFn(V, TLI) && V != AI; 2309 } 2310 2311 static bool isAllocSiteRemovable(Instruction *AI, 2312 SmallVectorImpl<WeakTrackingVH> &Users, 2313 const TargetLibraryInfo *TLI) { 2314 SmallVector<Instruction*, 4> Worklist; 2315 Worklist.push_back(AI); 2316 2317 do { 2318 Instruction *PI = Worklist.pop_back_val(); 2319 for (User *U : PI->users()) { 2320 Instruction *I = cast<Instruction>(U); 2321 switch (I->getOpcode()) { 2322 default: 2323 // Give up the moment we see something we can't handle. 2324 return false; 2325 2326 case Instruction::AddrSpaceCast: 2327 case Instruction::BitCast: 2328 case Instruction::GetElementPtr: 2329 Users.emplace_back(I); 2330 Worklist.push_back(I); 2331 continue; 2332 2333 case Instruction::ICmp: { 2334 ICmpInst *ICI = cast<ICmpInst>(I); 2335 // We can fold eq/ne comparisons with null to false/true, respectively. 2336 // We also fold comparisons in some conditions provided the alloc has 2337 // not escaped (see isNeverEqualToUnescapedAlloc). 2338 if (!ICI->isEquality()) 2339 return false; 2340 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2341 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2342 return false; 2343 Users.emplace_back(I); 2344 continue; 2345 } 2346 2347 case Instruction::Call: 2348 // Ignore no-op and store intrinsics. 2349 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2350 switch (II->getIntrinsicID()) { 2351 default: 2352 return false; 2353 2354 case Intrinsic::memmove: 2355 case Intrinsic::memcpy: 2356 case Intrinsic::memset: { 2357 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2358 if (MI->isVolatile() || MI->getRawDest() != PI) 2359 return false; 2360 LLVM_FALLTHROUGH; 2361 } 2362 case Intrinsic::invariant_start: 2363 case Intrinsic::invariant_end: 2364 case Intrinsic::lifetime_start: 2365 case Intrinsic::lifetime_end: 2366 case Intrinsic::objectsize: 2367 Users.emplace_back(I); 2368 continue; 2369 } 2370 } 2371 2372 if (isFreeCall(I, TLI)) { 2373 Users.emplace_back(I); 2374 continue; 2375 } 2376 return false; 2377 2378 case Instruction::Store: { 2379 StoreInst *SI = cast<StoreInst>(I); 2380 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2381 return false; 2382 Users.emplace_back(I); 2383 continue; 2384 } 2385 } 2386 llvm_unreachable("missing a return?"); 2387 } 2388 } while (!Worklist.empty()); 2389 return true; 2390 } 2391 2392 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 2393 // If we have a malloc call which is only used in any amount of comparisons to 2394 // null and free calls, delete the calls and replace the comparisons with true 2395 // or false as appropriate. 2396 2397 // This is based on the principle that we can substitute our own allocation 2398 // function (which will never return null) rather than knowledge of the 2399 // specific function being called. In some sense this can change the permitted 2400 // outputs of a program (when we convert a malloc to an alloca, the fact that 2401 // the allocation is now on the stack is potentially visible, for example), 2402 // but we believe in a permissible manner. 2403 SmallVector<WeakTrackingVH, 64> Users; 2404 2405 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2406 // before each store. 2407 TinyPtrVector<DbgVariableIntrinsic *> DIIs; 2408 std::unique_ptr<DIBuilder> DIB; 2409 if (isa<AllocaInst>(MI)) { 2410 DIIs = FindDbgAddrUses(&MI); 2411 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2412 } 2413 2414 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2415 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2416 // Lowering all @llvm.objectsize calls first because they may 2417 // use a bitcast/GEP of the alloca we are removing. 2418 if (!Users[i]) 2419 continue; 2420 2421 Instruction *I = cast<Instruction>(&*Users[i]); 2422 2423 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2424 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2425 Value *Result = 2426 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); 2427 replaceInstUsesWith(*I, Result); 2428 eraseInstFromFunction(*I); 2429 Users[i] = nullptr; // Skip examining in the next loop. 2430 } 2431 } 2432 } 2433 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2434 if (!Users[i]) 2435 continue; 2436 2437 Instruction *I = cast<Instruction>(&*Users[i]); 2438 2439 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2440 replaceInstUsesWith(*C, 2441 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2442 C->isFalseWhenEqual())); 2443 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) || 2444 isa<AddrSpaceCastInst>(I)) { 2445 replaceInstUsesWith(*I, UndefValue::get(I->getType())); 2446 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2447 for (auto *DII : DIIs) 2448 ConvertDebugDeclareToDebugValue(DII, SI, *DIB); 2449 } 2450 eraseInstFromFunction(*I); 2451 } 2452 2453 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2454 // Replace invoke with a NOP intrinsic to maintain the original CFG 2455 Module *M = II->getModule(); 2456 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2457 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2458 None, "", II->getParent()); 2459 } 2460 2461 for (auto *DII : DIIs) 2462 eraseInstFromFunction(*DII); 2463 2464 return eraseInstFromFunction(MI); 2465 } 2466 return nullptr; 2467 } 2468 2469 /// Move the call to free before a NULL test. 2470 /// 2471 /// Check if this free is accessed after its argument has been test 2472 /// against NULL (property 0). 2473 /// If yes, it is legal to move this call in its predecessor block. 2474 /// 2475 /// The move is performed only if the block containing the call to free 2476 /// will be removed, i.e.: 2477 /// 1. it has only one predecessor P, and P has two successors 2478 /// 2. it contains the call, noops, and an unconditional branch 2479 /// 3. its successor is the same as its predecessor's successor 2480 /// 2481 /// The profitability is out-of concern here and this function should 2482 /// be called only if the caller knows this transformation would be 2483 /// profitable (e.g., for code size). 2484 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2485 const DataLayout &DL) { 2486 Value *Op = FI.getArgOperand(0); 2487 BasicBlock *FreeInstrBB = FI.getParent(); 2488 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2489 2490 // Validate part of constraint #1: Only one predecessor 2491 // FIXME: We can extend the number of predecessor, but in that case, we 2492 // would duplicate the call to free in each predecessor and it may 2493 // not be profitable even for code size. 2494 if (!PredBB) 2495 return nullptr; 2496 2497 // Validate constraint #2: Does this block contains only the call to 2498 // free, noops, and an unconditional branch? 2499 BasicBlock *SuccBB; 2500 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2501 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2502 return nullptr; 2503 2504 // If there are only 2 instructions in the block, at this point, 2505 // this is the call to free and unconditional. 2506 // If there are more than 2 instructions, check that they are noops 2507 // i.e., they won't hurt the performance of the generated code. 2508 if (FreeInstrBB->size() != 2) { 2509 for (const Instruction &Inst : *FreeInstrBB) { 2510 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2511 continue; 2512 auto *Cast = dyn_cast<CastInst>(&Inst); 2513 if (!Cast || !Cast->isNoopCast(DL)) 2514 return nullptr; 2515 } 2516 } 2517 // Validate the rest of constraint #1 by matching on the pred branch. 2518 Instruction *TI = PredBB->getTerminator(); 2519 BasicBlock *TrueBB, *FalseBB; 2520 ICmpInst::Predicate Pred; 2521 if (!match(TI, m_Br(m_ICmp(Pred, 2522 m_CombineOr(m_Specific(Op), 2523 m_Specific(Op->stripPointerCasts())), 2524 m_Zero()), 2525 TrueBB, FalseBB))) 2526 return nullptr; 2527 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2528 return nullptr; 2529 2530 // Validate constraint #3: Ensure the null case just falls through. 2531 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2532 return nullptr; 2533 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2534 "Broken CFG: missing edge from predecessor to successor"); 2535 2536 // At this point, we know that everything in FreeInstrBB can be moved 2537 // before TI. 2538 for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end(); 2539 It != End;) { 2540 Instruction &Instr = *It++; 2541 if (&Instr == FreeInstrBBTerminator) 2542 break; 2543 Instr.moveBefore(TI); 2544 } 2545 assert(FreeInstrBB->size() == 1 && 2546 "Only the branch instruction should remain"); 2547 return &FI; 2548 } 2549 2550 Instruction *InstCombiner::visitFree(CallInst &FI) { 2551 Value *Op = FI.getArgOperand(0); 2552 2553 // free undef -> unreachable. 2554 if (isa<UndefValue>(Op)) { 2555 // Leave a marker since we can't modify the CFG here. 2556 CreateNonTerminatorUnreachable(&FI); 2557 return eraseInstFromFunction(FI); 2558 } 2559 2560 // If we have 'free null' delete the instruction. This can happen in stl code 2561 // when lots of inlining happens. 2562 if (isa<ConstantPointerNull>(Op)) 2563 return eraseInstFromFunction(FI); 2564 2565 // If we optimize for code size, try to move the call to free before the null 2566 // test so that simplify cfg can remove the empty block and dead code 2567 // elimination the branch. I.e., helps to turn something like: 2568 // if (foo) free(foo); 2569 // into 2570 // free(foo); 2571 if (MinimizeSize) 2572 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 2573 return I; 2574 2575 return nullptr; 2576 } 2577 2578 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { 2579 if (RI.getNumOperands() == 0) // ret void 2580 return nullptr; 2581 2582 Value *ResultOp = RI.getOperand(0); 2583 Type *VTy = ResultOp->getType(); 2584 if (!VTy->isIntegerTy()) 2585 return nullptr; 2586 2587 // There might be assume intrinsics dominating this return that completely 2588 // determine the value. If so, constant fold it. 2589 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2590 if (Known.isConstant()) 2591 RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant())); 2592 2593 return nullptr; 2594 } 2595 2596 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 2597 // Change br (not X), label True, label False to: br X, label False, True 2598 Value *X = nullptr; 2599 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 2600 !isa<Constant>(X)) { 2601 // Swap Destinations and condition... 2602 BI.setCondition(X); 2603 BI.swapSuccessors(); 2604 return &BI; 2605 } 2606 2607 // If the condition is irrelevant, remove the use so that other 2608 // transforms on the condition become more effective. 2609 if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) && 2610 BI.getSuccessor(0) == BI.getSuccessor(1)) { 2611 BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType())); 2612 return &BI; 2613 } 2614 2615 // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq. 2616 CmpInst::Predicate Pred; 2617 if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), 2618 m_BasicBlock(), m_BasicBlock())) && 2619 !isCanonicalPredicate(Pred)) { 2620 // Swap destinations and condition. 2621 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 2622 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2623 BI.swapSuccessors(); 2624 Worklist.Add(Cond); 2625 return &BI; 2626 } 2627 2628 return nullptr; 2629 } 2630 2631 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 2632 Value *Cond = SI.getCondition(); 2633 Value *Op0; 2634 ConstantInt *AddRHS; 2635 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 2636 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2637 for (auto Case : SI.cases()) { 2638 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 2639 assert(isa<ConstantInt>(NewCase) && 2640 "Result of expression should be constant"); 2641 Case.setValue(cast<ConstantInt>(NewCase)); 2642 } 2643 SI.setCondition(Op0); 2644 return &SI; 2645 } 2646 2647 KnownBits Known = computeKnownBits(Cond, 0, &SI); 2648 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 2649 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 2650 2651 // Compute the number of leading bits we can ignore. 2652 // TODO: A better way to determine this would use ComputeNumSignBits(). 2653 for (auto &C : SI.cases()) { 2654 LeadingKnownZeros = std::min( 2655 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2656 LeadingKnownOnes = std::min( 2657 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2658 } 2659 2660 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 2661 2662 // Shrink the condition operand if the new type is smaller than the old type. 2663 // But do not shrink to a non-standard type, because backend can't generate 2664 // good code for that yet. 2665 // TODO: We can make it aggressive again after fixing PR39569. 2666 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 2667 shouldChangeType(Known.getBitWidth(), NewWidth)) { 2668 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2669 Builder.SetInsertPoint(&SI); 2670 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 2671 SI.setCondition(NewCond); 2672 2673 for (auto Case : SI.cases()) { 2674 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 2675 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 2676 } 2677 return &SI; 2678 } 2679 2680 return nullptr; 2681 } 2682 2683 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 2684 Value *Agg = EV.getAggregateOperand(); 2685 2686 if (!EV.hasIndices()) 2687 return replaceInstUsesWith(EV, Agg); 2688 2689 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 2690 SQ.getWithInstruction(&EV))) 2691 return replaceInstUsesWith(EV, V); 2692 2693 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 2694 // We're extracting from an insertvalue instruction, compare the indices 2695 const unsigned *exti, *exte, *insi, *inse; 2696 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 2697 exte = EV.idx_end(), inse = IV->idx_end(); 2698 exti != exte && insi != inse; 2699 ++exti, ++insi) { 2700 if (*insi != *exti) 2701 // The insert and extract both reference distinctly different elements. 2702 // This means the extract is not influenced by the insert, and we can 2703 // replace the aggregate operand of the extract with the aggregate 2704 // operand of the insert. i.e., replace 2705 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2706 // %E = extractvalue { i32, { i32 } } %I, 0 2707 // with 2708 // %E = extractvalue { i32, { i32 } } %A, 0 2709 return ExtractValueInst::Create(IV->getAggregateOperand(), 2710 EV.getIndices()); 2711 } 2712 if (exti == exte && insi == inse) 2713 // Both iterators are at the end: Index lists are identical. Replace 2714 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2715 // %C = extractvalue { i32, { i32 } } %B, 1, 0 2716 // with "i32 42" 2717 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 2718 if (exti == exte) { 2719 // The extract list is a prefix of the insert list. i.e. replace 2720 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2721 // %E = extractvalue { i32, { i32 } } %I, 1 2722 // with 2723 // %X = extractvalue { i32, { i32 } } %A, 1 2724 // %E = insertvalue { i32 } %X, i32 42, 0 2725 // by switching the order of the insert and extract (though the 2726 // insertvalue should be left in, since it may have other uses). 2727 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 2728 EV.getIndices()); 2729 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 2730 makeArrayRef(insi, inse)); 2731 } 2732 if (insi == inse) 2733 // The insert list is a prefix of the extract list 2734 // We can simply remove the common indices from the extract and make it 2735 // operate on the inserted value instead of the insertvalue result. 2736 // i.e., replace 2737 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2738 // %E = extractvalue { i32, { i32 } } %I, 1, 0 2739 // with 2740 // %E extractvalue { i32 } { i32 42 }, 0 2741 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 2742 makeArrayRef(exti, exte)); 2743 } 2744 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 2745 // We're extracting from an overflow intrinsic, see if we're the only user, 2746 // which allows us to simplify multiple result intrinsics to simpler 2747 // things that just get one value. 2748 if (WO->hasOneUse()) { 2749 // Check if we're grabbing only the result of a 'with overflow' intrinsic 2750 // and replace it with a traditional binary instruction. 2751 if (*EV.idx_begin() == 0) { 2752 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 2753 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 2754 replaceInstUsesWith(*WO, UndefValue::get(WO->getType())); 2755 eraseInstFromFunction(*WO); 2756 return BinaryOperator::Create(BinOp, LHS, RHS); 2757 } 2758 2759 // If the normal result of the add is dead, and the RHS is a constant, 2760 // we can transform this into a range comparison. 2761 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 2762 if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow) 2763 if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS())) 2764 return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(), 2765 ConstantExpr::getNot(CI)); 2766 } 2767 } 2768 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2769 // If the (non-volatile) load only has one use, we can rewrite this to a 2770 // load from a GEP. This reduces the size of the load. If a load is used 2771 // only by extractvalue instructions then this either must have been 2772 // optimized before, or it is a struct with padding, in which case we 2773 // don't want to do the transformation as it loses padding knowledge. 2774 if (L->isSimple() && L->hasOneUse()) { 2775 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2776 SmallVector<Value*, 4> Indices; 2777 // Prefix an i32 0 since we need the first element. 2778 Indices.push_back(Builder.getInt32(0)); 2779 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2780 I != E; ++I) 2781 Indices.push_back(Builder.getInt32(*I)); 2782 2783 // We need to insert these at the location of the old load, not at that of 2784 // the extractvalue. 2785 Builder.SetInsertPoint(L); 2786 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 2787 L->getPointerOperand(), Indices); 2788 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 2789 // Whatever aliasing information we had for the orignal load must also 2790 // hold for the smaller load, so propagate the annotations. 2791 AAMDNodes Nodes; 2792 L->getAAMetadata(Nodes); 2793 NL->setAAMetadata(Nodes); 2794 // Returning the load directly will cause the main loop to insert it in 2795 // the wrong spot, so use replaceInstUsesWith(). 2796 return replaceInstUsesWith(EV, NL); 2797 } 2798 // We could simplify extracts from other values. Note that nested extracts may 2799 // already be simplified implicitly by the above: extract (extract (insert) ) 2800 // will be translated into extract ( insert ( extract ) ) first and then just 2801 // the value inserted, if appropriate. Similarly for extracts from single-use 2802 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2803 // and if again single-use then via load (gep (gep)) to load (gep). 2804 // However, double extracts from e.g. function arguments or return values 2805 // aren't handled yet. 2806 return nullptr; 2807 } 2808 2809 /// Return 'true' if the given typeinfo will match anything. 2810 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 2811 switch (Personality) { 2812 case EHPersonality::GNU_C: 2813 case EHPersonality::GNU_C_SjLj: 2814 case EHPersonality::Rust: 2815 // The GCC C EH and Rust personality only exists to support cleanups, so 2816 // it's not clear what the semantics of catch clauses are. 2817 return false; 2818 case EHPersonality::Unknown: 2819 return false; 2820 case EHPersonality::GNU_Ada: 2821 // While __gnat_all_others_value will match any Ada exception, it doesn't 2822 // match foreign exceptions (or didn't, before gcc-4.7). 2823 return false; 2824 case EHPersonality::GNU_CXX: 2825 case EHPersonality::GNU_CXX_SjLj: 2826 case EHPersonality::GNU_ObjC: 2827 case EHPersonality::MSVC_X86SEH: 2828 case EHPersonality::MSVC_Win64SEH: 2829 case EHPersonality::MSVC_CXX: 2830 case EHPersonality::CoreCLR: 2831 case EHPersonality::Wasm_CXX: 2832 return TypeInfo->isNullValue(); 2833 } 2834 llvm_unreachable("invalid enum"); 2835 } 2836 2837 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2838 return 2839 cast<ArrayType>(LHS->getType())->getNumElements() 2840 < 2841 cast<ArrayType>(RHS->getType())->getNumElements(); 2842 } 2843 2844 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2845 // The logic here should be correct for any real-world personality function. 2846 // However if that turns out not to be true, the offending logic can always 2847 // be conditioned on the personality function, like the catch-all logic is. 2848 EHPersonality Personality = 2849 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 2850 2851 // Simplify the list of clauses, eg by removing repeated catch clauses 2852 // (these are often created by inlining). 2853 bool MakeNewInstruction = false; // If true, recreate using the following: 2854 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2855 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2856 2857 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 2858 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 2859 bool isLastClause = i + 1 == e; 2860 if (LI.isCatch(i)) { 2861 // A catch clause. 2862 Constant *CatchClause = LI.getClause(i); 2863 Constant *TypeInfo = CatchClause->stripPointerCasts(); 2864 2865 // If we already saw this clause, there is no point in having a second 2866 // copy of it. 2867 if (AlreadyCaught.insert(TypeInfo).second) { 2868 // This catch clause was not already seen. 2869 NewClauses.push_back(CatchClause); 2870 } else { 2871 // Repeated catch clause - drop the redundant copy. 2872 MakeNewInstruction = true; 2873 } 2874 2875 // If this is a catch-all then there is no point in keeping any following 2876 // clauses or marking the landingpad as having a cleanup. 2877 if (isCatchAll(Personality, TypeInfo)) { 2878 if (!isLastClause) 2879 MakeNewInstruction = true; 2880 CleanupFlag = false; 2881 break; 2882 } 2883 } else { 2884 // A filter clause. If any of the filter elements were already caught 2885 // then they can be dropped from the filter. It is tempting to try to 2886 // exploit the filter further by saying that any typeinfo that does not 2887 // occur in the filter can't be caught later (and thus can be dropped). 2888 // However this would be wrong, since typeinfos can match without being 2889 // equal (for example if one represents a C++ class, and the other some 2890 // class derived from it). 2891 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 2892 Constant *FilterClause = LI.getClause(i); 2893 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 2894 unsigned NumTypeInfos = FilterType->getNumElements(); 2895 2896 // An empty filter catches everything, so there is no point in keeping any 2897 // following clauses or marking the landingpad as having a cleanup. By 2898 // dealing with this case here the following code is made a bit simpler. 2899 if (!NumTypeInfos) { 2900 NewClauses.push_back(FilterClause); 2901 if (!isLastClause) 2902 MakeNewInstruction = true; 2903 CleanupFlag = false; 2904 break; 2905 } 2906 2907 bool MakeNewFilter = false; // If true, make a new filter. 2908 SmallVector<Constant *, 16> NewFilterElts; // New elements. 2909 if (isa<ConstantAggregateZero>(FilterClause)) { 2910 // Not an empty filter - it contains at least one null typeinfo. 2911 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 2912 Constant *TypeInfo = 2913 Constant::getNullValue(FilterType->getElementType()); 2914 // If this typeinfo is a catch-all then the filter can never match. 2915 if (isCatchAll(Personality, TypeInfo)) { 2916 // Throw the filter away. 2917 MakeNewInstruction = true; 2918 continue; 2919 } 2920 2921 // There is no point in having multiple copies of this typeinfo, so 2922 // discard all but the first copy if there is more than one. 2923 NewFilterElts.push_back(TypeInfo); 2924 if (NumTypeInfos > 1) 2925 MakeNewFilter = true; 2926 } else { 2927 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 2928 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 2929 NewFilterElts.reserve(NumTypeInfos); 2930 2931 // Remove any filter elements that were already caught or that already 2932 // occurred in the filter. While there, see if any of the elements are 2933 // catch-alls. If so, the filter can be discarded. 2934 bool SawCatchAll = false; 2935 for (unsigned j = 0; j != NumTypeInfos; ++j) { 2936 Constant *Elt = Filter->getOperand(j); 2937 Constant *TypeInfo = Elt->stripPointerCasts(); 2938 if (isCatchAll(Personality, TypeInfo)) { 2939 // This element is a catch-all. Bail out, noting this fact. 2940 SawCatchAll = true; 2941 break; 2942 } 2943 2944 // Even if we've seen a type in a catch clause, we don't want to 2945 // remove it from the filter. An unexpected type handler may be 2946 // set up for a call site which throws an exception of the same 2947 // type caught. In order for the exception thrown by the unexpected 2948 // handler to propagate correctly, the filter must be correctly 2949 // described for the call site. 2950 // 2951 // Example: 2952 // 2953 // void unexpected() { throw 1;} 2954 // void foo() throw (int) { 2955 // std::set_unexpected(unexpected); 2956 // try { 2957 // throw 2.0; 2958 // } catch (int i) {} 2959 // } 2960 2961 // There is no point in having multiple copies of the same typeinfo in 2962 // a filter, so only add it if we didn't already. 2963 if (SeenInFilter.insert(TypeInfo).second) 2964 NewFilterElts.push_back(cast<Constant>(Elt)); 2965 } 2966 // A filter containing a catch-all cannot match anything by definition. 2967 if (SawCatchAll) { 2968 // Throw the filter away. 2969 MakeNewInstruction = true; 2970 continue; 2971 } 2972 2973 // If we dropped something from the filter, make a new one. 2974 if (NewFilterElts.size() < NumTypeInfos) 2975 MakeNewFilter = true; 2976 } 2977 if (MakeNewFilter) { 2978 FilterType = ArrayType::get(FilterType->getElementType(), 2979 NewFilterElts.size()); 2980 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 2981 MakeNewInstruction = true; 2982 } 2983 2984 NewClauses.push_back(FilterClause); 2985 2986 // If the new filter is empty then it will catch everything so there is 2987 // no point in keeping any following clauses or marking the landingpad 2988 // as having a cleanup. The case of the original filter being empty was 2989 // already handled above. 2990 if (MakeNewFilter && !NewFilterElts.size()) { 2991 assert(MakeNewInstruction && "New filter but not a new instruction!"); 2992 CleanupFlag = false; 2993 break; 2994 } 2995 } 2996 } 2997 2998 // If several filters occur in a row then reorder them so that the shortest 2999 // filters come first (those with the smallest number of elements). This is 3000 // advantageous because shorter filters are more likely to match, speeding up 3001 // unwinding, but mostly because it increases the effectiveness of the other 3002 // filter optimizations below. 3003 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3004 unsigned j; 3005 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3006 for (j = i; j != e; ++j) 3007 if (!isa<ArrayType>(NewClauses[j]->getType())) 3008 break; 3009 3010 // Check whether the filters are already sorted by length. We need to know 3011 // if sorting them is actually going to do anything so that we only make a 3012 // new landingpad instruction if it does. 3013 for (unsigned k = i; k + 1 < j; ++k) 3014 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3015 // Not sorted, so sort the filters now. Doing an unstable sort would be 3016 // correct too but reordering filters pointlessly might confuse users. 3017 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3018 shorter_filter); 3019 MakeNewInstruction = true; 3020 break; 3021 } 3022 3023 // Look for the next batch of filters. 3024 i = j + 1; 3025 } 3026 3027 // If typeinfos matched if and only if equal, then the elements of a filter L 3028 // that occurs later than a filter F could be replaced by the intersection of 3029 // the elements of F and L. In reality two typeinfos can match without being 3030 // equal (for example if one represents a C++ class, and the other some class 3031 // derived from it) so it would be wrong to perform this transform in general. 3032 // However the transform is correct and useful if F is a subset of L. In that 3033 // case L can be replaced by F, and thus removed altogether since repeating a 3034 // filter is pointless. So here we look at all pairs of filters F and L where 3035 // L follows F in the list of clauses, and remove L if every element of F is 3036 // an element of L. This can occur when inlining C++ functions with exception 3037 // specifications. 3038 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3039 // Examine each filter in turn. 3040 Value *Filter = NewClauses[i]; 3041 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3042 if (!FTy) 3043 // Not a filter - skip it. 3044 continue; 3045 unsigned FElts = FTy->getNumElements(); 3046 // Examine each filter following this one. Doing this backwards means that 3047 // we don't have to worry about filters disappearing under us when removed. 3048 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3049 Value *LFilter = NewClauses[j]; 3050 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3051 if (!LTy) 3052 // Not a filter - skip it. 3053 continue; 3054 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3055 // an element of LFilter, then discard LFilter. 3056 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3057 // If Filter is empty then it is a subset of LFilter. 3058 if (!FElts) { 3059 // Discard LFilter. 3060 NewClauses.erase(J); 3061 MakeNewInstruction = true; 3062 // Move on to the next filter. 3063 continue; 3064 } 3065 unsigned LElts = LTy->getNumElements(); 3066 // If Filter is longer than LFilter then it cannot be a subset of it. 3067 if (FElts > LElts) 3068 // Move on to the next filter. 3069 continue; 3070 // At this point we know that LFilter has at least one element. 3071 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3072 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3073 // already know that Filter is not longer than LFilter). 3074 if (isa<ConstantAggregateZero>(Filter)) { 3075 assert(FElts <= LElts && "Should have handled this case earlier!"); 3076 // Discard LFilter. 3077 NewClauses.erase(J); 3078 MakeNewInstruction = true; 3079 } 3080 // Move on to the next filter. 3081 continue; 3082 } 3083 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3084 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3085 // Since Filter is non-empty and contains only zeros, it is a subset of 3086 // LFilter iff LFilter contains a zero. 3087 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3088 for (unsigned l = 0; l != LElts; ++l) 3089 if (LArray->getOperand(l)->isNullValue()) { 3090 // LFilter contains a zero - discard it. 3091 NewClauses.erase(J); 3092 MakeNewInstruction = true; 3093 break; 3094 } 3095 // Move on to the next filter. 3096 continue; 3097 } 3098 // At this point we know that both filters are ConstantArrays. Loop over 3099 // operands to see whether every element of Filter is also an element of 3100 // LFilter. Since filters tend to be short this is probably faster than 3101 // using a method that scales nicely. 3102 ConstantArray *FArray = cast<ConstantArray>(Filter); 3103 bool AllFound = true; 3104 for (unsigned f = 0; f != FElts; ++f) { 3105 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3106 AllFound = false; 3107 for (unsigned l = 0; l != LElts; ++l) { 3108 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3109 if (LTypeInfo == FTypeInfo) { 3110 AllFound = true; 3111 break; 3112 } 3113 } 3114 if (!AllFound) 3115 break; 3116 } 3117 if (AllFound) { 3118 // Discard LFilter. 3119 NewClauses.erase(J); 3120 MakeNewInstruction = true; 3121 } 3122 // Move on to the next filter. 3123 } 3124 } 3125 3126 // If we changed any of the clauses, replace the old landingpad instruction 3127 // with a new one. 3128 if (MakeNewInstruction) { 3129 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3130 NewClauses.size()); 3131 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3132 NLI->addClause(NewClauses[i]); 3133 // A landing pad with no clauses must have the cleanup flag set. It is 3134 // theoretically possible, though highly unlikely, that we eliminated all 3135 // clauses. If so, force the cleanup flag to true. 3136 if (NewClauses.empty()) 3137 CleanupFlag = true; 3138 NLI->setCleanup(CleanupFlag); 3139 return NLI; 3140 } 3141 3142 // Even if none of the clauses changed, we may nonetheless have understood 3143 // that the cleanup flag is pointless. Clear it if so. 3144 if (LI.isCleanup() != CleanupFlag) { 3145 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3146 LI.setCleanup(CleanupFlag); 3147 return &LI; 3148 } 3149 3150 return nullptr; 3151 } 3152 3153 Instruction *InstCombiner::visitFreeze(FreezeInst &I) { 3154 Value *Op0 = I.getOperand(0); 3155 3156 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3157 return replaceInstUsesWith(I, V); 3158 3159 return nullptr; 3160 } 3161 3162 /// Try to move the specified instruction from its current block into the 3163 /// beginning of DestBlock, which can only happen if it's safe to move the 3164 /// instruction past all of the instructions between it and the end of its 3165 /// block. 3166 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 3167 assert(I->hasOneUse() && "Invariants didn't hold!"); 3168 BasicBlock *SrcBlock = I->getParent(); 3169 3170 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3171 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 3172 I->isTerminator()) 3173 return false; 3174 3175 // Do not sink static or dynamic alloca instructions. Static allocas must 3176 // remain in the entry block, and dynamic allocas must not be sunk in between 3177 // a stacksave / stackrestore pair, which would incorrectly shorten its 3178 // lifetime. 3179 if (isa<AllocaInst>(I)) 3180 return false; 3181 3182 // Do not sink into catchswitch blocks. 3183 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 3184 return false; 3185 3186 // Do not sink convergent call instructions. 3187 if (auto *CI = dyn_cast<CallInst>(I)) { 3188 if (CI->isConvergent()) 3189 return false; 3190 } 3191 // We can only sink load instructions if there is nothing between the load and 3192 // the end of block that could change the value. 3193 if (I->mayReadFromMemory()) { 3194 for (BasicBlock::iterator Scan = I->getIterator(), 3195 E = I->getParent()->end(); 3196 Scan != E; ++Scan) 3197 if (Scan->mayWriteToMemory()) 3198 return false; 3199 } 3200 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 3201 I->moveBefore(&*InsertPos); 3202 ++NumSunkInst; 3203 3204 // Also sink all related debug uses from the source basic block. Otherwise we 3205 // get debug use before the def. Attempt to salvage debug uses first, to 3206 // maximise the range variables have location for. If we cannot salvage, then 3207 // mark the location undef: we know it was supposed to receive a new location 3208 // here, but that computation has been sunk. 3209 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 3210 findDbgUsers(DbgUsers, I); 3211 for (auto *DII : reverse(DbgUsers)) { 3212 if (DII->getParent() == SrcBlock) { 3213 if (isa<DbgDeclareInst>(DII)) { 3214 // A dbg.declare instruction should not be cloned, since there can only be 3215 // one per variable fragment. It should be left in the original place since 3216 // sunk instruction is not an alloca(otherwise we could not be here). 3217 // But we need to update arguments of dbg.declare instruction, so that it 3218 // would not point into sunk instruction. 3219 if (!isa<CastInst>(I)) 3220 continue; // dbg.declare points at something it shouldn't 3221 3222 DII->setOperand( 3223 0, MetadataAsValue::get(I->getContext(), 3224 ValueAsMetadata::get(I->getOperand(0)))); 3225 continue; 3226 } 3227 3228 // dbg.value is in the same basic block as the sunk inst, see if we can 3229 // salvage it. Clone a new copy of the instruction: on success we need 3230 // both salvaged and unsalvaged copies. 3231 SmallVector<DbgVariableIntrinsic *, 1> TmpUser{ 3232 cast<DbgVariableIntrinsic>(DII->clone())}; 3233 3234 if (!salvageDebugInfoForDbgValues(*I, TmpUser)) { 3235 // We are unable to salvage: sink the cloned dbg.value, and mark the 3236 // original as undef, terminating any earlier variable location. 3237 LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n'); 3238 TmpUser[0]->insertBefore(&*InsertPos); 3239 Value *Undef = UndefValue::get(I->getType()); 3240 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 3241 ValueAsMetadata::get(Undef))); 3242 } else { 3243 // We successfully salvaged: place the salvaged dbg.value in the 3244 // original location, and move the unmodified dbg.value to sink with 3245 // the sunk inst. 3246 TmpUser[0]->insertBefore(DII); 3247 DII->moveBefore(&*InsertPos); 3248 } 3249 } 3250 } 3251 return true; 3252 } 3253 3254 bool InstCombiner::run() { 3255 while (!Worklist.isEmpty()) { 3256 Instruction *I = Worklist.RemoveOne(); 3257 if (I == nullptr) continue; // skip null values. 3258 3259 // Check to see if we can DCE the instruction. 3260 if (isInstructionTriviallyDead(I, &TLI)) { 3261 LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); 3262 eraseInstFromFunction(*I); 3263 ++NumDeadInst; 3264 MadeIRChange = true; 3265 continue; 3266 } 3267 3268 if (!DebugCounter::shouldExecute(VisitCounter)) 3269 continue; 3270 3271 // Instruction isn't dead, see if we can constant propagate it. 3272 if (!I->use_empty() && 3273 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 3274 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 3275 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 3276 << '\n'); 3277 3278 // Add operands to the worklist. 3279 replaceInstUsesWith(*I, C); 3280 ++NumConstProp; 3281 if (isInstructionTriviallyDead(I, &TLI)) 3282 eraseInstFromFunction(*I); 3283 MadeIRChange = true; 3284 continue; 3285 } 3286 } 3287 3288 // In general, it is possible for computeKnownBits to determine all bits in 3289 // a value even when the operands are not all constants. 3290 Type *Ty = I->getType(); 3291 if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) { 3292 KnownBits Known = computeKnownBits(I, /*Depth*/0, I); 3293 if (Known.isConstant()) { 3294 Constant *C = ConstantInt::get(Ty, Known.getConstant()); 3295 LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C 3296 << " from: " << *I << '\n'); 3297 3298 // Add operands to the worklist. 3299 replaceInstUsesWith(*I, C); 3300 ++NumConstProp; 3301 if (isInstructionTriviallyDead(I, &TLI)) 3302 eraseInstFromFunction(*I); 3303 MadeIRChange = true; 3304 continue; 3305 } 3306 } 3307 3308 // See if we can trivially sink this instruction to a successor basic block. 3309 if (EnableCodeSinking && I->hasOneUse()) { 3310 BasicBlock *BB = I->getParent(); 3311 Instruction *UserInst = cast<Instruction>(*I->user_begin()); 3312 BasicBlock *UserParent; 3313 3314 // Get the block the use occurs in. 3315 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 3316 UserParent = PN->getIncomingBlock(*I->use_begin()); 3317 else 3318 UserParent = UserInst->getParent(); 3319 3320 if (UserParent != BB) { 3321 bool UserIsSuccessor = false; 3322 // See if the user is one of our successors. 3323 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 3324 if (*SI == UserParent) { 3325 UserIsSuccessor = true; 3326 break; 3327 } 3328 3329 // If the user is one of our immediate successors, and if that successor 3330 // only has us as a predecessors (we'd have to split the critical edge 3331 // otherwise), we can keep going. 3332 if (UserIsSuccessor && UserParent->getUniquePredecessor()) { 3333 // Okay, the CFG is simple enough, try to sink this instruction. 3334 if (TryToSinkInstruction(I, UserParent)) { 3335 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3336 MadeIRChange = true; 3337 // We'll add uses of the sunk instruction below, but since sinking 3338 // can expose opportunities for it's *operands* add them to the 3339 // worklist 3340 for (Use &U : I->operands()) 3341 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3342 Worklist.Add(OpI); 3343 } 3344 } 3345 } 3346 } 3347 3348 // Now that we have an instruction, try combining it to simplify it. 3349 Builder.SetInsertPoint(I); 3350 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 3351 3352 #ifndef NDEBUG 3353 std::string OrigI; 3354 #endif 3355 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 3356 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 3357 3358 if (Instruction *Result = visit(*I)) { 3359 ++NumCombined; 3360 // Should we replace the old instruction with a new one? 3361 if (Result != I) { 3362 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 3363 << " New = " << *Result << '\n'); 3364 3365 if (I->getDebugLoc()) 3366 Result->setDebugLoc(I->getDebugLoc()); 3367 // Everything uses the new instruction now. 3368 I->replaceAllUsesWith(Result); 3369 3370 // Move the name to the new instruction first. 3371 Result->takeName(I); 3372 3373 // Insert the new instruction into the basic block... 3374 BasicBlock *InstParent = I->getParent(); 3375 BasicBlock::iterator InsertPos = I->getIterator(); 3376 3377 // If we replace a PHI with something that isn't a PHI, fix up the 3378 // insertion point. 3379 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 3380 InsertPos = InstParent->getFirstInsertionPt(); 3381 3382 InstParent->getInstList().insert(InsertPos, Result); 3383 3384 // Push the new instruction and any users onto the worklist. 3385 Worklist.AddUsersToWorkList(*Result); 3386 Worklist.Add(Result); 3387 3388 eraseInstFromFunction(*I); 3389 } else { 3390 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3391 << " New = " << *I << '\n'); 3392 3393 // If the instruction was modified, it's possible that it is now dead. 3394 // if so, remove it. 3395 if (isInstructionTriviallyDead(I, &TLI)) { 3396 eraseInstFromFunction(*I); 3397 } else { 3398 Worklist.AddUsersToWorkList(*I); 3399 Worklist.Add(I); 3400 } 3401 } 3402 MadeIRChange = true; 3403 } 3404 } 3405 3406 Worklist.Zap(); 3407 return MadeIRChange; 3408 } 3409 3410 /// Walk the function in depth-first order, adding all reachable code to the 3411 /// worklist. 3412 /// 3413 /// This has a couple of tricks to make the code faster and more powerful. In 3414 /// particular, we constant fold and DCE instructions as we go, to avoid adding 3415 /// them to the worklist (this significantly speeds up instcombine on code where 3416 /// many instructions are dead or constant). Additionally, if we find a branch 3417 /// whose condition is a known constant, we only visit the reachable successors. 3418 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, 3419 SmallPtrSetImpl<BasicBlock *> &Visited, 3420 InstCombineWorklist &ICWorklist, 3421 const TargetLibraryInfo *TLI) { 3422 bool MadeIRChange = false; 3423 SmallVector<BasicBlock*, 256> Worklist; 3424 Worklist.push_back(BB); 3425 3426 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 3427 DenseMap<Constant *, Constant *> FoldedConstants; 3428 3429 do { 3430 BB = Worklist.pop_back_val(); 3431 3432 // We have now visited this block! If we've already been here, ignore it. 3433 if (!Visited.insert(BB).second) 3434 continue; 3435 3436 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 3437 Instruction *Inst = &*BBI++; 3438 3439 // DCE instruction if trivially dead. 3440 if (isInstructionTriviallyDead(Inst, TLI)) { 3441 ++NumDeadInst; 3442 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 3443 salvageDebugInfoOrMarkUndef(*Inst); 3444 Inst->eraseFromParent(); 3445 MadeIRChange = true; 3446 continue; 3447 } 3448 3449 // ConstantProp instruction if trivially constant. 3450 if (!Inst->use_empty() && 3451 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 3452 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 3453 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst 3454 << '\n'); 3455 Inst->replaceAllUsesWith(C); 3456 ++NumConstProp; 3457 if (isInstructionTriviallyDead(Inst, TLI)) 3458 Inst->eraseFromParent(); 3459 MadeIRChange = true; 3460 continue; 3461 } 3462 3463 // See if we can constant fold its operands. 3464 for (Use &U : Inst->operands()) { 3465 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 3466 continue; 3467 3468 auto *C = cast<Constant>(U); 3469 Constant *&FoldRes = FoldedConstants[C]; 3470 if (!FoldRes) 3471 FoldRes = ConstantFoldConstant(C, DL, TLI); 3472 if (!FoldRes) 3473 FoldRes = C; 3474 3475 if (FoldRes != C) { 3476 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst 3477 << "\n Old = " << *C 3478 << "\n New = " << *FoldRes << '\n'); 3479 U = FoldRes; 3480 MadeIRChange = true; 3481 } 3482 } 3483 3484 // Skip processing debug intrinsics in InstCombine. Processing these call instructions 3485 // consumes non-trivial amount of time and provides no value for the optimization. 3486 if (!isa<DbgInfoIntrinsic>(Inst)) 3487 InstrsForInstCombineWorklist.push_back(Inst); 3488 } 3489 3490 // Recursively visit successors. If this is a branch or switch on a 3491 // constant, only visit the reachable successor. 3492 Instruction *TI = BB->getTerminator(); 3493 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3494 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 3495 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 3496 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 3497 Worklist.push_back(ReachableBB); 3498 continue; 3499 } 3500 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3501 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 3502 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 3503 continue; 3504 } 3505 } 3506 3507 for (BasicBlock *SuccBB : successors(TI)) 3508 Worklist.push_back(SuccBB); 3509 } while (!Worklist.empty()); 3510 3511 // Once we've found all of the instructions to add to instcombine's worklist, 3512 // add them in reverse order. This way instcombine will visit from the top 3513 // of the function down. This jives well with the way that it adds all uses 3514 // of instructions to the worklist after doing a transformation, thus avoiding 3515 // some N^2 behavior in pathological cases. 3516 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist); 3517 3518 return MadeIRChange; 3519 } 3520 3521 /// Populate the IC worklist from a function, and prune any dead basic 3522 /// blocks discovered in the process. 3523 /// 3524 /// This also does basic constant propagation and other forward fixing to make 3525 /// the combiner itself run much faster. 3526 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 3527 TargetLibraryInfo *TLI, 3528 InstCombineWorklist &ICWorklist) { 3529 bool MadeIRChange = false; 3530 3531 // Do a depth-first traversal of the function, populate the worklist with 3532 // the reachable instructions. Ignore blocks that are not reachable. Keep 3533 // track of which blocks we visit. 3534 SmallPtrSet<BasicBlock *, 32> Visited; 3535 MadeIRChange |= 3536 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI); 3537 3538 // Do a quick scan over the function. If we find any blocks that are 3539 // unreachable, remove any instructions inside of them. This prevents 3540 // the instcombine code from having to deal with some bad special cases. 3541 for (BasicBlock &BB : F) { 3542 if (Visited.count(&BB)) 3543 continue; 3544 3545 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB); 3546 MadeIRChange |= NumDeadInstInBB > 0; 3547 NumDeadInst += NumDeadInstInBB; 3548 } 3549 3550 return MadeIRChange; 3551 } 3552 3553 static bool combineInstructionsOverFunction( 3554 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, 3555 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, 3556 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 3557 ProfileSummaryInfo *PSI, bool ExpensiveCombines, unsigned MaxIterations, 3558 LoopInfo *LI) { 3559 auto &DL = F.getParent()->getDataLayout(); 3560 ExpensiveCombines |= EnableExpensiveCombines; 3561 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 3562 3563 /// Builder - This is an IRBuilder that automatically inserts new 3564 /// instructions into the worklist when they are created. 3565 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 3566 F.getContext(), TargetFolder(DL), 3567 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 3568 Worklist.Add(I); 3569 if (match(I, m_Intrinsic<Intrinsic::assume>())) 3570 AC.registerAssumption(cast<CallInst>(I)); 3571 })); 3572 3573 // Lower dbg.declare intrinsics otherwise their value may be clobbered 3574 // by instcombiner. 3575 bool MadeIRChange = false; 3576 if (ShouldLowerDbgDeclare) 3577 MadeIRChange = LowerDbgDeclare(F); 3578 3579 // Iterate while there is work to do. 3580 unsigned Iteration = 0; 3581 while (true) { 3582 ++Iteration; 3583 3584 if (Iteration > InfiniteLoopDetectionThreshold) { 3585 report_fatal_error( 3586 "Instruction Combining seems stuck in an infinite loop after " + 3587 Twine(InfiniteLoopDetectionThreshold) + " iterations."); 3588 } 3589 3590 if (Iteration > MaxIterations) { 3591 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 3592 << " on " << F.getName() 3593 << " reached; stopping before reaching a fixpoint\n"); 3594 break; 3595 } 3596 3597 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 3598 << F.getName() << "\n"); 3599 3600 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 3601 3602 InstCombiner IC(Worklist, Builder, F.hasMinSize(), ExpensiveCombines, AA, 3603 AC, TLI, DT, ORE, BFI, PSI, DL, LI); 3604 IC.MaxArraySizeForCombine = MaxArraySize; 3605 3606 if (!IC.run()) 3607 break; 3608 3609 MadeIRChange = true; 3610 } 3611 3612 return MadeIRChange; 3613 } 3614 3615 InstCombinePass::InstCombinePass(bool ExpensiveCombines) 3616 : ExpensiveCombines(ExpensiveCombines), MaxIterations(LimitMaxIterations) {} 3617 3618 InstCombinePass::InstCombinePass(bool ExpensiveCombines, unsigned MaxIterations) 3619 : ExpensiveCombines(ExpensiveCombines), MaxIterations(MaxIterations) {} 3620 3621 PreservedAnalyses InstCombinePass::run(Function &F, 3622 FunctionAnalysisManager &AM) { 3623 auto &AC = AM.getResult<AssumptionAnalysis>(F); 3624 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 3625 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 3626 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3627 3628 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 3629 3630 auto *AA = &AM.getResult<AAManager>(F); 3631 const ModuleAnalysisManager &MAM = 3632 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 3633 ProfileSummaryInfo *PSI = 3634 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 3635 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 3636 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 3637 3638 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI, 3639 PSI, ExpensiveCombines, MaxIterations, 3640 LI)) 3641 // No changes, all analyses are preserved. 3642 return PreservedAnalyses::all(); 3643 3644 // Mark all the analyses that instcombine updates as preserved. 3645 PreservedAnalyses PA; 3646 PA.preserveSet<CFGAnalyses>(); 3647 PA.preserve<AAManager>(); 3648 PA.preserve<BasicAA>(); 3649 PA.preserve<GlobalsAA>(); 3650 return PA; 3651 } 3652 3653 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 3654 AU.setPreservesCFG(); 3655 AU.addRequired<AAResultsWrapperPass>(); 3656 AU.addRequired<AssumptionCacheTracker>(); 3657 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3658 AU.addRequired<DominatorTreeWrapperPass>(); 3659 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3660 AU.addPreserved<DominatorTreeWrapperPass>(); 3661 AU.addPreserved<AAResultsWrapperPass>(); 3662 AU.addPreserved<BasicAAWrapperPass>(); 3663 AU.addPreserved<GlobalsAAWrapperPass>(); 3664 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 3665 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 3666 } 3667 3668 bool InstructionCombiningPass::runOnFunction(Function &F) { 3669 if (skipFunction(F)) 3670 return false; 3671 3672 // Required analyses. 3673 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3674 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3675 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 3676 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3677 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 3678 3679 // Optional analyses. 3680 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3681 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 3682 ProfileSummaryInfo *PSI = 3683 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 3684 BlockFrequencyInfo *BFI = 3685 (PSI && PSI->hasProfileSummary()) ? 3686 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 3687 nullptr; 3688 3689 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI, 3690 PSI, ExpensiveCombines, MaxIterations, 3691 LI); 3692 } 3693 3694 char InstructionCombiningPass::ID = 0; 3695 3696 InstructionCombiningPass::InstructionCombiningPass(bool ExpensiveCombines) 3697 : FunctionPass(ID), ExpensiveCombines(ExpensiveCombines), 3698 MaxIterations(InstCombineDefaultMaxIterations) { 3699 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 3700 } 3701 3702 InstructionCombiningPass::InstructionCombiningPass(bool ExpensiveCombines, 3703 unsigned MaxIterations) 3704 : FunctionPass(ID), ExpensiveCombines(ExpensiveCombines), 3705 MaxIterations(MaxIterations) { 3706 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 3707 } 3708 3709 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 3710 "Combine redundant instructions", false, false) 3711 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3712 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3713 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3714 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3715 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3716 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3717 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 3718 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 3719 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 3720 "Combine redundant instructions", false, false) 3721 3722 // Initialization Routines 3723 void llvm::initializeInstCombine(PassRegistry &Registry) { 3724 initializeInstructionCombiningPassPass(Registry); 3725 } 3726 3727 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 3728 initializeInstructionCombiningPassPass(*unwrap(R)); 3729 } 3730 3731 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) { 3732 return new InstructionCombiningPass(ExpensiveCombines); 3733 } 3734 3735 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines, 3736 unsigned MaxIterations) { 3737 return new InstructionCombiningPass(ExpensiveCombines, MaxIterations); 3738 } 3739 3740 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 3741 unwrap(PM)->add(createInstructionCombiningPass()); 3742 } 3743