1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions.  This pass does not modify the CFG.  This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 //    %Y = add i32 %X, 1
15 //    %Z = add i32 %Y, 1
16 // into:
17 //    %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 //    1. If a binary operator has a constant operand, it is moved to the RHS
24 //    2. Bitwise operators with constant operands are always grouped so that
25 //       shifts are performed first, then or's, then and's, then xor's.
26 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 //    4. All cmp instructions on boolean values are replaced with logical ops
28 //    5. add X, X is represented as (X*2) => (X << 1)
29 //    6. Multiplies with a power-of-two constant argument are transformed into
30 //       shifts.
31 //   ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BlockFrequencyInfo.h"
50 #include "llvm/Analysis/CFG.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/EHPersonalities.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/MemoryBuiltins.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ProfileSummaryInfo.h"
60 #include "llvm/Analysis/TargetFolder.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/ValueTracking.h"
63 #include "llvm/Analysis/VectorUtils.h"
64 #include "llvm/IR/BasicBlock.h"
65 #include "llvm/IR/CFG.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DIBuilder.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/IRBuilder.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/IntrinsicInst.h"
79 #include "llvm/IR/Intrinsics.h"
80 #include "llvm/IR/LegacyPassManager.h"
81 #include "llvm/IR/Metadata.h"
82 #include "llvm/IR/Operator.h"
83 #include "llvm/IR/PassManager.h"
84 #include "llvm/IR/PatternMatch.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/Use.h"
87 #include "llvm/IR/User.h"
88 #include "llvm/IR/Value.h"
89 #include "llvm/IR/ValueHandle.h"
90 #include "llvm/InitializePasses.h"
91 #include "llvm/Pass.h"
92 #include "llvm/Support/CBindingWrapping.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/DebugCounter.h"
98 #include "llvm/Support/ErrorHandling.h"
99 #include "llvm/Support/KnownBits.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Transforms/InstCombine/InstCombine.h"
102 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstdint>
107 #include <memory>
108 #include <string>
109 #include <utility>
110 
111 using namespace llvm;
112 using namespace llvm::PatternMatch;
113 
114 #define DEBUG_TYPE "instcombine"
115 
116 STATISTIC(NumCombined , "Number of insts combined");
117 STATISTIC(NumConstProp, "Number of constant folds");
118 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
119 STATISTIC(NumSunkInst , "Number of instructions sunk");
120 STATISTIC(NumExpand,    "Number of expansions");
121 STATISTIC(NumFactor   , "Number of factorizations");
122 STATISTIC(NumReassoc  , "Number of reassociations");
123 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
124               "Controls which instructions are visited");
125 
126 static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
127 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
128 
129 static cl::opt<bool>
130 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
131                                               cl::init(true));
132 
133 static cl::opt<unsigned> LimitMaxIterations(
134     "instcombine-max-iterations",
135     cl::desc("Limit the maximum number of instruction combining iterations"),
136     cl::init(InstCombineDefaultMaxIterations));
137 
138 static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
139     "instcombine-infinite-loop-threshold",
140     cl::desc("Number of instruction combining iterations considered an "
141              "infinite loop"),
142     cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
143 
144 static cl::opt<unsigned>
145 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
146              cl::desc("Maximum array size considered when doing a combine"));
147 
148 // FIXME: Remove this flag when it is no longer necessary to convert
149 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
150 // increases variable availability at the cost of accuracy. Variables that
151 // cannot be promoted by mem2reg or SROA will be described as living in memory
152 // for their entire lifetime. However, passes like DSE and instcombine can
153 // delete stores to the alloca, leading to misleading and inaccurate debug
154 // information. This flag can be removed when those passes are fixed.
155 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
156                                                cl::Hidden, cl::init(true));
157 
158 Value *InstCombiner::EmitGEPOffset(User *GEP) {
159   return llvm::EmitGEPOffset(&Builder, DL, GEP);
160 }
161 
162 /// Return true if it is desirable to convert an integer computation from a
163 /// given bit width to a new bit width.
164 /// We don't want to convert from a legal to an illegal type or from a smaller
165 /// to a larger illegal type. A width of '1' is always treated as a legal type
166 /// because i1 is a fundamental type in IR, and there are many specialized
167 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
168 /// legal to convert to, in order to open up more combining opportunities.
169 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common
170 /// from frontend languages.
171 bool InstCombiner::shouldChangeType(unsigned FromWidth,
172                                     unsigned ToWidth) const {
173   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
174   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
175 
176   // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
177   // shrink types, to prevent infinite loops.
178   if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
179     return true;
180 
181   // If this is a legal integer from type, and the result would be an illegal
182   // type, don't do the transformation.
183   if (FromLegal && !ToLegal)
184     return false;
185 
186   // Otherwise, if both are illegal, do not increase the size of the result. We
187   // do allow things like i160 -> i64, but not i64 -> i160.
188   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
189     return false;
190 
191   return true;
192 }
193 
194 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
195 /// We don't want to convert from a legal to an illegal type or from a smaller
196 /// to a larger illegal type. i1 is always treated as a legal type because it is
197 /// a fundamental type in IR, and there are many specialized optimizations for
198 /// i1 types.
199 bool InstCombiner::shouldChangeType(Type *From, Type *To) const {
200   // TODO: This could be extended to allow vectors. Datalayout changes might be
201   // needed to properly support that.
202   if (!From->isIntegerTy() || !To->isIntegerTy())
203     return false;
204 
205   unsigned FromWidth = From->getPrimitiveSizeInBits();
206   unsigned ToWidth = To->getPrimitiveSizeInBits();
207   return shouldChangeType(FromWidth, ToWidth);
208 }
209 
210 // Return true, if No Signed Wrap should be maintained for I.
211 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
212 // where both B and C should be ConstantInts, results in a constant that does
213 // not overflow. This function only handles the Add and Sub opcodes. For
214 // all other opcodes, the function conservatively returns false.
215 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
216   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
217   if (!OBO || !OBO->hasNoSignedWrap())
218     return false;
219 
220   // We reason about Add and Sub Only.
221   Instruction::BinaryOps Opcode = I.getOpcode();
222   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
223     return false;
224 
225   const APInt *BVal, *CVal;
226   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
227     return false;
228 
229   bool Overflow = false;
230   if (Opcode == Instruction::Add)
231     (void)BVal->sadd_ov(*CVal, Overflow);
232   else
233     (void)BVal->ssub_ov(*CVal, Overflow);
234 
235   return !Overflow;
236 }
237 
238 static bool hasNoUnsignedWrap(BinaryOperator &I) {
239   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
240   return OBO && OBO->hasNoUnsignedWrap();
241 }
242 
243 static bool hasNoSignedWrap(BinaryOperator &I) {
244   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
245   return OBO && OBO->hasNoSignedWrap();
246 }
247 
248 /// Conservatively clears subclassOptionalData after a reassociation or
249 /// commutation. We preserve fast-math flags when applicable as they can be
250 /// preserved.
251 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
252   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
253   if (!FPMO) {
254     I.clearSubclassOptionalData();
255     return;
256   }
257 
258   FastMathFlags FMF = I.getFastMathFlags();
259   I.clearSubclassOptionalData();
260   I.setFastMathFlags(FMF);
261 }
262 
263 /// Combine constant operands of associative operations either before or after a
264 /// cast to eliminate one of the associative operations:
265 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
266 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
267 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, InstCombiner &IC) {
268   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
269   if (!Cast || !Cast->hasOneUse())
270     return false;
271 
272   // TODO: Enhance logic for other casts and remove this check.
273   auto CastOpcode = Cast->getOpcode();
274   if (CastOpcode != Instruction::ZExt)
275     return false;
276 
277   // TODO: Enhance logic for other BinOps and remove this check.
278   if (!BinOp1->isBitwiseLogicOp())
279     return false;
280 
281   auto AssocOpcode = BinOp1->getOpcode();
282   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
283   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
284     return false;
285 
286   Constant *C1, *C2;
287   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
288       !match(BinOp2->getOperand(1), m_Constant(C2)))
289     return false;
290 
291   // TODO: This assumes a zext cast.
292   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
293   // to the destination type might lose bits.
294 
295   // Fold the constants together in the destination type:
296   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
297   Type *DestTy = C1->getType();
298   Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
299   Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
300   IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
301   IC.replaceOperand(*BinOp1, 1, FoldedC);
302   return true;
303 }
304 
305 /// This performs a few simplifications for operators that are associative or
306 /// commutative:
307 ///
308 ///  Commutative operators:
309 ///
310 ///  1. Order operands such that they are listed from right (least complex) to
311 ///     left (most complex).  This puts constants before unary operators before
312 ///     binary operators.
313 ///
314 ///  Associative operators:
315 ///
316 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
317 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
318 ///
319 ///  Associative and commutative operators:
320 ///
321 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
322 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
323 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
324 ///     if C1 and C2 are constants.
325 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
326   Instruction::BinaryOps Opcode = I.getOpcode();
327   bool Changed = false;
328 
329   do {
330     // Order operands such that they are listed from right (least complex) to
331     // left (most complex).  This puts constants before unary operators before
332     // binary operators.
333     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
334         getComplexity(I.getOperand(1)))
335       Changed = !I.swapOperands();
336 
337     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
338     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
339 
340     if (I.isAssociative()) {
341       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
342       if (Op0 && Op0->getOpcode() == Opcode) {
343         Value *A = Op0->getOperand(0);
344         Value *B = Op0->getOperand(1);
345         Value *C = I.getOperand(1);
346 
347         // Does "B op C" simplify?
348         if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
349           // It simplifies to V.  Form "A op V".
350           replaceOperand(I, 0, A);
351           replaceOperand(I, 1, V);
352           bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
353           bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
354 
355           // Conservatively clear all optional flags since they may not be
356           // preserved by the reassociation. Reset nsw/nuw based on the above
357           // analysis.
358           ClearSubclassDataAfterReassociation(I);
359 
360           // Note: this is only valid because SimplifyBinOp doesn't look at
361           // the operands to Op0.
362           if (IsNUW)
363             I.setHasNoUnsignedWrap(true);
364 
365           if (IsNSW)
366             I.setHasNoSignedWrap(true);
367 
368           Changed = true;
369           ++NumReassoc;
370           continue;
371         }
372       }
373 
374       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
375       if (Op1 && Op1->getOpcode() == Opcode) {
376         Value *A = I.getOperand(0);
377         Value *B = Op1->getOperand(0);
378         Value *C = Op1->getOperand(1);
379 
380         // Does "A op B" simplify?
381         if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
382           // It simplifies to V.  Form "V op C".
383           replaceOperand(I, 0, V);
384           replaceOperand(I, 1, C);
385           // Conservatively clear the optional flags, since they may not be
386           // preserved by the reassociation.
387           ClearSubclassDataAfterReassociation(I);
388           Changed = true;
389           ++NumReassoc;
390           continue;
391         }
392       }
393     }
394 
395     if (I.isAssociative() && I.isCommutative()) {
396       if (simplifyAssocCastAssoc(&I, *this)) {
397         Changed = true;
398         ++NumReassoc;
399         continue;
400       }
401 
402       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
403       if (Op0 && Op0->getOpcode() == Opcode) {
404         Value *A = Op0->getOperand(0);
405         Value *B = Op0->getOperand(1);
406         Value *C = I.getOperand(1);
407 
408         // Does "C op A" simplify?
409         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
410           // It simplifies to V.  Form "V op B".
411           replaceOperand(I, 0, V);
412           replaceOperand(I, 1, B);
413           // Conservatively clear the optional flags, since they may not be
414           // preserved by the reassociation.
415           ClearSubclassDataAfterReassociation(I);
416           Changed = true;
417           ++NumReassoc;
418           continue;
419         }
420       }
421 
422       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
423       if (Op1 && Op1->getOpcode() == Opcode) {
424         Value *A = I.getOperand(0);
425         Value *B = Op1->getOperand(0);
426         Value *C = Op1->getOperand(1);
427 
428         // Does "C op A" simplify?
429         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
430           // It simplifies to V.  Form "B op V".
431           replaceOperand(I, 0, B);
432           replaceOperand(I, 1, V);
433           // Conservatively clear the optional flags, since they may not be
434           // preserved by the reassociation.
435           ClearSubclassDataAfterReassociation(I);
436           Changed = true;
437           ++NumReassoc;
438           continue;
439         }
440       }
441 
442       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
443       // if C1 and C2 are constants.
444       Value *A, *B;
445       Constant *C1, *C2;
446       if (Op0 && Op1 &&
447           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
448           match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
449           match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
450         bool IsNUW = hasNoUnsignedWrap(I) &&
451            hasNoUnsignedWrap(*Op0) &&
452            hasNoUnsignedWrap(*Op1);
453          BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
454            BinaryOperator::CreateNUW(Opcode, A, B) :
455            BinaryOperator::Create(Opcode, A, B);
456 
457          if (isa<FPMathOperator>(NewBO)) {
458           FastMathFlags Flags = I.getFastMathFlags();
459           Flags &= Op0->getFastMathFlags();
460           Flags &= Op1->getFastMathFlags();
461           NewBO->setFastMathFlags(Flags);
462         }
463         InsertNewInstWith(NewBO, I);
464         NewBO->takeName(Op1);
465         replaceOperand(I, 0, NewBO);
466         replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
467         // Conservatively clear the optional flags, since they may not be
468         // preserved by the reassociation.
469         ClearSubclassDataAfterReassociation(I);
470         if (IsNUW)
471           I.setHasNoUnsignedWrap(true);
472 
473         Changed = true;
474         continue;
475       }
476     }
477 
478     // No further simplifications.
479     return Changed;
480   } while (true);
481 }
482 
483 /// Return whether "X LOp (Y ROp Z)" is always equal to
484 /// "(X LOp Y) ROp (X LOp Z)".
485 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
486                                      Instruction::BinaryOps ROp) {
487   // X & (Y | Z) <--> (X & Y) | (X & Z)
488   // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
489   if (LOp == Instruction::And)
490     return ROp == Instruction::Or || ROp == Instruction::Xor;
491 
492   // X | (Y & Z) <--> (X | Y) & (X | Z)
493   if (LOp == Instruction::Or)
494     return ROp == Instruction::And;
495 
496   // X * (Y + Z) <--> (X * Y) + (X * Z)
497   // X * (Y - Z) <--> (X * Y) - (X * Z)
498   if (LOp == Instruction::Mul)
499     return ROp == Instruction::Add || ROp == Instruction::Sub;
500 
501   return false;
502 }
503 
504 /// Return whether "(X LOp Y) ROp Z" is always equal to
505 /// "(X ROp Z) LOp (Y ROp Z)".
506 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
507                                      Instruction::BinaryOps ROp) {
508   if (Instruction::isCommutative(ROp))
509     return leftDistributesOverRight(ROp, LOp);
510 
511   // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
512   return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
513 
514   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
515   // but this requires knowing that the addition does not overflow and other
516   // such subtleties.
517 }
518 
519 /// This function returns identity value for given opcode, which can be used to
520 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
521 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
522   if (isa<Constant>(V))
523     return nullptr;
524 
525   return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
526 }
527 
528 /// This function predicates factorization using distributive laws. By default,
529 /// it just returns the 'Op' inputs. But for special-cases like
530 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
531 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
532 /// allow more factorization opportunities.
533 static Instruction::BinaryOps
534 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
535                           Value *&LHS, Value *&RHS) {
536   assert(Op && "Expected a binary operator");
537   LHS = Op->getOperand(0);
538   RHS = Op->getOperand(1);
539   if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
540     Constant *C;
541     if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
542       // X << C --> X * (1 << C)
543       RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
544       return Instruction::Mul;
545     }
546     // TODO: We can add other conversions e.g. shr => div etc.
547   }
548   return Op->getOpcode();
549 }
550 
551 /// This tries to simplify binary operations by factorizing out common terms
552 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
553 Value *InstCombiner::tryFactorization(BinaryOperator &I,
554                                       Instruction::BinaryOps InnerOpcode,
555                                       Value *A, Value *B, Value *C, Value *D) {
556   assert(A && B && C && D && "All values must be provided");
557 
558   Value *V = nullptr;
559   Value *SimplifiedInst = nullptr;
560   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
561   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
562 
563   // Does "X op' Y" always equal "Y op' X"?
564   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
565 
566   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
567   if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
568     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
569     // commutative case, "(A op' B) op (C op' A)"?
570     if (A == C || (InnerCommutative && A == D)) {
571       if (A != C)
572         std::swap(C, D);
573       // Consider forming "A op' (B op D)".
574       // If "B op D" simplifies then it can be formed with no cost.
575       V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
576       // If "B op D" doesn't simplify then only go on if both of the existing
577       // operations "A op' B" and "C op' D" will be zapped as no longer used.
578       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
579         V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
580       if (V) {
581         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
582       }
583     }
584 
585   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
586   if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
587     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
588     // commutative case, "(A op' B) op (B op' D)"?
589     if (B == D || (InnerCommutative && B == C)) {
590       if (B != D)
591         std::swap(C, D);
592       // Consider forming "(A op C) op' B".
593       // If "A op C" simplifies then it can be formed with no cost.
594       V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
595 
596       // If "A op C" doesn't simplify then only go on if both of the existing
597       // operations "A op' B" and "C op' D" will be zapped as no longer used.
598       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
599         V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
600       if (V) {
601         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
602       }
603     }
604 
605   if (SimplifiedInst) {
606     ++NumFactor;
607     SimplifiedInst->takeName(&I);
608 
609     // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
610     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
611       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
612         bool HasNSW = false;
613         bool HasNUW = false;
614         if (isa<OverflowingBinaryOperator>(&I)) {
615           HasNSW = I.hasNoSignedWrap();
616           HasNUW = I.hasNoUnsignedWrap();
617         }
618 
619         if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
620           HasNSW &= LOBO->hasNoSignedWrap();
621           HasNUW &= LOBO->hasNoUnsignedWrap();
622         }
623 
624         if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
625           HasNSW &= ROBO->hasNoSignedWrap();
626           HasNUW &= ROBO->hasNoUnsignedWrap();
627         }
628 
629         if (TopLevelOpcode == Instruction::Add &&
630             InnerOpcode == Instruction::Mul) {
631           // We can propagate 'nsw' if we know that
632           //  %Y = mul nsw i16 %X, C
633           //  %Z = add nsw i16 %Y, %X
634           // =>
635           //  %Z = mul nsw i16 %X, C+1
636           //
637           // iff C+1 isn't INT_MIN
638           const APInt *CInt;
639           if (match(V, m_APInt(CInt))) {
640             if (!CInt->isMinSignedValue())
641               BO->setHasNoSignedWrap(HasNSW);
642           }
643 
644           // nuw can be propagated with any constant or nuw value.
645           BO->setHasNoUnsignedWrap(HasNUW);
646         }
647       }
648     }
649   }
650   return SimplifiedInst;
651 }
652 
653 /// This tries to simplify binary operations which some other binary operation
654 /// distributes over either by factorizing out common terms
655 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
656 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
657 /// Returns the simplified value, or null if it didn't simplify.
658 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
659   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
660   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
661   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
662   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
663 
664   {
665     // Factorization.
666     Value *A, *B, *C, *D;
667     Instruction::BinaryOps LHSOpcode, RHSOpcode;
668     if (Op0)
669       LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
670     if (Op1)
671       RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
672 
673     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
674     // a common term.
675     if (Op0 && Op1 && LHSOpcode == RHSOpcode)
676       if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
677         return V;
678 
679     // The instruction has the form "(A op' B) op (C)".  Try to factorize common
680     // term.
681     if (Op0)
682       if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
683         if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
684           return V;
685 
686     // The instruction has the form "(B) op (C op' D)".  Try to factorize common
687     // term.
688     if (Op1)
689       if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
690         if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
691           return V;
692   }
693 
694   // Expansion.
695   if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
696     // The instruction has the form "(A op' B) op C".  See if expanding it out
697     // to "(A op C) op' (B op C)" results in simplifications.
698     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
699     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
700 
701     Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
702     Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I));
703 
704     // Do "A op C" and "B op C" both simplify?
705     if (L && R) {
706       // They do! Return "L op' R".
707       ++NumExpand;
708       C = Builder.CreateBinOp(InnerOpcode, L, R);
709       C->takeName(&I);
710       return C;
711     }
712 
713     // Does "A op C" simplify to the identity value for the inner opcode?
714     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
715       // They do! Return "B op C".
716       ++NumExpand;
717       C = Builder.CreateBinOp(TopLevelOpcode, B, C);
718       C->takeName(&I);
719       return C;
720     }
721 
722     // Does "B op C" simplify to the identity value for the inner opcode?
723     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
724       // They do! Return "A op C".
725       ++NumExpand;
726       C = Builder.CreateBinOp(TopLevelOpcode, A, C);
727       C->takeName(&I);
728       return C;
729     }
730   }
731 
732   if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
733     // The instruction has the form "A op (B op' C)".  See if expanding it out
734     // to "(A op B) op' (A op C)" results in simplifications.
735     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
736     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
737 
738     Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I));
739     Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
740 
741     // Do "A op B" and "A op C" both simplify?
742     if (L && R) {
743       // They do! Return "L op' R".
744       ++NumExpand;
745       A = Builder.CreateBinOp(InnerOpcode, L, R);
746       A->takeName(&I);
747       return A;
748     }
749 
750     // Does "A op B" simplify to the identity value for the inner opcode?
751     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
752       // They do! Return "A op C".
753       ++NumExpand;
754       A = Builder.CreateBinOp(TopLevelOpcode, A, C);
755       A->takeName(&I);
756       return A;
757     }
758 
759     // Does "A op C" simplify to the identity value for the inner opcode?
760     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
761       // They do! Return "A op B".
762       ++NumExpand;
763       A = Builder.CreateBinOp(TopLevelOpcode, A, B);
764       A->takeName(&I);
765       return A;
766     }
767   }
768 
769   return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
770 }
771 
772 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
773                                                     Value *LHS, Value *RHS) {
774   Value *A, *B, *C, *D, *E, *F;
775   bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
776   bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
777   if (!LHSIsSelect && !RHSIsSelect)
778     return nullptr;
779 
780   FastMathFlags FMF;
781   BuilderTy::FastMathFlagGuard Guard(Builder);
782   if (isa<FPMathOperator>(&I)) {
783     FMF = I.getFastMathFlags();
784     Builder.setFastMathFlags(FMF);
785   }
786 
787   Instruction::BinaryOps Opcode = I.getOpcode();
788   SimplifyQuery Q = SQ.getWithInstruction(&I);
789 
790   Value *Cond, *True = nullptr, *False = nullptr;
791   if (LHSIsSelect && RHSIsSelect && A == D) {
792     // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
793     Cond = A;
794     True = SimplifyBinOp(Opcode, B, E, FMF, Q);
795     False = SimplifyBinOp(Opcode, C, F, FMF, Q);
796 
797     if (LHS->hasOneUse() && RHS->hasOneUse()) {
798       if (False && !True)
799         True = Builder.CreateBinOp(Opcode, B, E);
800       else if (True && !False)
801         False = Builder.CreateBinOp(Opcode, C, F);
802     }
803   } else if (LHSIsSelect && LHS->hasOneUse()) {
804     // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
805     Cond = A;
806     True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
807     False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
808   } else if (RHSIsSelect && RHS->hasOneUse()) {
809     // X op (D ? E : F) -> D ? (X op E) : (X op F)
810     Cond = D;
811     True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
812     False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
813   }
814 
815   if (!True || !False)
816     return nullptr;
817 
818   Value *SI = Builder.CreateSelect(Cond, True, False);
819   SI->takeName(&I);
820   return SI;
821 }
822 
823 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
824 /// constant zero (which is the 'negate' form).
825 Value *InstCombiner::dyn_castNegVal(Value *V) const {
826   Value *NegV;
827   if (match(V, m_Neg(m_Value(NegV))))
828     return NegV;
829 
830   // Constants can be considered to be negated values if they can be folded.
831   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
832     return ConstantExpr::getNeg(C);
833 
834   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
835     if (C->getType()->getElementType()->isIntegerTy())
836       return ConstantExpr::getNeg(C);
837 
838   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
839     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
840       Constant *Elt = CV->getAggregateElement(i);
841       if (!Elt)
842         return nullptr;
843 
844       if (isa<UndefValue>(Elt))
845         continue;
846 
847       if (!isa<ConstantInt>(Elt))
848         return nullptr;
849     }
850     return ConstantExpr::getNeg(CV);
851   }
852 
853   return nullptr;
854 }
855 
856 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
857                                              InstCombiner::BuilderTy &Builder) {
858   if (auto *Cast = dyn_cast<CastInst>(&I))
859     return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
860 
861   assert(I.isBinaryOp() && "Unexpected opcode for select folding");
862 
863   // Figure out if the constant is the left or the right argument.
864   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
865   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
866 
867   if (auto *SOC = dyn_cast<Constant>(SO)) {
868     if (ConstIsRHS)
869       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
870     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
871   }
872 
873   Value *Op0 = SO, *Op1 = ConstOperand;
874   if (!ConstIsRHS)
875     std::swap(Op0, Op1);
876 
877   auto *BO = cast<BinaryOperator>(&I);
878   Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
879                                   SO->getName() + ".op");
880   auto *FPInst = dyn_cast<Instruction>(RI);
881   if (FPInst && isa<FPMathOperator>(FPInst))
882     FPInst->copyFastMathFlags(BO);
883   return RI;
884 }
885 
886 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
887   // Don't modify shared select instructions.
888   if (!SI->hasOneUse())
889     return nullptr;
890 
891   Value *TV = SI->getTrueValue();
892   Value *FV = SI->getFalseValue();
893   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
894     return nullptr;
895 
896   // Bool selects with constant operands can be folded to logical ops.
897   if (SI->getType()->isIntOrIntVectorTy(1))
898     return nullptr;
899 
900   // If it's a bitcast involving vectors, make sure it has the same number of
901   // elements on both sides.
902   if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
903     VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
904     VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
905 
906     // Verify that either both or neither are vectors.
907     if ((SrcTy == nullptr) != (DestTy == nullptr))
908       return nullptr;
909 
910     // If vectors, verify that they have the same number of elements.
911     if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
912       return nullptr;
913   }
914 
915   // Test if a CmpInst instruction is used exclusively by a select as
916   // part of a minimum or maximum operation. If so, refrain from doing
917   // any other folding. This helps out other analyses which understand
918   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
919   // and CodeGen. And in this case, at least one of the comparison
920   // operands has at least one user besides the compare (the select),
921   // which would often largely negate the benefit of folding anyway.
922   if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
923     if (CI->hasOneUse()) {
924       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
925       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
926           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
927         return nullptr;
928     }
929   }
930 
931   Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
932   Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
933   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
934 }
935 
936 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
937                                         InstCombiner::BuilderTy &Builder) {
938   bool ConstIsRHS = isa<Constant>(I->getOperand(1));
939   Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
940 
941   if (auto *InC = dyn_cast<Constant>(InV)) {
942     if (ConstIsRHS)
943       return ConstantExpr::get(I->getOpcode(), InC, C);
944     return ConstantExpr::get(I->getOpcode(), C, InC);
945   }
946 
947   Value *Op0 = InV, *Op1 = C;
948   if (!ConstIsRHS)
949     std::swap(Op0, Op1);
950 
951   Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp");
952   auto *FPInst = dyn_cast<Instruction>(RI);
953   if (FPInst && isa<FPMathOperator>(FPInst))
954     FPInst->copyFastMathFlags(I);
955   return RI;
956 }
957 
958 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) {
959   unsigned NumPHIValues = PN->getNumIncomingValues();
960   if (NumPHIValues == 0)
961     return nullptr;
962 
963   // We normally only transform phis with a single use.  However, if a PHI has
964   // multiple uses and they are all the same operation, we can fold *all* of the
965   // uses into the PHI.
966   if (!PN->hasOneUse()) {
967     // Walk the use list for the instruction, comparing them to I.
968     for (User *U : PN->users()) {
969       Instruction *UI = cast<Instruction>(U);
970       if (UI != &I && !I.isIdenticalTo(UI))
971         return nullptr;
972     }
973     // Otherwise, we can replace *all* users with the new PHI we form.
974   }
975 
976   // Check to see if all of the operands of the PHI are simple constants
977   // (constantint/constantfp/undef).  If there is one non-constant value,
978   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
979   // bail out.  We don't do arbitrary constant expressions here because moving
980   // their computation can be expensive without a cost model.
981   BasicBlock *NonConstBB = nullptr;
982   for (unsigned i = 0; i != NumPHIValues; ++i) {
983     Value *InVal = PN->getIncomingValue(i);
984     if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
985       continue;
986 
987     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
988     if (NonConstBB) return nullptr;  // More than one non-const value.
989 
990     NonConstBB = PN->getIncomingBlock(i);
991 
992     // If the InVal is an invoke at the end of the pred block, then we can't
993     // insert a computation after it without breaking the edge.
994     if (isa<InvokeInst>(InVal))
995       if (cast<Instruction>(InVal)->getParent() == NonConstBB)
996         return nullptr;
997 
998     // If the incoming non-constant value is in I's block, we will remove one
999     // instruction, but insert another equivalent one, leading to infinite
1000     // instcombine.
1001     if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
1002       return nullptr;
1003   }
1004 
1005   // If there is exactly one non-constant value, we can insert a copy of the
1006   // operation in that block.  However, if this is a critical edge, we would be
1007   // inserting the computation on some other paths (e.g. inside a loop).  Only
1008   // do this if the pred block is unconditionally branching into the phi block.
1009   if (NonConstBB != nullptr) {
1010     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1011     if (!BI || !BI->isUnconditional()) return nullptr;
1012   }
1013 
1014   // Okay, we can do the transformation: create the new PHI node.
1015   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1016   InsertNewInstBefore(NewPN, *PN);
1017   NewPN->takeName(PN);
1018 
1019   // If we are going to have to insert a new computation, do so right before the
1020   // predecessor's terminator.
1021   if (NonConstBB)
1022     Builder.SetInsertPoint(NonConstBB->getTerminator());
1023 
1024   // Next, add all of the operands to the PHI.
1025   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1026     // We only currently try to fold the condition of a select when it is a phi,
1027     // not the true/false values.
1028     Value *TrueV = SI->getTrueValue();
1029     Value *FalseV = SI->getFalseValue();
1030     BasicBlock *PhiTransBB = PN->getParent();
1031     for (unsigned i = 0; i != NumPHIValues; ++i) {
1032       BasicBlock *ThisBB = PN->getIncomingBlock(i);
1033       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1034       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1035       Value *InV = nullptr;
1036       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
1037       // even if currently isNullValue gives false.
1038       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1039       // For vector constants, we cannot use isNullValue to fold into
1040       // FalseVInPred versus TrueVInPred. When we have individual nonzero
1041       // elements in the vector, we will incorrectly fold InC to
1042       // `TrueVInPred`.
1043       if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC))
1044         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1045       else {
1046         // Generate the select in the same block as PN's current incoming block.
1047         // Note: ThisBB need not be the NonConstBB because vector constants
1048         // which are constants by definition are handled here.
1049         // FIXME: This can lead to an increase in IR generation because we might
1050         // generate selects for vector constant phi operand, that could not be
1051         // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1052         // non-vector phis, this transformation was always profitable because
1053         // the select would be generated exactly once in the NonConstBB.
1054         Builder.SetInsertPoint(ThisBB->getTerminator());
1055         InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1056                                    FalseVInPred, "phitmp");
1057       }
1058       NewPN->addIncoming(InV, ThisBB);
1059     }
1060   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1061     Constant *C = cast<Constant>(I.getOperand(1));
1062     for (unsigned i = 0; i != NumPHIValues; ++i) {
1063       Value *InV = nullptr;
1064       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1065         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1066       else if (isa<ICmpInst>(CI))
1067         InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
1068                                  C, "phitmp");
1069       else
1070         InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
1071                                  C, "phitmp");
1072       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1073     }
1074   } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1075     for (unsigned i = 0; i != NumPHIValues; ++i) {
1076       Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1077                                              Builder);
1078       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1079     }
1080   } else {
1081     CastInst *CI = cast<CastInst>(&I);
1082     Type *RetTy = CI->getType();
1083     for (unsigned i = 0; i != NumPHIValues; ++i) {
1084       Value *InV;
1085       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1086         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1087       else
1088         InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1089                                  I.getType(), "phitmp");
1090       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1091     }
1092   }
1093 
1094   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1095     Instruction *User = cast<Instruction>(*UI++);
1096     if (User == &I) continue;
1097     replaceInstUsesWith(*User, NewPN);
1098     eraseInstFromFunction(*User);
1099   }
1100   return replaceInstUsesWith(I, NewPN);
1101 }
1102 
1103 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1104   if (!isa<Constant>(I.getOperand(1)))
1105     return nullptr;
1106 
1107   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1108     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1109       return NewSel;
1110   } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1111     if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1112       return NewPhi;
1113   }
1114   return nullptr;
1115 }
1116 
1117 /// Given a pointer type and a constant offset, determine whether or not there
1118 /// is a sequence of GEP indices into the pointed type that will land us at the
1119 /// specified offset. If so, fill them into NewIndices and return the resultant
1120 /// element type, otherwise return null.
1121 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
1122                                         SmallVectorImpl<Value *> &NewIndices) {
1123   Type *Ty = PtrTy->getElementType();
1124   if (!Ty->isSized())
1125     return nullptr;
1126 
1127   // Start with the index over the outer type.  Note that the type size
1128   // might be zero (even if the offset isn't zero) if the indexed type
1129   // is something like [0 x {int, int}]
1130   Type *IndexTy = DL.getIndexType(PtrTy);
1131   int64_t FirstIdx = 0;
1132   if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
1133     FirstIdx = Offset/TySize;
1134     Offset -= FirstIdx*TySize;
1135 
1136     // Handle hosts where % returns negative instead of values [0..TySize).
1137     if (Offset < 0) {
1138       --FirstIdx;
1139       Offset += TySize;
1140       assert(Offset >= 0);
1141     }
1142     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
1143   }
1144 
1145   NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
1146 
1147   // Index into the types.  If we fail, set OrigBase to null.
1148   while (Offset) {
1149     // Indexing into tail padding between struct/array elements.
1150     if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
1151       return nullptr;
1152 
1153     if (StructType *STy = dyn_cast<StructType>(Ty)) {
1154       const StructLayout *SL = DL.getStructLayout(STy);
1155       assert(Offset < (int64_t)SL->getSizeInBytes() &&
1156              "Offset must stay within the indexed type");
1157 
1158       unsigned Elt = SL->getElementContainingOffset(Offset);
1159       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1160                                             Elt));
1161 
1162       Offset -= SL->getElementOffset(Elt);
1163       Ty = STy->getElementType(Elt);
1164     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
1165       uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
1166       assert(EltSize && "Cannot index into a zero-sized array");
1167       NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
1168       Offset %= EltSize;
1169       Ty = AT->getElementType();
1170     } else {
1171       // Otherwise, we can't index into the middle of this atomic type, bail.
1172       return nullptr;
1173     }
1174   }
1175 
1176   return Ty;
1177 }
1178 
1179 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1180   // If this GEP has only 0 indices, it is the same pointer as
1181   // Src. If Src is not a trivial GEP too, don't combine
1182   // the indices.
1183   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1184       !Src.hasOneUse())
1185     return false;
1186   return true;
1187 }
1188 
1189 /// Return a value X such that Val = X * Scale, or null if none.
1190 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1191 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1192   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1193   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1194          Scale.getBitWidth() && "Scale not compatible with value!");
1195 
1196   // If Val is zero or Scale is one then Val = Val * Scale.
1197   if (match(Val, m_Zero()) || Scale == 1) {
1198     NoSignedWrap = true;
1199     return Val;
1200   }
1201 
1202   // If Scale is zero then it does not divide Val.
1203   if (Scale.isMinValue())
1204     return nullptr;
1205 
1206   // Look through chains of multiplications, searching for a constant that is
1207   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1208   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1209   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1210   // down from Val:
1211   //
1212   //     Val = M1 * X          ||   Analysis starts here and works down
1213   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1214   //      M2 =  Z * 4          \/   than one use
1215   //
1216   // Then to modify a term at the bottom:
1217   //
1218   //     Val = M1 * X
1219   //      M1 =  Z * Y          ||   Replaced M2 with Z
1220   //
1221   // Then to work back up correcting nsw flags.
1222 
1223   // Op - the term we are currently analyzing.  Starts at Val then drills down.
1224   // Replaced with its descaled value before exiting from the drill down loop.
1225   Value *Op = Val;
1226 
1227   // Parent - initially null, but after drilling down notes where Op came from.
1228   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1229   // 0'th operand of Val.
1230   std::pair<Instruction *, unsigned> Parent;
1231 
1232   // Set if the transform requires a descaling at deeper levels that doesn't
1233   // overflow.
1234   bool RequireNoSignedWrap = false;
1235 
1236   // Log base 2 of the scale. Negative if not a power of 2.
1237   int32_t logScale = Scale.exactLogBase2();
1238 
1239   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1240     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1241       // If Op is a constant divisible by Scale then descale to the quotient.
1242       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1243       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1244       if (!Remainder.isMinValue())
1245         // Not divisible by Scale.
1246         return nullptr;
1247       // Replace with the quotient in the parent.
1248       Op = ConstantInt::get(CI->getType(), Quotient);
1249       NoSignedWrap = true;
1250       break;
1251     }
1252 
1253     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1254       if (BO->getOpcode() == Instruction::Mul) {
1255         // Multiplication.
1256         NoSignedWrap = BO->hasNoSignedWrap();
1257         if (RequireNoSignedWrap && !NoSignedWrap)
1258           return nullptr;
1259 
1260         // There are three cases for multiplication: multiplication by exactly
1261         // the scale, multiplication by a constant different to the scale, and
1262         // multiplication by something else.
1263         Value *LHS = BO->getOperand(0);
1264         Value *RHS = BO->getOperand(1);
1265 
1266         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1267           // Multiplication by a constant.
1268           if (CI->getValue() == Scale) {
1269             // Multiplication by exactly the scale, replace the multiplication
1270             // by its left-hand side in the parent.
1271             Op = LHS;
1272             break;
1273           }
1274 
1275           // Otherwise drill down into the constant.
1276           if (!Op->hasOneUse())
1277             return nullptr;
1278 
1279           Parent = std::make_pair(BO, 1);
1280           continue;
1281         }
1282 
1283         // Multiplication by something else. Drill down into the left-hand side
1284         // since that's where the reassociate pass puts the good stuff.
1285         if (!Op->hasOneUse())
1286           return nullptr;
1287 
1288         Parent = std::make_pair(BO, 0);
1289         continue;
1290       }
1291 
1292       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1293           isa<ConstantInt>(BO->getOperand(1))) {
1294         // Multiplication by a power of 2.
1295         NoSignedWrap = BO->hasNoSignedWrap();
1296         if (RequireNoSignedWrap && !NoSignedWrap)
1297           return nullptr;
1298 
1299         Value *LHS = BO->getOperand(0);
1300         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1301           getLimitedValue(Scale.getBitWidth());
1302         // Op = LHS << Amt.
1303 
1304         if (Amt == logScale) {
1305           // Multiplication by exactly the scale, replace the multiplication
1306           // by its left-hand side in the parent.
1307           Op = LHS;
1308           break;
1309         }
1310         if (Amt < logScale || !Op->hasOneUse())
1311           return nullptr;
1312 
1313         // Multiplication by more than the scale.  Reduce the multiplying amount
1314         // by the scale in the parent.
1315         Parent = std::make_pair(BO, 1);
1316         Op = ConstantInt::get(BO->getType(), Amt - logScale);
1317         break;
1318       }
1319     }
1320 
1321     if (!Op->hasOneUse())
1322       return nullptr;
1323 
1324     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1325       if (Cast->getOpcode() == Instruction::SExt) {
1326         // Op is sign-extended from a smaller type, descale in the smaller type.
1327         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1328         APInt SmallScale = Scale.trunc(SmallSize);
1329         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1330         // descale Op as (sext Y) * Scale.  In order to have
1331         //   sext (Y * SmallScale) = (sext Y) * Scale
1332         // some conditions need to hold however: SmallScale must sign-extend to
1333         // Scale and the multiplication Y * SmallScale should not overflow.
1334         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1335           // SmallScale does not sign-extend to Scale.
1336           return nullptr;
1337         assert(SmallScale.exactLogBase2() == logScale);
1338         // Require that Y * SmallScale must not overflow.
1339         RequireNoSignedWrap = true;
1340 
1341         // Drill down through the cast.
1342         Parent = std::make_pair(Cast, 0);
1343         Scale = SmallScale;
1344         continue;
1345       }
1346 
1347       if (Cast->getOpcode() == Instruction::Trunc) {
1348         // Op is truncated from a larger type, descale in the larger type.
1349         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1350         //   trunc (Y * sext Scale) = (trunc Y) * Scale
1351         // always holds.  However (trunc Y) * Scale may overflow even if
1352         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1353         // from this point up in the expression (see later).
1354         if (RequireNoSignedWrap)
1355           return nullptr;
1356 
1357         // Drill down through the cast.
1358         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1359         Parent = std::make_pair(Cast, 0);
1360         Scale = Scale.sext(LargeSize);
1361         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1362           logScale = -1;
1363         assert(Scale.exactLogBase2() == logScale);
1364         continue;
1365       }
1366     }
1367 
1368     // Unsupported expression, bail out.
1369     return nullptr;
1370   }
1371 
1372   // If Op is zero then Val = Op * Scale.
1373   if (match(Op, m_Zero())) {
1374     NoSignedWrap = true;
1375     return Op;
1376   }
1377 
1378   // We know that we can successfully descale, so from here on we can safely
1379   // modify the IR.  Op holds the descaled version of the deepest term in the
1380   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1381   // not to overflow.
1382 
1383   if (!Parent.first)
1384     // The expression only had one term.
1385     return Op;
1386 
1387   // Rewrite the parent using the descaled version of its operand.
1388   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1389   assert(Op != Parent.first->getOperand(Parent.second) &&
1390          "Descaling was a no-op?");
1391   replaceOperand(*Parent.first, Parent.second, Op);
1392   Worklist.push(Parent.first);
1393 
1394   // Now work back up the expression correcting nsw flags.  The logic is based
1395   // on the following observation: if X * Y is known not to overflow as a signed
1396   // multiplication, and Y is replaced by a value Z with smaller absolute value,
1397   // then X * Z will not overflow as a signed multiplication either.  As we work
1398   // our way up, having NoSignedWrap 'true' means that the descaled value at the
1399   // current level has strictly smaller absolute value than the original.
1400   Instruction *Ancestor = Parent.first;
1401   do {
1402     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1403       // If the multiplication wasn't nsw then we can't say anything about the
1404       // value of the descaled multiplication, and we have to clear nsw flags
1405       // from this point on up.
1406       bool OpNoSignedWrap = BO->hasNoSignedWrap();
1407       NoSignedWrap &= OpNoSignedWrap;
1408       if (NoSignedWrap != OpNoSignedWrap) {
1409         BO->setHasNoSignedWrap(NoSignedWrap);
1410         Worklist.push(Ancestor);
1411       }
1412     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1413       // The fact that the descaled input to the trunc has smaller absolute
1414       // value than the original input doesn't tell us anything useful about
1415       // the absolute values of the truncations.
1416       NoSignedWrap = false;
1417     }
1418     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1419            "Failed to keep proper track of nsw flags while drilling down?");
1420 
1421     if (Ancestor == Val)
1422       // Got to the top, all done!
1423       return Val;
1424 
1425     // Move up one level in the expression.
1426     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1427     Ancestor = Ancestor->user_back();
1428   } while (true);
1429 }
1430 
1431 Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) {
1432   // FIXME: some of this is likely fine for scalable vectors
1433   if (!isa<FixedVectorType>(Inst.getType()))
1434     return nullptr;
1435 
1436   BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1437   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1438   assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1439          cast<VectorType>(Inst.getType())->getElementCount());
1440   assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1441          cast<VectorType>(Inst.getType())->getElementCount());
1442 
1443   // If both operands of the binop are vector concatenations, then perform the
1444   // narrow binop on each pair of the source operands followed by concatenation
1445   // of the results.
1446   Value *L0, *L1, *R0, *R1;
1447   ArrayRef<int> Mask;
1448   if (match(LHS, m_ShuffleVector(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1449       match(RHS,
1450             m_ShuffleVector(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1451       LHS->hasOneUse() && RHS->hasOneUse() &&
1452       cast<ShuffleVectorInst>(LHS)->isConcat() &&
1453       cast<ShuffleVectorInst>(RHS)->isConcat()) {
1454     // This transform does not have the speculative execution constraint as
1455     // below because the shuffle is a concatenation. The new binops are
1456     // operating on exactly the same elements as the existing binop.
1457     // TODO: We could ease the mask requirement to allow different undef lanes,
1458     //       but that requires an analysis of the binop-with-undef output value.
1459     Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1460     if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1461       BO->copyIRFlags(&Inst);
1462     Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1463     if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1464       BO->copyIRFlags(&Inst);
1465     return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1466   }
1467 
1468   // It may not be safe to reorder shuffles and things like div, urem, etc.
1469   // because we may trap when executing those ops on unknown vector elements.
1470   // See PR20059.
1471   if (!isSafeToSpeculativelyExecute(&Inst))
1472     return nullptr;
1473 
1474   auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1475     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1476     if (auto *BO = dyn_cast<BinaryOperator>(XY))
1477       BO->copyIRFlags(&Inst);
1478     return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
1479   };
1480 
1481   // If both arguments of the binary operation are shuffles that use the same
1482   // mask and shuffle within a single vector, move the shuffle after the binop.
1483   Value *V1, *V2;
1484   if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
1485       match(RHS,
1486             m_ShuffleVector(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
1487       V1->getType() == V2->getType() &&
1488       (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1489     // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1490     return createBinOpShuffle(V1, V2, Mask);
1491   }
1492 
1493   // If both arguments of a commutative binop are select-shuffles that use the
1494   // same mask with commuted operands, the shuffles are unnecessary.
1495   if (Inst.isCommutative() &&
1496       match(LHS, m_ShuffleVector(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1497       match(RHS, m_ShuffleVector(m_Specific(V2), m_Specific(V1),
1498                                  m_SpecificMask(Mask)))) {
1499     auto *LShuf = cast<ShuffleVectorInst>(LHS);
1500     auto *RShuf = cast<ShuffleVectorInst>(RHS);
1501     // TODO: Allow shuffles that contain undefs in the mask?
1502     //       That is legal, but it reduces undef knowledge.
1503     // TODO: Allow arbitrary shuffles by shuffling after binop?
1504     //       That might be legal, but we have to deal with poison.
1505     if (LShuf->isSelect() &&
1506         !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
1507         RShuf->isSelect() &&
1508         !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
1509       // Example:
1510       // LHS = shuffle V1, V2, <0, 5, 6, 3>
1511       // RHS = shuffle V2, V1, <0, 5, 6, 3>
1512       // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1513       Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1514       NewBO->copyIRFlags(&Inst);
1515       return NewBO;
1516     }
1517   }
1518 
1519   // If one argument is a shuffle within one vector and the other is a constant,
1520   // try moving the shuffle after the binary operation. This canonicalization
1521   // intends to move shuffles closer to other shuffles and binops closer to
1522   // other binops, so they can be folded. It may also enable demanded elements
1523   // transforms.
1524   unsigned NumElts = cast<FixedVectorType>(Inst.getType())->getNumElements();
1525   Constant *C;
1526   if (match(&Inst, m_c_BinOp(m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(),
1527                                                       m_Mask(Mask))),
1528                              m_Constant(C))) &&
1529       cast<FixedVectorType>(V1->getType())->getNumElements() <= NumElts) {
1530     assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
1531            "Shuffle should not change scalar type");
1532 
1533     // Find constant NewC that has property:
1534     //   shuffle(NewC, ShMask) = C
1535     // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1536     // reorder is not possible. A 1-to-1 mapping is not required. Example:
1537     // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1538     bool ConstOp1 = isa<Constant>(RHS);
1539     ArrayRef<int> ShMask = Mask;
1540     unsigned SrcVecNumElts =
1541         cast<FixedVectorType>(V1->getType())->getNumElements();
1542     UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1543     SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1544     bool MayChange = true;
1545     for (unsigned I = 0; I < NumElts; ++I) {
1546       Constant *CElt = C->getAggregateElement(I);
1547       if (ShMask[I] >= 0) {
1548         assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1549         Constant *NewCElt = NewVecC[ShMask[I]];
1550         // Bail out if:
1551         // 1. The constant vector contains a constant expression.
1552         // 2. The shuffle needs an element of the constant vector that can't
1553         //    be mapped to a new constant vector.
1554         // 3. This is a widening shuffle that copies elements of V1 into the
1555         //    extended elements (extending with undef is allowed).
1556         if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1557             I >= SrcVecNumElts) {
1558           MayChange = false;
1559           break;
1560         }
1561         NewVecC[ShMask[I]] = CElt;
1562       }
1563       // If this is a widening shuffle, we must be able to extend with undef
1564       // elements. If the original binop does not produce an undef in the high
1565       // lanes, then this transform is not safe.
1566       // Similarly for undef lanes due to the shuffle mask, we can only
1567       // transform binops that preserve undef.
1568       // TODO: We could shuffle those non-undef constant values into the
1569       //       result by using a constant vector (rather than an undef vector)
1570       //       as operand 1 of the new binop, but that might be too aggressive
1571       //       for target-independent shuffle creation.
1572       if (I >= SrcVecNumElts || ShMask[I] < 0) {
1573         Constant *MaybeUndef =
1574             ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1575                      : ConstantExpr::get(Opcode, CElt, UndefScalar);
1576         if (!isa<UndefValue>(MaybeUndef)) {
1577           MayChange = false;
1578           break;
1579         }
1580       }
1581     }
1582     if (MayChange) {
1583       Constant *NewC = ConstantVector::get(NewVecC);
1584       // It may not be safe to execute a binop on a vector with undef elements
1585       // because the entire instruction can be folded to undef or create poison
1586       // that did not exist in the original code.
1587       if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1588         NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1589 
1590       // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1591       // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1592       Value *NewLHS = ConstOp1 ? V1 : NewC;
1593       Value *NewRHS = ConstOp1 ? NewC : V1;
1594       return createBinOpShuffle(NewLHS, NewRHS, Mask);
1595     }
1596   }
1597 
1598   // Try to reassociate to sink a splat shuffle after a binary operation.
1599   if (Inst.isAssociative() && Inst.isCommutative()) {
1600     // Canonicalize shuffle operand as LHS.
1601     if (isa<ShuffleVectorInst>(RHS))
1602       std::swap(LHS, RHS);
1603 
1604     Value *X;
1605     ArrayRef<int> MaskC;
1606     int SplatIndex;
1607     BinaryOperator *BO;
1608     if (!match(LHS, m_OneUse(m_ShuffleVector(m_Value(X), m_Undef(),
1609                                              m_Mask(MaskC)))) ||
1610         !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1611         X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) ||
1612         BO->getOpcode() != Opcode)
1613       return nullptr;
1614 
1615     // FIXME: This may not be safe if the analysis allows undef elements. By
1616     //        moving 'Y' before the splat shuffle, we are implicitly assuming
1617     //        that it is not undef/poison at the splat index.
1618     Value *Y, *OtherOp;
1619     if (isSplatValue(BO->getOperand(0), SplatIndex)) {
1620       Y = BO->getOperand(0);
1621       OtherOp = BO->getOperand(1);
1622     } else if (isSplatValue(BO->getOperand(1), SplatIndex)) {
1623       Y = BO->getOperand(1);
1624       OtherOp = BO->getOperand(0);
1625     } else {
1626       return nullptr;
1627     }
1628 
1629     // X and Y are splatted values, so perform the binary operation on those
1630     // values followed by a splat followed by the 2nd binary operation:
1631     // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1632     Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1633     UndefValue *Undef = UndefValue::get(Inst.getType());
1634     SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1635     Value *NewSplat = Builder.CreateShuffleVector(NewBO, Undef, NewMask);
1636     Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1637 
1638     // Intersect FMF on both new binops. Other (poison-generating) flags are
1639     // dropped to be safe.
1640     if (isa<FPMathOperator>(R)) {
1641       R->copyFastMathFlags(&Inst);
1642       R->andIRFlags(BO);
1643     }
1644     if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1645       NewInstBO->copyIRFlags(R);
1646     return R;
1647   }
1648 
1649   return nullptr;
1650 }
1651 
1652 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1653 /// of a value. This requires a potentially expensive known bits check to make
1654 /// sure the narrow op does not overflow.
1655 Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) {
1656   // We need at least one extended operand.
1657   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1658 
1659   // If this is a sub, we swap the operands since we always want an extension
1660   // on the RHS. The LHS can be an extension or a constant.
1661   if (BO.getOpcode() == Instruction::Sub)
1662     std::swap(Op0, Op1);
1663 
1664   Value *X;
1665   bool IsSext = match(Op0, m_SExt(m_Value(X)));
1666   if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1667     return nullptr;
1668 
1669   // If both operands are the same extension from the same source type and we
1670   // can eliminate at least one (hasOneUse), this might work.
1671   CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1672   Value *Y;
1673   if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1674         cast<Operator>(Op1)->getOpcode() == CastOpc &&
1675         (Op0->hasOneUse() || Op1->hasOneUse()))) {
1676     // If that did not match, see if we have a suitable constant operand.
1677     // Truncating and extending must produce the same constant.
1678     Constant *WideC;
1679     if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1680       return nullptr;
1681     Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1682     if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1683       return nullptr;
1684     Y = NarrowC;
1685   }
1686 
1687   // Swap back now that we found our operands.
1688   if (BO.getOpcode() == Instruction::Sub)
1689     std::swap(X, Y);
1690 
1691   // Both operands have narrow versions. Last step: the math must not overflow
1692   // in the narrow width.
1693   if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1694     return nullptr;
1695 
1696   // bo (ext X), (ext Y) --> ext (bo X, Y)
1697   // bo (ext X), C       --> ext (bo X, C')
1698   Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1699   if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1700     if (IsSext)
1701       NewBinOp->setHasNoSignedWrap();
1702     else
1703       NewBinOp->setHasNoUnsignedWrap();
1704   }
1705   return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1706 }
1707 
1708 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1709   // At least one GEP must be inbounds.
1710   if (!GEP1.isInBounds() && !GEP2.isInBounds())
1711     return false;
1712 
1713   return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1714          (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1715 }
1716 
1717 /// Thread a GEP operation with constant indices through the constant true/false
1718 /// arms of a select.
1719 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1720                                   InstCombiner::BuilderTy &Builder) {
1721   if (!GEP.hasAllConstantIndices())
1722     return nullptr;
1723 
1724   Instruction *Sel;
1725   Value *Cond;
1726   Constant *TrueC, *FalseC;
1727   if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1728       !match(Sel,
1729              m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1730     return nullptr;
1731 
1732   // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1733   // Propagate 'inbounds' and metadata from existing instructions.
1734   // Note: using IRBuilder to create the constants for efficiency.
1735   SmallVector<Value *, 4> IndexC(GEP.idx_begin(), GEP.idx_end());
1736   bool IsInBounds = GEP.isInBounds();
1737   Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(TrueC, IndexC)
1738                                : Builder.CreateGEP(TrueC, IndexC);
1739   Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(FalseC, IndexC)
1740                                 : Builder.CreateGEP(FalseC, IndexC);
1741   return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1742 }
1743 
1744 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1745   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1746   Type *GEPType = GEP.getType();
1747   Type *GEPEltType = GEP.getSourceElementType();
1748   bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
1749   if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
1750     return replaceInstUsesWith(GEP, V);
1751 
1752   // For vector geps, use the generic demanded vector support.
1753   // Skip if GEP return type is scalable. The number of elements is unknown at
1754   // compile-time.
1755   if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
1756     auto VWidth = GEPFVTy->getNumElements();
1757     APInt UndefElts(VWidth, 0);
1758     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1759     if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
1760                                               UndefElts)) {
1761       if (V != &GEP)
1762         return replaceInstUsesWith(GEP, V);
1763       return &GEP;
1764     }
1765 
1766     // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
1767     // possible (decide on canonical form for pointer broadcast), 3) exploit
1768     // undef elements to decrease demanded bits
1769   }
1770 
1771   Value *PtrOp = GEP.getOperand(0);
1772 
1773   // Eliminate unneeded casts for indices, and replace indices which displace
1774   // by multiples of a zero size type with zero.
1775   bool MadeChange = false;
1776 
1777   // Index width may not be the same width as pointer width.
1778   // Data layout chooses the right type based on supported integer types.
1779   Type *NewScalarIndexTy =
1780       DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1781 
1782   gep_type_iterator GTI = gep_type_begin(GEP);
1783   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1784        ++I, ++GTI) {
1785     // Skip indices into struct types.
1786     if (GTI.isStruct())
1787       continue;
1788 
1789     Type *IndexTy = (*I)->getType();
1790     Type *NewIndexType =
1791         IndexTy->isVectorTy()
1792             ? VectorType::get(NewScalarIndexTy,
1793                               cast<VectorType>(IndexTy)->getElementCount())
1794             : NewScalarIndexTy;
1795 
1796     // If the element type has zero size then any index over it is equivalent
1797     // to an index of zero, so replace it with zero if it is not zero already.
1798     Type *EltTy = GTI.getIndexedType();
1799     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
1800       if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
1801         *I = Constant::getNullValue(NewIndexType);
1802         MadeChange = true;
1803       }
1804 
1805     if (IndexTy != NewIndexType) {
1806       // If we are using a wider index than needed for this platform, shrink
1807       // it to what we need.  If narrower, sign-extend it to what we need.
1808       // This explicit cast can make subsequent optimizations more obvious.
1809       *I = Builder.CreateIntCast(*I, NewIndexType, true);
1810       MadeChange = true;
1811     }
1812   }
1813   if (MadeChange)
1814     return &GEP;
1815 
1816   // Check to see if the inputs to the PHI node are getelementptr instructions.
1817   if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1818     auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1819     if (!Op1)
1820       return nullptr;
1821 
1822     // Don't fold a GEP into itself through a PHI node. This can only happen
1823     // through the back-edge of a loop. Folding a GEP into itself means that
1824     // the value of the previous iteration needs to be stored in the meantime,
1825     // thus requiring an additional register variable to be live, but not
1826     // actually achieving anything (the GEP still needs to be executed once per
1827     // loop iteration).
1828     if (Op1 == &GEP)
1829       return nullptr;
1830 
1831     int DI = -1;
1832 
1833     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1834       auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1835       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1836         return nullptr;
1837 
1838       // As for Op1 above, don't try to fold a GEP into itself.
1839       if (Op2 == &GEP)
1840         return nullptr;
1841 
1842       // Keep track of the type as we walk the GEP.
1843       Type *CurTy = nullptr;
1844 
1845       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1846         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1847           return nullptr;
1848 
1849         if (Op1->getOperand(J) != Op2->getOperand(J)) {
1850           if (DI == -1) {
1851             // We have not seen any differences yet in the GEPs feeding the
1852             // PHI yet, so we record this one if it is allowed to be a
1853             // variable.
1854 
1855             // The first two arguments can vary for any GEP, the rest have to be
1856             // static for struct slots
1857             if (J > 1) {
1858               assert(CurTy && "No current type?");
1859               if (CurTy->isStructTy())
1860                 return nullptr;
1861             }
1862 
1863             DI = J;
1864           } else {
1865             // The GEP is different by more than one input. While this could be
1866             // extended to support GEPs that vary by more than one variable it
1867             // doesn't make sense since it greatly increases the complexity and
1868             // would result in an R+R+R addressing mode which no backend
1869             // directly supports and would need to be broken into several
1870             // simpler instructions anyway.
1871             return nullptr;
1872           }
1873         }
1874 
1875         // Sink down a layer of the type for the next iteration.
1876         if (J > 0) {
1877           if (J == 1) {
1878             CurTy = Op1->getSourceElementType();
1879           } else {
1880             CurTy =
1881                 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
1882           }
1883         }
1884       }
1885     }
1886 
1887     // If not all GEPs are identical we'll have to create a new PHI node.
1888     // Check that the old PHI node has only one use so that it will get
1889     // removed.
1890     if (DI != -1 && !PN->hasOneUse())
1891       return nullptr;
1892 
1893     auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1894     if (DI == -1) {
1895       // All the GEPs feeding the PHI are identical. Clone one down into our
1896       // BB so that it can be merged with the current GEP.
1897     } else {
1898       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1899       // into the current block so it can be merged, and create a new PHI to
1900       // set that index.
1901       PHINode *NewPN;
1902       {
1903         IRBuilderBase::InsertPointGuard Guard(Builder);
1904         Builder.SetInsertPoint(PN);
1905         NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
1906                                   PN->getNumOperands());
1907       }
1908 
1909       for (auto &I : PN->operands())
1910         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1911                            PN->getIncomingBlock(I));
1912 
1913       NewGEP->setOperand(DI, NewPN);
1914     }
1915 
1916     GEP.getParent()->getInstList().insert(
1917         GEP.getParent()->getFirstInsertionPt(), NewGEP);
1918     replaceOperand(GEP, 0, NewGEP);
1919     PtrOp = NewGEP;
1920   }
1921 
1922   // Combine Indices - If the source pointer to this getelementptr instruction
1923   // is a getelementptr instruction, combine the indices of the two
1924   // getelementptr instructions into a single instruction.
1925   if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
1926     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1927       return nullptr;
1928 
1929     // Try to reassociate loop invariant GEP chains to enable LICM.
1930     if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
1931         Src->hasOneUse()) {
1932       if (Loop *L = LI->getLoopFor(GEP.getParent())) {
1933         Value *GO1 = GEP.getOperand(1);
1934         Value *SO1 = Src->getOperand(1);
1935         // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
1936         // invariant: this breaks the dependence between GEPs and allows LICM
1937         // to hoist the invariant part out of the loop.
1938         if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
1939           // We have to be careful here.
1940           // We have something like:
1941           //  %src = getelementptr <ty>, <ty>* %base, <ty> %idx
1942           //  %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
1943           // If we just swap idx & idx2 then we could inadvertantly
1944           // change %src from a vector to a scalar, or vice versa.
1945           // Cases:
1946           //  1) %base a scalar & idx a scalar & idx2 a vector
1947           //      => Swapping idx & idx2 turns %src into a vector type.
1948           //  2) %base a scalar & idx a vector & idx2 a scalar
1949           //      => Swapping idx & idx2 turns %src in a scalar type
1950           //  3) %base, %idx, and %idx2 are scalars
1951           //      => %src & %gep are scalars
1952           //      => swapping idx & idx2 is safe
1953           //  4) %base a vector
1954           //      => %src is a vector
1955           //      => swapping idx & idx2 is safe.
1956           auto *SO0 = Src->getOperand(0);
1957           auto *SO0Ty = SO0->getType();
1958           if (!isa<VectorType>(GEPType) || // case 3
1959               isa<VectorType>(SO0Ty)) {    // case 4
1960             Src->setOperand(1, GO1);
1961             GEP.setOperand(1, SO1);
1962             return &GEP;
1963           } else {
1964             // Case 1 or 2
1965             // -- have to recreate %src & %gep
1966             // put NewSrc at same location as %src
1967             Builder.SetInsertPoint(cast<Instruction>(PtrOp));
1968             auto *NewSrc = cast<GetElementPtrInst>(
1969                 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()));
1970             NewSrc->setIsInBounds(Src->isInBounds());
1971             auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
1972             NewGEP->setIsInBounds(GEP.isInBounds());
1973             return NewGEP;
1974           }
1975         }
1976       }
1977     }
1978 
1979     // Note that if our source is a gep chain itself then we wait for that
1980     // chain to be resolved before we perform this transformation.  This
1981     // avoids us creating a TON of code in some cases.
1982     if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
1983       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1984         return nullptr;   // Wait until our source is folded to completion.
1985 
1986     SmallVector<Value*, 8> Indices;
1987 
1988     // Find out whether the last index in the source GEP is a sequential idx.
1989     bool EndsWithSequential = false;
1990     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1991          I != E; ++I)
1992       EndsWithSequential = I.isSequential();
1993 
1994     // Can we combine the two pointer arithmetics offsets?
1995     if (EndsWithSequential) {
1996       // Replace: gep (gep %P, long B), long A, ...
1997       // With:    T = long A+B; gep %P, T, ...
1998       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1999       Value *GO1 = GEP.getOperand(1);
2000 
2001       // If they aren't the same type, then the input hasn't been processed
2002       // by the loop above yet (which canonicalizes sequential index types to
2003       // intptr_t).  Just avoid transforming this until the input has been
2004       // normalized.
2005       if (SO1->getType() != GO1->getType())
2006         return nullptr;
2007 
2008       Value *Sum =
2009           SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2010       // Only do the combine when we are sure the cost after the
2011       // merge is never more than that before the merge.
2012       if (Sum == nullptr)
2013         return nullptr;
2014 
2015       // Update the GEP in place if possible.
2016       if (Src->getNumOperands() == 2) {
2017         GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2018         replaceOperand(GEP, 0, Src->getOperand(0));
2019         replaceOperand(GEP, 1, Sum);
2020         return &GEP;
2021       }
2022       Indices.append(Src->op_begin()+1, Src->op_end()-1);
2023       Indices.push_back(Sum);
2024       Indices.append(GEP.op_begin()+2, GEP.op_end());
2025     } else if (isa<Constant>(*GEP.idx_begin()) &&
2026                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2027                Src->getNumOperands() != 1) {
2028       // Otherwise we can do the fold if the first index of the GEP is a zero
2029       Indices.append(Src->op_begin()+1, Src->op_end());
2030       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2031     }
2032 
2033     if (!Indices.empty())
2034       return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2035                  ? GetElementPtrInst::CreateInBounds(
2036                        Src->getSourceElementType(), Src->getOperand(0), Indices,
2037                        GEP.getName())
2038                  : GetElementPtrInst::Create(Src->getSourceElementType(),
2039                                              Src->getOperand(0), Indices,
2040                                              GEP.getName());
2041   }
2042 
2043   // Skip if GEP source element type is scalable. The type alloc size is unknown
2044   // at compile-time.
2045   if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2046     unsigned AS = GEP.getPointerAddressSpace();
2047     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2048         DL.getIndexSizeInBits(AS)) {
2049       uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2050 
2051       bool Matched = false;
2052       uint64_t C;
2053       Value *V = nullptr;
2054       if (TyAllocSize == 1) {
2055         V = GEP.getOperand(1);
2056         Matched = true;
2057       } else if (match(GEP.getOperand(1),
2058                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
2059         if (TyAllocSize == 1ULL << C)
2060           Matched = true;
2061       } else if (match(GEP.getOperand(1),
2062                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2063         if (TyAllocSize == C)
2064           Matched = true;
2065       }
2066 
2067       if (Matched) {
2068         // Canonicalize (gep i8* X, -(ptrtoint Y))
2069         // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
2070         // The GEP pattern is emitted by the SCEV expander for certain kinds of
2071         // pointer arithmetic.
2072         if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
2073           Operator *Index = cast<Operator>(V);
2074           Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
2075           Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
2076           return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
2077         }
2078         // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
2079         // to (bitcast Y)
2080         Value *Y;
2081         if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
2082                            m_PtrToInt(m_Specific(GEP.getOperand(0))))))
2083           return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2084       }
2085     }
2086   }
2087 
2088   // We do not handle pointer-vector geps here.
2089   if (GEPType->isVectorTy())
2090     return nullptr;
2091 
2092   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2093   Value *StrippedPtr = PtrOp->stripPointerCasts();
2094   PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2095 
2096   if (StrippedPtr != PtrOp) {
2097     bool HasZeroPointerIndex = false;
2098     Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
2099 
2100     if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2101       HasZeroPointerIndex = C->isZero();
2102 
2103     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2104     // into     : GEP [10 x i8]* X, i32 0, ...
2105     //
2106     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2107     //           into     : GEP i8* X, ...
2108     //
2109     // This occurs when the program declares an array extern like "int X[];"
2110     if (HasZeroPointerIndex) {
2111       if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2112         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2113         if (CATy->getElementType() == StrippedPtrEltTy) {
2114           // -> GEP i8* X, ...
2115           SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
2116           GetElementPtrInst *Res = GetElementPtrInst::Create(
2117               StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2118           Res->setIsInBounds(GEP.isInBounds());
2119           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2120             return Res;
2121           // Insert Res, and create an addrspacecast.
2122           // e.g.,
2123           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2124           // ->
2125           // %0 = GEP i8 addrspace(1)* X, ...
2126           // addrspacecast i8 addrspace(1)* %0 to i8*
2127           return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2128         }
2129 
2130         if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2131           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2132           if (CATy->getElementType() == XATy->getElementType()) {
2133             // -> GEP [10 x i8]* X, i32 0, ...
2134             // At this point, we know that the cast source type is a pointer
2135             // to an array of the same type as the destination pointer
2136             // array.  Because the array type is never stepped over (there
2137             // is a leading zero) we can fold the cast into this GEP.
2138             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2139               GEP.setSourceElementType(XATy);
2140               return replaceOperand(GEP, 0, StrippedPtr);
2141             }
2142             // Cannot replace the base pointer directly because StrippedPtr's
2143             // address space is different. Instead, create a new GEP followed by
2144             // an addrspacecast.
2145             // e.g.,
2146             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2147             //   i32 0, ...
2148             // ->
2149             // %0 = GEP [10 x i8] addrspace(1)* X, ...
2150             // addrspacecast i8 addrspace(1)* %0 to i8*
2151             SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
2152             Value *NewGEP =
2153                 GEP.isInBounds()
2154                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2155                                                 Idx, GEP.getName())
2156                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2157                                         GEP.getName());
2158             return new AddrSpaceCastInst(NewGEP, GEPType);
2159           }
2160         }
2161       }
2162     } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
2163       // Skip if GEP source element type is scalable. The type alloc size is
2164       // unknown at compile-time.
2165       // Transform things like: %t = getelementptr i32*
2166       // bitcast ([2 x i32]* %str to i32*), i32 %V into:  %t1 = getelementptr [2
2167       // x i32]* %str, i32 0, i32 %V; bitcast
2168       if (StrippedPtrEltTy->isArrayTy() &&
2169           DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2170               DL.getTypeAllocSize(GEPEltType)) {
2171         Type *IdxType = DL.getIndexType(GEPType);
2172         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2173         Value *NewGEP =
2174             GEP.isInBounds()
2175                 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2176                                             GEP.getName())
2177                 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2178                                     GEP.getName());
2179 
2180         // V and GEP are both pointer types --> BitCast
2181         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2182       }
2183 
2184       // Transform things like:
2185       // %V = mul i64 %N, 4
2186       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2187       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
2188       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2189         // Check that changing the type amounts to dividing the index by a scale
2190         // factor.
2191         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2192         uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
2193         if (ResSize && SrcSize % ResSize == 0) {
2194           Value *Idx = GEP.getOperand(1);
2195           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2196           uint64_t Scale = SrcSize / ResSize;
2197 
2198           // Earlier transforms ensure that the index has the right type
2199           // according to Data Layout, which considerably simplifies the
2200           // logic by eliminating implicit casts.
2201           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2202                  "Index type does not match the Data Layout preferences");
2203 
2204           bool NSW;
2205           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2206             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2207             // If the multiplication NewIdx * Scale may overflow then the new
2208             // GEP may not be "inbounds".
2209             Value *NewGEP =
2210                 GEP.isInBounds() && NSW
2211                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2212                                                 NewIdx, GEP.getName())
2213                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2214                                         GEP.getName());
2215 
2216             // The NewGEP must be pointer typed, so must the old one -> BitCast
2217             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2218                                                                  GEPType);
2219           }
2220         }
2221       }
2222 
2223       // Similarly, transform things like:
2224       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2225       //   (where tmp = 8*tmp2) into:
2226       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2227       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2228           StrippedPtrEltTy->isArrayTy()) {
2229         // Check that changing to the array element type amounts to dividing the
2230         // index by a scale factor.
2231         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2232         uint64_t ArrayEltSize =
2233             DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
2234                 .getFixedSize();
2235         if (ResSize && ArrayEltSize % ResSize == 0) {
2236           Value *Idx = GEP.getOperand(1);
2237           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2238           uint64_t Scale = ArrayEltSize / ResSize;
2239 
2240           // Earlier transforms ensure that the index has the right type
2241           // according to the Data Layout, which considerably simplifies
2242           // the logic by eliminating implicit casts.
2243           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2244                  "Index type does not match the Data Layout preferences");
2245 
2246           bool NSW;
2247           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2248             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2249             // If the multiplication NewIdx * Scale may overflow then the new
2250             // GEP may not be "inbounds".
2251             Type *IndTy = DL.getIndexType(GEPType);
2252             Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2253 
2254             Value *NewGEP =
2255                 GEP.isInBounds() && NSW
2256                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2257                                                 Off, GEP.getName())
2258                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2259                                         GEP.getName());
2260             // The NewGEP must be pointer typed, so must the old one -> BitCast
2261             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2262                                                                  GEPType);
2263           }
2264         }
2265       }
2266     }
2267   }
2268 
2269   // addrspacecast between types is canonicalized as a bitcast, then an
2270   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2271   // through the addrspacecast.
2272   Value *ASCStrippedPtrOp = PtrOp;
2273   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2274     //   X = bitcast A addrspace(1)* to B addrspace(1)*
2275     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2276     //   Z = gep Y, <...constant indices...>
2277     // Into an addrspacecasted GEP of the struct.
2278     if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2279       ASCStrippedPtrOp = BC;
2280   }
2281 
2282   if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2283     Value *SrcOp = BCI->getOperand(0);
2284     PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2285     Type *SrcEltType = SrcType->getElementType();
2286 
2287     // GEP directly using the source operand if this GEP is accessing an element
2288     // of a bitcasted pointer to vector or array of the same dimensions:
2289     // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2290     // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2291     auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2292                                           const DataLayout &DL) {
2293       auto *VecVTy = cast<VectorType>(VecTy);
2294       return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
2295              ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
2296              DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2297     };
2298     if (GEP.getNumOperands() == 3 &&
2299         ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() &&
2300           areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2301          (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() &&
2302           areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2303 
2304       // Create a new GEP here, as using `setOperand()` followed by
2305       // `setSourceElementType()` won't actually update the type of the
2306       // existing GEP Value. Causing issues if this Value is accessed when
2307       // constructing an AddrSpaceCastInst
2308       Value *NGEP =
2309           GEP.isInBounds()
2310               ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
2311               : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
2312       NGEP->takeName(&GEP);
2313 
2314       // Preserve GEP address space to satisfy users
2315       if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2316         return new AddrSpaceCastInst(NGEP, GEPType);
2317 
2318       return replaceInstUsesWith(GEP, NGEP);
2319     }
2320 
2321     // See if we can simplify:
2322     //   X = bitcast A* to B*
2323     //   Y = gep X, <...constant indices...>
2324     // into a gep of the original struct. This is important for SROA and alias
2325     // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2326     unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2327     APInt Offset(OffsetBits, 0);
2328     if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
2329       // If this GEP instruction doesn't move the pointer, just replace the GEP
2330       // with a bitcast of the real input to the dest type.
2331       if (!Offset) {
2332         // If the bitcast is of an allocation, and the allocation will be
2333         // converted to match the type of the cast, don't touch this.
2334         if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
2335           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2336           if (Instruction *I = visitBitCast(*BCI)) {
2337             if (I != BCI) {
2338               I->takeName(BCI);
2339               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2340               replaceInstUsesWith(*BCI, I);
2341             }
2342             return &GEP;
2343           }
2344         }
2345 
2346         if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2347           return new AddrSpaceCastInst(SrcOp, GEPType);
2348         return new BitCastInst(SrcOp, GEPType);
2349       }
2350 
2351       // Otherwise, if the offset is non-zero, we need to find out if there is a
2352       // field at Offset in 'A's type.  If so, we can pull the cast through the
2353       // GEP.
2354       SmallVector<Value*, 8> NewIndices;
2355       if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2356         Value *NGEP =
2357             GEP.isInBounds()
2358                 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2359                 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2360 
2361         if (NGEP->getType() == GEPType)
2362           return replaceInstUsesWith(GEP, NGEP);
2363         NGEP->takeName(&GEP);
2364 
2365         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2366           return new AddrSpaceCastInst(NGEP, GEPType);
2367         return new BitCastInst(NGEP, GEPType);
2368       }
2369     }
2370   }
2371 
2372   if (!GEP.isInBounds()) {
2373     unsigned IdxWidth =
2374         DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2375     APInt BasePtrOffset(IdxWidth, 0);
2376     Value *UnderlyingPtrOp =
2377             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2378                                                              BasePtrOffset);
2379     if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2380       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2381           BasePtrOffset.isNonNegative()) {
2382         APInt AllocSize(
2383             IdxWidth,
2384             DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
2385         if (BasePtrOffset.ule(AllocSize)) {
2386           return GetElementPtrInst::CreateInBounds(
2387               GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
2388               GEP.getName());
2389         }
2390       }
2391     }
2392   }
2393 
2394   if (Instruction *R = foldSelectGEP(GEP, Builder))
2395     return R;
2396 
2397   return nullptr;
2398 }
2399 
2400 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
2401                                          Instruction *AI) {
2402   if (isa<ConstantPointerNull>(V))
2403     return true;
2404   if (auto *LI = dyn_cast<LoadInst>(V))
2405     return isa<GlobalVariable>(LI->getPointerOperand());
2406   // Two distinct allocations will never be equal.
2407   // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2408   // through bitcasts of V can cause
2409   // the result statement below to be true, even when AI and V (ex:
2410   // i8* ->i32* ->i8* of AI) are the same allocations.
2411   return isAllocLikeFn(V, TLI) && V != AI;
2412 }
2413 
2414 static bool isAllocSiteRemovable(Instruction *AI,
2415                                  SmallVectorImpl<WeakTrackingVH> &Users,
2416                                  const TargetLibraryInfo *TLI) {
2417   SmallVector<Instruction*, 4> Worklist;
2418   Worklist.push_back(AI);
2419 
2420   do {
2421     Instruction *PI = Worklist.pop_back_val();
2422     for (User *U : PI->users()) {
2423       Instruction *I = cast<Instruction>(U);
2424       switch (I->getOpcode()) {
2425       default:
2426         // Give up the moment we see something we can't handle.
2427         return false;
2428 
2429       case Instruction::AddrSpaceCast:
2430       case Instruction::BitCast:
2431       case Instruction::GetElementPtr:
2432         Users.emplace_back(I);
2433         Worklist.push_back(I);
2434         continue;
2435 
2436       case Instruction::ICmp: {
2437         ICmpInst *ICI = cast<ICmpInst>(I);
2438         // We can fold eq/ne comparisons with null to false/true, respectively.
2439         // We also fold comparisons in some conditions provided the alloc has
2440         // not escaped (see isNeverEqualToUnescapedAlloc).
2441         if (!ICI->isEquality())
2442           return false;
2443         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2444         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2445           return false;
2446         Users.emplace_back(I);
2447         continue;
2448       }
2449 
2450       case Instruction::Call:
2451         // Ignore no-op and store intrinsics.
2452         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2453           switch (II->getIntrinsicID()) {
2454           default:
2455             return false;
2456 
2457           case Intrinsic::memmove:
2458           case Intrinsic::memcpy:
2459           case Intrinsic::memset: {
2460             MemIntrinsic *MI = cast<MemIntrinsic>(II);
2461             if (MI->isVolatile() || MI->getRawDest() != PI)
2462               return false;
2463             LLVM_FALLTHROUGH;
2464           }
2465           case Intrinsic::invariant_start:
2466           case Intrinsic::invariant_end:
2467           case Intrinsic::lifetime_start:
2468           case Intrinsic::lifetime_end:
2469           case Intrinsic::objectsize:
2470             Users.emplace_back(I);
2471             continue;
2472           }
2473         }
2474 
2475         if (isFreeCall(I, TLI)) {
2476           Users.emplace_back(I);
2477           continue;
2478         }
2479         return false;
2480 
2481       case Instruction::Store: {
2482         StoreInst *SI = cast<StoreInst>(I);
2483         if (SI->isVolatile() || SI->getPointerOperand() != PI)
2484           return false;
2485         Users.emplace_back(I);
2486         continue;
2487       }
2488       }
2489       llvm_unreachable("missing a return?");
2490     }
2491   } while (!Worklist.empty());
2492   return true;
2493 }
2494 
2495 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
2496   // If we have a malloc call which is only used in any amount of comparisons to
2497   // null and free calls, delete the calls and replace the comparisons with true
2498   // or false as appropriate.
2499 
2500   // This is based on the principle that we can substitute our own allocation
2501   // function (which will never return null) rather than knowledge of the
2502   // specific function being called. In some sense this can change the permitted
2503   // outputs of a program (when we convert a malloc to an alloca, the fact that
2504   // the allocation is now on the stack is potentially visible, for example),
2505   // but we believe in a permissible manner.
2506   SmallVector<WeakTrackingVH, 64> Users;
2507 
2508   // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2509   // before each store.
2510   TinyPtrVector<DbgVariableIntrinsic *> DIIs;
2511   std::unique_ptr<DIBuilder> DIB;
2512   if (isa<AllocaInst>(MI)) {
2513     DIIs = FindDbgAddrUses(&MI);
2514     DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2515   }
2516 
2517   if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2518     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2519       // Lowering all @llvm.objectsize calls first because they may
2520       // use a bitcast/GEP of the alloca we are removing.
2521       if (!Users[i])
2522        continue;
2523 
2524       Instruction *I = cast<Instruction>(&*Users[i]);
2525 
2526       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2527         if (II->getIntrinsicID() == Intrinsic::objectsize) {
2528           Value *Result =
2529               lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2530           replaceInstUsesWith(*I, Result);
2531           eraseInstFromFunction(*I);
2532           Users[i] = nullptr; // Skip examining in the next loop.
2533         }
2534       }
2535     }
2536     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2537       if (!Users[i])
2538         continue;
2539 
2540       Instruction *I = cast<Instruction>(&*Users[i]);
2541 
2542       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2543         replaceInstUsesWith(*C,
2544                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
2545                                              C->isFalseWhenEqual()));
2546       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2547         for (auto *DII : DIIs)
2548           ConvertDebugDeclareToDebugValue(DII, SI, *DIB);
2549       } else {
2550         // Casts, GEP, or anything else: we're about to delete this instruction,
2551         // so it can not have any valid uses.
2552         replaceInstUsesWith(*I, UndefValue::get(I->getType()));
2553       }
2554       eraseInstFromFunction(*I);
2555     }
2556 
2557     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2558       // Replace invoke with a NOP intrinsic to maintain the original CFG
2559       Module *M = II->getModule();
2560       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2561       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2562                          None, "", II->getParent());
2563     }
2564 
2565     for (auto *DII : DIIs)
2566       eraseInstFromFunction(*DII);
2567 
2568     return eraseInstFromFunction(MI);
2569   }
2570   return nullptr;
2571 }
2572 
2573 /// Move the call to free before a NULL test.
2574 ///
2575 /// Check if this free is accessed after its argument has been test
2576 /// against NULL (property 0).
2577 /// If yes, it is legal to move this call in its predecessor block.
2578 ///
2579 /// The move is performed only if the block containing the call to free
2580 /// will be removed, i.e.:
2581 /// 1. it has only one predecessor P, and P has two successors
2582 /// 2. it contains the call, noops, and an unconditional branch
2583 /// 3. its successor is the same as its predecessor's successor
2584 ///
2585 /// The profitability is out-of concern here and this function should
2586 /// be called only if the caller knows this transformation would be
2587 /// profitable (e.g., for code size).
2588 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2589                                                 const DataLayout &DL) {
2590   Value *Op = FI.getArgOperand(0);
2591   BasicBlock *FreeInstrBB = FI.getParent();
2592   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2593 
2594   // Validate part of constraint #1: Only one predecessor
2595   // FIXME: We can extend the number of predecessor, but in that case, we
2596   //        would duplicate the call to free in each predecessor and it may
2597   //        not be profitable even for code size.
2598   if (!PredBB)
2599     return nullptr;
2600 
2601   // Validate constraint #2: Does this block contains only the call to
2602   //                         free, noops, and an unconditional branch?
2603   BasicBlock *SuccBB;
2604   Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2605   if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2606     return nullptr;
2607 
2608   // If there are only 2 instructions in the block, at this point,
2609   // this is the call to free and unconditional.
2610   // If there are more than 2 instructions, check that they are noops
2611   // i.e., they won't hurt the performance of the generated code.
2612   if (FreeInstrBB->size() != 2) {
2613     for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2614       if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2615         continue;
2616       auto *Cast = dyn_cast<CastInst>(&Inst);
2617       if (!Cast || !Cast->isNoopCast(DL))
2618         return nullptr;
2619     }
2620   }
2621   // Validate the rest of constraint #1 by matching on the pred branch.
2622   Instruction *TI = PredBB->getTerminator();
2623   BasicBlock *TrueBB, *FalseBB;
2624   ICmpInst::Predicate Pred;
2625   if (!match(TI, m_Br(m_ICmp(Pred,
2626                              m_CombineOr(m_Specific(Op),
2627                                          m_Specific(Op->stripPointerCasts())),
2628                              m_Zero()),
2629                       TrueBB, FalseBB)))
2630     return nullptr;
2631   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2632     return nullptr;
2633 
2634   // Validate constraint #3: Ensure the null case just falls through.
2635   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2636     return nullptr;
2637   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2638          "Broken CFG: missing edge from predecessor to successor");
2639 
2640   // At this point, we know that everything in FreeInstrBB can be moved
2641   // before TI.
2642   for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
2643        It != End;) {
2644     Instruction &Instr = *It++;
2645     if (&Instr == FreeInstrBBTerminator)
2646       break;
2647     Instr.moveBefore(TI);
2648   }
2649   assert(FreeInstrBB->size() == 1 &&
2650          "Only the branch instruction should remain");
2651   return &FI;
2652 }
2653 
2654 Instruction *InstCombiner::visitFree(CallInst &FI) {
2655   Value *Op = FI.getArgOperand(0);
2656 
2657   // free undef -> unreachable.
2658   if (isa<UndefValue>(Op)) {
2659     // Leave a marker since we can't modify the CFG here.
2660     CreateNonTerminatorUnreachable(&FI);
2661     return eraseInstFromFunction(FI);
2662   }
2663 
2664   // If we have 'free null' delete the instruction.  This can happen in stl code
2665   // when lots of inlining happens.
2666   if (isa<ConstantPointerNull>(Op))
2667     return eraseInstFromFunction(FI);
2668 
2669   // If we optimize for code size, try to move the call to free before the null
2670   // test so that simplify cfg can remove the empty block and dead code
2671   // elimination the branch. I.e., helps to turn something like:
2672   // if (foo) free(foo);
2673   // into
2674   // free(foo);
2675   if (MinimizeSize)
2676     if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2677       return I;
2678 
2679   return nullptr;
2680 }
2681 
2682 static bool isMustTailCall(Value *V) {
2683   if (auto *CI = dyn_cast<CallInst>(V))
2684     return CI->isMustTailCall();
2685   return false;
2686 }
2687 
2688 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
2689   if (RI.getNumOperands() == 0) // ret void
2690     return nullptr;
2691 
2692   Value *ResultOp = RI.getOperand(0);
2693   Type *VTy = ResultOp->getType();
2694   if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
2695     return nullptr;
2696 
2697   // Don't replace result of musttail calls.
2698   if (isMustTailCall(ResultOp))
2699     return nullptr;
2700 
2701   // There might be assume intrinsics dominating this return that completely
2702   // determine the value. If so, constant fold it.
2703   KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2704   if (Known.isConstant())
2705     return replaceOperand(RI, 0,
2706         Constant::getIntegerValue(VTy, Known.getConstant()));
2707 
2708   return nullptr;
2709 }
2710 
2711 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2712   // Change br (not X), label True, label False to: br X, label False, True
2713   Value *X = nullptr;
2714   if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
2715       !isa<Constant>(X)) {
2716     // Swap Destinations and condition...
2717     BI.swapSuccessors();
2718     return replaceOperand(BI, 0, X);
2719   }
2720 
2721   // If the condition is irrelevant, remove the use so that other
2722   // transforms on the condition become more effective.
2723   if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) &&
2724       BI.getSuccessor(0) == BI.getSuccessor(1))
2725     return replaceOperand(
2726         BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
2727 
2728   // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq.
2729   CmpInst::Predicate Pred;
2730   if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())),
2731                       m_BasicBlock(), m_BasicBlock())) &&
2732       !isCanonicalPredicate(Pred)) {
2733     // Swap destinations and condition.
2734     CmpInst *Cond = cast<CmpInst>(BI.getCondition());
2735     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2736     BI.swapSuccessors();
2737     Worklist.push(Cond);
2738     return &BI;
2739   }
2740 
2741   return nullptr;
2742 }
2743 
2744 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
2745   Value *Cond = SI.getCondition();
2746   Value *Op0;
2747   ConstantInt *AddRHS;
2748   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
2749     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2750     for (auto Case : SI.cases()) {
2751       Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
2752       assert(isa<ConstantInt>(NewCase) &&
2753              "Result of expression should be constant");
2754       Case.setValue(cast<ConstantInt>(NewCase));
2755     }
2756     return replaceOperand(SI, 0, Op0);
2757   }
2758 
2759   KnownBits Known = computeKnownBits(Cond, 0, &SI);
2760   unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
2761   unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
2762 
2763   // Compute the number of leading bits we can ignore.
2764   // TODO: A better way to determine this would use ComputeNumSignBits().
2765   for (auto &C : SI.cases()) {
2766     LeadingKnownZeros = std::min(
2767         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2768     LeadingKnownOnes = std::min(
2769         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2770   }
2771 
2772   unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
2773 
2774   // Shrink the condition operand if the new type is smaller than the old type.
2775   // But do not shrink to a non-standard type, because backend can't generate
2776   // good code for that yet.
2777   // TODO: We can make it aggressive again after fixing PR39569.
2778   if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
2779       shouldChangeType(Known.getBitWidth(), NewWidth)) {
2780     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2781     Builder.SetInsertPoint(&SI);
2782     Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
2783 
2784     for (auto Case : SI.cases()) {
2785       APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
2786       Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
2787     }
2788     return replaceOperand(SI, 0, NewCond);
2789   }
2790 
2791   return nullptr;
2792 }
2793 
2794 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
2795   Value *Agg = EV.getAggregateOperand();
2796 
2797   if (!EV.hasIndices())
2798     return replaceInstUsesWith(EV, Agg);
2799 
2800   if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
2801                                           SQ.getWithInstruction(&EV)))
2802     return replaceInstUsesWith(EV, V);
2803 
2804   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2805     // We're extracting from an insertvalue instruction, compare the indices
2806     const unsigned *exti, *exte, *insi, *inse;
2807     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2808          exte = EV.idx_end(), inse = IV->idx_end();
2809          exti != exte && insi != inse;
2810          ++exti, ++insi) {
2811       if (*insi != *exti)
2812         // The insert and extract both reference distinctly different elements.
2813         // This means the extract is not influenced by the insert, and we can
2814         // replace the aggregate operand of the extract with the aggregate
2815         // operand of the insert. i.e., replace
2816         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2817         // %E = extractvalue { i32, { i32 } } %I, 0
2818         // with
2819         // %E = extractvalue { i32, { i32 } } %A, 0
2820         return ExtractValueInst::Create(IV->getAggregateOperand(),
2821                                         EV.getIndices());
2822     }
2823     if (exti == exte && insi == inse)
2824       // Both iterators are at the end: Index lists are identical. Replace
2825       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2826       // %C = extractvalue { i32, { i32 } } %B, 1, 0
2827       // with "i32 42"
2828       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
2829     if (exti == exte) {
2830       // The extract list is a prefix of the insert list. i.e. replace
2831       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2832       // %E = extractvalue { i32, { i32 } } %I, 1
2833       // with
2834       // %X = extractvalue { i32, { i32 } } %A, 1
2835       // %E = insertvalue { i32 } %X, i32 42, 0
2836       // by switching the order of the insert and extract (though the
2837       // insertvalue should be left in, since it may have other uses).
2838       Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
2839                                                 EV.getIndices());
2840       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
2841                                      makeArrayRef(insi, inse));
2842     }
2843     if (insi == inse)
2844       // The insert list is a prefix of the extract list
2845       // We can simply remove the common indices from the extract and make it
2846       // operate on the inserted value instead of the insertvalue result.
2847       // i.e., replace
2848       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2849       // %E = extractvalue { i32, { i32 } } %I, 1, 0
2850       // with
2851       // %E extractvalue { i32 } { i32 42 }, 0
2852       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
2853                                       makeArrayRef(exti, exte));
2854   }
2855   if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
2856     // We're extracting from an overflow intrinsic, see if we're the only user,
2857     // which allows us to simplify multiple result intrinsics to simpler
2858     // things that just get one value.
2859     if (WO->hasOneUse()) {
2860       // Check if we're grabbing only the result of a 'with overflow' intrinsic
2861       // and replace it with a traditional binary instruction.
2862       if (*EV.idx_begin() == 0) {
2863         Instruction::BinaryOps BinOp = WO->getBinaryOp();
2864         Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
2865         replaceInstUsesWith(*WO, UndefValue::get(WO->getType()));
2866         eraseInstFromFunction(*WO);
2867         return BinaryOperator::Create(BinOp, LHS, RHS);
2868       }
2869 
2870       // If the normal result of the add is dead, and the RHS is a constant,
2871       // we can transform this into a range comparison.
2872       // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
2873       if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2874         if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS()))
2875           return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(),
2876                               ConstantExpr::getNot(CI));
2877     }
2878   }
2879   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2880     // If the (non-volatile) load only has one use, we can rewrite this to a
2881     // load from a GEP. This reduces the size of the load. If a load is used
2882     // only by extractvalue instructions then this either must have been
2883     // optimized before, or it is a struct with padding, in which case we
2884     // don't want to do the transformation as it loses padding knowledge.
2885     if (L->isSimple() && L->hasOneUse()) {
2886       // extractvalue has integer indices, getelementptr has Value*s. Convert.
2887       SmallVector<Value*, 4> Indices;
2888       // Prefix an i32 0 since we need the first element.
2889       Indices.push_back(Builder.getInt32(0));
2890       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2891             I != E; ++I)
2892         Indices.push_back(Builder.getInt32(*I));
2893 
2894       // We need to insert these at the location of the old load, not at that of
2895       // the extractvalue.
2896       Builder.SetInsertPoint(L);
2897       Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
2898                                              L->getPointerOperand(), Indices);
2899       Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
2900       // Whatever aliasing information we had for the orignal load must also
2901       // hold for the smaller load, so propagate the annotations.
2902       AAMDNodes Nodes;
2903       L->getAAMetadata(Nodes);
2904       NL->setAAMetadata(Nodes);
2905       // Returning the load directly will cause the main loop to insert it in
2906       // the wrong spot, so use replaceInstUsesWith().
2907       return replaceInstUsesWith(EV, NL);
2908     }
2909   // We could simplify extracts from other values. Note that nested extracts may
2910   // already be simplified implicitly by the above: extract (extract (insert) )
2911   // will be translated into extract ( insert ( extract ) ) first and then just
2912   // the value inserted, if appropriate. Similarly for extracts from single-use
2913   // loads: extract (extract (load)) will be translated to extract (load (gep))
2914   // and if again single-use then via load (gep (gep)) to load (gep).
2915   // However, double extracts from e.g. function arguments or return values
2916   // aren't handled yet.
2917   return nullptr;
2918 }
2919 
2920 /// Return 'true' if the given typeinfo will match anything.
2921 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
2922   switch (Personality) {
2923   case EHPersonality::GNU_C:
2924   case EHPersonality::GNU_C_SjLj:
2925   case EHPersonality::Rust:
2926     // The GCC C EH and Rust personality only exists to support cleanups, so
2927     // it's not clear what the semantics of catch clauses are.
2928     return false;
2929   case EHPersonality::Unknown:
2930     return false;
2931   case EHPersonality::GNU_Ada:
2932     // While __gnat_all_others_value will match any Ada exception, it doesn't
2933     // match foreign exceptions (or didn't, before gcc-4.7).
2934     return false;
2935   case EHPersonality::GNU_CXX:
2936   case EHPersonality::GNU_CXX_SjLj:
2937   case EHPersonality::GNU_ObjC:
2938   case EHPersonality::MSVC_X86SEH:
2939   case EHPersonality::MSVC_Win64SEH:
2940   case EHPersonality::MSVC_CXX:
2941   case EHPersonality::CoreCLR:
2942   case EHPersonality::Wasm_CXX:
2943     return TypeInfo->isNullValue();
2944   }
2945   llvm_unreachable("invalid enum");
2946 }
2947 
2948 static bool shorter_filter(const Value *LHS, const Value *RHS) {
2949   return
2950     cast<ArrayType>(LHS->getType())->getNumElements()
2951   <
2952     cast<ArrayType>(RHS->getType())->getNumElements();
2953 }
2954 
2955 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
2956   // The logic here should be correct for any real-world personality function.
2957   // However if that turns out not to be true, the offending logic can always
2958   // be conditioned on the personality function, like the catch-all logic is.
2959   EHPersonality Personality =
2960       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
2961 
2962   // Simplify the list of clauses, eg by removing repeated catch clauses
2963   // (these are often created by inlining).
2964   bool MakeNewInstruction = false; // If true, recreate using the following:
2965   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
2966   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
2967 
2968   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
2969   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
2970     bool isLastClause = i + 1 == e;
2971     if (LI.isCatch(i)) {
2972       // A catch clause.
2973       Constant *CatchClause = LI.getClause(i);
2974       Constant *TypeInfo = CatchClause->stripPointerCasts();
2975 
2976       // If we already saw this clause, there is no point in having a second
2977       // copy of it.
2978       if (AlreadyCaught.insert(TypeInfo).second) {
2979         // This catch clause was not already seen.
2980         NewClauses.push_back(CatchClause);
2981       } else {
2982         // Repeated catch clause - drop the redundant copy.
2983         MakeNewInstruction = true;
2984       }
2985 
2986       // If this is a catch-all then there is no point in keeping any following
2987       // clauses or marking the landingpad as having a cleanup.
2988       if (isCatchAll(Personality, TypeInfo)) {
2989         if (!isLastClause)
2990           MakeNewInstruction = true;
2991         CleanupFlag = false;
2992         break;
2993       }
2994     } else {
2995       // A filter clause.  If any of the filter elements were already caught
2996       // then they can be dropped from the filter.  It is tempting to try to
2997       // exploit the filter further by saying that any typeinfo that does not
2998       // occur in the filter can't be caught later (and thus can be dropped).
2999       // However this would be wrong, since typeinfos can match without being
3000       // equal (for example if one represents a C++ class, and the other some
3001       // class derived from it).
3002       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3003       Constant *FilterClause = LI.getClause(i);
3004       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3005       unsigned NumTypeInfos = FilterType->getNumElements();
3006 
3007       // An empty filter catches everything, so there is no point in keeping any
3008       // following clauses or marking the landingpad as having a cleanup.  By
3009       // dealing with this case here the following code is made a bit simpler.
3010       if (!NumTypeInfos) {
3011         NewClauses.push_back(FilterClause);
3012         if (!isLastClause)
3013           MakeNewInstruction = true;
3014         CleanupFlag = false;
3015         break;
3016       }
3017 
3018       bool MakeNewFilter = false; // If true, make a new filter.
3019       SmallVector<Constant *, 16> NewFilterElts; // New elements.
3020       if (isa<ConstantAggregateZero>(FilterClause)) {
3021         // Not an empty filter - it contains at least one null typeinfo.
3022         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3023         Constant *TypeInfo =
3024           Constant::getNullValue(FilterType->getElementType());
3025         // If this typeinfo is a catch-all then the filter can never match.
3026         if (isCatchAll(Personality, TypeInfo)) {
3027           // Throw the filter away.
3028           MakeNewInstruction = true;
3029           continue;
3030         }
3031 
3032         // There is no point in having multiple copies of this typeinfo, so
3033         // discard all but the first copy if there is more than one.
3034         NewFilterElts.push_back(TypeInfo);
3035         if (NumTypeInfos > 1)
3036           MakeNewFilter = true;
3037       } else {
3038         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3039         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3040         NewFilterElts.reserve(NumTypeInfos);
3041 
3042         // Remove any filter elements that were already caught or that already
3043         // occurred in the filter.  While there, see if any of the elements are
3044         // catch-alls.  If so, the filter can be discarded.
3045         bool SawCatchAll = false;
3046         for (unsigned j = 0; j != NumTypeInfos; ++j) {
3047           Constant *Elt = Filter->getOperand(j);
3048           Constant *TypeInfo = Elt->stripPointerCasts();
3049           if (isCatchAll(Personality, TypeInfo)) {
3050             // This element is a catch-all.  Bail out, noting this fact.
3051             SawCatchAll = true;
3052             break;
3053           }
3054 
3055           // Even if we've seen a type in a catch clause, we don't want to
3056           // remove it from the filter.  An unexpected type handler may be
3057           // set up for a call site which throws an exception of the same
3058           // type caught.  In order for the exception thrown by the unexpected
3059           // handler to propagate correctly, the filter must be correctly
3060           // described for the call site.
3061           //
3062           // Example:
3063           //
3064           // void unexpected() { throw 1;}
3065           // void foo() throw (int) {
3066           //   std::set_unexpected(unexpected);
3067           //   try {
3068           //     throw 2.0;
3069           //   } catch (int i) {}
3070           // }
3071 
3072           // There is no point in having multiple copies of the same typeinfo in
3073           // a filter, so only add it if we didn't already.
3074           if (SeenInFilter.insert(TypeInfo).second)
3075             NewFilterElts.push_back(cast<Constant>(Elt));
3076         }
3077         // A filter containing a catch-all cannot match anything by definition.
3078         if (SawCatchAll) {
3079           // Throw the filter away.
3080           MakeNewInstruction = true;
3081           continue;
3082         }
3083 
3084         // If we dropped something from the filter, make a new one.
3085         if (NewFilterElts.size() < NumTypeInfos)
3086           MakeNewFilter = true;
3087       }
3088       if (MakeNewFilter) {
3089         FilterType = ArrayType::get(FilterType->getElementType(),
3090                                     NewFilterElts.size());
3091         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3092         MakeNewInstruction = true;
3093       }
3094 
3095       NewClauses.push_back(FilterClause);
3096 
3097       // If the new filter is empty then it will catch everything so there is
3098       // no point in keeping any following clauses or marking the landingpad
3099       // as having a cleanup.  The case of the original filter being empty was
3100       // already handled above.
3101       if (MakeNewFilter && !NewFilterElts.size()) {
3102         assert(MakeNewInstruction && "New filter but not a new instruction!");
3103         CleanupFlag = false;
3104         break;
3105       }
3106     }
3107   }
3108 
3109   // If several filters occur in a row then reorder them so that the shortest
3110   // filters come first (those with the smallest number of elements).  This is
3111   // advantageous because shorter filters are more likely to match, speeding up
3112   // unwinding, but mostly because it increases the effectiveness of the other
3113   // filter optimizations below.
3114   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3115     unsigned j;
3116     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3117     for (j = i; j != e; ++j)
3118       if (!isa<ArrayType>(NewClauses[j]->getType()))
3119         break;
3120 
3121     // Check whether the filters are already sorted by length.  We need to know
3122     // if sorting them is actually going to do anything so that we only make a
3123     // new landingpad instruction if it does.
3124     for (unsigned k = i; k + 1 < j; ++k)
3125       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3126         // Not sorted, so sort the filters now.  Doing an unstable sort would be
3127         // correct too but reordering filters pointlessly might confuse users.
3128         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3129                          shorter_filter);
3130         MakeNewInstruction = true;
3131         break;
3132       }
3133 
3134     // Look for the next batch of filters.
3135     i = j + 1;
3136   }
3137 
3138   // If typeinfos matched if and only if equal, then the elements of a filter L
3139   // that occurs later than a filter F could be replaced by the intersection of
3140   // the elements of F and L.  In reality two typeinfos can match without being
3141   // equal (for example if one represents a C++ class, and the other some class
3142   // derived from it) so it would be wrong to perform this transform in general.
3143   // However the transform is correct and useful if F is a subset of L.  In that
3144   // case L can be replaced by F, and thus removed altogether since repeating a
3145   // filter is pointless.  So here we look at all pairs of filters F and L where
3146   // L follows F in the list of clauses, and remove L if every element of F is
3147   // an element of L.  This can occur when inlining C++ functions with exception
3148   // specifications.
3149   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3150     // Examine each filter in turn.
3151     Value *Filter = NewClauses[i];
3152     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3153     if (!FTy)
3154       // Not a filter - skip it.
3155       continue;
3156     unsigned FElts = FTy->getNumElements();
3157     // Examine each filter following this one.  Doing this backwards means that
3158     // we don't have to worry about filters disappearing under us when removed.
3159     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3160       Value *LFilter = NewClauses[j];
3161       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3162       if (!LTy)
3163         // Not a filter - skip it.
3164         continue;
3165       // If Filter is a subset of LFilter, i.e. every element of Filter is also
3166       // an element of LFilter, then discard LFilter.
3167       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3168       // If Filter is empty then it is a subset of LFilter.
3169       if (!FElts) {
3170         // Discard LFilter.
3171         NewClauses.erase(J);
3172         MakeNewInstruction = true;
3173         // Move on to the next filter.
3174         continue;
3175       }
3176       unsigned LElts = LTy->getNumElements();
3177       // If Filter is longer than LFilter then it cannot be a subset of it.
3178       if (FElts > LElts)
3179         // Move on to the next filter.
3180         continue;
3181       // At this point we know that LFilter has at least one element.
3182       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3183         // Filter is a subset of LFilter iff Filter contains only zeros (as we
3184         // already know that Filter is not longer than LFilter).
3185         if (isa<ConstantAggregateZero>(Filter)) {
3186           assert(FElts <= LElts && "Should have handled this case earlier!");
3187           // Discard LFilter.
3188           NewClauses.erase(J);
3189           MakeNewInstruction = true;
3190         }
3191         // Move on to the next filter.
3192         continue;
3193       }
3194       ConstantArray *LArray = cast<ConstantArray>(LFilter);
3195       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3196         // Since Filter is non-empty and contains only zeros, it is a subset of
3197         // LFilter iff LFilter contains a zero.
3198         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3199         for (unsigned l = 0; l != LElts; ++l)
3200           if (LArray->getOperand(l)->isNullValue()) {
3201             // LFilter contains a zero - discard it.
3202             NewClauses.erase(J);
3203             MakeNewInstruction = true;
3204             break;
3205           }
3206         // Move on to the next filter.
3207         continue;
3208       }
3209       // At this point we know that both filters are ConstantArrays.  Loop over
3210       // operands to see whether every element of Filter is also an element of
3211       // LFilter.  Since filters tend to be short this is probably faster than
3212       // using a method that scales nicely.
3213       ConstantArray *FArray = cast<ConstantArray>(Filter);
3214       bool AllFound = true;
3215       for (unsigned f = 0; f != FElts; ++f) {
3216         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3217         AllFound = false;
3218         for (unsigned l = 0; l != LElts; ++l) {
3219           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3220           if (LTypeInfo == FTypeInfo) {
3221             AllFound = true;
3222             break;
3223           }
3224         }
3225         if (!AllFound)
3226           break;
3227       }
3228       if (AllFound) {
3229         // Discard LFilter.
3230         NewClauses.erase(J);
3231         MakeNewInstruction = true;
3232       }
3233       // Move on to the next filter.
3234     }
3235   }
3236 
3237   // If we changed any of the clauses, replace the old landingpad instruction
3238   // with a new one.
3239   if (MakeNewInstruction) {
3240     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3241                                                  NewClauses.size());
3242     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3243       NLI->addClause(NewClauses[i]);
3244     // A landing pad with no clauses must have the cleanup flag set.  It is
3245     // theoretically possible, though highly unlikely, that we eliminated all
3246     // clauses.  If so, force the cleanup flag to true.
3247     if (NewClauses.empty())
3248       CleanupFlag = true;
3249     NLI->setCleanup(CleanupFlag);
3250     return NLI;
3251   }
3252 
3253   // Even if none of the clauses changed, we may nonetheless have understood
3254   // that the cleanup flag is pointless.  Clear it if so.
3255   if (LI.isCleanup() != CleanupFlag) {
3256     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3257     LI.setCleanup(CleanupFlag);
3258     return &LI;
3259   }
3260 
3261   return nullptr;
3262 }
3263 
3264 Instruction *InstCombiner::visitFreeze(FreezeInst &I) {
3265   Value *Op0 = I.getOperand(0);
3266 
3267   if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3268     return replaceInstUsesWith(I, V);
3269 
3270   return nullptr;
3271 }
3272 
3273 /// Try to move the specified instruction from its current block into the
3274 /// beginning of DestBlock, which can only happen if it's safe to move the
3275 /// instruction past all of the instructions between it and the end of its
3276 /// block.
3277 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3278   assert(I->getSingleUndroppableUse() && "Invariants didn't hold!");
3279   BasicBlock *SrcBlock = I->getParent();
3280 
3281   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3282   if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3283       I->isTerminator())
3284     return false;
3285 
3286   // Do not sink static or dynamic alloca instructions. Static allocas must
3287   // remain in the entry block, and dynamic allocas must not be sunk in between
3288   // a stacksave / stackrestore pair, which would incorrectly shorten its
3289   // lifetime.
3290   if (isa<AllocaInst>(I))
3291     return false;
3292 
3293   // Do not sink into catchswitch blocks.
3294   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3295     return false;
3296 
3297   // Do not sink convergent call instructions.
3298   if (auto *CI = dyn_cast<CallInst>(I)) {
3299     if (CI->isConvergent())
3300       return false;
3301   }
3302   // We can only sink load instructions if there is nothing between the load and
3303   // the end of block that could change the value.
3304   if (I->mayReadFromMemory()) {
3305     for (BasicBlock::iterator Scan = I->getIterator(),
3306                               E = I->getParent()->end();
3307          Scan != E; ++Scan)
3308       if (Scan->mayWriteToMemory())
3309         return false;
3310   }
3311 
3312   I->dropDroppableUses([DestBlock](const Use *U) {
3313     if (auto *I = dyn_cast<Instruction>(U->getUser()))
3314       return I->getParent() != DestBlock;
3315     return true;
3316   });
3317   /// FIXME: We could remove droppable uses that are not dominated by
3318   /// the new position.
3319 
3320   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3321   I->moveBefore(&*InsertPos);
3322   ++NumSunkInst;
3323 
3324   // Also sink all related debug uses from the source basic block. Otherwise we
3325   // get debug use before the def. Attempt to salvage debug uses first, to
3326   // maximise the range variables have location for. If we cannot salvage, then
3327   // mark the location undef: we know it was supposed to receive a new location
3328   // here, but that computation has been sunk.
3329   SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3330   findDbgUsers(DbgUsers, I);
3331   for (auto *DII : reverse(DbgUsers)) {
3332     if (DII->getParent() == SrcBlock) {
3333       if (isa<DbgDeclareInst>(DII)) {
3334         // A dbg.declare instruction should not be cloned, since there can only be
3335         // one per variable fragment. It should be left in the original place since
3336         // sunk instruction is not an alloca(otherwise we could not be here).
3337         // But we need to update arguments of dbg.declare instruction, so that it
3338         // would not point into sunk instruction.
3339         if (!isa<CastInst>(I))
3340           continue; // dbg.declare points at something it shouldn't
3341 
3342         DII->setOperand(
3343             0, MetadataAsValue::get(I->getContext(),
3344                                     ValueAsMetadata::get(I->getOperand(0))));
3345         continue;
3346       }
3347 
3348       // dbg.value is in the same basic block as the sunk inst, see if we can
3349       // salvage it. Clone a new copy of the instruction: on success we need
3350       // both salvaged and unsalvaged copies.
3351       SmallVector<DbgVariableIntrinsic *, 1> TmpUser{
3352           cast<DbgVariableIntrinsic>(DII->clone())};
3353 
3354       if (!salvageDebugInfoForDbgValues(*I, TmpUser)) {
3355         // We are unable to salvage: sink the cloned dbg.value, and mark the
3356         // original as undef, terminating any earlier variable location.
3357         LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n');
3358         TmpUser[0]->insertBefore(&*InsertPos);
3359         Value *Undef = UndefValue::get(I->getType());
3360         DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
3361                                                 ValueAsMetadata::get(Undef)));
3362       } else {
3363         // We successfully salvaged: place the salvaged dbg.value in the
3364         // original location, and move the unmodified dbg.value to sink with
3365         // the sunk inst.
3366         TmpUser[0]->insertBefore(DII);
3367         DII->moveBefore(&*InsertPos);
3368       }
3369     }
3370   }
3371   return true;
3372 }
3373 
3374 bool InstCombiner::run() {
3375   while (!Worklist.isEmpty()) {
3376     // Walk deferred instructions in reverse order, and push them to the
3377     // worklist, which means they'll end up popped from the worklist in-order.
3378     while (Instruction *I = Worklist.popDeferred()) {
3379       // Check to see if we can DCE the instruction. We do this already here to
3380       // reduce the number of uses and thus allow other folds to trigger.
3381       // Note that eraseInstFromFunction() may push additional instructions on
3382       // the deferred worklist, so this will DCE whole instruction chains.
3383       if (isInstructionTriviallyDead(I, &TLI)) {
3384         eraseInstFromFunction(*I);
3385         ++NumDeadInst;
3386         continue;
3387       }
3388 
3389       Worklist.push(I);
3390     }
3391 
3392     Instruction *I = Worklist.removeOne();
3393     if (I == nullptr) continue;  // skip null values.
3394 
3395     // Check to see if we can DCE the instruction.
3396     if (isInstructionTriviallyDead(I, &TLI)) {
3397       eraseInstFromFunction(*I);
3398       ++NumDeadInst;
3399       continue;
3400     }
3401 
3402     if (!DebugCounter::shouldExecute(VisitCounter))
3403       continue;
3404 
3405     // Instruction isn't dead, see if we can constant propagate it.
3406     if (!I->use_empty() &&
3407         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3408       if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3409         LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3410                           << '\n');
3411 
3412         // Add operands to the worklist.
3413         replaceInstUsesWith(*I, C);
3414         ++NumConstProp;
3415         if (isInstructionTriviallyDead(I, &TLI))
3416           eraseInstFromFunction(*I);
3417         MadeIRChange = true;
3418         continue;
3419       }
3420     }
3421 
3422     // See if we can trivially sink this instruction to a successor basic block.
3423     if (EnableCodeSinking)
3424       if (Use *SingleUse = I->getSingleUndroppableUse()) {
3425         BasicBlock *BB = I->getParent();
3426         Instruction *UserInst = cast<Instruction>(SingleUse->getUser());
3427         BasicBlock *UserParent;
3428 
3429         // Get the block the use occurs in.
3430         if (PHINode *PN = dyn_cast<PHINode>(UserInst))
3431           UserParent = PN->getIncomingBlock(*SingleUse);
3432         else
3433           UserParent = UserInst->getParent();
3434 
3435         if (UserParent != BB) {
3436           bool UserIsSuccessor = false;
3437           // See if the user is one of our successors.
3438           for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E;
3439                ++SI)
3440             if (*SI == UserParent) {
3441               UserIsSuccessor = true;
3442               break;
3443             }
3444 
3445           // If the user is one of our immediate successors, and if that
3446           // successor only has us as a predecessors (we'd have to split the
3447           // critical edge otherwise), we can keep going.
3448           if (UserIsSuccessor && UserParent->getUniquePredecessor()) {
3449             // Okay, the CFG is simple enough, try to sink this instruction.
3450             if (TryToSinkInstruction(I, UserParent)) {
3451               LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3452               MadeIRChange = true;
3453               // We'll add uses of the sunk instruction below, but since sinking
3454               // can expose opportunities for it's *operands* add them to the
3455               // worklist
3456               for (Use &U : I->operands())
3457                 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3458                   Worklist.push(OpI);
3459             }
3460           }
3461         }
3462       }
3463 
3464     // Now that we have an instruction, try combining it to simplify it.
3465     Builder.SetInsertPoint(I);
3466     Builder.SetCurrentDebugLocation(I->getDebugLoc());
3467 
3468 #ifndef NDEBUG
3469     std::string OrigI;
3470 #endif
3471     LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3472     LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3473 
3474     if (Instruction *Result = visit(*I)) {
3475       ++NumCombined;
3476       // Should we replace the old instruction with a new one?
3477       if (Result != I) {
3478         LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3479                           << "    New = " << *Result << '\n');
3480 
3481         if (I->getDebugLoc())
3482           Result->setDebugLoc(I->getDebugLoc());
3483         // Everything uses the new instruction now.
3484         I->replaceAllUsesWith(Result);
3485 
3486         // Move the name to the new instruction first.
3487         Result->takeName(I);
3488 
3489         // Insert the new instruction into the basic block...
3490         BasicBlock *InstParent = I->getParent();
3491         BasicBlock::iterator InsertPos = I->getIterator();
3492 
3493         // If we replace a PHI with something that isn't a PHI, fix up the
3494         // insertion point.
3495         if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
3496           InsertPos = InstParent->getFirstInsertionPt();
3497 
3498         InstParent->getInstList().insert(InsertPos, Result);
3499 
3500         // Push the new instruction and any users onto the worklist.
3501         Worklist.pushUsersToWorkList(*Result);
3502         Worklist.push(Result);
3503 
3504         eraseInstFromFunction(*I);
3505       } else {
3506         LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3507                           << "    New = " << *I << '\n');
3508 
3509         // If the instruction was modified, it's possible that it is now dead.
3510         // if so, remove it.
3511         if (isInstructionTriviallyDead(I, &TLI)) {
3512           eraseInstFromFunction(*I);
3513         } else {
3514           Worklist.pushUsersToWorkList(*I);
3515           Worklist.push(I);
3516         }
3517       }
3518       MadeIRChange = true;
3519     }
3520   }
3521 
3522   Worklist.zap();
3523   return MadeIRChange;
3524 }
3525 
3526 /// Populate the IC worklist from a function, by walking it in depth-first
3527 /// order and adding all reachable code to the worklist.
3528 ///
3529 /// This has a couple of tricks to make the code faster and more powerful.  In
3530 /// particular, we constant fold and DCE instructions as we go, to avoid adding
3531 /// them to the worklist (this significantly speeds up instcombine on code where
3532 /// many instructions are dead or constant).  Additionally, if we find a branch
3533 /// whose condition is a known constant, we only visit the reachable successors.
3534 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3535                                           const TargetLibraryInfo *TLI,
3536                                           InstCombineWorklist &ICWorklist) {
3537   bool MadeIRChange = false;
3538   SmallPtrSet<BasicBlock *, 32> Visited;
3539   SmallVector<BasicBlock*, 256> Worklist;
3540   Worklist.push_back(&F.front());
3541 
3542   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
3543   DenseMap<Constant *, Constant *> FoldedConstants;
3544 
3545   do {
3546     BasicBlock *BB = Worklist.pop_back_val();
3547 
3548     // We have now visited this block!  If we've already been here, ignore it.
3549     if (!Visited.insert(BB).second)
3550       continue;
3551 
3552     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3553       Instruction *Inst = &*BBI++;
3554 
3555       // ConstantProp instruction if trivially constant.
3556       if (!Inst->use_empty() &&
3557           (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
3558         if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
3559           LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
3560                             << '\n');
3561           Inst->replaceAllUsesWith(C);
3562           ++NumConstProp;
3563           if (isInstructionTriviallyDead(Inst, TLI))
3564             Inst->eraseFromParent();
3565           MadeIRChange = true;
3566           continue;
3567         }
3568 
3569       // See if we can constant fold its operands.
3570       for (Use &U : Inst->operands()) {
3571         if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
3572           continue;
3573 
3574         auto *C = cast<Constant>(U);
3575         Constant *&FoldRes = FoldedConstants[C];
3576         if (!FoldRes)
3577           FoldRes = ConstantFoldConstant(C, DL, TLI);
3578 
3579         if (FoldRes != C) {
3580           LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
3581                             << "\n    Old = " << *C
3582                             << "\n    New = " << *FoldRes << '\n');
3583           U = FoldRes;
3584           MadeIRChange = true;
3585         }
3586       }
3587 
3588       // Skip processing debug intrinsics in InstCombine. Processing these call instructions
3589       // consumes non-trivial amount of time and provides no value for the optimization.
3590       if (!isa<DbgInfoIntrinsic>(Inst))
3591         InstrsForInstCombineWorklist.push_back(Inst);
3592     }
3593 
3594     // Recursively visit successors.  If this is a branch or switch on a
3595     // constant, only visit the reachable successor.
3596     Instruction *TI = BB->getTerminator();
3597     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3598       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
3599         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
3600         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
3601         Worklist.push_back(ReachableBB);
3602         continue;
3603       }
3604     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3605       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
3606         Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
3607         continue;
3608       }
3609     }
3610 
3611     for (BasicBlock *SuccBB : successors(TI))
3612       Worklist.push_back(SuccBB);
3613   } while (!Worklist.empty());
3614 
3615   // Remove instructions inside unreachable blocks. This prevents the
3616   // instcombine code from having to deal with some bad special cases, and
3617   // reduces use counts of instructions.
3618   for (BasicBlock &BB : F) {
3619     if (Visited.count(&BB))
3620       continue;
3621 
3622     unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
3623     MadeIRChange |= NumDeadInstInBB > 0;
3624     NumDeadInst += NumDeadInstInBB;
3625   }
3626 
3627   // Once we've found all of the instructions to add to instcombine's worklist,
3628   // add them in reverse order.  This way instcombine will visit from the top
3629   // of the function down.  This jives well with the way that it adds all uses
3630   // of instructions to the worklist after doing a transformation, thus avoiding
3631   // some N^2 behavior in pathological cases.
3632   ICWorklist.reserve(InstrsForInstCombineWorklist.size());
3633   for (Instruction *Inst : reverse(InstrsForInstCombineWorklist)) {
3634     // DCE instruction if trivially dead. As we iterate in reverse program
3635     // order here, we will clean up whole chains of dead instructions.
3636     if (isInstructionTriviallyDead(Inst, TLI)) {
3637       ++NumDeadInst;
3638       LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
3639       salvageDebugInfoOrMarkUndef(*Inst);
3640       Inst->eraseFromParent();
3641       MadeIRChange = true;
3642       continue;
3643     }
3644 
3645     ICWorklist.push(Inst);
3646   }
3647 
3648   return MadeIRChange;
3649 }
3650 
3651 static bool combineInstructionsOverFunction(
3652     Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
3653     AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
3654     OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
3655     ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
3656   auto &DL = F.getParent()->getDataLayout();
3657   MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
3658 
3659   /// Builder - This is an IRBuilder that automatically inserts new
3660   /// instructions into the worklist when they are created.
3661   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
3662       F.getContext(), TargetFolder(DL),
3663       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
3664         Worklist.add(I);
3665         if (match(I, m_Intrinsic<Intrinsic::assume>()))
3666           AC.registerAssumption(cast<CallInst>(I));
3667       }));
3668 
3669   // Lower dbg.declare intrinsics otherwise their value may be clobbered
3670   // by instcombiner.
3671   bool MadeIRChange = false;
3672   if (ShouldLowerDbgDeclare)
3673     MadeIRChange = LowerDbgDeclare(F);
3674 
3675   // Iterate while there is work to do.
3676   unsigned Iteration = 0;
3677   while (true) {
3678     ++Iteration;
3679 
3680     if (Iteration > InfiniteLoopDetectionThreshold) {
3681       report_fatal_error(
3682           "Instruction Combining seems stuck in an infinite loop after " +
3683           Twine(InfiniteLoopDetectionThreshold) + " iterations.");
3684     }
3685 
3686     if (Iteration > MaxIterations) {
3687       LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
3688                         << " on " << F.getName()
3689                         << " reached; stopping before reaching a fixpoint\n");
3690       break;
3691     }
3692 
3693     LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
3694                       << F.getName() << "\n");
3695 
3696     MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
3697 
3698     InstCombiner IC(Worklist, Builder, F.hasMinSize(), AA,
3699                     AC, TLI, DT, ORE, BFI, PSI, DL, LI);
3700     IC.MaxArraySizeForCombine = MaxArraySize;
3701 
3702     if (!IC.run())
3703       break;
3704 
3705     MadeIRChange = true;
3706   }
3707 
3708   return MadeIRChange;
3709 }
3710 
3711 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
3712 
3713 InstCombinePass::InstCombinePass(unsigned MaxIterations)
3714     : MaxIterations(MaxIterations) {}
3715 
3716 PreservedAnalyses InstCombinePass::run(Function &F,
3717                                        FunctionAnalysisManager &AM) {
3718   auto &AC = AM.getResult<AssumptionAnalysis>(F);
3719   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3720   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3721   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
3722 
3723   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
3724 
3725   auto *AA = &AM.getResult<AAManager>(F);
3726   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
3727   ProfileSummaryInfo *PSI =
3728       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
3729   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
3730       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
3731 
3732   if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI,
3733                                        PSI, MaxIterations, LI))
3734     // No changes, all analyses are preserved.
3735     return PreservedAnalyses::all();
3736 
3737   // Mark all the analyses that instcombine updates as preserved.
3738   PreservedAnalyses PA;
3739   PA.preserveSet<CFGAnalyses>();
3740   PA.preserve<AAManager>();
3741   PA.preserve<BasicAA>();
3742   PA.preserve<GlobalsAA>();
3743   return PA;
3744 }
3745 
3746 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3747   AU.setPreservesCFG();
3748   AU.addRequired<AAResultsWrapperPass>();
3749   AU.addRequired<AssumptionCacheTracker>();
3750   AU.addRequired<TargetLibraryInfoWrapperPass>();
3751   AU.addRequired<DominatorTreeWrapperPass>();
3752   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3753   AU.addPreserved<DominatorTreeWrapperPass>();
3754   AU.addPreserved<AAResultsWrapperPass>();
3755   AU.addPreserved<BasicAAWrapperPass>();
3756   AU.addPreserved<GlobalsAAWrapperPass>();
3757   AU.addRequired<ProfileSummaryInfoWrapperPass>();
3758   LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
3759 }
3760 
3761 bool InstructionCombiningPass::runOnFunction(Function &F) {
3762   if (skipFunction(F))
3763     return false;
3764 
3765   // Required analyses.
3766   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3767   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3768   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3769   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3770   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
3771 
3772   // Optional analyses.
3773   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3774   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3775   ProfileSummaryInfo *PSI =
3776       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3777   BlockFrequencyInfo *BFI =
3778       (PSI && PSI->hasProfileSummary()) ?
3779       &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
3780       nullptr;
3781 
3782   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI,
3783                                          PSI, MaxIterations, LI);
3784 }
3785 
3786 char InstructionCombiningPass::ID = 0;
3787 
3788 InstructionCombiningPass::InstructionCombiningPass()
3789     : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
3790   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
3791 }
3792 
3793 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
3794     : FunctionPass(ID), MaxIterations(MaxIterations) {
3795   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
3796 }
3797 
3798 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
3799                       "Combine redundant instructions", false, false)
3800 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3801 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3802 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3803 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3804 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3805 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3806 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
3807 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
3808 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
3809                     "Combine redundant instructions", false, false)
3810 
3811 // Initialization Routines
3812 void llvm::initializeInstCombine(PassRegistry &Registry) {
3813   initializeInstructionCombiningPassPass(Registry);
3814 }
3815 
3816 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
3817   initializeInstructionCombiningPassPass(*unwrap(R));
3818 }
3819 
3820 FunctionPass *llvm::createInstructionCombiningPass() {
3821   return new InstructionCombiningPass();
3822 }
3823 
3824 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
3825   return new InstructionCombiningPass(MaxIterations);
3826 }
3827 
3828 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
3829   unwrap(PM)->add(createInstructionCombiningPass());
3830 }
3831