1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/TinyPtrVector.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/BlockFrequencyInfo.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/MemoryBuiltins.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ProfileSummaryInfo.h" 60 #include "llvm/Analysis/TargetFolder.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/Analysis/VectorUtils.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Dominators.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GetElementPtrTypeIterator.h" 75 #include "llvm/IR/IRBuilder.h" 76 #include "llvm/IR/InstrTypes.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/Intrinsics.h" 81 #include "llvm/IR/LegacyPassManager.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/PassManager.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/Use.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/IR/ValueHandle.h" 91 #include "llvm/InitializePasses.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/CBindingWrapping.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/DebugCounter.h" 99 #include "llvm/Support/ErrorHandling.h" 100 #include "llvm/Support/KnownBits.h" 101 #include "llvm/Support/raw_ostream.h" 102 #include "llvm/Transforms/InstCombine/InstCombine.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <algorithm> 105 #include <cassert> 106 #include <cstdint> 107 #include <memory> 108 #include <string> 109 #include <utility> 110 111 #define DEBUG_TYPE "instcombine" 112 #include "llvm/Transforms/Utils/InstructionWorklist.h" 113 114 using namespace llvm; 115 using namespace llvm::PatternMatch; 116 117 STATISTIC(NumWorklistIterations, 118 "Number of instruction combining iterations performed"); 119 120 STATISTIC(NumCombined , "Number of insts combined"); 121 STATISTIC(NumConstProp, "Number of constant folds"); 122 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 123 STATISTIC(NumSunkInst , "Number of instructions sunk"); 124 STATISTIC(NumExpand, "Number of expansions"); 125 STATISTIC(NumFactor , "Number of factorizations"); 126 STATISTIC(NumReassoc , "Number of reassociations"); 127 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 128 "Controls which instructions are visited"); 129 130 // FIXME: these limits eventually should be as low as 2. 131 static constexpr unsigned InstCombineDefaultMaxIterations = 1000; 132 #ifndef NDEBUG 133 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100; 134 #else 135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; 136 #endif 137 138 static cl::opt<bool> 139 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 140 cl::init(true)); 141 142 static cl::opt<unsigned> LimitMaxIterations( 143 "instcombine-max-iterations", 144 cl::desc("Limit the maximum number of instruction combining iterations"), 145 cl::init(InstCombineDefaultMaxIterations)); 146 147 static cl::opt<unsigned> InfiniteLoopDetectionThreshold( 148 "instcombine-infinite-loop-threshold", 149 cl::desc("Number of instruction combining iterations considered an " 150 "infinite loop"), 151 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); 152 153 static cl::opt<unsigned> 154 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 155 cl::desc("Maximum array size considered when doing a combine")); 156 157 // FIXME: Remove this flag when it is no longer necessary to convert 158 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 159 // increases variable availability at the cost of accuracy. Variables that 160 // cannot be promoted by mem2reg or SROA will be described as living in memory 161 // for their entire lifetime. However, passes like DSE and instcombine can 162 // delete stores to the alloca, leading to misleading and inaccurate debug 163 // information. This flag can be removed when those passes are fixed. 164 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 165 cl::Hidden, cl::init(true)); 166 167 Optional<Instruction *> 168 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 169 // Handle target specific intrinsics 170 if (II.getCalledFunction()->isTargetIntrinsic()) { 171 return TTI.instCombineIntrinsic(*this, II); 172 } 173 return None; 174 } 175 176 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 177 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 178 bool &KnownBitsComputed) { 179 // Handle target specific intrinsics 180 if (II.getCalledFunction()->isTargetIntrinsic()) { 181 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, 182 KnownBitsComputed); 183 } 184 return None; 185 } 186 187 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 188 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, 189 APInt &UndefElts3, 190 std::function<void(Instruction *, unsigned, APInt, APInt &)> 191 SimplifyAndSetOp) { 192 // Handle target specific intrinsics 193 if (II.getCalledFunction()->isTargetIntrinsic()) { 194 return TTI.simplifyDemandedVectorEltsIntrinsic( 195 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 196 SimplifyAndSetOp); 197 } 198 return None; 199 } 200 201 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { 202 return llvm::EmitGEPOffset(&Builder, DL, GEP); 203 } 204 205 /// Legal integers and common types are considered desirable. This is used to 206 /// avoid creating instructions with types that may not be supported well by the 207 /// the backend. 208 /// NOTE: This treats i8, i16 and i32 specially because they are common 209 /// types in frontend languages. 210 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { 211 switch (BitWidth) { 212 case 8: 213 case 16: 214 case 32: 215 return true; 216 default: 217 return DL.isLegalInteger(BitWidth); 218 } 219 } 220 221 /// Return true if it is desirable to convert an integer computation from a 222 /// given bit width to a new bit width. 223 /// We don't want to convert from a legal to an illegal type or from a smaller 224 /// to a larger illegal type. A width of '1' is always treated as a desirable 225 /// type because i1 is a fundamental type in IR, and there are many specialized 226 /// optimizations for i1 types. Common/desirable widths are equally treated as 227 /// legal to convert to, in order to open up more combining opportunities. 228 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 229 unsigned ToWidth) const { 230 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 231 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 232 233 // Convert to desirable widths even if they are not legal types. 234 // Only shrink types, to prevent infinite loops. 235 if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) 236 return true; 237 238 // If this is a legal integer from type, and the result would be an illegal 239 // type, don't do the transformation. 240 if (FromLegal && !ToLegal) 241 return false; 242 243 // Otherwise, if both are illegal, do not increase the size of the result. We 244 // do allow things like i160 -> i64, but not i64 -> i160. 245 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 246 return false; 247 248 return true; 249 } 250 251 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 252 /// We don't want to convert from a legal to an illegal type or from a smaller 253 /// to a larger illegal type. i1 is always treated as a legal type because it is 254 /// a fundamental type in IR, and there are many specialized optimizations for 255 /// i1 types. 256 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 257 // TODO: This could be extended to allow vectors. Datalayout changes might be 258 // needed to properly support that. 259 if (!From->isIntegerTy() || !To->isIntegerTy()) 260 return false; 261 262 unsigned FromWidth = From->getPrimitiveSizeInBits(); 263 unsigned ToWidth = To->getPrimitiveSizeInBits(); 264 return shouldChangeType(FromWidth, ToWidth); 265 } 266 267 // Return true, if No Signed Wrap should be maintained for I. 268 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 269 // where both B and C should be ConstantInts, results in a constant that does 270 // not overflow. This function only handles the Add and Sub opcodes. For 271 // all other opcodes, the function conservatively returns false. 272 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 273 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 274 if (!OBO || !OBO->hasNoSignedWrap()) 275 return false; 276 277 // We reason about Add and Sub Only. 278 Instruction::BinaryOps Opcode = I.getOpcode(); 279 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 280 return false; 281 282 const APInt *BVal, *CVal; 283 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 284 return false; 285 286 bool Overflow = false; 287 if (Opcode == Instruction::Add) 288 (void)BVal->sadd_ov(*CVal, Overflow); 289 else 290 (void)BVal->ssub_ov(*CVal, Overflow); 291 292 return !Overflow; 293 } 294 295 static bool hasNoUnsignedWrap(BinaryOperator &I) { 296 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 297 return OBO && OBO->hasNoUnsignedWrap(); 298 } 299 300 static bool hasNoSignedWrap(BinaryOperator &I) { 301 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 302 return OBO && OBO->hasNoSignedWrap(); 303 } 304 305 /// Conservatively clears subclassOptionalData after a reassociation or 306 /// commutation. We preserve fast-math flags when applicable as they can be 307 /// preserved. 308 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 309 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 310 if (!FPMO) { 311 I.clearSubclassOptionalData(); 312 return; 313 } 314 315 FastMathFlags FMF = I.getFastMathFlags(); 316 I.clearSubclassOptionalData(); 317 I.setFastMathFlags(FMF); 318 } 319 320 /// Combine constant operands of associative operations either before or after a 321 /// cast to eliminate one of the associative operations: 322 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 323 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 324 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 325 InstCombinerImpl &IC) { 326 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 327 if (!Cast || !Cast->hasOneUse()) 328 return false; 329 330 // TODO: Enhance logic for other casts and remove this check. 331 auto CastOpcode = Cast->getOpcode(); 332 if (CastOpcode != Instruction::ZExt) 333 return false; 334 335 // TODO: Enhance logic for other BinOps and remove this check. 336 if (!BinOp1->isBitwiseLogicOp()) 337 return false; 338 339 auto AssocOpcode = BinOp1->getOpcode(); 340 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 341 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 342 return false; 343 344 Constant *C1, *C2; 345 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 346 !match(BinOp2->getOperand(1), m_Constant(C2))) 347 return false; 348 349 // TODO: This assumes a zext cast. 350 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 351 // to the destination type might lose bits. 352 353 // Fold the constants together in the destination type: 354 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 355 Type *DestTy = C1->getType(); 356 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 357 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 358 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 359 IC.replaceOperand(*BinOp1, 1, FoldedC); 360 return true; 361 } 362 363 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast. 364 // inttoptr ( ptrtoint (x) ) --> x 365 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { 366 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); 367 if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) == 368 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { 369 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); 370 Type *CastTy = IntToPtr->getDestTy(); 371 if (PtrToInt && 372 CastTy->getPointerAddressSpace() == 373 PtrToInt->getSrcTy()->getPointerAddressSpace() && 374 DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) == 375 DL.getTypeSizeInBits(PtrToInt->getDestTy())) { 376 return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy, 377 "", PtrToInt); 378 } 379 } 380 return nullptr; 381 } 382 383 /// This performs a few simplifications for operators that are associative or 384 /// commutative: 385 /// 386 /// Commutative operators: 387 /// 388 /// 1. Order operands such that they are listed from right (least complex) to 389 /// left (most complex). This puts constants before unary operators before 390 /// binary operators. 391 /// 392 /// Associative operators: 393 /// 394 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 395 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 396 /// 397 /// Associative and commutative operators: 398 /// 399 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 400 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 401 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 402 /// if C1 and C2 are constants. 403 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 404 Instruction::BinaryOps Opcode = I.getOpcode(); 405 bool Changed = false; 406 407 do { 408 // Order operands such that they are listed from right (least complex) to 409 // left (most complex). This puts constants before unary operators before 410 // binary operators. 411 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 412 getComplexity(I.getOperand(1))) 413 Changed = !I.swapOperands(); 414 415 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 416 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 417 418 if (I.isAssociative()) { 419 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 420 if (Op0 && Op0->getOpcode() == Opcode) { 421 Value *A = Op0->getOperand(0); 422 Value *B = Op0->getOperand(1); 423 Value *C = I.getOperand(1); 424 425 // Does "B op C" simplify? 426 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 427 // It simplifies to V. Form "A op V". 428 replaceOperand(I, 0, A); 429 replaceOperand(I, 1, V); 430 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 431 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 432 433 // Conservatively clear all optional flags since they may not be 434 // preserved by the reassociation. Reset nsw/nuw based on the above 435 // analysis. 436 ClearSubclassDataAfterReassociation(I); 437 438 // Note: this is only valid because SimplifyBinOp doesn't look at 439 // the operands to Op0. 440 if (IsNUW) 441 I.setHasNoUnsignedWrap(true); 442 443 if (IsNSW) 444 I.setHasNoSignedWrap(true); 445 446 Changed = true; 447 ++NumReassoc; 448 continue; 449 } 450 } 451 452 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 453 if (Op1 && Op1->getOpcode() == Opcode) { 454 Value *A = I.getOperand(0); 455 Value *B = Op1->getOperand(0); 456 Value *C = Op1->getOperand(1); 457 458 // Does "A op B" simplify? 459 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 460 // It simplifies to V. Form "V op C". 461 replaceOperand(I, 0, V); 462 replaceOperand(I, 1, C); 463 // Conservatively clear the optional flags, since they may not be 464 // preserved by the reassociation. 465 ClearSubclassDataAfterReassociation(I); 466 Changed = true; 467 ++NumReassoc; 468 continue; 469 } 470 } 471 } 472 473 if (I.isAssociative() && I.isCommutative()) { 474 if (simplifyAssocCastAssoc(&I, *this)) { 475 Changed = true; 476 ++NumReassoc; 477 continue; 478 } 479 480 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 481 if (Op0 && Op0->getOpcode() == Opcode) { 482 Value *A = Op0->getOperand(0); 483 Value *B = Op0->getOperand(1); 484 Value *C = I.getOperand(1); 485 486 // Does "C op A" simplify? 487 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 488 // It simplifies to V. Form "V op B". 489 replaceOperand(I, 0, V); 490 replaceOperand(I, 1, B); 491 // Conservatively clear the optional flags, since they may not be 492 // preserved by the reassociation. 493 ClearSubclassDataAfterReassociation(I); 494 Changed = true; 495 ++NumReassoc; 496 continue; 497 } 498 } 499 500 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 501 if (Op1 && Op1->getOpcode() == Opcode) { 502 Value *A = I.getOperand(0); 503 Value *B = Op1->getOperand(0); 504 Value *C = Op1->getOperand(1); 505 506 // Does "C op A" simplify? 507 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 508 // It simplifies to V. Form "B op V". 509 replaceOperand(I, 0, B); 510 replaceOperand(I, 1, V); 511 // Conservatively clear the optional flags, since they may not be 512 // preserved by the reassociation. 513 ClearSubclassDataAfterReassociation(I); 514 Changed = true; 515 ++NumReassoc; 516 continue; 517 } 518 } 519 520 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 521 // if C1 and C2 are constants. 522 Value *A, *B; 523 Constant *C1, *C2; 524 if (Op0 && Op1 && 525 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 526 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 527 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 528 bool IsNUW = hasNoUnsignedWrap(I) && 529 hasNoUnsignedWrap(*Op0) && 530 hasNoUnsignedWrap(*Op1); 531 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 532 BinaryOperator::CreateNUW(Opcode, A, B) : 533 BinaryOperator::Create(Opcode, A, B); 534 535 if (isa<FPMathOperator>(NewBO)) { 536 FastMathFlags Flags = I.getFastMathFlags(); 537 Flags &= Op0->getFastMathFlags(); 538 Flags &= Op1->getFastMathFlags(); 539 NewBO->setFastMathFlags(Flags); 540 } 541 InsertNewInstWith(NewBO, I); 542 NewBO->takeName(Op1); 543 replaceOperand(I, 0, NewBO); 544 replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2)); 545 // Conservatively clear the optional flags, since they may not be 546 // preserved by the reassociation. 547 ClearSubclassDataAfterReassociation(I); 548 if (IsNUW) 549 I.setHasNoUnsignedWrap(true); 550 551 Changed = true; 552 continue; 553 } 554 } 555 556 // No further simplifications. 557 return Changed; 558 } while (true); 559 } 560 561 /// Return whether "X LOp (Y ROp Z)" is always equal to 562 /// "(X LOp Y) ROp (X LOp Z)". 563 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 564 Instruction::BinaryOps ROp) { 565 // X & (Y | Z) <--> (X & Y) | (X & Z) 566 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 567 if (LOp == Instruction::And) 568 return ROp == Instruction::Or || ROp == Instruction::Xor; 569 570 // X | (Y & Z) <--> (X | Y) & (X | Z) 571 if (LOp == Instruction::Or) 572 return ROp == Instruction::And; 573 574 // X * (Y + Z) <--> (X * Y) + (X * Z) 575 // X * (Y - Z) <--> (X * Y) - (X * Z) 576 if (LOp == Instruction::Mul) 577 return ROp == Instruction::Add || ROp == Instruction::Sub; 578 579 return false; 580 } 581 582 /// Return whether "(X LOp Y) ROp Z" is always equal to 583 /// "(X ROp Z) LOp (Y ROp Z)". 584 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 585 Instruction::BinaryOps ROp) { 586 if (Instruction::isCommutative(ROp)) 587 return leftDistributesOverRight(ROp, LOp); 588 589 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 590 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 591 592 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 593 // but this requires knowing that the addition does not overflow and other 594 // such subtleties. 595 } 596 597 /// This function returns identity value for given opcode, which can be used to 598 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 599 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 600 if (isa<Constant>(V)) 601 return nullptr; 602 603 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 604 } 605 606 /// This function predicates factorization using distributive laws. By default, 607 /// it just returns the 'Op' inputs. But for special-cases like 608 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 609 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 610 /// allow more factorization opportunities. 611 static Instruction::BinaryOps 612 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 613 Value *&LHS, Value *&RHS) { 614 assert(Op && "Expected a binary operator"); 615 LHS = Op->getOperand(0); 616 RHS = Op->getOperand(1); 617 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 618 Constant *C; 619 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 620 // X << C --> X * (1 << C) 621 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 622 return Instruction::Mul; 623 } 624 // TODO: We can add other conversions e.g. shr => div etc. 625 } 626 return Op->getOpcode(); 627 } 628 629 /// This tries to simplify binary operations by factorizing out common terms 630 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 631 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I, 632 Instruction::BinaryOps InnerOpcode, 633 Value *A, Value *B, Value *C, 634 Value *D) { 635 assert(A && B && C && D && "All values must be provided"); 636 637 Value *V = nullptr; 638 Value *SimplifiedInst = nullptr; 639 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 640 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 641 642 // Does "X op' Y" always equal "Y op' X"? 643 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 644 645 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 646 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 647 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 648 // commutative case, "(A op' B) op (C op' A)"? 649 if (A == C || (InnerCommutative && A == D)) { 650 if (A != C) 651 std::swap(C, D); 652 // Consider forming "A op' (B op D)". 653 // If "B op D" simplifies then it can be formed with no cost. 654 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 655 // If "B op D" doesn't simplify then only go on if both of the existing 656 // operations "A op' B" and "C op' D" will be zapped as no longer used. 657 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 658 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 659 if (V) { 660 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 661 } 662 } 663 664 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 665 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 666 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 667 // commutative case, "(A op' B) op (B op' D)"? 668 if (B == D || (InnerCommutative && B == C)) { 669 if (B != D) 670 std::swap(C, D); 671 // Consider forming "(A op C) op' B". 672 // If "A op C" simplifies then it can be formed with no cost. 673 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 674 675 // If "A op C" doesn't simplify then only go on if both of the existing 676 // operations "A op' B" and "C op' D" will be zapped as no longer used. 677 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 678 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 679 if (V) { 680 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 681 } 682 } 683 684 if (SimplifiedInst) { 685 ++NumFactor; 686 SimplifiedInst->takeName(&I); 687 688 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 689 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 690 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 691 bool HasNSW = false; 692 bool HasNUW = false; 693 if (isa<OverflowingBinaryOperator>(&I)) { 694 HasNSW = I.hasNoSignedWrap(); 695 HasNUW = I.hasNoUnsignedWrap(); 696 } 697 698 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 699 HasNSW &= LOBO->hasNoSignedWrap(); 700 HasNUW &= LOBO->hasNoUnsignedWrap(); 701 } 702 703 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 704 HasNSW &= ROBO->hasNoSignedWrap(); 705 HasNUW &= ROBO->hasNoUnsignedWrap(); 706 } 707 708 if (TopLevelOpcode == Instruction::Add && 709 InnerOpcode == Instruction::Mul) { 710 // We can propagate 'nsw' if we know that 711 // %Y = mul nsw i16 %X, C 712 // %Z = add nsw i16 %Y, %X 713 // => 714 // %Z = mul nsw i16 %X, C+1 715 // 716 // iff C+1 isn't INT_MIN 717 const APInt *CInt; 718 if (match(V, m_APInt(CInt))) { 719 if (!CInt->isMinSignedValue()) 720 BO->setHasNoSignedWrap(HasNSW); 721 } 722 723 // nuw can be propagated with any constant or nuw value. 724 BO->setHasNoUnsignedWrap(HasNUW); 725 } 726 } 727 } 728 } 729 return SimplifiedInst; 730 } 731 732 /// This tries to simplify binary operations which some other binary operation 733 /// distributes over either by factorizing out common terms 734 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 735 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 736 /// Returns the simplified value, or null if it didn't simplify. 737 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 738 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 739 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 740 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 741 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 742 743 { 744 // Factorization. 745 Value *A, *B, *C, *D; 746 Instruction::BinaryOps LHSOpcode, RHSOpcode; 747 if (Op0) 748 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 749 if (Op1) 750 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 751 752 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 753 // a common term. 754 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 755 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 756 return V; 757 758 // The instruction has the form "(A op' B) op (C)". Try to factorize common 759 // term. 760 if (Op0) 761 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 762 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 763 return V; 764 765 // The instruction has the form "(B) op (C op' D)". Try to factorize common 766 // term. 767 if (Op1) 768 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 769 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 770 return V; 771 } 772 773 // Expansion. 774 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 775 // The instruction has the form "(A op' B) op C". See if expanding it out 776 // to "(A op C) op' (B op C)" results in simplifications. 777 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 778 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 779 780 // Disable the use of undef because it's not safe to distribute undef. 781 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 782 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 783 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 784 785 // Do "A op C" and "B op C" both simplify? 786 if (L && R) { 787 // They do! Return "L op' R". 788 ++NumExpand; 789 C = Builder.CreateBinOp(InnerOpcode, L, R); 790 C->takeName(&I); 791 return C; 792 } 793 794 // Does "A op C" simplify to the identity value for the inner opcode? 795 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 796 // They do! Return "B op C". 797 ++NumExpand; 798 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 799 C->takeName(&I); 800 return C; 801 } 802 803 // Does "B op C" simplify to the identity value for the inner opcode? 804 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 805 // They do! Return "A op C". 806 ++NumExpand; 807 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 808 C->takeName(&I); 809 return C; 810 } 811 } 812 813 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 814 // The instruction has the form "A op (B op' C)". See if expanding it out 815 // to "(A op B) op' (A op C)" results in simplifications. 816 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 817 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 818 819 // Disable the use of undef because it's not safe to distribute undef. 820 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 821 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 822 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 823 824 // Do "A op B" and "A op C" both simplify? 825 if (L && R) { 826 // They do! Return "L op' R". 827 ++NumExpand; 828 A = Builder.CreateBinOp(InnerOpcode, L, R); 829 A->takeName(&I); 830 return A; 831 } 832 833 // Does "A op B" simplify to the identity value for the inner opcode? 834 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 835 // They do! Return "A op C". 836 ++NumExpand; 837 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 838 A->takeName(&I); 839 return A; 840 } 841 842 // Does "A op C" simplify to the identity value for the inner opcode? 843 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 844 // They do! Return "A op B". 845 ++NumExpand; 846 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 847 A->takeName(&I); 848 return A; 849 } 850 } 851 852 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 853 } 854 855 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 856 Value *LHS, 857 Value *RHS) { 858 Value *A, *B, *C, *D, *E, *F; 859 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 860 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 861 if (!LHSIsSelect && !RHSIsSelect) 862 return nullptr; 863 864 FastMathFlags FMF; 865 BuilderTy::FastMathFlagGuard Guard(Builder); 866 if (isa<FPMathOperator>(&I)) { 867 FMF = I.getFastMathFlags(); 868 Builder.setFastMathFlags(FMF); 869 } 870 871 Instruction::BinaryOps Opcode = I.getOpcode(); 872 SimplifyQuery Q = SQ.getWithInstruction(&I); 873 874 Value *Cond, *True = nullptr, *False = nullptr; 875 if (LHSIsSelect && RHSIsSelect && A == D) { 876 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 877 Cond = A; 878 True = SimplifyBinOp(Opcode, B, E, FMF, Q); 879 False = SimplifyBinOp(Opcode, C, F, FMF, Q); 880 881 if (LHS->hasOneUse() && RHS->hasOneUse()) { 882 if (False && !True) 883 True = Builder.CreateBinOp(Opcode, B, E); 884 else if (True && !False) 885 False = Builder.CreateBinOp(Opcode, C, F); 886 } 887 } else if (LHSIsSelect && LHS->hasOneUse()) { 888 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 889 Cond = A; 890 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q); 891 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q); 892 } else if (RHSIsSelect && RHS->hasOneUse()) { 893 // X op (D ? E : F) -> D ? (X op E) : (X op F) 894 Cond = D; 895 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q); 896 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q); 897 } 898 899 if (!True || !False) 900 return nullptr; 901 902 Value *SI = Builder.CreateSelect(Cond, True, False); 903 SI->takeName(&I); 904 return SI; 905 } 906 907 /// Freely adapt every user of V as-if V was changed to !V. 908 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 909 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) { 910 for (User *U : I->users()) { 911 switch (cast<Instruction>(U)->getOpcode()) { 912 case Instruction::Select: { 913 auto *SI = cast<SelectInst>(U); 914 SI->swapValues(); 915 SI->swapProfMetadata(); 916 break; 917 } 918 case Instruction::Br: 919 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 920 break; 921 case Instruction::Xor: 922 replaceInstUsesWith(cast<Instruction>(*U), I); 923 break; 924 default: 925 llvm_unreachable("Got unexpected user - out of sync with " 926 "canFreelyInvertAllUsersOf() ?"); 927 } 928 } 929 } 930 931 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 932 /// constant zero (which is the 'negate' form). 933 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 934 Value *NegV; 935 if (match(V, m_Neg(m_Value(NegV)))) 936 return NegV; 937 938 // Constants can be considered to be negated values if they can be folded. 939 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 940 return ConstantExpr::getNeg(C); 941 942 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 943 if (C->getType()->getElementType()->isIntegerTy()) 944 return ConstantExpr::getNeg(C); 945 946 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 947 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 948 Constant *Elt = CV->getAggregateElement(i); 949 if (!Elt) 950 return nullptr; 951 952 if (isa<UndefValue>(Elt)) 953 continue; 954 955 if (!isa<ConstantInt>(Elt)) 956 return nullptr; 957 } 958 return ConstantExpr::getNeg(CV); 959 } 960 961 // Negate integer vector splats. 962 if (auto *CV = dyn_cast<Constant>(V)) 963 if (CV->getType()->isVectorTy() && 964 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 965 return ConstantExpr::getNeg(CV); 966 967 return nullptr; 968 } 969 970 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 971 InstCombiner::BuilderTy &Builder) { 972 if (auto *Cast = dyn_cast<CastInst>(&I)) 973 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 974 975 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 976 assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) && 977 "Expected constant-foldable intrinsic"); 978 Intrinsic::ID IID = II->getIntrinsicID(); 979 if (II->arg_size() == 1) 980 return Builder.CreateUnaryIntrinsic(IID, SO); 981 982 // This works for real binary ops like min/max (where we always expect the 983 // constant operand to be canonicalized as op1) and unary ops with a bonus 984 // constant argument like ctlz/cttz. 985 // TODO: Handle non-commutative binary intrinsics as below for binops. 986 assert(II->arg_size() == 2 && "Expected binary intrinsic"); 987 assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand"); 988 return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1)); 989 } 990 991 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 992 993 // Figure out if the constant is the left or the right argument. 994 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 995 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 996 997 if (auto *SOC = dyn_cast<Constant>(SO)) { 998 if (ConstIsRHS) 999 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 1000 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 1001 } 1002 1003 Value *Op0 = SO, *Op1 = ConstOperand; 1004 if (!ConstIsRHS) 1005 std::swap(Op0, Op1); 1006 1007 auto *BO = cast<BinaryOperator>(&I); 1008 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 1009 SO->getName() + ".op"); 1010 auto *FPInst = dyn_cast<Instruction>(RI); 1011 if (FPInst && isa<FPMathOperator>(FPInst)) 1012 FPInst->copyFastMathFlags(BO); 1013 return RI; 1014 } 1015 1016 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, 1017 SelectInst *SI) { 1018 // Don't modify shared select instructions. 1019 if (!SI->hasOneUse()) 1020 return nullptr; 1021 1022 Value *TV = SI->getTrueValue(); 1023 Value *FV = SI->getFalseValue(); 1024 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 1025 return nullptr; 1026 1027 // Bool selects with constant operands can be folded to logical ops. 1028 if (SI->getType()->isIntOrIntVectorTy(1)) 1029 return nullptr; 1030 1031 // If it's a bitcast involving vectors, make sure it has the same number of 1032 // elements on both sides. 1033 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 1034 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 1035 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 1036 1037 // Verify that either both or neither are vectors. 1038 if ((SrcTy == nullptr) != (DestTy == nullptr)) 1039 return nullptr; 1040 1041 // If vectors, verify that they have the same number of elements. 1042 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) 1043 return nullptr; 1044 } 1045 1046 // Test if a CmpInst instruction is used exclusively by a select as 1047 // part of a minimum or maximum operation. If so, refrain from doing 1048 // any other folding. This helps out other analyses which understand 1049 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 1050 // and CodeGen. And in this case, at least one of the comparison 1051 // operands has at least one user besides the compare (the select), 1052 // which would often largely negate the benefit of folding anyway. 1053 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 1054 if (CI->hasOneUse()) { 1055 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 1056 1057 // FIXME: This is a hack to avoid infinite looping with min/max patterns. 1058 // We have to ensure that vector constants that only differ with 1059 // undef elements are treated as equivalent. 1060 auto areLooselyEqual = [](Value *A, Value *B) { 1061 if (A == B) 1062 return true; 1063 1064 // Test for vector constants. 1065 Constant *ConstA, *ConstB; 1066 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB))) 1067 return false; 1068 1069 // TODO: Deal with FP constants? 1070 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType()) 1071 return false; 1072 1073 // Compare for equality including undefs as equal. 1074 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB); 1075 const APInt *C; 1076 return match(Cmp, m_APIntAllowUndef(C)) && C->isOne(); 1077 }; 1078 1079 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) || 1080 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1))) 1081 return nullptr; 1082 } 1083 } 1084 1085 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 1086 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 1087 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 1088 } 1089 1090 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 1091 InstCombiner::BuilderTy &Builder) { 1092 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 1093 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 1094 1095 if (auto *InC = dyn_cast<Constant>(InV)) { 1096 if (ConstIsRHS) 1097 return ConstantExpr::get(I->getOpcode(), InC, C); 1098 return ConstantExpr::get(I->getOpcode(), C, InC); 1099 } 1100 1101 Value *Op0 = InV, *Op1 = C; 1102 if (!ConstIsRHS) 1103 std::swap(Op0, Op1); 1104 1105 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo"); 1106 auto *FPInst = dyn_cast<Instruction>(RI); 1107 if (FPInst && isa<FPMathOperator>(FPInst)) 1108 FPInst->copyFastMathFlags(I); 1109 return RI; 1110 } 1111 1112 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { 1113 unsigned NumPHIValues = PN->getNumIncomingValues(); 1114 if (NumPHIValues == 0) 1115 return nullptr; 1116 1117 // We normally only transform phis with a single use. However, if a PHI has 1118 // multiple uses and they are all the same operation, we can fold *all* of the 1119 // uses into the PHI. 1120 if (!PN->hasOneUse()) { 1121 // Walk the use list for the instruction, comparing them to I. 1122 for (User *U : PN->users()) { 1123 Instruction *UI = cast<Instruction>(U); 1124 if (UI != &I && !I.isIdenticalTo(UI)) 1125 return nullptr; 1126 } 1127 // Otherwise, we can replace *all* users with the new PHI we form. 1128 } 1129 1130 // Check to see if all of the operands of the PHI are simple constants 1131 // (constantint/constantfp/undef). If there is one non-constant value, 1132 // remember the BB it is in. If there is more than one or if *it* is a PHI, 1133 // bail out. We don't do arbitrary constant expressions here because moving 1134 // their computation can be expensive without a cost model. 1135 BasicBlock *NonConstBB = nullptr; 1136 for (unsigned i = 0; i != NumPHIValues; ++i) { 1137 Value *InVal = PN->getIncomingValue(i); 1138 // For non-freeze, require constant operand 1139 // For freeze, require non-undef, non-poison operand 1140 if (!isa<FreezeInst>(I) && match(InVal, m_ImmConstant())) 1141 continue; 1142 if (isa<FreezeInst>(I) && isGuaranteedNotToBeUndefOrPoison(InVal)) 1143 continue; 1144 1145 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 1146 if (NonConstBB) return nullptr; // More than one non-const value. 1147 1148 NonConstBB = PN->getIncomingBlock(i); 1149 1150 // If the InVal is an invoke at the end of the pred block, then we can't 1151 // insert a computation after it without breaking the edge. 1152 if (isa<InvokeInst>(InVal)) 1153 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 1154 return nullptr; 1155 1156 // If the incoming non-constant value is in I's block, we will remove one 1157 // instruction, but insert another equivalent one, leading to infinite 1158 // instcombine. 1159 if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI)) 1160 return nullptr; 1161 } 1162 1163 // If there is exactly one non-constant value, we can insert a copy of the 1164 // operation in that block. However, if this is a critical edge, we would be 1165 // inserting the computation on some other paths (e.g. inside a loop). Only 1166 // do this if the pred block is unconditionally branching into the phi block. 1167 // Also, make sure that the pred block is not dead code. 1168 if (NonConstBB != nullptr) { 1169 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1170 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB)) 1171 return nullptr; 1172 } 1173 1174 // Okay, we can do the transformation: create the new PHI node. 1175 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1176 InsertNewInstBefore(NewPN, *PN); 1177 NewPN->takeName(PN); 1178 1179 // If we are going to have to insert a new computation, do so right before the 1180 // predecessor's terminator. 1181 if (NonConstBB) 1182 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1183 1184 // Next, add all of the operands to the PHI. 1185 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1186 // We only currently try to fold the condition of a select when it is a phi, 1187 // not the true/false values. 1188 Value *TrueV = SI->getTrueValue(); 1189 Value *FalseV = SI->getFalseValue(); 1190 BasicBlock *PhiTransBB = PN->getParent(); 1191 for (unsigned i = 0; i != NumPHIValues; ++i) { 1192 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1193 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1194 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1195 Value *InV = nullptr; 1196 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1197 // even if currently isNullValue gives false. 1198 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1199 // For vector constants, we cannot use isNullValue to fold into 1200 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1201 // elements in the vector, we will incorrectly fold InC to 1202 // `TrueVInPred`. 1203 if (InC && isa<ConstantInt>(InC)) 1204 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1205 else { 1206 // Generate the select in the same block as PN's current incoming block. 1207 // Note: ThisBB need not be the NonConstBB because vector constants 1208 // which are constants by definition are handled here. 1209 // FIXME: This can lead to an increase in IR generation because we might 1210 // generate selects for vector constant phi operand, that could not be 1211 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1212 // non-vector phis, this transformation was always profitable because 1213 // the select would be generated exactly once in the NonConstBB. 1214 Builder.SetInsertPoint(ThisBB->getTerminator()); 1215 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1216 FalseVInPred, "phi.sel"); 1217 } 1218 NewPN->addIncoming(InV, ThisBB); 1219 } 1220 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1221 Constant *C = cast<Constant>(I.getOperand(1)); 1222 for (unsigned i = 0; i != NumPHIValues; ++i) { 1223 Value *InV = nullptr; 1224 if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1225 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1226 else 1227 InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i), 1228 C, "phi.cmp"); 1229 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1230 } 1231 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1232 for (unsigned i = 0; i != NumPHIValues; ++i) { 1233 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1234 Builder); 1235 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1236 } 1237 } else if (isa<FreezeInst>(&I)) { 1238 for (unsigned i = 0; i != NumPHIValues; ++i) { 1239 Value *InV; 1240 if (NonConstBB == PN->getIncomingBlock(i)) 1241 InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr"); 1242 else 1243 InV = PN->getIncomingValue(i); 1244 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1245 } 1246 } else { 1247 CastInst *CI = cast<CastInst>(&I); 1248 Type *RetTy = CI->getType(); 1249 for (unsigned i = 0; i != NumPHIValues; ++i) { 1250 Value *InV; 1251 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1252 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1253 else 1254 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1255 I.getType(), "phi.cast"); 1256 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1257 } 1258 } 1259 1260 for (User *U : make_early_inc_range(PN->users())) { 1261 Instruction *User = cast<Instruction>(U); 1262 if (User == &I) continue; 1263 replaceInstUsesWith(*User, NewPN); 1264 eraseInstFromFunction(*User); 1265 } 1266 return replaceInstUsesWith(I, NewPN); 1267 } 1268 1269 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1270 if (!isa<Constant>(I.getOperand(1))) 1271 return nullptr; 1272 1273 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1274 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1275 return NewSel; 1276 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1277 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1278 return NewPhi; 1279 } 1280 return nullptr; 1281 } 1282 1283 /// Given a pointer type and a constant offset, determine whether or not there 1284 /// is a sequence of GEP indices into the pointed type that will land us at the 1285 /// specified offset. If so, fill them into NewIndices and return the resultant 1286 /// element type, otherwise return null. 1287 Type * 1288 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t IntOffset, 1289 SmallVectorImpl<Value *> &NewIndices) { 1290 Type *Ty = PtrTy->getElementType(); 1291 if (!Ty->isSized()) 1292 return nullptr; 1293 1294 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset); 1295 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset); 1296 if (!Offset.isZero()) 1297 return nullptr; 1298 1299 for (const APInt &Index : Indices) 1300 NewIndices.push_back(Builder.getInt(Index)); 1301 return Ty; 1302 } 1303 1304 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1305 // If this GEP has only 0 indices, it is the same pointer as 1306 // Src. If Src is not a trivial GEP too, don't combine 1307 // the indices. 1308 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1309 !Src.hasOneUse()) 1310 return false; 1311 return true; 1312 } 1313 1314 /// Return a value X such that Val = X * Scale, or null if none. 1315 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1316 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1317 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1318 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1319 Scale.getBitWidth() && "Scale not compatible with value!"); 1320 1321 // If Val is zero or Scale is one then Val = Val * Scale. 1322 if (match(Val, m_Zero()) || Scale == 1) { 1323 NoSignedWrap = true; 1324 return Val; 1325 } 1326 1327 // If Scale is zero then it does not divide Val. 1328 if (Scale.isMinValue()) 1329 return nullptr; 1330 1331 // Look through chains of multiplications, searching for a constant that is 1332 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1333 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1334 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1335 // down from Val: 1336 // 1337 // Val = M1 * X || Analysis starts here and works down 1338 // M1 = M2 * Y || Doesn't descend into terms with more 1339 // M2 = Z * 4 \/ than one use 1340 // 1341 // Then to modify a term at the bottom: 1342 // 1343 // Val = M1 * X 1344 // M1 = Z * Y || Replaced M2 with Z 1345 // 1346 // Then to work back up correcting nsw flags. 1347 1348 // Op - the term we are currently analyzing. Starts at Val then drills down. 1349 // Replaced with its descaled value before exiting from the drill down loop. 1350 Value *Op = Val; 1351 1352 // Parent - initially null, but after drilling down notes where Op came from. 1353 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1354 // 0'th operand of Val. 1355 std::pair<Instruction *, unsigned> Parent; 1356 1357 // Set if the transform requires a descaling at deeper levels that doesn't 1358 // overflow. 1359 bool RequireNoSignedWrap = false; 1360 1361 // Log base 2 of the scale. Negative if not a power of 2. 1362 int32_t logScale = Scale.exactLogBase2(); 1363 1364 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1365 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1366 // If Op is a constant divisible by Scale then descale to the quotient. 1367 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1368 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1369 if (!Remainder.isMinValue()) 1370 // Not divisible by Scale. 1371 return nullptr; 1372 // Replace with the quotient in the parent. 1373 Op = ConstantInt::get(CI->getType(), Quotient); 1374 NoSignedWrap = true; 1375 break; 1376 } 1377 1378 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1379 if (BO->getOpcode() == Instruction::Mul) { 1380 // Multiplication. 1381 NoSignedWrap = BO->hasNoSignedWrap(); 1382 if (RequireNoSignedWrap && !NoSignedWrap) 1383 return nullptr; 1384 1385 // There are three cases for multiplication: multiplication by exactly 1386 // the scale, multiplication by a constant different to the scale, and 1387 // multiplication by something else. 1388 Value *LHS = BO->getOperand(0); 1389 Value *RHS = BO->getOperand(1); 1390 1391 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1392 // Multiplication by a constant. 1393 if (CI->getValue() == Scale) { 1394 // Multiplication by exactly the scale, replace the multiplication 1395 // by its left-hand side in the parent. 1396 Op = LHS; 1397 break; 1398 } 1399 1400 // Otherwise drill down into the constant. 1401 if (!Op->hasOneUse()) 1402 return nullptr; 1403 1404 Parent = std::make_pair(BO, 1); 1405 continue; 1406 } 1407 1408 // Multiplication by something else. Drill down into the left-hand side 1409 // since that's where the reassociate pass puts the good stuff. 1410 if (!Op->hasOneUse()) 1411 return nullptr; 1412 1413 Parent = std::make_pair(BO, 0); 1414 continue; 1415 } 1416 1417 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1418 isa<ConstantInt>(BO->getOperand(1))) { 1419 // Multiplication by a power of 2. 1420 NoSignedWrap = BO->hasNoSignedWrap(); 1421 if (RequireNoSignedWrap && !NoSignedWrap) 1422 return nullptr; 1423 1424 Value *LHS = BO->getOperand(0); 1425 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1426 getLimitedValue(Scale.getBitWidth()); 1427 // Op = LHS << Amt. 1428 1429 if (Amt == logScale) { 1430 // Multiplication by exactly the scale, replace the multiplication 1431 // by its left-hand side in the parent. 1432 Op = LHS; 1433 break; 1434 } 1435 if (Amt < logScale || !Op->hasOneUse()) 1436 return nullptr; 1437 1438 // Multiplication by more than the scale. Reduce the multiplying amount 1439 // by the scale in the parent. 1440 Parent = std::make_pair(BO, 1); 1441 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1442 break; 1443 } 1444 } 1445 1446 if (!Op->hasOneUse()) 1447 return nullptr; 1448 1449 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1450 if (Cast->getOpcode() == Instruction::SExt) { 1451 // Op is sign-extended from a smaller type, descale in the smaller type. 1452 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1453 APInt SmallScale = Scale.trunc(SmallSize); 1454 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1455 // descale Op as (sext Y) * Scale. In order to have 1456 // sext (Y * SmallScale) = (sext Y) * Scale 1457 // some conditions need to hold however: SmallScale must sign-extend to 1458 // Scale and the multiplication Y * SmallScale should not overflow. 1459 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1460 // SmallScale does not sign-extend to Scale. 1461 return nullptr; 1462 assert(SmallScale.exactLogBase2() == logScale); 1463 // Require that Y * SmallScale must not overflow. 1464 RequireNoSignedWrap = true; 1465 1466 // Drill down through the cast. 1467 Parent = std::make_pair(Cast, 0); 1468 Scale = SmallScale; 1469 continue; 1470 } 1471 1472 if (Cast->getOpcode() == Instruction::Trunc) { 1473 // Op is truncated from a larger type, descale in the larger type. 1474 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1475 // trunc (Y * sext Scale) = (trunc Y) * Scale 1476 // always holds. However (trunc Y) * Scale may overflow even if 1477 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1478 // from this point up in the expression (see later). 1479 if (RequireNoSignedWrap) 1480 return nullptr; 1481 1482 // Drill down through the cast. 1483 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1484 Parent = std::make_pair(Cast, 0); 1485 Scale = Scale.sext(LargeSize); 1486 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1487 logScale = -1; 1488 assert(Scale.exactLogBase2() == logScale); 1489 continue; 1490 } 1491 } 1492 1493 // Unsupported expression, bail out. 1494 return nullptr; 1495 } 1496 1497 // If Op is zero then Val = Op * Scale. 1498 if (match(Op, m_Zero())) { 1499 NoSignedWrap = true; 1500 return Op; 1501 } 1502 1503 // We know that we can successfully descale, so from here on we can safely 1504 // modify the IR. Op holds the descaled version of the deepest term in the 1505 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1506 // not to overflow. 1507 1508 if (!Parent.first) 1509 // The expression only had one term. 1510 return Op; 1511 1512 // Rewrite the parent using the descaled version of its operand. 1513 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1514 assert(Op != Parent.first->getOperand(Parent.second) && 1515 "Descaling was a no-op?"); 1516 replaceOperand(*Parent.first, Parent.second, Op); 1517 Worklist.push(Parent.first); 1518 1519 // Now work back up the expression correcting nsw flags. The logic is based 1520 // on the following observation: if X * Y is known not to overflow as a signed 1521 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1522 // then X * Z will not overflow as a signed multiplication either. As we work 1523 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1524 // current level has strictly smaller absolute value than the original. 1525 Instruction *Ancestor = Parent.first; 1526 do { 1527 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1528 // If the multiplication wasn't nsw then we can't say anything about the 1529 // value of the descaled multiplication, and we have to clear nsw flags 1530 // from this point on up. 1531 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1532 NoSignedWrap &= OpNoSignedWrap; 1533 if (NoSignedWrap != OpNoSignedWrap) { 1534 BO->setHasNoSignedWrap(NoSignedWrap); 1535 Worklist.push(Ancestor); 1536 } 1537 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1538 // The fact that the descaled input to the trunc has smaller absolute 1539 // value than the original input doesn't tell us anything useful about 1540 // the absolute values of the truncations. 1541 NoSignedWrap = false; 1542 } 1543 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1544 "Failed to keep proper track of nsw flags while drilling down?"); 1545 1546 if (Ancestor == Val) 1547 // Got to the top, all done! 1548 return Val; 1549 1550 // Move up one level in the expression. 1551 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1552 Ancestor = Ancestor->user_back(); 1553 } while (true); 1554 } 1555 1556 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 1557 if (!isa<VectorType>(Inst.getType())) 1558 return nullptr; 1559 1560 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1561 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1562 assert(cast<VectorType>(LHS->getType())->getElementCount() == 1563 cast<VectorType>(Inst.getType())->getElementCount()); 1564 assert(cast<VectorType>(RHS->getType())->getElementCount() == 1565 cast<VectorType>(Inst.getType())->getElementCount()); 1566 1567 // If both operands of the binop are vector concatenations, then perform the 1568 // narrow binop on each pair of the source operands followed by concatenation 1569 // of the results. 1570 Value *L0, *L1, *R0, *R1; 1571 ArrayRef<int> Mask; 1572 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 1573 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 1574 LHS->hasOneUse() && RHS->hasOneUse() && 1575 cast<ShuffleVectorInst>(LHS)->isConcat() && 1576 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1577 // This transform does not have the speculative execution constraint as 1578 // below because the shuffle is a concatenation. The new binops are 1579 // operating on exactly the same elements as the existing binop. 1580 // TODO: We could ease the mask requirement to allow different undef lanes, 1581 // but that requires an analysis of the binop-with-undef output value. 1582 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1583 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1584 BO->copyIRFlags(&Inst); 1585 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1586 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1587 BO->copyIRFlags(&Inst); 1588 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1589 } 1590 1591 // It may not be safe to reorder shuffles and things like div, urem, etc. 1592 // because we may trap when executing those ops on unknown vector elements. 1593 // See PR20059. 1594 if (!isSafeToSpeculativelyExecute(&Inst)) 1595 return nullptr; 1596 1597 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 1598 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1599 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1600 BO->copyIRFlags(&Inst); 1601 return new ShuffleVectorInst(XY, M); 1602 }; 1603 1604 // If both arguments of the binary operation are shuffles that use the same 1605 // mask and shuffle within a single vector, move the shuffle after the binop. 1606 Value *V1, *V2; 1607 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) && 1608 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) && 1609 V1->getType() == V2->getType() && 1610 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1611 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1612 return createBinOpShuffle(V1, V2, Mask); 1613 } 1614 1615 // If both arguments of a commutative binop are select-shuffles that use the 1616 // same mask with commuted operands, the shuffles are unnecessary. 1617 if (Inst.isCommutative() && 1618 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 1619 match(RHS, 1620 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 1621 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1622 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1623 // TODO: Allow shuffles that contain undefs in the mask? 1624 // That is legal, but it reduces undef knowledge. 1625 // TODO: Allow arbitrary shuffles by shuffling after binop? 1626 // That might be legal, but we have to deal with poison. 1627 if (LShuf->isSelect() && 1628 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) && 1629 RShuf->isSelect() && 1630 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) { 1631 // Example: 1632 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1633 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1634 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1635 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1636 NewBO->copyIRFlags(&Inst); 1637 return NewBO; 1638 } 1639 } 1640 1641 // If one argument is a shuffle within one vector and the other is a constant, 1642 // try moving the shuffle after the binary operation. This canonicalization 1643 // intends to move shuffles closer to other shuffles and binops closer to 1644 // other binops, so they can be folded. It may also enable demanded elements 1645 // transforms. 1646 Constant *C; 1647 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 1648 if (InstVTy && 1649 match(&Inst, 1650 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))), 1651 m_ImmConstant(C))) && 1652 cast<FixedVectorType>(V1->getType())->getNumElements() <= 1653 InstVTy->getNumElements()) { 1654 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 1655 "Shuffle should not change scalar type"); 1656 1657 // Find constant NewC that has property: 1658 // shuffle(NewC, ShMask) = C 1659 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1660 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1661 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1662 bool ConstOp1 = isa<Constant>(RHS); 1663 ArrayRef<int> ShMask = Mask; 1664 unsigned SrcVecNumElts = 1665 cast<FixedVectorType>(V1->getType())->getNumElements(); 1666 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1667 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1668 bool MayChange = true; 1669 unsigned NumElts = InstVTy->getNumElements(); 1670 for (unsigned I = 0; I < NumElts; ++I) { 1671 Constant *CElt = C->getAggregateElement(I); 1672 if (ShMask[I] >= 0) { 1673 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1674 Constant *NewCElt = NewVecC[ShMask[I]]; 1675 // Bail out if: 1676 // 1. The constant vector contains a constant expression. 1677 // 2. The shuffle needs an element of the constant vector that can't 1678 // be mapped to a new constant vector. 1679 // 3. This is a widening shuffle that copies elements of V1 into the 1680 // extended elements (extending with undef is allowed). 1681 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1682 I >= SrcVecNumElts) { 1683 MayChange = false; 1684 break; 1685 } 1686 NewVecC[ShMask[I]] = CElt; 1687 } 1688 // If this is a widening shuffle, we must be able to extend with undef 1689 // elements. If the original binop does not produce an undef in the high 1690 // lanes, then this transform is not safe. 1691 // Similarly for undef lanes due to the shuffle mask, we can only 1692 // transform binops that preserve undef. 1693 // TODO: We could shuffle those non-undef constant values into the 1694 // result by using a constant vector (rather than an undef vector) 1695 // as operand 1 of the new binop, but that might be too aggressive 1696 // for target-independent shuffle creation. 1697 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1698 Constant *MaybeUndef = 1699 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1700 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1701 if (!match(MaybeUndef, m_Undef())) { 1702 MayChange = false; 1703 break; 1704 } 1705 } 1706 } 1707 if (MayChange) { 1708 Constant *NewC = ConstantVector::get(NewVecC); 1709 // It may not be safe to execute a binop on a vector with undef elements 1710 // because the entire instruction can be folded to undef or create poison 1711 // that did not exist in the original code. 1712 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1713 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1714 1715 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1716 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1717 Value *NewLHS = ConstOp1 ? V1 : NewC; 1718 Value *NewRHS = ConstOp1 ? NewC : V1; 1719 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1720 } 1721 } 1722 1723 // Try to reassociate to sink a splat shuffle after a binary operation. 1724 if (Inst.isAssociative() && Inst.isCommutative()) { 1725 // Canonicalize shuffle operand as LHS. 1726 if (isa<ShuffleVectorInst>(RHS)) 1727 std::swap(LHS, RHS); 1728 1729 Value *X; 1730 ArrayRef<int> MaskC; 1731 int SplatIndex; 1732 BinaryOperator *BO; 1733 if (!match(LHS, 1734 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 1735 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || 1736 X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) || 1737 BO->getOpcode() != Opcode) 1738 return nullptr; 1739 1740 // FIXME: This may not be safe if the analysis allows undef elements. By 1741 // moving 'Y' before the splat shuffle, we are implicitly assuming 1742 // that it is not undef/poison at the splat index. 1743 Value *Y, *OtherOp; 1744 if (isSplatValue(BO->getOperand(0), SplatIndex)) { 1745 Y = BO->getOperand(0); 1746 OtherOp = BO->getOperand(1); 1747 } else if (isSplatValue(BO->getOperand(1), SplatIndex)) { 1748 Y = BO->getOperand(1); 1749 OtherOp = BO->getOperand(0); 1750 } else { 1751 return nullptr; 1752 } 1753 1754 // X and Y are splatted values, so perform the binary operation on those 1755 // values followed by a splat followed by the 2nd binary operation: 1756 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 1757 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 1758 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 1759 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 1760 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 1761 1762 // Intersect FMF on both new binops. Other (poison-generating) flags are 1763 // dropped to be safe. 1764 if (isa<FPMathOperator>(R)) { 1765 R->copyFastMathFlags(&Inst); 1766 R->andIRFlags(BO); 1767 } 1768 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 1769 NewInstBO->copyIRFlags(R); 1770 return R; 1771 } 1772 1773 return nullptr; 1774 } 1775 1776 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1777 /// of a value. This requires a potentially expensive known bits check to make 1778 /// sure the narrow op does not overflow. 1779 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 1780 // We need at least one extended operand. 1781 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1782 1783 // If this is a sub, we swap the operands since we always want an extension 1784 // on the RHS. The LHS can be an extension or a constant. 1785 if (BO.getOpcode() == Instruction::Sub) 1786 std::swap(Op0, Op1); 1787 1788 Value *X; 1789 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1790 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1791 return nullptr; 1792 1793 // If both operands are the same extension from the same source type and we 1794 // can eliminate at least one (hasOneUse), this might work. 1795 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1796 Value *Y; 1797 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1798 cast<Operator>(Op1)->getOpcode() == CastOpc && 1799 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1800 // If that did not match, see if we have a suitable constant operand. 1801 // Truncating and extending must produce the same constant. 1802 Constant *WideC; 1803 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1804 return nullptr; 1805 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1806 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1807 return nullptr; 1808 Y = NarrowC; 1809 } 1810 1811 // Swap back now that we found our operands. 1812 if (BO.getOpcode() == Instruction::Sub) 1813 std::swap(X, Y); 1814 1815 // Both operands have narrow versions. Last step: the math must not overflow 1816 // in the narrow width. 1817 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1818 return nullptr; 1819 1820 // bo (ext X), (ext Y) --> ext (bo X, Y) 1821 // bo (ext X), C --> ext (bo X, C') 1822 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1823 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1824 if (IsSext) 1825 NewBinOp->setHasNoSignedWrap(); 1826 else 1827 NewBinOp->setHasNoUnsignedWrap(); 1828 } 1829 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1830 } 1831 1832 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 1833 // At least one GEP must be inbounds. 1834 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 1835 return false; 1836 1837 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 1838 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 1839 } 1840 1841 /// Thread a GEP operation with constant indices through the constant true/false 1842 /// arms of a select. 1843 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 1844 InstCombiner::BuilderTy &Builder) { 1845 if (!GEP.hasAllConstantIndices()) 1846 return nullptr; 1847 1848 Instruction *Sel; 1849 Value *Cond; 1850 Constant *TrueC, *FalseC; 1851 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 1852 !match(Sel, 1853 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 1854 return nullptr; 1855 1856 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 1857 // Propagate 'inbounds' and metadata from existing instructions. 1858 // Note: using IRBuilder to create the constants for efficiency. 1859 SmallVector<Value *, 4> IndexC(GEP.indices()); 1860 bool IsInBounds = GEP.isInBounds(); 1861 Type *Ty = GEP.getSourceElementType(); 1862 Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC) 1863 : Builder.CreateGEP(Ty, TrueC, IndexC); 1864 Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC) 1865 : Builder.CreateGEP(Ty, FalseC, IndexC); 1866 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 1867 } 1868 1869 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1870 SmallVector<Value *, 8> Ops(GEP.operands()); 1871 Type *GEPType = GEP.getType(); 1872 Type *GEPEltType = GEP.getSourceElementType(); 1873 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType); 1874 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, GEP.isInBounds(), 1875 SQ.getWithInstruction(&GEP))) 1876 return replaceInstUsesWith(GEP, V); 1877 1878 // For vector geps, use the generic demanded vector support. 1879 // Skip if GEP return type is scalable. The number of elements is unknown at 1880 // compile-time. 1881 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 1882 auto VWidth = GEPFVTy->getNumElements(); 1883 APInt UndefElts(VWidth, 0); 1884 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 1885 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 1886 UndefElts)) { 1887 if (V != &GEP) 1888 return replaceInstUsesWith(GEP, V); 1889 return &GEP; 1890 } 1891 1892 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 1893 // possible (decide on canonical form for pointer broadcast), 3) exploit 1894 // undef elements to decrease demanded bits 1895 } 1896 1897 Value *PtrOp = GEP.getOperand(0); 1898 1899 // Eliminate unneeded casts for indices, and replace indices which displace 1900 // by multiples of a zero size type with zero. 1901 bool MadeChange = false; 1902 1903 // Index width may not be the same width as pointer width. 1904 // Data layout chooses the right type based on supported integer types. 1905 Type *NewScalarIndexTy = 1906 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 1907 1908 gep_type_iterator GTI = gep_type_begin(GEP); 1909 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1910 ++I, ++GTI) { 1911 // Skip indices into struct types. 1912 if (GTI.isStruct()) 1913 continue; 1914 1915 Type *IndexTy = (*I)->getType(); 1916 Type *NewIndexType = 1917 IndexTy->isVectorTy() 1918 ? VectorType::get(NewScalarIndexTy, 1919 cast<VectorType>(IndexTy)->getElementCount()) 1920 : NewScalarIndexTy; 1921 1922 // If the element type has zero size then any index over it is equivalent 1923 // to an index of zero, so replace it with zero if it is not zero already. 1924 Type *EltTy = GTI.getIndexedType(); 1925 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 1926 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 1927 *I = Constant::getNullValue(NewIndexType); 1928 MadeChange = true; 1929 } 1930 1931 if (IndexTy != NewIndexType) { 1932 // If we are using a wider index than needed for this platform, shrink 1933 // it to what we need. If narrower, sign-extend it to what we need. 1934 // This explicit cast can make subsequent optimizations more obvious. 1935 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1936 MadeChange = true; 1937 } 1938 } 1939 if (MadeChange) 1940 return &GEP; 1941 1942 // Check to see if the inputs to the PHI node are getelementptr instructions. 1943 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 1944 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1945 if (!Op1) 1946 return nullptr; 1947 1948 // Don't fold a GEP into itself through a PHI node. This can only happen 1949 // through the back-edge of a loop. Folding a GEP into itself means that 1950 // the value of the previous iteration needs to be stored in the meantime, 1951 // thus requiring an additional register variable to be live, but not 1952 // actually achieving anything (the GEP still needs to be executed once per 1953 // loop iteration). 1954 if (Op1 == &GEP) 1955 return nullptr; 1956 1957 int DI = -1; 1958 1959 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1960 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 1961 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1962 return nullptr; 1963 1964 // As for Op1 above, don't try to fold a GEP into itself. 1965 if (Op2 == &GEP) 1966 return nullptr; 1967 1968 // Keep track of the type as we walk the GEP. 1969 Type *CurTy = nullptr; 1970 1971 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1972 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1973 return nullptr; 1974 1975 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1976 if (DI == -1) { 1977 // We have not seen any differences yet in the GEPs feeding the 1978 // PHI yet, so we record this one if it is allowed to be a 1979 // variable. 1980 1981 // The first two arguments can vary for any GEP, the rest have to be 1982 // static for struct slots 1983 if (J > 1) { 1984 assert(CurTy && "No current type?"); 1985 if (CurTy->isStructTy()) 1986 return nullptr; 1987 } 1988 1989 DI = J; 1990 } else { 1991 // The GEP is different by more than one input. While this could be 1992 // extended to support GEPs that vary by more than one variable it 1993 // doesn't make sense since it greatly increases the complexity and 1994 // would result in an R+R+R addressing mode which no backend 1995 // directly supports and would need to be broken into several 1996 // simpler instructions anyway. 1997 return nullptr; 1998 } 1999 } 2000 2001 // Sink down a layer of the type for the next iteration. 2002 if (J > 0) { 2003 if (J == 1) { 2004 CurTy = Op1->getSourceElementType(); 2005 } else { 2006 CurTy = 2007 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 2008 } 2009 } 2010 } 2011 } 2012 2013 // If not all GEPs are identical we'll have to create a new PHI node. 2014 // Check that the old PHI node has only one use so that it will get 2015 // removed. 2016 if (DI != -1 && !PN->hasOneUse()) 2017 return nullptr; 2018 2019 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 2020 if (DI == -1) { 2021 // All the GEPs feeding the PHI are identical. Clone one down into our 2022 // BB so that it can be merged with the current GEP. 2023 } else { 2024 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 2025 // into the current block so it can be merged, and create a new PHI to 2026 // set that index. 2027 PHINode *NewPN; 2028 { 2029 IRBuilderBase::InsertPointGuard Guard(Builder); 2030 Builder.SetInsertPoint(PN); 2031 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 2032 PN->getNumOperands()); 2033 } 2034 2035 for (auto &I : PN->operands()) 2036 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 2037 PN->getIncomingBlock(I)); 2038 2039 NewGEP->setOperand(DI, NewPN); 2040 } 2041 2042 GEP.getParent()->getInstList().insert( 2043 GEP.getParent()->getFirstInsertionPt(), NewGEP); 2044 replaceOperand(GEP, 0, NewGEP); 2045 PtrOp = NewGEP; 2046 } 2047 2048 // Combine Indices - If the source pointer to this getelementptr instruction 2049 // is a getelementptr instruction, combine the indices of the two 2050 // getelementptr instructions into a single instruction. 2051 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { 2052 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 2053 return nullptr; 2054 2055 if (Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 2056 Src->hasOneUse()) { 2057 Value *GO1 = GEP.getOperand(1); 2058 Value *SO1 = Src->getOperand(1); 2059 2060 if (LI) { 2061 // Try to reassociate loop invariant GEP chains to enable LICM. 2062 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 2063 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 2064 // invariant: this breaks the dependence between GEPs and allows LICM 2065 // to hoist the invariant part out of the loop. 2066 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 2067 // We have to be careful here. 2068 // We have something like: 2069 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 2070 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 2071 // If we just swap idx & idx2 then we could inadvertantly 2072 // change %src from a vector to a scalar, or vice versa. 2073 // Cases: 2074 // 1) %base a scalar & idx a scalar & idx2 a vector 2075 // => Swapping idx & idx2 turns %src into a vector type. 2076 // 2) %base a scalar & idx a vector & idx2 a scalar 2077 // => Swapping idx & idx2 turns %src in a scalar type 2078 // 3) %base, %idx, and %idx2 are scalars 2079 // => %src & %gep are scalars 2080 // => swapping idx & idx2 is safe 2081 // 4) %base a vector 2082 // => %src is a vector 2083 // => swapping idx & idx2 is safe. 2084 auto *SO0 = Src->getOperand(0); 2085 auto *SO0Ty = SO0->getType(); 2086 if (!isa<VectorType>(GEPType) || // case 3 2087 isa<VectorType>(SO0Ty)) { // case 4 2088 Src->setOperand(1, GO1); 2089 GEP.setOperand(1, SO1); 2090 return &GEP; 2091 } else { 2092 // Case 1 or 2 2093 // -- have to recreate %src & %gep 2094 // put NewSrc at same location as %src 2095 Builder.SetInsertPoint(cast<Instruction>(PtrOp)); 2096 Value *NewSrc = 2097 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()); 2098 // Propagate 'inbounds' if the new source was not constant-folded. 2099 if (auto *NewSrcGEPI = dyn_cast<GetElementPtrInst>(NewSrc)) 2100 NewSrcGEPI->setIsInBounds(Src->isInBounds()); 2101 GetElementPtrInst *NewGEP = 2102 GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1}); 2103 NewGEP->setIsInBounds(GEP.isInBounds()); 2104 return NewGEP; 2105 } 2106 } 2107 } 2108 } 2109 } 2110 2111 // Note that if our source is a gep chain itself then we wait for that 2112 // chain to be resolved before we perform this transformation. This 2113 // avoids us creating a TON of code in some cases. 2114 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 2115 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 2116 return nullptr; // Wait until our source is folded to completion. 2117 2118 SmallVector<Value*, 8> Indices; 2119 2120 // Find out whether the last index in the source GEP is a sequential idx. 2121 bool EndsWithSequential = false; 2122 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 2123 I != E; ++I) 2124 EndsWithSequential = I.isSequential(); 2125 2126 // Can we combine the two pointer arithmetics offsets? 2127 if (EndsWithSequential) { 2128 // Replace: gep (gep %P, long B), long A, ... 2129 // With: T = long A+B; gep %P, T, ... 2130 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 2131 Value *GO1 = GEP.getOperand(1); 2132 2133 // If they aren't the same type, then the input hasn't been processed 2134 // by the loop above yet (which canonicalizes sequential index types to 2135 // intptr_t). Just avoid transforming this until the input has been 2136 // normalized. 2137 if (SO1->getType() != GO1->getType()) 2138 return nullptr; 2139 2140 Value *Sum = 2141 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 2142 // Only do the combine when we are sure the cost after the 2143 // merge is never more than that before the merge. 2144 if (Sum == nullptr) 2145 return nullptr; 2146 2147 // Update the GEP in place if possible. 2148 if (Src->getNumOperands() == 2) { 2149 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 2150 replaceOperand(GEP, 0, Src->getOperand(0)); 2151 replaceOperand(GEP, 1, Sum); 2152 return &GEP; 2153 } 2154 Indices.append(Src->op_begin()+1, Src->op_end()-1); 2155 Indices.push_back(Sum); 2156 Indices.append(GEP.op_begin()+2, GEP.op_end()); 2157 } else if (isa<Constant>(*GEP.idx_begin()) && 2158 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2159 Src->getNumOperands() != 1) { 2160 // Otherwise we can do the fold if the first index of the GEP is a zero 2161 Indices.append(Src->op_begin()+1, Src->op_end()); 2162 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2163 } 2164 2165 if (!Indices.empty()) 2166 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2167 ? GetElementPtrInst::CreateInBounds( 2168 Src->getSourceElementType(), Src->getOperand(0), Indices, 2169 GEP.getName()) 2170 : GetElementPtrInst::Create(Src->getSourceElementType(), 2171 Src->getOperand(0), Indices, 2172 GEP.getName()); 2173 } 2174 2175 // Skip if GEP source element type is scalable. The type alloc size is unknown 2176 // at compile-time. 2177 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { 2178 unsigned AS = GEP.getPointerAddressSpace(); 2179 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 2180 DL.getIndexSizeInBits(AS)) { 2181 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2182 2183 bool Matched = false; 2184 uint64_t C; 2185 Value *V = nullptr; 2186 if (TyAllocSize == 1) { 2187 V = GEP.getOperand(1); 2188 Matched = true; 2189 } else if (match(GEP.getOperand(1), 2190 m_AShr(m_Value(V), m_ConstantInt(C)))) { 2191 if (TyAllocSize == 1ULL << C) 2192 Matched = true; 2193 } else if (match(GEP.getOperand(1), 2194 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 2195 if (TyAllocSize == C) 2196 Matched = true; 2197 } 2198 2199 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but 2200 // only if both point to the same underlying object (otherwise provenance 2201 // is not necessarily retained). 2202 Value *Y; 2203 Value *X = GEP.getOperand(0); 2204 if (Matched && 2205 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 2206 getUnderlyingObject(X) == getUnderlyingObject(Y)) 2207 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 2208 } 2209 } 2210 2211 // We do not handle pointer-vector geps here. 2212 if (GEPType->isVectorTy()) 2213 return nullptr; 2214 2215 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 2216 Value *StrippedPtr = PtrOp->stripPointerCasts(); 2217 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 2218 2219 if (StrippedPtr != PtrOp) { 2220 bool HasZeroPointerIndex = false; 2221 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType(); 2222 2223 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 2224 HasZeroPointerIndex = C->isZero(); 2225 2226 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2227 // into : GEP [10 x i8]* X, i32 0, ... 2228 // 2229 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2230 // into : GEP i8* X, ... 2231 // 2232 // This occurs when the program declares an array extern like "int X[];" 2233 if (HasZeroPointerIndex) { 2234 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2235 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2236 if (CATy->getElementType() == StrippedPtrEltTy) { 2237 // -> GEP i8* X, ... 2238 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices())); 2239 GetElementPtrInst *Res = GetElementPtrInst::Create( 2240 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2241 Res->setIsInBounds(GEP.isInBounds()); 2242 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2243 return Res; 2244 // Insert Res, and create an addrspacecast. 2245 // e.g., 2246 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2247 // -> 2248 // %0 = GEP i8 addrspace(1)* X, ... 2249 // addrspacecast i8 addrspace(1)* %0 to i8* 2250 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2251 } 2252 2253 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2254 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2255 if (CATy->getElementType() == XATy->getElementType()) { 2256 // -> GEP [10 x i8]* X, i32 0, ... 2257 // At this point, we know that the cast source type is a pointer 2258 // to an array of the same type as the destination pointer 2259 // array. Because the array type is never stepped over (there 2260 // is a leading zero) we can fold the cast into this GEP. 2261 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2262 GEP.setSourceElementType(XATy); 2263 return replaceOperand(GEP, 0, StrippedPtr); 2264 } 2265 // Cannot replace the base pointer directly because StrippedPtr's 2266 // address space is different. Instead, create a new GEP followed by 2267 // an addrspacecast. 2268 // e.g., 2269 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2270 // i32 0, ... 2271 // -> 2272 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2273 // addrspacecast i8 addrspace(1)* %0 to i8* 2274 SmallVector<Value *, 8> Idx(GEP.indices()); 2275 Value *NewGEP = 2276 GEP.isInBounds() 2277 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2278 Idx, GEP.getName()) 2279 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2280 GEP.getName()); 2281 return new AddrSpaceCastInst(NewGEP, GEPType); 2282 } 2283 } 2284 } 2285 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) { 2286 // Skip if GEP source element type is scalable. The type alloc size is 2287 // unknown at compile-time. 2288 // Transform things like: %t = getelementptr i32* 2289 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2 2290 // x i32]* %str, i32 0, i32 %V; bitcast 2291 if (StrippedPtrEltTy->isArrayTy() && 2292 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2293 DL.getTypeAllocSize(GEPEltType)) { 2294 Type *IdxType = DL.getIndexType(GEPType); 2295 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 2296 Value *NewGEP = 2297 GEP.isInBounds() 2298 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2299 GEP.getName()) 2300 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2301 GEP.getName()); 2302 2303 // V and GEP are both pointer types --> BitCast 2304 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2305 } 2306 2307 // Transform things like: 2308 // %V = mul i64 %N, 4 2309 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2310 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2311 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2312 // Check that changing the type amounts to dividing the index by a scale 2313 // factor. 2314 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2315 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize(); 2316 if (ResSize && SrcSize % ResSize == 0) { 2317 Value *Idx = GEP.getOperand(1); 2318 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2319 uint64_t Scale = SrcSize / ResSize; 2320 2321 // Earlier transforms ensure that the index has the right type 2322 // according to Data Layout, which considerably simplifies the 2323 // logic by eliminating implicit casts. 2324 assert(Idx->getType() == DL.getIndexType(GEPType) && 2325 "Index type does not match the Data Layout preferences"); 2326 2327 bool NSW; 2328 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2329 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2330 // If the multiplication NewIdx * Scale may overflow then the new 2331 // GEP may not be "inbounds". 2332 Value *NewGEP = 2333 GEP.isInBounds() && NSW 2334 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2335 NewIdx, GEP.getName()) 2336 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2337 GEP.getName()); 2338 2339 // The NewGEP must be pointer typed, so must the old one -> BitCast 2340 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2341 GEPType); 2342 } 2343 } 2344 } 2345 2346 // Similarly, transform things like: 2347 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2348 // (where tmp = 8*tmp2) into: 2349 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2350 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2351 StrippedPtrEltTy->isArrayTy()) { 2352 // Check that changing to the array element type amounts to dividing the 2353 // index by a scale factor. 2354 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2355 uint64_t ArrayEltSize = 2356 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) 2357 .getFixedSize(); 2358 if (ResSize && ArrayEltSize % ResSize == 0) { 2359 Value *Idx = GEP.getOperand(1); 2360 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2361 uint64_t Scale = ArrayEltSize / ResSize; 2362 2363 // Earlier transforms ensure that the index has the right type 2364 // according to the Data Layout, which considerably simplifies 2365 // the logic by eliminating implicit casts. 2366 assert(Idx->getType() == DL.getIndexType(GEPType) && 2367 "Index type does not match the Data Layout preferences"); 2368 2369 bool NSW; 2370 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2371 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2372 // If the multiplication NewIdx * Scale may overflow then the new 2373 // GEP may not be "inbounds". 2374 Type *IndTy = DL.getIndexType(GEPType); 2375 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2376 2377 Value *NewGEP = 2378 GEP.isInBounds() && NSW 2379 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2380 Off, GEP.getName()) 2381 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2382 GEP.getName()); 2383 // The NewGEP must be pointer typed, so must the old one -> BitCast 2384 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2385 GEPType); 2386 } 2387 } 2388 } 2389 } 2390 } 2391 2392 // addrspacecast between types is canonicalized as a bitcast, then an 2393 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2394 // through the addrspacecast. 2395 Value *ASCStrippedPtrOp = PtrOp; 2396 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2397 // X = bitcast A addrspace(1)* to B addrspace(1)* 2398 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2399 // Z = gep Y, <...constant indices...> 2400 // Into an addrspacecasted GEP of the struct. 2401 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2402 ASCStrippedPtrOp = BC; 2403 } 2404 2405 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 2406 Value *SrcOp = BCI->getOperand(0); 2407 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2408 Type *SrcEltType = SrcType->getElementType(); 2409 2410 // GEP directly using the source operand if this GEP is accessing an element 2411 // of a bitcasted pointer to vector or array of the same dimensions: 2412 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2413 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2414 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, 2415 const DataLayout &DL) { 2416 auto *VecVTy = cast<FixedVectorType>(VecTy); 2417 return ArrTy->getArrayElementType() == VecVTy->getElementType() && 2418 ArrTy->getArrayNumElements() == VecVTy->getNumElements() && 2419 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); 2420 }; 2421 if (GEP.getNumOperands() == 3 && 2422 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) && 2423 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || 2424 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() && 2425 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { 2426 2427 // Create a new GEP here, as using `setOperand()` followed by 2428 // `setSourceElementType()` won't actually update the type of the 2429 // existing GEP Value. Causing issues if this Value is accessed when 2430 // constructing an AddrSpaceCastInst 2431 Value *NGEP = 2432 GEP.isInBounds() 2433 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}) 2434 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}); 2435 NGEP->takeName(&GEP); 2436 2437 // Preserve GEP address space to satisfy users 2438 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2439 return new AddrSpaceCastInst(NGEP, GEPType); 2440 2441 return replaceInstUsesWith(GEP, NGEP); 2442 } 2443 2444 // See if we can simplify: 2445 // X = bitcast A* to B* 2446 // Y = gep X, <...constant indices...> 2447 // into a gep of the original struct. This is important for SROA and alias 2448 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2449 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 2450 APInt Offset(OffsetBits, 0); 2451 2452 // If the bitcast argument is an allocation, The bitcast is for convertion 2453 // to actual type of allocation. Removing such bitcasts, results in having 2454 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of 2455 // struct or array hierarchy. 2456 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have 2457 // a better chance to succeed. 2458 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) && 2459 !isAllocationFn(SrcOp, &TLI)) { 2460 // If this GEP instruction doesn't move the pointer, just replace the GEP 2461 // with a bitcast of the real input to the dest type. 2462 if (!Offset) { 2463 // If the bitcast is of an allocation, and the allocation will be 2464 // converted to match the type of the cast, don't touch this. 2465 if (isa<AllocaInst>(SrcOp)) { 2466 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2467 if (Instruction *I = visitBitCast(*BCI)) { 2468 if (I != BCI) { 2469 I->takeName(BCI); 2470 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2471 replaceInstUsesWith(*BCI, I); 2472 } 2473 return &GEP; 2474 } 2475 } 2476 2477 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2478 return new AddrSpaceCastInst(SrcOp, GEPType); 2479 return new BitCastInst(SrcOp, GEPType); 2480 } 2481 2482 // Otherwise, if the offset is non-zero, we need to find out if there is a 2483 // field at Offset in 'A's type. If so, we can pull the cast through the 2484 // GEP. 2485 SmallVector<Value*, 8> NewIndices; 2486 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2487 Value *NGEP = 2488 GEP.isInBounds() 2489 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) 2490 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); 2491 2492 if (NGEP->getType() == GEPType) 2493 return replaceInstUsesWith(GEP, NGEP); 2494 NGEP->takeName(&GEP); 2495 2496 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2497 return new AddrSpaceCastInst(NGEP, GEPType); 2498 return new BitCastInst(NGEP, GEPType); 2499 } 2500 } 2501 } 2502 2503 if (!GEP.isInBounds()) { 2504 unsigned IdxWidth = 2505 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2506 APInt BasePtrOffset(IdxWidth, 0); 2507 Value *UnderlyingPtrOp = 2508 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2509 BasePtrOffset); 2510 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2511 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2512 BasePtrOffset.isNonNegative()) { 2513 APInt AllocSize( 2514 IdxWidth, 2515 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize()); 2516 if (BasePtrOffset.ule(AllocSize)) { 2517 return GetElementPtrInst::CreateInBounds( 2518 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1), 2519 GEP.getName()); 2520 } 2521 } 2522 } 2523 } 2524 2525 if (Instruction *R = foldSelectGEP(GEP, Builder)) 2526 return R; 2527 2528 return nullptr; 2529 } 2530 2531 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 2532 Instruction *AI) { 2533 if (isa<ConstantPointerNull>(V)) 2534 return true; 2535 if (auto *LI = dyn_cast<LoadInst>(V)) 2536 return isa<GlobalVariable>(LI->getPointerOperand()); 2537 // Two distinct allocations will never be equal. 2538 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2539 // through bitcasts of V can cause 2540 // the result statement below to be true, even when AI and V (ex: 2541 // i8* ->i32* ->i8* of AI) are the same allocations. 2542 return isAllocLikeFn(V, TLI) && V != AI; 2543 } 2544 2545 static bool isAllocSiteRemovable(Instruction *AI, 2546 SmallVectorImpl<WeakTrackingVH> &Users, 2547 const TargetLibraryInfo *TLI) { 2548 SmallVector<Instruction*, 4> Worklist; 2549 Worklist.push_back(AI); 2550 2551 do { 2552 Instruction *PI = Worklist.pop_back_val(); 2553 for (User *U : PI->users()) { 2554 Instruction *I = cast<Instruction>(U); 2555 switch (I->getOpcode()) { 2556 default: 2557 // Give up the moment we see something we can't handle. 2558 return false; 2559 2560 case Instruction::AddrSpaceCast: 2561 case Instruction::BitCast: 2562 case Instruction::GetElementPtr: 2563 Users.emplace_back(I); 2564 Worklist.push_back(I); 2565 continue; 2566 2567 case Instruction::ICmp: { 2568 ICmpInst *ICI = cast<ICmpInst>(I); 2569 // We can fold eq/ne comparisons with null to false/true, respectively. 2570 // We also fold comparisons in some conditions provided the alloc has 2571 // not escaped (see isNeverEqualToUnescapedAlloc). 2572 if (!ICI->isEquality()) 2573 return false; 2574 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2575 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2576 return false; 2577 Users.emplace_back(I); 2578 continue; 2579 } 2580 2581 case Instruction::Call: 2582 // Ignore no-op and store intrinsics. 2583 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2584 switch (II->getIntrinsicID()) { 2585 default: 2586 return false; 2587 2588 case Intrinsic::memmove: 2589 case Intrinsic::memcpy: 2590 case Intrinsic::memset: { 2591 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2592 if (MI->isVolatile() || MI->getRawDest() != PI) 2593 return false; 2594 LLVM_FALLTHROUGH; 2595 } 2596 case Intrinsic::assume: 2597 case Intrinsic::invariant_start: 2598 case Intrinsic::invariant_end: 2599 case Intrinsic::lifetime_start: 2600 case Intrinsic::lifetime_end: 2601 case Intrinsic::objectsize: 2602 Users.emplace_back(I); 2603 continue; 2604 case Intrinsic::launder_invariant_group: 2605 case Intrinsic::strip_invariant_group: 2606 Users.emplace_back(I); 2607 Worklist.push_back(I); 2608 continue; 2609 } 2610 } 2611 2612 if (isFreeCall(I, TLI)) { 2613 Users.emplace_back(I); 2614 continue; 2615 } 2616 2617 if (isReallocLikeFn(I, TLI, true)) { 2618 Users.emplace_back(I); 2619 Worklist.push_back(I); 2620 continue; 2621 } 2622 2623 return false; 2624 2625 case Instruction::Store: { 2626 StoreInst *SI = cast<StoreInst>(I); 2627 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2628 return false; 2629 Users.emplace_back(I); 2630 continue; 2631 } 2632 } 2633 llvm_unreachable("missing a return?"); 2634 } 2635 } while (!Worklist.empty()); 2636 return true; 2637 } 2638 2639 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 2640 // If we have a malloc call which is only used in any amount of comparisons to 2641 // null and free calls, delete the calls and replace the comparisons with true 2642 // or false as appropriate. 2643 2644 // This is based on the principle that we can substitute our own allocation 2645 // function (which will never return null) rather than knowledge of the 2646 // specific function being called. In some sense this can change the permitted 2647 // outputs of a program (when we convert a malloc to an alloca, the fact that 2648 // the allocation is now on the stack is potentially visible, for example), 2649 // but we believe in a permissible manner. 2650 SmallVector<WeakTrackingVH, 64> Users; 2651 2652 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2653 // before each store. 2654 SmallVector<DbgVariableIntrinsic *, 8> DVIs; 2655 std::unique_ptr<DIBuilder> DIB; 2656 if (isa<AllocaInst>(MI)) { 2657 findDbgUsers(DVIs, &MI); 2658 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2659 } 2660 2661 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2662 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2663 // Lowering all @llvm.objectsize calls first because they may 2664 // use a bitcast/GEP of the alloca we are removing. 2665 if (!Users[i]) 2666 continue; 2667 2668 Instruction *I = cast<Instruction>(&*Users[i]); 2669 2670 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2671 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2672 Value *Result = 2673 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); 2674 replaceInstUsesWith(*I, Result); 2675 eraseInstFromFunction(*I); 2676 Users[i] = nullptr; // Skip examining in the next loop. 2677 } 2678 } 2679 } 2680 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2681 if (!Users[i]) 2682 continue; 2683 2684 Instruction *I = cast<Instruction>(&*Users[i]); 2685 2686 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2687 replaceInstUsesWith(*C, 2688 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2689 C->isFalseWhenEqual())); 2690 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2691 for (auto *DVI : DVIs) 2692 if (DVI->isAddressOfVariable()) 2693 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 2694 } else { 2695 // Casts, GEP, or anything else: we're about to delete this instruction, 2696 // so it can not have any valid uses. 2697 replaceInstUsesWith(*I, PoisonValue::get(I->getType())); 2698 } 2699 eraseInstFromFunction(*I); 2700 } 2701 2702 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2703 // Replace invoke with a NOP intrinsic to maintain the original CFG 2704 Module *M = II->getModule(); 2705 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2706 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2707 None, "", II->getParent()); 2708 } 2709 2710 // Remove debug intrinsics which describe the value contained within the 2711 // alloca. In addition to removing dbg.{declare,addr} which simply point to 2712 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 2713 // 2714 // ``` 2715 // define void @foo(i32 %0) { 2716 // %a = alloca i32 ; Deleted. 2717 // store i32 %0, i32* %a 2718 // dbg.value(i32 %0, "arg0") ; Not deleted. 2719 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 2720 // call void @trivially_inlinable_no_op(i32* %a) 2721 // ret void 2722 // } 2723 // ``` 2724 // 2725 // This may not be required if we stop describing the contents of allocas 2726 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 2727 // the LowerDbgDeclare utility. 2728 // 2729 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 2730 // "arg0" dbg.value may be stale after the call. However, failing to remove 2731 // the DW_OP_deref dbg.value causes large gaps in location coverage. 2732 for (auto *DVI : DVIs) 2733 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 2734 DVI->eraseFromParent(); 2735 2736 return eraseInstFromFunction(MI); 2737 } 2738 return nullptr; 2739 } 2740 2741 /// Move the call to free before a NULL test. 2742 /// 2743 /// Check if this free is accessed after its argument has been test 2744 /// against NULL (property 0). 2745 /// If yes, it is legal to move this call in its predecessor block. 2746 /// 2747 /// The move is performed only if the block containing the call to free 2748 /// will be removed, i.e.: 2749 /// 1. it has only one predecessor P, and P has two successors 2750 /// 2. it contains the call, noops, and an unconditional branch 2751 /// 3. its successor is the same as its predecessor's successor 2752 /// 2753 /// The profitability is out-of concern here and this function should 2754 /// be called only if the caller knows this transformation would be 2755 /// profitable (e.g., for code size). 2756 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2757 const DataLayout &DL) { 2758 Value *Op = FI.getArgOperand(0); 2759 BasicBlock *FreeInstrBB = FI.getParent(); 2760 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2761 2762 // Validate part of constraint #1: Only one predecessor 2763 // FIXME: We can extend the number of predecessor, but in that case, we 2764 // would duplicate the call to free in each predecessor and it may 2765 // not be profitable even for code size. 2766 if (!PredBB) 2767 return nullptr; 2768 2769 // Validate constraint #2: Does this block contains only the call to 2770 // free, noops, and an unconditional branch? 2771 BasicBlock *SuccBB; 2772 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2773 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2774 return nullptr; 2775 2776 // If there are only 2 instructions in the block, at this point, 2777 // this is the call to free and unconditional. 2778 // If there are more than 2 instructions, check that they are noops 2779 // i.e., they won't hurt the performance of the generated code. 2780 if (FreeInstrBB->size() != 2) { 2781 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 2782 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2783 continue; 2784 auto *Cast = dyn_cast<CastInst>(&Inst); 2785 if (!Cast || !Cast->isNoopCast(DL)) 2786 return nullptr; 2787 } 2788 } 2789 // Validate the rest of constraint #1 by matching on the pred branch. 2790 Instruction *TI = PredBB->getTerminator(); 2791 BasicBlock *TrueBB, *FalseBB; 2792 ICmpInst::Predicate Pred; 2793 if (!match(TI, m_Br(m_ICmp(Pred, 2794 m_CombineOr(m_Specific(Op), 2795 m_Specific(Op->stripPointerCasts())), 2796 m_Zero()), 2797 TrueBB, FalseBB))) 2798 return nullptr; 2799 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2800 return nullptr; 2801 2802 // Validate constraint #3: Ensure the null case just falls through. 2803 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2804 return nullptr; 2805 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2806 "Broken CFG: missing edge from predecessor to successor"); 2807 2808 // At this point, we know that everything in FreeInstrBB can be moved 2809 // before TI. 2810 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) { 2811 if (&Instr == FreeInstrBBTerminator) 2812 break; 2813 Instr.moveBefore(TI); 2814 } 2815 assert(FreeInstrBB->size() == 1 && 2816 "Only the branch instruction should remain"); 2817 2818 // Now that we've moved the call to free before the NULL check, we have to 2819 // remove any attributes on its parameter that imply it's non-null, because 2820 // those attributes might have only been valid because of the NULL check, and 2821 // we can get miscompiles if we keep them. This is conservative if non-null is 2822 // also implied by something other than the NULL check, but it's guaranteed to 2823 // be correct, and the conservativeness won't matter in practice, since the 2824 // attributes are irrelevant for the call to free itself and the pointer 2825 // shouldn't be used after the call. 2826 AttributeList Attrs = FI.getAttributes(); 2827 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull); 2828 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable); 2829 if (Dereferenceable.isValid()) { 2830 uint64_t Bytes = Dereferenceable.getDereferenceableBytes(); 2831 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, 2832 Attribute::Dereferenceable); 2833 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes); 2834 } 2835 FI.setAttributes(Attrs); 2836 2837 return &FI; 2838 } 2839 2840 Instruction *InstCombinerImpl::visitFree(CallInst &FI) { 2841 Value *Op = FI.getArgOperand(0); 2842 2843 // free undef -> unreachable. 2844 if (isa<UndefValue>(Op)) { 2845 // Leave a marker since we can't modify the CFG here. 2846 CreateNonTerminatorUnreachable(&FI); 2847 return eraseInstFromFunction(FI); 2848 } 2849 2850 // If we have 'free null' delete the instruction. This can happen in stl code 2851 // when lots of inlining happens. 2852 if (isa<ConstantPointerNull>(Op)) 2853 return eraseInstFromFunction(FI); 2854 2855 // If we had free(realloc(...)) with no intervening uses, then eliminate the 2856 // realloc() entirely. 2857 if (CallInst *CI = dyn_cast<CallInst>(Op)) { 2858 if (CI->hasOneUse() && isReallocLikeFn(CI, &TLI, true)) { 2859 return eraseInstFromFunction( 2860 *replaceInstUsesWith(*CI, CI->getOperand(0))); 2861 } 2862 } 2863 2864 // If we optimize for code size, try to move the call to free before the null 2865 // test so that simplify cfg can remove the empty block and dead code 2866 // elimination the branch. I.e., helps to turn something like: 2867 // if (foo) free(foo); 2868 // into 2869 // free(foo); 2870 // 2871 // Note that we can only do this for 'free' and not for any flavor of 2872 // 'operator delete'; there is no 'operator delete' symbol for which we are 2873 // permitted to invent a call, even if we're passing in a null pointer. 2874 if (MinimizeSize) { 2875 LibFunc Func; 2876 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 2877 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 2878 return I; 2879 } 2880 2881 return nullptr; 2882 } 2883 2884 static bool isMustTailCall(Value *V) { 2885 if (auto *CI = dyn_cast<CallInst>(V)) 2886 return CI->isMustTailCall(); 2887 return false; 2888 } 2889 2890 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 2891 if (RI.getNumOperands() == 0) // ret void 2892 return nullptr; 2893 2894 Value *ResultOp = RI.getOperand(0); 2895 Type *VTy = ResultOp->getType(); 2896 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp)) 2897 return nullptr; 2898 2899 // Don't replace result of musttail calls. 2900 if (isMustTailCall(ResultOp)) 2901 return nullptr; 2902 2903 // There might be assume intrinsics dominating this return that completely 2904 // determine the value. If so, constant fold it. 2905 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2906 if (Known.isConstant()) 2907 return replaceOperand(RI, 0, 2908 Constant::getIntegerValue(VTy, Known.getConstant())); 2909 2910 return nullptr; 2911 } 2912 2913 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! 2914 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 2915 // Try to remove the previous instruction if it must lead to unreachable. 2916 // This includes instructions like stores and "llvm.assume" that may not get 2917 // removed by simple dead code elimination. 2918 while (Instruction *Prev = I.getPrevNonDebugInstruction()) { 2919 // While we theoretically can erase EH, that would result in a block that 2920 // used to start with an EH no longer starting with EH, which is invalid. 2921 // To make it valid, we'd need to fixup predecessors to no longer refer to 2922 // this block, but that changes CFG, which is not allowed in InstCombine. 2923 if (Prev->isEHPad()) 2924 return nullptr; // Can not drop any more instructions. We're done here. 2925 2926 if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) 2927 return nullptr; // Can not drop any more instructions. We're done here. 2928 // Otherwise, this instruction can be freely erased, 2929 // even if it is not side-effect free. 2930 2931 // A value may still have uses before we process it here (for example, in 2932 // another unreachable block), so convert those to poison. 2933 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); 2934 eraseInstFromFunction(*Prev); 2935 } 2936 assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty."); 2937 // FIXME: recurse into unconditional predecessors? 2938 return nullptr; 2939 } 2940 2941 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 2942 assert(BI.isUnconditional() && "Only for unconditional branches."); 2943 2944 // If this store is the second-to-last instruction in the basic block 2945 // (excluding debug info and bitcasts of pointers) and if the block ends with 2946 // an unconditional branch, try to move the store to the successor block. 2947 2948 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 2949 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 2950 return BBI->isDebugOrPseudoInst() || 2951 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 2952 }; 2953 2954 BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 2955 do { 2956 if (BBI != FirstInstr) 2957 --BBI; 2958 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 2959 2960 return dyn_cast<StoreInst>(BBI); 2961 }; 2962 2963 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 2964 if (mergeStoreIntoSuccessor(*SI)) 2965 return &BI; 2966 2967 return nullptr; 2968 } 2969 2970 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 2971 if (BI.isUnconditional()) 2972 return visitUnconditionalBranchInst(BI); 2973 2974 // Change br (not X), label True, label False to: br X, label False, True 2975 Value *X = nullptr; 2976 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 2977 !isa<Constant>(X)) { 2978 // Swap Destinations and condition... 2979 BI.swapSuccessors(); 2980 return replaceOperand(BI, 0, X); 2981 } 2982 2983 // If the condition is irrelevant, remove the use so that other 2984 // transforms on the condition become more effective. 2985 if (!isa<ConstantInt>(BI.getCondition()) && 2986 BI.getSuccessor(0) == BI.getSuccessor(1)) 2987 return replaceOperand( 2988 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType())); 2989 2990 // Canonicalize, for example, fcmp_one -> fcmp_oeq. 2991 CmpInst::Predicate Pred; 2992 if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())), 2993 m_BasicBlock(), m_BasicBlock())) && 2994 !isCanonicalPredicate(Pred)) { 2995 // Swap destinations and condition. 2996 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 2997 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2998 BI.swapSuccessors(); 2999 Worklist.push(Cond); 3000 return &BI; 3001 } 3002 3003 return nullptr; 3004 } 3005 3006 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 3007 Value *Cond = SI.getCondition(); 3008 Value *Op0; 3009 ConstantInt *AddRHS; 3010 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 3011 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 3012 for (auto Case : SI.cases()) { 3013 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 3014 assert(isa<ConstantInt>(NewCase) && 3015 "Result of expression should be constant"); 3016 Case.setValue(cast<ConstantInt>(NewCase)); 3017 } 3018 return replaceOperand(SI, 0, Op0); 3019 } 3020 3021 KnownBits Known = computeKnownBits(Cond, 0, &SI); 3022 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 3023 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 3024 3025 // Compute the number of leading bits we can ignore. 3026 // TODO: A better way to determine this would use ComputeNumSignBits(). 3027 for (auto &C : SI.cases()) { 3028 LeadingKnownZeros = std::min( 3029 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 3030 LeadingKnownOnes = std::min( 3031 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 3032 } 3033 3034 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 3035 3036 // Shrink the condition operand if the new type is smaller than the old type. 3037 // But do not shrink to a non-standard type, because backend can't generate 3038 // good code for that yet. 3039 // TODO: We can make it aggressive again after fixing PR39569. 3040 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 3041 shouldChangeType(Known.getBitWidth(), NewWidth)) { 3042 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 3043 Builder.SetInsertPoint(&SI); 3044 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 3045 3046 for (auto Case : SI.cases()) { 3047 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3048 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3049 } 3050 return replaceOperand(SI, 0, NewCond); 3051 } 3052 3053 return nullptr; 3054 } 3055 3056 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 3057 Value *Agg = EV.getAggregateOperand(); 3058 3059 if (!EV.hasIndices()) 3060 return replaceInstUsesWith(EV, Agg); 3061 3062 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 3063 SQ.getWithInstruction(&EV))) 3064 return replaceInstUsesWith(EV, V); 3065 3066 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 3067 // We're extracting from an insertvalue instruction, compare the indices 3068 const unsigned *exti, *exte, *insi, *inse; 3069 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 3070 exte = EV.idx_end(), inse = IV->idx_end(); 3071 exti != exte && insi != inse; 3072 ++exti, ++insi) { 3073 if (*insi != *exti) 3074 // The insert and extract both reference distinctly different elements. 3075 // This means the extract is not influenced by the insert, and we can 3076 // replace the aggregate operand of the extract with the aggregate 3077 // operand of the insert. i.e., replace 3078 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3079 // %E = extractvalue { i32, { i32 } } %I, 0 3080 // with 3081 // %E = extractvalue { i32, { i32 } } %A, 0 3082 return ExtractValueInst::Create(IV->getAggregateOperand(), 3083 EV.getIndices()); 3084 } 3085 if (exti == exte && insi == inse) 3086 // Both iterators are at the end: Index lists are identical. Replace 3087 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3088 // %C = extractvalue { i32, { i32 } } %B, 1, 0 3089 // with "i32 42" 3090 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 3091 if (exti == exte) { 3092 // The extract list is a prefix of the insert list. i.e. replace 3093 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3094 // %E = extractvalue { i32, { i32 } } %I, 1 3095 // with 3096 // %X = extractvalue { i32, { i32 } } %A, 1 3097 // %E = insertvalue { i32 } %X, i32 42, 0 3098 // by switching the order of the insert and extract (though the 3099 // insertvalue should be left in, since it may have other uses). 3100 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 3101 EV.getIndices()); 3102 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 3103 makeArrayRef(insi, inse)); 3104 } 3105 if (insi == inse) 3106 // The insert list is a prefix of the extract list 3107 // We can simply remove the common indices from the extract and make it 3108 // operate on the inserted value instead of the insertvalue result. 3109 // i.e., replace 3110 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3111 // %E = extractvalue { i32, { i32 } } %I, 1, 0 3112 // with 3113 // %E extractvalue { i32 } { i32 42 }, 0 3114 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 3115 makeArrayRef(exti, exte)); 3116 } 3117 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 3118 // We're extracting from an overflow intrinsic, see if we're the only user, 3119 // which allows us to simplify multiple result intrinsics to simpler 3120 // things that just get one value. 3121 if (WO->hasOneUse()) { 3122 // Check if we're grabbing only the result of a 'with overflow' intrinsic 3123 // and replace it with a traditional binary instruction. 3124 if (*EV.idx_begin() == 0) { 3125 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 3126 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 3127 // Replace the old instruction's uses with poison. 3128 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); 3129 eraseInstFromFunction(*WO); 3130 return BinaryOperator::Create(BinOp, LHS, RHS); 3131 } 3132 3133 assert(*EV.idx_begin() == 1 && 3134 "unexpected extract index for overflow inst"); 3135 3136 // If only the overflow result is used, and the right hand side is a 3137 // constant (or constant splat), we can remove the intrinsic by directly 3138 // checking for overflow. 3139 const APInt *C; 3140 if (match(WO->getRHS(), m_APInt(C))) { 3141 // Compute the no-wrap range for LHS given RHS=C, then construct an 3142 // equivalent icmp, potentially using an offset. 3143 ConstantRange NWR = 3144 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 3145 WO->getNoWrapKind()); 3146 3147 CmpInst::Predicate Pred; 3148 APInt NewRHSC, Offset; 3149 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 3150 auto *OpTy = WO->getRHS()->getType(); 3151 auto *NewLHS = WO->getLHS(); 3152 if (Offset != 0) 3153 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset)); 3154 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, 3155 ConstantInt::get(OpTy, NewRHSC)); 3156 } 3157 } 3158 } 3159 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 3160 // If the (non-volatile) load only has one use, we can rewrite this to a 3161 // load from a GEP. This reduces the size of the load. If a load is used 3162 // only by extractvalue instructions then this either must have been 3163 // optimized before, or it is a struct with padding, in which case we 3164 // don't want to do the transformation as it loses padding knowledge. 3165 if (L->isSimple() && L->hasOneUse()) { 3166 // extractvalue has integer indices, getelementptr has Value*s. Convert. 3167 SmallVector<Value*, 4> Indices; 3168 // Prefix an i32 0 since we need the first element. 3169 Indices.push_back(Builder.getInt32(0)); 3170 for (unsigned Idx : EV.indices()) 3171 Indices.push_back(Builder.getInt32(Idx)); 3172 3173 // We need to insert these at the location of the old load, not at that of 3174 // the extractvalue. 3175 Builder.SetInsertPoint(L); 3176 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 3177 L->getPointerOperand(), Indices); 3178 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 3179 // Whatever aliasing information we had for the orignal load must also 3180 // hold for the smaller load, so propagate the annotations. 3181 NL->setAAMetadata(L->getAAMetadata()); 3182 // Returning the load directly will cause the main loop to insert it in 3183 // the wrong spot, so use replaceInstUsesWith(). 3184 return replaceInstUsesWith(EV, NL); 3185 } 3186 // We could simplify extracts from other values. Note that nested extracts may 3187 // already be simplified implicitly by the above: extract (extract (insert) ) 3188 // will be translated into extract ( insert ( extract ) ) first and then just 3189 // the value inserted, if appropriate. Similarly for extracts from single-use 3190 // loads: extract (extract (load)) will be translated to extract (load (gep)) 3191 // and if again single-use then via load (gep (gep)) to load (gep). 3192 // However, double extracts from e.g. function arguments or return values 3193 // aren't handled yet. 3194 return nullptr; 3195 } 3196 3197 /// Return 'true' if the given typeinfo will match anything. 3198 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 3199 switch (Personality) { 3200 case EHPersonality::GNU_C: 3201 case EHPersonality::GNU_C_SjLj: 3202 case EHPersonality::Rust: 3203 // The GCC C EH and Rust personality only exists to support cleanups, so 3204 // it's not clear what the semantics of catch clauses are. 3205 return false; 3206 case EHPersonality::Unknown: 3207 return false; 3208 case EHPersonality::GNU_Ada: 3209 // While __gnat_all_others_value will match any Ada exception, it doesn't 3210 // match foreign exceptions (or didn't, before gcc-4.7). 3211 return false; 3212 case EHPersonality::GNU_CXX: 3213 case EHPersonality::GNU_CXX_SjLj: 3214 case EHPersonality::GNU_ObjC: 3215 case EHPersonality::MSVC_X86SEH: 3216 case EHPersonality::MSVC_TableSEH: 3217 case EHPersonality::MSVC_CXX: 3218 case EHPersonality::CoreCLR: 3219 case EHPersonality::Wasm_CXX: 3220 case EHPersonality::XL_CXX: 3221 return TypeInfo->isNullValue(); 3222 } 3223 llvm_unreachable("invalid enum"); 3224 } 3225 3226 static bool shorter_filter(const Value *LHS, const Value *RHS) { 3227 return 3228 cast<ArrayType>(LHS->getType())->getNumElements() 3229 < 3230 cast<ArrayType>(RHS->getType())->getNumElements(); 3231 } 3232 3233 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 3234 // The logic here should be correct for any real-world personality function. 3235 // However if that turns out not to be true, the offending logic can always 3236 // be conditioned on the personality function, like the catch-all logic is. 3237 EHPersonality Personality = 3238 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 3239 3240 // Simplify the list of clauses, eg by removing repeated catch clauses 3241 // (these are often created by inlining). 3242 bool MakeNewInstruction = false; // If true, recreate using the following: 3243 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 3244 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 3245 3246 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 3247 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 3248 bool isLastClause = i + 1 == e; 3249 if (LI.isCatch(i)) { 3250 // A catch clause. 3251 Constant *CatchClause = LI.getClause(i); 3252 Constant *TypeInfo = CatchClause->stripPointerCasts(); 3253 3254 // If we already saw this clause, there is no point in having a second 3255 // copy of it. 3256 if (AlreadyCaught.insert(TypeInfo).second) { 3257 // This catch clause was not already seen. 3258 NewClauses.push_back(CatchClause); 3259 } else { 3260 // Repeated catch clause - drop the redundant copy. 3261 MakeNewInstruction = true; 3262 } 3263 3264 // If this is a catch-all then there is no point in keeping any following 3265 // clauses or marking the landingpad as having a cleanup. 3266 if (isCatchAll(Personality, TypeInfo)) { 3267 if (!isLastClause) 3268 MakeNewInstruction = true; 3269 CleanupFlag = false; 3270 break; 3271 } 3272 } else { 3273 // A filter clause. If any of the filter elements were already caught 3274 // then they can be dropped from the filter. It is tempting to try to 3275 // exploit the filter further by saying that any typeinfo that does not 3276 // occur in the filter can't be caught later (and thus can be dropped). 3277 // However this would be wrong, since typeinfos can match without being 3278 // equal (for example if one represents a C++ class, and the other some 3279 // class derived from it). 3280 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 3281 Constant *FilterClause = LI.getClause(i); 3282 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 3283 unsigned NumTypeInfos = FilterType->getNumElements(); 3284 3285 // An empty filter catches everything, so there is no point in keeping any 3286 // following clauses or marking the landingpad as having a cleanup. By 3287 // dealing with this case here the following code is made a bit simpler. 3288 if (!NumTypeInfos) { 3289 NewClauses.push_back(FilterClause); 3290 if (!isLastClause) 3291 MakeNewInstruction = true; 3292 CleanupFlag = false; 3293 break; 3294 } 3295 3296 bool MakeNewFilter = false; // If true, make a new filter. 3297 SmallVector<Constant *, 16> NewFilterElts; // New elements. 3298 if (isa<ConstantAggregateZero>(FilterClause)) { 3299 // Not an empty filter - it contains at least one null typeinfo. 3300 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 3301 Constant *TypeInfo = 3302 Constant::getNullValue(FilterType->getElementType()); 3303 // If this typeinfo is a catch-all then the filter can never match. 3304 if (isCatchAll(Personality, TypeInfo)) { 3305 // Throw the filter away. 3306 MakeNewInstruction = true; 3307 continue; 3308 } 3309 3310 // There is no point in having multiple copies of this typeinfo, so 3311 // discard all but the first copy if there is more than one. 3312 NewFilterElts.push_back(TypeInfo); 3313 if (NumTypeInfos > 1) 3314 MakeNewFilter = true; 3315 } else { 3316 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 3317 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 3318 NewFilterElts.reserve(NumTypeInfos); 3319 3320 // Remove any filter elements that were already caught or that already 3321 // occurred in the filter. While there, see if any of the elements are 3322 // catch-alls. If so, the filter can be discarded. 3323 bool SawCatchAll = false; 3324 for (unsigned j = 0; j != NumTypeInfos; ++j) { 3325 Constant *Elt = Filter->getOperand(j); 3326 Constant *TypeInfo = Elt->stripPointerCasts(); 3327 if (isCatchAll(Personality, TypeInfo)) { 3328 // This element is a catch-all. Bail out, noting this fact. 3329 SawCatchAll = true; 3330 break; 3331 } 3332 3333 // Even if we've seen a type in a catch clause, we don't want to 3334 // remove it from the filter. An unexpected type handler may be 3335 // set up for a call site which throws an exception of the same 3336 // type caught. In order for the exception thrown by the unexpected 3337 // handler to propagate correctly, the filter must be correctly 3338 // described for the call site. 3339 // 3340 // Example: 3341 // 3342 // void unexpected() { throw 1;} 3343 // void foo() throw (int) { 3344 // std::set_unexpected(unexpected); 3345 // try { 3346 // throw 2.0; 3347 // } catch (int i) {} 3348 // } 3349 3350 // There is no point in having multiple copies of the same typeinfo in 3351 // a filter, so only add it if we didn't already. 3352 if (SeenInFilter.insert(TypeInfo).second) 3353 NewFilterElts.push_back(cast<Constant>(Elt)); 3354 } 3355 // A filter containing a catch-all cannot match anything by definition. 3356 if (SawCatchAll) { 3357 // Throw the filter away. 3358 MakeNewInstruction = true; 3359 continue; 3360 } 3361 3362 // If we dropped something from the filter, make a new one. 3363 if (NewFilterElts.size() < NumTypeInfos) 3364 MakeNewFilter = true; 3365 } 3366 if (MakeNewFilter) { 3367 FilterType = ArrayType::get(FilterType->getElementType(), 3368 NewFilterElts.size()); 3369 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 3370 MakeNewInstruction = true; 3371 } 3372 3373 NewClauses.push_back(FilterClause); 3374 3375 // If the new filter is empty then it will catch everything so there is 3376 // no point in keeping any following clauses or marking the landingpad 3377 // as having a cleanup. The case of the original filter being empty was 3378 // already handled above. 3379 if (MakeNewFilter && !NewFilterElts.size()) { 3380 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3381 CleanupFlag = false; 3382 break; 3383 } 3384 } 3385 } 3386 3387 // If several filters occur in a row then reorder them so that the shortest 3388 // filters come first (those with the smallest number of elements). This is 3389 // advantageous because shorter filters are more likely to match, speeding up 3390 // unwinding, but mostly because it increases the effectiveness of the other 3391 // filter optimizations below. 3392 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3393 unsigned j; 3394 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3395 for (j = i; j != e; ++j) 3396 if (!isa<ArrayType>(NewClauses[j]->getType())) 3397 break; 3398 3399 // Check whether the filters are already sorted by length. We need to know 3400 // if sorting them is actually going to do anything so that we only make a 3401 // new landingpad instruction if it does. 3402 for (unsigned k = i; k + 1 < j; ++k) 3403 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3404 // Not sorted, so sort the filters now. Doing an unstable sort would be 3405 // correct too but reordering filters pointlessly might confuse users. 3406 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3407 shorter_filter); 3408 MakeNewInstruction = true; 3409 break; 3410 } 3411 3412 // Look for the next batch of filters. 3413 i = j + 1; 3414 } 3415 3416 // If typeinfos matched if and only if equal, then the elements of a filter L 3417 // that occurs later than a filter F could be replaced by the intersection of 3418 // the elements of F and L. In reality two typeinfos can match without being 3419 // equal (for example if one represents a C++ class, and the other some class 3420 // derived from it) so it would be wrong to perform this transform in general. 3421 // However the transform is correct and useful if F is a subset of L. In that 3422 // case L can be replaced by F, and thus removed altogether since repeating a 3423 // filter is pointless. So here we look at all pairs of filters F and L where 3424 // L follows F in the list of clauses, and remove L if every element of F is 3425 // an element of L. This can occur when inlining C++ functions with exception 3426 // specifications. 3427 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3428 // Examine each filter in turn. 3429 Value *Filter = NewClauses[i]; 3430 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3431 if (!FTy) 3432 // Not a filter - skip it. 3433 continue; 3434 unsigned FElts = FTy->getNumElements(); 3435 // Examine each filter following this one. Doing this backwards means that 3436 // we don't have to worry about filters disappearing under us when removed. 3437 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3438 Value *LFilter = NewClauses[j]; 3439 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3440 if (!LTy) 3441 // Not a filter - skip it. 3442 continue; 3443 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3444 // an element of LFilter, then discard LFilter. 3445 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3446 // If Filter is empty then it is a subset of LFilter. 3447 if (!FElts) { 3448 // Discard LFilter. 3449 NewClauses.erase(J); 3450 MakeNewInstruction = true; 3451 // Move on to the next filter. 3452 continue; 3453 } 3454 unsigned LElts = LTy->getNumElements(); 3455 // If Filter is longer than LFilter then it cannot be a subset of it. 3456 if (FElts > LElts) 3457 // Move on to the next filter. 3458 continue; 3459 // At this point we know that LFilter has at least one element. 3460 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3461 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3462 // already know that Filter is not longer than LFilter). 3463 if (isa<ConstantAggregateZero>(Filter)) { 3464 assert(FElts <= LElts && "Should have handled this case earlier!"); 3465 // Discard LFilter. 3466 NewClauses.erase(J); 3467 MakeNewInstruction = true; 3468 } 3469 // Move on to the next filter. 3470 continue; 3471 } 3472 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3473 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3474 // Since Filter is non-empty and contains only zeros, it is a subset of 3475 // LFilter iff LFilter contains a zero. 3476 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3477 for (unsigned l = 0; l != LElts; ++l) 3478 if (LArray->getOperand(l)->isNullValue()) { 3479 // LFilter contains a zero - discard it. 3480 NewClauses.erase(J); 3481 MakeNewInstruction = true; 3482 break; 3483 } 3484 // Move on to the next filter. 3485 continue; 3486 } 3487 // At this point we know that both filters are ConstantArrays. Loop over 3488 // operands to see whether every element of Filter is also an element of 3489 // LFilter. Since filters tend to be short this is probably faster than 3490 // using a method that scales nicely. 3491 ConstantArray *FArray = cast<ConstantArray>(Filter); 3492 bool AllFound = true; 3493 for (unsigned f = 0; f != FElts; ++f) { 3494 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3495 AllFound = false; 3496 for (unsigned l = 0; l != LElts; ++l) { 3497 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3498 if (LTypeInfo == FTypeInfo) { 3499 AllFound = true; 3500 break; 3501 } 3502 } 3503 if (!AllFound) 3504 break; 3505 } 3506 if (AllFound) { 3507 // Discard LFilter. 3508 NewClauses.erase(J); 3509 MakeNewInstruction = true; 3510 } 3511 // Move on to the next filter. 3512 } 3513 } 3514 3515 // If we changed any of the clauses, replace the old landingpad instruction 3516 // with a new one. 3517 if (MakeNewInstruction) { 3518 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3519 NewClauses.size()); 3520 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3521 NLI->addClause(NewClauses[i]); 3522 // A landing pad with no clauses must have the cleanup flag set. It is 3523 // theoretically possible, though highly unlikely, that we eliminated all 3524 // clauses. If so, force the cleanup flag to true. 3525 if (NewClauses.empty()) 3526 CleanupFlag = true; 3527 NLI->setCleanup(CleanupFlag); 3528 return NLI; 3529 } 3530 3531 // Even if none of the clauses changed, we may nonetheless have understood 3532 // that the cleanup flag is pointless. Clear it if so. 3533 if (LI.isCleanup() != CleanupFlag) { 3534 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3535 LI.setCleanup(CleanupFlag); 3536 return &LI; 3537 } 3538 3539 return nullptr; 3540 } 3541 3542 Value * 3543 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { 3544 // Try to push freeze through instructions that propagate but don't produce 3545 // poison as far as possible. If an operand of freeze follows three 3546 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one 3547 // guaranteed-non-poison operands then push the freeze through to the one 3548 // operand that is not guaranteed non-poison. The actual transform is as 3549 // follows. 3550 // Op1 = ... ; Op1 can be posion 3551 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have 3552 // ; single guaranteed-non-poison operands 3553 // ... = Freeze(Op0) 3554 // => 3555 // Op1 = ... 3556 // Op1.fr = Freeze(Op1) 3557 // ... = Inst(Op1.fr, NonPoisonOps...) 3558 auto *OrigOp = OrigFI.getOperand(0); 3559 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp); 3560 3561 // While we could change the other users of OrigOp to use freeze(OrigOp), that 3562 // potentially reduces their optimization potential, so let's only do this iff 3563 // the OrigOp is only used by the freeze. 3564 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp)) 3565 return nullptr; 3566 3567 // We can't push the freeze through an instruction which can itself create 3568 // poison. If the only source of new poison is flags, we can simply 3569 // strip them (since we know the only use is the freeze and nothing can 3570 // benefit from them.) 3571 if (canCreateUndefOrPoison(cast<Operator>(OrigOp), /*ConsiderFlags*/ false)) 3572 return nullptr; 3573 3574 // If operand is guaranteed not to be poison, there is no need to add freeze 3575 // to the operand. So we first find the operand that is not guaranteed to be 3576 // poison. 3577 Use *MaybePoisonOperand = nullptr; 3578 for (Use &U : OrigOpInst->operands()) { 3579 if (isGuaranteedNotToBeUndefOrPoison(U.get())) 3580 continue; 3581 if (!MaybePoisonOperand) 3582 MaybePoisonOperand = &U; 3583 else 3584 return nullptr; 3585 } 3586 3587 OrigOpInst->dropPoisonGeneratingFlags(); 3588 3589 // If all operands are guaranteed to be non-poison, we can drop freeze. 3590 if (!MaybePoisonOperand) 3591 return OrigOp; 3592 3593 auto *FrozenMaybePoisonOperand = new FreezeInst( 3594 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); 3595 3596 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); 3597 FrozenMaybePoisonOperand->insertBefore(OrigOpInst); 3598 return OrigOp; 3599 } 3600 3601 bool InstCombinerImpl::freezeDominatedUses(FreezeInst &FI) { 3602 Value *Op = FI.getOperand(0); 3603 3604 if (isa<Constant>(Op)) 3605 return false; 3606 3607 bool Changed = false; 3608 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { 3609 bool Dominates = DT.dominates(&FI, U); 3610 Changed |= Dominates; 3611 return Dominates; 3612 }); 3613 3614 return Changed; 3615 } 3616 3617 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 3618 Value *Op0 = I.getOperand(0); 3619 3620 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3621 return replaceInstUsesWith(I, V); 3622 3623 // freeze (phi const, x) --> phi const, (freeze x) 3624 if (auto *PN = dyn_cast<PHINode>(Op0)) { 3625 if (Instruction *NV = foldOpIntoPhi(I, PN)) 3626 return NV; 3627 } 3628 3629 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) 3630 return replaceInstUsesWith(I, NI); 3631 3632 if (match(Op0, m_Undef())) { 3633 // If I is freeze(undef), see its uses and fold it to the best constant. 3634 // - or: pick -1 3635 // - select's condition: pick the value that leads to choosing a constant 3636 // - other ops: pick 0 3637 Constant *BestValue = nullptr; 3638 Constant *NullValue = Constant::getNullValue(I.getType()); 3639 for (const auto *U : I.users()) { 3640 Constant *C = NullValue; 3641 3642 if (match(U, m_Or(m_Value(), m_Value()))) 3643 C = Constant::getAllOnesValue(I.getType()); 3644 else if (const auto *SI = dyn_cast<SelectInst>(U)) { 3645 if (SI->getCondition() == &I) { 3646 APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1); 3647 C = Constant::getIntegerValue(I.getType(), CondVal); 3648 } 3649 } 3650 3651 if (!BestValue) 3652 BestValue = C; 3653 else if (BestValue != C) 3654 BestValue = NullValue; 3655 } 3656 3657 return replaceInstUsesWith(I, BestValue); 3658 } 3659 3660 // Replace all dominated uses of Op to freeze(Op). 3661 if (freezeDominatedUses(I)) 3662 return &I; 3663 3664 return nullptr; 3665 } 3666 3667 /// Try to move the specified instruction from its current block into the 3668 /// beginning of DestBlock, which can only happen if it's safe to move the 3669 /// instruction past all of the instructions between it and the end of its 3670 /// block. 3671 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 3672 assert(I->getUniqueUndroppableUser() && "Invariants didn't hold!"); 3673 BasicBlock *SrcBlock = I->getParent(); 3674 3675 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3676 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 3677 I->isTerminator()) 3678 return false; 3679 3680 // Do not sink static or dynamic alloca instructions. Static allocas must 3681 // remain in the entry block, and dynamic allocas must not be sunk in between 3682 // a stacksave / stackrestore pair, which would incorrectly shorten its 3683 // lifetime. 3684 if (isa<AllocaInst>(I)) 3685 return false; 3686 3687 // Do not sink into catchswitch blocks. 3688 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 3689 return false; 3690 3691 // Do not sink convergent call instructions. 3692 if (auto *CI = dyn_cast<CallInst>(I)) { 3693 if (CI->isConvergent()) 3694 return false; 3695 } 3696 // We can only sink load instructions if there is nothing between the load and 3697 // the end of block that could change the value. 3698 if (I->mayReadFromMemory()) { 3699 // We don't want to do any sophisticated alias analysis, so we only check 3700 // the instructions after I in I's parent block if we try to sink to its 3701 // successor block. 3702 if (DestBlock->getUniquePredecessor() != I->getParent()) 3703 return false; 3704 for (BasicBlock::iterator Scan = I->getIterator(), 3705 E = I->getParent()->end(); 3706 Scan != E; ++Scan) 3707 if (Scan->mayWriteToMemory()) 3708 return false; 3709 } 3710 3711 I->dropDroppableUses([DestBlock](const Use *U) { 3712 if (auto *I = dyn_cast<Instruction>(U->getUser())) 3713 return I->getParent() != DestBlock; 3714 return true; 3715 }); 3716 /// FIXME: We could remove droppable uses that are not dominated by 3717 /// the new position. 3718 3719 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 3720 I->moveBefore(&*InsertPos); 3721 ++NumSunkInst; 3722 3723 // Also sink all related debug uses from the source basic block. Otherwise we 3724 // get debug use before the def. Attempt to salvage debug uses first, to 3725 // maximise the range variables have location for. If we cannot salvage, then 3726 // mark the location undef: we know it was supposed to receive a new location 3727 // here, but that computation has been sunk. 3728 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 3729 findDbgUsers(DbgUsers, I); 3730 // Process the sinking DbgUsers in reverse order, as we only want to clone the 3731 // last appearing debug intrinsic for each given variable. 3732 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 3733 for (DbgVariableIntrinsic *DVI : DbgUsers) 3734 if (DVI->getParent() == SrcBlock) 3735 DbgUsersToSink.push_back(DVI); 3736 llvm::sort(DbgUsersToSink, 3737 [](auto *A, auto *B) { return B->comesBefore(A); }); 3738 3739 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 3740 SmallSet<DebugVariable, 4> SunkVariables; 3741 for (auto User : DbgUsersToSink) { 3742 // A dbg.declare instruction should not be cloned, since there can only be 3743 // one per variable fragment. It should be left in the original place 3744 // because the sunk instruction is not an alloca (otherwise we could not be 3745 // here). 3746 if (isa<DbgDeclareInst>(User)) 3747 continue; 3748 3749 DebugVariable DbgUserVariable = 3750 DebugVariable(User->getVariable(), User->getExpression(), 3751 User->getDebugLoc()->getInlinedAt()); 3752 3753 if (!SunkVariables.insert(DbgUserVariable).second) 3754 continue; 3755 3756 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 3757 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 3758 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 3759 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 3760 } 3761 3762 // Perform salvaging without the clones, then sink the clones. 3763 if (!DIIClones.empty()) { 3764 salvageDebugInfoForDbgValues(*I, DbgUsers); 3765 // The clones are in reverse order of original appearance, reverse again to 3766 // maintain the original order. 3767 for (auto &DIIClone : llvm::reverse(DIIClones)) { 3768 DIIClone->insertBefore(&*InsertPos); 3769 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 3770 } 3771 } 3772 3773 return true; 3774 } 3775 3776 bool InstCombinerImpl::run() { 3777 while (!Worklist.isEmpty()) { 3778 // Walk deferred instructions in reverse order, and push them to the 3779 // worklist, which means they'll end up popped from the worklist in-order. 3780 while (Instruction *I = Worklist.popDeferred()) { 3781 // Check to see if we can DCE the instruction. We do this already here to 3782 // reduce the number of uses and thus allow other folds to trigger. 3783 // Note that eraseInstFromFunction() may push additional instructions on 3784 // the deferred worklist, so this will DCE whole instruction chains. 3785 if (isInstructionTriviallyDead(I, &TLI)) { 3786 eraseInstFromFunction(*I); 3787 ++NumDeadInst; 3788 continue; 3789 } 3790 3791 Worklist.push(I); 3792 } 3793 3794 Instruction *I = Worklist.removeOne(); 3795 if (I == nullptr) continue; // skip null values. 3796 3797 // Check to see if we can DCE the instruction. 3798 if (isInstructionTriviallyDead(I, &TLI)) { 3799 eraseInstFromFunction(*I); 3800 ++NumDeadInst; 3801 continue; 3802 } 3803 3804 if (!DebugCounter::shouldExecute(VisitCounter)) 3805 continue; 3806 3807 // Instruction isn't dead, see if we can constant propagate it. 3808 if (!I->use_empty() && 3809 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 3810 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 3811 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 3812 << '\n'); 3813 3814 // Add operands to the worklist. 3815 replaceInstUsesWith(*I, C); 3816 ++NumConstProp; 3817 if (isInstructionTriviallyDead(I, &TLI)) 3818 eraseInstFromFunction(*I); 3819 MadeIRChange = true; 3820 continue; 3821 } 3822 } 3823 3824 // See if we can trivially sink this instruction to its user if we can 3825 // prove that the successor is not executed more frequently than our block. 3826 // Return the UserBlock if successful. 3827 auto getOptionalSinkBlockForInst = 3828 [this](Instruction *I) -> Optional<BasicBlock *> { 3829 if (!EnableCodeSinking) 3830 return None; 3831 auto *UserInst = cast_or_null<Instruction>(I->getUniqueUndroppableUser()); 3832 if (!UserInst) 3833 return None; 3834 3835 BasicBlock *BB = I->getParent(); 3836 BasicBlock *UserParent = nullptr; 3837 3838 // Special handling for Phi nodes - get the block the use occurs in. 3839 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) { 3840 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 3841 if (PN->getIncomingValue(i) == I) { 3842 // Bail out if we have uses in different blocks. We don't do any 3843 // sophisticated analysis (i.e finding NearestCommonDominator of these 3844 // use blocks). 3845 if (UserParent && UserParent != PN->getIncomingBlock(i)) 3846 return None; 3847 UserParent = PN->getIncomingBlock(i); 3848 } 3849 } 3850 assert(UserParent && "expected to find user block!"); 3851 } else 3852 UserParent = UserInst->getParent(); 3853 3854 // Try sinking to another block. If that block is unreachable, then do 3855 // not bother. SimplifyCFG should handle it. 3856 if (UserParent == BB || !DT.isReachableFromEntry(UserParent)) 3857 return None; 3858 3859 auto *Term = UserParent->getTerminator(); 3860 // See if the user is one of our successors that has only one 3861 // predecessor, so that we don't have to split the critical edge. 3862 // Another option where we can sink is a block that ends with a 3863 // terminator that does not pass control to other block (such as 3864 // return or unreachable). In this case: 3865 // - I dominates the User (by SSA form); 3866 // - the User will be executed at most once. 3867 // So sinking I down to User is always profitable or neutral. 3868 if (UserParent->getUniquePredecessor() == BB || 3869 (isa<ReturnInst>(Term) || isa<UnreachableInst>(Term))) { 3870 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?"); 3871 return UserParent; 3872 } 3873 return None; 3874 }; 3875 3876 auto OptBB = getOptionalSinkBlockForInst(I); 3877 if (OptBB) { 3878 auto *UserParent = *OptBB; 3879 // Okay, the CFG is simple enough, try to sink this instruction. 3880 if (TryToSinkInstruction(I, UserParent)) { 3881 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3882 MadeIRChange = true; 3883 // We'll add uses of the sunk instruction below, but since 3884 // sinking can expose opportunities for it's *operands* add 3885 // them to the worklist 3886 for (Use &U : I->operands()) 3887 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3888 Worklist.push(OpI); 3889 } 3890 } 3891 3892 // Now that we have an instruction, try combining it to simplify it. 3893 Builder.SetInsertPoint(I); 3894 Builder.CollectMetadataToCopy( 3895 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 3896 3897 #ifndef NDEBUG 3898 std::string OrigI; 3899 #endif 3900 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 3901 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 3902 3903 if (Instruction *Result = visit(*I)) { 3904 ++NumCombined; 3905 // Should we replace the old instruction with a new one? 3906 if (Result != I) { 3907 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 3908 << " New = " << *Result << '\n'); 3909 3910 Result->copyMetadata(*I, 3911 {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 3912 // Everything uses the new instruction now. 3913 I->replaceAllUsesWith(Result); 3914 3915 // Move the name to the new instruction first. 3916 Result->takeName(I); 3917 3918 // Insert the new instruction into the basic block... 3919 BasicBlock *InstParent = I->getParent(); 3920 BasicBlock::iterator InsertPos = I->getIterator(); 3921 3922 // Are we replace a PHI with something that isn't a PHI, or vice versa? 3923 if (isa<PHINode>(Result) != isa<PHINode>(I)) { 3924 // We need to fix up the insertion point. 3925 if (isa<PHINode>(I)) // PHI -> Non-PHI 3926 InsertPos = InstParent->getFirstInsertionPt(); 3927 else // Non-PHI -> PHI 3928 InsertPos = InstParent->getFirstNonPHI()->getIterator(); 3929 } 3930 3931 InstParent->getInstList().insert(InsertPos, Result); 3932 3933 // Push the new instruction and any users onto the worklist. 3934 Worklist.pushUsersToWorkList(*Result); 3935 Worklist.push(Result); 3936 3937 eraseInstFromFunction(*I); 3938 } else { 3939 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3940 << " New = " << *I << '\n'); 3941 3942 // If the instruction was modified, it's possible that it is now dead. 3943 // if so, remove it. 3944 if (isInstructionTriviallyDead(I, &TLI)) { 3945 eraseInstFromFunction(*I); 3946 } else { 3947 Worklist.pushUsersToWorkList(*I); 3948 Worklist.push(I); 3949 } 3950 } 3951 MadeIRChange = true; 3952 } 3953 } 3954 3955 Worklist.zap(); 3956 return MadeIRChange; 3957 } 3958 3959 // Track the scopes used by !alias.scope and !noalias. In a function, a 3960 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 3961 // by both sets. If not, the declaration of the scope can be safely omitted. 3962 // The MDNode of the scope can be omitted as well for the instructions that are 3963 // part of this function. We do not do that at this point, as this might become 3964 // too time consuming to do. 3965 class AliasScopeTracker { 3966 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 3967 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 3968 3969 public: 3970 void analyse(Instruction *I) { 3971 // This seems to be faster than checking 'mayReadOrWriteMemory()'. 3972 if (!I->hasMetadataOtherThanDebugLoc()) 3973 return; 3974 3975 auto Track = [](Metadata *ScopeList, auto &Container) { 3976 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 3977 if (!MDScopeList || !Container.insert(MDScopeList).second) 3978 return; 3979 for (auto &MDOperand : MDScopeList->operands()) 3980 if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 3981 Container.insert(MDScope); 3982 }; 3983 3984 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 3985 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 3986 } 3987 3988 bool isNoAliasScopeDeclDead(Instruction *Inst) { 3989 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 3990 if (!Decl) 3991 return false; 3992 3993 assert(Decl->use_empty() && 3994 "llvm.experimental.noalias.scope.decl in use ?"); 3995 const MDNode *MDSL = Decl->getScopeList(); 3996 assert(MDSL->getNumOperands() == 1 && 3997 "llvm.experimental.noalias.scope should refer to a single scope"); 3998 auto &MDOperand = MDSL->getOperand(0); 3999 if (auto *MD = dyn_cast<MDNode>(MDOperand)) 4000 return !UsedAliasScopesAndLists.contains(MD) || 4001 !UsedNoAliasScopesAndLists.contains(MD); 4002 4003 // Not an MDNode ? throw away. 4004 return true; 4005 } 4006 }; 4007 4008 /// Populate the IC worklist from a function, by walking it in depth-first 4009 /// order and adding all reachable code to the worklist. 4010 /// 4011 /// This has a couple of tricks to make the code faster and more powerful. In 4012 /// particular, we constant fold and DCE instructions as we go, to avoid adding 4013 /// them to the worklist (this significantly speeds up instcombine on code where 4014 /// many instructions are dead or constant). Additionally, if we find a branch 4015 /// whose condition is a known constant, we only visit the reachable successors. 4016 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 4017 const TargetLibraryInfo *TLI, 4018 InstructionWorklist &ICWorklist) { 4019 bool MadeIRChange = false; 4020 SmallPtrSet<BasicBlock *, 32> Visited; 4021 SmallVector<BasicBlock*, 256> Worklist; 4022 Worklist.push_back(&F.front()); 4023 4024 SmallVector<Instruction *, 128> InstrsForInstructionWorklist; 4025 DenseMap<Constant *, Constant *> FoldedConstants; 4026 AliasScopeTracker SeenAliasScopes; 4027 4028 do { 4029 BasicBlock *BB = Worklist.pop_back_val(); 4030 4031 // We have now visited this block! If we've already been here, ignore it. 4032 if (!Visited.insert(BB).second) 4033 continue; 4034 4035 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 4036 // ConstantProp instruction if trivially constant. 4037 if (!Inst.use_empty() && 4038 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0)))) 4039 if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) { 4040 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst 4041 << '\n'); 4042 Inst.replaceAllUsesWith(C); 4043 ++NumConstProp; 4044 if (isInstructionTriviallyDead(&Inst, TLI)) 4045 Inst.eraseFromParent(); 4046 MadeIRChange = true; 4047 continue; 4048 } 4049 4050 // See if we can constant fold its operands. 4051 for (Use &U : Inst.operands()) { 4052 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 4053 continue; 4054 4055 auto *C = cast<Constant>(U); 4056 Constant *&FoldRes = FoldedConstants[C]; 4057 if (!FoldRes) 4058 FoldRes = ConstantFoldConstant(C, DL, TLI); 4059 4060 if (FoldRes != C) { 4061 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst 4062 << "\n Old = " << *C 4063 << "\n New = " << *FoldRes << '\n'); 4064 U = FoldRes; 4065 MadeIRChange = true; 4066 } 4067 } 4068 4069 // Skip processing debug and pseudo intrinsics in InstCombine. Processing 4070 // these call instructions consumes non-trivial amount of time and 4071 // provides no value for the optimization. 4072 if (!Inst.isDebugOrPseudoInst()) { 4073 InstrsForInstructionWorklist.push_back(&Inst); 4074 SeenAliasScopes.analyse(&Inst); 4075 } 4076 } 4077 4078 // Recursively visit successors. If this is a branch or switch on a 4079 // constant, only visit the reachable successor. 4080 Instruction *TI = BB->getTerminator(); 4081 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 4082 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 4083 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 4084 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 4085 Worklist.push_back(ReachableBB); 4086 continue; 4087 } 4088 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 4089 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 4090 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 4091 continue; 4092 } 4093 } 4094 4095 append_range(Worklist, successors(TI)); 4096 } while (!Worklist.empty()); 4097 4098 // Remove instructions inside unreachable blocks. This prevents the 4099 // instcombine code from having to deal with some bad special cases, and 4100 // reduces use counts of instructions. 4101 for (BasicBlock &BB : F) { 4102 if (Visited.count(&BB)) 4103 continue; 4104 4105 unsigned NumDeadInstInBB; 4106 unsigned NumDeadDbgInstInBB; 4107 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 4108 removeAllNonTerminatorAndEHPadInstructions(&BB); 4109 4110 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 4111 NumDeadInst += NumDeadInstInBB; 4112 } 4113 4114 // Once we've found all of the instructions to add to instcombine's worklist, 4115 // add them in reverse order. This way instcombine will visit from the top 4116 // of the function down. This jives well with the way that it adds all uses 4117 // of instructions to the worklist after doing a transformation, thus avoiding 4118 // some N^2 behavior in pathological cases. 4119 ICWorklist.reserve(InstrsForInstructionWorklist.size()); 4120 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) { 4121 // DCE instruction if trivially dead. As we iterate in reverse program 4122 // order here, we will clean up whole chains of dead instructions. 4123 if (isInstructionTriviallyDead(Inst, TLI) || 4124 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 4125 ++NumDeadInst; 4126 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 4127 salvageDebugInfo(*Inst); 4128 Inst->eraseFromParent(); 4129 MadeIRChange = true; 4130 continue; 4131 } 4132 4133 ICWorklist.push(Inst); 4134 } 4135 4136 return MadeIRChange; 4137 } 4138 4139 static bool combineInstructionsOverFunction( 4140 Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, 4141 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 4142 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 4143 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) { 4144 auto &DL = F.getParent()->getDataLayout(); 4145 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 4146 4147 /// Builder - This is an IRBuilder that automatically inserts new 4148 /// instructions into the worklist when they are created. 4149 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 4150 F.getContext(), TargetFolder(DL), 4151 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 4152 Worklist.add(I); 4153 if (auto *Assume = dyn_cast<AssumeInst>(I)) 4154 AC.registerAssumption(Assume); 4155 })); 4156 4157 // Lower dbg.declare intrinsics otherwise their value may be clobbered 4158 // by instcombiner. 4159 bool MadeIRChange = false; 4160 if (ShouldLowerDbgDeclare) 4161 MadeIRChange = LowerDbgDeclare(F); 4162 4163 // Iterate while there is work to do. 4164 unsigned Iteration = 0; 4165 while (true) { 4166 ++NumWorklistIterations; 4167 ++Iteration; 4168 4169 if (Iteration > InfiniteLoopDetectionThreshold) { 4170 report_fatal_error( 4171 "Instruction Combining seems stuck in an infinite loop after " + 4172 Twine(InfiniteLoopDetectionThreshold) + " iterations."); 4173 } 4174 4175 if (Iteration > MaxIterations) { 4176 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 4177 << " on " << F.getName() 4178 << " reached; stopping before reaching a fixpoint\n"); 4179 break; 4180 } 4181 4182 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 4183 << F.getName() << "\n"); 4184 4185 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 4186 4187 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 4188 ORE, BFI, PSI, DL, LI); 4189 IC.MaxArraySizeForCombine = MaxArraySize; 4190 4191 if (!IC.run()) 4192 break; 4193 4194 MadeIRChange = true; 4195 } 4196 4197 return MadeIRChange; 4198 } 4199 4200 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {} 4201 4202 InstCombinePass::InstCombinePass(unsigned MaxIterations) 4203 : MaxIterations(MaxIterations) {} 4204 4205 PreservedAnalyses InstCombinePass::run(Function &F, 4206 FunctionAnalysisManager &AM) { 4207 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4208 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4209 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4210 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4211 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 4212 4213 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 4214 4215 auto *AA = &AM.getResult<AAManager>(F); 4216 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 4217 ProfileSummaryInfo *PSI = 4218 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 4219 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 4220 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 4221 4222 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4223 BFI, PSI, MaxIterations, LI)) 4224 // No changes, all analyses are preserved. 4225 return PreservedAnalyses::all(); 4226 4227 // Mark all the analyses that instcombine updates as preserved. 4228 PreservedAnalyses PA; 4229 PA.preserveSet<CFGAnalyses>(); 4230 return PA; 4231 } 4232 4233 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 4234 AU.setPreservesCFG(); 4235 AU.addRequired<AAResultsWrapperPass>(); 4236 AU.addRequired<AssumptionCacheTracker>(); 4237 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4238 AU.addRequired<TargetTransformInfoWrapperPass>(); 4239 AU.addRequired<DominatorTreeWrapperPass>(); 4240 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4241 AU.addPreserved<DominatorTreeWrapperPass>(); 4242 AU.addPreserved<AAResultsWrapperPass>(); 4243 AU.addPreserved<BasicAAWrapperPass>(); 4244 AU.addPreserved<GlobalsAAWrapperPass>(); 4245 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 4246 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 4247 } 4248 4249 bool InstructionCombiningPass::runOnFunction(Function &F) { 4250 if (skipFunction(F)) 4251 return false; 4252 4253 // Required analyses. 4254 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4255 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4256 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 4257 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4258 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4259 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4260 4261 // Optional analyses. 4262 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 4263 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 4264 ProfileSummaryInfo *PSI = 4265 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 4266 BlockFrequencyInfo *BFI = 4267 (PSI && PSI->hasProfileSummary()) ? 4268 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 4269 nullptr; 4270 4271 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4272 BFI, PSI, MaxIterations, LI); 4273 } 4274 4275 char InstructionCombiningPass::ID = 0; 4276 4277 InstructionCombiningPass::InstructionCombiningPass() 4278 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) { 4279 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4280 } 4281 4282 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations) 4283 : FunctionPass(ID), MaxIterations(MaxIterations) { 4284 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4285 } 4286 4287 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 4288 "Combine redundant instructions", false, false) 4289 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4290 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4291 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4292 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4293 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4294 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4295 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 4296 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 4297 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 4298 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 4299 "Combine redundant instructions", false, false) 4300 4301 // Initialization Routines 4302 void llvm::initializeInstCombine(PassRegistry &Registry) { 4303 initializeInstructionCombiningPassPass(Registry); 4304 } 4305 4306 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 4307 initializeInstructionCombiningPassPass(*unwrap(R)); 4308 } 4309 4310 FunctionPass *llvm::createInstructionCombiningPass() { 4311 return new InstructionCombiningPass(); 4312 } 4313 4314 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) { 4315 return new InstructionCombiningPass(MaxIterations); 4316 } 4317 4318 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 4319 unwrap(PM)->add(createInstructionCombiningPass()); 4320 } 4321