1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions.  This pass does not modify the CFG.  This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 //    %Y = add i32 %X, 1
15 //    %Z = add i32 %Y, 1
16 // into:
17 //    %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 //    1. If a binary operator has a constant operand, it is moved to the RHS
24 //    2. Bitwise operators with constant operands are always grouped so that
25 //       shifts are performed first, then or's, then and's, then xor's.
26 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 //    4. All cmp instructions on boolean values are replaced with logical ops
28 //    5. add X, X is represented as (X*2) => (X << 1)
29 //    6. Multiplies with a power-of-two constant argument are transformed into
30 //       shifts.
31 //   ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BlockFrequencyInfo.h"
50 #include "llvm/Analysis/CFG.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/EHPersonalities.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/MemoryBuiltins.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ProfileSummaryInfo.h"
60 #include "llvm/Analysis/TargetFolder.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/Analysis/VectorUtils.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DIBuilder.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GetElementPtrTypeIterator.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LegacyPassManager.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PassManager.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/Use.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/IR/ValueHandle.h"
91 #include "llvm/InitializePasses.h"
92 #include "llvm/Pass.h"
93 #include "llvm/Support/CBindingWrapping.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/DebugCounter.h"
99 #include "llvm/Support/ErrorHandling.h"
100 #include "llvm/Support/KnownBits.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Transforms/InstCombine/InstCombine.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstdint>
107 #include <memory>
108 #include <string>
109 #include <utility>
110 
111 #define DEBUG_TYPE "instcombine"
112 #include "llvm/Transforms/Utils/InstructionWorklist.h"
113 
114 using namespace llvm;
115 using namespace llvm::PatternMatch;
116 
117 STATISTIC(NumWorklistIterations,
118           "Number of instruction combining iterations performed");
119 
120 STATISTIC(NumCombined , "Number of insts combined");
121 STATISTIC(NumConstProp, "Number of constant folds");
122 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
123 STATISTIC(NumSunkInst , "Number of instructions sunk");
124 STATISTIC(NumExpand,    "Number of expansions");
125 STATISTIC(NumFactor   , "Number of factorizations");
126 STATISTIC(NumReassoc  , "Number of reassociations");
127 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
128               "Controls which instructions are visited");
129 
130 // FIXME: these limits eventually should be as low as 2.
131 static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
132 #ifndef NDEBUG
133 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100;
134 #else
135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
136 #endif
137 
138 static cl::opt<bool>
139 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
140                                               cl::init(true));
141 
142 static cl::opt<unsigned> LimitMaxIterations(
143     "instcombine-max-iterations",
144     cl::desc("Limit the maximum number of instruction combining iterations"),
145     cl::init(InstCombineDefaultMaxIterations));
146 
147 static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
148     "instcombine-infinite-loop-threshold",
149     cl::desc("Number of instruction combining iterations considered an "
150              "infinite loop"),
151     cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
152 
153 static cl::opt<unsigned>
154 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
155              cl::desc("Maximum array size considered when doing a combine"));
156 
157 // FIXME: Remove this flag when it is no longer necessary to convert
158 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
159 // increases variable availability at the cost of accuracy. Variables that
160 // cannot be promoted by mem2reg or SROA will be described as living in memory
161 // for their entire lifetime. However, passes like DSE and instcombine can
162 // delete stores to the alloca, leading to misleading and inaccurate debug
163 // information. This flag can be removed when those passes are fixed.
164 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
165                                                cl::Hidden, cl::init(true));
166 
167 Optional<Instruction *>
168 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
169   // Handle target specific intrinsics
170   if (II.getCalledFunction()->isTargetIntrinsic()) {
171     return TTI.instCombineIntrinsic(*this, II);
172   }
173   return None;
174 }
175 
176 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
177     IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
178     bool &KnownBitsComputed) {
179   // Handle target specific intrinsics
180   if (II.getCalledFunction()->isTargetIntrinsic()) {
181     return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
182                                                 KnownBitsComputed);
183   }
184   return None;
185 }
186 
187 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
188     IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2,
189     APInt &UndefElts3,
190     std::function<void(Instruction *, unsigned, APInt, APInt &)>
191         SimplifyAndSetOp) {
192   // Handle target specific intrinsics
193   if (II.getCalledFunction()->isTargetIntrinsic()) {
194     return TTI.simplifyDemandedVectorEltsIntrinsic(
195         *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
196         SimplifyAndSetOp);
197   }
198   return None;
199 }
200 
201 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
202   return llvm::EmitGEPOffset(&Builder, DL, GEP);
203 }
204 
205 /// Legal integers and common types are considered desirable. This is used to
206 /// avoid creating instructions with types that may not be supported well by the
207 /// the backend.
208 /// NOTE: This treats i8, i16 and i32 specially because they are common
209 ///       types in frontend languages.
210 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const {
211   switch (BitWidth) {
212   case 8:
213   case 16:
214   case 32:
215     return true;
216   default:
217     return DL.isLegalInteger(BitWidth);
218   }
219 }
220 
221 /// Return true if it is desirable to convert an integer computation from a
222 /// given bit width to a new bit width.
223 /// We don't want to convert from a legal to an illegal type or from a smaller
224 /// to a larger illegal type. A width of '1' is always treated as a desirable
225 /// type because i1 is a fundamental type in IR, and there are many specialized
226 /// optimizations for i1 types. Common/desirable widths are equally treated as
227 /// legal to convert to, in order to open up more combining opportunities.
228 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
229                                         unsigned ToWidth) const {
230   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
231   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
232 
233   // Convert to desirable widths even if they are not legal types.
234   // Only shrink types, to prevent infinite loops.
235   if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
236     return true;
237 
238   // If this is a legal integer from type, and the result would be an illegal
239   // type, don't do the transformation.
240   if (FromLegal && !ToLegal)
241     return false;
242 
243   // Otherwise, if both are illegal, do not increase the size of the result. We
244   // do allow things like i160 -> i64, but not i64 -> i160.
245   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
246     return false;
247 
248   return true;
249 }
250 
251 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
252 /// We don't want to convert from a legal to an illegal type or from a smaller
253 /// to a larger illegal type. i1 is always treated as a legal type because it is
254 /// a fundamental type in IR, and there are many specialized optimizations for
255 /// i1 types.
256 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
257   // TODO: This could be extended to allow vectors. Datalayout changes might be
258   // needed to properly support that.
259   if (!From->isIntegerTy() || !To->isIntegerTy())
260     return false;
261 
262   unsigned FromWidth = From->getPrimitiveSizeInBits();
263   unsigned ToWidth = To->getPrimitiveSizeInBits();
264   return shouldChangeType(FromWidth, ToWidth);
265 }
266 
267 // Return true, if No Signed Wrap should be maintained for I.
268 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
269 // where both B and C should be ConstantInts, results in a constant that does
270 // not overflow. This function only handles the Add and Sub opcodes. For
271 // all other opcodes, the function conservatively returns false.
272 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
273   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
274   if (!OBO || !OBO->hasNoSignedWrap())
275     return false;
276 
277   // We reason about Add and Sub Only.
278   Instruction::BinaryOps Opcode = I.getOpcode();
279   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
280     return false;
281 
282   const APInt *BVal, *CVal;
283   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
284     return false;
285 
286   bool Overflow = false;
287   if (Opcode == Instruction::Add)
288     (void)BVal->sadd_ov(*CVal, Overflow);
289   else
290     (void)BVal->ssub_ov(*CVal, Overflow);
291 
292   return !Overflow;
293 }
294 
295 static bool hasNoUnsignedWrap(BinaryOperator &I) {
296   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
297   return OBO && OBO->hasNoUnsignedWrap();
298 }
299 
300 static bool hasNoSignedWrap(BinaryOperator &I) {
301   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
302   return OBO && OBO->hasNoSignedWrap();
303 }
304 
305 /// Conservatively clears subclassOptionalData after a reassociation or
306 /// commutation. We preserve fast-math flags when applicable as they can be
307 /// preserved.
308 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
309   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
310   if (!FPMO) {
311     I.clearSubclassOptionalData();
312     return;
313   }
314 
315   FastMathFlags FMF = I.getFastMathFlags();
316   I.clearSubclassOptionalData();
317   I.setFastMathFlags(FMF);
318 }
319 
320 /// Combine constant operands of associative operations either before or after a
321 /// cast to eliminate one of the associative operations:
322 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
323 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
324 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
325                                    InstCombinerImpl &IC) {
326   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
327   if (!Cast || !Cast->hasOneUse())
328     return false;
329 
330   // TODO: Enhance logic for other casts and remove this check.
331   auto CastOpcode = Cast->getOpcode();
332   if (CastOpcode != Instruction::ZExt)
333     return false;
334 
335   // TODO: Enhance logic for other BinOps and remove this check.
336   if (!BinOp1->isBitwiseLogicOp())
337     return false;
338 
339   auto AssocOpcode = BinOp1->getOpcode();
340   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
341   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
342     return false;
343 
344   Constant *C1, *C2;
345   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
346       !match(BinOp2->getOperand(1), m_Constant(C2)))
347     return false;
348 
349   // TODO: This assumes a zext cast.
350   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
351   // to the destination type might lose bits.
352 
353   // Fold the constants together in the destination type:
354   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
355   Type *DestTy = C1->getType();
356   Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
357   Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
358   IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
359   IC.replaceOperand(*BinOp1, 1, FoldedC);
360   return true;
361 }
362 
363 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast.
364 // inttoptr ( ptrtoint (x) ) --> x
365 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
366   auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
367   if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) ==
368                       DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
369     auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
370     Type *CastTy = IntToPtr->getDestTy();
371     if (PtrToInt &&
372         CastTy->getPointerAddressSpace() ==
373             PtrToInt->getSrcTy()->getPointerAddressSpace() &&
374         DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) ==
375             DL.getTypeSizeInBits(PtrToInt->getDestTy())) {
376       return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy,
377                                               "", PtrToInt);
378     }
379   }
380   return nullptr;
381 }
382 
383 /// This performs a few simplifications for operators that are associative or
384 /// commutative:
385 ///
386 ///  Commutative operators:
387 ///
388 ///  1. Order operands such that they are listed from right (least complex) to
389 ///     left (most complex).  This puts constants before unary operators before
390 ///     binary operators.
391 ///
392 ///  Associative operators:
393 ///
394 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
395 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
396 ///
397 ///  Associative and commutative operators:
398 ///
399 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
400 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
401 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
402 ///     if C1 and C2 are constants.
403 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
404   Instruction::BinaryOps Opcode = I.getOpcode();
405   bool Changed = false;
406 
407   do {
408     // Order operands such that they are listed from right (least complex) to
409     // left (most complex).  This puts constants before unary operators before
410     // binary operators.
411     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
412         getComplexity(I.getOperand(1)))
413       Changed = !I.swapOperands();
414 
415     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
416     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
417 
418     if (I.isAssociative()) {
419       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
420       if (Op0 && Op0->getOpcode() == Opcode) {
421         Value *A = Op0->getOperand(0);
422         Value *B = Op0->getOperand(1);
423         Value *C = I.getOperand(1);
424 
425         // Does "B op C" simplify?
426         if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
427           // It simplifies to V.  Form "A op V".
428           replaceOperand(I, 0, A);
429           replaceOperand(I, 1, V);
430           bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
431           bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
432 
433           // Conservatively clear all optional flags since they may not be
434           // preserved by the reassociation. Reset nsw/nuw based on the above
435           // analysis.
436           ClearSubclassDataAfterReassociation(I);
437 
438           // Note: this is only valid because SimplifyBinOp doesn't look at
439           // the operands to Op0.
440           if (IsNUW)
441             I.setHasNoUnsignedWrap(true);
442 
443           if (IsNSW)
444             I.setHasNoSignedWrap(true);
445 
446           Changed = true;
447           ++NumReassoc;
448           continue;
449         }
450       }
451 
452       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
453       if (Op1 && Op1->getOpcode() == Opcode) {
454         Value *A = I.getOperand(0);
455         Value *B = Op1->getOperand(0);
456         Value *C = Op1->getOperand(1);
457 
458         // Does "A op B" simplify?
459         if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
460           // It simplifies to V.  Form "V op C".
461           replaceOperand(I, 0, V);
462           replaceOperand(I, 1, C);
463           // Conservatively clear the optional flags, since they may not be
464           // preserved by the reassociation.
465           ClearSubclassDataAfterReassociation(I);
466           Changed = true;
467           ++NumReassoc;
468           continue;
469         }
470       }
471     }
472 
473     if (I.isAssociative() && I.isCommutative()) {
474       if (simplifyAssocCastAssoc(&I, *this)) {
475         Changed = true;
476         ++NumReassoc;
477         continue;
478       }
479 
480       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
481       if (Op0 && Op0->getOpcode() == Opcode) {
482         Value *A = Op0->getOperand(0);
483         Value *B = Op0->getOperand(1);
484         Value *C = I.getOperand(1);
485 
486         // Does "C op A" simplify?
487         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
488           // It simplifies to V.  Form "V op B".
489           replaceOperand(I, 0, V);
490           replaceOperand(I, 1, B);
491           // Conservatively clear the optional flags, since they may not be
492           // preserved by the reassociation.
493           ClearSubclassDataAfterReassociation(I);
494           Changed = true;
495           ++NumReassoc;
496           continue;
497         }
498       }
499 
500       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
501       if (Op1 && Op1->getOpcode() == Opcode) {
502         Value *A = I.getOperand(0);
503         Value *B = Op1->getOperand(0);
504         Value *C = Op1->getOperand(1);
505 
506         // Does "C op A" simplify?
507         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
508           // It simplifies to V.  Form "B op V".
509           replaceOperand(I, 0, B);
510           replaceOperand(I, 1, V);
511           // Conservatively clear the optional flags, since they may not be
512           // preserved by the reassociation.
513           ClearSubclassDataAfterReassociation(I);
514           Changed = true;
515           ++NumReassoc;
516           continue;
517         }
518       }
519 
520       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
521       // if C1 and C2 are constants.
522       Value *A, *B;
523       Constant *C1, *C2;
524       if (Op0 && Op1 &&
525           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
526           match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
527           match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
528         bool IsNUW = hasNoUnsignedWrap(I) &&
529            hasNoUnsignedWrap(*Op0) &&
530            hasNoUnsignedWrap(*Op1);
531          BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
532            BinaryOperator::CreateNUW(Opcode, A, B) :
533            BinaryOperator::Create(Opcode, A, B);
534 
535          if (isa<FPMathOperator>(NewBO)) {
536           FastMathFlags Flags = I.getFastMathFlags();
537           Flags &= Op0->getFastMathFlags();
538           Flags &= Op1->getFastMathFlags();
539           NewBO->setFastMathFlags(Flags);
540         }
541         InsertNewInstWith(NewBO, I);
542         NewBO->takeName(Op1);
543         replaceOperand(I, 0, NewBO);
544         replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
545         // Conservatively clear the optional flags, since they may not be
546         // preserved by the reassociation.
547         ClearSubclassDataAfterReassociation(I);
548         if (IsNUW)
549           I.setHasNoUnsignedWrap(true);
550 
551         Changed = true;
552         continue;
553       }
554     }
555 
556     // No further simplifications.
557     return Changed;
558   } while (true);
559 }
560 
561 /// Return whether "X LOp (Y ROp Z)" is always equal to
562 /// "(X LOp Y) ROp (X LOp Z)".
563 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
564                                      Instruction::BinaryOps ROp) {
565   // X & (Y | Z) <--> (X & Y) | (X & Z)
566   // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
567   if (LOp == Instruction::And)
568     return ROp == Instruction::Or || ROp == Instruction::Xor;
569 
570   // X | (Y & Z) <--> (X | Y) & (X | Z)
571   if (LOp == Instruction::Or)
572     return ROp == Instruction::And;
573 
574   // X * (Y + Z) <--> (X * Y) + (X * Z)
575   // X * (Y - Z) <--> (X * Y) - (X * Z)
576   if (LOp == Instruction::Mul)
577     return ROp == Instruction::Add || ROp == Instruction::Sub;
578 
579   return false;
580 }
581 
582 /// Return whether "(X LOp Y) ROp Z" is always equal to
583 /// "(X ROp Z) LOp (Y ROp Z)".
584 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
585                                      Instruction::BinaryOps ROp) {
586   if (Instruction::isCommutative(ROp))
587     return leftDistributesOverRight(ROp, LOp);
588 
589   // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
590   return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
591 
592   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
593   // but this requires knowing that the addition does not overflow and other
594   // such subtleties.
595 }
596 
597 /// This function returns identity value for given opcode, which can be used to
598 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
599 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
600   if (isa<Constant>(V))
601     return nullptr;
602 
603   return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
604 }
605 
606 /// This function predicates factorization using distributive laws. By default,
607 /// it just returns the 'Op' inputs. But for special-cases like
608 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
609 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
610 /// allow more factorization opportunities.
611 static Instruction::BinaryOps
612 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
613                           Value *&LHS, Value *&RHS) {
614   assert(Op && "Expected a binary operator");
615   LHS = Op->getOperand(0);
616   RHS = Op->getOperand(1);
617   if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
618     Constant *C;
619     if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
620       // X << C --> X * (1 << C)
621       RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
622       return Instruction::Mul;
623     }
624     // TODO: We can add other conversions e.g. shr => div etc.
625   }
626   return Op->getOpcode();
627 }
628 
629 /// This tries to simplify binary operations by factorizing out common terms
630 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
631 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I,
632                                           Instruction::BinaryOps InnerOpcode,
633                                           Value *A, Value *B, Value *C,
634                                           Value *D) {
635   assert(A && B && C && D && "All values must be provided");
636 
637   Value *V = nullptr;
638   Value *SimplifiedInst = nullptr;
639   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
640   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
641 
642   // Does "X op' Y" always equal "Y op' X"?
643   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
644 
645   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
646   if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
647     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
648     // commutative case, "(A op' B) op (C op' A)"?
649     if (A == C || (InnerCommutative && A == D)) {
650       if (A != C)
651         std::swap(C, D);
652       // Consider forming "A op' (B op D)".
653       // If "B op D" simplifies then it can be formed with no cost.
654       V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
655       // If "B op D" doesn't simplify then only go on if both of the existing
656       // operations "A op' B" and "C op' D" will be zapped as no longer used.
657       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
658         V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
659       if (V) {
660         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
661       }
662     }
663 
664   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
665   if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
666     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
667     // commutative case, "(A op' B) op (B op' D)"?
668     if (B == D || (InnerCommutative && B == C)) {
669       if (B != D)
670         std::swap(C, D);
671       // Consider forming "(A op C) op' B".
672       // If "A op C" simplifies then it can be formed with no cost.
673       V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
674 
675       // If "A op C" doesn't simplify then only go on if both of the existing
676       // operations "A op' B" and "C op' D" will be zapped as no longer used.
677       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
678         V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
679       if (V) {
680         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
681       }
682     }
683 
684   if (SimplifiedInst) {
685     ++NumFactor;
686     SimplifiedInst->takeName(&I);
687 
688     // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
689     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
690       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
691         bool HasNSW = false;
692         bool HasNUW = false;
693         if (isa<OverflowingBinaryOperator>(&I)) {
694           HasNSW = I.hasNoSignedWrap();
695           HasNUW = I.hasNoUnsignedWrap();
696         }
697 
698         if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
699           HasNSW &= LOBO->hasNoSignedWrap();
700           HasNUW &= LOBO->hasNoUnsignedWrap();
701         }
702 
703         if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
704           HasNSW &= ROBO->hasNoSignedWrap();
705           HasNUW &= ROBO->hasNoUnsignedWrap();
706         }
707 
708         if (TopLevelOpcode == Instruction::Add &&
709             InnerOpcode == Instruction::Mul) {
710           // We can propagate 'nsw' if we know that
711           //  %Y = mul nsw i16 %X, C
712           //  %Z = add nsw i16 %Y, %X
713           // =>
714           //  %Z = mul nsw i16 %X, C+1
715           //
716           // iff C+1 isn't INT_MIN
717           const APInt *CInt;
718           if (match(V, m_APInt(CInt))) {
719             if (!CInt->isMinSignedValue())
720               BO->setHasNoSignedWrap(HasNSW);
721           }
722 
723           // nuw can be propagated with any constant or nuw value.
724           BO->setHasNoUnsignedWrap(HasNUW);
725         }
726       }
727     }
728   }
729   return SimplifiedInst;
730 }
731 
732 /// This tries to simplify binary operations which some other binary operation
733 /// distributes over either by factorizing out common terms
734 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
735 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
736 /// Returns the simplified value, or null if it didn't simplify.
737 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
738   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
739   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
740   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
741   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
742 
743   {
744     // Factorization.
745     Value *A, *B, *C, *D;
746     Instruction::BinaryOps LHSOpcode, RHSOpcode;
747     if (Op0)
748       LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
749     if (Op1)
750       RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
751 
752     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
753     // a common term.
754     if (Op0 && Op1 && LHSOpcode == RHSOpcode)
755       if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
756         return V;
757 
758     // The instruction has the form "(A op' B) op (C)".  Try to factorize common
759     // term.
760     if (Op0)
761       if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
762         if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
763           return V;
764 
765     // The instruction has the form "(B) op (C op' D)".  Try to factorize common
766     // term.
767     if (Op1)
768       if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
769         if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
770           return V;
771   }
772 
773   // Expansion.
774   if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
775     // The instruction has the form "(A op' B) op C".  See if expanding it out
776     // to "(A op C) op' (B op C)" results in simplifications.
777     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
778     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
779 
780     // Disable the use of undef because it's not safe to distribute undef.
781     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
782     Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
783     Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
784 
785     // Do "A op C" and "B op C" both simplify?
786     if (L && R) {
787       // They do! Return "L op' R".
788       ++NumExpand;
789       C = Builder.CreateBinOp(InnerOpcode, L, R);
790       C->takeName(&I);
791       return C;
792     }
793 
794     // Does "A op C" simplify to the identity value for the inner opcode?
795     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
796       // They do! Return "B op C".
797       ++NumExpand;
798       C = Builder.CreateBinOp(TopLevelOpcode, B, C);
799       C->takeName(&I);
800       return C;
801     }
802 
803     // Does "B op C" simplify to the identity value for the inner opcode?
804     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
805       // They do! Return "A op C".
806       ++NumExpand;
807       C = Builder.CreateBinOp(TopLevelOpcode, A, C);
808       C->takeName(&I);
809       return C;
810     }
811   }
812 
813   if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
814     // The instruction has the form "A op (B op' C)".  See if expanding it out
815     // to "(A op B) op' (A op C)" results in simplifications.
816     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
817     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
818 
819     // Disable the use of undef because it's not safe to distribute undef.
820     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
821     Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
822     Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
823 
824     // Do "A op B" and "A op C" both simplify?
825     if (L && R) {
826       // They do! Return "L op' R".
827       ++NumExpand;
828       A = Builder.CreateBinOp(InnerOpcode, L, R);
829       A->takeName(&I);
830       return A;
831     }
832 
833     // Does "A op B" simplify to the identity value for the inner opcode?
834     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
835       // They do! Return "A op C".
836       ++NumExpand;
837       A = Builder.CreateBinOp(TopLevelOpcode, A, C);
838       A->takeName(&I);
839       return A;
840     }
841 
842     // Does "A op C" simplify to the identity value for the inner opcode?
843     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
844       // They do! Return "A op B".
845       ++NumExpand;
846       A = Builder.CreateBinOp(TopLevelOpcode, A, B);
847       A->takeName(&I);
848       return A;
849     }
850   }
851 
852   return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
853 }
854 
855 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
856                                                         Value *LHS,
857                                                         Value *RHS) {
858   Value *A, *B, *C, *D, *E, *F;
859   bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
860   bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
861   if (!LHSIsSelect && !RHSIsSelect)
862     return nullptr;
863 
864   FastMathFlags FMF;
865   BuilderTy::FastMathFlagGuard Guard(Builder);
866   if (isa<FPMathOperator>(&I)) {
867     FMF = I.getFastMathFlags();
868     Builder.setFastMathFlags(FMF);
869   }
870 
871   Instruction::BinaryOps Opcode = I.getOpcode();
872   SimplifyQuery Q = SQ.getWithInstruction(&I);
873 
874   Value *Cond, *True = nullptr, *False = nullptr;
875   if (LHSIsSelect && RHSIsSelect && A == D) {
876     // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
877     Cond = A;
878     True = SimplifyBinOp(Opcode, B, E, FMF, Q);
879     False = SimplifyBinOp(Opcode, C, F, FMF, Q);
880 
881     if (LHS->hasOneUse() && RHS->hasOneUse()) {
882       if (False && !True)
883         True = Builder.CreateBinOp(Opcode, B, E);
884       else if (True && !False)
885         False = Builder.CreateBinOp(Opcode, C, F);
886     }
887   } else if (LHSIsSelect && LHS->hasOneUse()) {
888     // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
889     Cond = A;
890     True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
891     False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
892   } else if (RHSIsSelect && RHS->hasOneUse()) {
893     // X op (D ? E : F) -> D ? (X op E) : (X op F)
894     Cond = D;
895     True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
896     False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
897   }
898 
899   if (!True || !False)
900     return nullptr;
901 
902   Value *SI = Builder.CreateSelect(Cond, True, False);
903   SI->takeName(&I);
904   return SI;
905 }
906 
907 /// Freely adapt every user of V as-if V was changed to !V.
908 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
909 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) {
910   for (User *U : I->users()) {
911     switch (cast<Instruction>(U)->getOpcode()) {
912     case Instruction::Select: {
913       auto *SI = cast<SelectInst>(U);
914       SI->swapValues();
915       SI->swapProfMetadata();
916       break;
917     }
918     case Instruction::Br:
919       cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
920       break;
921     case Instruction::Xor:
922       replaceInstUsesWith(cast<Instruction>(*U), I);
923       break;
924     default:
925       llvm_unreachable("Got unexpected user - out of sync with "
926                        "canFreelyInvertAllUsersOf() ?");
927     }
928   }
929 }
930 
931 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
932 /// constant zero (which is the 'negate' form).
933 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
934   Value *NegV;
935   if (match(V, m_Neg(m_Value(NegV))))
936     return NegV;
937 
938   // Constants can be considered to be negated values if they can be folded.
939   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
940     return ConstantExpr::getNeg(C);
941 
942   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
943     if (C->getType()->getElementType()->isIntegerTy())
944       return ConstantExpr::getNeg(C);
945 
946   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
947     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
948       Constant *Elt = CV->getAggregateElement(i);
949       if (!Elt)
950         return nullptr;
951 
952       if (isa<UndefValue>(Elt))
953         continue;
954 
955       if (!isa<ConstantInt>(Elt))
956         return nullptr;
957     }
958     return ConstantExpr::getNeg(CV);
959   }
960 
961   // Negate integer vector splats.
962   if (auto *CV = dyn_cast<Constant>(V))
963     if (CV->getType()->isVectorTy() &&
964         CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
965       return ConstantExpr::getNeg(CV);
966 
967   return nullptr;
968 }
969 
970 /// A binop with a constant operand and a sign-extended boolean operand may be
971 /// converted into a select of constants by applying the binary operation to
972 /// the constant with the two possible values of the extended boolean (0 or -1).
973 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) {
974   // TODO: Handle non-commutative binop (constant is operand 0).
975   // TODO: Handle zext.
976   // TODO: Peek through 'not' of cast.
977   Value *BO0 = BO.getOperand(0);
978   Value *BO1 = BO.getOperand(1);
979   Value *X;
980   Constant *C;
981   if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) ||
982       !X->getType()->isIntOrIntVectorTy(1))
983     return nullptr;
984 
985   // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C)
986   Constant *Ones = ConstantInt::getAllOnesValue(BO.getType());
987   Constant *Zero = ConstantInt::getNullValue(BO.getType());
988   Constant *TVal = ConstantExpr::get(BO.getOpcode(), Ones, C);
989   Constant *FVal = ConstantExpr::get(BO.getOpcode(), Zero, C);
990   return SelectInst::Create(X, TVal, FVal);
991 }
992 
993 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
994                                              InstCombiner::BuilderTy &Builder) {
995   if (auto *Cast = dyn_cast<CastInst>(&I))
996     return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
997 
998   if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
999     assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) &&
1000            "Expected constant-foldable intrinsic");
1001     Intrinsic::ID IID = II->getIntrinsicID();
1002     if (II->arg_size() == 1)
1003       return Builder.CreateUnaryIntrinsic(IID, SO);
1004 
1005     // This works for real binary ops like min/max (where we always expect the
1006     // constant operand to be canonicalized as op1) and unary ops with a bonus
1007     // constant argument like ctlz/cttz.
1008     // TODO: Handle non-commutative binary intrinsics as below for binops.
1009     assert(II->arg_size() == 2 && "Expected binary intrinsic");
1010     assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand");
1011     return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1));
1012   }
1013 
1014   assert(I.isBinaryOp() && "Unexpected opcode for select folding");
1015 
1016   // Figure out if the constant is the left or the right argument.
1017   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1018   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1019 
1020   if (auto *SOC = dyn_cast<Constant>(SO)) {
1021     if (ConstIsRHS)
1022       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1023     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1024   }
1025 
1026   Value *Op0 = SO, *Op1 = ConstOperand;
1027   if (!ConstIsRHS)
1028     std::swap(Op0, Op1);
1029 
1030   Value *NewBO = Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), Op0,
1031                                      Op1, SO->getName() + ".op");
1032   if (auto *NewBOI = dyn_cast<Instruction>(NewBO))
1033     NewBOI->copyIRFlags(&I);
1034   return NewBO;
1035 }
1036 
1037 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op,
1038                                                 SelectInst *SI) {
1039   // Don't modify shared select instructions.
1040   if (!SI->hasOneUse())
1041     return nullptr;
1042 
1043   Value *TV = SI->getTrueValue();
1044   Value *FV = SI->getFalseValue();
1045   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
1046     return nullptr;
1047 
1048   // Bool selects with constant operands can be folded to logical ops.
1049   if (SI->getType()->isIntOrIntVectorTy(1))
1050     return nullptr;
1051 
1052   // If it's a bitcast involving vectors, make sure it has the same number of
1053   // elements on both sides.
1054   if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
1055     VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
1056     VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
1057 
1058     // Verify that either both or neither are vectors.
1059     if ((SrcTy == nullptr) != (DestTy == nullptr))
1060       return nullptr;
1061 
1062     // If vectors, verify that they have the same number of elements.
1063     if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount())
1064       return nullptr;
1065   }
1066 
1067   // Test if a CmpInst instruction is used exclusively by a select as
1068   // part of a minimum or maximum operation. If so, refrain from doing
1069   // any other folding. This helps out other analyses which understand
1070   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
1071   // and CodeGen. And in this case, at least one of the comparison
1072   // operands has at least one user besides the compare (the select),
1073   // which would often largely negate the benefit of folding anyway.
1074   if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
1075     if (CI->hasOneUse()) {
1076       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1077 
1078       // FIXME: This is a hack to avoid infinite looping with min/max patterns.
1079       //        We have to ensure that vector constants that only differ with
1080       //        undef elements are treated as equivalent.
1081       auto areLooselyEqual = [](Value *A, Value *B) {
1082         if (A == B)
1083           return true;
1084 
1085         // Test for vector constants.
1086         Constant *ConstA, *ConstB;
1087         if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
1088           return false;
1089 
1090         // TODO: Deal with FP constants?
1091         if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
1092           return false;
1093 
1094         // Compare for equality including undefs as equal.
1095         auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
1096         const APInt *C;
1097         return match(Cmp, m_APIntAllowUndef(C)) && C->isOne();
1098       };
1099 
1100       if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
1101           (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
1102         return nullptr;
1103     }
1104   }
1105 
1106   Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
1107   Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
1108   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1109 }
1110 
1111 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
1112                                         InstCombiner::BuilderTy &Builder) {
1113   bool ConstIsRHS = isa<Constant>(I->getOperand(1));
1114   Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
1115 
1116   if (auto *InC = dyn_cast<Constant>(InV)) {
1117     if (ConstIsRHS)
1118       return ConstantExpr::get(I->getOpcode(), InC, C);
1119     return ConstantExpr::get(I->getOpcode(), C, InC);
1120   }
1121 
1122   Value *Op0 = InV, *Op1 = C;
1123   if (!ConstIsRHS)
1124     std::swap(Op0, Op1);
1125 
1126   Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo");
1127   auto *FPInst = dyn_cast<Instruction>(RI);
1128   if (FPInst && isa<FPMathOperator>(FPInst))
1129     FPInst->copyFastMathFlags(I);
1130   return RI;
1131 }
1132 
1133 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1134   unsigned NumPHIValues = PN->getNumIncomingValues();
1135   if (NumPHIValues == 0)
1136     return nullptr;
1137 
1138   // We normally only transform phis with a single use.  However, if a PHI has
1139   // multiple uses and they are all the same operation, we can fold *all* of the
1140   // uses into the PHI.
1141   if (!PN->hasOneUse()) {
1142     // Walk the use list for the instruction, comparing them to I.
1143     for (User *U : PN->users()) {
1144       Instruction *UI = cast<Instruction>(U);
1145       if (UI != &I && !I.isIdenticalTo(UI))
1146         return nullptr;
1147     }
1148     // Otherwise, we can replace *all* users with the new PHI we form.
1149   }
1150 
1151   // Check to see if all of the operands of the PHI are simple constants
1152   // (constantint/constantfp/undef).  If there is one non-constant value,
1153   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
1154   // bail out.  We don't do arbitrary constant expressions here because moving
1155   // their computation can be expensive without a cost model.
1156   BasicBlock *NonConstBB = nullptr;
1157   for (unsigned i = 0; i != NumPHIValues; ++i) {
1158     Value *InVal = PN->getIncomingValue(i);
1159     // For non-freeze, require constant operand
1160     // For freeze, require non-undef, non-poison operand
1161     if (!isa<FreezeInst>(I) && match(InVal, m_ImmConstant()))
1162       continue;
1163     if (isa<FreezeInst>(I) && isGuaranteedNotToBeUndefOrPoison(InVal))
1164       continue;
1165 
1166     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
1167     if (NonConstBB) return nullptr;  // More than one non-const value.
1168 
1169     NonConstBB = PN->getIncomingBlock(i);
1170 
1171     // If the InVal is an invoke at the end of the pred block, then we can't
1172     // insert a computation after it without breaking the edge.
1173     if (isa<InvokeInst>(InVal))
1174       if (cast<Instruction>(InVal)->getParent() == NonConstBB)
1175         return nullptr;
1176 
1177     // If the incoming non-constant value is in I's block, we will remove one
1178     // instruction, but insert another equivalent one, leading to infinite
1179     // instcombine.
1180     if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI))
1181       return nullptr;
1182   }
1183 
1184   // If there is exactly one non-constant value, we can insert a copy of the
1185   // operation in that block.  However, if this is a critical edge, we would be
1186   // inserting the computation on some other paths (e.g. inside a loop).  Only
1187   // do this if the pred block is unconditionally branching into the phi block.
1188   // Also, make sure that the pred block is not dead code.
1189   if (NonConstBB != nullptr) {
1190     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1191     if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB))
1192       return nullptr;
1193   }
1194 
1195   // Okay, we can do the transformation: create the new PHI node.
1196   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1197   InsertNewInstBefore(NewPN, *PN);
1198   NewPN->takeName(PN);
1199 
1200   // If we are going to have to insert a new computation, do so right before the
1201   // predecessor's terminator.
1202   if (NonConstBB)
1203     Builder.SetInsertPoint(NonConstBB->getTerminator());
1204 
1205   // Next, add all of the operands to the PHI.
1206   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1207     // We only currently try to fold the condition of a select when it is a phi,
1208     // not the true/false values.
1209     Value *TrueV = SI->getTrueValue();
1210     Value *FalseV = SI->getFalseValue();
1211     BasicBlock *PhiTransBB = PN->getParent();
1212     for (unsigned i = 0; i != NumPHIValues; ++i) {
1213       BasicBlock *ThisBB = PN->getIncomingBlock(i);
1214       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1215       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1216       Value *InV = nullptr;
1217       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
1218       // even if currently isNullValue gives false.
1219       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1220       // For vector constants, we cannot use isNullValue to fold into
1221       // FalseVInPred versus TrueVInPred. When we have individual nonzero
1222       // elements in the vector, we will incorrectly fold InC to
1223       // `TrueVInPred`.
1224       if (InC && isa<ConstantInt>(InC))
1225         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1226       else {
1227         // Generate the select in the same block as PN's current incoming block.
1228         // Note: ThisBB need not be the NonConstBB because vector constants
1229         // which are constants by definition are handled here.
1230         // FIXME: This can lead to an increase in IR generation because we might
1231         // generate selects for vector constant phi operand, that could not be
1232         // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1233         // non-vector phis, this transformation was always profitable because
1234         // the select would be generated exactly once in the NonConstBB.
1235         Builder.SetInsertPoint(ThisBB->getTerminator());
1236         InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1237                                    FalseVInPred, "phi.sel");
1238       }
1239       NewPN->addIncoming(InV, ThisBB);
1240     }
1241   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1242     Constant *C = cast<Constant>(I.getOperand(1));
1243     for (unsigned i = 0; i != NumPHIValues; ++i) {
1244       Value *InV = nullptr;
1245       if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1246         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1247       else
1248         InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i),
1249                                 C, "phi.cmp");
1250       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1251     }
1252   } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1253     for (unsigned i = 0; i != NumPHIValues; ++i) {
1254       Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1255                                              Builder);
1256       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1257     }
1258   } else if (isa<FreezeInst>(&I)) {
1259     for (unsigned i = 0; i != NumPHIValues; ++i) {
1260       Value *InV;
1261       if (NonConstBB == PN->getIncomingBlock(i))
1262         InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr");
1263       else
1264         InV = PN->getIncomingValue(i);
1265       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1266     }
1267   } else {
1268     CastInst *CI = cast<CastInst>(&I);
1269     Type *RetTy = CI->getType();
1270     for (unsigned i = 0; i != NumPHIValues; ++i) {
1271       Value *InV;
1272       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1273         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1274       else
1275         InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1276                                  I.getType(), "phi.cast");
1277       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1278     }
1279   }
1280 
1281   for (User *U : make_early_inc_range(PN->users())) {
1282     Instruction *User = cast<Instruction>(U);
1283     if (User == &I) continue;
1284     replaceInstUsesWith(*User, NewPN);
1285     eraseInstFromFunction(*User);
1286   }
1287   return replaceInstUsesWith(I, NewPN);
1288 }
1289 
1290 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1291   if (!isa<Constant>(I.getOperand(1)))
1292     return nullptr;
1293 
1294   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1295     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1296       return NewSel;
1297   } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1298     if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1299       return NewPhi;
1300   }
1301   return nullptr;
1302 }
1303 
1304 /// Given a pointer type and a constant offset, determine whether or not there
1305 /// is a sequence of GEP indices into the pointed type that will land us at the
1306 /// specified offset. If so, fill them into NewIndices and return the resultant
1307 /// element type, otherwise return null.
1308 Type *
1309 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t IntOffset,
1310                                       SmallVectorImpl<Value *> &NewIndices) {
1311   Type *Ty = PtrTy->getElementType();
1312   if (!Ty->isSized())
1313     return nullptr;
1314 
1315   APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset);
1316   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset);
1317   if (!Offset.isZero())
1318     return nullptr;
1319 
1320   for (const APInt &Index : Indices)
1321     NewIndices.push_back(Builder.getInt(Index));
1322   return Ty;
1323 }
1324 
1325 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1326   // If this GEP has only 0 indices, it is the same pointer as
1327   // Src. If Src is not a trivial GEP too, don't combine
1328   // the indices.
1329   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1330       !Src.hasOneUse())
1331     return false;
1332   return true;
1333 }
1334 
1335 /// Return a value X such that Val = X * Scale, or null if none.
1336 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1337 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1338   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1339   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1340          Scale.getBitWidth() && "Scale not compatible with value!");
1341 
1342   // If Val is zero or Scale is one then Val = Val * Scale.
1343   if (match(Val, m_Zero()) || Scale == 1) {
1344     NoSignedWrap = true;
1345     return Val;
1346   }
1347 
1348   // If Scale is zero then it does not divide Val.
1349   if (Scale.isMinValue())
1350     return nullptr;
1351 
1352   // Look through chains of multiplications, searching for a constant that is
1353   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1354   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1355   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1356   // down from Val:
1357   //
1358   //     Val = M1 * X          ||   Analysis starts here and works down
1359   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1360   //      M2 =  Z * 4          \/   than one use
1361   //
1362   // Then to modify a term at the bottom:
1363   //
1364   //     Val = M1 * X
1365   //      M1 =  Z * Y          ||   Replaced M2 with Z
1366   //
1367   // Then to work back up correcting nsw flags.
1368 
1369   // Op - the term we are currently analyzing.  Starts at Val then drills down.
1370   // Replaced with its descaled value before exiting from the drill down loop.
1371   Value *Op = Val;
1372 
1373   // Parent - initially null, but after drilling down notes where Op came from.
1374   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1375   // 0'th operand of Val.
1376   std::pair<Instruction *, unsigned> Parent;
1377 
1378   // Set if the transform requires a descaling at deeper levels that doesn't
1379   // overflow.
1380   bool RequireNoSignedWrap = false;
1381 
1382   // Log base 2 of the scale. Negative if not a power of 2.
1383   int32_t logScale = Scale.exactLogBase2();
1384 
1385   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1386     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1387       // If Op is a constant divisible by Scale then descale to the quotient.
1388       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1389       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1390       if (!Remainder.isMinValue())
1391         // Not divisible by Scale.
1392         return nullptr;
1393       // Replace with the quotient in the parent.
1394       Op = ConstantInt::get(CI->getType(), Quotient);
1395       NoSignedWrap = true;
1396       break;
1397     }
1398 
1399     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1400       if (BO->getOpcode() == Instruction::Mul) {
1401         // Multiplication.
1402         NoSignedWrap = BO->hasNoSignedWrap();
1403         if (RequireNoSignedWrap && !NoSignedWrap)
1404           return nullptr;
1405 
1406         // There are three cases for multiplication: multiplication by exactly
1407         // the scale, multiplication by a constant different to the scale, and
1408         // multiplication by something else.
1409         Value *LHS = BO->getOperand(0);
1410         Value *RHS = BO->getOperand(1);
1411 
1412         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1413           // Multiplication by a constant.
1414           if (CI->getValue() == Scale) {
1415             // Multiplication by exactly the scale, replace the multiplication
1416             // by its left-hand side in the parent.
1417             Op = LHS;
1418             break;
1419           }
1420 
1421           // Otherwise drill down into the constant.
1422           if (!Op->hasOneUse())
1423             return nullptr;
1424 
1425           Parent = std::make_pair(BO, 1);
1426           continue;
1427         }
1428 
1429         // Multiplication by something else. Drill down into the left-hand side
1430         // since that's where the reassociate pass puts the good stuff.
1431         if (!Op->hasOneUse())
1432           return nullptr;
1433 
1434         Parent = std::make_pair(BO, 0);
1435         continue;
1436       }
1437 
1438       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1439           isa<ConstantInt>(BO->getOperand(1))) {
1440         // Multiplication by a power of 2.
1441         NoSignedWrap = BO->hasNoSignedWrap();
1442         if (RequireNoSignedWrap && !NoSignedWrap)
1443           return nullptr;
1444 
1445         Value *LHS = BO->getOperand(0);
1446         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1447           getLimitedValue(Scale.getBitWidth());
1448         // Op = LHS << Amt.
1449 
1450         if (Amt == logScale) {
1451           // Multiplication by exactly the scale, replace the multiplication
1452           // by its left-hand side in the parent.
1453           Op = LHS;
1454           break;
1455         }
1456         if (Amt < logScale || !Op->hasOneUse())
1457           return nullptr;
1458 
1459         // Multiplication by more than the scale.  Reduce the multiplying amount
1460         // by the scale in the parent.
1461         Parent = std::make_pair(BO, 1);
1462         Op = ConstantInt::get(BO->getType(), Amt - logScale);
1463         break;
1464       }
1465     }
1466 
1467     if (!Op->hasOneUse())
1468       return nullptr;
1469 
1470     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1471       if (Cast->getOpcode() == Instruction::SExt) {
1472         // Op is sign-extended from a smaller type, descale in the smaller type.
1473         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1474         APInt SmallScale = Scale.trunc(SmallSize);
1475         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1476         // descale Op as (sext Y) * Scale.  In order to have
1477         //   sext (Y * SmallScale) = (sext Y) * Scale
1478         // some conditions need to hold however: SmallScale must sign-extend to
1479         // Scale and the multiplication Y * SmallScale should not overflow.
1480         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1481           // SmallScale does not sign-extend to Scale.
1482           return nullptr;
1483         assert(SmallScale.exactLogBase2() == logScale);
1484         // Require that Y * SmallScale must not overflow.
1485         RequireNoSignedWrap = true;
1486 
1487         // Drill down through the cast.
1488         Parent = std::make_pair(Cast, 0);
1489         Scale = SmallScale;
1490         continue;
1491       }
1492 
1493       if (Cast->getOpcode() == Instruction::Trunc) {
1494         // Op is truncated from a larger type, descale in the larger type.
1495         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1496         //   trunc (Y * sext Scale) = (trunc Y) * Scale
1497         // always holds.  However (trunc Y) * Scale may overflow even if
1498         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1499         // from this point up in the expression (see later).
1500         if (RequireNoSignedWrap)
1501           return nullptr;
1502 
1503         // Drill down through the cast.
1504         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1505         Parent = std::make_pair(Cast, 0);
1506         Scale = Scale.sext(LargeSize);
1507         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1508           logScale = -1;
1509         assert(Scale.exactLogBase2() == logScale);
1510         continue;
1511       }
1512     }
1513 
1514     // Unsupported expression, bail out.
1515     return nullptr;
1516   }
1517 
1518   // If Op is zero then Val = Op * Scale.
1519   if (match(Op, m_Zero())) {
1520     NoSignedWrap = true;
1521     return Op;
1522   }
1523 
1524   // We know that we can successfully descale, so from here on we can safely
1525   // modify the IR.  Op holds the descaled version of the deepest term in the
1526   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1527   // not to overflow.
1528 
1529   if (!Parent.first)
1530     // The expression only had one term.
1531     return Op;
1532 
1533   // Rewrite the parent using the descaled version of its operand.
1534   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1535   assert(Op != Parent.first->getOperand(Parent.second) &&
1536          "Descaling was a no-op?");
1537   replaceOperand(*Parent.first, Parent.second, Op);
1538   Worklist.push(Parent.first);
1539 
1540   // Now work back up the expression correcting nsw flags.  The logic is based
1541   // on the following observation: if X * Y is known not to overflow as a signed
1542   // multiplication, and Y is replaced by a value Z with smaller absolute value,
1543   // then X * Z will not overflow as a signed multiplication either.  As we work
1544   // our way up, having NoSignedWrap 'true' means that the descaled value at the
1545   // current level has strictly smaller absolute value than the original.
1546   Instruction *Ancestor = Parent.first;
1547   do {
1548     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1549       // If the multiplication wasn't nsw then we can't say anything about the
1550       // value of the descaled multiplication, and we have to clear nsw flags
1551       // from this point on up.
1552       bool OpNoSignedWrap = BO->hasNoSignedWrap();
1553       NoSignedWrap &= OpNoSignedWrap;
1554       if (NoSignedWrap != OpNoSignedWrap) {
1555         BO->setHasNoSignedWrap(NoSignedWrap);
1556         Worklist.push(Ancestor);
1557       }
1558     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1559       // The fact that the descaled input to the trunc has smaller absolute
1560       // value than the original input doesn't tell us anything useful about
1561       // the absolute values of the truncations.
1562       NoSignedWrap = false;
1563     }
1564     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1565            "Failed to keep proper track of nsw flags while drilling down?");
1566 
1567     if (Ancestor == Val)
1568       // Got to the top, all done!
1569       return Val;
1570 
1571     // Move up one level in the expression.
1572     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1573     Ancestor = Ancestor->user_back();
1574   } while (true);
1575 }
1576 
1577 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
1578   if (!isa<VectorType>(Inst.getType()))
1579     return nullptr;
1580 
1581   BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1582   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1583   assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1584          cast<VectorType>(Inst.getType())->getElementCount());
1585   assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1586          cast<VectorType>(Inst.getType())->getElementCount());
1587 
1588   // If both operands of the binop are vector concatenations, then perform the
1589   // narrow binop on each pair of the source operands followed by concatenation
1590   // of the results.
1591   Value *L0, *L1, *R0, *R1;
1592   ArrayRef<int> Mask;
1593   if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1594       match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1595       LHS->hasOneUse() && RHS->hasOneUse() &&
1596       cast<ShuffleVectorInst>(LHS)->isConcat() &&
1597       cast<ShuffleVectorInst>(RHS)->isConcat()) {
1598     // This transform does not have the speculative execution constraint as
1599     // below because the shuffle is a concatenation. The new binops are
1600     // operating on exactly the same elements as the existing binop.
1601     // TODO: We could ease the mask requirement to allow different undef lanes,
1602     //       but that requires an analysis of the binop-with-undef output value.
1603     Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1604     if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1605       BO->copyIRFlags(&Inst);
1606     Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1607     if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1608       BO->copyIRFlags(&Inst);
1609     return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1610   }
1611 
1612   // It may not be safe to reorder shuffles and things like div, urem, etc.
1613   // because we may trap when executing those ops on unknown vector elements.
1614   // See PR20059.
1615   if (!isSafeToSpeculativelyExecute(&Inst))
1616     return nullptr;
1617 
1618   auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1619     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1620     if (auto *BO = dyn_cast<BinaryOperator>(XY))
1621       BO->copyIRFlags(&Inst);
1622     return new ShuffleVectorInst(XY, M);
1623   };
1624 
1625   // If both arguments of the binary operation are shuffles that use the same
1626   // mask and shuffle within a single vector, move the shuffle after the binop.
1627   Value *V1, *V2;
1628   if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
1629       match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
1630       V1->getType() == V2->getType() &&
1631       (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1632     // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1633     return createBinOpShuffle(V1, V2, Mask);
1634   }
1635 
1636   // If both arguments of a commutative binop are select-shuffles that use the
1637   // same mask with commuted operands, the shuffles are unnecessary.
1638   if (Inst.isCommutative() &&
1639       match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1640       match(RHS,
1641             m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1642     auto *LShuf = cast<ShuffleVectorInst>(LHS);
1643     auto *RShuf = cast<ShuffleVectorInst>(RHS);
1644     // TODO: Allow shuffles that contain undefs in the mask?
1645     //       That is legal, but it reduces undef knowledge.
1646     // TODO: Allow arbitrary shuffles by shuffling after binop?
1647     //       That might be legal, but we have to deal with poison.
1648     if (LShuf->isSelect() &&
1649         !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
1650         RShuf->isSelect() &&
1651         !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
1652       // Example:
1653       // LHS = shuffle V1, V2, <0, 5, 6, 3>
1654       // RHS = shuffle V2, V1, <0, 5, 6, 3>
1655       // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1656       Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1657       NewBO->copyIRFlags(&Inst);
1658       return NewBO;
1659     }
1660   }
1661 
1662   // If one argument is a shuffle within one vector and the other is a constant,
1663   // try moving the shuffle after the binary operation. This canonicalization
1664   // intends to move shuffles closer to other shuffles and binops closer to
1665   // other binops, so they can be folded. It may also enable demanded elements
1666   // transforms.
1667   Constant *C;
1668   auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
1669   if (InstVTy &&
1670       match(&Inst,
1671             m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
1672                       m_ImmConstant(C))) &&
1673       cast<FixedVectorType>(V1->getType())->getNumElements() <=
1674           InstVTy->getNumElements()) {
1675     assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
1676            "Shuffle should not change scalar type");
1677 
1678     // Find constant NewC that has property:
1679     //   shuffle(NewC, ShMask) = C
1680     // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1681     // reorder is not possible. A 1-to-1 mapping is not required. Example:
1682     // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1683     bool ConstOp1 = isa<Constant>(RHS);
1684     ArrayRef<int> ShMask = Mask;
1685     unsigned SrcVecNumElts =
1686         cast<FixedVectorType>(V1->getType())->getNumElements();
1687     UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1688     SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1689     bool MayChange = true;
1690     unsigned NumElts = InstVTy->getNumElements();
1691     for (unsigned I = 0; I < NumElts; ++I) {
1692       Constant *CElt = C->getAggregateElement(I);
1693       if (ShMask[I] >= 0) {
1694         assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1695         Constant *NewCElt = NewVecC[ShMask[I]];
1696         // Bail out if:
1697         // 1. The constant vector contains a constant expression.
1698         // 2. The shuffle needs an element of the constant vector that can't
1699         //    be mapped to a new constant vector.
1700         // 3. This is a widening shuffle that copies elements of V1 into the
1701         //    extended elements (extending with undef is allowed).
1702         if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1703             I >= SrcVecNumElts) {
1704           MayChange = false;
1705           break;
1706         }
1707         NewVecC[ShMask[I]] = CElt;
1708       }
1709       // If this is a widening shuffle, we must be able to extend with undef
1710       // elements. If the original binop does not produce an undef in the high
1711       // lanes, then this transform is not safe.
1712       // Similarly for undef lanes due to the shuffle mask, we can only
1713       // transform binops that preserve undef.
1714       // TODO: We could shuffle those non-undef constant values into the
1715       //       result by using a constant vector (rather than an undef vector)
1716       //       as operand 1 of the new binop, but that might be too aggressive
1717       //       for target-independent shuffle creation.
1718       if (I >= SrcVecNumElts || ShMask[I] < 0) {
1719         Constant *MaybeUndef =
1720             ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1721                      : ConstantExpr::get(Opcode, CElt, UndefScalar);
1722         if (!match(MaybeUndef, m_Undef())) {
1723           MayChange = false;
1724           break;
1725         }
1726       }
1727     }
1728     if (MayChange) {
1729       Constant *NewC = ConstantVector::get(NewVecC);
1730       // It may not be safe to execute a binop on a vector with undef elements
1731       // because the entire instruction can be folded to undef or create poison
1732       // that did not exist in the original code.
1733       if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1734         NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1735 
1736       // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1737       // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1738       Value *NewLHS = ConstOp1 ? V1 : NewC;
1739       Value *NewRHS = ConstOp1 ? NewC : V1;
1740       return createBinOpShuffle(NewLHS, NewRHS, Mask);
1741     }
1742   }
1743 
1744   // Try to reassociate to sink a splat shuffle after a binary operation.
1745   if (Inst.isAssociative() && Inst.isCommutative()) {
1746     // Canonicalize shuffle operand as LHS.
1747     if (isa<ShuffleVectorInst>(RHS))
1748       std::swap(LHS, RHS);
1749 
1750     Value *X;
1751     ArrayRef<int> MaskC;
1752     int SplatIndex;
1753     Value *Y, *OtherOp;
1754     if (!match(LHS,
1755                m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
1756         !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1757         X->getType() != Inst.getType() ||
1758         !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp)))))
1759       return nullptr;
1760 
1761     // FIXME: This may not be safe if the analysis allows undef elements. By
1762     //        moving 'Y' before the splat shuffle, we are implicitly assuming
1763     //        that it is not undef/poison at the splat index.
1764     if (isSplatValue(OtherOp, SplatIndex)) {
1765       std::swap(Y, OtherOp);
1766     } else if (!isSplatValue(Y, SplatIndex)) {
1767       return nullptr;
1768     }
1769 
1770     // X and Y are splatted values, so perform the binary operation on those
1771     // values followed by a splat followed by the 2nd binary operation:
1772     // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1773     Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1774     SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1775     Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
1776     Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1777 
1778     // Intersect FMF on both new binops. Other (poison-generating) flags are
1779     // dropped to be safe.
1780     if (isa<FPMathOperator>(R)) {
1781       R->copyFastMathFlags(&Inst);
1782       R->andIRFlags(RHS);
1783     }
1784     if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1785       NewInstBO->copyIRFlags(R);
1786     return R;
1787   }
1788 
1789   return nullptr;
1790 }
1791 
1792 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1793 /// of a value. This requires a potentially expensive known bits check to make
1794 /// sure the narrow op does not overflow.
1795 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
1796   // We need at least one extended operand.
1797   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1798 
1799   // If this is a sub, we swap the operands since we always want an extension
1800   // on the RHS. The LHS can be an extension or a constant.
1801   if (BO.getOpcode() == Instruction::Sub)
1802     std::swap(Op0, Op1);
1803 
1804   Value *X;
1805   bool IsSext = match(Op0, m_SExt(m_Value(X)));
1806   if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1807     return nullptr;
1808 
1809   // If both operands are the same extension from the same source type and we
1810   // can eliminate at least one (hasOneUse), this might work.
1811   CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1812   Value *Y;
1813   if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1814         cast<Operator>(Op1)->getOpcode() == CastOpc &&
1815         (Op0->hasOneUse() || Op1->hasOneUse()))) {
1816     // If that did not match, see if we have a suitable constant operand.
1817     // Truncating and extending must produce the same constant.
1818     Constant *WideC;
1819     if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1820       return nullptr;
1821     Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1822     if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1823       return nullptr;
1824     Y = NarrowC;
1825   }
1826 
1827   // Swap back now that we found our operands.
1828   if (BO.getOpcode() == Instruction::Sub)
1829     std::swap(X, Y);
1830 
1831   // Both operands have narrow versions. Last step: the math must not overflow
1832   // in the narrow width.
1833   if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1834     return nullptr;
1835 
1836   // bo (ext X), (ext Y) --> ext (bo X, Y)
1837   // bo (ext X), C       --> ext (bo X, C')
1838   Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1839   if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1840     if (IsSext)
1841       NewBinOp->setHasNoSignedWrap();
1842     else
1843       NewBinOp->setHasNoUnsignedWrap();
1844   }
1845   return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1846 }
1847 
1848 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1849   // At least one GEP must be inbounds.
1850   if (!GEP1.isInBounds() && !GEP2.isInBounds())
1851     return false;
1852 
1853   return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1854          (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1855 }
1856 
1857 /// Thread a GEP operation with constant indices through the constant true/false
1858 /// arms of a select.
1859 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1860                                   InstCombiner::BuilderTy &Builder) {
1861   if (!GEP.hasAllConstantIndices())
1862     return nullptr;
1863 
1864   Instruction *Sel;
1865   Value *Cond;
1866   Constant *TrueC, *FalseC;
1867   if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1868       !match(Sel,
1869              m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1870     return nullptr;
1871 
1872   // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1873   // Propagate 'inbounds' and metadata from existing instructions.
1874   // Note: using IRBuilder to create the constants for efficiency.
1875   SmallVector<Value *, 4> IndexC(GEP.indices());
1876   bool IsInBounds = GEP.isInBounds();
1877   Type *Ty = GEP.getSourceElementType();
1878   Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC)
1879                                : Builder.CreateGEP(Ty, TrueC, IndexC);
1880   Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC)
1881                                 : Builder.CreateGEP(Ty, FalseC, IndexC);
1882   return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1883 }
1884 
1885 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP,
1886                                              GEPOperator *Src) {
1887   // Combine Indices - If the source pointer to this getelementptr instruction
1888   // is a getelementptr instruction with matching element type, combine the
1889   // indices of the two getelementptr instructions into a single instruction.
1890   if (Src->getResultElementType() != GEP.getSourceElementType())
1891     return nullptr;
1892 
1893   if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1894     return nullptr;
1895 
1896   if (Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
1897       Src->hasOneUse()) {
1898     Value *GO1 = GEP.getOperand(1);
1899     Value *SO1 = Src->getOperand(1);
1900 
1901     if (LI) {
1902       // Try to reassociate loop invariant GEP chains to enable LICM.
1903       if (Loop *L = LI->getLoopFor(GEP.getParent())) {
1904         // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
1905         // invariant: this breaks the dependence between GEPs and allows LICM
1906         // to hoist the invariant part out of the loop.
1907         if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
1908           // We have to be careful here.
1909           // We have something like:
1910           //  %src = getelementptr <ty>, <ty>* %base, <ty> %idx
1911           //  %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
1912           // If we just swap idx & idx2 then we could inadvertantly
1913           // change %src from a vector to a scalar, or vice versa.
1914           // Cases:
1915           //  1) %base a scalar & idx a scalar & idx2 a vector
1916           //      => Swapping idx & idx2 turns %src into a vector type.
1917           //  2) %base a scalar & idx a vector & idx2 a scalar
1918           //      => Swapping idx & idx2 turns %src in a scalar type
1919           //  3) %base, %idx, and %idx2 are scalars
1920           //      => %src & %gep are scalars
1921           //      => swapping idx & idx2 is safe
1922           //  4) %base a vector
1923           //      => %src is a vector
1924           //      => swapping idx & idx2 is safe.
1925           auto *SO0 = Src->getOperand(0);
1926           auto *SO0Ty = SO0->getType();
1927           if (!isa<VectorType>(GEP.getType()) || // case 3
1928               isa<VectorType>(SO0Ty)) { // case 4
1929             Src->setOperand(1, GO1);
1930             GEP.setOperand(1, SO1);
1931             return &GEP;
1932           } else {
1933             // Case 1 or 2
1934             // -- have to recreate %src & %gep
1935             // put NewSrc at same location as %src
1936             Builder.SetInsertPoint(cast<Instruction>(Src));
1937             Value *NewSrc = Builder.CreateGEP(
1938                 GEP.getSourceElementType(), SO0, GO1, Src->getName());
1939             // Propagate 'inbounds' if the new source was not constant-folded.
1940             if (auto *NewSrcGEPI = dyn_cast<GetElementPtrInst>(NewSrc))
1941               NewSrcGEPI->setIsInBounds(Src->isInBounds());
1942             GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
1943                 GEP.getSourceElementType(), NewSrc, {SO1});
1944             NewGEP->setIsInBounds(GEP.isInBounds());
1945             return NewGEP;
1946           }
1947         }
1948       }
1949     }
1950   }
1951 
1952   // Note that if our source is a gep chain itself then we wait for that
1953   // chain to be resolved before we perform this transformation.  This
1954   // avoids us creating a TON of code in some cases.
1955   if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
1956     if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1957       return nullptr;   // Wait until our source is folded to completion.
1958 
1959   SmallVector<Value*, 8> Indices;
1960 
1961   // Find out whether the last index in the source GEP is a sequential idx.
1962   bool EndsWithSequential = false;
1963   for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1964        I != E; ++I)
1965     EndsWithSequential = I.isSequential();
1966 
1967   // Can we combine the two pointer arithmetics offsets?
1968   if (EndsWithSequential) {
1969     // Replace: gep (gep %P, long B), long A, ...
1970     // With:    T = long A+B; gep %P, T, ...
1971     Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1972     Value *GO1 = GEP.getOperand(1);
1973 
1974     // If they aren't the same type, then the input hasn't been processed
1975     // by the loop above yet (which canonicalizes sequential index types to
1976     // intptr_t).  Just avoid transforming this until the input has been
1977     // normalized.
1978     if (SO1->getType() != GO1->getType())
1979       return nullptr;
1980 
1981     Value *Sum =
1982         SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
1983     // Only do the combine when we are sure the cost after the
1984     // merge is never more than that before the merge.
1985     if (Sum == nullptr)
1986       return nullptr;
1987 
1988     // Update the GEP in place if possible.
1989     if (Src->getNumOperands() == 2) {
1990       GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
1991       replaceOperand(GEP, 0, Src->getOperand(0));
1992       replaceOperand(GEP, 1, Sum);
1993       return &GEP;
1994     }
1995     Indices.append(Src->op_begin()+1, Src->op_end()-1);
1996     Indices.push_back(Sum);
1997     Indices.append(GEP.op_begin()+2, GEP.op_end());
1998   } else if (isa<Constant>(*GEP.idx_begin()) &&
1999              cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2000              Src->getNumOperands() != 1) {
2001     // Otherwise we can do the fold if the first index of the GEP is a zero
2002     Indices.append(Src->op_begin()+1, Src->op_end());
2003     Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2004   }
2005 
2006   if (!Indices.empty())
2007     return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2008                ? GetElementPtrInst::CreateInBounds(
2009                      Src->getSourceElementType(), Src->getOperand(0), Indices,
2010                      GEP.getName())
2011                : GetElementPtrInst::Create(Src->getSourceElementType(),
2012                                            Src->getOperand(0), Indices,
2013                                            GEP.getName());
2014 
2015   return nullptr;
2016 }
2017 
2018 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2019   Value *PtrOp = GEP.getOperand(0);
2020   SmallVector<Value *, 8> Indices(GEP.indices());
2021   Type *GEPType = GEP.getType();
2022   Type *GEPEltType = GEP.getSourceElementType();
2023   bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
2024   if (Value *V = SimplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(),
2025                                  SQ.getWithInstruction(&GEP)))
2026     return replaceInstUsesWith(GEP, V);
2027 
2028   // For vector geps, use the generic demanded vector support.
2029   // Skip if GEP return type is scalable. The number of elements is unknown at
2030   // compile-time.
2031   if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
2032     auto VWidth = GEPFVTy->getNumElements();
2033     APInt UndefElts(VWidth, 0);
2034     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
2035     if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
2036                                               UndefElts)) {
2037       if (V != &GEP)
2038         return replaceInstUsesWith(GEP, V);
2039       return &GEP;
2040     }
2041 
2042     // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
2043     // possible (decide on canonical form for pointer broadcast), 3) exploit
2044     // undef elements to decrease demanded bits
2045   }
2046 
2047   // Eliminate unneeded casts for indices, and replace indices which displace
2048   // by multiples of a zero size type with zero.
2049   bool MadeChange = false;
2050 
2051   // Index width may not be the same width as pointer width.
2052   // Data layout chooses the right type based on supported integer types.
2053   Type *NewScalarIndexTy =
2054       DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
2055 
2056   gep_type_iterator GTI = gep_type_begin(GEP);
2057   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
2058        ++I, ++GTI) {
2059     // Skip indices into struct types.
2060     if (GTI.isStruct())
2061       continue;
2062 
2063     Type *IndexTy = (*I)->getType();
2064     Type *NewIndexType =
2065         IndexTy->isVectorTy()
2066             ? VectorType::get(NewScalarIndexTy,
2067                               cast<VectorType>(IndexTy)->getElementCount())
2068             : NewScalarIndexTy;
2069 
2070     // If the element type has zero size then any index over it is equivalent
2071     // to an index of zero, so replace it with zero if it is not zero already.
2072     Type *EltTy = GTI.getIndexedType();
2073     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
2074       if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
2075         *I = Constant::getNullValue(NewIndexType);
2076         MadeChange = true;
2077       }
2078 
2079     if (IndexTy != NewIndexType) {
2080       // If we are using a wider index than needed for this platform, shrink
2081       // it to what we need.  If narrower, sign-extend it to what we need.
2082       // This explicit cast can make subsequent optimizations more obvious.
2083       *I = Builder.CreateIntCast(*I, NewIndexType, true);
2084       MadeChange = true;
2085     }
2086   }
2087   if (MadeChange)
2088     return &GEP;
2089 
2090   // Check to see if the inputs to the PHI node are getelementptr instructions.
2091   if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
2092     auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
2093     if (!Op1)
2094       return nullptr;
2095 
2096     // Don't fold a GEP into itself through a PHI node. This can only happen
2097     // through the back-edge of a loop. Folding a GEP into itself means that
2098     // the value of the previous iteration needs to be stored in the meantime,
2099     // thus requiring an additional register variable to be live, but not
2100     // actually achieving anything (the GEP still needs to be executed once per
2101     // loop iteration).
2102     if (Op1 == &GEP)
2103       return nullptr;
2104 
2105     int DI = -1;
2106 
2107     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
2108       auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
2109       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
2110         return nullptr;
2111 
2112       // As for Op1 above, don't try to fold a GEP into itself.
2113       if (Op2 == &GEP)
2114         return nullptr;
2115 
2116       // Keep track of the type as we walk the GEP.
2117       Type *CurTy = nullptr;
2118 
2119       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
2120         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
2121           return nullptr;
2122 
2123         if (Op1->getOperand(J) != Op2->getOperand(J)) {
2124           if (DI == -1) {
2125             // We have not seen any differences yet in the GEPs feeding the
2126             // PHI yet, so we record this one if it is allowed to be a
2127             // variable.
2128 
2129             // The first two arguments can vary for any GEP, the rest have to be
2130             // static for struct slots
2131             if (J > 1) {
2132               assert(CurTy && "No current type?");
2133               if (CurTy->isStructTy())
2134                 return nullptr;
2135             }
2136 
2137             DI = J;
2138           } else {
2139             // The GEP is different by more than one input. While this could be
2140             // extended to support GEPs that vary by more than one variable it
2141             // doesn't make sense since it greatly increases the complexity and
2142             // would result in an R+R+R addressing mode which no backend
2143             // directly supports and would need to be broken into several
2144             // simpler instructions anyway.
2145             return nullptr;
2146           }
2147         }
2148 
2149         // Sink down a layer of the type for the next iteration.
2150         if (J > 0) {
2151           if (J == 1) {
2152             CurTy = Op1->getSourceElementType();
2153           } else {
2154             CurTy =
2155                 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
2156           }
2157         }
2158       }
2159     }
2160 
2161     // If not all GEPs are identical we'll have to create a new PHI node.
2162     // Check that the old PHI node has only one use so that it will get
2163     // removed.
2164     if (DI != -1 && !PN->hasOneUse())
2165       return nullptr;
2166 
2167     auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2168     if (DI == -1) {
2169       // All the GEPs feeding the PHI are identical. Clone one down into our
2170       // BB so that it can be merged with the current GEP.
2171     } else {
2172       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
2173       // into the current block so it can be merged, and create a new PHI to
2174       // set that index.
2175       PHINode *NewPN;
2176       {
2177         IRBuilderBase::InsertPointGuard Guard(Builder);
2178         Builder.SetInsertPoint(PN);
2179         NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
2180                                   PN->getNumOperands());
2181       }
2182 
2183       for (auto &I : PN->operands())
2184         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
2185                            PN->getIncomingBlock(I));
2186 
2187       NewGEP->setOperand(DI, NewPN);
2188     }
2189 
2190     GEP.getParent()->getInstList().insert(
2191         GEP.getParent()->getFirstInsertionPt(), NewGEP);
2192     replaceOperand(GEP, 0, NewGEP);
2193     PtrOp = NewGEP;
2194   }
2195 
2196   if (auto *Src = dyn_cast<GEPOperator>(PtrOp))
2197     if (Instruction *I = visitGEPOfGEP(GEP, Src))
2198       return I;
2199 
2200   // Skip if GEP source element type is scalable. The type alloc size is unknown
2201   // at compile-time.
2202   if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2203     unsigned AS = GEP.getPointerAddressSpace();
2204     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2205         DL.getIndexSizeInBits(AS)) {
2206       uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2207 
2208       bool Matched = false;
2209       uint64_t C;
2210       Value *V = nullptr;
2211       if (TyAllocSize == 1) {
2212         V = GEP.getOperand(1);
2213         Matched = true;
2214       } else if (match(GEP.getOperand(1),
2215                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
2216         if (TyAllocSize == 1ULL << C)
2217           Matched = true;
2218       } else if (match(GEP.getOperand(1),
2219                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2220         if (TyAllocSize == C)
2221           Matched = true;
2222       }
2223 
2224       // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but
2225       // only if both point to the same underlying object (otherwise provenance
2226       // is not necessarily retained).
2227       Value *Y;
2228       Value *X = GEP.getOperand(0);
2229       if (Matched &&
2230           match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) &&
2231           getUnderlyingObject(X) == getUnderlyingObject(Y))
2232         return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2233     }
2234   }
2235 
2236   // We do not handle pointer-vector geps here.
2237   if (GEPType->isVectorTy())
2238     return nullptr;
2239 
2240   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2241   Value *StrippedPtr = PtrOp->stripPointerCasts();
2242   PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2243 
2244   // TODO: The basic approach of these folds is not compatible with opaque
2245   // pointers, because we can't use bitcasts as a hint for a desirable GEP
2246   // type. Instead, we should perform canonicalization directly on the GEP
2247   // type. For now, skip these.
2248   if (StrippedPtr != PtrOp && !StrippedPtrTy->isOpaque()) {
2249     bool HasZeroPointerIndex = false;
2250     Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
2251 
2252     if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2253       HasZeroPointerIndex = C->isZero();
2254 
2255     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2256     // into     : GEP [10 x i8]* X, i32 0, ...
2257     //
2258     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2259     //           into     : GEP i8* X, ...
2260     //
2261     // This occurs when the program declares an array extern like "int X[];"
2262     if (HasZeroPointerIndex) {
2263       if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2264         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2265         if (CATy->getElementType() == StrippedPtrEltTy) {
2266           // -> GEP i8* X, ...
2267           SmallVector<Value *, 8> Idx(drop_begin(GEP.indices()));
2268           GetElementPtrInst *Res = GetElementPtrInst::Create(
2269               StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2270           Res->setIsInBounds(GEP.isInBounds());
2271           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2272             return Res;
2273           // Insert Res, and create an addrspacecast.
2274           // e.g.,
2275           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2276           // ->
2277           // %0 = GEP i8 addrspace(1)* X, ...
2278           // addrspacecast i8 addrspace(1)* %0 to i8*
2279           return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2280         }
2281 
2282         if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2283           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2284           if (CATy->getElementType() == XATy->getElementType()) {
2285             // -> GEP [10 x i8]* X, i32 0, ...
2286             // At this point, we know that the cast source type is a pointer
2287             // to an array of the same type as the destination pointer
2288             // array.  Because the array type is never stepped over (there
2289             // is a leading zero) we can fold the cast into this GEP.
2290             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2291               GEP.setSourceElementType(XATy);
2292               return replaceOperand(GEP, 0, StrippedPtr);
2293             }
2294             // Cannot replace the base pointer directly because StrippedPtr's
2295             // address space is different. Instead, create a new GEP followed by
2296             // an addrspacecast.
2297             // e.g.,
2298             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2299             //   i32 0, ...
2300             // ->
2301             // %0 = GEP [10 x i8] addrspace(1)* X, ...
2302             // addrspacecast i8 addrspace(1)* %0 to i8*
2303             SmallVector<Value *, 8> Idx(GEP.indices());
2304             Value *NewGEP =
2305                 GEP.isInBounds()
2306                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2307                                                 Idx, GEP.getName())
2308                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2309                                         GEP.getName());
2310             return new AddrSpaceCastInst(NewGEP, GEPType);
2311           }
2312         }
2313       }
2314     } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
2315       // Skip if GEP source element type is scalable. The type alloc size is
2316       // unknown at compile-time.
2317       // Transform things like: %t = getelementptr i32*
2318       // bitcast ([2 x i32]* %str to i32*), i32 %V into:  %t1 = getelementptr [2
2319       // x i32]* %str, i32 0, i32 %V; bitcast
2320       if (StrippedPtrEltTy->isArrayTy() &&
2321           DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2322               DL.getTypeAllocSize(GEPEltType)) {
2323         Type *IdxType = DL.getIndexType(GEPType);
2324         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2325         Value *NewGEP =
2326             GEP.isInBounds()
2327                 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2328                                             GEP.getName())
2329                 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2330                                     GEP.getName());
2331 
2332         // V and GEP are both pointer types --> BitCast
2333         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2334       }
2335 
2336       // Transform things like:
2337       // %V = mul i64 %N, 4
2338       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2339       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
2340       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2341         // Check that changing the type amounts to dividing the index by a scale
2342         // factor.
2343         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2344         uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
2345         if (ResSize && SrcSize % ResSize == 0) {
2346           Value *Idx = GEP.getOperand(1);
2347           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2348           uint64_t Scale = SrcSize / ResSize;
2349 
2350           // Earlier transforms ensure that the index has the right type
2351           // according to Data Layout, which considerably simplifies the
2352           // logic by eliminating implicit casts.
2353           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2354                  "Index type does not match the Data Layout preferences");
2355 
2356           bool NSW;
2357           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2358             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2359             // If the multiplication NewIdx * Scale may overflow then the new
2360             // GEP may not be "inbounds".
2361             Value *NewGEP =
2362                 GEP.isInBounds() && NSW
2363                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2364                                                 NewIdx, GEP.getName())
2365                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2366                                         GEP.getName());
2367 
2368             // The NewGEP must be pointer typed, so must the old one -> BitCast
2369             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2370                                                                  GEPType);
2371           }
2372         }
2373       }
2374 
2375       // Similarly, transform things like:
2376       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2377       //   (where tmp = 8*tmp2) into:
2378       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2379       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2380           StrippedPtrEltTy->isArrayTy()) {
2381         // Check that changing to the array element type amounts to dividing the
2382         // index by a scale factor.
2383         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2384         uint64_t ArrayEltSize =
2385             DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
2386                 .getFixedSize();
2387         if (ResSize && ArrayEltSize % ResSize == 0) {
2388           Value *Idx = GEP.getOperand(1);
2389           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2390           uint64_t Scale = ArrayEltSize / ResSize;
2391 
2392           // Earlier transforms ensure that the index has the right type
2393           // according to the Data Layout, which considerably simplifies
2394           // the logic by eliminating implicit casts.
2395           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2396                  "Index type does not match the Data Layout preferences");
2397 
2398           bool NSW;
2399           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2400             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2401             // If the multiplication NewIdx * Scale may overflow then the new
2402             // GEP may not be "inbounds".
2403             Type *IndTy = DL.getIndexType(GEPType);
2404             Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2405 
2406             Value *NewGEP =
2407                 GEP.isInBounds() && NSW
2408                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2409                                                 Off, GEP.getName())
2410                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2411                                         GEP.getName());
2412             // The NewGEP must be pointer typed, so must the old one -> BitCast
2413             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2414                                                                  GEPType);
2415           }
2416         }
2417       }
2418     }
2419   }
2420 
2421   // addrspacecast between types is canonicalized as a bitcast, then an
2422   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2423   // through the addrspacecast.
2424   Value *ASCStrippedPtrOp = PtrOp;
2425   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2426     //   X = bitcast A addrspace(1)* to B addrspace(1)*
2427     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2428     //   Z = gep Y, <...constant indices...>
2429     // Into an addrspacecasted GEP of the struct.
2430     if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2431       ASCStrippedPtrOp = BC;
2432   }
2433 
2434   if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2435     Value *SrcOp = BCI->getOperand(0);
2436     PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2437     Type *SrcEltType = SrcType->getElementType();
2438 
2439     // GEP directly using the source operand if this GEP is accessing an element
2440     // of a bitcasted pointer to vector or array of the same dimensions:
2441     // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2442     // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2443     auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2444                                           const DataLayout &DL) {
2445       auto *VecVTy = cast<FixedVectorType>(VecTy);
2446       return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
2447              ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
2448              DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2449     };
2450     if (GEP.getNumOperands() == 3 &&
2451         ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) &&
2452           areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2453          (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() &&
2454           areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2455 
2456       // Create a new GEP here, as using `setOperand()` followed by
2457       // `setSourceElementType()` won't actually update the type of the
2458       // existing GEP Value. Causing issues if this Value is accessed when
2459       // constructing an AddrSpaceCastInst
2460       Value *NGEP = GEP.isInBounds()
2461                         ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, Indices)
2462                         : Builder.CreateGEP(SrcEltType, SrcOp, Indices);
2463       NGEP->takeName(&GEP);
2464 
2465       // Preserve GEP address space to satisfy users
2466       if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2467         return new AddrSpaceCastInst(NGEP, GEPType);
2468 
2469       return replaceInstUsesWith(GEP, NGEP);
2470     }
2471 
2472     // See if we can simplify:
2473     //   X = bitcast A* to B*
2474     //   Y = gep X, <...constant indices...>
2475     // into a gep of the original struct. This is important for SROA and alias
2476     // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2477     unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2478     APInt Offset(OffsetBits, 0);
2479 
2480     // If the bitcast argument is an allocation, The bitcast is for convertion
2481     // to actual type of allocation. Removing such bitcasts, results in having
2482     // GEPs with i8* base and pure byte offsets. That means GEP is not aware of
2483     // struct or array hierarchy.
2484     // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have
2485     // a better chance to succeed.
2486     if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) &&
2487         !isAllocationFn(SrcOp, &TLI)) {
2488       // If this GEP instruction doesn't move the pointer, just replace the GEP
2489       // with a bitcast of the real input to the dest type.
2490       if (!Offset) {
2491         // If the bitcast is of an allocation, and the allocation will be
2492         // converted to match the type of the cast, don't touch this.
2493         if (isa<AllocaInst>(SrcOp)) {
2494           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2495           if (Instruction *I = visitBitCast(*BCI)) {
2496             if (I != BCI) {
2497               I->takeName(BCI);
2498               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2499               replaceInstUsesWith(*BCI, I);
2500             }
2501             return &GEP;
2502           }
2503         }
2504 
2505         if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2506           return new AddrSpaceCastInst(SrcOp, GEPType);
2507         return new BitCastInst(SrcOp, GEPType);
2508       }
2509 
2510       // Otherwise, if the offset is non-zero, we need to find out if there is a
2511       // field at Offset in 'A's type.  If so, we can pull the cast through the
2512       // GEP.
2513       SmallVector<Value*, 8> NewIndices;
2514       if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2515         Value *NGEP =
2516             GEP.isInBounds()
2517                 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2518                 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2519 
2520         if (NGEP->getType() == GEPType)
2521           return replaceInstUsesWith(GEP, NGEP);
2522         NGEP->takeName(&GEP);
2523 
2524         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2525           return new AddrSpaceCastInst(NGEP, GEPType);
2526         return new BitCastInst(NGEP, GEPType);
2527       }
2528     }
2529   }
2530 
2531   if (!GEP.isInBounds()) {
2532     unsigned IdxWidth =
2533         DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2534     APInt BasePtrOffset(IdxWidth, 0);
2535     Value *UnderlyingPtrOp =
2536             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2537                                                              BasePtrOffset);
2538     if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2539       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2540           BasePtrOffset.isNonNegative()) {
2541         APInt AllocSize(
2542             IdxWidth,
2543             DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
2544         if (BasePtrOffset.ule(AllocSize)) {
2545           return GetElementPtrInst::CreateInBounds(
2546               GEP.getSourceElementType(), PtrOp, Indices, GEP.getName());
2547         }
2548       }
2549     }
2550   }
2551 
2552   if (Instruction *R = foldSelectGEP(GEP, Builder))
2553     return R;
2554 
2555   return nullptr;
2556 }
2557 
2558 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI,
2559                                          Instruction *AI) {
2560   if (isa<ConstantPointerNull>(V))
2561     return true;
2562   if (auto *LI = dyn_cast<LoadInst>(V))
2563     return isa<GlobalVariable>(LI->getPointerOperand());
2564   // Two distinct allocations will never be equal.
2565   return isAllocLikeFn(V, &TLI) && V != AI;
2566 }
2567 
2568 /// Given a call CB which uses an address UsedV, return true if we can prove the
2569 /// call's only possible effect is storing to V.
2570 static bool isRemovableWrite(CallBase &CB, Value *UsedV,
2571                              const TargetLibraryInfo &TLI) {
2572   if (!CB.use_empty())
2573     // TODO: add recursion if returned attribute is present
2574     return false;
2575 
2576   if (CB.isTerminator())
2577     // TODO: remove implementation restriction
2578     return false;
2579 
2580   if (!CB.willReturn() || !CB.doesNotThrow())
2581     return false;
2582 
2583   // If the only possible side effect of the call is writing to the alloca,
2584   // and the result isn't used, we can safely remove any reads implied by the
2585   // call including those which might read the alloca itself.
2586   Optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI);
2587   return Dest && Dest->Ptr == UsedV;
2588 }
2589 
2590 static bool isAllocSiteRemovable(Instruction *AI,
2591                                  SmallVectorImpl<WeakTrackingVH> &Users,
2592                                  const TargetLibraryInfo &TLI) {
2593   SmallVector<Instruction*, 4> Worklist;
2594   Worklist.push_back(AI);
2595 
2596   do {
2597     Instruction *PI = Worklist.pop_back_val();
2598     for (User *U : PI->users()) {
2599       Instruction *I = cast<Instruction>(U);
2600       switch (I->getOpcode()) {
2601       default:
2602         // Give up the moment we see something we can't handle.
2603         return false;
2604 
2605       case Instruction::AddrSpaceCast:
2606       case Instruction::BitCast:
2607       case Instruction::GetElementPtr:
2608         Users.emplace_back(I);
2609         Worklist.push_back(I);
2610         continue;
2611 
2612       case Instruction::ICmp: {
2613         ICmpInst *ICI = cast<ICmpInst>(I);
2614         // We can fold eq/ne comparisons with null to false/true, respectively.
2615         // We also fold comparisons in some conditions provided the alloc has
2616         // not escaped (see isNeverEqualToUnescapedAlloc).
2617         if (!ICI->isEquality())
2618           return false;
2619         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2620         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2621           return false;
2622         Users.emplace_back(I);
2623         continue;
2624       }
2625 
2626       case Instruction::Call:
2627         // Ignore no-op and store intrinsics.
2628         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2629           switch (II->getIntrinsicID()) {
2630           default:
2631             return false;
2632 
2633           case Intrinsic::memmove:
2634           case Intrinsic::memcpy:
2635           case Intrinsic::memset: {
2636             MemIntrinsic *MI = cast<MemIntrinsic>(II);
2637             if (MI->isVolatile() || MI->getRawDest() != PI)
2638               return false;
2639             LLVM_FALLTHROUGH;
2640           }
2641           case Intrinsic::assume:
2642           case Intrinsic::invariant_start:
2643           case Intrinsic::invariant_end:
2644           case Intrinsic::lifetime_start:
2645           case Intrinsic::lifetime_end:
2646           case Intrinsic::objectsize:
2647             Users.emplace_back(I);
2648             continue;
2649           case Intrinsic::launder_invariant_group:
2650           case Intrinsic::strip_invariant_group:
2651             Users.emplace_back(I);
2652             Worklist.push_back(I);
2653             continue;
2654           }
2655         }
2656 
2657         if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) {
2658           Users.emplace_back(I);
2659           continue;
2660         }
2661 
2662         if (isFreeCall(I, &TLI)) {
2663           Users.emplace_back(I);
2664           continue;
2665         }
2666 
2667         if (isReallocLikeFn(I, &TLI)) {
2668           Users.emplace_back(I);
2669           Worklist.push_back(I);
2670           continue;
2671         }
2672 
2673         return false;
2674 
2675       case Instruction::Store: {
2676         StoreInst *SI = cast<StoreInst>(I);
2677         if (SI->isVolatile() || SI->getPointerOperand() != PI)
2678           return false;
2679         Users.emplace_back(I);
2680         continue;
2681       }
2682       }
2683       llvm_unreachable("missing a return?");
2684     }
2685   } while (!Worklist.empty());
2686   return true;
2687 }
2688 
2689 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
2690   assert(isa<AllocaInst>(MI) || isAllocRemovable(&cast<CallBase>(MI), &TLI));
2691 
2692   // If we have a malloc call which is only used in any amount of comparisons to
2693   // null and free calls, delete the calls and replace the comparisons with true
2694   // or false as appropriate.
2695 
2696   // This is based on the principle that we can substitute our own allocation
2697   // function (which will never return null) rather than knowledge of the
2698   // specific function being called. In some sense this can change the permitted
2699   // outputs of a program (when we convert a malloc to an alloca, the fact that
2700   // the allocation is now on the stack is potentially visible, for example),
2701   // but we believe in a permissible manner.
2702   SmallVector<WeakTrackingVH, 64> Users;
2703 
2704   // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2705   // before each store.
2706   SmallVector<DbgVariableIntrinsic *, 8> DVIs;
2707   std::unique_ptr<DIBuilder> DIB;
2708   if (isa<AllocaInst>(MI)) {
2709     findDbgUsers(DVIs, &MI);
2710     DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2711   }
2712 
2713   if (isAllocSiteRemovable(&MI, Users, TLI)) {
2714     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2715       // Lowering all @llvm.objectsize calls first because they may
2716       // use a bitcast/GEP of the alloca we are removing.
2717       if (!Users[i])
2718        continue;
2719 
2720       Instruction *I = cast<Instruction>(&*Users[i]);
2721 
2722       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2723         if (II->getIntrinsicID() == Intrinsic::objectsize) {
2724           Value *Result =
2725               lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2726           replaceInstUsesWith(*I, Result);
2727           eraseInstFromFunction(*I);
2728           Users[i] = nullptr; // Skip examining in the next loop.
2729         }
2730       }
2731     }
2732     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2733       if (!Users[i])
2734         continue;
2735 
2736       Instruction *I = cast<Instruction>(&*Users[i]);
2737 
2738       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2739         replaceInstUsesWith(*C,
2740                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
2741                                              C->isFalseWhenEqual()));
2742       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2743         for (auto *DVI : DVIs)
2744           if (DVI->isAddressOfVariable())
2745             ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
2746       } else {
2747         // Casts, GEP, or anything else: we're about to delete this instruction,
2748         // so it can not have any valid uses.
2749         replaceInstUsesWith(*I, PoisonValue::get(I->getType()));
2750       }
2751       eraseInstFromFunction(*I);
2752     }
2753 
2754     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2755       // Replace invoke with a NOP intrinsic to maintain the original CFG
2756       Module *M = II->getModule();
2757       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2758       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2759                          None, "", II->getParent());
2760     }
2761 
2762     // Remove debug intrinsics which describe the value contained within the
2763     // alloca. In addition to removing dbg.{declare,addr} which simply point to
2764     // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
2765     //
2766     // ```
2767     //   define void @foo(i32 %0) {
2768     //     %a = alloca i32                              ; Deleted.
2769     //     store i32 %0, i32* %a
2770     //     dbg.value(i32 %0, "arg0")                    ; Not deleted.
2771     //     dbg.value(i32* %a, "arg0", DW_OP_deref)      ; Deleted.
2772     //     call void @trivially_inlinable_no_op(i32* %a)
2773     //     ret void
2774     //  }
2775     // ```
2776     //
2777     // This may not be required if we stop describing the contents of allocas
2778     // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
2779     // the LowerDbgDeclare utility.
2780     //
2781     // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
2782     // "arg0" dbg.value may be stale after the call. However, failing to remove
2783     // the DW_OP_deref dbg.value causes large gaps in location coverage.
2784     for (auto *DVI : DVIs)
2785       if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
2786         DVI->eraseFromParent();
2787 
2788     return eraseInstFromFunction(MI);
2789   }
2790   return nullptr;
2791 }
2792 
2793 /// Move the call to free before a NULL test.
2794 ///
2795 /// Check if this free is accessed after its argument has been test
2796 /// against NULL (property 0).
2797 /// If yes, it is legal to move this call in its predecessor block.
2798 ///
2799 /// The move is performed only if the block containing the call to free
2800 /// will be removed, i.e.:
2801 /// 1. it has only one predecessor P, and P has two successors
2802 /// 2. it contains the call, noops, and an unconditional branch
2803 /// 3. its successor is the same as its predecessor's successor
2804 ///
2805 /// The profitability is out-of concern here and this function should
2806 /// be called only if the caller knows this transformation would be
2807 /// profitable (e.g., for code size).
2808 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2809                                                 const DataLayout &DL) {
2810   Value *Op = FI.getArgOperand(0);
2811   BasicBlock *FreeInstrBB = FI.getParent();
2812   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2813 
2814   // Validate part of constraint #1: Only one predecessor
2815   // FIXME: We can extend the number of predecessor, but in that case, we
2816   //        would duplicate the call to free in each predecessor and it may
2817   //        not be profitable even for code size.
2818   if (!PredBB)
2819     return nullptr;
2820 
2821   // Validate constraint #2: Does this block contains only the call to
2822   //                         free, noops, and an unconditional branch?
2823   BasicBlock *SuccBB;
2824   Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2825   if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2826     return nullptr;
2827 
2828   // If there are only 2 instructions in the block, at this point,
2829   // this is the call to free and unconditional.
2830   // If there are more than 2 instructions, check that they are noops
2831   // i.e., they won't hurt the performance of the generated code.
2832   if (FreeInstrBB->size() != 2) {
2833     for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2834       if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2835         continue;
2836       auto *Cast = dyn_cast<CastInst>(&Inst);
2837       if (!Cast || !Cast->isNoopCast(DL))
2838         return nullptr;
2839     }
2840   }
2841   // Validate the rest of constraint #1 by matching on the pred branch.
2842   Instruction *TI = PredBB->getTerminator();
2843   BasicBlock *TrueBB, *FalseBB;
2844   ICmpInst::Predicate Pred;
2845   if (!match(TI, m_Br(m_ICmp(Pred,
2846                              m_CombineOr(m_Specific(Op),
2847                                          m_Specific(Op->stripPointerCasts())),
2848                              m_Zero()),
2849                       TrueBB, FalseBB)))
2850     return nullptr;
2851   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2852     return nullptr;
2853 
2854   // Validate constraint #3: Ensure the null case just falls through.
2855   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2856     return nullptr;
2857   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2858          "Broken CFG: missing edge from predecessor to successor");
2859 
2860   // At this point, we know that everything in FreeInstrBB can be moved
2861   // before TI.
2862   for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) {
2863     if (&Instr == FreeInstrBBTerminator)
2864       break;
2865     Instr.moveBefore(TI);
2866   }
2867   assert(FreeInstrBB->size() == 1 &&
2868          "Only the branch instruction should remain");
2869 
2870   // Now that we've moved the call to free before the NULL check, we have to
2871   // remove any attributes on its parameter that imply it's non-null, because
2872   // those attributes might have only been valid because of the NULL check, and
2873   // we can get miscompiles if we keep them. This is conservative if non-null is
2874   // also implied by something other than the NULL check, but it's guaranteed to
2875   // be correct, and the conservativeness won't matter in practice, since the
2876   // attributes are irrelevant for the call to free itself and the pointer
2877   // shouldn't be used after the call.
2878   AttributeList Attrs = FI.getAttributes();
2879   Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull);
2880   Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
2881   if (Dereferenceable.isValid()) {
2882     uint64_t Bytes = Dereferenceable.getDereferenceableBytes();
2883     Attrs = Attrs.removeParamAttribute(FI.getContext(), 0,
2884                                        Attribute::Dereferenceable);
2885     Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes);
2886   }
2887   FI.setAttributes(Attrs);
2888 
2889   return &FI;
2890 }
2891 
2892 Instruction *InstCombinerImpl::visitFree(CallInst &FI) {
2893   Value *Op = FI.getArgOperand(0);
2894 
2895   // free undef -> unreachable.
2896   if (isa<UndefValue>(Op)) {
2897     // Leave a marker since we can't modify the CFG here.
2898     CreateNonTerminatorUnreachable(&FI);
2899     return eraseInstFromFunction(FI);
2900   }
2901 
2902   // If we have 'free null' delete the instruction.  This can happen in stl code
2903   // when lots of inlining happens.
2904   if (isa<ConstantPointerNull>(Op))
2905     return eraseInstFromFunction(FI);
2906 
2907   // If we had free(realloc(...)) with no intervening uses, then eliminate the
2908   // realloc() entirely.
2909   if (CallInst *CI = dyn_cast<CallInst>(Op)) {
2910     if (CI->hasOneUse() && isReallocLikeFn(CI, &TLI)) {
2911       return eraseInstFromFunction(
2912           *replaceInstUsesWith(*CI, CI->getOperand(0)));
2913     }
2914   }
2915 
2916   // If we optimize for code size, try to move the call to free before the null
2917   // test so that simplify cfg can remove the empty block and dead code
2918   // elimination the branch. I.e., helps to turn something like:
2919   // if (foo) free(foo);
2920   // into
2921   // free(foo);
2922   //
2923   // Note that we can only do this for 'free' and not for any flavor of
2924   // 'operator delete'; there is no 'operator delete' symbol for which we are
2925   // permitted to invent a call, even if we're passing in a null pointer.
2926   if (MinimizeSize) {
2927     LibFunc Func;
2928     if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
2929       if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2930         return I;
2931   }
2932 
2933   return nullptr;
2934 }
2935 
2936 static bool isMustTailCall(Value *V) {
2937   if (auto *CI = dyn_cast<CallInst>(V))
2938     return CI->isMustTailCall();
2939   return false;
2940 }
2941 
2942 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
2943   if (RI.getNumOperands() == 0) // ret void
2944     return nullptr;
2945 
2946   Value *ResultOp = RI.getOperand(0);
2947   Type *VTy = ResultOp->getType();
2948   if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
2949     return nullptr;
2950 
2951   // Don't replace result of musttail calls.
2952   if (isMustTailCall(ResultOp))
2953     return nullptr;
2954 
2955   // There might be assume intrinsics dominating this return that completely
2956   // determine the value. If so, constant fold it.
2957   KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2958   if (Known.isConstant())
2959     return replaceOperand(RI, 0,
2960         Constant::getIntegerValue(VTy, Known.getConstant()));
2961 
2962   return nullptr;
2963 }
2964 
2965 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
2966 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
2967   // Try to remove the previous instruction if it must lead to unreachable.
2968   // This includes instructions like stores and "llvm.assume" that may not get
2969   // removed by simple dead code elimination.
2970   while (Instruction *Prev = I.getPrevNonDebugInstruction()) {
2971     // While we theoretically can erase EH, that would result in a block that
2972     // used to start with an EH no longer starting with EH, which is invalid.
2973     // To make it valid, we'd need to fixup predecessors to no longer refer to
2974     // this block, but that changes CFG, which is not allowed in InstCombine.
2975     if (Prev->isEHPad())
2976       return nullptr; // Can not drop any more instructions. We're done here.
2977 
2978     if (!isGuaranteedToTransferExecutionToSuccessor(Prev))
2979       return nullptr; // Can not drop any more instructions. We're done here.
2980     // Otherwise, this instruction can be freely erased,
2981     // even if it is not side-effect free.
2982 
2983     // A value may still have uses before we process it here (for example, in
2984     // another unreachable block), so convert those to poison.
2985     replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
2986     eraseInstFromFunction(*Prev);
2987   }
2988   assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty.");
2989   // FIXME: recurse into unconditional predecessors?
2990   return nullptr;
2991 }
2992 
2993 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
2994   assert(BI.isUnconditional() && "Only for unconditional branches.");
2995 
2996   // If this store is the second-to-last instruction in the basic block
2997   // (excluding debug info and bitcasts of pointers) and if the block ends with
2998   // an unconditional branch, try to move the store to the successor block.
2999 
3000   auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
3001     auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
3002       return BBI->isDebugOrPseudoInst() ||
3003              (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
3004     };
3005 
3006     BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
3007     do {
3008       if (BBI != FirstInstr)
3009         --BBI;
3010     } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
3011 
3012     return dyn_cast<StoreInst>(BBI);
3013   };
3014 
3015   if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
3016     if (mergeStoreIntoSuccessor(*SI))
3017       return &BI;
3018 
3019   return nullptr;
3020 }
3021 
3022 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
3023   if (BI.isUnconditional())
3024     return visitUnconditionalBranchInst(BI);
3025 
3026   // Change br (not X), label True, label False to: br X, label False, True
3027   Value *X = nullptr;
3028   if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
3029       !isa<Constant>(X)) {
3030     // Swap Destinations and condition...
3031     BI.swapSuccessors();
3032     return replaceOperand(BI, 0, X);
3033   }
3034 
3035   // If the condition is irrelevant, remove the use so that other
3036   // transforms on the condition become more effective.
3037   if (!isa<ConstantInt>(BI.getCondition()) &&
3038       BI.getSuccessor(0) == BI.getSuccessor(1))
3039     return replaceOperand(
3040         BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
3041 
3042   // Canonicalize, for example, fcmp_one -> fcmp_oeq.
3043   CmpInst::Predicate Pred;
3044   if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())),
3045                       m_BasicBlock(), m_BasicBlock())) &&
3046       !isCanonicalPredicate(Pred)) {
3047     // Swap destinations and condition.
3048     CmpInst *Cond = cast<CmpInst>(BI.getCondition());
3049     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
3050     BI.swapSuccessors();
3051     Worklist.push(Cond);
3052     return &BI;
3053   }
3054 
3055   return nullptr;
3056 }
3057 
3058 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
3059   Value *Cond = SI.getCondition();
3060   Value *Op0;
3061   ConstantInt *AddRHS;
3062   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
3063     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
3064     for (auto Case : SI.cases()) {
3065       Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
3066       assert(isa<ConstantInt>(NewCase) &&
3067              "Result of expression should be constant");
3068       Case.setValue(cast<ConstantInt>(NewCase));
3069     }
3070     return replaceOperand(SI, 0, Op0);
3071   }
3072 
3073   KnownBits Known = computeKnownBits(Cond, 0, &SI);
3074   unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
3075   unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
3076 
3077   // Compute the number of leading bits we can ignore.
3078   // TODO: A better way to determine this would use ComputeNumSignBits().
3079   for (auto &C : SI.cases()) {
3080     LeadingKnownZeros = std::min(
3081         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
3082     LeadingKnownOnes = std::min(
3083         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
3084   }
3085 
3086   unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
3087 
3088   // Shrink the condition operand if the new type is smaller than the old type.
3089   // But do not shrink to a non-standard type, because backend can't generate
3090   // good code for that yet.
3091   // TODO: We can make it aggressive again after fixing PR39569.
3092   if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
3093       shouldChangeType(Known.getBitWidth(), NewWidth)) {
3094     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
3095     Builder.SetInsertPoint(&SI);
3096     Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
3097 
3098     for (auto Case : SI.cases()) {
3099       APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3100       Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3101     }
3102     return replaceOperand(SI, 0, NewCond);
3103   }
3104 
3105   return nullptr;
3106 }
3107 
3108 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
3109   Value *Agg = EV.getAggregateOperand();
3110 
3111   if (!EV.hasIndices())
3112     return replaceInstUsesWith(EV, Agg);
3113 
3114   if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
3115                                           SQ.getWithInstruction(&EV)))
3116     return replaceInstUsesWith(EV, V);
3117 
3118   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
3119     // We're extracting from an insertvalue instruction, compare the indices
3120     const unsigned *exti, *exte, *insi, *inse;
3121     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
3122          exte = EV.idx_end(), inse = IV->idx_end();
3123          exti != exte && insi != inse;
3124          ++exti, ++insi) {
3125       if (*insi != *exti)
3126         // The insert and extract both reference distinctly different elements.
3127         // This means the extract is not influenced by the insert, and we can
3128         // replace the aggregate operand of the extract with the aggregate
3129         // operand of the insert. i.e., replace
3130         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3131         // %E = extractvalue { i32, { i32 } } %I, 0
3132         // with
3133         // %E = extractvalue { i32, { i32 } } %A, 0
3134         return ExtractValueInst::Create(IV->getAggregateOperand(),
3135                                         EV.getIndices());
3136     }
3137     if (exti == exte && insi == inse)
3138       // Both iterators are at the end: Index lists are identical. Replace
3139       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3140       // %C = extractvalue { i32, { i32 } } %B, 1, 0
3141       // with "i32 42"
3142       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3143     if (exti == exte) {
3144       // The extract list is a prefix of the insert list. i.e. replace
3145       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3146       // %E = extractvalue { i32, { i32 } } %I, 1
3147       // with
3148       // %X = extractvalue { i32, { i32 } } %A, 1
3149       // %E = insertvalue { i32 } %X, i32 42, 0
3150       // by switching the order of the insert and extract (though the
3151       // insertvalue should be left in, since it may have other uses).
3152       Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
3153                                                 EV.getIndices());
3154       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
3155                                      makeArrayRef(insi, inse));
3156     }
3157     if (insi == inse)
3158       // The insert list is a prefix of the extract list
3159       // We can simply remove the common indices from the extract and make it
3160       // operate on the inserted value instead of the insertvalue result.
3161       // i.e., replace
3162       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3163       // %E = extractvalue { i32, { i32 } } %I, 1, 0
3164       // with
3165       // %E extractvalue { i32 } { i32 42 }, 0
3166       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
3167                                       makeArrayRef(exti, exte));
3168   }
3169   if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
3170     // We're extracting from an overflow intrinsic, see if we're the only user,
3171     // which allows us to simplify multiple result intrinsics to simpler
3172     // things that just get one value.
3173     if (WO->hasOneUse()) {
3174       // Check if we're grabbing only the result of a 'with overflow' intrinsic
3175       // and replace it with a traditional binary instruction.
3176       if (*EV.idx_begin() == 0) {
3177         Instruction::BinaryOps BinOp = WO->getBinaryOp();
3178         Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3179         // Replace the old instruction's uses with poison.
3180         replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
3181         eraseInstFromFunction(*WO);
3182         return BinaryOperator::Create(BinOp, LHS, RHS);
3183       }
3184 
3185       assert(*EV.idx_begin() == 1 &&
3186              "unexpected extract index for overflow inst");
3187 
3188       // If only the overflow result is used, and the right hand side is a
3189       // constant (or constant splat), we can remove the intrinsic by directly
3190       // checking for overflow.
3191       const APInt *C;
3192       if (match(WO->getRHS(), m_APInt(C))) {
3193         // Compute the no-wrap range for LHS given RHS=C, then construct an
3194         // equivalent icmp, potentially using an offset.
3195         ConstantRange NWR =
3196           ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
3197                                                WO->getNoWrapKind());
3198 
3199         CmpInst::Predicate Pred;
3200         APInt NewRHSC, Offset;
3201         NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
3202         auto *OpTy = WO->getRHS()->getType();
3203         auto *NewLHS = WO->getLHS();
3204         if (Offset != 0)
3205           NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset));
3206         return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
3207                             ConstantInt::get(OpTy, NewRHSC));
3208       }
3209     }
3210   }
3211   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
3212     // If the (non-volatile) load only has one use, we can rewrite this to a
3213     // load from a GEP. This reduces the size of the load. If a load is used
3214     // only by extractvalue instructions then this either must have been
3215     // optimized before, or it is a struct with padding, in which case we
3216     // don't want to do the transformation as it loses padding knowledge.
3217     if (L->isSimple() && L->hasOneUse()) {
3218       // extractvalue has integer indices, getelementptr has Value*s. Convert.
3219       SmallVector<Value*, 4> Indices;
3220       // Prefix an i32 0 since we need the first element.
3221       Indices.push_back(Builder.getInt32(0));
3222       for (unsigned Idx : EV.indices())
3223         Indices.push_back(Builder.getInt32(Idx));
3224 
3225       // We need to insert these at the location of the old load, not at that of
3226       // the extractvalue.
3227       Builder.SetInsertPoint(L);
3228       Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
3229                                              L->getPointerOperand(), Indices);
3230       Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
3231       // Whatever aliasing information we had for the orignal load must also
3232       // hold for the smaller load, so propagate the annotations.
3233       NL->setAAMetadata(L->getAAMetadata());
3234       // Returning the load directly will cause the main loop to insert it in
3235       // the wrong spot, so use replaceInstUsesWith().
3236       return replaceInstUsesWith(EV, NL);
3237     }
3238   // We could simplify extracts from other values. Note that nested extracts may
3239   // already be simplified implicitly by the above: extract (extract (insert) )
3240   // will be translated into extract ( insert ( extract ) ) first and then just
3241   // the value inserted, if appropriate. Similarly for extracts from single-use
3242   // loads: extract (extract (load)) will be translated to extract (load (gep))
3243   // and if again single-use then via load (gep (gep)) to load (gep).
3244   // However, double extracts from e.g. function arguments or return values
3245   // aren't handled yet.
3246   return nullptr;
3247 }
3248 
3249 /// Return 'true' if the given typeinfo will match anything.
3250 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3251   switch (Personality) {
3252   case EHPersonality::GNU_C:
3253   case EHPersonality::GNU_C_SjLj:
3254   case EHPersonality::Rust:
3255     // The GCC C EH and Rust personality only exists to support cleanups, so
3256     // it's not clear what the semantics of catch clauses are.
3257     return false;
3258   case EHPersonality::Unknown:
3259     return false;
3260   case EHPersonality::GNU_Ada:
3261     // While __gnat_all_others_value will match any Ada exception, it doesn't
3262     // match foreign exceptions (or didn't, before gcc-4.7).
3263     return false;
3264   case EHPersonality::GNU_CXX:
3265   case EHPersonality::GNU_CXX_SjLj:
3266   case EHPersonality::GNU_ObjC:
3267   case EHPersonality::MSVC_X86SEH:
3268   case EHPersonality::MSVC_TableSEH:
3269   case EHPersonality::MSVC_CXX:
3270   case EHPersonality::CoreCLR:
3271   case EHPersonality::Wasm_CXX:
3272   case EHPersonality::XL_CXX:
3273     return TypeInfo->isNullValue();
3274   }
3275   llvm_unreachable("invalid enum");
3276 }
3277 
3278 static bool shorter_filter(const Value *LHS, const Value *RHS) {
3279   return
3280     cast<ArrayType>(LHS->getType())->getNumElements()
3281   <
3282     cast<ArrayType>(RHS->getType())->getNumElements();
3283 }
3284 
3285 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
3286   // The logic here should be correct for any real-world personality function.
3287   // However if that turns out not to be true, the offending logic can always
3288   // be conditioned on the personality function, like the catch-all logic is.
3289   EHPersonality Personality =
3290       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3291 
3292   // Simplify the list of clauses, eg by removing repeated catch clauses
3293   // (these are often created by inlining).
3294   bool MakeNewInstruction = false; // If true, recreate using the following:
3295   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3296   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
3297 
3298   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3299   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3300     bool isLastClause = i + 1 == e;
3301     if (LI.isCatch(i)) {
3302       // A catch clause.
3303       Constant *CatchClause = LI.getClause(i);
3304       Constant *TypeInfo = CatchClause->stripPointerCasts();
3305 
3306       // If we already saw this clause, there is no point in having a second
3307       // copy of it.
3308       if (AlreadyCaught.insert(TypeInfo).second) {
3309         // This catch clause was not already seen.
3310         NewClauses.push_back(CatchClause);
3311       } else {
3312         // Repeated catch clause - drop the redundant copy.
3313         MakeNewInstruction = true;
3314       }
3315 
3316       // If this is a catch-all then there is no point in keeping any following
3317       // clauses or marking the landingpad as having a cleanup.
3318       if (isCatchAll(Personality, TypeInfo)) {
3319         if (!isLastClause)
3320           MakeNewInstruction = true;
3321         CleanupFlag = false;
3322         break;
3323       }
3324     } else {
3325       // A filter clause.  If any of the filter elements were already caught
3326       // then they can be dropped from the filter.  It is tempting to try to
3327       // exploit the filter further by saying that any typeinfo that does not
3328       // occur in the filter can't be caught later (and thus can be dropped).
3329       // However this would be wrong, since typeinfos can match without being
3330       // equal (for example if one represents a C++ class, and the other some
3331       // class derived from it).
3332       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3333       Constant *FilterClause = LI.getClause(i);
3334       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3335       unsigned NumTypeInfos = FilterType->getNumElements();
3336 
3337       // An empty filter catches everything, so there is no point in keeping any
3338       // following clauses or marking the landingpad as having a cleanup.  By
3339       // dealing with this case here the following code is made a bit simpler.
3340       if (!NumTypeInfos) {
3341         NewClauses.push_back(FilterClause);
3342         if (!isLastClause)
3343           MakeNewInstruction = true;
3344         CleanupFlag = false;
3345         break;
3346       }
3347 
3348       bool MakeNewFilter = false; // If true, make a new filter.
3349       SmallVector<Constant *, 16> NewFilterElts; // New elements.
3350       if (isa<ConstantAggregateZero>(FilterClause)) {
3351         // Not an empty filter - it contains at least one null typeinfo.
3352         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3353         Constant *TypeInfo =
3354           Constant::getNullValue(FilterType->getElementType());
3355         // If this typeinfo is a catch-all then the filter can never match.
3356         if (isCatchAll(Personality, TypeInfo)) {
3357           // Throw the filter away.
3358           MakeNewInstruction = true;
3359           continue;
3360         }
3361 
3362         // There is no point in having multiple copies of this typeinfo, so
3363         // discard all but the first copy if there is more than one.
3364         NewFilterElts.push_back(TypeInfo);
3365         if (NumTypeInfos > 1)
3366           MakeNewFilter = true;
3367       } else {
3368         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3369         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3370         NewFilterElts.reserve(NumTypeInfos);
3371 
3372         // Remove any filter elements that were already caught or that already
3373         // occurred in the filter.  While there, see if any of the elements are
3374         // catch-alls.  If so, the filter can be discarded.
3375         bool SawCatchAll = false;
3376         for (unsigned j = 0; j != NumTypeInfos; ++j) {
3377           Constant *Elt = Filter->getOperand(j);
3378           Constant *TypeInfo = Elt->stripPointerCasts();
3379           if (isCatchAll(Personality, TypeInfo)) {
3380             // This element is a catch-all.  Bail out, noting this fact.
3381             SawCatchAll = true;
3382             break;
3383           }
3384 
3385           // Even if we've seen a type in a catch clause, we don't want to
3386           // remove it from the filter.  An unexpected type handler may be
3387           // set up for a call site which throws an exception of the same
3388           // type caught.  In order for the exception thrown by the unexpected
3389           // handler to propagate correctly, the filter must be correctly
3390           // described for the call site.
3391           //
3392           // Example:
3393           //
3394           // void unexpected() { throw 1;}
3395           // void foo() throw (int) {
3396           //   std::set_unexpected(unexpected);
3397           //   try {
3398           //     throw 2.0;
3399           //   } catch (int i) {}
3400           // }
3401 
3402           // There is no point in having multiple copies of the same typeinfo in
3403           // a filter, so only add it if we didn't already.
3404           if (SeenInFilter.insert(TypeInfo).second)
3405             NewFilterElts.push_back(cast<Constant>(Elt));
3406         }
3407         // A filter containing a catch-all cannot match anything by definition.
3408         if (SawCatchAll) {
3409           // Throw the filter away.
3410           MakeNewInstruction = true;
3411           continue;
3412         }
3413 
3414         // If we dropped something from the filter, make a new one.
3415         if (NewFilterElts.size() < NumTypeInfos)
3416           MakeNewFilter = true;
3417       }
3418       if (MakeNewFilter) {
3419         FilterType = ArrayType::get(FilterType->getElementType(),
3420                                     NewFilterElts.size());
3421         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3422         MakeNewInstruction = true;
3423       }
3424 
3425       NewClauses.push_back(FilterClause);
3426 
3427       // If the new filter is empty then it will catch everything so there is
3428       // no point in keeping any following clauses or marking the landingpad
3429       // as having a cleanup.  The case of the original filter being empty was
3430       // already handled above.
3431       if (MakeNewFilter && !NewFilterElts.size()) {
3432         assert(MakeNewInstruction && "New filter but not a new instruction!");
3433         CleanupFlag = false;
3434         break;
3435       }
3436     }
3437   }
3438 
3439   // If several filters occur in a row then reorder them so that the shortest
3440   // filters come first (those with the smallest number of elements).  This is
3441   // advantageous because shorter filters are more likely to match, speeding up
3442   // unwinding, but mostly because it increases the effectiveness of the other
3443   // filter optimizations below.
3444   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3445     unsigned j;
3446     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3447     for (j = i; j != e; ++j)
3448       if (!isa<ArrayType>(NewClauses[j]->getType()))
3449         break;
3450 
3451     // Check whether the filters are already sorted by length.  We need to know
3452     // if sorting them is actually going to do anything so that we only make a
3453     // new landingpad instruction if it does.
3454     for (unsigned k = i; k + 1 < j; ++k)
3455       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3456         // Not sorted, so sort the filters now.  Doing an unstable sort would be
3457         // correct too but reordering filters pointlessly might confuse users.
3458         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3459                          shorter_filter);
3460         MakeNewInstruction = true;
3461         break;
3462       }
3463 
3464     // Look for the next batch of filters.
3465     i = j + 1;
3466   }
3467 
3468   // If typeinfos matched if and only if equal, then the elements of a filter L
3469   // that occurs later than a filter F could be replaced by the intersection of
3470   // the elements of F and L.  In reality two typeinfos can match without being
3471   // equal (for example if one represents a C++ class, and the other some class
3472   // derived from it) so it would be wrong to perform this transform in general.
3473   // However the transform is correct and useful if F is a subset of L.  In that
3474   // case L can be replaced by F, and thus removed altogether since repeating a
3475   // filter is pointless.  So here we look at all pairs of filters F and L where
3476   // L follows F in the list of clauses, and remove L if every element of F is
3477   // an element of L.  This can occur when inlining C++ functions with exception
3478   // specifications.
3479   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3480     // Examine each filter in turn.
3481     Value *Filter = NewClauses[i];
3482     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3483     if (!FTy)
3484       // Not a filter - skip it.
3485       continue;
3486     unsigned FElts = FTy->getNumElements();
3487     // Examine each filter following this one.  Doing this backwards means that
3488     // we don't have to worry about filters disappearing under us when removed.
3489     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3490       Value *LFilter = NewClauses[j];
3491       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3492       if (!LTy)
3493         // Not a filter - skip it.
3494         continue;
3495       // If Filter is a subset of LFilter, i.e. every element of Filter is also
3496       // an element of LFilter, then discard LFilter.
3497       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3498       // If Filter is empty then it is a subset of LFilter.
3499       if (!FElts) {
3500         // Discard LFilter.
3501         NewClauses.erase(J);
3502         MakeNewInstruction = true;
3503         // Move on to the next filter.
3504         continue;
3505       }
3506       unsigned LElts = LTy->getNumElements();
3507       // If Filter is longer than LFilter then it cannot be a subset of it.
3508       if (FElts > LElts)
3509         // Move on to the next filter.
3510         continue;
3511       // At this point we know that LFilter has at least one element.
3512       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3513         // Filter is a subset of LFilter iff Filter contains only zeros (as we
3514         // already know that Filter is not longer than LFilter).
3515         if (isa<ConstantAggregateZero>(Filter)) {
3516           assert(FElts <= LElts && "Should have handled this case earlier!");
3517           // Discard LFilter.
3518           NewClauses.erase(J);
3519           MakeNewInstruction = true;
3520         }
3521         // Move on to the next filter.
3522         continue;
3523       }
3524       ConstantArray *LArray = cast<ConstantArray>(LFilter);
3525       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3526         // Since Filter is non-empty and contains only zeros, it is a subset of
3527         // LFilter iff LFilter contains a zero.
3528         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3529         for (unsigned l = 0; l != LElts; ++l)
3530           if (LArray->getOperand(l)->isNullValue()) {
3531             // LFilter contains a zero - discard it.
3532             NewClauses.erase(J);
3533             MakeNewInstruction = true;
3534             break;
3535           }
3536         // Move on to the next filter.
3537         continue;
3538       }
3539       // At this point we know that both filters are ConstantArrays.  Loop over
3540       // operands to see whether every element of Filter is also an element of
3541       // LFilter.  Since filters tend to be short this is probably faster than
3542       // using a method that scales nicely.
3543       ConstantArray *FArray = cast<ConstantArray>(Filter);
3544       bool AllFound = true;
3545       for (unsigned f = 0; f != FElts; ++f) {
3546         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3547         AllFound = false;
3548         for (unsigned l = 0; l != LElts; ++l) {
3549           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3550           if (LTypeInfo == FTypeInfo) {
3551             AllFound = true;
3552             break;
3553           }
3554         }
3555         if (!AllFound)
3556           break;
3557       }
3558       if (AllFound) {
3559         // Discard LFilter.
3560         NewClauses.erase(J);
3561         MakeNewInstruction = true;
3562       }
3563       // Move on to the next filter.
3564     }
3565   }
3566 
3567   // If we changed any of the clauses, replace the old landingpad instruction
3568   // with a new one.
3569   if (MakeNewInstruction) {
3570     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3571                                                  NewClauses.size());
3572     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3573       NLI->addClause(NewClauses[i]);
3574     // A landing pad with no clauses must have the cleanup flag set.  It is
3575     // theoretically possible, though highly unlikely, that we eliminated all
3576     // clauses.  If so, force the cleanup flag to true.
3577     if (NewClauses.empty())
3578       CleanupFlag = true;
3579     NLI->setCleanup(CleanupFlag);
3580     return NLI;
3581   }
3582 
3583   // Even if none of the clauses changed, we may nonetheless have understood
3584   // that the cleanup flag is pointless.  Clear it if so.
3585   if (LI.isCleanup() != CleanupFlag) {
3586     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3587     LI.setCleanup(CleanupFlag);
3588     return &LI;
3589   }
3590 
3591   return nullptr;
3592 }
3593 
3594 Value *
3595 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) {
3596   // Try to push freeze through instructions that propagate but don't produce
3597   // poison as far as possible.  If an operand of freeze follows three
3598   // conditions 1) one-use, 2) does not produce poison, and 3) has all but one
3599   // guaranteed-non-poison operands then push the freeze through to the one
3600   // operand that is not guaranteed non-poison.  The actual transform is as
3601   // follows.
3602   //   Op1 = ...                        ; Op1 can be posion
3603   //   Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have
3604   //                                    ; single guaranteed-non-poison operands
3605   //   ... = Freeze(Op0)
3606   // =>
3607   //   Op1 = ...
3608   //   Op1.fr = Freeze(Op1)
3609   //   ... = Inst(Op1.fr, NonPoisonOps...)
3610   auto *OrigOp = OrigFI.getOperand(0);
3611   auto *OrigOpInst = dyn_cast<Instruction>(OrigOp);
3612 
3613   // While we could change the other users of OrigOp to use freeze(OrigOp), that
3614   // potentially reduces their optimization potential, so let's only do this iff
3615   // the OrigOp is only used by the freeze.
3616   if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp))
3617     return nullptr;
3618 
3619   // We can't push the freeze through an instruction which can itself create
3620   // poison.  If the only source of new poison is flags, we can simply
3621   // strip them (since we know the only use is the freeze and nothing can
3622   // benefit from them.)
3623   if (canCreateUndefOrPoison(cast<Operator>(OrigOp), /*ConsiderFlags*/ false))
3624     return nullptr;
3625 
3626   // If operand is guaranteed not to be poison, there is no need to add freeze
3627   // to the operand. So we first find the operand that is not guaranteed to be
3628   // poison.
3629   Use *MaybePoisonOperand = nullptr;
3630   for (Use &U : OrigOpInst->operands()) {
3631     if (isGuaranteedNotToBeUndefOrPoison(U.get()))
3632       continue;
3633     if (!MaybePoisonOperand)
3634       MaybePoisonOperand = &U;
3635     else
3636       return nullptr;
3637   }
3638 
3639   OrigOpInst->dropPoisonGeneratingFlags();
3640 
3641   // If all operands are guaranteed to be non-poison, we can drop freeze.
3642   if (!MaybePoisonOperand)
3643     return OrigOp;
3644 
3645   auto *FrozenMaybePoisonOperand = new FreezeInst(
3646       MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr");
3647 
3648   replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand);
3649   FrozenMaybePoisonOperand->insertBefore(OrigOpInst);
3650   return OrigOp;
3651 }
3652 
3653 bool InstCombinerImpl::freezeDominatedUses(FreezeInst &FI) {
3654   Value *Op = FI.getOperand(0);
3655 
3656   if (isa<Constant>(Op))
3657     return false;
3658 
3659   bool Changed = false;
3660   Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
3661     bool Dominates = DT.dominates(&FI, U);
3662     Changed |= Dominates;
3663     return Dominates;
3664   });
3665 
3666   return Changed;
3667 }
3668 
3669 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
3670   Value *Op0 = I.getOperand(0);
3671 
3672   if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3673     return replaceInstUsesWith(I, V);
3674 
3675   // freeze (phi const, x) --> phi const, (freeze x)
3676   if (auto *PN = dyn_cast<PHINode>(Op0)) {
3677     if (Instruction *NV = foldOpIntoPhi(I, PN))
3678       return NV;
3679   }
3680 
3681   if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I))
3682     return replaceInstUsesWith(I, NI);
3683 
3684   if (match(Op0, m_Undef())) {
3685     // If I is freeze(undef), see its uses and fold it to the best constant.
3686     // - or: pick -1
3687     // - select's condition: pick the value that leads to choosing a constant
3688     // - other ops: pick 0
3689     Constant *BestValue = nullptr;
3690     Constant *NullValue = Constant::getNullValue(I.getType());
3691     for (const auto *U : I.users()) {
3692       Constant *C = NullValue;
3693 
3694       if (match(U, m_Or(m_Value(), m_Value())))
3695         C = Constant::getAllOnesValue(I.getType());
3696       else if (const auto *SI = dyn_cast<SelectInst>(U)) {
3697         if (SI->getCondition() == &I) {
3698           APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1);
3699           C = Constant::getIntegerValue(I.getType(), CondVal);
3700         }
3701       }
3702 
3703       if (!BestValue)
3704         BestValue = C;
3705       else if (BestValue != C)
3706         BestValue = NullValue;
3707     }
3708 
3709     return replaceInstUsesWith(I, BestValue);
3710   }
3711 
3712   // Replace all dominated uses of Op to freeze(Op).
3713   if (freezeDominatedUses(I))
3714     return &I;
3715 
3716   return nullptr;
3717 }
3718 
3719 /// Check for case where the call writes to an otherwise dead alloca.  This
3720 /// shows up for unused out-params in idiomatic C/C++ code.   Note that this
3721 /// helper *only* analyzes the write; doesn't check any other legality aspect.
3722 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) {
3723   auto *CB = dyn_cast<CallBase>(I);
3724   if (!CB)
3725     // TODO: handle e.g. store to alloca here - only worth doing if we extend
3726     // to allow reload along used path as described below.  Otherwise, this
3727     // is simply a store to a dead allocation which will be removed.
3728     return false;
3729   Optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI);
3730   if (!Dest)
3731     return false;
3732   auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr));
3733   if (!AI)
3734     // TODO: allow malloc?
3735     return false;
3736   // TODO: allow memory access dominated by move point?  Note that since AI
3737   // could have a reference to itself captured by the call, we would need to
3738   // account for cycles in doing so.
3739   SmallVector<const User *> AllocaUsers;
3740   SmallPtrSet<const User *, 4> Visited;
3741   auto pushUsers = [&](const Instruction &I) {
3742     for (const User *U : I.users()) {
3743       if (Visited.insert(U).second)
3744         AllocaUsers.push_back(U);
3745     }
3746   };
3747   pushUsers(*AI);
3748   while (!AllocaUsers.empty()) {
3749     auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val());
3750     if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) ||
3751         isa<AddrSpaceCastInst>(UserI)) {
3752       pushUsers(*UserI);
3753       continue;
3754     }
3755     if (UserI == CB)
3756       continue;
3757     // TODO: support lifetime.start/end here
3758     return false;
3759   }
3760   return true;
3761 }
3762 
3763 /// Try to move the specified instruction from its current block into the
3764 /// beginning of DestBlock, which can only happen if it's safe to move the
3765 /// instruction past all of the instructions between it and the end of its
3766 /// block.
3767 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock,
3768                                  TargetLibraryInfo &TLI) {
3769   assert(I->getUniqueUndroppableUser() && "Invariants didn't hold!");
3770   BasicBlock *SrcBlock = I->getParent();
3771 
3772   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3773   if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
3774       I->isTerminator())
3775     return false;
3776 
3777   // Do not sink static or dynamic alloca instructions. Static allocas must
3778   // remain in the entry block, and dynamic allocas must not be sunk in between
3779   // a stacksave / stackrestore pair, which would incorrectly shorten its
3780   // lifetime.
3781   if (isa<AllocaInst>(I))
3782     return false;
3783 
3784   // Do not sink into catchswitch blocks.
3785   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3786     return false;
3787 
3788   // Do not sink convergent call instructions.
3789   if (auto *CI = dyn_cast<CallInst>(I)) {
3790     if (CI->isConvergent())
3791       return false;
3792   }
3793 
3794   // Unless we can prove that the memory write isn't visibile except on the
3795   // path we're sinking to, we must bail.
3796   if (I->mayWriteToMemory()) {
3797     if (!SoleWriteToDeadLocal(I, TLI))
3798       return false;
3799   }
3800 
3801   // We can only sink load instructions if there is nothing between the load and
3802   // the end of block that could change the value.
3803   if (I->mayReadFromMemory()) {
3804     // We don't want to do any sophisticated alias analysis, so we only check
3805     // the instructions after I in I's parent block if we try to sink to its
3806     // successor block.
3807     if (DestBlock->getUniquePredecessor() != I->getParent())
3808       return false;
3809     for (BasicBlock::iterator Scan = std::next(I->getIterator()),
3810                               E = I->getParent()->end();
3811          Scan != E; ++Scan)
3812       if (Scan->mayWriteToMemory())
3813         return false;
3814   }
3815 
3816   I->dropDroppableUses([DestBlock](const Use *U) {
3817     if (auto *I = dyn_cast<Instruction>(U->getUser()))
3818       return I->getParent() != DestBlock;
3819     return true;
3820   });
3821   /// FIXME: We could remove droppable uses that are not dominated by
3822   /// the new position.
3823 
3824   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3825   I->moveBefore(&*InsertPos);
3826   ++NumSunkInst;
3827 
3828   // Also sink all related debug uses from the source basic block. Otherwise we
3829   // get debug use before the def. Attempt to salvage debug uses first, to
3830   // maximise the range variables have location for. If we cannot salvage, then
3831   // mark the location undef: we know it was supposed to receive a new location
3832   // here, but that computation has been sunk.
3833   SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3834   findDbgUsers(DbgUsers, I);
3835   // Process the sinking DbgUsers in reverse order, as we only want to clone the
3836   // last appearing debug intrinsic for each given variable.
3837   SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink;
3838   for (DbgVariableIntrinsic *DVI : DbgUsers)
3839     if (DVI->getParent() == SrcBlock)
3840       DbgUsersToSink.push_back(DVI);
3841   llvm::sort(DbgUsersToSink,
3842              [](auto *A, auto *B) { return B->comesBefore(A); });
3843 
3844   SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
3845   SmallSet<DebugVariable, 4> SunkVariables;
3846   for (auto User : DbgUsersToSink) {
3847     // A dbg.declare instruction should not be cloned, since there can only be
3848     // one per variable fragment. It should be left in the original place
3849     // because the sunk instruction is not an alloca (otherwise we could not be
3850     // here).
3851     if (isa<DbgDeclareInst>(User))
3852       continue;
3853 
3854     DebugVariable DbgUserVariable =
3855         DebugVariable(User->getVariable(), User->getExpression(),
3856                       User->getDebugLoc()->getInlinedAt());
3857 
3858     if (!SunkVariables.insert(DbgUserVariable).second)
3859       continue;
3860 
3861     DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
3862     if (isa<DbgDeclareInst>(User) && isa<CastInst>(I))
3863       DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0));
3864     LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
3865   }
3866 
3867   // Perform salvaging without the clones, then sink the clones.
3868   if (!DIIClones.empty()) {
3869     salvageDebugInfoForDbgValues(*I, DbgUsers);
3870     // The clones are in reverse order of original appearance, reverse again to
3871     // maintain the original order.
3872     for (auto &DIIClone : llvm::reverse(DIIClones)) {
3873       DIIClone->insertBefore(&*InsertPos);
3874       LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
3875     }
3876   }
3877 
3878   return true;
3879 }
3880 
3881 bool InstCombinerImpl::run() {
3882   while (!Worklist.isEmpty()) {
3883     // Walk deferred instructions in reverse order, and push them to the
3884     // worklist, which means they'll end up popped from the worklist in-order.
3885     while (Instruction *I = Worklist.popDeferred()) {
3886       // Check to see if we can DCE the instruction. We do this already here to
3887       // reduce the number of uses and thus allow other folds to trigger.
3888       // Note that eraseInstFromFunction() may push additional instructions on
3889       // the deferred worklist, so this will DCE whole instruction chains.
3890       if (isInstructionTriviallyDead(I, &TLI)) {
3891         eraseInstFromFunction(*I);
3892         ++NumDeadInst;
3893         continue;
3894       }
3895 
3896       Worklist.push(I);
3897     }
3898 
3899     Instruction *I = Worklist.removeOne();
3900     if (I == nullptr) continue;  // skip null values.
3901 
3902     // Check to see if we can DCE the instruction.
3903     if (isInstructionTriviallyDead(I, &TLI)) {
3904       eraseInstFromFunction(*I);
3905       ++NumDeadInst;
3906       continue;
3907     }
3908 
3909     if (!DebugCounter::shouldExecute(VisitCounter))
3910       continue;
3911 
3912     // Instruction isn't dead, see if we can constant propagate it.
3913     if (!I->use_empty() &&
3914         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3915       if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3916         LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3917                           << '\n');
3918 
3919         // Add operands to the worklist.
3920         replaceInstUsesWith(*I, C);
3921         ++NumConstProp;
3922         if (isInstructionTriviallyDead(I, &TLI))
3923           eraseInstFromFunction(*I);
3924         MadeIRChange = true;
3925         continue;
3926       }
3927     }
3928 
3929     // See if we can trivially sink this instruction to its user if we can
3930     // prove that the successor is not executed more frequently than our block.
3931     // Return the UserBlock if successful.
3932     auto getOptionalSinkBlockForInst =
3933         [this](Instruction *I) -> Optional<BasicBlock *> {
3934       if (!EnableCodeSinking)
3935         return None;
3936       auto *UserInst = cast_or_null<Instruction>(I->getUniqueUndroppableUser());
3937       if (!UserInst)
3938         return None;
3939 
3940       BasicBlock *BB = I->getParent();
3941       BasicBlock *UserParent = nullptr;
3942 
3943       // Special handling for Phi nodes - get the block the use occurs in.
3944       if (PHINode *PN = dyn_cast<PHINode>(UserInst)) {
3945         for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
3946           if (PN->getIncomingValue(i) == I) {
3947             // Bail out if we have uses in different blocks. We don't do any
3948             // sophisticated analysis (i.e finding NearestCommonDominator of these
3949             // use blocks).
3950             if (UserParent && UserParent != PN->getIncomingBlock(i))
3951               return None;
3952             UserParent = PN->getIncomingBlock(i);
3953           }
3954         }
3955         assert(UserParent && "expected to find user block!");
3956       } else
3957         UserParent = UserInst->getParent();
3958 
3959       // Try sinking to another block. If that block is unreachable, then do
3960       // not bother. SimplifyCFG should handle it.
3961       if (UserParent == BB || !DT.isReachableFromEntry(UserParent))
3962         return None;
3963 
3964       auto *Term = UserParent->getTerminator();
3965       // See if the user is one of our successors that has only one
3966       // predecessor, so that we don't have to split the critical edge.
3967       // Another option where we can sink is a block that ends with a
3968       // terminator that does not pass control to other block (such as
3969       // return or unreachable). In this case:
3970       //   - I dominates the User (by SSA form);
3971       //   - the User will be executed at most once.
3972       // So sinking I down to User is always profitable or neutral.
3973       if (UserParent->getUniquePredecessor() == BB ||
3974           (isa<ReturnInst>(Term) || isa<UnreachableInst>(Term))) {
3975         assert(DT.dominates(BB, UserParent) && "Dominance relation broken?");
3976         return UserParent;
3977       }
3978       return None;
3979     };
3980 
3981     auto OptBB = getOptionalSinkBlockForInst(I);
3982     if (OptBB) {
3983       auto *UserParent = *OptBB;
3984       // Okay, the CFG is simple enough, try to sink this instruction.
3985       if (TryToSinkInstruction(I, UserParent, TLI)) {
3986         LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3987         MadeIRChange = true;
3988         // We'll add uses of the sunk instruction below, but since
3989         // sinking can expose opportunities for it's *operands* add
3990         // them to the worklist
3991         for (Use &U : I->operands())
3992           if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3993             Worklist.push(OpI);
3994       }
3995     }
3996 
3997     // Now that we have an instruction, try combining it to simplify it.
3998     Builder.SetInsertPoint(I);
3999     Builder.CollectMetadataToCopy(
4000         I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
4001 
4002 #ifndef NDEBUG
4003     std::string OrigI;
4004 #endif
4005     LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
4006     LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
4007 
4008     if (Instruction *Result = visit(*I)) {
4009       ++NumCombined;
4010       // Should we replace the old instruction with a new one?
4011       if (Result != I) {
4012         LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
4013                           << "    New = " << *Result << '\n');
4014 
4015         Result->copyMetadata(*I,
4016                              {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
4017         // Everything uses the new instruction now.
4018         I->replaceAllUsesWith(Result);
4019 
4020         // Move the name to the new instruction first.
4021         Result->takeName(I);
4022 
4023         // Insert the new instruction into the basic block...
4024         BasicBlock *InstParent = I->getParent();
4025         BasicBlock::iterator InsertPos = I->getIterator();
4026 
4027         // Are we replace a PHI with something that isn't a PHI, or vice versa?
4028         if (isa<PHINode>(Result) != isa<PHINode>(I)) {
4029           // We need to fix up the insertion point.
4030           if (isa<PHINode>(I)) // PHI -> Non-PHI
4031             InsertPos = InstParent->getFirstInsertionPt();
4032           else // Non-PHI -> PHI
4033             InsertPos = InstParent->getFirstNonPHI()->getIterator();
4034         }
4035 
4036         InstParent->getInstList().insert(InsertPos, Result);
4037 
4038         // Push the new instruction and any users onto the worklist.
4039         Worklist.pushUsersToWorkList(*Result);
4040         Worklist.push(Result);
4041 
4042         eraseInstFromFunction(*I);
4043       } else {
4044         LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
4045                           << "    New = " << *I << '\n');
4046 
4047         // If the instruction was modified, it's possible that it is now dead.
4048         // if so, remove it.
4049         if (isInstructionTriviallyDead(I, &TLI)) {
4050           eraseInstFromFunction(*I);
4051         } else {
4052           Worklist.pushUsersToWorkList(*I);
4053           Worklist.push(I);
4054         }
4055       }
4056       MadeIRChange = true;
4057     }
4058   }
4059 
4060   Worklist.zap();
4061   return MadeIRChange;
4062 }
4063 
4064 // Track the scopes used by !alias.scope and !noalias. In a function, a
4065 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used
4066 // by both sets. If not, the declaration of the scope can be safely omitted.
4067 // The MDNode of the scope can be omitted as well for the instructions that are
4068 // part of this function. We do not do that at this point, as this might become
4069 // too time consuming to do.
4070 class AliasScopeTracker {
4071   SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
4072   SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
4073 
4074 public:
4075   void analyse(Instruction *I) {
4076     // This seems to be faster than checking 'mayReadOrWriteMemory()'.
4077     if (!I->hasMetadataOtherThanDebugLoc())
4078       return;
4079 
4080     auto Track = [](Metadata *ScopeList, auto &Container) {
4081       const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
4082       if (!MDScopeList || !Container.insert(MDScopeList).second)
4083         return;
4084       for (auto &MDOperand : MDScopeList->operands())
4085         if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
4086           Container.insert(MDScope);
4087     };
4088 
4089     Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
4090     Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
4091   }
4092 
4093   bool isNoAliasScopeDeclDead(Instruction *Inst) {
4094     NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
4095     if (!Decl)
4096       return false;
4097 
4098     assert(Decl->use_empty() &&
4099            "llvm.experimental.noalias.scope.decl in use ?");
4100     const MDNode *MDSL = Decl->getScopeList();
4101     assert(MDSL->getNumOperands() == 1 &&
4102            "llvm.experimental.noalias.scope should refer to a single scope");
4103     auto &MDOperand = MDSL->getOperand(0);
4104     if (auto *MD = dyn_cast<MDNode>(MDOperand))
4105       return !UsedAliasScopesAndLists.contains(MD) ||
4106              !UsedNoAliasScopesAndLists.contains(MD);
4107 
4108     // Not an MDNode ? throw away.
4109     return true;
4110   }
4111 };
4112 
4113 /// Populate the IC worklist from a function, by walking it in depth-first
4114 /// order and adding all reachable code to the worklist.
4115 ///
4116 /// This has a couple of tricks to make the code faster and more powerful.  In
4117 /// particular, we constant fold and DCE instructions as we go, to avoid adding
4118 /// them to the worklist (this significantly speeds up instcombine on code where
4119 /// many instructions are dead or constant).  Additionally, if we find a branch
4120 /// whose condition is a known constant, we only visit the reachable successors.
4121 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
4122                                           const TargetLibraryInfo *TLI,
4123                                           InstructionWorklist &ICWorklist) {
4124   bool MadeIRChange = false;
4125   SmallPtrSet<BasicBlock *, 32> Visited;
4126   SmallVector<BasicBlock*, 256> Worklist;
4127   Worklist.push_back(&F.front());
4128 
4129   SmallVector<Instruction *, 128> InstrsForInstructionWorklist;
4130   DenseMap<Constant *, Constant *> FoldedConstants;
4131   AliasScopeTracker SeenAliasScopes;
4132 
4133   do {
4134     BasicBlock *BB = Worklist.pop_back_val();
4135 
4136     // We have now visited this block!  If we've already been here, ignore it.
4137     if (!Visited.insert(BB).second)
4138       continue;
4139 
4140     for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
4141       // ConstantProp instruction if trivially constant.
4142       if (!Inst.use_empty() &&
4143           (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
4144         if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) {
4145           LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst
4146                             << '\n');
4147           Inst.replaceAllUsesWith(C);
4148           ++NumConstProp;
4149           if (isInstructionTriviallyDead(&Inst, TLI))
4150             Inst.eraseFromParent();
4151           MadeIRChange = true;
4152           continue;
4153         }
4154 
4155       // See if we can constant fold its operands.
4156       for (Use &U : Inst.operands()) {
4157         if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
4158           continue;
4159 
4160         auto *C = cast<Constant>(U);
4161         Constant *&FoldRes = FoldedConstants[C];
4162         if (!FoldRes)
4163           FoldRes = ConstantFoldConstant(C, DL, TLI);
4164 
4165         if (FoldRes != C) {
4166           LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst
4167                             << "\n    Old = " << *C
4168                             << "\n    New = " << *FoldRes << '\n');
4169           U = FoldRes;
4170           MadeIRChange = true;
4171         }
4172       }
4173 
4174       // Skip processing debug and pseudo intrinsics in InstCombine. Processing
4175       // these call instructions consumes non-trivial amount of time and
4176       // provides no value for the optimization.
4177       if (!Inst.isDebugOrPseudoInst()) {
4178         InstrsForInstructionWorklist.push_back(&Inst);
4179         SeenAliasScopes.analyse(&Inst);
4180       }
4181     }
4182 
4183     // Recursively visit successors.  If this is a branch or switch on a
4184     // constant, only visit the reachable successor.
4185     Instruction *TI = BB->getTerminator();
4186     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
4187       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
4188         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
4189         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
4190         Worklist.push_back(ReachableBB);
4191         continue;
4192       }
4193     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
4194       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
4195         Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
4196         continue;
4197       }
4198     }
4199 
4200     append_range(Worklist, successors(TI));
4201   } while (!Worklist.empty());
4202 
4203   // Remove instructions inside unreachable blocks. This prevents the
4204   // instcombine code from having to deal with some bad special cases, and
4205   // reduces use counts of instructions.
4206   for (BasicBlock &BB : F) {
4207     if (Visited.count(&BB))
4208       continue;
4209 
4210     unsigned NumDeadInstInBB;
4211     unsigned NumDeadDbgInstInBB;
4212     std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
4213         removeAllNonTerminatorAndEHPadInstructions(&BB);
4214 
4215     MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
4216     NumDeadInst += NumDeadInstInBB;
4217   }
4218 
4219   // Once we've found all of the instructions to add to instcombine's worklist,
4220   // add them in reverse order.  This way instcombine will visit from the top
4221   // of the function down.  This jives well with the way that it adds all uses
4222   // of instructions to the worklist after doing a transformation, thus avoiding
4223   // some N^2 behavior in pathological cases.
4224   ICWorklist.reserve(InstrsForInstructionWorklist.size());
4225   for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) {
4226     // DCE instruction if trivially dead. As we iterate in reverse program
4227     // order here, we will clean up whole chains of dead instructions.
4228     if (isInstructionTriviallyDead(Inst, TLI) ||
4229         SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
4230       ++NumDeadInst;
4231       LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
4232       salvageDebugInfo(*Inst);
4233       Inst->eraseFromParent();
4234       MadeIRChange = true;
4235       continue;
4236     }
4237 
4238     ICWorklist.push(Inst);
4239   }
4240 
4241   return MadeIRChange;
4242 }
4243 
4244 static bool combineInstructionsOverFunction(
4245     Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA,
4246     AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
4247     DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
4248     ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
4249   auto &DL = F.getParent()->getDataLayout();
4250   MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
4251 
4252   /// Builder - This is an IRBuilder that automatically inserts new
4253   /// instructions into the worklist when they are created.
4254   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
4255       F.getContext(), TargetFolder(DL),
4256       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
4257         Worklist.add(I);
4258         if (auto *Assume = dyn_cast<AssumeInst>(I))
4259           AC.registerAssumption(Assume);
4260       }));
4261 
4262   // Lower dbg.declare intrinsics otherwise their value may be clobbered
4263   // by instcombiner.
4264   bool MadeIRChange = false;
4265   if (ShouldLowerDbgDeclare)
4266     MadeIRChange = LowerDbgDeclare(F);
4267 
4268   // Iterate while there is work to do.
4269   unsigned Iteration = 0;
4270   while (true) {
4271     ++NumWorklistIterations;
4272     ++Iteration;
4273 
4274     if (Iteration > InfiniteLoopDetectionThreshold) {
4275       report_fatal_error(
4276           "Instruction Combining seems stuck in an infinite loop after " +
4277           Twine(InfiniteLoopDetectionThreshold) + " iterations.");
4278     }
4279 
4280     if (Iteration > MaxIterations) {
4281       LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
4282                         << " on " << F.getName()
4283                         << " reached; stopping before reaching a fixpoint\n");
4284       break;
4285     }
4286 
4287     LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
4288                       << F.getName() << "\n");
4289 
4290     MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
4291 
4292     InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
4293                         ORE, BFI, PSI, DL, LI);
4294     IC.MaxArraySizeForCombine = MaxArraySize;
4295 
4296     if (!IC.run())
4297       break;
4298 
4299     MadeIRChange = true;
4300   }
4301 
4302   return MadeIRChange;
4303 }
4304 
4305 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
4306 
4307 InstCombinePass::InstCombinePass(unsigned MaxIterations)
4308     : MaxIterations(MaxIterations) {}
4309 
4310 PreservedAnalyses InstCombinePass::run(Function &F,
4311                                        FunctionAnalysisManager &AM) {
4312   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4313   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4314   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4315   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4316   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
4317 
4318   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
4319 
4320   auto *AA = &AM.getResult<AAManager>(F);
4321   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
4322   ProfileSummaryInfo *PSI =
4323       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
4324   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
4325       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
4326 
4327   if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4328                                        BFI, PSI, MaxIterations, LI))
4329     // No changes, all analyses are preserved.
4330     return PreservedAnalyses::all();
4331 
4332   // Mark all the analyses that instcombine updates as preserved.
4333   PreservedAnalyses PA;
4334   PA.preserveSet<CFGAnalyses>();
4335   return PA;
4336 }
4337 
4338 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
4339   AU.setPreservesCFG();
4340   AU.addRequired<AAResultsWrapperPass>();
4341   AU.addRequired<AssumptionCacheTracker>();
4342   AU.addRequired<TargetLibraryInfoWrapperPass>();
4343   AU.addRequired<TargetTransformInfoWrapperPass>();
4344   AU.addRequired<DominatorTreeWrapperPass>();
4345   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4346   AU.addPreserved<DominatorTreeWrapperPass>();
4347   AU.addPreserved<AAResultsWrapperPass>();
4348   AU.addPreserved<BasicAAWrapperPass>();
4349   AU.addPreserved<GlobalsAAWrapperPass>();
4350   AU.addRequired<ProfileSummaryInfoWrapperPass>();
4351   LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
4352 }
4353 
4354 bool InstructionCombiningPass::runOnFunction(Function &F) {
4355   if (skipFunction(F))
4356     return false;
4357 
4358   // Required analyses.
4359   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4360   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4361   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
4362   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4363   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4364   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4365 
4366   // Optional analyses.
4367   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
4368   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
4369   ProfileSummaryInfo *PSI =
4370       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
4371   BlockFrequencyInfo *BFI =
4372       (PSI && PSI->hasProfileSummary()) ?
4373       &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
4374       nullptr;
4375 
4376   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4377                                          BFI, PSI, MaxIterations, LI);
4378 }
4379 
4380 char InstructionCombiningPass::ID = 0;
4381 
4382 InstructionCombiningPass::InstructionCombiningPass()
4383     : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
4384   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4385 }
4386 
4387 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
4388     : FunctionPass(ID), MaxIterations(MaxIterations) {
4389   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4390 }
4391 
4392 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
4393                       "Combine redundant instructions", false, false)
4394 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4395 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4396 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4397 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4398 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4399 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4400 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
4401 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
4402 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
4403 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
4404                     "Combine redundant instructions", false, false)
4405 
4406 // Initialization Routines
4407 void llvm::initializeInstCombine(PassRegistry &Registry) {
4408   initializeInstructionCombiningPassPass(Registry);
4409 }
4410 
4411 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
4412   initializeInstructionCombiningPassPass(*unwrap(R));
4413 }
4414 
4415 FunctionPass *llvm::createInstructionCombiningPass() {
4416   return new InstructionCombiningPass();
4417 }
4418 
4419 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
4420   return new InstructionCombiningPass(MaxIterations);
4421 }
4422 
4423 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
4424   unwrap(PM)->add(createInstructionCombiningPass());
4425 }
4426