1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/TinyPtrVector.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/BlockFrequencyInfo.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/MemoryBuiltins.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ProfileSummaryInfo.h" 60 #include "llvm/Analysis/TargetFolder.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/Analysis/VectorUtils.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Dominators.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GetElementPtrTypeIterator.h" 75 #include "llvm/IR/IRBuilder.h" 76 #include "llvm/IR/InstrTypes.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/Intrinsics.h" 81 #include "llvm/IR/LegacyPassManager.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/PassManager.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/Use.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/IR/ValueHandle.h" 91 #include "llvm/InitializePasses.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/CBindingWrapping.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/DebugCounter.h" 99 #include "llvm/Support/ErrorHandling.h" 100 #include "llvm/Support/KnownBits.h" 101 #include "llvm/Support/raw_ostream.h" 102 #include "llvm/Transforms/InstCombine/InstCombine.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <algorithm> 105 #include <cassert> 106 #include <cstdint> 107 #include <memory> 108 #include <string> 109 #include <utility> 110 111 #define DEBUG_TYPE "instcombine" 112 #include "llvm/Transforms/Utils/InstructionWorklist.h" 113 114 using namespace llvm; 115 using namespace llvm::PatternMatch; 116 117 STATISTIC(NumWorklistIterations, 118 "Number of instruction combining iterations performed"); 119 120 STATISTIC(NumCombined , "Number of insts combined"); 121 STATISTIC(NumConstProp, "Number of constant folds"); 122 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 123 STATISTIC(NumSunkInst , "Number of instructions sunk"); 124 STATISTIC(NumExpand, "Number of expansions"); 125 STATISTIC(NumFactor , "Number of factorizations"); 126 STATISTIC(NumReassoc , "Number of reassociations"); 127 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 128 "Controls which instructions are visited"); 129 130 // FIXME: these limits eventually should be as low as 2. 131 static constexpr unsigned InstCombineDefaultMaxIterations = 1000; 132 #ifndef NDEBUG 133 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100; 134 #else 135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; 136 #endif 137 138 static cl::opt<bool> 139 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 140 cl::init(true)); 141 142 static cl::opt<unsigned> LimitMaxIterations( 143 "instcombine-max-iterations", 144 cl::desc("Limit the maximum number of instruction combining iterations"), 145 cl::init(InstCombineDefaultMaxIterations)); 146 147 static cl::opt<unsigned> InfiniteLoopDetectionThreshold( 148 "instcombine-infinite-loop-threshold", 149 cl::desc("Number of instruction combining iterations considered an " 150 "infinite loop"), 151 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); 152 153 static cl::opt<unsigned> 154 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 155 cl::desc("Maximum array size considered when doing a combine")); 156 157 // FIXME: Remove this flag when it is no longer necessary to convert 158 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 159 // increases variable availability at the cost of accuracy. Variables that 160 // cannot be promoted by mem2reg or SROA will be described as living in memory 161 // for their entire lifetime. However, passes like DSE and instcombine can 162 // delete stores to the alloca, leading to misleading and inaccurate debug 163 // information. This flag can be removed when those passes are fixed. 164 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 165 cl::Hidden, cl::init(true)); 166 167 Optional<Instruction *> 168 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 169 // Handle target specific intrinsics 170 if (II.getCalledFunction()->isTargetIntrinsic()) { 171 return TTI.instCombineIntrinsic(*this, II); 172 } 173 return None; 174 } 175 176 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 177 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 178 bool &KnownBitsComputed) { 179 // Handle target specific intrinsics 180 if (II.getCalledFunction()->isTargetIntrinsic()) { 181 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, 182 KnownBitsComputed); 183 } 184 return None; 185 } 186 187 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 188 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, 189 APInt &UndefElts3, 190 std::function<void(Instruction *, unsigned, APInt, APInt &)> 191 SimplifyAndSetOp) { 192 // Handle target specific intrinsics 193 if (II.getCalledFunction()->isTargetIntrinsic()) { 194 return TTI.simplifyDemandedVectorEltsIntrinsic( 195 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 196 SimplifyAndSetOp); 197 } 198 return None; 199 } 200 201 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { 202 return llvm::EmitGEPOffset(&Builder, DL, GEP); 203 } 204 205 /// Legal integers and common types are considered desirable. This is used to 206 /// avoid creating instructions with types that may not be supported well by the 207 /// the backend. 208 /// NOTE: This treats i8, i16 and i32 specially because they are common 209 /// types in frontend languages. 210 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { 211 switch (BitWidth) { 212 case 8: 213 case 16: 214 case 32: 215 return true; 216 default: 217 return DL.isLegalInteger(BitWidth); 218 } 219 } 220 221 /// Return true if it is desirable to convert an integer computation from a 222 /// given bit width to a new bit width. 223 /// We don't want to convert from a legal to an illegal type or from a smaller 224 /// to a larger illegal type. A width of '1' is always treated as a desirable 225 /// type because i1 is a fundamental type in IR, and there are many specialized 226 /// optimizations for i1 types. Common/desirable widths are equally treated as 227 /// legal to convert to, in order to open up more combining opportunities. 228 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 229 unsigned ToWidth) const { 230 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 231 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 232 233 // Convert to desirable widths even if they are not legal types. 234 // Only shrink types, to prevent infinite loops. 235 if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) 236 return true; 237 238 // If this is a legal integer from type, and the result would be an illegal 239 // type, don't do the transformation. 240 if (FromLegal && !ToLegal) 241 return false; 242 243 // Otherwise, if both are illegal, do not increase the size of the result. We 244 // do allow things like i160 -> i64, but not i64 -> i160. 245 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 246 return false; 247 248 return true; 249 } 250 251 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 252 /// We don't want to convert from a legal to an illegal type or from a smaller 253 /// to a larger illegal type. i1 is always treated as a legal type because it is 254 /// a fundamental type in IR, and there are many specialized optimizations for 255 /// i1 types. 256 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 257 // TODO: This could be extended to allow vectors. Datalayout changes might be 258 // needed to properly support that. 259 if (!From->isIntegerTy() || !To->isIntegerTy()) 260 return false; 261 262 unsigned FromWidth = From->getPrimitiveSizeInBits(); 263 unsigned ToWidth = To->getPrimitiveSizeInBits(); 264 return shouldChangeType(FromWidth, ToWidth); 265 } 266 267 // Return true, if No Signed Wrap should be maintained for I. 268 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 269 // where both B and C should be ConstantInts, results in a constant that does 270 // not overflow. This function only handles the Add and Sub opcodes. For 271 // all other opcodes, the function conservatively returns false. 272 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 273 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 274 if (!OBO || !OBO->hasNoSignedWrap()) 275 return false; 276 277 // We reason about Add and Sub Only. 278 Instruction::BinaryOps Opcode = I.getOpcode(); 279 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 280 return false; 281 282 const APInt *BVal, *CVal; 283 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 284 return false; 285 286 bool Overflow = false; 287 if (Opcode == Instruction::Add) 288 (void)BVal->sadd_ov(*CVal, Overflow); 289 else 290 (void)BVal->ssub_ov(*CVal, Overflow); 291 292 return !Overflow; 293 } 294 295 static bool hasNoUnsignedWrap(BinaryOperator &I) { 296 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 297 return OBO && OBO->hasNoUnsignedWrap(); 298 } 299 300 static bool hasNoSignedWrap(BinaryOperator &I) { 301 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 302 return OBO && OBO->hasNoSignedWrap(); 303 } 304 305 /// Conservatively clears subclassOptionalData after a reassociation or 306 /// commutation. We preserve fast-math flags when applicable as they can be 307 /// preserved. 308 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 309 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 310 if (!FPMO) { 311 I.clearSubclassOptionalData(); 312 return; 313 } 314 315 FastMathFlags FMF = I.getFastMathFlags(); 316 I.clearSubclassOptionalData(); 317 I.setFastMathFlags(FMF); 318 } 319 320 /// Combine constant operands of associative operations either before or after a 321 /// cast to eliminate one of the associative operations: 322 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 323 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 324 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 325 InstCombinerImpl &IC) { 326 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 327 if (!Cast || !Cast->hasOneUse()) 328 return false; 329 330 // TODO: Enhance logic for other casts and remove this check. 331 auto CastOpcode = Cast->getOpcode(); 332 if (CastOpcode != Instruction::ZExt) 333 return false; 334 335 // TODO: Enhance logic for other BinOps and remove this check. 336 if (!BinOp1->isBitwiseLogicOp()) 337 return false; 338 339 auto AssocOpcode = BinOp1->getOpcode(); 340 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 341 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 342 return false; 343 344 Constant *C1, *C2; 345 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 346 !match(BinOp2->getOperand(1), m_Constant(C2))) 347 return false; 348 349 // TODO: This assumes a zext cast. 350 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 351 // to the destination type might lose bits. 352 353 // Fold the constants together in the destination type: 354 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 355 Type *DestTy = C1->getType(); 356 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 357 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 358 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 359 IC.replaceOperand(*BinOp1, 1, FoldedC); 360 return true; 361 } 362 363 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast. 364 // inttoptr ( ptrtoint (x) ) --> x 365 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { 366 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); 367 if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) == 368 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { 369 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); 370 Type *CastTy = IntToPtr->getDestTy(); 371 if (PtrToInt && 372 CastTy->getPointerAddressSpace() == 373 PtrToInt->getSrcTy()->getPointerAddressSpace() && 374 DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) == 375 DL.getTypeSizeInBits(PtrToInt->getDestTy())) { 376 return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy, 377 "", PtrToInt); 378 } 379 } 380 return nullptr; 381 } 382 383 /// This performs a few simplifications for operators that are associative or 384 /// commutative: 385 /// 386 /// Commutative operators: 387 /// 388 /// 1. Order operands such that they are listed from right (least complex) to 389 /// left (most complex). This puts constants before unary operators before 390 /// binary operators. 391 /// 392 /// Associative operators: 393 /// 394 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 395 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 396 /// 397 /// Associative and commutative operators: 398 /// 399 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 400 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 401 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 402 /// if C1 and C2 are constants. 403 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 404 Instruction::BinaryOps Opcode = I.getOpcode(); 405 bool Changed = false; 406 407 do { 408 // Order operands such that they are listed from right (least complex) to 409 // left (most complex). This puts constants before unary operators before 410 // binary operators. 411 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 412 getComplexity(I.getOperand(1))) 413 Changed = !I.swapOperands(); 414 415 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 416 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 417 418 if (I.isAssociative()) { 419 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 420 if (Op0 && Op0->getOpcode() == Opcode) { 421 Value *A = Op0->getOperand(0); 422 Value *B = Op0->getOperand(1); 423 Value *C = I.getOperand(1); 424 425 // Does "B op C" simplify? 426 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 427 // It simplifies to V. Form "A op V". 428 replaceOperand(I, 0, A); 429 replaceOperand(I, 1, V); 430 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 431 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 432 433 // Conservatively clear all optional flags since they may not be 434 // preserved by the reassociation. Reset nsw/nuw based on the above 435 // analysis. 436 ClearSubclassDataAfterReassociation(I); 437 438 // Note: this is only valid because SimplifyBinOp doesn't look at 439 // the operands to Op0. 440 if (IsNUW) 441 I.setHasNoUnsignedWrap(true); 442 443 if (IsNSW) 444 I.setHasNoSignedWrap(true); 445 446 Changed = true; 447 ++NumReassoc; 448 continue; 449 } 450 } 451 452 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 453 if (Op1 && Op1->getOpcode() == Opcode) { 454 Value *A = I.getOperand(0); 455 Value *B = Op1->getOperand(0); 456 Value *C = Op1->getOperand(1); 457 458 // Does "A op B" simplify? 459 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 460 // It simplifies to V. Form "V op C". 461 replaceOperand(I, 0, V); 462 replaceOperand(I, 1, C); 463 // Conservatively clear the optional flags, since they may not be 464 // preserved by the reassociation. 465 ClearSubclassDataAfterReassociation(I); 466 Changed = true; 467 ++NumReassoc; 468 continue; 469 } 470 } 471 } 472 473 if (I.isAssociative() && I.isCommutative()) { 474 if (simplifyAssocCastAssoc(&I, *this)) { 475 Changed = true; 476 ++NumReassoc; 477 continue; 478 } 479 480 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 481 if (Op0 && Op0->getOpcode() == Opcode) { 482 Value *A = Op0->getOperand(0); 483 Value *B = Op0->getOperand(1); 484 Value *C = I.getOperand(1); 485 486 // Does "C op A" simplify? 487 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 488 // It simplifies to V. Form "V op B". 489 replaceOperand(I, 0, V); 490 replaceOperand(I, 1, B); 491 // Conservatively clear the optional flags, since they may not be 492 // preserved by the reassociation. 493 ClearSubclassDataAfterReassociation(I); 494 Changed = true; 495 ++NumReassoc; 496 continue; 497 } 498 } 499 500 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 501 if (Op1 && Op1->getOpcode() == Opcode) { 502 Value *A = I.getOperand(0); 503 Value *B = Op1->getOperand(0); 504 Value *C = Op1->getOperand(1); 505 506 // Does "C op A" simplify? 507 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 508 // It simplifies to V. Form "B op V". 509 replaceOperand(I, 0, B); 510 replaceOperand(I, 1, V); 511 // Conservatively clear the optional flags, since they may not be 512 // preserved by the reassociation. 513 ClearSubclassDataAfterReassociation(I); 514 Changed = true; 515 ++NumReassoc; 516 continue; 517 } 518 } 519 520 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 521 // if C1 and C2 are constants. 522 Value *A, *B; 523 Constant *C1, *C2; 524 if (Op0 && Op1 && 525 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 526 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 527 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 528 bool IsNUW = hasNoUnsignedWrap(I) && 529 hasNoUnsignedWrap(*Op0) && 530 hasNoUnsignedWrap(*Op1); 531 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 532 BinaryOperator::CreateNUW(Opcode, A, B) : 533 BinaryOperator::Create(Opcode, A, B); 534 535 if (isa<FPMathOperator>(NewBO)) { 536 FastMathFlags Flags = I.getFastMathFlags(); 537 Flags &= Op0->getFastMathFlags(); 538 Flags &= Op1->getFastMathFlags(); 539 NewBO->setFastMathFlags(Flags); 540 } 541 InsertNewInstWith(NewBO, I); 542 NewBO->takeName(Op1); 543 replaceOperand(I, 0, NewBO); 544 replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2)); 545 // Conservatively clear the optional flags, since they may not be 546 // preserved by the reassociation. 547 ClearSubclassDataAfterReassociation(I); 548 if (IsNUW) 549 I.setHasNoUnsignedWrap(true); 550 551 Changed = true; 552 continue; 553 } 554 } 555 556 // No further simplifications. 557 return Changed; 558 } while (true); 559 } 560 561 /// Return whether "X LOp (Y ROp Z)" is always equal to 562 /// "(X LOp Y) ROp (X LOp Z)". 563 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 564 Instruction::BinaryOps ROp) { 565 // X & (Y | Z) <--> (X & Y) | (X & Z) 566 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 567 if (LOp == Instruction::And) 568 return ROp == Instruction::Or || ROp == Instruction::Xor; 569 570 // X | (Y & Z) <--> (X | Y) & (X | Z) 571 if (LOp == Instruction::Or) 572 return ROp == Instruction::And; 573 574 // X * (Y + Z) <--> (X * Y) + (X * Z) 575 // X * (Y - Z) <--> (X * Y) - (X * Z) 576 if (LOp == Instruction::Mul) 577 return ROp == Instruction::Add || ROp == Instruction::Sub; 578 579 return false; 580 } 581 582 /// Return whether "(X LOp Y) ROp Z" is always equal to 583 /// "(X ROp Z) LOp (Y ROp Z)". 584 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 585 Instruction::BinaryOps ROp) { 586 if (Instruction::isCommutative(ROp)) 587 return leftDistributesOverRight(ROp, LOp); 588 589 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 590 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 591 592 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 593 // but this requires knowing that the addition does not overflow and other 594 // such subtleties. 595 } 596 597 /// This function returns identity value for given opcode, which can be used to 598 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 599 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 600 if (isa<Constant>(V)) 601 return nullptr; 602 603 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 604 } 605 606 /// This function predicates factorization using distributive laws. By default, 607 /// it just returns the 'Op' inputs. But for special-cases like 608 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 609 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 610 /// allow more factorization opportunities. 611 static Instruction::BinaryOps 612 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 613 Value *&LHS, Value *&RHS) { 614 assert(Op && "Expected a binary operator"); 615 LHS = Op->getOperand(0); 616 RHS = Op->getOperand(1); 617 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 618 Constant *C; 619 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 620 // X << C --> X * (1 << C) 621 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 622 return Instruction::Mul; 623 } 624 // TODO: We can add other conversions e.g. shr => div etc. 625 } 626 return Op->getOpcode(); 627 } 628 629 /// This tries to simplify binary operations by factorizing out common terms 630 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 631 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I, 632 Instruction::BinaryOps InnerOpcode, 633 Value *A, Value *B, Value *C, 634 Value *D) { 635 assert(A && B && C && D && "All values must be provided"); 636 637 Value *V = nullptr; 638 Value *SimplifiedInst = nullptr; 639 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 640 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 641 642 // Does "X op' Y" always equal "Y op' X"? 643 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 644 645 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 646 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 647 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 648 // commutative case, "(A op' B) op (C op' A)"? 649 if (A == C || (InnerCommutative && A == D)) { 650 if (A != C) 651 std::swap(C, D); 652 // Consider forming "A op' (B op D)". 653 // If "B op D" simplifies then it can be formed with no cost. 654 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 655 // If "B op D" doesn't simplify then only go on if both of the existing 656 // operations "A op' B" and "C op' D" will be zapped as no longer used. 657 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 658 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 659 if (V) { 660 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 661 } 662 } 663 664 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 665 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 666 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 667 // commutative case, "(A op' B) op (B op' D)"? 668 if (B == D || (InnerCommutative && B == C)) { 669 if (B != D) 670 std::swap(C, D); 671 // Consider forming "(A op C) op' B". 672 // If "A op C" simplifies then it can be formed with no cost. 673 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 674 675 // If "A op C" doesn't simplify then only go on if both of the existing 676 // operations "A op' B" and "C op' D" will be zapped as no longer used. 677 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 678 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 679 if (V) { 680 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 681 } 682 } 683 684 if (SimplifiedInst) { 685 ++NumFactor; 686 SimplifiedInst->takeName(&I); 687 688 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 689 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 690 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 691 bool HasNSW = false; 692 bool HasNUW = false; 693 if (isa<OverflowingBinaryOperator>(&I)) { 694 HasNSW = I.hasNoSignedWrap(); 695 HasNUW = I.hasNoUnsignedWrap(); 696 } 697 698 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 699 HasNSW &= LOBO->hasNoSignedWrap(); 700 HasNUW &= LOBO->hasNoUnsignedWrap(); 701 } 702 703 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 704 HasNSW &= ROBO->hasNoSignedWrap(); 705 HasNUW &= ROBO->hasNoUnsignedWrap(); 706 } 707 708 if (TopLevelOpcode == Instruction::Add && 709 InnerOpcode == Instruction::Mul) { 710 // We can propagate 'nsw' if we know that 711 // %Y = mul nsw i16 %X, C 712 // %Z = add nsw i16 %Y, %X 713 // => 714 // %Z = mul nsw i16 %X, C+1 715 // 716 // iff C+1 isn't INT_MIN 717 const APInt *CInt; 718 if (match(V, m_APInt(CInt))) { 719 if (!CInt->isMinSignedValue()) 720 BO->setHasNoSignedWrap(HasNSW); 721 } 722 723 // nuw can be propagated with any constant or nuw value. 724 BO->setHasNoUnsignedWrap(HasNUW); 725 } 726 } 727 } 728 } 729 return SimplifiedInst; 730 } 731 732 /// This tries to simplify binary operations which some other binary operation 733 /// distributes over either by factorizing out common terms 734 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 735 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 736 /// Returns the simplified value, or null if it didn't simplify. 737 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 738 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 739 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 740 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 741 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 742 743 { 744 // Factorization. 745 Value *A, *B, *C, *D; 746 Instruction::BinaryOps LHSOpcode, RHSOpcode; 747 if (Op0) 748 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 749 if (Op1) 750 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 751 752 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 753 // a common term. 754 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 755 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 756 return V; 757 758 // The instruction has the form "(A op' B) op (C)". Try to factorize common 759 // term. 760 if (Op0) 761 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 762 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 763 return V; 764 765 // The instruction has the form "(B) op (C op' D)". Try to factorize common 766 // term. 767 if (Op1) 768 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 769 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 770 return V; 771 } 772 773 // Expansion. 774 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 775 // The instruction has the form "(A op' B) op C". See if expanding it out 776 // to "(A op C) op' (B op C)" results in simplifications. 777 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 778 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 779 780 // Disable the use of undef because it's not safe to distribute undef. 781 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 782 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 783 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 784 785 // Do "A op C" and "B op C" both simplify? 786 if (L && R) { 787 // They do! Return "L op' R". 788 ++NumExpand; 789 C = Builder.CreateBinOp(InnerOpcode, L, R); 790 C->takeName(&I); 791 return C; 792 } 793 794 // Does "A op C" simplify to the identity value for the inner opcode? 795 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 796 // They do! Return "B op C". 797 ++NumExpand; 798 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 799 C->takeName(&I); 800 return C; 801 } 802 803 // Does "B op C" simplify to the identity value for the inner opcode? 804 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 805 // They do! Return "A op C". 806 ++NumExpand; 807 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 808 C->takeName(&I); 809 return C; 810 } 811 } 812 813 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 814 // The instruction has the form "A op (B op' C)". See if expanding it out 815 // to "(A op B) op' (A op C)" results in simplifications. 816 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 817 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 818 819 // Disable the use of undef because it's not safe to distribute undef. 820 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 821 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 822 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 823 824 // Do "A op B" and "A op C" both simplify? 825 if (L && R) { 826 // They do! Return "L op' R". 827 ++NumExpand; 828 A = Builder.CreateBinOp(InnerOpcode, L, R); 829 A->takeName(&I); 830 return A; 831 } 832 833 // Does "A op B" simplify to the identity value for the inner opcode? 834 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 835 // They do! Return "A op C". 836 ++NumExpand; 837 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 838 A->takeName(&I); 839 return A; 840 } 841 842 // Does "A op C" simplify to the identity value for the inner opcode? 843 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 844 // They do! Return "A op B". 845 ++NumExpand; 846 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 847 A->takeName(&I); 848 return A; 849 } 850 } 851 852 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 853 } 854 855 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 856 Value *LHS, 857 Value *RHS) { 858 Value *A, *B, *C, *D, *E, *F; 859 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 860 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 861 if (!LHSIsSelect && !RHSIsSelect) 862 return nullptr; 863 864 FastMathFlags FMF; 865 BuilderTy::FastMathFlagGuard Guard(Builder); 866 if (isa<FPMathOperator>(&I)) { 867 FMF = I.getFastMathFlags(); 868 Builder.setFastMathFlags(FMF); 869 } 870 871 Instruction::BinaryOps Opcode = I.getOpcode(); 872 SimplifyQuery Q = SQ.getWithInstruction(&I); 873 874 Value *Cond, *True = nullptr, *False = nullptr; 875 if (LHSIsSelect && RHSIsSelect && A == D) { 876 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 877 Cond = A; 878 True = SimplifyBinOp(Opcode, B, E, FMF, Q); 879 False = SimplifyBinOp(Opcode, C, F, FMF, Q); 880 881 if (LHS->hasOneUse() && RHS->hasOneUse()) { 882 if (False && !True) 883 True = Builder.CreateBinOp(Opcode, B, E); 884 else if (True && !False) 885 False = Builder.CreateBinOp(Opcode, C, F); 886 } 887 } else if (LHSIsSelect && LHS->hasOneUse()) { 888 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 889 Cond = A; 890 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q); 891 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q); 892 } else if (RHSIsSelect && RHS->hasOneUse()) { 893 // X op (D ? E : F) -> D ? (X op E) : (X op F) 894 Cond = D; 895 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q); 896 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q); 897 } 898 899 if (!True || !False) 900 return nullptr; 901 902 Value *SI = Builder.CreateSelect(Cond, True, False); 903 SI->takeName(&I); 904 return SI; 905 } 906 907 /// Freely adapt every user of V as-if V was changed to !V. 908 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 909 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) { 910 for (User *U : I->users()) { 911 switch (cast<Instruction>(U)->getOpcode()) { 912 case Instruction::Select: { 913 auto *SI = cast<SelectInst>(U); 914 SI->swapValues(); 915 SI->swapProfMetadata(); 916 break; 917 } 918 case Instruction::Br: 919 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 920 break; 921 case Instruction::Xor: 922 replaceInstUsesWith(cast<Instruction>(*U), I); 923 break; 924 default: 925 llvm_unreachable("Got unexpected user - out of sync with " 926 "canFreelyInvertAllUsersOf() ?"); 927 } 928 } 929 } 930 931 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 932 /// constant zero (which is the 'negate' form). 933 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 934 Value *NegV; 935 if (match(V, m_Neg(m_Value(NegV)))) 936 return NegV; 937 938 // Constants can be considered to be negated values if they can be folded. 939 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 940 return ConstantExpr::getNeg(C); 941 942 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 943 if (C->getType()->getElementType()->isIntegerTy()) 944 return ConstantExpr::getNeg(C); 945 946 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 947 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 948 Constant *Elt = CV->getAggregateElement(i); 949 if (!Elt) 950 return nullptr; 951 952 if (isa<UndefValue>(Elt)) 953 continue; 954 955 if (!isa<ConstantInt>(Elt)) 956 return nullptr; 957 } 958 return ConstantExpr::getNeg(CV); 959 } 960 961 // Negate integer vector splats. 962 if (auto *CV = dyn_cast<Constant>(V)) 963 if (CV->getType()->isVectorTy() && 964 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 965 return ConstantExpr::getNeg(CV); 966 967 return nullptr; 968 } 969 970 /// A binop with a constant operand and a sign-extended boolean operand may be 971 /// converted into a select of constants by applying the binary operation to 972 /// the constant with the two possible values of the extended boolean (0 or -1). 973 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) { 974 // TODO: Handle non-commutative binop (constant is operand 0). 975 // TODO: Handle zext. 976 // TODO: Peek through 'not' of cast. 977 Value *BO0 = BO.getOperand(0); 978 Value *BO1 = BO.getOperand(1); 979 Value *X; 980 Constant *C; 981 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) || 982 !X->getType()->isIntOrIntVectorTy(1)) 983 return nullptr; 984 985 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C) 986 Constant *Ones = ConstantInt::getAllOnesValue(BO.getType()); 987 Constant *Zero = ConstantInt::getNullValue(BO.getType()); 988 Constant *TVal = ConstantExpr::get(BO.getOpcode(), Ones, C); 989 Constant *FVal = ConstantExpr::get(BO.getOpcode(), Zero, C); 990 return SelectInst::Create(X, TVal, FVal); 991 } 992 993 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 994 InstCombiner::BuilderTy &Builder) { 995 if (auto *Cast = dyn_cast<CastInst>(&I)) 996 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 997 998 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 999 assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) && 1000 "Expected constant-foldable intrinsic"); 1001 Intrinsic::ID IID = II->getIntrinsicID(); 1002 if (II->arg_size() == 1) 1003 return Builder.CreateUnaryIntrinsic(IID, SO); 1004 1005 // This works for real binary ops like min/max (where we always expect the 1006 // constant operand to be canonicalized as op1) and unary ops with a bonus 1007 // constant argument like ctlz/cttz. 1008 // TODO: Handle non-commutative binary intrinsics as below for binops. 1009 assert(II->arg_size() == 2 && "Expected binary intrinsic"); 1010 assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand"); 1011 return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1)); 1012 } 1013 1014 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 1015 1016 // Figure out if the constant is the left or the right argument. 1017 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 1018 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 1019 1020 if (auto *SOC = dyn_cast<Constant>(SO)) { 1021 if (ConstIsRHS) 1022 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 1023 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 1024 } 1025 1026 Value *Op0 = SO, *Op1 = ConstOperand; 1027 if (!ConstIsRHS) 1028 std::swap(Op0, Op1); 1029 1030 Value *NewBO = Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), Op0, 1031 Op1, SO->getName() + ".op"); 1032 if (auto *NewBOI = dyn_cast<Instruction>(NewBO)) 1033 NewBOI->copyIRFlags(&I); 1034 return NewBO; 1035 } 1036 1037 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, 1038 SelectInst *SI) { 1039 // Don't modify shared select instructions. 1040 if (!SI->hasOneUse()) 1041 return nullptr; 1042 1043 Value *TV = SI->getTrueValue(); 1044 Value *FV = SI->getFalseValue(); 1045 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 1046 return nullptr; 1047 1048 // Bool selects with constant operands can be folded to logical ops. 1049 if (SI->getType()->isIntOrIntVectorTy(1)) 1050 return nullptr; 1051 1052 // If it's a bitcast involving vectors, make sure it has the same number of 1053 // elements on both sides. 1054 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 1055 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 1056 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 1057 1058 // Verify that either both or neither are vectors. 1059 if ((SrcTy == nullptr) != (DestTy == nullptr)) 1060 return nullptr; 1061 1062 // If vectors, verify that they have the same number of elements. 1063 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) 1064 return nullptr; 1065 } 1066 1067 // Test if a CmpInst instruction is used exclusively by a select as 1068 // part of a minimum or maximum operation. If so, refrain from doing 1069 // any other folding. This helps out other analyses which understand 1070 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 1071 // and CodeGen. And in this case, at least one of the comparison 1072 // operands has at least one user besides the compare (the select), 1073 // which would often largely negate the benefit of folding anyway. 1074 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 1075 if (CI->hasOneUse()) { 1076 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 1077 1078 // FIXME: This is a hack to avoid infinite looping with min/max patterns. 1079 // We have to ensure that vector constants that only differ with 1080 // undef elements are treated as equivalent. 1081 auto areLooselyEqual = [](Value *A, Value *B) { 1082 if (A == B) 1083 return true; 1084 1085 // Test for vector constants. 1086 Constant *ConstA, *ConstB; 1087 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB))) 1088 return false; 1089 1090 // TODO: Deal with FP constants? 1091 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType()) 1092 return false; 1093 1094 // Compare for equality including undefs as equal. 1095 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB); 1096 const APInt *C; 1097 return match(Cmp, m_APIntAllowUndef(C)) && C->isOne(); 1098 }; 1099 1100 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) || 1101 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1))) 1102 return nullptr; 1103 } 1104 } 1105 1106 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 1107 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 1108 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 1109 } 1110 1111 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 1112 InstCombiner::BuilderTy &Builder) { 1113 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 1114 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 1115 1116 if (auto *InC = dyn_cast<Constant>(InV)) { 1117 if (ConstIsRHS) 1118 return ConstantExpr::get(I->getOpcode(), InC, C); 1119 return ConstantExpr::get(I->getOpcode(), C, InC); 1120 } 1121 1122 Value *Op0 = InV, *Op1 = C; 1123 if (!ConstIsRHS) 1124 std::swap(Op0, Op1); 1125 1126 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo"); 1127 auto *FPInst = dyn_cast<Instruction>(RI); 1128 if (FPInst && isa<FPMathOperator>(FPInst)) 1129 FPInst->copyFastMathFlags(I); 1130 return RI; 1131 } 1132 1133 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { 1134 unsigned NumPHIValues = PN->getNumIncomingValues(); 1135 if (NumPHIValues == 0) 1136 return nullptr; 1137 1138 // We normally only transform phis with a single use. However, if a PHI has 1139 // multiple uses and they are all the same operation, we can fold *all* of the 1140 // uses into the PHI. 1141 if (!PN->hasOneUse()) { 1142 // Walk the use list for the instruction, comparing them to I. 1143 for (User *U : PN->users()) { 1144 Instruction *UI = cast<Instruction>(U); 1145 if (UI != &I && !I.isIdenticalTo(UI)) 1146 return nullptr; 1147 } 1148 // Otherwise, we can replace *all* users with the new PHI we form. 1149 } 1150 1151 // Check to see if all of the operands of the PHI are simple constants 1152 // (constantint/constantfp/undef). If there is one non-constant value, 1153 // remember the BB it is in. If there is more than one or if *it* is a PHI, 1154 // bail out. We don't do arbitrary constant expressions here because moving 1155 // their computation can be expensive without a cost model. 1156 BasicBlock *NonConstBB = nullptr; 1157 for (unsigned i = 0; i != NumPHIValues; ++i) { 1158 Value *InVal = PN->getIncomingValue(i); 1159 // For non-freeze, require constant operand 1160 // For freeze, require non-undef, non-poison operand 1161 if (!isa<FreezeInst>(I) && match(InVal, m_ImmConstant())) 1162 continue; 1163 if (isa<FreezeInst>(I) && isGuaranteedNotToBeUndefOrPoison(InVal)) 1164 continue; 1165 1166 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 1167 if (NonConstBB) return nullptr; // More than one non-const value. 1168 1169 NonConstBB = PN->getIncomingBlock(i); 1170 1171 // If the InVal is an invoke at the end of the pred block, then we can't 1172 // insert a computation after it without breaking the edge. 1173 if (isa<InvokeInst>(InVal)) 1174 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 1175 return nullptr; 1176 1177 // If the incoming non-constant value is in I's block, we will remove one 1178 // instruction, but insert another equivalent one, leading to infinite 1179 // instcombine. 1180 if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI)) 1181 return nullptr; 1182 } 1183 1184 // If there is exactly one non-constant value, we can insert a copy of the 1185 // operation in that block. However, if this is a critical edge, we would be 1186 // inserting the computation on some other paths (e.g. inside a loop). Only 1187 // do this if the pred block is unconditionally branching into the phi block. 1188 // Also, make sure that the pred block is not dead code. 1189 if (NonConstBB != nullptr) { 1190 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1191 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB)) 1192 return nullptr; 1193 } 1194 1195 // Okay, we can do the transformation: create the new PHI node. 1196 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1197 InsertNewInstBefore(NewPN, *PN); 1198 NewPN->takeName(PN); 1199 1200 // If we are going to have to insert a new computation, do so right before the 1201 // predecessor's terminator. 1202 if (NonConstBB) 1203 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1204 1205 // Next, add all of the operands to the PHI. 1206 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1207 // We only currently try to fold the condition of a select when it is a phi, 1208 // not the true/false values. 1209 Value *TrueV = SI->getTrueValue(); 1210 Value *FalseV = SI->getFalseValue(); 1211 BasicBlock *PhiTransBB = PN->getParent(); 1212 for (unsigned i = 0; i != NumPHIValues; ++i) { 1213 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1214 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1215 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1216 Value *InV = nullptr; 1217 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1218 // even if currently isNullValue gives false. 1219 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1220 // For vector constants, we cannot use isNullValue to fold into 1221 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1222 // elements in the vector, we will incorrectly fold InC to 1223 // `TrueVInPred`. 1224 if (InC && isa<ConstantInt>(InC)) 1225 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1226 else { 1227 // Generate the select in the same block as PN's current incoming block. 1228 // Note: ThisBB need not be the NonConstBB because vector constants 1229 // which are constants by definition are handled here. 1230 // FIXME: This can lead to an increase in IR generation because we might 1231 // generate selects for vector constant phi operand, that could not be 1232 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1233 // non-vector phis, this transformation was always profitable because 1234 // the select would be generated exactly once in the NonConstBB. 1235 Builder.SetInsertPoint(ThisBB->getTerminator()); 1236 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1237 FalseVInPred, "phi.sel"); 1238 } 1239 NewPN->addIncoming(InV, ThisBB); 1240 } 1241 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1242 Constant *C = cast<Constant>(I.getOperand(1)); 1243 for (unsigned i = 0; i != NumPHIValues; ++i) { 1244 Value *InV = nullptr; 1245 if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1246 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1247 else 1248 InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i), 1249 C, "phi.cmp"); 1250 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1251 } 1252 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1253 for (unsigned i = 0; i != NumPHIValues; ++i) { 1254 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1255 Builder); 1256 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1257 } 1258 } else if (isa<FreezeInst>(&I)) { 1259 for (unsigned i = 0; i != NumPHIValues; ++i) { 1260 Value *InV; 1261 if (NonConstBB == PN->getIncomingBlock(i)) 1262 InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr"); 1263 else 1264 InV = PN->getIncomingValue(i); 1265 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1266 } 1267 } else { 1268 CastInst *CI = cast<CastInst>(&I); 1269 Type *RetTy = CI->getType(); 1270 for (unsigned i = 0; i != NumPHIValues; ++i) { 1271 Value *InV; 1272 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1273 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1274 else 1275 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1276 I.getType(), "phi.cast"); 1277 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1278 } 1279 } 1280 1281 for (User *U : make_early_inc_range(PN->users())) { 1282 Instruction *User = cast<Instruction>(U); 1283 if (User == &I) continue; 1284 replaceInstUsesWith(*User, NewPN); 1285 eraseInstFromFunction(*User); 1286 } 1287 return replaceInstUsesWith(I, NewPN); 1288 } 1289 1290 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1291 if (!isa<Constant>(I.getOperand(1))) 1292 return nullptr; 1293 1294 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1295 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1296 return NewSel; 1297 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1298 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1299 return NewPhi; 1300 } 1301 return nullptr; 1302 } 1303 1304 /// Given a pointer type and a constant offset, determine whether or not there 1305 /// is a sequence of GEP indices into the pointed type that will land us at the 1306 /// specified offset. If so, fill them into NewIndices and return the resultant 1307 /// element type, otherwise return null. 1308 Type * 1309 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t IntOffset, 1310 SmallVectorImpl<Value *> &NewIndices) { 1311 Type *Ty = PtrTy->getElementType(); 1312 if (!Ty->isSized()) 1313 return nullptr; 1314 1315 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset); 1316 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset); 1317 if (!Offset.isZero()) 1318 return nullptr; 1319 1320 for (const APInt &Index : Indices) 1321 NewIndices.push_back(Builder.getInt(Index)); 1322 return Ty; 1323 } 1324 1325 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1326 // If this GEP has only 0 indices, it is the same pointer as 1327 // Src. If Src is not a trivial GEP too, don't combine 1328 // the indices. 1329 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1330 !Src.hasOneUse()) 1331 return false; 1332 return true; 1333 } 1334 1335 /// Return a value X such that Val = X * Scale, or null if none. 1336 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1337 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1338 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1339 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1340 Scale.getBitWidth() && "Scale not compatible with value!"); 1341 1342 // If Val is zero or Scale is one then Val = Val * Scale. 1343 if (match(Val, m_Zero()) || Scale == 1) { 1344 NoSignedWrap = true; 1345 return Val; 1346 } 1347 1348 // If Scale is zero then it does not divide Val. 1349 if (Scale.isMinValue()) 1350 return nullptr; 1351 1352 // Look through chains of multiplications, searching for a constant that is 1353 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1354 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1355 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1356 // down from Val: 1357 // 1358 // Val = M1 * X || Analysis starts here and works down 1359 // M1 = M2 * Y || Doesn't descend into terms with more 1360 // M2 = Z * 4 \/ than one use 1361 // 1362 // Then to modify a term at the bottom: 1363 // 1364 // Val = M1 * X 1365 // M1 = Z * Y || Replaced M2 with Z 1366 // 1367 // Then to work back up correcting nsw flags. 1368 1369 // Op - the term we are currently analyzing. Starts at Val then drills down. 1370 // Replaced with its descaled value before exiting from the drill down loop. 1371 Value *Op = Val; 1372 1373 // Parent - initially null, but after drilling down notes where Op came from. 1374 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1375 // 0'th operand of Val. 1376 std::pair<Instruction *, unsigned> Parent; 1377 1378 // Set if the transform requires a descaling at deeper levels that doesn't 1379 // overflow. 1380 bool RequireNoSignedWrap = false; 1381 1382 // Log base 2 of the scale. Negative if not a power of 2. 1383 int32_t logScale = Scale.exactLogBase2(); 1384 1385 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1386 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1387 // If Op is a constant divisible by Scale then descale to the quotient. 1388 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1389 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1390 if (!Remainder.isMinValue()) 1391 // Not divisible by Scale. 1392 return nullptr; 1393 // Replace with the quotient in the parent. 1394 Op = ConstantInt::get(CI->getType(), Quotient); 1395 NoSignedWrap = true; 1396 break; 1397 } 1398 1399 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1400 if (BO->getOpcode() == Instruction::Mul) { 1401 // Multiplication. 1402 NoSignedWrap = BO->hasNoSignedWrap(); 1403 if (RequireNoSignedWrap && !NoSignedWrap) 1404 return nullptr; 1405 1406 // There are three cases for multiplication: multiplication by exactly 1407 // the scale, multiplication by a constant different to the scale, and 1408 // multiplication by something else. 1409 Value *LHS = BO->getOperand(0); 1410 Value *RHS = BO->getOperand(1); 1411 1412 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1413 // Multiplication by a constant. 1414 if (CI->getValue() == Scale) { 1415 // Multiplication by exactly the scale, replace the multiplication 1416 // by its left-hand side in the parent. 1417 Op = LHS; 1418 break; 1419 } 1420 1421 // Otherwise drill down into the constant. 1422 if (!Op->hasOneUse()) 1423 return nullptr; 1424 1425 Parent = std::make_pair(BO, 1); 1426 continue; 1427 } 1428 1429 // Multiplication by something else. Drill down into the left-hand side 1430 // since that's where the reassociate pass puts the good stuff. 1431 if (!Op->hasOneUse()) 1432 return nullptr; 1433 1434 Parent = std::make_pair(BO, 0); 1435 continue; 1436 } 1437 1438 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1439 isa<ConstantInt>(BO->getOperand(1))) { 1440 // Multiplication by a power of 2. 1441 NoSignedWrap = BO->hasNoSignedWrap(); 1442 if (RequireNoSignedWrap && !NoSignedWrap) 1443 return nullptr; 1444 1445 Value *LHS = BO->getOperand(0); 1446 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1447 getLimitedValue(Scale.getBitWidth()); 1448 // Op = LHS << Amt. 1449 1450 if (Amt == logScale) { 1451 // Multiplication by exactly the scale, replace the multiplication 1452 // by its left-hand side in the parent. 1453 Op = LHS; 1454 break; 1455 } 1456 if (Amt < logScale || !Op->hasOneUse()) 1457 return nullptr; 1458 1459 // Multiplication by more than the scale. Reduce the multiplying amount 1460 // by the scale in the parent. 1461 Parent = std::make_pair(BO, 1); 1462 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1463 break; 1464 } 1465 } 1466 1467 if (!Op->hasOneUse()) 1468 return nullptr; 1469 1470 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1471 if (Cast->getOpcode() == Instruction::SExt) { 1472 // Op is sign-extended from a smaller type, descale in the smaller type. 1473 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1474 APInt SmallScale = Scale.trunc(SmallSize); 1475 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1476 // descale Op as (sext Y) * Scale. In order to have 1477 // sext (Y * SmallScale) = (sext Y) * Scale 1478 // some conditions need to hold however: SmallScale must sign-extend to 1479 // Scale and the multiplication Y * SmallScale should not overflow. 1480 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1481 // SmallScale does not sign-extend to Scale. 1482 return nullptr; 1483 assert(SmallScale.exactLogBase2() == logScale); 1484 // Require that Y * SmallScale must not overflow. 1485 RequireNoSignedWrap = true; 1486 1487 // Drill down through the cast. 1488 Parent = std::make_pair(Cast, 0); 1489 Scale = SmallScale; 1490 continue; 1491 } 1492 1493 if (Cast->getOpcode() == Instruction::Trunc) { 1494 // Op is truncated from a larger type, descale in the larger type. 1495 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1496 // trunc (Y * sext Scale) = (trunc Y) * Scale 1497 // always holds. However (trunc Y) * Scale may overflow even if 1498 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1499 // from this point up in the expression (see later). 1500 if (RequireNoSignedWrap) 1501 return nullptr; 1502 1503 // Drill down through the cast. 1504 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1505 Parent = std::make_pair(Cast, 0); 1506 Scale = Scale.sext(LargeSize); 1507 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1508 logScale = -1; 1509 assert(Scale.exactLogBase2() == logScale); 1510 continue; 1511 } 1512 } 1513 1514 // Unsupported expression, bail out. 1515 return nullptr; 1516 } 1517 1518 // If Op is zero then Val = Op * Scale. 1519 if (match(Op, m_Zero())) { 1520 NoSignedWrap = true; 1521 return Op; 1522 } 1523 1524 // We know that we can successfully descale, so from here on we can safely 1525 // modify the IR. Op holds the descaled version of the deepest term in the 1526 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1527 // not to overflow. 1528 1529 if (!Parent.first) 1530 // The expression only had one term. 1531 return Op; 1532 1533 // Rewrite the parent using the descaled version of its operand. 1534 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1535 assert(Op != Parent.first->getOperand(Parent.second) && 1536 "Descaling was a no-op?"); 1537 replaceOperand(*Parent.first, Parent.second, Op); 1538 Worklist.push(Parent.first); 1539 1540 // Now work back up the expression correcting nsw flags. The logic is based 1541 // on the following observation: if X * Y is known not to overflow as a signed 1542 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1543 // then X * Z will not overflow as a signed multiplication either. As we work 1544 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1545 // current level has strictly smaller absolute value than the original. 1546 Instruction *Ancestor = Parent.first; 1547 do { 1548 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1549 // If the multiplication wasn't nsw then we can't say anything about the 1550 // value of the descaled multiplication, and we have to clear nsw flags 1551 // from this point on up. 1552 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1553 NoSignedWrap &= OpNoSignedWrap; 1554 if (NoSignedWrap != OpNoSignedWrap) { 1555 BO->setHasNoSignedWrap(NoSignedWrap); 1556 Worklist.push(Ancestor); 1557 } 1558 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1559 // The fact that the descaled input to the trunc has smaller absolute 1560 // value than the original input doesn't tell us anything useful about 1561 // the absolute values of the truncations. 1562 NoSignedWrap = false; 1563 } 1564 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1565 "Failed to keep proper track of nsw flags while drilling down?"); 1566 1567 if (Ancestor == Val) 1568 // Got to the top, all done! 1569 return Val; 1570 1571 // Move up one level in the expression. 1572 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1573 Ancestor = Ancestor->user_back(); 1574 } while (true); 1575 } 1576 1577 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 1578 if (!isa<VectorType>(Inst.getType())) 1579 return nullptr; 1580 1581 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1582 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1583 assert(cast<VectorType>(LHS->getType())->getElementCount() == 1584 cast<VectorType>(Inst.getType())->getElementCount()); 1585 assert(cast<VectorType>(RHS->getType())->getElementCount() == 1586 cast<VectorType>(Inst.getType())->getElementCount()); 1587 1588 // If both operands of the binop are vector concatenations, then perform the 1589 // narrow binop on each pair of the source operands followed by concatenation 1590 // of the results. 1591 Value *L0, *L1, *R0, *R1; 1592 ArrayRef<int> Mask; 1593 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 1594 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 1595 LHS->hasOneUse() && RHS->hasOneUse() && 1596 cast<ShuffleVectorInst>(LHS)->isConcat() && 1597 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1598 // This transform does not have the speculative execution constraint as 1599 // below because the shuffle is a concatenation. The new binops are 1600 // operating on exactly the same elements as the existing binop. 1601 // TODO: We could ease the mask requirement to allow different undef lanes, 1602 // but that requires an analysis of the binop-with-undef output value. 1603 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1604 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1605 BO->copyIRFlags(&Inst); 1606 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1607 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1608 BO->copyIRFlags(&Inst); 1609 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1610 } 1611 1612 // It may not be safe to reorder shuffles and things like div, urem, etc. 1613 // because we may trap when executing those ops on unknown vector elements. 1614 // See PR20059. 1615 if (!isSafeToSpeculativelyExecute(&Inst)) 1616 return nullptr; 1617 1618 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 1619 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1620 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1621 BO->copyIRFlags(&Inst); 1622 return new ShuffleVectorInst(XY, M); 1623 }; 1624 1625 // If both arguments of the binary operation are shuffles that use the same 1626 // mask and shuffle within a single vector, move the shuffle after the binop. 1627 Value *V1, *V2; 1628 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) && 1629 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) && 1630 V1->getType() == V2->getType() && 1631 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1632 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1633 return createBinOpShuffle(V1, V2, Mask); 1634 } 1635 1636 // If both arguments of a commutative binop are select-shuffles that use the 1637 // same mask with commuted operands, the shuffles are unnecessary. 1638 if (Inst.isCommutative() && 1639 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 1640 match(RHS, 1641 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 1642 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1643 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1644 // TODO: Allow shuffles that contain undefs in the mask? 1645 // That is legal, but it reduces undef knowledge. 1646 // TODO: Allow arbitrary shuffles by shuffling after binop? 1647 // That might be legal, but we have to deal with poison. 1648 if (LShuf->isSelect() && 1649 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) && 1650 RShuf->isSelect() && 1651 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) { 1652 // Example: 1653 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1654 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1655 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1656 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1657 NewBO->copyIRFlags(&Inst); 1658 return NewBO; 1659 } 1660 } 1661 1662 // If one argument is a shuffle within one vector and the other is a constant, 1663 // try moving the shuffle after the binary operation. This canonicalization 1664 // intends to move shuffles closer to other shuffles and binops closer to 1665 // other binops, so they can be folded. It may also enable demanded elements 1666 // transforms. 1667 Constant *C; 1668 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 1669 if (InstVTy && 1670 match(&Inst, 1671 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))), 1672 m_ImmConstant(C))) && 1673 cast<FixedVectorType>(V1->getType())->getNumElements() <= 1674 InstVTy->getNumElements()) { 1675 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 1676 "Shuffle should not change scalar type"); 1677 1678 // Find constant NewC that has property: 1679 // shuffle(NewC, ShMask) = C 1680 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1681 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1682 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1683 bool ConstOp1 = isa<Constant>(RHS); 1684 ArrayRef<int> ShMask = Mask; 1685 unsigned SrcVecNumElts = 1686 cast<FixedVectorType>(V1->getType())->getNumElements(); 1687 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1688 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1689 bool MayChange = true; 1690 unsigned NumElts = InstVTy->getNumElements(); 1691 for (unsigned I = 0; I < NumElts; ++I) { 1692 Constant *CElt = C->getAggregateElement(I); 1693 if (ShMask[I] >= 0) { 1694 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1695 Constant *NewCElt = NewVecC[ShMask[I]]; 1696 // Bail out if: 1697 // 1. The constant vector contains a constant expression. 1698 // 2. The shuffle needs an element of the constant vector that can't 1699 // be mapped to a new constant vector. 1700 // 3. This is a widening shuffle that copies elements of V1 into the 1701 // extended elements (extending with undef is allowed). 1702 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1703 I >= SrcVecNumElts) { 1704 MayChange = false; 1705 break; 1706 } 1707 NewVecC[ShMask[I]] = CElt; 1708 } 1709 // If this is a widening shuffle, we must be able to extend with undef 1710 // elements. If the original binop does not produce an undef in the high 1711 // lanes, then this transform is not safe. 1712 // Similarly for undef lanes due to the shuffle mask, we can only 1713 // transform binops that preserve undef. 1714 // TODO: We could shuffle those non-undef constant values into the 1715 // result by using a constant vector (rather than an undef vector) 1716 // as operand 1 of the new binop, but that might be too aggressive 1717 // for target-independent shuffle creation. 1718 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1719 Constant *MaybeUndef = 1720 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1721 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1722 if (!match(MaybeUndef, m_Undef())) { 1723 MayChange = false; 1724 break; 1725 } 1726 } 1727 } 1728 if (MayChange) { 1729 Constant *NewC = ConstantVector::get(NewVecC); 1730 // It may not be safe to execute a binop on a vector with undef elements 1731 // because the entire instruction can be folded to undef or create poison 1732 // that did not exist in the original code. 1733 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1734 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1735 1736 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1737 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1738 Value *NewLHS = ConstOp1 ? V1 : NewC; 1739 Value *NewRHS = ConstOp1 ? NewC : V1; 1740 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1741 } 1742 } 1743 1744 // Try to reassociate to sink a splat shuffle after a binary operation. 1745 if (Inst.isAssociative() && Inst.isCommutative()) { 1746 // Canonicalize shuffle operand as LHS. 1747 if (isa<ShuffleVectorInst>(RHS)) 1748 std::swap(LHS, RHS); 1749 1750 Value *X; 1751 ArrayRef<int> MaskC; 1752 int SplatIndex; 1753 Value *Y, *OtherOp; 1754 if (!match(LHS, 1755 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 1756 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || 1757 X->getType() != Inst.getType() || 1758 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp))))) 1759 return nullptr; 1760 1761 // FIXME: This may not be safe if the analysis allows undef elements. By 1762 // moving 'Y' before the splat shuffle, we are implicitly assuming 1763 // that it is not undef/poison at the splat index. 1764 if (isSplatValue(OtherOp, SplatIndex)) { 1765 std::swap(Y, OtherOp); 1766 } else if (!isSplatValue(Y, SplatIndex)) { 1767 return nullptr; 1768 } 1769 1770 // X and Y are splatted values, so perform the binary operation on those 1771 // values followed by a splat followed by the 2nd binary operation: 1772 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 1773 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 1774 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 1775 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 1776 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 1777 1778 // Intersect FMF on both new binops. Other (poison-generating) flags are 1779 // dropped to be safe. 1780 if (isa<FPMathOperator>(R)) { 1781 R->copyFastMathFlags(&Inst); 1782 R->andIRFlags(RHS); 1783 } 1784 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 1785 NewInstBO->copyIRFlags(R); 1786 return R; 1787 } 1788 1789 return nullptr; 1790 } 1791 1792 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1793 /// of a value. This requires a potentially expensive known bits check to make 1794 /// sure the narrow op does not overflow. 1795 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 1796 // We need at least one extended operand. 1797 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1798 1799 // If this is a sub, we swap the operands since we always want an extension 1800 // on the RHS. The LHS can be an extension or a constant. 1801 if (BO.getOpcode() == Instruction::Sub) 1802 std::swap(Op0, Op1); 1803 1804 Value *X; 1805 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1806 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1807 return nullptr; 1808 1809 // If both operands are the same extension from the same source type and we 1810 // can eliminate at least one (hasOneUse), this might work. 1811 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1812 Value *Y; 1813 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1814 cast<Operator>(Op1)->getOpcode() == CastOpc && 1815 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1816 // If that did not match, see if we have a suitable constant operand. 1817 // Truncating and extending must produce the same constant. 1818 Constant *WideC; 1819 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1820 return nullptr; 1821 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1822 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1823 return nullptr; 1824 Y = NarrowC; 1825 } 1826 1827 // Swap back now that we found our operands. 1828 if (BO.getOpcode() == Instruction::Sub) 1829 std::swap(X, Y); 1830 1831 // Both operands have narrow versions. Last step: the math must not overflow 1832 // in the narrow width. 1833 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1834 return nullptr; 1835 1836 // bo (ext X), (ext Y) --> ext (bo X, Y) 1837 // bo (ext X), C --> ext (bo X, C') 1838 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1839 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1840 if (IsSext) 1841 NewBinOp->setHasNoSignedWrap(); 1842 else 1843 NewBinOp->setHasNoUnsignedWrap(); 1844 } 1845 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1846 } 1847 1848 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 1849 // At least one GEP must be inbounds. 1850 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 1851 return false; 1852 1853 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 1854 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 1855 } 1856 1857 /// Thread a GEP operation with constant indices through the constant true/false 1858 /// arms of a select. 1859 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 1860 InstCombiner::BuilderTy &Builder) { 1861 if (!GEP.hasAllConstantIndices()) 1862 return nullptr; 1863 1864 Instruction *Sel; 1865 Value *Cond; 1866 Constant *TrueC, *FalseC; 1867 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 1868 !match(Sel, 1869 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 1870 return nullptr; 1871 1872 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 1873 // Propagate 'inbounds' and metadata from existing instructions. 1874 // Note: using IRBuilder to create the constants for efficiency. 1875 SmallVector<Value *, 4> IndexC(GEP.indices()); 1876 bool IsInBounds = GEP.isInBounds(); 1877 Type *Ty = GEP.getSourceElementType(); 1878 Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC) 1879 : Builder.CreateGEP(Ty, TrueC, IndexC); 1880 Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC) 1881 : Builder.CreateGEP(Ty, FalseC, IndexC); 1882 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 1883 } 1884 1885 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP, 1886 GEPOperator *Src) { 1887 // Combine Indices - If the source pointer to this getelementptr instruction 1888 // is a getelementptr instruction with matching element type, combine the 1889 // indices of the two getelementptr instructions into a single instruction. 1890 if (Src->getResultElementType() != GEP.getSourceElementType()) 1891 return nullptr; 1892 1893 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1894 return nullptr; 1895 1896 if (Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1897 Src->hasOneUse()) { 1898 Value *GO1 = GEP.getOperand(1); 1899 Value *SO1 = Src->getOperand(1); 1900 1901 if (LI) { 1902 // Try to reassociate loop invariant GEP chains to enable LICM. 1903 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1904 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1905 // invariant: this breaks the dependence between GEPs and allows LICM 1906 // to hoist the invariant part out of the loop. 1907 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1908 // We have to be careful here. 1909 // We have something like: 1910 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 1911 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 1912 // If we just swap idx & idx2 then we could inadvertantly 1913 // change %src from a vector to a scalar, or vice versa. 1914 // Cases: 1915 // 1) %base a scalar & idx a scalar & idx2 a vector 1916 // => Swapping idx & idx2 turns %src into a vector type. 1917 // 2) %base a scalar & idx a vector & idx2 a scalar 1918 // => Swapping idx & idx2 turns %src in a scalar type 1919 // 3) %base, %idx, and %idx2 are scalars 1920 // => %src & %gep are scalars 1921 // => swapping idx & idx2 is safe 1922 // 4) %base a vector 1923 // => %src is a vector 1924 // => swapping idx & idx2 is safe. 1925 auto *SO0 = Src->getOperand(0); 1926 auto *SO0Ty = SO0->getType(); 1927 if (!isa<VectorType>(GEP.getType()) || // case 3 1928 isa<VectorType>(SO0Ty)) { // case 4 1929 Src->setOperand(1, GO1); 1930 GEP.setOperand(1, SO1); 1931 return &GEP; 1932 } else { 1933 // Case 1 or 2 1934 // -- have to recreate %src & %gep 1935 // put NewSrc at same location as %src 1936 Builder.SetInsertPoint(cast<Instruction>(Src)); 1937 Value *NewSrc = Builder.CreateGEP( 1938 GEP.getSourceElementType(), SO0, GO1, Src->getName()); 1939 // Propagate 'inbounds' if the new source was not constant-folded. 1940 if (auto *NewSrcGEPI = dyn_cast<GetElementPtrInst>(NewSrc)) 1941 NewSrcGEPI->setIsInBounds(Src->isInBounds()); 1942 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 1943 GEP.getSourceElementType(), NewSrc, {SO1}); 1944 NewGEP->setIsInBounds(GEP.isInBounds()); 1945 return NewGEP; 1946 } 1947 } 1948 } 1949 } 1950 } 1951 1952 // Note that if our source is a gep chain itself then we wait for that 1953 // chain to be resolved before we perform this transformation. This 1954 // avoids us creating a TON of code in some cases. 1955 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 1956 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1957 return nullptr; // Wait until our source is folded to completion. 1958 1959 SmallVector<Value*, 8> Indices; 1960 1961 // Find out whether the last index in the source GEP is a sequential idx. 1962 bool EndsWithSequential = false; 1963 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1964 I != E; ++I) 1965 EndsWithSequential = I.isSequential(); 1966 1967 // Can we combine the two pointer arithmetics offsets? 1968 if (EndsWithSequential) { 1969 // Replace: gep (gep %P, long B), long A, ... 1970 // With: T = long A+B; gep %P, T, ... 1971 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1972 Value *GO1 = GEP.getOperand(1); 1973 1974 // If they aren't the same type, then the input hasn't been processed 1975 // by the loop above yet (which canonicalizes sequential index types to 1976 // intptr_t). Just avoid transforming this until the input has been 1977 // normalized. 1978 if (SO1->getType() != GO1->getType()) 1979 return nullptr; 1980 1981 Value *Sum = 1982 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 1983 // Only do the combine when we are sure the cost after the 1984 // merge is never more than that before the merge. 1985 if (Sum == nullptr) 1986 return nullptr; 1987 1988 // Update the GEP in place if possible. 1989 if (Src->getNumOperands() == 2) { 1990 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 1991 replaceOperand(GEP, 0, Src->getOperand(0)); 1992 replaceOperand(GEP, 1, Sum); 1993 return &GEP; 1994 } 1995 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1996 Indices.push_back(Sum); 1997 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1998 } else if (isa<Constant>(*GEP.idx_begin()) && 1999 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2000 Src->getNumOperands() != 1) { 2001 // Otherwise we can do the fold if the first index of the GEP is a zero 2002 Indices.append(Src->op_begin()+1, Src->op_end()); 2003 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2004 } 2005 2006 if (!Indices.empty()) 2007 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2008 ? GetElementPtrInst::CreateInBounds( 2009 Src->getSourceElementType(), Src->getOperand(0), Indices, 2010 GEP.getName()) 2011 : GetElementPtrInst::Create(Src->getSourceElementType(), 2012 Src->getOperand(0), Indices, 2013 GEP.getName()); 2014 2015 return nullptr; 2016 } 2017 2018 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 2019 Value *PtrOp = GEP.getOperand(0); 2020 SmallVector<Value *, 8> Indices(GEP.indices()); 2021 Type *GEPType = GEP.getType(); 2022 Type *GEPEltType = GEP.getSourceElementType(); 2023 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType); 2024 if (Value *V = SimplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(), 2025 SQ.getWithInstruction(&GEP))) 2026 return replaceInstUsesWith(GEP, V); 2027 2028 // For vector geps, use the generic demanded vector support. 2029 // Skip if GEP return type is scalable. The number of elements is unknown at 2030 // compile-time. 2031 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 2032 auto VWidth = GEPFVTy->getNumElements(); 2033 APInt UndefElts(VWidth, 0); 2034 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2035 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 2036 UndefElts)) { 2037 if (V != &GEP) 2038 return replaceInstUsesWith(GEP, V); 2039 return &GEP; 2040 } 2041 2042 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 2043 // possible (decide on canonical form for pointer broadcast), 3) exploit 2044 // undef elements to decrease demanded bits 2045 } 2046 2047 // Eliminate unneeded casts for indices, and replace indices which displace 2048 // by multiples of a zero size type with zero. 2049 bool MadeChange = false; 2050 2051 // Index width may not be the same width as pointer width. 2052 // Data layout chooses the right type based on supported integer types. 2053 Type *NewScalarIndexTy = 2054 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 2055 2056 gep_type_iterator GTI = gep_type_begin(GEP); 2057 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 2058 ++I, ++GTI) { 2059 // Skip indices into struct types. 2060 if (GTI.isStruct()) 2061 continue; 2062 2063 Type *IndexTy = (*I)->getType(); 2064 Type *NewIndexType = 2065 IndexTy->isVectorTy() 2066 ? VectorType::get(NewScalarIndexTy, 2067 cast<VectorType>(IndexTy)->getElementCount()) 2068 : NewScalarIndexTy; 2069 2070 // If the element type has zero size then any index over it is equivalent 2071 // to an index of zero, so replace it with zero if it is not zero already. 2072 Type *EltTy = GTI.getIndexedType(); 2073 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 2074 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 2075 *I = Constant::getNullValue(NewIndexType); 2076 MadeChange = true; 2077 } 2078 2079 if (IndexTy != NewIndexType) { 2080 // If we are using a wider index than needed for this platform, shrink 2081 // it to what we need. If narrower, sign-extend it to what we need. 2082 // This explicit cast can make subsequent optimizations more obvious. 2083 *I = Builder.CreateIntCast(*I, NewIndexType, true); 2084 MadeChange = true; 2085 } 2086 } 2087 if (MadeChange) 2088 return &GEP; 2089 2090 // Check to see if the inputs to the PHI node are getelementptr instructions. 2091 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 2092 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 2093 if (!Op1) 2094 return nullptr; 2095 2096 // Don't fold a GEP into itself through a PHI node. This can only happen 2097 // through the back-edge of a loop. Folding a GEP into itself means that 2098 // the value of the previous iteration needs to be stored in the meantime, 2099 // thus requiring an additional register variable to be live, but not 2100 // actually achieving anything (the GEP still needs to be executed once per 2101 // loop iteration). 2102 if (Op1 == &GEP) 2103 return nullptr; 2104 2105 int DI = -1; 2106 2107 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 2108 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 2109 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 2110 return nullptr; 2111 2112 // As for Op1 above, don't try to fold a GEP into itself. 2113 if (Op2 == &GEP) 2114 return nullptr; 2115 2116 // Keep track of the type as we walk the GEP. 2117 Type *CurTy = nullptr; 2118 2119 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 2120 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 2121 return nullptr; 2122 2123 if (Op1->getOperand(J) != Op2->getOperand(J)) { 2124 if (DI == -1) { 2125 // We have not seen any differences yet in the GEPs feeding the 2126 // PHI yet, so we record this one if it is allowed to be a 2127 // variable. 2128 2129 // The first two arguments can vary for any GEP, the rest have to be 2130 // static for struct slots 2131 if (J > 1) { 2132 assert(CurTy && "No current type?"); 2133 if (CurTy->isStructTy()) 2134 return nullptr; 2135 } 2136 2137 DI = J; 2138 } else { 2139 // The GEP is different by more than one input. While this could be 2140 // extended to support GEPs that vary by more than one variable it 2141 // doesn't make sense since it greatly increases the complexity and 2142 // would result in an R+R+R addressing mode which no backend 2143 // directly supports and would need to be broken into several 2144 // simpler instructions anyway. 2145 return nullptr; 2146 } 2147 } 2148 2149 // Sink down a layer of the type for the next iteration. 2150 if (J > 0) { 2151 if (J == 1) { 2152 CurTy = Op1->getSourceElementType(); 2153 } else { 2154 CurTy = 2155 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 2156 } 2157 } 2158 } 2159 } 2160 2161 // If not all GEPs are identical we'll have to create a new PHI node. 2162 // Check that the old PHI node has only one use so that it will get 2163 // removed. 2164 if (DI != -1 && !PN->hasOneUse()) 2165 return nullptr; 2166 2167 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 2168 if (DI == -1) { 2169 // All the GEPs feeding the PHI are identical. Clone one down into our 2170 // BB so that it can be merged with the current GEP. 2171 } else { 2172 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 2173 // into the current block so it can be merged, and create a new PHI to 2174 // set that index. 2175 PHINode *NewPN; 2176 { 2177 IRBuilderBase::InsertPointGuard Guard(Builder); 2178 Builder.SetInsertPoint(PN); 2179 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 2180 PN->getNumOperands()); 2181 } 2182 2183 for (auto &I : PN->operands()) 2184 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 2185 PN->getIncomingBlock(I)); 2186 2187 NewGEP->setOperand(DI, NewPN); 2188 } 2189 2190 GEP.getParent()->getInstList().insert( 2191 GEP.getParent()->getFirstInsertionPt(), NewGEP); 2192 replaceOperand(GEP, 0, NewGEP); 2193 PtrOp = NewGEP; 2194 } 2195 2196 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) 2197 if (Instruction *I = visitGEPOfGEP(GEP, Src)) 2198 return I; 2199 2200 // Skip if GEP source element type is scalable. The type alloc size is unknown 2201 // at compile-time. 2202 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { 2203 unsigned AS = GEP.getPointerAddressSpace(); 2204 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 2205 DL.getIndexSizeInBits(AS)) { 2206 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2207 2208 bool Matched = false; 2209 uint64_t C; 2210 Value *V = nullptr; 2211 if (TyAllocSize == 1) { 2212 V = GEP.getOperand(1); 2213 Matched = true; 2214 } else if (match(GEP.getOperand(1), 2215 m_AShr(m_Value(V), m_ConstantInt(C)))) { 2216 if (TyAllocSize == 1ULL << C) 2217 Matched = true; 2218 } else if (match(GEP.getOperand(1), 2219 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 2220 if (TyAllocSize == C) 2221 Matched = true; 2222 } 2223 2224 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but 2225 // only if both point to the same underlying object (otherwise provenance 2226 // is not necessarily retained). 2227 Value *Y; 2228 Value *X = GEP.getOperand(0); 2229 if (Matched && 2230 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 2231 getUnderlyingObject(X) == getUnderlyingObject(Y)) 2232 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 2233 } 2234 } 2235 2236 // We do not handle pointer-vector geps here. 2237 if (GEPType->isVectorTy()) 2238 return nullptr; 2239 2240 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 2241 Value *StrippedPtr = PtrOp->stripPointerCasts(); 2242 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 2243 2244 // TODO: The basic approach of these folds is not compatible with opaque 2245 // pointers, because we can't use bitcasts as a hint for a desirable GEP 2246 // type. Instead, we should perform canonicalization directly on the GEP 2247 // type. For now, skip these. 2248 if (StrippedPtr != PtrOp && !StrippedPtrTy->isOpaque()) { 2249 bool HasZeroPointerIndex = false; 2250 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType(); 2251 2252 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 2253 HasZeroPointerIndex = C->isZero(); 2254 2255 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2256 // into : GEP [10 x i8]* X, i32 0, ... 2257 // 2258 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2259 // into : GEP i8* X, ... 2260 // 2261 // This occurs when the program declares an array extern like "int X[];" 2262 if (HasZeroPointerIndex) { 2263 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2264 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2265 if (CATy->getElementType() == StrippedPtrEltTy) { 2266 // -> GEP i8* X, ... 2267 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices())); 2268 GetElementPtrInst *Res = GetElementPtrInst::Create( 2269 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2270 Res->setIsInBounds(GEP.isInBounds()); 2271 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2272 return Res; 2273 // Insert Res, and create an addrspacecast. 2274 // e.g., 2275 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2276 // -> 2277 // %0 = GEP i8 addrspace(1)* X, ... 2278 // addrspacecast i8 addrspace(1)* %0 to i8* 2279 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2280 } 2281 2282 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2283 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2284 if (CATy->getElementType() == XATy->getElementType()) { 2285 // -> GEP [10 x i8]* X, i32 0, ... 2286 // At this point, we know that the cast source type is a pointer 2287 // to an array of the same type as the destination pointer 2288 // array. Because the array type is never stepped over (there 2289 // is a leading zero) we can fold the cast into this GEP. 2290 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2291 GEP.setSourceElementType(XATy); 2292 return replaceOperand(GEP, 0, StrippedPtr); 2293 } 2294 // Cannot replace the base pointer directly because StrippedPtr's 2295 // address space is different. Instead, create a new GEP followed by 2296 // an addrspacecast. 2297 // e.g., 2298 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2299 // i32 0, ... 2300 // -> 2301 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2302 // addrspacecast i8 addrspace(1)* %0 to i8* 2303 SmallVector<Value *, 8> Idx(GEP.indices()); 2304 Value *NewGEP = 2305 GEP.isInBounds() 2306 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2307 Idx, GEP.getName()) 2308 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2309 GEP.getName()); 2310 return new AddrSpaceCastInst(NewGEP, GEPType); 2311 } 2312 } 2313 } 2314 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) { 2315 // Skip if GEP source element type is scalable. The type alloc size is 2316 // unknown at compile-time. 2317 // Transform things like: %t = getelementptr i32* 2318 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2 2319 // x i32]* %str, i32 0, i32 %V; bitcast 2320 if (StrippedPtrEltTy->isArrayTy() && 2321 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2322 DL.getTypeAllocSize(GEPEltType)) { 2323 Type *IdxType = DL.getIndexType(GEPType); 2324 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 2325 Value *NewGEP = 2326 GEP.isInBounds() 2327 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2328 GEP.getName()) 2329 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2330 GEP.getName()); 2331 2332 // V and GEP are both pointer types --> BitCast 2333 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2334 } 2335 2336 // Transform things like: 2337 // %V = mul i64 %N, 4 2338 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2339 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2340 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2341 // Check that changing the type amounts to dividing the index by a scale 2342 // factor. 2343 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2344 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize(); 2345 if (ResSize && SrcSize % ResSize == 0) { 2346 Value *Idx = GEP.getOperand(1); 2347 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2348 uint64_t Scale = SrcSize / ResSize; 2349 2350 // Earlier transforms ensure that the index has the right type 2351 // according to Data Layout, which considerably simplifies the 2352 // logic by eliminating implicit casts. 2353 assert(Idx->getType() == DL.getIndexType(GEPType) && 2354 "Index type does not match the Data Layout preferences"); 2355 2356 bool NSW; 2357 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2358 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2359 // If the multiplication NewIdx * Scale may overflow then the new 2360 // GEP may not be "inbounds". 2361 Value *NewGEP = 2362 GEP.isInBounds() && NSW 2363 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2364 NewIdx, GEP.getName()) 2365 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2366 GEP.getName()); 2367 2368 // The NewGEP must be pointer typed, so must the old one -> BitCast 2369 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2370 GEPType); 2371 } 2372 } 2373 } 2374 2375 // Similarly, transform things like: 2376 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2377 // (where tmp = 8*tmp2) into: 2378 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2379 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2380 StrippedPtrEltTy->isArrayTy()) { 2381 // Check that changing to the array element type amounts to dividing the 2382 // index by a scale factor. 2383 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2384 uint64_t ArrayEltSize = 2385 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) 2386 .getFixedSize(); 2387 if (ResSize && ArrayEltSize % ResSize == 0) { 2388 Value *Idx = GEP.getOperand(1); 2389 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2390 uint64_t Scale = ArrayEltSize / ResSize; 2391 2392 // Earlier transforms ensure that the index has the right type 2393 // according to the Data Layout, which considerably simplifies 2394 // the logic by eliminating implicit casts. 2395 assert(Idx->getType() == DL.getIndexType(GEPType) && 2396 "Index type does not match the Data Layout preferences"); 2397 2398 bool NSW; 2399 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2400 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2401 // If the multiplication NewIdx * Scale may overflow then the new 2402 // GEP may not be "inbounds". 2403 Type *IndTy = DL.getIndexType(GEPType); 2404 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2405 2406 Value *NewGEP = 2407 GEP.isInBounds() && NSW 2408 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2409 Off, GEP.getName()) 2410 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2411 GEP.getName()); 2412 // The NewGEP must be pointer typed, so must the old one -> BitCast 2413 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2414 GEPType); 2415 } 2416 } 2417 } 2418 } 2419 } 2420 2421 // addrspacecast between types is canonicalized as a bitcast, then an 2422 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2423 // through the addrspacecast. 2424 Value *ASCStrippedPtrOp = PtrOp; 2425 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2426 // X = bitcast A addrspace(1)* to B addrspace(1)* 2427 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2428 // Z = gep Y, <...constant indices...> 2429 // Into an addrspacecasted GEP of the struct. 2430 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2431 ASCStrippedPtrOp = BC; 2432 } 2433 2434 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 2435 Value *SrcOp = BCI->getOperand(0); 2436 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2437 Type *SrcEltType = SrcType->getElementType(); 2438 2439 // GEP directly using the source operand if this GEP is accessing an element 2440 // of a bitcasted pointer to vector or array of the same dimensions: 2441 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2442 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2443 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, 2444 const DataLayout &DL) { 2445 auto *VecVTy = cast<FixedVectorType>(VecTy); 2446 return ArrTy->getArrayElementType() == VecVTy->getElementType() && 2447 ArrTy->getArrayNumElements() == VecVTy->getNumElements() && 2448 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); 2449 }; 2450 if (GEP.getNumOperands() == 3 && 2451 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) && 2452 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || 2453 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() && 2454 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { 2455 2456 // Create a new GEP here, as using `setOperand()` followed by 2457 // `setSourceElementType()` won't actually update the type of the 2458 // existing GEP Value. Causing issues if this Value is accessed when 2459 // constructing an AddrSpaceCastInst 2460 Value *NGEP = GEP.isInBounds() 2461 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, Indices) 2462 : Builder.CreateGEP(SrcEltType, SrcOp, Indices); 2463 NGEP->takeName(&GEP); 2464 2465 // Preserve GEP address space to satisfy users 2466 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2467 return new AddrSpaceCastInst(NGEP, GEPType); 2468 2469 return replaceInstUsesWith(GEP, NGEP); 2470 } 2471 2472 // See if we can simplify: 2473 // X = bitcast A* to B* 2474 // Y = gep X, <...constant indices...> 2475 // into a gep of the original struct. This is important for SROA and alias 2476 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2477 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 2478 APInt Offset(OffsetBits, 0); 2479 2480 // If the bitcast argument is an allocation, The bitcast is for convertion 2481 // to actual type of allocation. Removing such bitcasts, results in having 2482 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of 2483 // struct or array hierarchy. 2484 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have 2485 // a better chance to succeed. 2486 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) && 2487 !isAllocationFn(SrcOp, &TLI)) { 2488 // If this GEP instruction doesn't move the pointer, just replace the GEP 2489 // with a bitcast of the real input to the dest type. 2490 if (!Offset) { 2491 // If the bitcast is of an allocation, and the allocation will be 2492 // converted to match the type of the cast, don't touch this. 2493 if (isa<AllocaInst>(SrcOp)) { 2494 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2495 if (Instruction *I = visitBitCast(*BCI)) { 2496 if (I != BCI) { 2497 I->takeName(BCI); 2498 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2499 replaceInstUsesWith(*BCI, I); 2500 } 2501 return &GEP; 2502 } 2503 } 2504 2505 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2506 return new AddrSpaceCastInst(SrcOp, GEPType); 2507 return new BitCastInst(SrcOp, GEPType); 2508 } 2509 2510 // Otherwise, if the offset is non-zero, we need to find out if there is a 2511 // field at Offset in 'A's type. If so, we can pull the cast through the 2512 // GEP. 2513 SmallVector<Value*, 8> NewIndices; 2514 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2515 Value *NGEP = 2516 GEP.isInBounds() 2517 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) 2518 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); 2519 2520 if (NGEP->getType() == GEPType) 2521 return replaceInstUsesWith(GEP, NGEP); 2522 NGEP->takeName(&GEP); 2523 2524 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2525 return new AddrSpaceCastInst(NGEP, GEPType); 2526 return new BitCastInst(NGEP, GEPType); 2527 } 2528 } 2529 } 2530 2531 if (!GEP.isInBounds()) { 2532 unsigned IdxWidth = 2533 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2534 APInt BasePtrOffset(IdxWidth, 0); 2535 Value *UnderlyingPtrOp = 2536 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2537 BasePtrOffset); 2538 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2539 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2540 BasePtrOffset.isNonNegative()) { 2541 APInt AllocSize( 2542 IdxWidth, 2543 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize()); 2544 if (BasePtrOffset.ule(AllocSize)) { 2545 return GetElementPtrInst::CreateInBounds( 2546 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName()); 2547 } 2548 } 2549 } 2550 } 2551 2552 if (Instruction *R = foldSelectGEP(GEP, Builder)) 2553 return R; 2554 2555 return nullptr; 2556 } 2557 2558 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, 2559 Instruction *AI) { 2560 if (isa<ConstantPointerNull>(V)) 2561 return true; 2562 if (auto *LI = dyn_cast<LoadInst>(V)) 2563 return isa<GlobalVariable>(LI->getPointerOperand()); 2564 // Two distinct allocations will never be equal. 2565 return isAllocLikeFn(V, &TLI) && V != AI; 2566 } 2567 2568 /// Given a call CB which uses an address UsedV, return true if we can prove the 2569 /// call's only possible effect is storing to V. 2570 static bool isRemovableWrite(CallBase &CB, Value *UsedV, 2571 const TargetLibraryInfo &TLI) { 2572 if (!CB.use_empty()) 2573 // TODO: add recursion if returned attribute is present 2574 return false; 2575 2576 if (CB.isTerminator()) 2577 // TODO: remove implementation restriction 2578 return false; 2579 2580 if (!CB.willReturn() || !CB.doesNotThrow()) 2581 return false; 2582 2583 // If the only possible side effect of the call is writing to the alloca, 2584 // and the result isn't used, we can safely remove any reads implied by the 2585 // call including those which might read the alloca itself. 2586 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI); 2587 return Dest && Dest->Ptr == UsedV; 2588 } 2589 2590 static bool isAllocSiteRemovable(Instruction *AI, 2591 SmallVectorImpl<WeakTrackingVH> &Users, 2592 const TargetLibraryInfo &TLI) { 2593 SmallVector<Instruction*, 4> Worklist; 2594 Worklist.push_back(AI); 2595 2596 do { 2597 Instruction *PI = Worklist.pop_back_val(); 2598 for (User *U : PI->users()) { 2599 Instruction *I = cast<Instruction>(U); 2600 switch (I->getOpcode()) { 2601 default: 2602 // Give up the moment we see something we can't handle. 2603 return false; 2604 2605 case Instruction::AddrSpaceCast: 2606 case Instruction::BitCast: 2607 case Instruction::GetElementPtr: 2608 Users.emplace_back(I); 2609 Worklist.push_back(I); 2610 continue; 2611 2612 case Instruction::ICmp: { 2613 ICmpInst *ICI = cast<ICmpInst>(I); 2614 // We can fold eq/ne comparisons with null to false/true, respectively. 2615 // We also fold comparisons in some conditions provided the alloc has 2616 // not escaped (see isNeverEqualToUnescapedAlloc). 2617 if (!ICI->isEquality()) 2618 return false; 2619 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2620 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2621 return false; 2622 Users.emplace_back(I); 2623 continue; 2624 } 2625 2626 case Instruction::Call: 2627 // Ignore no-op and store intrinsics. 2628 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2629 switch (II->getIntrinsicID()) { 2630 default: 2631 return false; 2632 2633 case Intrinsic::memmove: 2634 case Intrinsic::memcpy: 2635 case Intrinsic::memset: { 2636 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2637 if (MI->isVolatile() || MI->getRawDest() != PI) 2638 return false; 2639 LLVM_FALLTHROUGH; 2640 } 2641 case Intrinsic::assume: 2642 case Intrinsic::invariant_start: 2643 case Intrinsic::invariant_end: 2644 case Intrinsic::lifetime_start: 2645 case Intrinsic::lifetime_end: 2646 case Intrinsic::objectsize: 2647 Users.emplace_back(I); 2648 continue; 2649 case Intrinsic::launder_invariant_group: 2650 case Intrinsic::strip_invariant_group: 2651 Users.emplace_back(I); 2652 Worklist.push_back(I); 2653 continue; 2654 } 2655 } 2656 2657 if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) { 2658 Users.emplace_back(I); 2659 continue; 2660 } 2661 2662 if (isFreeCall(I, &TLI)) { 2663 Users.emplace_back(I); 2664 continue; 2665 } 2666 2667 if (isReallocLikeFn(I, &TLI)) { 2668 Users.emplace_back(I); 2669 Worklist.push_back(I); 2670 continue; 2671 } 2672 2673 return false; 2674 2675 case Instruction::Store: { 2676 StoreInst *SI = cast<StoreInst>(I); 2677 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2678 return false; 2679 Users.emplace_back(I); 2680 continue; 2681 } 2682 } 2683 llvm_unreachable("missing a return?"); 2684 } 2685 } while (!Worklist.empty()); 2686 return true; 2687 } 2688 2689 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 2690 assert(isa<AllocaInst>(MI) || isAllocRemovable(&cast<CallBase>(MI), &TLI)); 2691 2692 // If we have a malloc call which is only used in any amount of comparisons to 2693 // null and free calls, delete the calls and replace the comparisons with true 2694 // or false as appropriate. 2695 2696 // This is based on the principle that we can substitute our own allocation 2697 // function (which will never return null) rather than knowledge of the 2698 // specific function being called. In some sense this can change the permitted 2699 // outputs of a program (when we convert a malloc to an alloca, the fact that 2700 // the allocation is now on the stack is potentially visible, for example), 2701 // but we believe in a permissible manner. 2702 SmallVector<WeakTrackingVH, 64> Users; 2703 2704 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2705 // before each store. 2706 SmallVector<DbgVariableIntrinsic *, 8> DVIs; 2707 std::unique_ptr<DIBuilder> DIB; 2708 if (isa<AllocaInst>(MI)) { 2709 findDbgUsers(DVIs, &MI); 2710 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2711 } 2712 2713 if (isAllocSiteRemovable(&MI, Users, TLI)) { 2714 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2715 // Lowering all @llvm.objectsize calls first because they may 2716 // use a bitcast/GEP of the alloca we are removing. 2717 if (!Users[i]) 2718 continue; 2719 2720 Instruction *I = cast<Instruction>(&*Users[i]); 2721 2722 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2723 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2724 Value *Result = 2725 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); 2726 replaceInstUsesWith(*I, Result); 2727 eraseInstFromFunction(*I); 2728 Users[i] = nullptr; // Skip examining in the next loop. 2729 } 2730 } 2731 } 2732 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2733 if (!Users[i]) 2734 continue; 2735 2736 Instruction *I = cast<Instruction>(&*Users[i]); 2737 2738 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2739 replaceInstUsesWith(*C, 2740 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2741 C->isFalseWhenEqual())); 2742 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2743 for (auto *DVI : DVIs) 2744 if (DVI->isAddressOfVariable()) 2745 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 2746 } else { 2747 // Casts, GEP, or anything else: we're about to delete this instruction, 2748 // so it can not have any valid uses. 2749 replaceInstUsesWith(*I, PoisonValue::get(I->getType())); 2750 } 2751 eraseInstFromFunction(*I); 2752 } 2753 2754 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2755 // Replace invoke with a NOP intrinsic to maintain the original CFG 2756 Module *M = II->getModule(); 2757 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2758 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2759 None, "", II->getParent()); 2760 } 2761 2762 // Remove debug intrinsics which describe the value contained within the 2763 // alloca. In addition to removing dbg.{declare,addr} which simply point to 2764 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 2765 // 2766 // ``` 2767 // define void @foo(i32 %0) { 2768 // %a = alloca i32 ; Deleted. 2769 // store i32 %0, i32* %a 2770 // dbg.value(i32 %0, "arg0") ; Not deleted. 2771 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 2772 // call void @trivially_inlinable_no_op(i32* %a) 2773 // ret void 2774 // } 2775 // ``` 2776 // 2777 // This may not be required if we stop describing the contents of allocas 2778 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 2779 // the LowerDbgDeclare utility. 2780 // 2781 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 2782 // "arg0" dbg.value may be stale after the call. However, failing to remove 2783 // the DW_OP_deref dbg.value causes large gaps in location coverage. 2784 for (auto *DVI : DVIs) 2785 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 2786 DVI->eraseFromParent(); 2787 2788 return eraseInstFromFunction(MI); 2789 } 2790 return nullptr; 2791 } 2792 2793 /// Move the call to free before a NULL test. 2794 /// 2795 /// Check if this free is accessed after its argument has been test 2796 /// against NULL (property 0). 2797 /// If yes, it is legal to move this call in its predecessor block. 2798 /// 2799 /// The move is performed only if the block containing the call to free 2800 /// will be removed, i.e.: 2801 /// 1. it has only one predecessor P, and P has two successors 2802 /// 2. it contains the call, noops, and an unconditional branch 2803 /// 3. its successor is the same as its predecessor's successor 2804 /// 2805 /// The profitability is out-of concern here and this function should 2806 /// be called only if the caller knows this transformation would be 2807 /// profitable (e.g., for code size). 2808 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2809 const DataLayout &DL) { 2810 Value *Op = FI.getArgOperand(0); 2811 BasicBlock *FreeInstrBB = FI.getParent(); 2812 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2813 2814 // Validate part of constraint #1: Only one predecessor 2815 // FIXME: We can extend the number of predecessor, but in that case, we 2816 // would duplicate the call to free in each predecessor and it may 2817 // not be profitable even for code size. 2818 if (!PredBB) 2819 return nullptr; 2820 2821 // Validate constraint #2: Does this block contains only the call to 2822 // free, noops, and an unconditional branch? 2823 BasicBlock *SuccBB; 2824 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2825 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2826 return nullptr; 2827 2828 // If there are only 2 instructions in the block, at this point, 2829 // this is the call to free and unconditional. 2830 // If there are more than 2 instructions, check that they are noops 2831 // i.e., they won't hurt the performance of the generated code. 2832 if (FreeInstrBB->size() != 2) { 2833 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 2834 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2835 continue; 2836 auto *Cast = dyn_cast<CastInst>(&Inst); 2837 if (!Cast || !Cast->isNoopCast(DL)) 2838 return nullptr; 2839 } 2840 } 2841 // Validate the rest of constraint #1 by matching on the pred branch. 2842 Instruction *TI = PredBB->getTerminator(); 2843 BasicBlock *TrueBB, *FalseBB; 2844 ICmpInst::Predicate Pred; 2845 if (!match(TI, m_Br(m_ICmp(Pred, 2846 m_CombineOr(m_Specific(Op), 2847 m_Specific(Op->stripPointerCasts())), 2848 m_Zero()), 2849 TrueBB, FalseBB))) 2850 return nullptr; 2851 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2852 return nullptr; 2853 2854 // Validate constraint #3: Ensure the null case just falls through. 2855 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2856 return nullptr; 2857 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2858 "Broken CFG: missing edge from predecessor to successor"); 2859 2860 // At this point, we know that everything in FreeInstrBB can be moved 2861 // before TI. 2862 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) { 2863 if (&Instr == FreeInstrBBTerminator) 2864 break; 2865 Instr.moveBefore(TI); 2866 } 2867 assert(FreeInstrBB->size() == 1 && 2868 "Only the branch instruction should remain"); 2869 2870 // Now that we've moved the call to free before the NULL check, we have to 2871 // remove any attributes on its parameter that imply it's non-null, because 2872 // those attributes might have only been valid because of the NULL check, and 2873 // we can get miscompiles if we keep them. This is conservative if non-null is 2874 // also implied by something other than the NULL check, but it's guaranteed to 2875 // be correct, and the conservativeness won't matter in practice, since the 2876 // attributes are irrelevant for the call to free itself and the pointer 2877 // shouldn't be used after the call. 2878 AttributeList Attrs = FI.getAttributes(); 2879 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull); 2880 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable); 2881 if (Dereferenceable.isValid()) { 2882 uint64_t Bytes = Dereferenceable.getDereferenceableBytes(); 2883 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, 2884 Attribute::Dereferenceable); 2885 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes); 2886 } 2887 FI.setAttributes(Attrs); 2888 2889 return &FI; 2890 } 2891 2892 Instruction *InstCombinerImpl::visitFree(CallInst &FI) { 2893 Value *Op = FI.getArgOperand(0); 2894 2895 // free undef -> unreachable. 2896 if (isa<UndefValue>(Op)) { 2897 // Leave a marker since we can't modify the CFG here. 2898 CreateNonTerminatorUnreachable(&FI); 2899 return eraseInstFromFunction(FI); 2900 } 2901 2902 // If we have 'free null' delete the instruction. This can happen in stl code 2903 // when lots of inlining happens. 2904 if (isa<ConstantPointerNull>(Op)) 2905 return eraseInstFromFunction(FI); 2906 2907 // If we had free(realloc(...)) with no intervening uses, then eliminate the 2908 // realloc() entirely. 2909 if (CallInst *CI = dyn_cast<CallInst>(Op)) { 2910 if (CI->hasOneUse() && isReallocLikeFn(CI, &TLI)) { 2911 return eraseInstFromFunction( 2912 *replaceInstUsesWith(*CI, CI->getOperand(0))); 2913 } 2914 } 2915 2916 // If we optimize for code size, try to move the call to free before the null 2917 // test so that simplify cfg can remove the empty block and dead code 2918 // elimination the branch. I.e., helps to turn something like: 2919 // if (foo) free(foo); 2920 // into 2921 // free(foo); 2922 // 2923 // Note that we can only do this for 'free' and not for any flavor of 2924 // 'operator delete'; there is no 'operator delete' symbol for which we are 2925 // permitted to invent a call, even if we're passing in a null pointer. 2926 if (MinimizeSize) { 2927 LibFunc Func; 2928 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 2929 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 2930 return I; 2931 } 2932 2933 return nullptr; 2934 } 2935 2936 static bool isMustTailCall(Value *V) { 2937 if (auto *CI = dyn_cast<CallInst>(V)) 2938 return CI->isMustTailCall(); 2939 return false; 2940 } 2941 2942 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 2943 if (RI.getNumOperands() == 0) // ret void 2944 return nullptr; 2945 2946 Value *ResultOp = RI.getOperand(0); 2947 Type *VTy = ResultOp->getType(); 2948 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp)) 2949 return nullptr; 2950 2951 // Don't replace result of musttail calls. 2952 if (isMustTailCall(ResultOp)) 2953 return nullptr; 2954 2955 // There might be assume intrinsics dominating this return that completely 2956 // determine the value. If so, constant fold it. 2957 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2958 if (Known.isConstant()) 2959 return replaceOperand(RI, 0, 2960 Constant::getIntegerValue(VTy, Known.getConstant())); 2961 2962 return nullptr; 2963 } 2964 2965 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! 2966 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 2967 // Try to remove the previous instruction if it must lead to unreachable. 2968 // This includes instructions like stores and "llvm.assume" that may not get 2969 // removed by simple dead code elimination. 2970 while (Instruction *Prev = I.getPrevNonDebugInstruction()) { 2971 // While we theoretically can erase EH, that would result in a block that 2972 // used to start with an EH no longer starting with EH, which is invalid. 2973 // To make it valid, we'd need to fixup predecessors to no longer refer to 2974 // this block, but that changes CFG, which is not allowed in InstCombine. 2975 if (Prev->isEHPad()) 2976 return nullptr; // Can not drop any more instructions. We're done here. 2977 2978 if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) 2979 return nullptr; // Can not drop any more instructions. We're done here. 2980 // Otherwise, this instruction can be freely erased, 2981 // even if it is not side-effect free. 2982 2983 // A value may still have uses before we process it here (for example, in 2984 // another unreachable block), so convert those to poison. 2985 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); 2986 eraseInstFromFunction(*Prev); 2987 } 2988 assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty."); 2989 // FIXME: recurse into unconditional predecessors? 2990 return nullptr; 2991 } 2992 2993 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 2994 assert(BI.isUnconditional() && "Only for unconditional branches."); 2995 2996 // If this store is the second-to-last instruction in the basic block 2997 // (excluding debug info and bitcasts of pointers) and if the block ends with 2998 // an unconditional branch, try to move the store to the successor block. 2999 3000 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 3001 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 3002 return BBI->isDebugOrPseudoInst() || 3003 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 3004 }; 3005 3006 BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 3007 do { 3008 if (BBI != FirstInstr) 3009 --BBI; 3010 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 3011 3012 return dyn_cast<StoreInst>(BBI); 3013 }; 3014 3015 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 3016 if (mergeStoreIntoSuccessor(*SI)) 3017 return &BI; 3018 3019 return nullptr; 3020 } 3021 3022 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 3023 if (BI.isUnconditional()) 3024 return visitUnconditionalBranchInst(BI); 3025 3026 // Change br (not X), label True, label False to: br X, label False, True 3027 Value *X = nullptr; 3028 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 3029 !isa<Constant>(X)) { 3030 // Swap Destinations and condition... 3031 BI.swapSuccessors(); 3032 return replaceOperand(BI, 0, X); 3033 } 3034 3035 // If the condition is irrelevant, remove the use so that other 3036 // transforms on the condition become more effective. 3037 if (!isa<ConstantInt>(BI.getCondition()) && 3038 BI.getSuccessor(0) == BI.getSuccessor(1)) 3039 return replaceOperand( 3040 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType())); 3041 3042 // Canonicalize, for example, fcmp_one -> fcmp_oeq. 3043 CmpInst::Predicate Pred; 3044 if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())), 3045 m_BasicBlock(), m_BasicBlock())) && 3046 !isCanonicalPredicate(Pred)) { 3047 // Swap destinations and condition. 3048 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 3049 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 3050 BI.swapSuccessors(); 3051 Worklist.push(Cond); 3052 return &BI; 3053 } 3054 3055 return nullptr; 3056 } 3057 3058 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 3059 Value *Cond = SI.getCondition(); 3060 Value *Op0; 3061 ConstantInt *AddRHS; 3062 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 3063 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 3064 for (auto Case : SI.cases()) { 3065 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 3066 assert(isa<ConstantInt>(NewCase) && 3067 "Result of expression should be constant"); 3068 Case.setValue(cast<ConstantInt>(NewCase)); 3069 } 3070 return replaceOperand(SI, 0, Op0); 3071 } 3072 3073 KnownBits Known = computeKnownBits(Cond, 0, &SI); 3074 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 3075 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 3076 3077 // Compute the number of leading bits we can ignore. 3078 // TODO: A better way to determine this would use ComputeNumSignBits(). 3079 for (auto &C : SI.cases()) { 3080 LeadingKnownZeros = std::min( 3081 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 3082 LeadingKnownOnes = std::min( 3083 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 3084 } 3085 3086 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 3087 3088 // Shrink the condition operand if the new type is smaller than the old type. 3089 // But do not shrink to a non-standard type, because backend can't generate 3090 // good code for that yet. 3091 // TODO: We can make it aggressive again after fixing PR39569. 3092 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 3093 shouldChangeType(Known.getBitWidth(), NewWidth)) { 3094 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 3095 Builder.SetInsertPoint(&SI); 3096 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 3097 3098 for (auto Case : SI.cases()) { 3099 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3100 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3101 } 3102 return replaceOperand(SI, 0, NewCond); 3103 } 3104 3105 return nullptr; 3106 } 3107 3108 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 3109 Value *Agg = EV.getAggregateOperand(); 3110 3111 if (!EV.hasIndices()) 3112 return replaceInstUsesWith(EV, Agg); 3113 3114 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 3115 SQ.getWithInstruction(&EV))) 3116 return replaceInstUsesWith(EV, V); 3117 3118 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 3119 // We're extracting from an insertvalue instruction, compare the indices 3120 const unsigned *exti, *exte, *insi, *inse; 3121 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 3122 exte = EV.idx_end(), inse = IV->idx_end(); 3123 exti != exte && insi != inse; 3124 ++exti, ++insi) { 3125 if (*insi != *exti) 3126 // The insert and extract both reference distinctly different elements. 3127 // This means the extract is not influenced by the insert, and we can 3128 // replace the aggregate operand of the extract with the aggregate 3129 // operand of the insert. i.e., replace 3130 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3131 // %E = extractvalue { i32, { i32 } } %I, 0 3132 // with 3133 // %E = extractvalue { i32, { i32 } } %A, 0 3134 return ExtractValueInst::Create(IV->getAggregateOperand(), 3135 EV.getIndices()); 3136 } 3137 if (exti == exte && insi == inse) 3138 // Both iterators are at the end: Index lists are identical. Replace 3139 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3140 // %C = extractvalue { i32, { i32 } } %B, 1, 0 3141 // with "i32 42" 3142 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 3143 if (exti == exte) { 3144 // The extract list is a prefix of the insert list. i.e. replace 3145 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3146 // %E = extractvalue { i32, { i32 } } %I, 1 3147 // with 3148 // %X = extractvalue { i32, { i32 } } %A, 1 3149 // %E = insertvalue { i32 } %X, i32 42, 0 3150 // by switching the order of the insert and extract (though the 3151 // insertvalue should be left in, since it may have other uses). 3152 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 3153 EV.getIndices()); 3154 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 3155 makeArrayRef(insi, inse)); 3156 } 3157 if (insi == inse) 3158 // The insert list is a prefix of the extract list 3159 // We can simply remove the common indices from the extract and make it 3160 // operate on the inserted value instead of the insertvalue result. 3161 // i.e., replace 3162 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3163 // %E = extractvalue { i32, { i32 } } %I, 1, 0 3164 // with 3165 // %E extractvalue { i32 } { i32 42 }, 0 3166 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 3167 makeArrayRef(exti, exte)); 3168 } 3169 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 3170 // We're extracting from an overflow intrinsic, see if we're the only user, 3171 // which allows us to simplify multiple result intrinsics to simpler 3172 // things that just get one value. 3173 if (WO->hasOneUse()) { 3174 // Check if we're grabbing only the result of a 'with overflow' intrinsic 3175 // and replace it with a traditional binary instruction. 3176 if (*EV.idx_begin() == 0) { 3177 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 3178 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 3179 // Replace the old instruction's uses with poison. 3180 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); 3181 eraseInstFromFunction(*WO); 3182 return BinaryOperator::Create(BinOp, LHS, RHS); 3183 } 3184 3185 assert(*EV.idx_begin() == 1 && 3186 "unexpected extract index for overflow inst"); 3187 3188 // If only the overflow result is used, and the right hand side is a 3189 // constant (or constant splat), we can remove the intrinsic by directly 3190 // checking for overflow. 3191 const APInt *C; 3192 if (match(WO->getRHS(), m_APInt(C))) { 3193 // Compute the no-wrap range for LHS given RHS=C, then construct an 3194 // equivalent icmp, potentially using an offset. 3195 ConstantRange NWR = 3196 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 3197 WO->getNoWrapKind()); 3198 3199 CmpInst::Predicate Pred; 3200 APInt NewRHSC, Offset; 3201 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 3202 auto *OpTy = WO->getRHS()->getType(); 3203 auto *NewLHS = WO->getLHS(); 3204 if (Offset != 0) 3205 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset)); 3206 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, 3207 ConstantInt::get(OpTy, NewRHSC)); 3208 } 3209 } 3210 } 3211 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 3212 // If the (non-volatile) load only has one use, we can rewrite this to a 3213 // load from a GEP. This reduces the size of the load. If a load is used 3214 // only by extractvalue instructions then this either must have been 3215 // optimized before, or it is a struct with padding, in which case we 3216 // don't want to do the transformation as it loses padding knowledge. 3217 if (L->isSimple() && L->hasOneUse()) { 3218 // extractvalue has integer indices, getelementptr has Value*s. Convert. 3219 SmallVector<Value*, 4> Indices; 3220 // Prefix an i32 0 since we need the first element. 3221 Indices.push_back(Builder.getInt32(0)); 3222 for (unsigned Idx : EV.indices()) 3223 Indices.push_back(Builder.getInt32(Idx)); 3224 3225 // We need to insert these at the location of the old load, not at that of 3226 // the extractvalue. 3227 Builder.SetInsertPoint(L); 3228 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 3229 L->getPointerOperand(), Indices); 3230 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 3231 // Whatever aliasing information we had for the orignal load must also 3232 // hold for the smaller load, so propagate the annotations. 3233 NL->setAAMetadata(L->getAAMetadata()); 3234 // Returning the load directly will cause the main loop to insert it in 3235 // the wrong spot, so use replaceInstUsesWith(). 3236 return replaceInstUsesWith(EV, NL); 3237 } 3238 // We could simplify extracts from other values. Note that nested extracts may 3239 // already be simplified implicitly by the above: extract (extract (insert) ) 3240 // will be translated into extract ( insert ( extract ) ) first and then just 3241 // the value inserted, if appropriate. Similarly for extracts from single-use 3242 // loads: extract (extract (load)) will be translated to extract (load (gep)) 3243 // and if again single-use then via load (gep (gep)) to load (gep). 3244 // However, double extracts from e.g. function arguments or return values 3245 // aren't handled yet. 3246 return nullptr; 3247 } 3248 3249 /// Return 'true' if the given typeinfo will match anything. 3250 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 3251 switch (Personality) { 3252 case EHPersonality::GNU_C: 3253 case EHPersonality::GNU_C_SjLj: 3254 case EHPersonality::Rust: 3255 // The GCC C EH and Rust personality only exists to support cleanups, so 3256 // it's not clear what the semantics of catch clauses are. 3257 return false; 3258 case EHPersonality::Unknown: 3259 return false; 3260 case EHPersonality::GNU_Ada: 3261 // While __gnat_all_others_value will match any Ada exception, it doesn't 3262 // match foreign exceptions (or didn't, before gcc-4.7). 3263 return false; 3264 case EHPersonality::GNU_CXX: 3265 case EHPersonality::GNU_CXX_SjLj: 3266 case EHPersonality::GNU_ObjC: 3267 case EHPersonality::MSVC_X86SEH: 3268 case EHPersonality::MSVC_TableSEH: 3269 case EHPersonality::MSVC_CXX: 3270 case EHPersonality::CoreCLR: 3271 case EHPersonality::Wasm_CXX: 3272 case EHPersonality::XL_CXX: 3273 return TypeInfo->isNullValue(); 3274 } 3275 llvm_unreachable("invalid enum"); 3276 } 3277 3278 static bool shorter_filter(const Value *LHS, const Value *RHS) { 3279 return 3280 cast<ArrayType>(LHS->getType())->getNumElements() 3281 < 3282 cast<ArrayType>(RHS->getType())->getNumElements(); 3283 } 3284 3285 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 3286 // The logic here should be correct for any real-world personality function. 3287 // However if that turns out not to be true, the offending logic can always 3288 // be conditioned on the personality function, like the catch-all logic is. 3289 EHPersonality Personality = 3290 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 3291 3292 // Simplify the list of clauses, eg by removing repeated catch clauses 3293 // (these are often created by inlining). 3294 bool MakeNewInstruction = false; // If true, recreate using the following: 3295 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 3296 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 3297 3298 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 3299 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 3300 bool isLastClause = i + 1 == e; 3301 if (LI.isCatch(i)) { 3302 // A catch clause. 3303 Constant *CatchClause = LI.getClause(i); 3304 Constant *TypeInfo = CatchClause->stripPointerCasts(); 3305 3306 // If we already saw this clause, there is no point in having a second 3307 // copy of it. 3308 if (AlreadyCaught.insert(TypeInfo).second) { 3309 // This catch clause was not already seen. 3310 NewClauses.push_back(CatchClause); 3311 } else { 3312 // Repeated catch clause - drop the redundant copy. 3313 MakeNewInstruction = true; 3314 } 3315 3316 // If this is a catch-all then there is no point in keeping any following 3317 // clauses or marking the landingpad as having a cleanup. 3318 if (isCatchAll(Personality, TypeInfo)) { 3319 if (!isLastClause) 3320 MakeNewInstruction = true; 3321 CleanupFlag = false; 3322 break; 3323 } 3324 } else { 3325 // A filter clause. If any of the filter elements were already caught 3326 // then they can be dropped from the filter. It is tempting to try to 3327 // exploit the filter further by saying that any typeinfo that does not 3328 // occur in the filter can't be caught later (and thus can be dropped). 3329 // However this would be wrong, since typeinfos can match without being 3330 // equal (for example if one represents a C++ class, and the other some 3331 // class derived from it). 3332 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 3333 Constant *FilterClause = LI.getClause(i); 3334 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 3335 unsigned NumTypeInfos = FilterType->getNumElements(); 3336 3337 // An empty filter catches everything, so there is no point in keeping any 3338 // following clauses or marking the landingpad as having a cleanup. By 3339 // dealing with this case here the following code is made a bit simpler. 3340 if (!NumTypeInfos) { 3341 NewClauses.push_back(FilterClause); 3342 if (!isLastClause) 3343 MakeNewInstruction = true; 3344 CleanupFlag = false; 3345 break; 3346 } 3347 3348 bool MakeNewFilter = false; // If true, make a new filter. 3349 SmallVector<Constant *, 16> NewFilterElts; // New elements. 3350 if (isa<ConstantAggregateZero>(FilterClause)) { 3351 // Not an empty filter - it contains at least one null typeinfo. 3352 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 3353 Constant *TypeInfo = 3354 Constant::getNullValue(FilterType->getElementType()); 3355 // If this typeinfo is a catch-all then the filter can never match. 3356 if (isCatchAll(Personality, TypeInfo)) { 3357 // Throw the filter away. 3358 MakeNewInstruction = true; 3359 continue; 3360 } 3361 3362 // There is no point in having multiple copies of this typeinfo, so 3363 // discard all but the first copy if there is more than one. 3364 NewFilterElts.push_back(TypeInfo); 3365 if (NumTypeInfos > 1) 3366 MakeNewFilter = true; 3367 } else { 3368 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 3369 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 3370 NewFilterElts.reserve(NumTypeInfos); 3371 3372 // Remove any filter elements that were already caught or that already 3373 // occurred in the filter. While there, see if any of the elements are 3374 // catch-alls. If so, the filter can be discarded. 3375 bool SawCatchAll = false; 3376 for (unsigned j = 0; j != NumTypeInfos; ++j) { 3377 Constant *Elt = Filter->getOperand(j); 3378 Constant *TypeInfo = Elt->stripPointerCasts(); 3379 if (isCatchAll(Personality, TypeInfo)) { 3380 // This element is a catch-all. Bail out, noting this fact. 3381 SawCatchAll = true; 3382 break; 3383 } 3384 3385 // Even if we've seen a type in a catch clause, we don't want to 3386 // remove it from the filter. An unexpected type handler may be 3387 // set up for a call site which throws an exception of the same 3388 // type caught. In order for the exception thrown by the unexpected 3389 // handler to propagate correctly, the filter must be correctly 3390 // described for the call site. 3391 // 3392 // Example: 3393 // 3394 // void unexpected() { throw 1;} 3395 // void foo() throw (int) { 3396 // std::set_unexpected(unexpected); 3397 // try { 3398 // throw 2.0; 3399 // } catch (int i) {} 3400 // } 3401 3402 // There is no point in having multiple copies of the same typeinfo in 3403 // a filter, so only add it if we didn't already. 3404 if (SeenInFilter.insert(TypeInfo).second) 3405 NewFilterElts.push_back(cast<Constant>(Elt)); 3406 } 3407 // A filter containing a catch-all cannot match anything by definition. 3408 if (SawCatchAll) { 3409 // Throw the filter away. 3410 MakeNewInstruction = true; 3411 continue; 3412 } 3413 3414 // If we dropped something from the filter, make a new one. 3415 if (NewFilterElts.size() < NumTypeInfos) 3416 MakeNewFilter = true; 3417 } 3418 if (MakeNewFilter) { 3419 FilterType = ArrayType::get(FilterType->getElementType(), 3420 NewFilterElts.size()); 3421 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 3422 MakeNewInstruction = true; 3423 } 3424 3425 NewClauses.push_back(FilterClause); 3426 3427 // If the new filter is empty then it will catch everything so there is 3428 // no point in keeping any following clauses or marking the landingpad 3429 // as having a cleanup. The case of the original filter being empty was 3430 // already handled above. 3431 if (MakeNewFilter && !NewFilterElts.size()) { 3432 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3433 CleanupFlag = false; 3434 break; 3435 } 3436 } 3437 } 3438 3439 // If several filters occur in a row then reorder them so that the shortest 3440 // filters come first (those with the smallest number of elements). This is 3441 // advantageous because shorter filters are more likely to match, speeding up 3442 // unwinding, but mostly because it increases the effectiveness of the other 3443 // filter optimizations below. 3444 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3445 unsigned j; 3446 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3447 for (j = i; j != e; ++j) 3448 if (!isa<ArrayType>(NewClauses[j]->getType())) 3449 break; 3450 3451 // Check whether the filters are already sorted by length. We need to know 3452 // if sorting them is actually going to do anything so that we only make a 3453 // new landingpad instruction if it does. 3454 for (unsigned k = i; k + 1 < j; ++k) 3455 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3456 // Not sorted, so sort the filters now. Doing an unstable sort would be 3457 // correct too but reordering filters pointlessly might confuse users. 3458 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3459 shorter_filter); 3460 MakeNewInstruction = true; 3461 break; 3462 } 3463 3464 // Look for the next batch of filters. 3465 i = j + 1; 3466 } 3467 3468 // If typeinfos matched if and only if equal, then the elements of a filter L 3469 // that occurs later than a filter F could be replaced by the intersection of 3470 // the elements of F and L. In reality two typeinfos can match without being 3471 // equal (for example if one represents a C++ class, and the other some class 3472 // derived from it) so it would be wrong to perform this transform in general. 3473 // However the transform is correct and useful if F is a subset of L. In that 3474 // case L can be replaced by F, and thus removed altogether since repeating a 3475 // filter is pointless. So here we look at all pairs of filters F and L where 3476 // L follows F in the list of clauses, and remove L if every element of F is 3477 // an element of L. This can occur when inlining C++ functions with exception 3478 // specifications. 3479 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3480 // Examine each filter in turn. 3481 Value *Filter = NewClauses[i]; 3482 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3483 if (!FTy) 3484 // Not a filter - skip it. 3485 continue; 3486 unsigned FElts = FTy->getNumElements(); 3487 // Examine each filter following this one. Doing this backwards means that 3488 // we don't have to worry about filters disappearing under us when removed. 3489 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3490 Value *LFilter = NewClauses[j]; 3491 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3492 if (!LTy) 3493 // Not a filter - skip it. 3494 continue; 3495 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3496 // an element of LFilter, then discard LFilter. 3497 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3498 // If Filter is empty then it is a subset of LFilter. 3499 if (!FElts) { 3500 // Discard LFilter. 3501 NewClauses.erase(J); 3502 MakeNewInstruction = true; 3503 // Move on to the next filter. 3504 continue; 3505 } 3506 unsigned LElts = LTy->getNumElements(); 3507 // If Filter is longer than LFilter then it cannot be a subset of it. 3508 if (FElts > LElts) 3509 // Move on to the next filter. 3510 continue; 3511 // At this point we know that LFilter has at least one element. 3512 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3513 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3514 // already know that Filter is not longer than LFilter). 3515 if (isa<ConstantAggregateZero>(Filter)) { 3516 assert(FElts <= LElts && "Should have handled this case earlier!"); 3517 // Discard LFilter. 3518 NewClauses.erase(J); 3519 MakeNewInstruction = true; 3520 } 3521 // Move on to the next filter. 3522 continue; 3523 } 3524 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3525 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3526 // Since Filter is non-empty and contains only zeros, it is a subset of 3527 // LFilter iff LFilter contains a zero. 3528 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3529 for (unsigned l = 0; l != LElts; ++l) 3530 if (LArray->getOperand(l)->isNullValue()) { 3531 // LFilter contains a zero - discard it. 3532 NewClauses.erase(J); 3533 MakeNewInstruction = true; 3534 break; 3535 } 3536 // Move on to the next filter. 3537 continue; 3538 } 3539 // At this point we know that both filters are ConstantArrays. Loop over 3540 // operands to see whether every element of Filter is also an element of 3541 // LFilter. Since filters tend to be short this is probably faster than 3542 // using a method that scales nicely. 3543 ConstantArray *FArray = cast<ConstantArray>(Filter); 3544 bool AllFound = true; 3545 for (unsigned f = 0; f != FElts; ++f) { 3546 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3547 AllFound = false; 3548 for (unsigned l = 0; l != LElts; ++l) { 3549 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3550 if (LTypeInfo == FTypeInfo) { 3551 AllFound = true; 3552 break; 3553 } 3554 } 3555 if (!AllFound) 3556 break; 3557 } 3558 if (AllFound) { 3559 // Discard LFilter. 3560 NewClauses.erase(J); 3561 MakeNewInstruction = true; 3562 } 3563 // Move on to the next filter. 3564 } 3565 } 3566 3567 // If we changed any of the clauses, replace the old landingpad instruction 3568 // with a new one. 3569 if (MakeNewInstruction) { 3570 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3571 NewClauses.size()); 3572 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3573 NLI->addClause(NewClauses[i]); 3574 // A landing pad with no clauses must have the cleanup flag set. It is 3575 // theoretically possible, though highly unlikely, that we eliminated all 3576 // clauses. If so, force the cleanup flag to true. 3577 if (NewClauses.empty()) 3578 CleanupFlag = true; 3579 NLI->setCleanup(CleanupFlag); 3580 return NLI; 3581 } 3582 3583 // Even if none of the clauses changed, we may nonetheless have understood 3584 // that the cleanup flag is pointless. Clear it if so. 3585 if (LI.isCleanup() != CleanupFlag) { 3586 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3587 LI.setCleanup(CleanupFlag); 3588 return &LI; 3589 } 3590 3591 return nullptr; 3592 } 3593 3594 Value * 3595 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { 3596 // Try to push freeze through instructions that propagate but don't produce 3597 // poison as far as possible. If an operand of freeze follows three 3598 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one 3599 // guaranteed-non-poison operands then push the freeze through to the one 3600 // operand that is not guaranteed non-poison. The actual transform is as 3601 // follows. 3602 // Op1 = ... ; Op1 can be posion 3603 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have 3604 // ; single guaranteed-non-poison operands 3605 // ... = Freeze(Op0) 3606 // => 3607 // Op1 = ... 3608 // Op1.fr = Freeze(Op1) 3609 // ... = Inst(Op1.fr, NonPoisonOps...) 3610 auto *OrigOp = OrigFI.getOperand(0); 3611 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp); 3612 3613 // While we could change the other users of OrigOp to use freeze(OrigOp), that 3614 // potentially reduces their optimization potential, so let's only do this iff 3615 // the OrigOp is only used by the freeze. 3616 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp)) 3617 return nullptr; 3618 3619 // We can't push the freeze through an instruction which can itself create 3620 // poison. If the only source of new poison is flags, we can simply 3621 // strip them (since we know the only use is the freeze and nothing can 3622 // benefit from them.) 3623 if (canCreateUndefOrPoison(cast<Operator>(OrigOp), /*ConsiderFlags*/ false)) 3624 return nullptr; 3625 3626 // If operand is guaranteed not to be poison, there is no need to add freeze 3627 // to the operand. So we first find the operand that is not guaranteed to be 3628 // poison. 3629 Use *MaybePoisonOperand = nullptr; 3630 for (Use &U : OrigOpInst->operands()) { 3631 if (isGuaranteedNotToBeUndefOrPoison(U.get())) 3632 continue; 3633 if (!MaybePoisonOperand) 3634 MaybePoisonOperand = &U; 3635 else 3636 return nullptr; 3637 } 3638 3639 OrigOpInst->dropPoisonGeneratingFlags(); 3640 3641 // If all operands are guaranteed to be non-poison, we can drop freeze. 3642 if (!MaybePoisonOperand) 3643 return OrigOp; 3644 3645 auto *FrozenMaybePoisonOperand = new FreezeInst( 3646 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); 3647 3648 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); 3649 FrozenMaybePoisonOperand->insertBefore(OrigOpInst); 3650 return OrigOp; 3651 } 3652 3653 bool InstCombinerImpl::freezeDominatedUses(FreezeInst &FI) { 3654 Value *Op = FI.getOperand(0); 3655 3656 if (isa<Constant>(Op)) 3657 return false; 3658 3659 bool Changed = false; 3660 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { 3661 bool Dominates = DT.dominates(&FI, U); 3662 Changed |= Dominates; 3663 return Dominates; 3664 }); 3665 3666 return Changed; 3667 } 3668 3669 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 3670 Value *Op0 = I.getOperand(0); 3671 3672 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3673 return replaceInstUsesWith(I, V); 3674 3675 // freeze (phi const, x) --> phi const, (freeze x) 3676 if (auto *PN = dyn_cast<PHINode>(Op0)) { 3677 if (Instruction *NV = foldOpIntoPhi(I, PN)) 3678 return NV; 3679 } 3680 3681 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) 3682 return replaceInstUsesWith(I, NI); 3683 3684 if (match(Op0, m_Undef())) { 3685 // If I is freeze(undef), see its uses and fold it to the best constant. 3686 // - or: pick -1 3687 // - select's condition: pick the value that leads to choosing a constant 3688 // - other ops: pick 0 3689 Constant *BestValue = nullptr; 3690 Constant *NullValue = Constant::getNullValue(I.getType()); 3691 for (const auto *U : I.users()) { 3692 Constant *C = NullValue; 3693 3694 if (match(U, m_Or(m_Value(), m_Value()))) 3695 C = Constant::getAllOnesValue(I.getType()); 3696 else if (const auto *SI = dyn_cast<SelectInst>(U)) { 3697 if (SI->getCondition() == &I) { 3698 APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1); 3699 C = Constant::getIntegerValue(I.getType(), CondVal); 3700 } 3701 } 3702 3703 if (!BestValue) 3704 BestValue = C; 3705 else if (BestValue != C) 3706 BestValue = NullValue; 3707 } 3708 3709 return replaceInstUsesWith(I, BestValue); 3710 } 3711 3712 // Replace all dominated uses of Op to freeze(Op). 3713 if (freezeDominatedUses(I)) 3714 return &I; 3715 3716 return nullptr; 3717 } 3718 3719 /// Check for case where the call writes to an otherwise dead alloca. This 3720 /// shows up for unused out-params in idiomatic C/C++ code. Note that this 3721 /// helper *only* analyzes the write; doesn't check any other legality aspect. 3722 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) { 3723 auto *CB = dyn_cast<CallBase>(I); 3724 if (!CB) 3725 // TODO: handle e.g. store to alloca here - only worth doing if we extend 3726 // to allow reload along used path as described below. Otherwise, this 3727 // is simply a store to a dead allocation which will be removed. 3728 return false; 3729 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI); 3730 if (!Dest) 3731 return false; 3732 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr)); 3733 if (!AI) 3734 // TODO: allow malloc? 3735 return false; 3736 // TODO: allow memory access dominated by move point? Note that since AI 3737 // could have a reference to itself captured by the call, we would need to 3738 // account for cycles in doing so. 3739 SmallVector<const User *> AllocaUsers; 3740 SmallPtrSet<const User *, 4> Visited; 3741 auto pushUsers = [&](const Instruction &I) { 3742 for (const User *U : I.users()) { 3743 if (Visited.insert(U).second) 3744 AllocaUsers.push_back(U); 3745 } 3746 }; 3747 pushUsers(*AI); 3748 while (!AllocaUsers.empty()) { 3749 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val()); 3750 if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) || 3751 isa<AddrSpaceCastInst>(UserI)) { 3752 pushUsers(*UserI); 3753 continue; 3754 } 3755 if (UserI == CB) 3756 continue; 3757 // TODO: support lifetime.start/end here 3758 return false; 3759 } 3760 return true; 3761 } 3762 3763 /// Try to move the specified instruction from its current block into the 3764 /// beginning of DestBlock, which can only happen if it's safe to move the 3765 /// instruction past all of the instructions between it and the end of its 3766 /// block. 3767 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock, 3768 TargetLibraryInfo &TLI) { 3769 assert(I->getUniqueUndroppableUser() && "Invariants didn't hold!"); 3770 BasicBlock *SrcBlock = I->getParent(); 3771 3772 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3773 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || 3774 I->isTerminator()) 3775 return false; 3776 3777 // Do not sink static or dynamic alloca instructions. Static allocas must 3778 // remain in the entry block, and dynamic allocas must not be sunk in between 3779 // a stacksave / stackrestore pair, which would incorrectly shorten its 3780 // lifetime. 3781 if (isa<AllocaInst>(I)) 3782 return false; 3783 3784 // Do not sink into catchswitch blocks. 3785 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 3786 return false; 3787 3788 // Do not sink convergent call instructions. 3789 if (auto *CI = dyn_cast<CallInst>(I)) { 3790 if (CI->isConvergent()) 3791 return false; 3792 } 3793 3794 // Unless we can prove that the memory write isn't visibile except on the 3795 // path we're sinking to, we must bail. 3796 if (I->mayWriteToMemory()) { 3797 if (!SoleWriteToDeadLocal(I, TLI)) 3798 return false; 3799 } 3800 3801 // We can only sink load instructions if there is nothing between the load and 3802 // the end of block that could change the value. 3803 if (I->mayReadFromMemory()) { 3804 // We don't want to do any sophisticated alias analysis, so we only check 3805 // the instructions after I in I's parent block if we try to sink to its 3806 // successor block. 3807 if (DestBlock->getUniquePredecessor() != I->getParent()) 3808 return false; 3809 for (BasicBlock::iterator Scan = std::next(I->getIterator()), 3810 E = I->getParent()->end(); 3811 Scan != E; ++Scan) 3812 if (Scan->mayWriteToMemory()) 3813 return false; 3814 } 3815 3816 I->dropDroppableUses([DestBlock](const Use *U) { 3817 if (auto *I = dyn_cast<Instruction>(U->getUser())) 3818 return I->getParent() != DestBlock; 3819 return true; 3820 }); 3821 /// FIXME: We could remove droppable uses that are not dominated by 3822 /// the new position. 3823 3824 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 3825 I->moveBefore(&*InsertPos); 3826 ++NumSunkInst; 3827 3828 // Also sink all related debug uses from the source basic block. Otherwise we 3829 // get debug use before the def. Attempt to salvage debug uses first, to 3830 // maximise the range variables have location for. If we cannot salvage, then 3831 // mark the location undef: we know it was supposed to receive a new location 3832 // here, but that computation has been sunk. 3833 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 3834 findDbgUsers(DbgUsers, I); 3835 // Process the sinking DbgUsers in reverse order, as we only want to clone the 3836 // last appearing debug intrinsic for each given variable. 3837 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 3838 for (DbgVariableIntrinsic *DVI : DbgUsers) 3839 if (DVI->getParent() == SrcBlock) 3840 DbgUsersToSink.push_back(DVI); 3841 llvm::sort(DbgUsersToSink, 3842 [](auto *A, auto *B) { return B->comesBefore(A); }); 3843 3844 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 3845 SmallSet<DebugVariable, 4> SunkVariables; 3846 for (auto User : DbgUsersToSink) { 3847 // A dbg.declare instruction should not be cloned, since there can only be 3848 // one per variable fragment. It should be left in the original place 3849 // because the sunk instruction is not an alloca (otherwise we could not be 3850 // here). 3851 if (isa<DbgDeclareInst>(User)) 3852 continue; 3853 3854 DebugVariable DbgUserVariable = 3855 DebugVariable(User->getVariable(), User->getExpression(), 3856 User->getDebugLoc()->getInlinedAt()); 3857 3858 if (!SunkVariables.insert(DbgUserVariable).second) 3859 continue; 3860 3861 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 3862 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 3863 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 3864 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 3865 } 3866 3867 // Perform salvaging without the clones, then sink the clones. 3868 if (!DIIClones.empty()) { 3869 salvageDebugInfoForDbgValues(*I, DbgUsers); 3870 // The clones are in reverse order of original appearance, reverse again to 3871 // maintain the original order. 3872 for (auto &DIIClone : llvm::reverse(DIIClones)) { 3873 DIIClone->insertBefore(&*InsertPos); 3874 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 3875 } 3876 } 3877 3878 return true; 3879 } 3880 3881 bool InstCombinerImpl::run() { 3882 while (!Worklist.isEmpty()) { 3883 // Walk deferred instructions in reverse order, and push them to the 3884 // worklist, which means they'll end up popped from the worklist in-order. 3885 while (Instruction *I = Worklist.popDeferred()) { 3886 // Check to see if we can DCE the instruction. We do this already here to 3887 // reduce the number of uses and thus allow other folds to trigger. 3888 // Note that eraseInstFromFunction() may push additional instructions on 3889 // the deferred worklist, so this will DCE whole instruction chains. 3890 if (isInstructionTriviallyDead(I, &TLI)) { 3891 eraseInstFromFunction(*I); 3892 ++NumDeadInst; 3893 continue; 3894 } 3895 3896 Worklist.push(I); 3897 } 3898 3899 Instruction *I = Worklist.removeOne(); 3900 if (I == nullptr) continue; // skip null values. 3901 3902 // Check to see if we can DCE the instruction. 3903 if (isInstructionTriviallyDead(I, &TLI)) { 3904 eraseInstFromFunction(*I); 3905 ++NumDeadInst; 3906 continue; 3907 } 3908 3909 if (!DebugCounter::shouldExecute(VisitCounter)) 3910 continue; 3911 3912 // Instruction isn't dead, see if we can constant propagate it. 3913 if (!I->use_empty() && 3914 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 3915 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 3916 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 3917 << '\n'); 3918 3919 // Add operands to the worklist. 3920 replaceInstUsesWith(*I, C); 3921 ++NumConstProp; 3922 if (isInstructionTriviallyDead(I, &TLI)) 3923 eraseInstFromFunction(*I); 3924 MadeIRChange = true; 3925 continue; 3926 } 3927 } 3928 3929 // See if we can trivially sink this instruction to its user if we can 3930 // prove that the successor is not executed more frequently than our block. 3931 // Return the UserBlock if successful. 3932 auto getOptionalSinkBlockForInst = 3933 [this](Instruction *I) -> Optional<BasicBlock *> { 3934 if (!EnableCodeSinking) 3935 return None; 3936 auto *UserInst = cast_or_null<Instruction>(I->getUniqueUndroppableUser()); 3937 if (!UserInst) 3938 return None; 3939 3940 BasicBlock *BB = I->getParent(); 3941 BasicBlock *UserParent = nullptr; 3942 3943 // Special handling for Phi nodes - get the block the use occurs in. 3944 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) { 3945 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 3946 if (PN->getIncomingValue(i) == I) { 3947 // Bail out if we have uses in different blocks. We don't do any 3948 // sophisticated analysis (i.e finding NearestCommonDominator of these 3949 // use blocks). 3950 if (UserParent && UserParent != PN->getIncomingBlock(i)) 3951 return None; 3952 UserParent = PN->getIncomingBlock(i); 3953 } 3954 } 3955 assert(UserParent && "expected to find user block!"); 3956 } else 3957 UserParent = UserInst->getParent(); 3958 3959 // Try sinking to another block. If that block is unreachable, then do 3960 // not bother. SimplifyCFG should handle it. 3961 if (UserParent == BB || !DT.isReachableFromEntry(UserParent)) 3962 return None; 3963 3964 auto *Term = UserParent->getTerminator(); 3965 // See if the user is one of our successors that has only one 3966 // predecessor, so that we don't have to split the critical edge. 3967 // Another option where we can sink is a block that ends with a 3968 // terminator that does not pass control to other block (such as 3969 // return or unreachable). In this case: 3970 // - I dominates the User (by SSA form); 3971 // - the User will be executed at most once. 3972 // So sinking I down to User is always profitable or neutral. 3973 if (UserParent->getUniquePredecessor() == BB || 3974 (isa<ReturnInst>(Term) || isa<UnreachableInst>(Term))) { 3975 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?"); 3976 return UserParent; 3977 } 3978 return None; 3979 }; 3980 3981 auto OptBB = getOptionalSinkBlockForInst(I); 3982 if (OptBB) { 3983 auto *UserParent = *OptBB; 3984 // Okay, the CFG is simple enough, try to sink this instruction. 3985 if (TryToSinkInstruction(I, UserParent, TLI)) { 3986 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3987 MadeIRChange = true; 3988 // We'll add uses of the sunk instruction below, but since 3989 // sinking can expose opportunities for it's *operands* add 3990 // them to the worklist 3991 for (Use &U : I->operands()) 3992 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3993 Worklist.push(OpI); 3994 } 3995 } 3996 3997 // Now that we have an instruction, try combining it to simplify it. 3998 Builder.SetInsertPoint(I); 3999 Builder.CollectMetadataToCopy( 4000 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4001 4002 #ifndef NDEBUG 4003 std::string OrigI; 4004 #endif 4005 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 4006 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 4007 4008 if (Instruction *Result = visit(*I)) { 4009 ++NumCombined; 4010 // Should we replace the old instruction with a new one? 4011 if (Result != I) { 4012 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 4013 << " New = " << *Result << '\n'); 4014 4015 Result->copyMetadata(*I, 4016 {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4017 // Everything uses the new instruction now. 4018 I->replaceAllUsesWith(Result); 4019 4020 // Move the name to the new instruction first. 4021 Result->takeName(I); 4022 4023 // Insert the new instruction into the basic block... 4024 BasicBlock *InstParent = I->getParent(); 4025 BasicBlock::iterator InsertPos = I->getIterator(); 4026 4027 // Are we replace a PHI with something that isn't a PHI, or vice versa? 4028 if (isa<PHINode>(Result) != isa<PHINode>(I)) { 4029 // We need to fix up the insertion point. 4030 if (isa<PHINode>(I)) // PHI -> Non-PHI 4031 InsertPos = InstParent->getFirstInsertionPt(); 4032 else // Non-PHI -> PHI 4033 InsertPos = InstParent->getFirstNonPHI()->getIterator(); 4034 } 4035 4036 InstParent->getInstList().insert(InsertPos, Result); 4037 4038 // Push the new instruction and any users onto the worklist. 4039 Worklist.pushUsersToWorkList(*Result); 4040 Worklist.push(Result); 4041 4042 eraseInstFromFunction(*I); 4043 } else { 4044 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 4045 << " New = " << *I << '\n'); 4046 4047 // If the instruction was modified, it's possible that it is now dead. 4048 // if so, remove it. 4049 if (isInstructionTriviallyDead(I, &TLI)) { 4050 eraseInstFromFunction(*I); 4051 } else { 4052 Worklist.pushUsersToWorkList(*I); 4053 Worklist.push(I); 4054 } 4055 } 4056 MadeIRChange = true; 4057 } 4058 } 4059 4060 Worklist.zap(); 4061 return MadeIRChange; 4062 } 4063 4064 // Track the scopes used by !alias.scope and !noalias. In a function, a 4065 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 4066 // by both sets. If not, the declaration of the scope can be safely omitted. 4067 // The MDNode of the scope can be omitted as well for the instructions that are 4068 // part of this function. We do not do that at this point, as this might become 4069 // too time consuming to do. 4070 class AliasScopeTracker { 4071 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 4072 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 4073 4074 public: 4075 void analyse(Instruction *I) { 4076 // This seems to be faster than checking 'mayReadOrWriteMemory()'. 4077 if (!I->hasMetadataOtherThanDebugLoc()) 4078 return; 4079 4080 auto Track = [](Metadata *ScopeList, auto &Container) { 4081 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 4082 if (!MDScopeList || !Container.insert(MDScopeList).second) 4083 return; 4084 for (auto &MDOperand : MDScopeList->operands()) 4085 if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 4086 Container.insert(MDScope); 4087 }; 4088 4089 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 4090 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 4091 } 4092 4093 bool isNoAliasScopeDeclDead(Instruction *Inst) { 4094 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 4095 if (!Decl) 4096 return false; 4097 4098 assert(Decl->use_empty() && 4099 "llvm.experimental.noalias.scope.decl in use ?"); 4100 const MDNode *MDSL = Decl->getScopeList(); 4101 assert(MDSL->getNumOperands() == 1 && 4102 "llvm.experimental.noalias.scope should refer to a single scope"); 4103 auto &MDOperand = MDSL->getOperand(0); 4104 if (auto *MD = dyn_cast<MDNode>(MDOperand)) 4105 return !UsedAliasScopesAndLists.contains(MD) || 4106 !UsedNoAliasScopesAndLists.contains(MD); 4107 4108 // Not an MDNode ? throw away. 4109 return true; 4110 } 4111 }; 4112 4113 /// Populate the IC worklist from a function, by walking it in depth-first 4114 /// order and adding all reachable code to the worklist. 4115 /// 4116 /// This has a couple of tricks to make the code faster and more powerful. In 4117 /// particular, we constant fold and DCE instructions as we go, to avoid adding 4118 /// them to the worklist (this significantly speeds up instcombine on code where 4119 /// many instructions are dead or constant). Additionally, if we find a branch 4120 /// whose condition is a known constant, we only visit the reachable successors. 4121 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 4122 const TargetLibraryInfo *TLI, 4123 InstructionWorklist &ICWorklist) { 4124 bool MadeIRChange = false; 4125 SmallPtrSet<BasicBlock *, 32> Visited; 4126 SmallVector<BasicBlock*, 256> Worklist; 4127 Worklist.push_back(&F.front()); 4128 4129 SmallVector<Instruction *, 128> InstrsForInstructionWorklist; 4130 DenseMap<Constant *, Constant *> FoldedConstants; 4131 AliasScopeTracker SeenAliasScopes; 4132 4133 do { 4134 BasicBlock *BB = Worklist.pop_back_val(); 4135 4136 // We have now visited this block! If we've already been here, ignore it. 4137 if (!Visited.insert(BB).second) 4138 continue; 4139 4140 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 4141 // ConstantProp instruction if trivially constant. 4142 if (!Inst.use_empty() && 4143 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0)))) 4144 if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) { 4145 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst 4146 << '\n'); 4147 Inst.replaceAllUsesWith(C); 4148 ++NumConstProp; 4149 if (isInstructionTriviallyDead(&Inst, TLI)) 4150 Inst.eraseFromParent(); 4151 MadeIRChange = true; 4152 continue; 4153 } 4154 4155 // See if we can constant fold its operands. 4156 for (Use &U : Inst.operands()) { 4157 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 4158 continue; 4159 4160 auto *C = cast<Constant>(U); 4161 Constant *&FoldRes = FoldedConstants[C]; 4162 if (!FoldRes) 4163 FoldRes = ConstantFoldConstant(C, DL, TLI); 4164 4165 if (FoldRes != C) { 4166 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst 4167 << "\n Old = " << *C 4168 << "\n New = " << *FoldRes << '\n'); 4169 U = FoldRes; 4170 MadeIRChange = true; 4171 } 4172 } 4173 4174 // Skip processing debug and pseudo intrinsics in InstCombine. Processing 4175 // these call instructions consumes non-trivial amount of time and 4176 // provides no value for the optimization. 4177 if (!Inst.isDebugOrPseudoInst()) { 4178 InstrsForInstructionWorklist.push_back(&Inst); 4179 SeenAliasScopes.analyse(&Inst); 4180 } 4181 } 4182 4183 // Recursively visit successors. If this is a branch or switch on a 4184 // constant, only visit the reachable successor. 4185 Instruction *TI = BB->getTerminator(); 4186 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 4187 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 4188 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 4189 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 4190 Worklist.push_back(ReachableBB); 4191 continue; 4192 } 4193 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 4194 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 4195 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 4196 continue; 4197 } 4198 } 4199 4200 append_range(Worklist, successors(TI)); 4201 } while (!Worklist.empty()); 4202 4203 // Remove instructions inside unreachable blocks. This prevents the 4204 // instcombine code from having to deal with some bad special cases, and 4205 // reduces use counts of instructions. 4206 for (BasicBlock &BB : F) { 4207 if (Visited.count(&BB)) 4208 continue; 4209 4210 unsigned NumDeadInstInBB; 4211 unsigned NumDeadDbgInstInBB; 4212 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 4213 removeAllNonTerminatorAndEHPadInstructions(&BB); 4214 4215 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 4216 NumDeadInst += NumDeadInstInBB; 4217 } 4218 4219 // Once we've found all of the instructions to add to instcombine's worklist, 4220 // add them in reverse order. This way instcombine will visit from the top 4221 // of the function down. This jives well with the way that it adds all uses 4222 // of instructions to the worklist after doing a transformation, thus avoiding 4223 // some N^2 behavior in pathological cases. 4224 ICWorklist.reserve(InstrsForInstructionWorklist.size()); 4225 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) { 4226 // DCE instruction if trivially dead. As we iterate in reverse program 4227 // order here, we will clean up whole chains of dead instructions. 4228 if (isInstructionTriviallyDead(Inst, TLI) || 4229 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 4230 ++NumDeadInst; 4231 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 4232 salvageDebugInfo(*Inst); 4233 Inst->eraseFromParent(); 4234 MadeIRChange = true; 4235 continue; 4236 } 4237 4238 ICWorklist.push(Inst); 4239 } 4240 4241 return MadeIRChange; 4242 } 4243 4244 static bool combineInstructionsOverFunction( 4245 Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, 4246 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 4247 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 4248 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) { 4249 auto &DL = F.getParent()->getDataLayout(); 4250 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 4251 4252 /// Builder - This is an IRBuilder that automatically inserts new 4253 /// instructions into the worklist when they are created. 4254 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 4255 F.getContext(), TargetFolder(DL), 4256 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 4257 Worklist.add(I); 4258 if (auto *Assume = dyn_cast<AssumeInst>(I)) 4259 AC.registerAssumption(Assume); 4260 })); 4261 4262 // Lower dbg.declare intrinsics otherwise their value may be clobbered 4263 // by instcombiner. 4264 bool MadeIRChange = false; 4265 if (ShouldLowerDbgDeclare) 4266 MadeIRChange = LowerDbgDeclare(F); 4267 4268 // Iterate while there is work to do. 4269 unsigned Iteration = 0; 4270 while (true) { 4271 ++NumWorklistIterations; 4272 ++Iteration; 4273 4274 if (Iteration > InfiniteLoopDetectionThreshold) { 4275 report_fatal_error( 4276 "Instruction Combining seems stuck in an infinite loop after " + 4277 Twine(InfiniteLoopDetectionThreshold) + " iterations."); 4278 } 4279 4280 if (Iteration > MaxIterations) { 4281 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 4282 << " on " << F.getName() 4283 << " reached; stopping before reaching a fixpoint\n"); 4284 break; 4285 } 4286 4287 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 4288 << F.getName() << "\n"); 4289 4290 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 4291 4292 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 4293 ORE, BFI, PSI, DL, LI); 4294 IC.MaxArraySizeForCombine = MaxArraySize; 4295 4296 if (!IC.run()) 4297 break; 4298 4299 MadeIRChange = true; 4300 } 4301 4302 return MadeIRChange; 4303 } 4304 4305 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {} 4306 4307 InstCombinePass::InstCombinePass(unsigned MaxIterations) 4308 : MaxIterations(MaxIterations) {} 4309 4310 PreservedAnalyses InstCombinePass::run(Function &F, 4311 FunctionAnalysisManager &AM) { 4312 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4313 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4314 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4315 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4316 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 4317 4318 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 4319 4320 auto *AA = &AM.getResult<AAManager>(F); 4321 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 4322 ProfileSummaryInfo *PSI = 4323 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 4324 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 4325 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 4326 4327 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4328 BFI, PSI, MaxIterations, LI)) 4329 // No changes, all analyses are preserved. 4330 return PreservedAnalyses::all(); 4331 4332 // Mark all the analyses that instcombine updates as preserved. 4333 PreservedAnalyses PA; 4334 PA.preserveSet<CFGAnalyses>(); 4335 return PA; 4336 } 4337 4338 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 4339 AU.setPreservesCFG(); 4340 AU.addRequired<AAResultsWrapperPass>(); 4341 AU.addRequired<AssumptionCacheTracker>(); 4342 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4343 AU.addRequired<TargetTransformInfoWrapperPass>(); 4344 AU.addRequired<DominatorTreeWrapperPass>(); 4345 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4346 AU.addPreserved<DominatorTreeWrapperPass>(); 4347 AU.addPreserved<AAResultsWrapperPass>(); 4348 AU.addPreserved<BasicAAWrapperPass>(); 4349 AU.addPreserved<GlobalsAAWrapperPass>(); 4350 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 4351 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 4352 } 4353 4354 bool InstructionCombiningPass::runOnFunction(Function &F) { 4355 if (skipFunction(F)) 4356 return false; 4357 4358 // Required analyses. 4359 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4360 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4361 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 4362 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4363 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4364 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4365 4366 // Optional analyses. 4367 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 4368 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 4369 ProfileSummaryInfo *PSI = 4370 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 4371 BlockFrequencyInfo *BFI = 4372 (PSI && PSI->hasProfileSummary()) ? 4373 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 4374 nullptr; 4375 4376 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4377 BFI, PSI, MaxIterations, LI); 4378 } 4379 4380 char InstructionCombiningPass::ID = 0; 4381 4382 InstructionCombiningPass::InstructionCombiningPass() 4383 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) { 4384 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4385 } 4386 4387 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations) 4388 : FunctionPass(ID), MaxIterations(MaxIterations) { 4389 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4390 } 4391 4392 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 4393 "Combine redundant instructions", false, false) 4394 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4395 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4396 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4397 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4398 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4399 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4400 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 4401 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 4402 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 4403 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 4404 "Combine redundant instructions", false, false) 4405 4406 // Initialization Routines 4407 void llvm::initializeInstCombine(PassRegistry &Registry) { 4408 initializeInstructionCombiningPassPass(Registry); 4409 } 4410 4411 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 4412 initializeInstructionCombiningPassPass(*unwrap(R)); 4413 } 4414 4415 FunctionPass *llvm::createInstructionCombiningPass() { 4416 return new InstructionCombiningPass(); 4417 } 4418 4419 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) { 4420 return new InstructionCombiningPass(MaxIterations); 4421 } 4422 4423 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 4424 unwrap(PM)->add(createInstructionCombiningPass()); 4425 } 4426