1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/TinyPtrVector.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/BlockFrequencyInfo.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/MemoryBuiltins.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ProfileSummaryInfo.h" 60 #include "llvm/Analysis/TargetFolder.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/Analysis/VectorUtils.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Dominators.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GetElementPtrTypeIterator.h" 75 #include "llvm/IR/IRBuilder.h" 76 #include "llvm/IR/InstrTypes.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/Intrinsics.h" 81 #include "llvm/IR/LegacyPassManager.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/PassManager.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/Use.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/IR/ValueHandle.h" 91 #include "llvm/InitializePasses.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/CBindingWrapping.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/DebugCounter.h" 99 #include "llvm/Support/ErrorHandling.h" 100 #include "llvm/Support/KnownBits.h" 101 #include "llvm/Support/raw_ostream.h" 102 #include "llvm/Transforms/InstCombine/InstCombine.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <algorithm> 105 #include <cassert> 106 #include <cstdint> 107 #include <memory> 108 #include <string> 109 #include <utility> 110 111 #define DEBUG_TYPE "instcombine" 112 #include "llvm/Transforms/Utils/InstructionWorklist.h" 113 114 using namespace llvm; 115 using namespace llvm::PatternMatch; 116 117 STATISTIC(NumWorklistIterations, 118 "Number of instruction combining iterations performed"); 119 120 STATISTIC(NumCombined , "Number of insts combined"); 121 STATISTIC(NumConstProp, "Number of constant folds"); 122 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 123 STATISTIC(NumSunkInst , "Number of instructions sunk"); 124 STATISTIC(NumExpand, "Number of expansions"); 125 STATISTIC(NumFactor , "Number of factorizations"); 126 STATISTIC(NumReassoc , "Number of reassociations"); 127 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 128 "Controls which instructions are visited"); 129 130 // FIXME: these limits eventually should be as low as 2. 131 static constexpr unsigned InstCombineDefaultMaxIterations = 1000; 132 #ifndef NDEBUG 133 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100; 134 #else 135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; 136 #endif 137 138 static cl::opt<bool> 139 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 140 cl::init(true)); 141 142 static cl::opt<unsigned> LimitMaxIterations( 143 "instcombine-max-iterations", 144 cl::desc("Limit the maximum number of instruction combining iterations"), 145 cl::init(InstCombineDefaultMaxIterations)); 146 147 static cl::opt<unsigned> InfiniteLoopDetectionThreshold( 148 "instcombine-infinite-loop-threshold", 149 cl::desc("Number of instruction combining iterations considered an " 150 "infinite loop"), 151 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); 152 153 static cl::opt<unsigned> 154 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 155 cl::desc("Maximum array size considered when doing a combine")); 156 157 // FIXME: Remove this flag when it is no longer necessary to convert 158 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 159 // increases variable availability at the cost of accuracy. Variables that 160 // cannot be promoted by mem2reg or SROA will be described as living in memory 161 // for their entire lifetime. However, passes like DSE and instcombine can 162 // delete stores to the alloca, leading to misleading and inaccurate debug 163 // information. This flag can be removed when those passes are fixed. 164 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 165 cl::Hidden, cl::init(true)); 166 167 Optional<Instruction *> 168 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 169 // Handle target specific intrinsics 170 if (II.getCalledFunction()->isTargetIntrinsic()) { 171 return TTI.instCombineIntrinsic(*this, II); 172 } 173 return None; 174 } 175 176 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 177 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 178 bool &KnownBitsComputed) { 179 // Handle target specific intrinsics 180 if (II.getCalledFunction()->isTargetIntrinsic()) { 181 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, 182 KnownBitsComputed); 183 } 184 return None; 185 } 186 187 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 188 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, 189 APInt &UndefElts3, 190 std::function<void(Instruction *, unsigned, APInt, APInt &)> 191 SimplifyAndSetOp) { 192 // Handle target specific intrinsics 193 if (II.getCalledFunction()->isTargetIntrinsic()) { 194 return TTI.simplifyDemandedVectorEltsIntrinsic( 195 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 196 SimplifyAndSetOp); 197 } 198 return None; 199 } 200 201 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { 202 return llvm::EmitGEPOffset(&Builder, DL, GEP); 203 } 204 205 /// Legal integers and common types are considered desirable. This is used to 206 /// avoid creating instructions with types that may not be supported well by the 207 /// the backend. 208 /// NOTE: This treats i8, i16 and i32 specially because they are common 209 /// types in frontend languages. 210 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { 211 switch (BitWidth) { 212 case 8: 213 case 16: 214 case 32: 215 return true; 216 default: 217 return DL.isLegalInteger(BitWidth); 218 } 219 } 220 221 /// Return true if it is desirable to convert an integer computation from a 222 /// given bit width to a new bit width. 223 /// We don't want to convert from a legal to an illegal type or from a smaller 224 /// to a larger illegal type. A width of '1' is always treated as a desirable 225 /// type because i1 is a fundamental type in IR, and there are many specialized 226 /// optimizations for i1 types. Common/desirable widths are equally treated as 227 /// legal to convert to, in order to open up more combining opportunities. 228 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 229 unsigned ToWidth) const { 230 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 231 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 232 233 // Convert to desirable widths even if they are not legal types. 234 // Only shrink types, to prevent infinite loops. 235 if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) 236 return true; 237 238 // If this is a legal integer from type, and the result would be an illegal 239 // type, don't do the transformation. 240 if (FromLegal && !ToLegal) 241 return false; 242 243 // Otherwise, if both are illegal, do not increase the size of the result. We 244 // do allow things like i160 -> i64, but not i64 -> i160. 245 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 246 return false; 247 248 return true; 249 } 250 251 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 252 /// We don't want to convert from a legal to an illegal type or from a smaller 253 /// to a larger illegal type. i1 is always treated as a legal type because it is 254 /// a fundamental type in IR, and there are many specialized optimizations for 255 /// i1 types. 256 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 257 // TODO: This could be extended to allow vectors. Datalayout changes might be 258 // needed to properly support that. 259 if (!From->isIntegerTy() || !To->isIntegerTy()) 260 return false; 261 262 unsigned FromWidth = From->getPrimitiveSizeInBits(); 263 unsigned ToWidth = To->getPrimitiveSizeInBits(); 264 return shouldChangeType(FromWidth, ToWidth); 265 } 266 267 // Return true, if No Signed Wrap should be maintained for I. 268 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 269 // where both B and C should be ConstantInts, results in a constant that does 270 // not overflow. This function only handles the Add and Sub opcodes. For 271 // all other opcodes, the function conservatively returns false. 272 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 273 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 274 if (!OBO || !OBO->hasNoSignedWrap()) 275 return false; 276 277 // We reason about Add and Sub Only. 278 Instruction::BinaryOps Opcode = I.getOpcode(); 279 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 280 return false; 281 282 const APInt *BVal, *CVal; 283 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 284 return false; 285 286 bool Overflow = false; 287 if (Opcode == Instruction::Add) 288 (void)BVal->sadd_ov(*CVal, Overflow); 289 else 290 (void)BVal->ssub_ov(*CVal, Overflow); 291 292 return !Overflow; 293 } 294 295 static bool hasNoUnsignedWrap(BinaryOperator &I) { 296 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 297 return OBO && OBO->hasNoUnsignedWrap(); 298 } 299 300 static bool hasNoSignedWrap(BinaryOperator &I) { 301 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 302 return OBO && OBO->hasNoSignedWrap(); 303 } 304 305 /// Conservatively clears subclassOptionalData after a reassociation or 306 /// commutation. We preserve fast-math flags when applicable as they can be 307 /// preserved. 308 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 309 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 310 if (!FPMO) { 311 I.clearSubclassOptionalData(); 312 return; 313 } 314 315 FastMathFlags FMF = I.getFastMathFlags(); 316 I.clearSubclassOptionalData(); 317 I.setFastMathFlags(FMF); 318 } 319 320 /// Combine constant operands of associative operations either before or after a 321 /// cast to eliminate one of the associative operations: 322 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 323 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 324 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 325 InstCombinerImpl &IC) { 326 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 327 if (!Cast || !Cast->hasOneUse()) 328 return false; 329 330 // TODO: Enhance logic for other casts and remove this check. 331 auto CastOpcode = Cast->getOpcode(); 332 if (CastOpcode != Instruction::ZExt) 333 return false; 334 335 // TODO: Enhance logic for other BinOps and remove this check. 336 if (!BinOp1->isBitwiseLogicOp()) 337 return false; 338 339 auto AssocOpcode = BinOp1->getOpcode(); 340 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 341 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 342 return false; 343 344 Constant *C1, *C2; 345 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 346 !match(BinOp2->getOperand(1), m_Constant(C2))) 347 return false; 348 349 // TODO: This assumes a zext cast. 350 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 351 // to the destination type might lose bits. 352 353 // Fold the constants together in the destination type: 354 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 355 Type *DestTy = C1->getType(); 356 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 357 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 358 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 359 IC.replaceOperand(*BinOp1, 1, FoldedC); 360 return true; 361 } 362 363 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast. 364 // inttoptr ( ptrtoint (x) ) --> x 365 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { 366 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); 367 if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) == 368 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { 369 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); 370 Type *CastTy = IntToPtr->getDestTy(); 371 if (PtrToInt && 372 CastTy->getPointerAddressSpace() == 373 PtrToInt->getSrcTy()->getPointerAddressSpace() && 374 DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) == 375 DL.getTypeSizeInBits(PtrToInt->getDestTy())) { 376 return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy, 377 "", PtrToInt); 378 } 379 } 380 return nullptr; 381 } 382 383 /// This performs a few simplifications for operators that are associative or 384 /// commutative: 385 /// 386 /// Commutative operators: 387 /// 388 /// 1. Order operands such that they are listed from right (least complex) to 389 /// left (most complex). This puts constants before unary operators before 390 /// binary operators. 391 /// 392 /// Associative operators: 393 /// 394 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 395 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 396 /// 397 /// Associative and commutative operators: 398 /// 399 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 400 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 401 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 402 /// if C1 and C2 are constants. 403 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 404 Instruction::BinaryOps Opcode = I.getOpcode(); 405 bool Changed = false; 406 407 do { 408 // Order operands such that they are listed from right (least complex) to 409 // left (most complex). This puts constants before unary operators before 410 // binary operators. 411 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 412 getComplexity(I.getOperand(1))) 413 Changed = !I.swapOperands(); 414 415 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 416 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 417 418 if (I.isAssociative()) { 419 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 420 if (Op0 && Op0->getOpcode() == Opcode) { 421 Value *A = Op0->getOperand(0); 422 Value *B = Op0->getOperand(1); 423 Value *C = I.getOperand(1); 424 425 // Does "B op C" simplify? 426 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 427 // It simplifies to V. Form "A op V". 428 replaceOperand(I, 0, A); 429 replaceOperand(I, 1, V); 430 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 431 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 432 433 // Conservatively clear all optional flags since they may not be 434 // preserved by the reassociation. Reset nsw/nuw based on the above 435 // analysis. 436 ClearSubclassDataAfterReassociation(I); 437 438 // Note: this is only valid because SimplifyBinOp doesn't look at 439 // the operands to Op0. 440 if (IsNUW) 441 I.setHasNoUnsignedWrap(true); 442 443 if (IsNSW) 444 I.setHasNoSignedWrap(true); 445 446 Changed = true; 447 ++NumReassoc; 448 continue; 449 } 450 } 451 452 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 453 if (Op1 && Op1->getOpcode() == Opcode) { 454 Value *A = I.getOperand(0); 455 Value *B = Op1->getOperand(0); 456 Value *C = Op1->getOperand(1); 457 458 // Does "A op B" simplify? 459 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 460 // It simplifies to V. Form "V op C". 461 replaceOperand(I, 0, V); 462 replaceOperand(I, 1, C); 463 // Conservatively clear the optional flags, since they may not be 464 // preserved by the reassociation. 465 ClearSubclassDataAfterReassociation(I); 466 Changed = true; 467 ++NumReassoc; 468 continue; 469 } 470 } 471 } 472 473 if (I.isAssociative() && I.isCommutative()) { 474 if (simplifyAssocCastAssoc(&I, *this)) { 475 Changed = true; 476 ++NumReassoc; 477 continue; 478 } 479 480 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 481 if (Op0 && Op0->getOpcode() == Opcode) { 482 Value *A = Op0->getOperand(0); 483 Value *B = Op0->getOperand(1); 484 Value *C = I.getOperand(1); 485 486 // Does "C op A" simplify? 487 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 488 // It simplifies to V. Form "V op B". 489 replaceOperand(I, 0, V); 490 replaceOperand(I, 1, B); 491 // Conservatively clear the optional flags, since they may not be 492 // preserved by the reassociation. 493 ClearSubclassDataAfterReassociation(I); 494 Changed = true; 495 ++NumReassoc; 496 continue; 497 } 498 } 499 500 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 501 if (Op1 && Op1->getOpcode() == Opcode) { 502 Value *A = I.getOperand(0); 503 Value *B = Op1->getOperand(0); 504 Value *C = Op1->getOperand(1); 505 506 // Does "C op A" simplify? 507 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 508 // It simplifies to V. Form "B op V". 509 replaceOperand(I, 0, B); 510 replaceOperand(I, 1, V); 511 // Conservatively clear the optional flags, since they may not be 512 // preserved by the reassociation. 513 ClearSubclassDataAfterReassociation(I); 514 Changed = true; 515 ++NumReassoc; 516 continue; 517 } 518 } 519 520 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 521 // if C1 and C2 are constants. 522 Value *A, *B; 523 Constant *C1, *C2; 524 if (Op0 && Op1 && 525 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 526 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 527 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 528 bool IsNUW = hasNoUnsignedWrap(I) && 529 hasNoUnsignedWrap(*Op0) && 530 hasNoUnsignedWrap(*Op1); 531 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 532 BinaryOperator::CreateNUW(Opcode, A, B) : 533 BinaryOperator::Create(Opcode, A, B); 534 535 if (isa<FPMathOperator>(NewBO)) { 536 FastMathFlags Flags = I.getFastMathFlags(); 537 Flags &= Op0->getFastMathFlags(); 538 Flags &= Op1->getFastMathFlags(); 539 NewBO->setFastMathFlags(Flags); 540 } 541 InsertNewInstWith(NewBO, I); 542 NewBO->takeName(Op1); 543 replaceOperand(I, 0, NewBO); 544 replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2)); 545 // Conservatively clear the optional flags, since they may not be 546 // preserved by the reassociation. 547 ClearSubclassDataAfterReassociation(I); 548 if (IsNUW) 549 I.setHasNoUnsignedWrap(true); 550 551 Changed = true; 552 continue; 553 } 554 } 555 556 // No further simplifications. 557 return Changed; 558 } while (true); 559 } 560 561 /// Return whether "X LOp (Y ROp Z)" is always equal to 562 /// "(X LOp Y) ROp (X LOp Z)". 563 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 564 Instruction::BinaryOps ROp) { 565 // X & (Y | Z) <--> (X & Y) | (X & Z) 566 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 567 if (LOp == Instruction::And) 568 return ROp == Instruction::Or || ROp == Instruction::Xor; 569 570 // X | (Y & Z) <--> (X | Y) & (X | Z) 571 if (LOp == Instruction::Or) 572 return ROp == Instruction::And; 573 574 // X * (Y + Z) <--> (X * Y) + (X * Z) 575 // X * (Y - Z) <--> (X * Y) - (X * Z) 576 if (LOp == Instruction::Mul) 577 return ROp == Instruction::Add || ROp == Instruction::Sub; 578 579 return false; 580 } 581 582 /// Return whether "(X LOp Y) ROp Z" is always equal to 583 /// "(X ROp Z) LOp (Y ROp Z)". 584 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 585 Instruction::BinaryOps ROp) { 586 if (Instruction::isCommutative(ROp)) 587 return leftDistributesOverRight(ROp, LOp); 588 589 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 590 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 591 592 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 593 // but this requires knowing that the addition does not overflow and other 594 // such subtleties. 595 } 596 597 /// This function returns identity value for given opcode, which can be used to 598 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 599 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 600 if (isa<Constant>(V)) 601 return nullptr; 602 603 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 604 } 605 606 /// This function predicates factorization using distributive laws. By default, 607 /// it just returns the 'Op' inputs. But for special-cases like 608 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 609 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 610 /// allow more factorization opportunities. 611 static Instruction::BinaryOps 612 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 613 Value *&LHS, Value *&RHS) { 614 assert(Op && "Expected a binary operator"); 615 LHS = Op->getOperand(0); 616 RHS = Op->getOperand(1); 617 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 618 Constant *C; 619 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 620 // X << C --> X * (1 << C) 621 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 622 return Instruction::Mul; 623 } 624 // TODO: We can add other conversions e.g. shr => div etc. 625 } 626 return Op->getOpcode(); 627 } 628 629 /// This tries to simplify binary operations by factorizing out common terms 630 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 631 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I, 632 Instruction::BinaryOps InnerOpcode, 633 Value *A, Value *B, Value *C, 634 Value *D) { 635 assert(A && B && C && D && "All values must be provided"); 636 637 Value *V = nullptr; 638 Value *SimplifiedInst = nullptr; 639 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 640 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 641 642 // Does "X op' Y" always equal "Y op' X"? 643 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 644 645 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 646 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 647 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 648 // commutative case, "(A op' B) op (C op' A)"? 649 if (A == C || (InnerCommutative && A == D)) { 650 if (A != C) 651 std::swap(C, D); 652 // Consider forming "A op' (B op D)". 653 // If "B op D" simplifies then it can be formed with no cost. 654 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 655 // If "B op D" doesn't simplify then only go on if both of the existing 656 // operations "A op' B" and "C op' D" will be zapped as no longer used. 657 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 658 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 659 if (V) { 660 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 661 } 662 } 663 664 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 665 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 666 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 667 // commutative case, "(A op' B) op (B op' D)"? 668 if (B == D || (InnerCommutative && B == C)) { 669 if (B != D) 670 std::swap(C, D); 671 // Consider forming "(A op C) op' B". 672 // If "A op C" simplifies then it can be formed with no cost. 673 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 674 675 // If "A op C" doesn't simplify then only go on if both of the existing 676 // operations "A op' B" and "C op' D" will be zapped as no longer used. 677 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 678 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 679 if (V) { 680 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 681 } 682 } 683 684 if (SimplifiedInst) { 685 ++NumFactor; 686 SimplifiedInst->takeName(&I); 687 688 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 689 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 690 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 691 bool HasNSW = false; 692 bool HasNUW = false; 693 if (isa<OverflowingBinaryOperator>(&I)) { 694 HasNSW = I.hasNoSignedWrap(); 695 HasNUW = I.hasNoUnsignedWrap(); 696 } 697 698 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 699 HasNSW &= LOBO->hasNoSignedWrap(); 700 HasNUW &= LOBO->hasNoUnsignedWrap(); 701 } 702 703 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 704 HasNSW &= ROBO->hasNoSignedWrap(); 705 HasNUW &= ROBO->hasNoUnsignedWrap(); 706 } 707 708 if (TopLevelOpcode == Instruction::Add && 709 InnerOpcode == Instruction::Mul) { 710 // We can propagate 'nsw' if we know that 711 // %Y = mul nsw i16 %X, C 712 // %Z = add nsw i16 %Y, %X 713 // => 714 // %Z = mul nsw i16 %X, C+1 715 // 716 // iff C+1 isn't INT_MIN 717 const APInt *CInt; 718 if (match(V, m_APInt(CInt))) { 719 if (!CInt->isMinSignedValue()) 720 BO->setHasNoSignedWrap(HasNSW); 721 } 722 723 // nuw can be propagated with any constant or nuw value. 724 BO->setHasNoUnsignedWrap(HasNUW); 725 } 726 } 727 } 728 } 729 return SimplifiedInst; 730 } 731 732 /// This tries to simplify binary operations which some other binary operation 733 /// distributes over either by factorizing out common terms 734 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 735 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 736 /// Returns the simplified value, or null if it didn't simplify. 737 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 738 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 739 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 740 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 741 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 742 743 { 744 // Factorization. 745 Value *A, *B, *C, *D; 746 Instruction::BinaryOps LHSOpcode, RHSOpcode; 747 if (Op0) 748 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 749 if (Op1) 750 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 751 752 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 753 // a common term. 754 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 755 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 756 return V; 757 758 // The instruction has the form "(A op' B) op (C)". Try to factorize common 759 // term. 760 if (Op0) 761 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 762 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 763 return V; 764 765 // The instruction has the form "(B) op (C op' D)". Try to factorize common 766 // term. 767 if (Op1) 768 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 769 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 770 return V; 771 } 772 773 // Expansion. 774 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 775 // The instruction has the form "(A op' B) op C". See if expanding it out 776 // to "(A op C) op' (B op C)" results in simplifications. 777 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 778 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 779 780 // Disable the use of undef because it's not safe to distribute undef. 781 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 782 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 783 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 784 785 // Do "A op C" and "B op C" both simplify? 786 if (L && R) { 787 // They do! Return "L op' R". 788 ++NumExpand; 789 C = Builder.CreateBinOp(InnerOpcode, L, R); 790 C->takeName(&I); 791 return C; 792 } 793 794 // Does "A op C" simplify to the identity value for the inner opcode? 795 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 796 // They do! Return "B op C". 797 ++NumExpand; 798 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 799 C->takeName(&I); 800 return C; 801 } 802 803 // Does "B op C" simplify to the identity value for the inner opcode? 804 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 805 // They do! Return "A op C". 806 ++NumExpand; 807 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 808 C->takeName(&I); 809 return C; 810 } 811 } 812 813 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 814 // The instruction has the form "A op (B op' C)". See if expanding it out 815 // to "(A op B) op' (A op C)" results in simplifications. 816 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 817 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 818 819 // Disable the use of undef because it's not safe to distribute undef. 820 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 821 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 822 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 823 824 // Do "A op B" and "A op C" both simplify? 825 if (L && R) { 826 // They do! Return "L op' R". 827 ++NumExpand; 828 A = Builder.CreateBinOp(InnerOpcode, L, R); 829 A->takeName(&I); 830 return A; 831 } 832 833 // Does "A op B" simplify to the identity value for the inner opcode? 834 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 835 // They do! Return "A op C". 836 ++NumExpand; 837 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 838 A->takeName(&I); 839 return A; 840 } 841 842 // Does "A op C" simplify to the identity value for the inner opcode? 843 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 844 // They do! Return "A op B". 845 ++NumExpand; 846 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 847 A->takeName(&I); 848 return A; 849 } 850 } 851 852 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 853 } 854 855 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 856 Value *LHS, 857 Value *RHS) { 858 Value *A, *B, *C, *D, *E, *F; 859 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 860 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 861 if (!LHSIsSelect && !RHSIsSelect) 862 return nullptr; 863 864 FastMathFlags FMF; 865 BuilderTy::FastMathFlagGuard Guard(Builder); 866 if (isa<FPMathOperator>(&I)) { 867 FMF = I.getFastMathFlags(); 868 Builder.setFastMathFlags(FMF); 869 } 870 871 Instruction::BinaryOps Opcode = I.getOpcode(); 872 SimplifyQuery Q = SQ.getWithInstruction(&I); 873 874 Value *Cond, *True = nullptr, *False = nullptr; 875 if (LHSIsSelect && RHSIsSelect && A == D) { 876 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 877 Cond = A; 878 True = SimplifyBinOp(Opcode, B, E, FMF, Q); 879 False = SimplifyBinOp(Opcode, C, F, FMF, Q); 880 881 if (LHS->hasOneUse() && RHS->hasOneUse()) { 882 if (False && !True) 883 True = Builder.CreateBinOp(Opcode, B, E); 884 else if (True && !False) 885 False = Builder.CreateBinOp(Opcode, C, F); 886 } 887 } else if (LHSIsSelect && LHS->hasOneUse()) { 888 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 889 Cond = A; 890 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q); 891 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q); 892 } else if (RHSIsSelect && RHS->hasOneUse()) { 893 // X op (D ? E : F) -> D ? (X op E) : (X op F) 894 Cond = D; 895 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q); 896 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q); 897 } 898 899 if (!True || !False) 900 return nullptr; 901 902 Value *SI = Builder.CreateSelect(Cond, True, False); 903 SI->takeName(&I); 904 return SI; 905 } 906 907 /// Freely adapt every user of V as-if V was changed to !V. 908 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 909 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) { 910 for (User *U : I->users()) { 911 switch (cast<Instruction>(U)->getOpcode()) { 912 case Instruction::Select: { 913 auto *SI = cast<SelectInst>(U); 914 SI->swapValues(); 915 SI->swapProfMetadata(); 916 break; 917 } 918 case Instruction::Br: 919 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 920 break; 921 case Instruction::Xor: 922 replaceInstUsesWith(cast<Instruction>(*U), I); 923 break; 924 default: 925 llvm_unreachable("Got unexpected user - out of sync with " 926 "canFreelyInvertAllUsersOf() ?"); 927 } 928 } 929 } 930 931 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 932 /// constant zero (which is the 'negate' form). 933 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 934 Value *NegV; 935 if (match(V, m_Neg(m_Value(NegV)))) 936 return NegV; 937 938 // Constants can be considered to be negated values if they can be folded. 939 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 940 return ConstantExpr::getNeg(C); 941 942 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 943 if (C->getType()->getElementType()->isIntegerTy()) 944 return ConstantExpr::getNeg(C); 945 946 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 947 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 948 Constant *Elt = CV->getAggregateElement(i); 949 if (!Elt) 950 return nullptr; 951 952 if (isa<UndefValue>(Elt)) 953 continue; 954 955 if (!isa<ConstantInt>(Elt)) 956 return nullptr; 957 } 958 return ConstantExpr::getNeg(CV); 959 } 960 961 // Negate integer vector splats. 962 if (auto *CV = dyn_cast<Constant>(V)) 963 if (CV->getType()->isVectorTy() && 964 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 965 return ConstantExpr::getNeg(CV); 966 967 return nullptr; 968 } 969 970 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 971 InstCombiner::BuilderTy &Builder) { 972 if (auto *Cast = dyn_cast<CastInst>(&I)) 973 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 974 975 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 976 assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) && 977 "Expected constant-foldable intrinsic"); 978 Intrinsic::ID IID = II->getIntrinsicID(); 979 if (II->arg_size() == 1) 980 return Builder.CreateUnaryIntrinsic(IID, SO); 981 982 // This works for real binary ops like min/max (where we always expect the 983 // constant operand to be canonicalized as op1) and unary ops with a bonus 984 // constant argument like ctlz/cttz. 985 // TODO: Handle non-commutative binary intrinsics as below for binops. 986 assert(II->arg_size() == 2 && "Expected binary intrinsic"); 987 assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand"); 988 return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1)); 989 } 990 991 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 992 993 // Figure out if the constant is the left or the right argument. 994 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 995 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 996 997 if (auto *SOC = dyn_cast<Constant>(SO)) { 998 if (ConstIsRHS) 999 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 1000 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 1001 } 1002 1003 Value *Op0 = SO, *Op1 = ConstOperand; 1004 if (!ConstIsRHS) 1005 std::swap(Op0, Op1); 1006 1007 auto *BO = cast<BinaryOperator>(&I); 1008 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 1009 SO->getName() + ".op"); 1010 auto *FPInst = dyn_cast<Instruction>(RI); 1011 if (FPInst && isa<FPMathOperator>(FPInst)) 1012 FPInst->copyFastMathFlags(BO); 1013 return RI; 1014 } 1015 1016 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, 1017 SelectInst *SI) { 1018 // Don't modify shared select instructions. 1019 if (!SI->hasOneUse()) 1020 return nullptr; 1021 1022 Value *TV = SI->getTrueValue(); 1023 Value *FV = SI->getFalseValue(); 1024 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 1025 return nullptr; 1026 1027 // Bool selects with constant operands can be folded to logical ops. 1028 if (SI->getType()->isIntOrIntVectorTy(1)) 1029 return nullptr; 1030 1031 // If it's a bitcast involving vectors, make sure it has the same number of 1032 // elements on both sides. 1033 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 1034 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 1035 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 1036 1037 // Verify that either both or neither are vectors. 1038 if ((SrcTy == nullptr) != (DestTy == nullptr)) 1039 return nullptr; 1040 1041 // If vectors, verify that they have the same number of elements. 1042 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) 1043 return nullptr; 1044 } 1045 1046 // Test if a CmpInst instruction is used exclusively by a select as 1047 // part of a minimum or maximum operation. If so, refrain from doing 1048 // any other folding. This helps out other analyses which understand 1049 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 1050 // and CodeGen. And in this case, at least one of the comparison 1051 // operands has at least one user besides the compare (the select), 1052 // which would often largely negate the benefit of folding anyway. 1053 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 1054 if (CI->hasOneUse()) { 1055 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 1056 1057 // FIXME: This is a hack to avoid infinite looping with min/max patterns. 1058 // We have to ensure that vector constants that only differ with 1059 // undef elements are treated as equivalent. 1060 auto areLooselyEqual = [](Value *A, Value *B) { 1061 if (A == B) 1062 return true; 1063 1064 // Test for vector constants. 1065 Constant *ConstA, *ConstB; 1066 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB))) 1067 return false; 1068 1069 // TODO: Deal with FP constants? 1070 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType()) 1071 return false; 1072 1073 // Compare for equality including undefs as equal. 1074 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB); 1075 const APInt *C; 1076 return match(Cmp, m_APIntAllowUndef(C)) && C->isOne(); 1077 }; 1078 1079 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) || 1080 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1))) 1081 return nullptr; 1082 } 1083 } 1084 1085 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 1086 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 1087 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 1088 } 1089 1090 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 1091 InstCombiner::BuilderTy &Builder) { 1092 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 1093 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 1094 1095 if (auto *InC = dyn_cast<Constant>(InV)) { 1096 if (ConstIsRHS) 1097 return ConstantExpr::get(I->getOpcode(), InC, C); 1098 return ConstantExpr::get(I->getOpcode(), C, InC); 1099 } 1100 1101 Value *Op0 = InV, *Op1 = C; 1102 if (!ConstIsRHS) 1103 std::swap(Op0, Op1); 1104 1105 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo"); 1106 auto *FPInst = dyn_cast<Instruction>(RI); 1107 if (FPInst && isa<FPMathOperator>(FPInst)) 1108 FPInst->copyFastMathFlags(I); 1109 return RI; 1110 } 1111 1112 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { 1113 unsigned NumPHIValues = PN->getNumIncomingValues(); 1114 if (NumPHIValues == 0) 1115 return nullptr; 1116 1117 // We normally only transform phis with a single use. However, if a PHI has 1118 // multiple uses and they are all the same operation, we can fold *all* of the 1119 // uses into the PHI. 1120 if (!PN->hasOneUse()) { 1121 // Walk the use list for the instruction, comparing them to I. 1122 for (User *U : PN->users()) { 1123 Instruction *UI = cast<Instruction>(U); 1124 if (UI != &I && !I.isIdenticalTo(UI)) 1125 return nullptr; 1126 } 1127 // Otherwise, we can replace *all* users with the new PHI we form. 1128 } 1129 1130 // Check to see if all of the operands of the PHI are simple constants 1131 // (constantint/constantfp/undef). If there is one non-constant value, 1132 // remember the BB it is in. If there is more than one or if *it* is a PHI, 1133 // bail out. We don't do arbitrary constant expressions here because moving 1134 // their computation can be expensive without a cost model. 1135 BasicBlock *NonConstBB = nullptr; 1136 for (unsigned i = 0; i != NumPHIValues; ++i) { 1137 Value *InVal = PN->getIncomingValue(i); 1138 // If I is a freeze instruction, count undef as a non-constant. 1139 if (match(InVal, m_ImmConstant()) && 1140 (!isa<FreezeInst>(I) || isGuaranteedNotToBeUndefOrPoison(InVal))) 1141 continue; 1142 1143 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 1144 if (NonConstBB) return nullptr; // More than one non-const value. 1145 1146 NonConstBB = PN->getIncomingBlock(i); 1147 1148 // If the InVal is an invoke at the end of the pred block, then we can't 1149 // insert a computation after it without breaking the edge. 1150 if (isa<InvokeInst>(InVal)) 1151 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 1152 return nullptr; 1153 1154 // If the incoming non-constant value is in I's block, we will remove one 1155 // instruction, but insert another equivalent one, leading to infinite 1156 // instcombine. 1157 if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI)) 1158 return nullptr; 1159 } 1160 1161 // If there is exactly one non-constant value, we can insert a copy of the 1162 // operation in that block. However, if this is a critical edge, we would be 1163 // inserting the computation on some other paths (e.g. inside a loop). Only 1164 // do this if the pred block is unconditionally branching into the phi block. 1165 // Also, make sure that the pred block is not dead code. 1166 if (NonConstBB != nullptr) { 1167 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1168 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB)) 1169 return nullptr; 1170 } 1171 1172 // Okay, we can do the transformation: create the new PHI node. 1173 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1174 InsertNewInstBefore(NewPN, *PN); 1175 NewPN->takeName(PN); 1176 1177 // If we are going to have to insert a new computation, do so right before the 1178 // predecessor's terminator. 1179 if (NonConstBB) 1180 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1181 1182 // Next, add all of the operands to the PHI. 1183 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1184 // We only currently try to fold the condition of a select when it is a phi, 1185 // not the true/false values. 1186 Value *TrueV = SI->getTrueValue(); 1187 Value *FalseV = SI->getFalseValue(); 1188 BasicBlock *PhiTransBB = PN->getParent(); 1189 for (unsigned i = 0; i != NumPHIValues; ++i) { 1190 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1191 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1192 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1193 Value *InV = nullptr; 1194 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1195 // even if currently isNullValue gives false. 1196 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1197 // For vector constants, we cannot use isNullValue to fold into 1198 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1199 // elements in the vector, we will incorrectly fold InC to 1200 // `TrueVInPred`. 1201 if (InC && isa<ConstantInt>(InC)) 1202 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1203 else { 1204 // Generate the select in the same block as PN's current incoming block. 1205 // Note: ThisBB need not be the NonConstBB because vector constants 1206 // which are constants by definition are handled here. 1207 // FIXME: This can lead to an increase in IR generation because we might 1208 // generate selects for vector constant phi operand, that could not be 1209 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1210 // non-vector phis, this transformation was always profitable because 1211 // the select would be generated exactly once in the NonConstBB. 1212 Builder.SetInsertPoint(ThisBB->getTerminator()); 1213 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1214 FalseVInPred, "phi.sel"); 1215 } 1216 NewPN->addIncoming(InV, ThisBB); 1217 } 1218 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1219 Constant *C = cast<Constant>(I.getOperand(1)); 1220 for (unsigned i = 0; i != NumPHIValues; ++i) { 1221 Value *InV = nullptr; 1222 if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1223 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1224 else 1225 InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i), 1226 C, "phi.cmp"); 1227 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1228 } 1229 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1230 for (unsigned i = 0; i != NumPHIValues; ++i) { 1231 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1232 Builder); 1233 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1234 } 1235 } else if (isa<FreezeInst>(&I)) { 1236 for (unsigned i = 0; i != NumPHIValues; ++i) { 1237 Value *InV; 1238 if (NonConstBB == PN->getIncomingBlock(i)) 1239 InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr"); 1240 else 1241 InV = PN->getIncomingValue(i); 1242 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1243 } 1244 } else { 1245 CastInst *CI = cast<CastInst>(&I); 1246 Type *RetTy = CI->getType(); 1247 for (unsigned i = 0; i != NumPHIValues; ++i) { 1248 Value *InV; 1249 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1250 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1251 else 1252 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1253 I.getType(), "phi.cast"); 1254 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1255 } 1256 } 1257 1258 for (User *U : make_early_inc_range(PN->users())) { 1259 Instruction *User = cast<Instruction>(U); 1260 if (User == &I) continue; 1261 replaceInstUsesWith(*User, NewPN); 1262 eraseInstFromFunction(*User); 1263 } 1264 return replaceInstUsesWith(I, NewPN); 1265 } 1266 1267 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1268 if (!isa<Constant>(I.getOperand(1))) 1269 return nullptr; 1270 1271 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1272 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1273 return NewSel; 1274 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1275 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1276 return NewPhi; 1277 } 1278 return nullptr; 1279 } 1280 1281 /// Given a pointer type and a constant offset, determine whether or not there 1282 /// is a sequence of GEP indices into the pointed type that will land us at the 1283 /// specified offset. If so, fill them into NewIndices and return the resultant 1284 /// element type, otherwise return null. 1285 Type * 1286 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t IntOffset, 1287 SmallVectorImpl<Value *> &NewIndices) { 1288 Type *Ty = PtrTy->getElementType(); 1289 if (!Ty->isSized()) 1290 return nullptr; 1291 1292 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset); 1293 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset); 1294 if (!Offset.isZero()) 1295 return nullptr; 1296 1297 for (const APInt &Index : Indices) 1298 NewIndices.push_back(Builder.getInt(Index)); 1299 return Ty; 1300 } 1301 1302 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1303 // If this GEP has only 0 indices, it is the same pointer as 1304 // Src. If Src is not a trivial GEP too, don't combine 1305 // the indices. 1306 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1307 !Src.hasOneUse()) 1308 return false; 1309 return true; 1310 } 1311 1312 /// Return a value X such that Val = X * Scale, or null if none. 1313 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1314 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1315 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1316 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1317 Scale.getBitWidth() && "Scale not compatible with value!"); 1318 1319 // If Val is zero or Scale is one then Val = Val * Scale. 1320 if (match(Val, m_Zero()) || Scale == 1) { 1321 NoSignedWrap = true; 1322 return Val; 1323 } 1324 1325 // If Scale is zero then it does not divide Val. 1326 if (Scale.isMinValue()) 1327 return nullptr; 1328 1329 // Look through chains of multiplications, searching for a constant that is 1330 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1331 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1332 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1333 // down from Val: 1334 // 1335 // Val = M1 * X || Analysis starts here and works down 1336 // M1 = M2 * Y || Doesn't descend into terms with more 1337 // M2 = Z * 4 \/ than one use 1338 // 1339 // Then to modify a term at the bottom: 1340 // 1341 // Val = M1 * X 1342 // M1 = Z * Y || Replaced M2 with Z 1343 // 1344 // Then to work back up correcting nsw flags. 1345 1346 // Op - the term we are currently analyzing. Starts at Val then drills down. 1347 // Replaced with its descaled value before exiting from the drill down loop. 1348 Value *Op = Val; 1349 1350 // Parent - initially null, but after drilling down notes where Op came from. 1351 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1352 // 0'th operand of Val. 1353 std::pair<Instruction *, unsigned> Parent; 1354 1355 // Set if the transform requires a descaling at deeper levels that doesn't 1356 // overflow. 1357 bool RequireNoSignedWrap = false; 1358 1359 // Log base 2 of the scale. Negative if not a power of 2. 1360 int32_t logScale = Scale.exactLogBase2(); 1361 1362 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1363 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1364 // If Op is a constant divisible by Scale then descale to the quotient. 1365 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1366 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1367 if (!Remainder.isMinValue()) 1368 // Not divisible by Scale. 1369 return nullptr; 1370 // Replace with the quotient in the parent. 1371 Op = ConstantInt::get(CI->getType(), Quotient); 1372 NoSignedWrap = true; 1373 break; 1374 } 1375 1376 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1377 if (BO->getOpcode() == Instruction::Mul) { 1378 // Multiplication. 1379 NoSignedWrap = BO->hasNoSignedWrap(); 1380 if (RequireNoSignedWrap && !NoSignedWrap) 1381 return nullptr; 1382 1383 // There are three cases for multiplication: multiplication by exactly 1384 // the scale, multiplication by a constant different to the scale, and 1385 // multiplication by something else. 1386 Value *LHS = BO->getOperand(0); 1387 Value *RHS = BO->getOperand(1); 1388 1389 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1390 // Multiplication by a constant. 1391 if (CI->getValue() == Scale) { 1392 // Multiplication by exactly the scale, replace the multiplication 1393 // by its left-hand side in the parent. 1394 Op = LHS; 1395 break; 1396 } 1397 1398 // Otherwise drill down into the constant. 1399 if (!Op->hasOneUse()) 1400 return nullptr; 1401 1402 Parent = std::make_pair(BO, 1); 1403 continue; 1404 } 1405 1406 // Multiplication by something else. Drill down into the left-hand side 1407 // since that's where the reassociate pass puts the good stuff. 1408 if (!Op->hasOneUse()) 1409 return nullptr; 1410 1411 Parent = std::make_pair(BO, 0); 1412 continue; 1413 } 1414 1415 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1416 isa<ConstantInt>(BO->getOperand(1))) { 1417 // Multiplication by a power of 2. 1418 NoSignedWrap = BO->hasNoSignedWrap(); 1419 if (RequireNoSignedWrap && !NoSignedWrap) 1420 return nullptr; 1421 1422 Value *LHS = BO->getOperand(0); 1423 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1424 getLimitedValue(Scale.getBitWidth()); 1425 // Op = LHS << Amt. 1426 1427 if (Amt == logScale) { 1428 // Multiplication by exactly the scale, replace the multiplication 1429 // by its left-hand side in the parent. 1430 Op = LHS; 1431 break; 1432 } 1433 if (Amt < logScale || !Op->hasOneUse()) 1434 return nullptr; 1435 1436 // Multiplication by more than the scale. Reduce the multiplying amount 1437 // by the scale in the parent. 1438 Parent = std::make_pair(BO, 1); 1439 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1440 break; 1441 } 1442 } 1443 1444 if (!Op->hasOneUse()) 1445 return nullptr; 1446 1447 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1448 if (Cast->getOpcode() == Instruction::SExt) { 1449 // Op is sign-extended from a smaller type, descale in the smaller type. 1450 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1451 APInt SmallScale = Scale.trunc(SmallSize); 1452 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1453 // descale Op as (sext Y) * Scale. In order to have 1454 // sext (Y * SmallScale) = (sext Y) * Scale 1455 // some conditions need to hold however: SmallScale must sign-extend to 1456 // Scale and the multiplication Y * SmallScale should not overflow. 1457 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1458 // SmallScale does not sign-extend to Scale. 1459 return nullptr; 1460 assert(SmallScale.exactLogBase2() == logScale); 1461 // Require that Y * SmallScale must not overflow. 1462 RequireNoSignedWrap = true; 1463 1464 // Drill down through the cast. 1465 Parent = std::make_pair(Cast, 0); 1466 Scale = SmallScale; 1467 continue; 1468 } 1469 1470 if (Cast->getOpcode() == Instruction::Trunc) { 1471 // Op is truncated from a larger type, descale in the larger type. 1472 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1473 // trunc (Y * sext Scale) = (trunc Y) * Scale 1474 // always holds. However (trunc Y) * Scale may overflow even if 1475 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1476 // from this point up in the expression (see later). 1477 if (RequireNoSignedWrap) 1478 return nullptr; 1479 1480 // Drill down through the cast. 1481 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1482 Parent = std::make_pair(Cast, 0); 1483 Scale = Scale.sext(LargeSize); 1484 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1485 logScale = -1; 1486 assert(Scale.exactLogBase2() == logScale); 1487 continue; 1488 } 1489 } 1490 1491 // Unsupported expression, bail out. 1492 return nullptr; 1493 } 1494 1495 // If Op is zero then Val = Op * Scale. 1496 if (match(Op, m_Zero())) { 1497 NoSignedWrap = true; 1498 return Op; 1499 } 1500 1501 // We know that we can successfully descale, so from here on we can safely 1502 // modify the IR. Op holds the descaled version of the deepest term in the 1503 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1504 // not to overflow. 1505 1506 if (!Parent.first) 1507 // The expression only had one term. 1508 return Op; 1509 1510 // Rewrite the parent using the descaled version of its operand. 1511 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1512 assert(Op != Parent.first->getOperand(Parent.second) && 1513 "Descaling was a no-op?"); 1514 replaceOperand(*Parent.first, Parent.second, Op); 1515 Worklist.push(Parent.first); 1516 1517 // Now work back up the expression correcting nsw flags. The logic is based 1518 // on the following observation: if X * Y is known not to overflow as a signed 1519 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1520 // then X * Z will not overflow as a signed multiplication either. As we work 1521 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1522 // current level has strictly smaller absolute value than the original. 1523 Instruction *Ancestor = Parent.first; 1524 do { 1525 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1526 // If the multiplication wasn't nsw then we can't say anything about the 1527 // value of the descaled multiplication, and we have to clear nsw flags 1528 // from this point on up. 1529 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1530 NoSignedWrap &= OpNoSignedWrap; 1531 if (NoSignedWrap != OpNoSignedWrap) { 1532 BO->setHasNoSignedWrap(NoSignedWrap); 1533 Worklist.push(Ancestor); 1534 } 1535 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1536 // The fact that the descaled input to the trunc has smaller absolute 1537 // value than the original input doesn't tell us anything useful about 1538 // the absolute values of the truncations. 1539 NoSignedWrap = false; 1540 } 1541 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1542 "Failed to keep proper track of nsw flags while drilling down?"); 1543 1544 if (Ancestor == Val) 1545 // Got to the top, all done! 1546 return Val; 1547 1548 // Move up one level in the expression. 1549 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1550 Ancestor = Ancestor->user_back(); 1551 } while (true); 1552 } 1553 1554 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 1555 if (!isa<VectorType>(Inst.getType())) 1556 return nullptr; 1557 1558 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1559 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1560 assert(cast<VectorType>(LHS->getType())->getElementCount() == 1561 cast<VectorType>(Inst.getType())->getElementCount()); 1562 assert(cast<VectorType>(RHS->getType())->getElementCount() == 1563 cast<VectorType>(Inst.getType())->getElementCount()); 1564 1565 // If both operands of the binop are vector concatenations, then perform the 1566 // narrow binop on each pair of the source operands followed by concatenation 1567 // of the results. 1568 Value *L0, *L1, *R0, *R1; 1569 ArrayRef<int> Mask; 1570 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 1571 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 1572 LHS->hasOneUse() && RHS->hasOneUse() && 1573 cast<ShuffleVectorInst>(LHS)->isConcat() && 1574 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1575 // This transform does not have the speculative execution constraint as 1576 // below because the shuffle is a concatenation. The new binops are 1577 // operating on exactly the same elements as the existing binop. 1578 // TODO: We could ease the mask requirement to allow different undef lanes, 1579 // but that requires an analysis of the binop-with-undef output value. 1580 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1581 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1582 BO->copyIRFlags(&Inst); 1583 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1584 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1585 BO->copyIRFlags(&Inst); 1586 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1587 } 1588 1589 // It may not be safe to reorder shuffles and things like div, urem, etc. 1590 // because we may trap when executing those ops on unknown vector elements. 1591 // See PR20059. 1592 if (!isSafeToSpeculativelyExecute(&Inst)) 1593 return nullptr; 1594 1595 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 1596 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1597 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1598 BO->copyIRFlags(&Inst); 1599 return new ShuffleVectorInst(XY, M); 1600 }; 1601 1602 // If both arguments of the binary operation are shuffles that use the same 1603 // mask and shuffle within a single vector, move the shuffle after the binop. 1604 Value *V1, *V2; 1605 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) && 1606 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) && 1607 V1->getType() == V2->getType() && 1608 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1609 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1610 return createBinOpShuffle(V1, V2, Mask); 1611 } 1612 1613 // If both arguments of a commutative binop are select-shuffles that use the 1614 // same mask with commuted operands, the shuffles are unnecessary. 1615 if (Inst.isCommutative() && 1616 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 1617 match(RHS, 1618 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 1619 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1620 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1621 // TODO: Allow shuffles that contain undefs in the mask? 1622 // That is legal, but it reduces undef knowledge. 1623 // TODO: Allow arbitrary shuffles by shuffling after binop? 1624 // That might be legal, but we have to deal with poison. 1625 if (LShuf->isSelect() && 1626 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) && 1627 RShuf->isSelect() && 1628 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) { 1629 // Example: 1630 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1631 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1632 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1633 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1634 NewBO->copyIRFlags(&Inst); 1635 return NewBO; 1636 } 1637 } 1638 1639 // If one argument is a shuffle within one vector and the other is a constant, 1640 // try moving the shuffle after the binary operation. This canonicalization 1641 // intends to move shuffles closer to other shuffles and binops closer to 1642 // other binops, so they can be folded. It may also enable demanded elements 1643 // transforms. 1644 Constant *C; 1645 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 1646 if (InstVTy && 1647 match(&Inst, 1648 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))), 1649 m_ImmConstant(C))) && 1650 cast<FixedVectorType>(V1->getType())->getNumElements() <= 1651 InstVTy->getNumElements()) { 1652 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 1653 "Shuffle should not change scalar type"); 1654 1655 // Find constant NewC that has property: 1656 // shuffle(NewC, ShMask) = C 1657 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1658 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1659 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1660 bool ConstOp1 = isa<Constant>(RHS); 1661 ArrayRef<int> ShMask = Mask; 1662 unsigned SrcVecNumElts = 1663 cast<FixedVectorType>(V1->getType())->getNumElements(); 1664 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1665 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1666 bool MayChange = true; 1667 unsigned NumElts = InstVTy->getNumElements(); 1668 for (unsigned I = 0; I < NumElts; ++I) { 1669 Constant *CElt = C->getAggregateElement(I); 1670 if (ShMask[I] >= 0) { 1671 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1672 Constant *NewCElt = NewVecC[ShMask[I]]; 1673 // Bail out if: 1674 // 1. The constant vector contains a constant expression. 1675 // 2. The shuffle needs an element of the constant vector that can't 1676 // be mapped to a new constant vector. 1677 // 3. This is a widening shuffle that copies elements of V1 into the 1678 // extended elements (extending with undef is allowed). 1679 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1680 I >= SrcVecNumElts) { 1681 MayChange = false; 1682 break; 1683 } 1684 NewVecC[ShMask[I]] = CElt; 1685 } 1686 // If this is a widening shuffle, we must be able to extend with undef 1687 // elements. If the original binop does not produce an undef in the high 1688 // lanes, then this transform is not safe. 1689 // Similarly for undef lanes due to the shuffle mask, we can only 1690 // transform binops that preserve undef. 1691 // TODO: We could shuffle those non-undef constant values into the 1692 // result by using a constant vector (rather than an undef vector) 1693 // as operand 1 of the new binop, but that might be too aggressive 1694 // for target-independent shuffle creation. 1695 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1696 Constant *MaybeUndef = 1697 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1698 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1699 if (!match(MaybeUndef, m_Undef())) { 1700 MayChange = false; 1701 break; 1702 } 1703 } 1704 } 1705 if (MayChange) { 1706 Constant *NewC = ConstantVector::get(NewVecC); 1707 // It may not be safe to execute a binop on a vector with undef elements 1708 // because the entire instruction can be folded to undef or create poison 1709 // that did not exist in the original code. 1710 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1711 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1712 1713 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1714 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1715 Value *NewLHS = ConstOp1 ? V1 : NewC; 1716 Value *NewRHS = ConstOp1 ? NewC : V1; 1717 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1718 } 1719 } 1720 1721 // Try to reassociate to sink a splat shuffle after a binary operation. 1722 if (Inst.isAssociative() && Inst.isCommutative()) { 1723 // Canonicalize shuffle operand as LHS. 1724 if (isa<ShuffleVectorInst>(RHS)) 1725 std::swap(LHS, RHS); 1726 1727 Value *X; 1728 ArrayRef<int> MaskC; 1729 int SplatIndex; 1730 BinaryOperator *BO; 1731 if (!match(LHS, 1732 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 1733 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || 1734 X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) || 1735 BO->getOpcode() != Opcode) 1736 return nullptr; 1737 1738 // FIXME: This may not be safe if the analysis allows undef elements. By 1739 // moving 'Y' before the splat shuffle, we are implicitly assuming 1740 // that it is not undef/poison at the splat index. 1741 Value *Y, *OtherOp; 1742 if (isSplatValue(BO->getOperand(0), SplatIndex)) { 1743 Y = BO->getOperand(0); 1744 OtherOp = BO->getOperand(1); 1745 } else if (isSplatValue(BO->getOperand(1), SplatIndex)) { 1746 Y = BO->getOperand(1); 1747 OtherOp = BO->getOperand(0); 1748 } else { 1749 return nullptr; 1750 } 1751 1752 // X and Y are splatted values, so perform the binary operation on those 1753 // values followed by a splat followed by the 2nd binary operation: 1754 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 1755 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 1756 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 1757 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 1758 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 1759 1760 // Intersect FMF on both new binops. Other (poison-generating) flags are 1761 // dropped to be safe. 1762 if (isa<FPMathOperator>(R)) { 1763 R->copyFastMathFlags(&Inst); 1764 R->andIRFlags(BO); 1765 } 1766 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 1767 NewInstBO->copyIRFlags(R); 1768 return R; 1769 } 1770 1771 return nullptr; 1772 } 1773 1774 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1775 /// of a value. This requires a potentially expensive known bits check to make 1776 /// sure the narrow op does not overflow. 1777 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 1778 // We need at least one extended operand. 1779 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1780 1781 // If this is a sub, we swap the operands since we always want an extension 1782 // on the RHS. The LHS can be an extension or a constant. 1783 if (BO.getOpcode() == Instruction::Sub) 1784 std::swap(Op0, Op1); 1785 1786 Value *X; 1787 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1788 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1789 return nullptr; 1790 1791 // If both operands are the same extension from the same source type and we 1792 // can eliminate at least one (hasOneUse), this might work. 1793 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1794 Value *Y; 1795 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1796 cast<Operator>(Op1)->getOpcode() == CastOpc && 1797 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1798 // If that did not match, see if we have a suitable constant operand. 1799 // Truncating and extending must produce the same constant. 1800 Constant *WideC; 1801 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1802 return nullptr; 1803 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1804 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1805 return nullptr; 1806 Y = NarrowC; 1807 } 1808 1809 // Swap back now that we found our operands. 1810 if (BO.getOpcode() == Instruction::Sub) 1811 std::swap(X, Y); 1812 1813 // Both operands have narrow versions. Last step: the math must not overflow 1814 // in the narrow width. 1815 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1816 return nullptr; 1817 1818 // bo (ext X), (ext Y) --> ext (bo X, Y) 1819 // bo (ext X), C --> ext (bo X, C') 1820 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1821 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1822 if (IsSext) 1823 NewBinOp->setHasNoSignedWrap(); 1824 else 1825 NewBinOp->setHasNoUnsignedWrap(); 1826 } 1827 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1828 } 1829 1830 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 1831 // At least one GEP must be inbounds. 1832 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 1833 return false; 1834 1835 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 1836 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 1837 } 1838 1839 /// Thread a GEP operation with constant indices through the constant true/false 1840 /// arms of a select. 1841 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 1842 InstCombiner::BuilderTy &Builder) { 1843 if (!GEP.hasAllConstantIndices()) 1844 return nullptr; 1845 1846 Instruction *Sel; 1847 Value *Cond; 1848 Constant *TrueC, *FalseC; 1849 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 1850 !match(Sel, 1851 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 1852 return nullptr; 1853 1854 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 1855 // Propagate 'inbounds' and metadata from existing instructions. 1856 // Note: using IRBuilder to create the constants for efficiency. 1857 SmallVector<Value *, 4> IndexC(GEP.indices()); 1858 bool IsInBounds = GEP.isInBounds(); 1859 Type *Ty = GEP.getSourceElementType(); 1860 Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC) 1861 : Builder.CreateGEP(Ty, TrueC, IndexC); 1862 Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC) 1863 : Builder.CreateGEP(Ty, FalseC, IndexC); 1864 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 1865 } 1866 1867 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1868 SmallVector<Value *, 8> Ops(GEP.operands()); 1869 Type *GEPType = GEP.getType(); 1870 Type *GEPEltType = GEP.getSourceElementType(); 1871 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType); 1872 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, GEP.isInBounds(), 1873 SQ.getWithInstruction(&GEP))) 1874 return replaceInstUsesWith(GEP, V); 1875 1876 // For vector geps, use the generic demanded vector support. 1877 // Skip if GEP return type is scalable. The number of elements is unknown at 1878 // compile-time. 1879 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 1880 auto VWidth = GEPFVTy->getNumElements(); 1881 APInt UndefElts(VWidth, 0); 1882 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 1883 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 1884 UndefElts)) { 1885 if (V != &GEP) 1886 return replaceInstUsesWith(GEP, V); 1887 return &GEP; 1888 } 1889 1890 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 1891 // possible (decide on canonical form for pointer broadcast), 3) exploit 1892 // undef elements to decrease demanded bits 1893 } 1894 1895 Value *PtrOp = GEP.getOperand(0); 1896 1897 // Eliminate unneeded casts for indices, and replace indices which displace 1898 // by multiples of a zero size type with zero. 1899 bool MadeChange = false; 1900 1901 // Index width may not be the same width as pointer width. 1902 // Data layout chooses the right type based on supported integer types. 1903 Type *NewScalarIndexTy = 1904 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 1905 1906 gep_type_iterator GTI = gep_type_begin(GEP); 1907 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1908 ++I, ++GTI) { 1909 // Skip indices into struct types. 1910 if (GTI.isStruct()) 1911 continue; 1912 1913 Type *IndexTy = (*I)->getType(); 1914 Type *NewIndexType = 1915 IndexTy->isVectorTy() 1916 ? VectorType::get(NewScalarIndexTy, 1917 cast<VectorType>(IndexTy)->getElementCount()) 1918 : NewScalarIndexTy; 1919 1920 // If the element type has zero size then any index over it is equivalent 1921 // to an index of zero, so replace it with zero if it is not zero already. 1922 Type *EltTy = GTI.getIndexedType(); 1923 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 1924 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 1925 *I = Constant::getNullValue(NewIndexType); 1926 MadeChange = true; 1927 } 1928 1929 if (IndexTy != NewIndexType) { 1930 // If we are using a wider index than needed for this platform, shrink 1931 // it to what we need. If narrower, sign-extend it to what we need. 1932 // This explicit cast can make subsequent optimizations more obvious. 1933 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1934 MadeChange = true; 1935 } 1936 } 1937 if (MadeChange) 1938 return &GEP; 1939 1940 // Check to see if the inputs to the PHI node are getelementptr instructions. 1941 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 1942 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1943 if (!Op1) 1944 return nullptr; 1945 1946 // Don't fold a GEP into itself through a PHI node. This can only happen 1947 // through the back-edge of a loop. Folding a GEP into itself means that 1948 // the value of the previous iteration needs to be stored in the meantime, 1949 // thus requiring an additional register variable to be live, but not 1950 // actually achieving anything (the GEP still needs to be executed once per 1951 // loop iteration). 1952 if (Op1 == &GEP) 1953 return nullptr; 1954 1955 int DI = -1; 1956 1957 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1958 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 1959 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1960 return nullptr; 1961 1962 // As for Op1 above, don't try to fold a GEP into itself. 1963 if (Op2 == &GEP) 1964 return nullptr; 1965 1966 // Keep track of the type as we walk the GEP. 1967 Type *CurTy = nullptr; 1968 1969 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1970 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1971 return nullptr; 1972 1973 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1974 if (DI == -1) { 1975 // We have not seen any differences yet in the GEPs feeding the 1976 // PHI yet, so we record this one if it is allowed to be a 1977 // variable. 1978 1979 // The first two arguments can vary for any GEP, the rest have to be 1980 // static for struct slots 1981 if (J > 1) { 1982 assert(CurTy && "No current type?"); 1983 if (CurTy->isStructTy()) 1984 return nullptr; 1985 } 1986 1987 DI = J; 1988 } else { 1989 // The GEP is different by more than one input. While this could be 1990 // extended to support GEPs that vary by more than one variable it 1991 // doesn't make sense since it greatly increases the complexity and 1992 // would result in an R+R+R addressing mode which no backend 1993 // directly supports and would need to be broken into several 1994 // simpler instructions anyway. 1995 return nullptr; 1996 } 1997 } 1998 1999 // Sink down a layer of the type for the next iteration. 2000 if (J > 0) { 2001 if (J == 1) { 2002 CurTy = Op1->getSourceElementType(); 2003 } else { 2004 CurTy = 2005 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 2006 } 2007 } 2008 } 2009 } 2010 2011 // If not all GEPs are identical we'll have to create a new PHI node. 2012 // Check that the old PHI node has only one use so that it will get 2013 // removed. 2014 if (DI != -1 && !PN->hasOneUse()) 2015 return nullptr; 2016 2017 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 2018 if (DI == -1) { 2019 // All the GEPs feeding the PHI are identical. Clone one down into our 2020 // BB so that it can be merged with the current GEP. 2021 } else { 2022 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 2023 // into the current block so it can be merged, and create a new PHI to 2024 // set that index. 2025 PHINode *NewPN; 2026 { 2027 IRBuilderBase::InsertPointGuard Guard(Builder); 2028 Builder.SetInsertPoint(PN); 2029 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 2030 PN->getNumOperands()); 2031 } 2032 2033 for (auto &I : PN->operands()) 2034 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 2035 PN->getIncomingBlock(I)); 2036 2037 NewGEP->setOperand(DI, NewPN); 2038 } 2039 2040 GEP.getParent()->getInstList().insert( 2041 GEP.getParent()->getFirstInsertionPt(), NewGEP); 2042 replaceOperand(GEP, 0, NewGEP); 2043 PtrOp = NewGEP; 2044 } 2045 2046 // Combine Indices - If the source pointer to this getelementptr instruction 2047 // is a getelementptr instruction, combine the indices of the two 2048 // getelementptr instructions into a single instruction. 2049 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { 2050 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 2051 return nullptr; 2052 2053 if (Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 2054 Src->hasOneUse()) { 2055 Value *GO1 = GEP.getOperand(1); 2056 Value *SO1 = Src->getOperand(1); 2057 2058 if (LI) { 2059 // Try to reassociate loop invariant GEP chains to enable LICM. 2060 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 2061 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 2062 // invariant: this breaks the dependence between GEPs and allows LICM 2063 // to hoist the invariant part out of the loop. 2064 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 2065 // We have to be careful here. 2066 // We have something like: 2067 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 2068 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 2069 // If we just swap idx & idx2 then we could inadvertantly 2070 // change %src from a vector to a scalar, or vice versa. 2071 // Cases: 2072 // 1) %base a scalar & idx a scalar & idx2 a vector 2073 // => Swapping idx & idx2 turns %src into a vector type. 2074 // 2) %base a scalar & idx a vector & idx2 a scalar 2075 // => Swapping idx & idx2 turns %src in a scalar type 2076 // 3) %base, %idx, and %idx2 are scalars 2077 // => %src & %gep are scalars 2078 // => swapping idx & idx2 is safe 2079 // 4) %base a vector 2080 // => %src is a vector 2081 // => swapping idx & idx2 is safe. 2082 auto *SO0 = Src->getOperand(0); 2083 auto *SO0Ty = SO0->getType(); 2084 if (!isa<VectorType>(GEPType) || // case 3 2085 isa<VectorType>(SO0Ty)) { // case 4 2086 Src->setOperand(1, GO1); 2087 GEP.setOperand(1, SO1); 2088 return &GEP; 2089 } else { 2090 // Case 1 or 2 2091 // -- have to recreate %src & %gep 2092 // put NewSrc at same location as %src 2093 Builder.SetInsertPoint(cast<Instruction>(PtrOp)); 2094 Value *NewSrc = 2095 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()); 2096 // Propagate 'inbounds' if the new source was not constant-folded. 2097 if (auto *NewSrcGEPI = dyn_cast<GetElementPtrInst>(NewSrc)) 2098 NewSrcGEPI->setIsInBounds(Src->isInBounds()); 2099 GetElementPtrInst *NewGEP = 2100 GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1}); 2101 NewGEP->setIsInBounds(GEP.isInBounds()); 2102 return NewGEP; 2103 } 2104 } 2105 } 2106 } 2107 } 2108 2109 // Note that if our source is a gep chain itself then we wait for that 2110 // chain to be resolved before we perform this transformation. This 2111 // avoids us creating a TON of code in some cases. 2112 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 2113 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 2114 return nullptr; // Wait until our source is folded to completion. 2115 2116 SmallVector<Value*, 8> Indices; 2117 2118 // Find out whether the last index in the source GEP is a sequential idx. 2119 bool EndsWithSequential = false; 2120 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 2121 I != E; ++I) 2122 EndsWithSequential = I.isSequential(); 2123 2124 // Can we combine the two pointer arithmetics offsets? 2125 if (EndsWithSequential) { 2126 // Replace: gep (gep %P, long B), long A, ... 2127 // With: T = long A+B; gep %P, T, ... 2128 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 2129 Value *GO1 = GEP.getOperand(1); 2130 2131 // If they aren't the same type, then the input hasn't been processed 2132 // by the loop above yet (which canonicalizes sequential index types to 2133 // intptr_t). Just avoid transforming this until the input has been 2134 // normalized. 2135 if (SO1->getType() != GO1->getType()) 2136 return nullptr; 2137 2138 Value *Sum = 2139 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 2140 // Only do the combine when we are sure the cost after the 2141 // merge is never more than that before the merge. 2142 if (Sum == nullptr) 2143 return nullptr; 2144 2145 // Update the GEP in place if possible. 2146 if (Src->getNumOperands() == 2) { 2147 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 2148 replaceOperand(GEP, 0, Src->getOperand(0)); 2149 replaceOperand(GEP, 1, Sum); 2150 return &GEP; 2151 } 2152 Indices.append(Src->op_begin()+1, Src->op_end()-1); 2153 Indices.push_back(Sum); 2154 Indices.append(GEP.op_begin()+2, GEP.op_end()); 2155 } else if (isa<Constant>(*GEP.idx_begin()) && 2156 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2157 Src->getNumOperands() != 1) { 2158 // Otherwise we can do the fold if the first index of the GEP is a zero 2159 Indices.append(Src->op_begin()+1, Src->op_end()); 2160 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2161 } 2162 2163 if (!Indices.empty()) 2164 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2165 ? GetElementPtrInst::CreateInBounds( 2166 Src->getSourceElementType(), Src->getOperand(0), Indices, 2167 GEP.getName()) 2168 : GetElementPtrInst::Create(Src->getSourceElementType(), 2169 Src->getOperand(0), Indices, 2170 GEP.getName()); 2171 } 2172 2173 // Skip if GEP source element type is scalable. The type alloc size is unknown 2174 // at compile-time. 2175 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { 2176 unsigned AS = GEP.getPointerAddressSpace(); 2177 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 2178 DL.getIndexSizeInBits(AS)) { 2179 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2180 2181 bool Matched = false; 2182 uint64_t C; 2183 Value *V = nullptr; 2184 if (TyAllocSize == 1) { 2185 V = GEP.getOperand(1); 2186 Matched = true; 2187 } else if (match(GEP.getOperand(1), 2188 m_AShr(m_Value(V), m_ConstantInt(C)))) { 2189 if (TyAllocSize == 1ULL << C) 2190 Matched = true; 2191 } else if (match(GEP.getOperand(1), 2192 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 2193 if (TyAllocSize == C) 2194 Matched = true; 2195 } 2196 2197 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but 2198 // only if both point to the same underlying object (otherwise provenance 2199 // is not necessarily retained). 2200 Value *Y; 2201 Value *X = GEP.getOperand(0); 2202 if (Matched && 2203 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 2204 getUnderlyingObject(X) == getUnderlyingObject(Y)) 2205 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 2206 } 2207 } 2208 2209 // We do not handle pointer-vector geps here. 2210 if (GEPType->isVectorTy()) 2211 return nullptr; 2212 2213 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 2214 Value *StrippedPtr = PtrOp->stripPointerCasts(); 2215 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 2216 2217 if (StrippedPtr != PtrOp) { 2218 bool HasZeroPointerIndex = false; 2219 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType(); 2220 2221 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 2222 HasZeroPointerIndex = C->isZero(); 2223 2224 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2225 // into : GEP [10 x i8]* X, i32 0, ... 2226 // 2227 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2228 // into : GEP i8* X, ... 2229 // 2230 // This occurs when the program declares an array extern like "int X[];" 2231 if (HasZeroPointerIndex) { 2232 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2233 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2234 if (CATy->getElementType() == StrippedPtrEltTy) { 2235 // -> GEP i8* X, ... 2236 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices())); 2237 GetElementPtrInst *Res = GetElementPtrInst::Create( 2238 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2239 Res->setIsInBounds(GEP.isInBounds()); 2240 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2241 return Res; 2242 // Insert Res, and create an addrspacecast. 2243 // e.g., 2244 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2245 // -> 2246 // %0 = GEP i8 addrspace(1)* X, ... 2247 // addrspacecast i8 addrspace(1)* %0 to i8* 2248 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2249 } 2250 2251 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2252 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2253 if (CATy->getElementType() == XATy->getElementType()) { 2254 // -> GEP [10 x i8]* X, i32 0, ... 2255 // At this point, we know that the cast source type is a pointer 2256 // to an array of the same type as the destination pointer 2257 // array. Because the array type is never stepped over (there 2258 // is a leading zero) we can fold the cast into this GEP. 2259 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2260 GEP.setSourceElementType(XATy); 2261 return replaceOperand(GEP, 0, StrippedPtr); 2262 } 2263 // Cannot replace the base pointer directly because StrippedPtr's 2264 // address space is different. Instead, create a new GEP followed by 2265 // an addrspacecast. 2266 // e.g., 2267 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2268 // i32 0, ... 2269 // -> 2270 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2271 // addrspacecast i8 addrspace(1)* %0 to i8* 2272 SmallVector<Value *, 8> Idx(GEP.indices()); 2273 Value *NewGEP = 2274 GEP.isInBounds() 2275 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2276 Idx, GEP.getName()) 2277 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2278 GEP.getName()); 2279 return new AddrSpaceCastInst(NewGEP, GEPType); 2280 } 2281 } 2282 } 2283 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) { 2284 // Skip if GEP source element type is scalable. The type alloc size is 2285 // unknown at compile-time. 2286 // Transform things like: %t = getelementptr i32* 2287 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2 2288 // x i32]* %str, i32 0, i32 %V; bitcast 2289 if (StrippedPtrEltTy->isArrayTy() && 2290 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2291 DL.getTypeAllocSize(GEPEltType)) { 2292 Type *IdxType = DL.getIndexType(GEPType); 2293 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 2294 Value *NewGEP = 2295 GEP.isInBounds() 2296 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2297 GEP.getName()) 2298 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2299 GEP.getName()); 2300 2301 // V and GEP are both pointer types --> BitCast 2302 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2303 } 2304 2305 // Transform things like: 2306 // %V = mul i64 %N, 4 2307 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2308 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2309 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2310 // Check that changing the type amounts to dividing the index by a scale 2311 // factor. 2312 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2313 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize(); 2314 if (ResSize && SrcSize % ResSize == 0) { 2315 Value *Idx = GEP.getOperand(1); 2316 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2317 uint64_t Scale = SrcSize / ResSize; 2318 2319 // Earlier transforms ensure that the index has the right type 2320 // according to Data Layout, which considerably simplifies the 2321 // logic by eliminating implicit casts. 2322 assert(Idx->getType() == DL.getIndexType(GEPType) && 2323 "Index type does not match the Data Layout preferences"); 2324 2325 bool NSW; 2326 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2327 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2328 // If the multiplication NewIdx * Scale may overflow then the new 2329 // GEP may not be "inbounds". 2330 Value *NewGEP = 2331 GEP.isInBounds() && NSW 2332 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2333 NewIdx, GEP.getName()) 2334 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2335 GEP.getName()); 2336 2337 // The NewGEP must be pointer typed, so must the old one -> BitCast 2338 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2339 GEPType); 2340 } 2341 } 2342 } 2343 2344 // Similarly, transform things like: 2345 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2346 // (where tmp = 8*tmp2) into: 2347 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2348 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2349 StrippedPtrEltTy->isArrayTy()) { 2350 // Check that changing to the array element type amounts to dividing the 2351 // index by a scale factor. 2352 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2353 uint64_t ArrayEltSize = 2354 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) 2355 .getFixedSize(); 2356 if (ResSize && ArrayEltSize % ResSize == 0) { 2357 Value *Idx = GEP.getOperand(1); 2358 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2359 uint64_t Scale = ArrayEltSize / ResSize; 2360 2361 // Earlier transforms ensure that the index has the right type 2362 // according to the Data Layout, which considerably simplifies 2363 // the logic by eliminating implicit casts. 2364 assert(Idx->getType() == DL.getIndexType(GEPType) && 2365 "Index type does not match the Data Layout preferences"); 2366 2367 bool NSW; 2368 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2369 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2370 // If the multiplication NewIdx * Scale may overflow then the new 2371 // GEP may not be "inbounds". 2372 Type *IndTy = DL.getIndexType(GEPType); 2373 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2374 2375 Value *NewGEP = 2376 GEP.isInBounds() && NSW 2377 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2378 Off, GEP.getName()) 2379 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2380 GEP.getName()); 2381 // The NewGEP must be pointer typed, so must the old one -> BitCast 2382 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2383 GEPType); 2384 } 2385 } 2386 } 2387 } 2388 } 2389 2390 // addrspacecast between types is canonicalized as a bitcast, then an 2391 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2392 // through the addrspacecast. 2393 Value *ASCStrippedPtrOp = PtrOp; 2394 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2395 // X = bitcast A addrspace(1)* to B addrspace(1)* 2396 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2397 // Z = gep Y, <...constant indices...> 2398 // Into an addrspacecasted GEP of the struct. 2399 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2400 ASCStrippedPtrOp = BC; 2401 } 2402 2403 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 2404 Value *SrcOp = BCI->getOperand(0); 2405 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2406 Type *SrcEltType = SrcType->getElementType(); 2407 2408 // GEP directly using the source operand if this GEP is accessing an element 2409 // of a bitcasted pointer to vector or array of the same dimensions: 2410 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2411 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2412 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, 2413 const DataLayout &DL) { 2414 auto *VecVTy = cast<FixedVectorType>(VecTy); 2415 return ArrTy->getArrayElementType() == VecVTy->getElementType() && 2416 ArrTy->getArrayNumElements() == VecVTy->getNumElements() && 2417 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); 2418 }; 2419 if (GEP.getNumOperands() == 3 && 2420 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) && 2421 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || 2422 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() && 2423 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { 2424 2425 // Create a new GEP here, as using `setOperand()` followed by 2426 // `setSourceElementType()` won't actually update the type of the 2427 // existing GEP Value. Causing issues if this Value is accessed when 2428 // constructing an AddrSpaceCastInst 2429 Value *NGEP = 2430 GEP.isInBounds() 2431 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}) 2432 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}); 2433 NGEP->takeName(&GEP); 2434 2435 // Preserve GEP address space to satisfy users 2436 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2437 return new AddrSpaceCastInst(NGEP, GEPType); 2438 2439 return replaceInstUsesWith(GEP, NGEP); 2440 } 2441 2442 // See if we can simplify: 2443 // X = bitcast A* to B* 2444 // Y = gep X, <...constant indices...> 2445 // into a gep of the original struct. This is important for SROA and alias 2446 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2447 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 2448 APInt Offset(OffsetBits, 0); 2449 2450 // If the bitcast argument is an allocation, The bitcast is for convertion 2451 // to actual type of allocation. Removing such bitcasts, results in having 2452 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of 2453 // struct or array hierarchy. 2454 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have 2455 // a better chance to succeed. 2456 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) && 2457 !isAllocationFn(SrcOp, &TLI)) { 2458 // If this GEP instruction doesn't move the pointer, just replace the GEP 2459 // with a bitcast of the real input to the dest type. 2460 if (!Offset) { 2461 // If the bitcast is of an allocation, and the allocation will be 2462 // converted to match the type of the cast, don't touch this. 2463 if (isa<AllocaInst>(SrcOp)) { 2464 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2465 if (Instruction *I = visitBitCast(*BCI)) { 2466 if (I != BCI) { 2467 I->takeName(BCI); 2468 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2469 replaceInstUsesWith(*BCI, I); 2470 } 2471 return &GEP; 2472 } 2473 } 2474 2475 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2476 return new AddrSpaceCastInst(SrcOp, GEPType); 2477 return new BitCastInst(SrcOp, GEPType); 2478 } 2479 2480 // Otherwise, if the offset is non-zero, we need to find out if there is a 2481 // field at Offset in 'A's type. If so, we can pull the cast through the 2482 // GEP. 2483 SmallVector<Value*, 8> NewIndices; 2484 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2485 Value *NGEP = 2486 GEP.isInBounds() 2487 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) 2488 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); 2489 2490 if (NGEP->getType() == GEPType) 2491 return replaceInstUsesWith(GEP, NGEP); 2492 NGEP->takeName(&GEP); 2493 2494 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2495 return new AddrSpaceCastInst(NGEP, GEPType); 2496 return new BitCastInst(NGEP, GEPType); 2497 } 2498 } 2499 } 2500 2501 if (!GEP.isInBounds()) { 2502 unsigned IdxWidth = 2503 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2504 APInt BasePtrOffset(IdxWidth, 0); 2505 Value *UnderlyingPtrOp = 2506 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2507 BasePtrOffset); 2508 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2509 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2510 BasePtrOffset.isNonNegative()) { 2511 APInt AllocSize( 2512 IdxWidth, 2513 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize()); 2514 if (BasePtrOffset.ule(AllocSize)) { 2515 return GetElementPtrInst::CreateInBounds( 2516 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1), 2517 GEP.getName()); 2518 } 2519 } 2520 } 2521 } 2522 2523 if (Instruction *R = foldSelectGEP(GEP, Builder)) 2524 return R; 2525 2526 return nullptr; 2527 } 2528 2529 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 2530 Instruction *AI) { 2531 if (isa<ConstantPointerNull>(V)) 2532 return true; 2533 if (auto *LI = dyn_cast<LoadInst>(V)) 2534 return isa<GlobalVariable>(LI->getPointerOperand()); 2535 // Two distinct allocations will never be equal. 2536 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2537 // through bitcasts of V can cause 2538 // the result statement below to be true, even when AI and V (ex: 2539 // i8* ->i32* ->i8* of AI) are the same allocations. 2540 return isAllocLikeFn(V, TLI) && V != AI; 2541 } 2542 2543 static bool isAllocSiteRemovable(Instruction *AI, 2544 SmallVectorImpl<WeakTrackingVH> &Users, 2545 const TargetLibraryInfo *TLI) { 2546 SmallVector<Instruction*, 4> Worklist; 2547 Worklist.push_back(AI); 2548 2549 do { 2550 Instruction *PI = Worklist.pop_back_val(); 2551 for (User *U : PI->users()) { 2552 Instruction *I = cast<Instruction>(U); 2553 switch (I->getOpcode()) { 2554 default: 2555 // Give up the moment we see something we can't handle. 2556 return false; 2557 2558 case Instruction::AddrSpaceCast: 2559 case Instruction::BitCast: 2560 case Instruction::GetElementPtr: 2561 Users.emplace_back(I); 2562 Worklist.push_back(I); 2563 continue; 2564 2565 case Instruction::ICmp: { 2566 ICmpInst *ICI = cast<ICmpInst>(I); 2567 // We can fold eq/ne comparisons with null to false/true, respectively. 2568 // We also fold comparisons in some conditions provided the alloc has 2569 // not escaped (see isNeverEqualToUnescapedAlloc). 2570 if (!ICI->isEquality()) 2571 return false; 2572 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2573 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2574 return false; 2575 Users.emplace_back(I); 2576 continue; 2577 } 2578 2579 case Instruction::Call: 2580 // Ignore no-op and store intrinsics. 2581 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2582 switch (II->getIntrinsicID()) { 2583 default: 2584 return false; 2585 2586 case Intrinsic::memmove: 2587 case Intrinsic::memcpy: 2588 case Intrinsic::memset: { 2589 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2590 if (MI->isVolatile() || MI->getRawDest() != PI) 2591 return false; 2592 LLVM_FALLTHROUGH; 2593 } 2594 case Intrinsic::assume: 2595 case Intrinsic::invariant_start: 2596 case Intrinsic::invariant_end: 2597 case Intrinsic::lifetime_start: 2598 case Intrinsic::lifetime_end: 2599 case Intrinsic::objectsize: 2600 Users.emplace_back(I); 2601 continue; 2602 case Intrinsic::launder_invariant_group: 2603 case Intrinsic::strip_invariant_group: 2604 Users.emplace_back(I); 2605 Worklist.push_back(I); 2606 continue; 2607 } 2608 } 2609 2610 if (isFreeCall(I, TLI)) { 2611 Users.emplace_back(I); 2612 continue; 2613 } 2614 2615 if (isReallocLikeFn(I, TLI, true)) { 2616 Users.emplace_back(I); 2617 Worklist.push_back(I); 2618 continue; 2619 } 2620 2621 return false; 2622 2623 case Instruction::Store: { 2624 StoreInst *SI = cast<StoreInst>(I); 2625 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2626 return false; 2627 Users.emplace_back(I); 2628 continue; 2629 } 2630 } 2631 llvm_unreachable("missing a return?"); 2632 } 2633 } while (!Worklist.empty()); 2634 return true; 2635 } 2636 2637 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 2638 // If we have a malloc call which is only used in any amount of comparisons to 2639 // null and free calls, delete the calls and replace the comparisons with true 2640 // or false as appropriate. 2641 2642 // This is based on the principle that we can substitute our own allocation 2643 // function (which will never return null) rather than knowledge of the 2644 // specific function being called. In some sense this can change the permitted 2645 // outputs of a program (when we convert a malloc to an alloca, the fact that 2646 // the allocation is now on the stack is potentially visible, for example), 2647 // but we believe in a permissible manner. 2648 SmallVector<WeakTrackingVH, 64> Users; 2649 2650 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2651 // before each store. 2652 SmallVector<DbgVariableIntrinsic *, 8> DVIs; 2653 std::unique_ptr<DIBuilder> DIB; 2654 if (isa<AllocaInst>(MI)) { 2655 findDbgUsers(DVIs, &MI); 2656 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2657 } 2658 2659 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2660 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2661 // Lowering all @llvm.objectsize calls first because they may 2662 // use a bitcast/GEP of the alloca we are removing. 2663 if (!Users[i]) 2664 continue; 2665 2666 Instruction *I = cast<Instruction>(&*Users[i]); 2667 2668 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2669 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2670 Value *Result = 2671 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); 2672 replaceInstUsesWith(*I, Result); 2673 eraseInstFromFunction(*I); 2674 Users[i] = nullptr; // Skip examining in the next loop. 2675 } 2676 } 2677 } 2678 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2679 if (!Users[i]) 2680 continue; 2681 2682 Instruction *I = cast<Instruction>(&*Users[i]); 2683 2684 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2685 replaceInstUsesWith(*C, 2686 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2687 C->isFalseWhenEqual())); 2688 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2689 for (auto *DVI : DVIs) 2690 if (DVI->isAddressOfVariable()) 2691 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 2692 } else { 2693 // Casts, GEP, or anything else: we're about to delete this instruction, 2694 // so it can not have any valid uses. 2695 replaceInstUsesWith(*I, PoisonValue::get(I->getType())); 2696 } 2697 eraseInstFromFunction(*I); 2698 } 2699 2700 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2701 // Replace invoke with a NOP intrinsic to maintain the original CFG 2702 Module *M = II->getModule(); 2703 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2704 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2705 None, "", II->getParent()); 2706 } 2707 2708 // Remove debug intrinsics which describe the value contained within the 2709 // alloca. In addition to removing dbg.{declare,addr} which simply point to 2710 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 2711 // 2712 // ``` 2713 // define void @foo(i32 %0) { 2714 // %a = alloca i32 ; Deleted. 2715 // store i32 %0, i32* %a 2716 // dbg.value(i32 %0, "arg0") ; Not deleted. 2717 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 2718 // call void @trivially_inlinable_no_op(i32* %a) 2719 // ret void 2720 // } 2721 // ``` 2722 // 2723 // This may not be required if we stop describing the contents of allocas 2724 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 2725 // the LowerDbgDeclare utility. 2726 // 2727 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 2728 // "arg0" dbg.value may be stale after the call. However, failing to remove 2729 // the DW_OP_deref dbg.value causes large gaps in location coverage. 2730 for (auto *DVI : DVIs) 2731 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 2732 DVI->eraseFromParent(); 2733 2734 return eraseInstFromFunction(MI); 2735 } 2736 return nullptr; 2737 } 2738 2739 /// Move the call to free before a NULL test. 2740 /// 2741 /// Check if this free is accessed after its argument has been test 2742 /// against NULL (property 0). 2743 /// If yes, it is legal to move this call in its predecessor block. 2744 /// 2745 /// The move is performed only if the block containing the call to free 2746 /// will be removed, i.e.: 2747 /// 1. it has only one predecessor P, and P has two successors 2748 /// 2. it contains the call, noops, and an unconditional branch 2749 /// 3. its successor is the same as its predecessor's successor 2750 /// 2751 /// The profitability is out-of concern here and this function should 2752 /// be called only if the caller knows this transformation would be 2753 /// profitable (e.g., for code size). 2754 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2755 const DataLayout &DL) { 2756 Value *Op = FI.getArgOperand(0); 2757 BasicBlock *FreeInstrBB = FI.getParent(); 2758 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2759 2760 // Validate part of constraint #1: Only one predecessor 2761 // FIXME: We can extend the number of predecessor, but in that case, we 2762 // would duplicate the call to free in each predecessor and it may 2763 // not be profitable even for code size. 2764 if (!PredBB) 2765 return nullptr; 2766 2767 // Validate constraint #2: Does this block contains only the call to 2768 // free, noops, and an unconditional branch? 2769 BasicBlock *SuccBB; 2770 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2771 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2772 return nullptr; 2773 2774 // If there are only 2 instructions in the block, at this point, 2775 // this is the call to free and unconditional. 2776 // If there are more than 2 instructions, check that they are noops 2777 // i.e., they won't hurt the performance of the generated code. 2778 if (FreeInstrBB->size() != 2) { 2779 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 2780 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2781 continue; 2782 auto *Cast = dyn_cast<CastInst>(&Inst); 2783 if (!Cast || !Cast->isNoopCast(DL)) 2784 return nullptr; 2785 } 2786 } 2787 // Validate the rest of constraint #1 by matching on the pred branch. 2788 Instruction *TI = PredBB->getTerminator(); 2789 BasicBlock *TrueBB, *FalseBB; 2790 ICmpInst::Predicate Pred; 2791 if (!match(TI, m_Br(m_ICmp(Pred, 2792 m_CombineOr(m_Specific(Op), 2793 m_Specific(Op->stripPointerCasts())), 2794 m_Zero()), 2795 TrueBB, FalseBB))) 2796 return nullptr; 2797 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2798 return nullptr; 2799 2800 // Validate constraint #3: Ensure the null case just falls through. 2801 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2802 return nullptr; 2803 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2804 "Broken CFG: missing edge from predecessor to successor"); 2805 2806 // At this point, we know that everything in FreeInstrBB can be moved 2807 // before TI. 2808 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) { 2809 if (&Instr == FreeInstrBBTerminator) 2810 break; 2811 Instr.moveBefore(TI); 2812 } 2813 assert(FreeInstrBB->size() == 1 && 2814 "Only the branch instruction should remain"); 2815 return &FI; 2816 } 2817 2818 Instruction *InstCombinerImpl::visitFree(CallInst &FI) { 2819 Value *Op = FI.getArgOperand(0); 2820 2821 // free undef -> unreachable. 2822 if (isa<UndefValue>(Op)) { 2823 // Leave a marker since we can't modify the CFG here. 2824 CreateNonTerminatorUnreachable(&FI); 2825 return eraseInstFromFunction(FI); 2826 } 2827 2828 // If we have 'free null' delete the instruction. This can happen in stl code 2829 // when lots of inlining happens. 2830 if (isa<ConstantPointerNull>(Op)) 2831 return eraseInstFromFunction(FI); 2832 2833 // If we had free(realloc(...)) with no intervening uses, then eliminate the 2834 // realloc() entirely. 2835 if (CallInst *CI = dyn_cast<CallInst>(Op)) { 2836 if (CI->hasOneUse() && isReallocLikeFn(CI, &TLI, true)) { 2837 return eraseInstFromFunction( 2838 *replaceInstUsesWith(*CI, CI->getOperand(0))); 2839 } 2840 } 2841 2842 // If we optimize for code size, try to move the call to free before the null 2843 // test so that simplify cfg can remove the empty block and dead code 2844 // elimination the branch. I.e., helps to turn something like: 2845 // if (foo) free(foo); 2846 // into 2847 // free(foo); 2848 // 2849 // Note that we can only do this for 'free' and not for any flavor of 2850 // 'operator delete'; there is no 'operator delete' symbol for which we are 2851 // permitted to invent a call, even if we're passing in a null pointer. 2852 if (MinimizeSize) { 2853 LibFunc Func; 2854 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 2855 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 2856 return I; 2857 } 2858 2859 return nullptr; 2860 } 2861 2862 static bool isMustTailCall(Value *V) { 2863 if (auto *CI = dyn_cast<CallInst>(V)) 2864 return CI->isMustTailCall(); 2865 return false; 2866 } 2867 2868 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 2869 if (RI.getNumOperands() == 0) // ret void 2870 return nullptr; 2871 2872 Value *ResultOp = RI.getOperand(0); 2873 Type *VTy = ResultOp->getType(); 2874 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp)) 2875 return nullptr; 2876 2877 // Don't replace result of musttail calls. 2878 if (isMustTailCall(ResultOp)) 2879 return nullptr; 2880 2881 // There might be assume intrinsics dominating this return that completely 2882 // determine the value. If so, constant fold it. 2883 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2884 if (Known.isConstant()) 2885 return replaceOperand(RI, 0, 2886 Constant::getIntegerValue(VTy, Known.getConstant())); 2887 2888 return nullptr; 2889 } 2890 2891 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! 2892 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 2893 // Try to remove the previous instruction if it must lead to unreachable. 2894 // This includes instructions like stores and "llvm.assume" that may not get 2895 // removed by simple dead code elimination. 2896 while (Instruction *Prev = I.getPrevNonDebugInstruction()) { 2897 // While we theoretically can erase EH, that would result in a block that 2898 // used to start with an EH no longer starting with EH, which is invalid. 2899 // To make it valid, we'd need to fixup predecessors to no longer refer to 2900 // this block, but that changes CFG, which is not allowed in InstCombine. 2901 if (Prev->isEHPad()) 2902 return nullptr; // Can not drop any more instructions. We're done here. 2903 2904 if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) 2905 return nullptr; // Can not drop any more instructions. We're done here. 2906 // Otherwise, this instruction can be freely erased, 2907 // even if it is not side-effect free. 2908 2909 // A value may still have uses before we process it here (for example, in 2910 // another unreachable block), so convert those to poison. 2911 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); 2912 eraseInstFromFunction(*Prev); 2913 } 2914 assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty."); 2915 // FIXME: recurse into unconditional predecessors? 2916 return nullptr; 2917 } 2918 2919 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 2920 assert(BI.isUnconditional() && "Only for unconditional branches."); 2921 2922 // If this store is the second-to-last instruction in the basic block 2923 // (excluding debug info and bitcasts of pointers) and if the block ends with 2924 // an unconditional branch, try to move the store to the successor block. 2925 2926 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 2927 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 2928 return BBI->isDebugOrPseudoInst() || 2929 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 2930 }; 2931 2932 BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 2933 do { 2934 if (BBI != FirstInstr) 2935 --BBI; 2936 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 2937 2938 return dyn_cast<StoreInst>(BBI); 2939 }; 2940 2941 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 2942 if (mergeStoreIntoSuccessor(*SI)) 2943 return &BI; 2944 2945 return nullptr; 2946 } 2947 2948 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 2949 if (BI.isUnconditional()) 2950 return visitUnconditionalBranchInst(BI); 2951 2952 // Change br (not X), label True, label False to: br X, label False, True 2953 Value *X = nullptr; 2954 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 2955 !isa<Constant>(X)) { 2956 // Swap Destinations and condition... 2957 BI.swapSuccessors(); 2958 return replaceOperand(BI, 0, X); 2959 } 2960 2961 // If the condition is irrelevant, remove the use so that other 2962 // transforms on the condition become more effective. 2963 if (!isa<ConstantInt>(BI.getCondition()) && 2964 BI.getSuccessor(0) == BI.getSuccessor(1)) 2965 return replaceOperand( 2966 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType())); 2967 2968 // Canonicalize, for example, fcmp_one -> fcmp_oeq. 2969 CmpInst::Predicate Pred; 2970 if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())), 2971 m_BasicBlock(), m_BasicBlock())) && 2972 !isCanonicalPredicate(Pred)) { 2973 // Swap destinations and condition. 2974 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 2975 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2976 BI.swapSuccessors(); 2977 Worklist.push(Cond); 2978 return &BI; 2979 } 2980 2981 return nullptr; 2982 } 2983 2984 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 2985 Value *Cond = SI.getCondition(); 2986 Value *Op0; 2987 ConstantInt *AddRHS; 2988 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 2989 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2990 for (auto Case : SI.cases()) { 2991 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 2992 assert(isa<ConstantInt>(NewCase) && 2993 "Result of expression should be constant"); 2994 Case.setValue(cast<ConstantInt>(NewCase)); 2995 } 2996 return replaceOperand(SI, 0, Op0); 2997 } 2998 2999 KnownBits Known = computeKnownBits(Cond, 0, &SI); 3000 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 3001 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 3002 3003 // Compute the number of leading bits we can ignore. 3004 // TODO: A better way to determine this would use ComputeNumSignBits(). 3005 for (auto &C : SI.cases()) { 3006 LeadingKnownZeros = std::min( 3007 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 3008 LeadingKnownOnes = std::min( 3009 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 3010 } 3011 3012 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 3013 3014 // Shrink the condition operand if the new type is smaller than the old type. 3015 // But do not shrink to a non-standard type, because backend can't generate 3016 // good code for that yet. 3017 // TODO: We can make it aggressive again after fixing PR39569. 3018 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 3019 shouldChangeType(Known.getBitWidth(), NewWidth)) { 3020 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 3021 Builder.SetInsertPoint(&SI); 3022 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 3023 3024 for (auto Case : SI.cases()) { 3025 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3026 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3027 } 3028 return replaceOperand(SI, 0, NewCond); 3029 } 3030 3031 return nullptr; 3032 } 3033 3034 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 3035 Value *Agg = EV.getAggregateOperand(); 3036 3037 if (!EV.hasIndices()) 3038 return replaceInstUsesWith(EV, Agg); 3039 3040 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 3041 SQ.getWithInstruction(&EV))) 3042 return replaceInstUsesWith(EV, V); 3043 3044 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 3045 // We're extracting from an insertvalue instruction, compare the indices 3046 const unsigned *exti, *exte, *insi, *inse; 3047 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 3048 exte = EV.idx_end(), inse = IV->idx_end(); 3049 exti != exte && insi != inse; 3050 ++exti, ++insi) { 3051 if (*insi != *exti) 3052 // The insert and extract both reference distinctly different elements. 3053 // This means the extract is not influenced by the insert, and we can 3054 // replace the aggregate operand of the extract with the aggregate 3055 // operand of the insert. i.e., replace 3056 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3057 // %E = extractvalue { i32, { i32 } } %I, 0 3058 // with 3059 // %E = extractvalue { i32, { i32 } } %A, 0 3060 return ExtractValueInst::Create(IV->getAggregateOperand(), 3061 EV.getIndices()); 3062 } 3063 if (exti == exte && insi == inse) 3064 // Both iterators are at the end: Index lists are identical. Replace 3065 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3066 // %C = extractvalue { i32, { i32 } } %B, 1, 0 3067 // with "i32 42" 3068 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 3069 if (exti == exte) { 3070 // The extract list is a prefix of the insert list. i.e. replace 3071 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3072 // %E = extractvalue { i32, { i32 } } %I, 1 3073 // with 3074 // %X = extractvalue { i32, { i32 } } %A, 1 3075 // %E = insertvalue { i32 } %X, i32 42, 0 3076 // by switching the order of the insert and extract (though the 3077 // insertvalue should be left in, since it may have other uses). 3078 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 3079 EV.getIndices()); 3080 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 3081 makeArrayRef(insi, inse)); 3082 } 3083 if (insi == inse) 3084 // The insert list is a prefix of the extract list 3085 // We can simply remove the common indices from the extract and make it 3086 // operate on the inserted value instead of the insertvalue result. 3087 // i.e., replace 3088 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3089 // %E = extractvalue { i32, { i32 } } %I, 1, 0 3090 // with 3091 // %E extractvalue { i32 } { i32 42 }, 0 3092 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 3093 makeArrayRef(exti, exte)); 3094 } 3095 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 3096 // We're extracting from an overflow intrinsic, see if we're the only user, 3097 // which allows us to simplify multiple result intrinsics to simpler 3098 // things that just get one value. 3099 if (WO->hasOneUse()) { 3100 // Check if we're grabbing only the result of a 'with overflow' intrinsic 3101 // and replace it with a traditional binary instruction. 3102 if (*EV.idx_begin() == 0) { 3103 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 3104 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 3105 // Replace the old instruction's uses with poison. 3106 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); 3107 eraseInstFromFunction(*WO); 3108 return BinaryOperator::Create(BinOp, LHS, RHS); 3109 } 3110 3111 assert(*EV.idx_begin() == 1 && 3112 "unexpected extract index for overflow inst"); 3113 3114 // If only the overflow result is used, and the right hand side is a 3115 // constant (or constant splat), we can remove the intrinsic by directly 3116 // checking for overflow. 3117 const APInt *C; 3118 if (match(WO->getRHS(), m_APInt(C))) { 3119 // Compute the no-wrap range [X,Y) for LHS given RHS=C, then 3120 // check for the inverted range using range offset trick (i.e. 3121 // use a subtract to shift the range to bottom of either the 3122 // signed or unsigned domain and then use a single compare to 3123 // check range membership). 3124 ConstantRange NWR = 3125 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 3126 WO->getNoWrapKind()); 3127 APInt Min = WO->isSigned() ? NWR.getSignedMin() : NWR.getUnsignedMin(); 3128 NWR = NWR.subtract(Min); 3129 3130 CmpInst::Predicate Pred; 3131 APInt NewRHSC; 3132 if (NWR.getEquivalentICmp(Pred, NewRHSC)) { 3133 auto *OpTy = WO->getRHS()->getType(); 3134 auto *NewLHS = Builder.CreateSub(WO->getLHS(), 3135 ConstantInt::get(OpTy, Min)); 3136 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, 3137 ConstantInt::get(OpTy, NewRHSC)); 3138 } 3139 } 3140 } 3141 } 3142 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 3143 // If the (non-volatile) load only has one use, we can rewrite this to a 3144 // load from a GEP. This reduces the size of the load. If a load is used 3145 // only by extractvalue instructions then this either must have been 3146 // optimized before, or it is a struct with padding, in which case we 3147 // don't want to do the transformation as it loses padding knowledge. 3148 if (L->isSimple() && L->hasOneUse()) { 3149 // extractvalue has integer indices, getelementptr has Value*s. Convert. 3150 SmallVector<Value*, 4> Indices; 3151 // Prefix an i32 0 since we need the first element. 3152 Indices.push_back(Builder.getInt32(0)); 3153 for (unsigned Idx : EV.indices()) 3154 Indices.push_back(Builder.getInt32(Idx)); 3155 3156 // We need to insert these at the location of the old load, not at that of 3157 // the extractvalue. 3158 Builder.SetInsertPoint(L); 3159 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 3160 L->getPointerOperand(), Indices); 3161 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 3162 // Whatever aliasing information we had for the orignal load must also 3163 // hold for the smaller load, so propagate the annotations. 3164 NL->setAAMetadata(L->getAAMetadata()); 3165 // Returning the load directly will cause the main loop to insert it in 3166 // the wrong spot, so use replaceInstUsesWith(). 3167 return replaceInstUsesWith(EV, NL); 3168 } 3169 // We could simplify extracts from other values. Note that nested extracts may 3170 // already be simplified implicitly by the above: extract (extract (insert) ) 3171 // will be translated into extract ( insert ( extract ) ) first and then just 3172 // the value inserted, if appropriate. Similarly for extracts from single-use 3173 // loads: extract (extract (load)) will be translated to extract (load (gep)) 3174 // and if again single-use then via load (gep (gep)) to load (gep). 3175 // However, double extracts from e.g. function arguments or return values 3176 // aren't handled yet. 3177 return nullptr; 3178 } 3179 3180 /// Return 'true' if the given typeinfo will match anything. 3181 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 3182 switch (Personality) { 3183 case EHPersonality::GNU_C: 3184 case EHPersonality::GNU_C_SjLj: 3185 case EHPersonality::Rust: 3186 // The GCC C EH and Rust personality only exists to support cleanups, so 3187 // it's not clear what the semantics of catch clauses are. 3188 return false; 3189 case EHPersonality::Unknown: 3190 return false; 3191 case EHPersonality::GNU_Ada: 3192 // While __gnat_all_others_value will match any Ada exception, it doesn't 3193 // match foreign exceptions (or didn't, before gcc-4.7). 3194 return false; 3195 case EHPersonality::GNU_CXX: 3196 case EHPersonality::GNU_CXX_SjLj: 3197 case EHPersonality::GNU_ObjC: 3198 case EHPersonality::MSVC_X86SEH: 3199 case EHPersonality::MSVC_TableSEH: 3200 case EHPersonality::MSVC_CXX: 3201 case EHPersonality::CoreCLR: 3202 case EHPersonality::Wasm_CXX: 3203 case EHPersonality::XL_CXX: 3204 return TypeInfo->isNullValue(); 3205 } 3206 llvm_unreachable("invalid enum"); 3207 } 3208 3209 static bool shorter_filter(const Value *LHS, const Value *RHS) { 3210 return 3211 cast<ArrayType>(LHS->getType())->getNumElements() 3212 < 3213 cast<ArrayType>(RHS->getType())->getNumElements(); 3214 } 3215 3216 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 3217 // The logic here should be correct for any real-world personality function. 3218 // However if that turns out not to be true, the offending logic can always 3219 // be conditioned on the personality function, like the catch-all logic is. 3220 EHPersonality Personality = 3221 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 3222 3223 // Simplify the list of clauses, eg by removing repeated catch clauses 3224 // (these are often created by inlining). 3225 bool MakeNewInstruction = false; // If true, recreate using the following: 3226 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 3227 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 3228 3229 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 3230 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 3231 bool isLastClause = i + 1 == e; 3232 if (LI.isCatch(i)) { 3233 // A catch clause. 3234 Constant *CatchClause = LI.getClause(i); 3235 Constant *TypeInfo = CatchClause->stripPointerCasts(); 3236 3237 // If we already saw this clause, there is no point in having a second 3238 // copy of it. 3239 if (AlreadyCaught.insert(TypeInfo).second) { 3240 // This catch clause was not already seen. 3241 NewClauses.push_back(CatchClause); 3242 } else { 3243 // Repeated catch clause - drop the redundant copy. 3244 MakeNewInstruction = true; 3245 } 3246 3247 // If this is a catch-all then there is no point in keeping any following 3248 // clauses or marking the landingpad as having a cleanup. 3249 if (isCatchAll(Personality, TypeInfo)) { 3250 if (!isLastClause) 3251 MakeNewInstruction = true; 3252 CleanupFlag = false; 3253 break; 3254 } 3255 } else { 3256 // A filter clause. If any of the filter elements were already caught 3257 // then they can be dropped from the filter. It is tempting to try to 3258 // exploit the filter further by saying that any typeinfo that does not 3259 // occur in the filter can't be caught later (and thus can be dropped). 3260 // However this would be wrong, since typeinfos can match without being 3261 // equal (for example if one represents a C++ class, and the other some 3262 // class derived from it). 3263 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 3264 Constant *FilterClause = LI.getClause(i); 3265 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 3266 unsigned NumTypeInfos = FilterType->getNumElements(); 3267 3268 // An empty filter catches everything, so there is no point in keeping any 3269 // following clauses or marking the landingpad as having a cleanup. By 3270 // dealing with this case here the following code is made a bit simpler. 3271 if (!NumTypeInfos) { 3272 NewClauses.push_back(FilterClause); 3273 if (!isLastClause) 3274 MakeNewInstruction = true; 3275 CleanupFlag = false; 3276 break; 3277 } 3278 3279 bool MakeNewFilter = false; // If true, make a new filter. 3280 SmallVector<Constant *, 16> NewFilterElts; // New elements. 3281 if (isa<ConstantAggregateZero>(FilterClause)) { 3282 // Not an empty filter - it contains at least one null typeinfo. 3283 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 3284 Constant *TypeInfo = 3285 Constant::getNullValue(FilterType->getElementType()); 3286 // If this typeinfo is a catch-all then the filter can never match. 3287 if (isCatchAll(Personality, TypeInfo)) { 3288 // Throw the filter away. 3289 MakeNewInstruction = true; 3290 continue; 3291 } 3292 3293 // There is no point in having multiple copies of this typeinfo, so 3294 // discard all but the first copy if there is more than one. 3295 NewFilterElts.push_back(TypeInfo); 3296 if (NumTypeInfos > 1) 3297 MakeNewFilter = true; 3298 } else { 3299 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 3300 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 3301 NewFilterElts.reserve(NumTypeInfos); 3302 3303 // Remove any filter elements that were already caught or that already 3304 // occurred in the filter. While there, see if any of the elements are 3305 // catch-alls. If so, the filter can be discarded. 3306 bool SawCatchAll = false; 3307 for (unsigned j = 0; j != NumTypeInfos; ++j) { 3308 Constant *Elt = Filter->getOperand(j); 3309 Constant *TypeInfo = Elt->stripPointerCasts(); 3310 if (isCatchAll(Personality, TypeInfo)) { 3311 // This element is a catch-all. Bail out, noting this fact. 3312 SawCatchAll = true; 3313 break; 3314 } 3315 3316 // Even if we've seen a type in a catch clause, we don't want to 3317 // remove it from the filter. An unexpected type handler may be 3318 // set up for a call site which throws an exception of the same 3319 // type caught. In order for the exception thrown by the unexpected 3320 // handler to propagate correctly, the filter must be correctly 3321 // described for the call site. 3322 // 3323 // Example: 3324 // 3325 // void unexpected() { throw 1;} 3326 // void foo() throw (int) { 3327 // std::set_unexpected(unexpected); 3328 // try { 3329 // throw 2.0; 3330 // } catch (int i) {} 3331 // } 3332 3333 // There is no point in having multiple copies of the same typeinfo in 3334 // a filter, so only add it if we didn't already. 3335 if (SeenInFilter.insert(TypeInfo).second) 3336 NewFilterElts.push_back(cast<Constant>(Elt)); 3337 } 3338 // A filter containing a catch-all cannot match anything by definition. 3339 if (SawCatchAll) { 3340 // Throw the filter away. 3341 MakeNewInstruction = true; 3342 continue; 3343 } 3344 3345 // If we dropped something from the filter, make a new one. 3346 if (NewFilterElts.size() < NumTypeInfos) 3347 MakeNewFilter = true; 3348 } 3349 if (MakeNewFilter) { 3350 FilterType = ArrayType::get(FilterType->getElementType(), 3351 NewFilterElts.size()); 3352 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 3353 MakeNewInstruction = true; 3354 } 3355 3356 NewClauses.push_back(FilterClause); 3357 3358 // If the new filter is empty then it will catch everything so there is 3359 // no point in keeping any following clauses or marking the landingpad 3360 // as having a cleanup. The case of the original filter being empty was 3361 // already handled above. 3362 if (MakeNewFilter && !NewFilterElts.size()) { 3363 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3364 CleanupFlag = false; 3365 break; 3366 } 3367 } 3368 } 3369 3370 // If several filters occur in a row then reorder them so that the shortest 3371 // filters come first (those with the smallest number of elements). This is 3372 // advantageous because shorter filters are more likely to match, speeding up 3373 // unwinding, but mostly because it increases the effectiveness of the other 3374 // filter optimizations below. 3375 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3376 unsigned j; 3377 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3378 for (j = i; j != e; ++j) 3379 if (!isa<ArrayType>(NewClauses[j]->getType())) 3380 break; 3381 3382 // Check whether the filters are already sorted by length. We need to know 3383 // if sorting them is actually going to do anything so that we only make a 3384 // new landingpad instruction if it does. 3385 for (unsigned k = i; k + 1 < j; ++k) 3386 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3387 // Not sorted, so sort the filters now. Doing an unstable sort would be 3388 // correct too but reordering filters pointlessly might confuse users. 3389 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3390 shorter_filter); 3391 MakeNewInstruction = true; 3392 break; 3393 } 3394 3395 // Look for the next batch of filters. 3396 i = j + 1; 3397 } 3398 3399 // If typeinfos matched if and only if equal, then the elements of a filter L 3400 // that occurs later than a filter F could be replaced by the intersection of 3401 // the elements of F and L. In reality two typeinfos can match without being 3402 // equal (for example if one represents a C++ class, and the other some class 3403 // derived from it) so it would be wrong to perform this transform in general. 3404 // However the transform is correct and useful if F is a subset of L. In that 3405 // case L can be replaced by F, and thus removed altogether since repeating a 3406 // filter is pointless. So here we look at all pairs of filters F and L where 3407 // L follows F in the list of clauses, and remove L if every element of F is 3408 // an element of L. This can occur when inlining C++ functions with exception 3409 // specifications. 3410 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3411 // Examine each filter in turn. 3412 Value *Filter = NewClauses[i]; 3413 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3414 if (!FTy) 3415 // Not a filter - skip it. 3416 continue; 3417 unsigned FElts = FTy->getNumElements(); 3418 // Examine each filter following this one. Doing this backwards means that 3419 // we don't have to worry about filters disappearing under us when removed. 3420 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3421 Value *LFilter = NewClauses[j]; 3422 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3423 if (!LTy) 3424 // Not a filter - skip it. 3425 continue; 3426 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3427 // an element of LFilter, then discard LFilter. 3428 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3429 // If Filter is empty then it is a subset of LFilter. 3430 if (!FElts) { 3431 // Discard LFilter. 3432 NewClauses.erase(J); 3433 MakeNewInstruction = true; 3434 // Move on to the next filter. 3435 continue; 3436 } 3437 unsigned LElts = LTy->getNumElements(); 3438 // If Filter is longer than LFilter then it cannot be a subset of it. 3439 if (FElts > LElts) 3440 // Move on to the next filter. 3441 continue; 3442 // At this point we know that LFilter has at least one element. 3443 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3444 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3445 // already know that Filter is not longer than LFilter). 3446 if (isa<ConstantAggregateZero>(Filter)) { 3447 assert(FElts <= LElts && "Should have handled this case earlier!"); 3448 // Discard LFilter. 3449 NewClauses.erase(J); 3450 MakeNewInstruction = true; 3451 } 3452 // Move on to the next filter. 3453 continue; 3454 } 3455 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3456 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3457 // Since Filter is non-empty and contains only zeros, it is a subset of 3458 // LFilter iff LFilter contains a zero. 3459 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3460 for (unsigned l = 0; l != LElts; ++l) 3461 if (LArray->getOperand(l)->isNullValue()) { 3462 // LFilter contains a zero - discard it. 3463 NewClauses.erase(J); 3464 MakeNewInstruction = true; 3465 break; 3466 } 3467 // Move on to the next filter. 3468 continue; 3469 } 3470 // At this point we know that both filters are ConstantArrays. Loop over 3471 // operands to see whether every element of Filter is also an element of 3472 // LFilter. Since filters tend to be short this is probably faster than 3473 // using a method that scales nicely. 3474 ConstantArray *FArray = cast<ConstantArray>(Filter); 3475 bool AllFound = true; 3476 for (unsigned f = 0; f != FElts; ++f) { 3477 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3478 AllFound = false; 3479 for (unsigned l = 0; l != LElts; ++l) { 3480 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3481 if (LTypeInfo == FTypeInfo) { 3482 AllFound = true; 3483 break; 3484 } 3485 } 3486 if (!AllFound) 3487 break; 3488 } 3489 if (AllFound) { 3490 // Discard LFilter. 3491 NewClauses.erase(J); 3492 MakeNewInstruction = true; 3493 } 3494 // Move on to the next filter. 3495 } 3496 } 3497 3498 // If we changed any of the clauses, replace the old landingpad instruction 3499 // with a new one. 3500 if (MakeNewInstruction) { 3501 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3502 NewClauses.size()); 3503 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3504 NLI->addClause(NewClauses[i]); 3505 // A landing pad with no clauses must have the cleanup flag set. It is 3506 // theoretically possible, though highly unlikely, that we eliminated all 3507 // clauses. If so, force the cleanup flag to true. 3508 if (NewClauses.empty()) 3509 CleanupFlag = true; 3510 NLI->setCleanup(CleanupFlag); 3511 return NLI; 3512 } 3513 3514 // Even if none of the clauses changed, we may nonetheless have understood 3515 // that the cleanup flag is pointless. Clear it if so. 3516 if (LI.isCleanup() != CleanupFlag) { 3517 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3518 LI.setCleanup(CleanupFlag); 3519 return &LI; 3520 } 3521 3522 return nullptr; 3523 } 3524 3525 Value * 3526 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { 3527 // Try to push freeze through instructions that propagate but don't produce 3528 // poison as far as possible. If an operand of freeze follows three 3529 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one 3530 // guaranteed-non-poison operands then push the freeze through to the one 3531 // operand that is not guaranteed non-poison. The actual transform is as 3532 // follows. 3533 // Op1 = ... ; Op1 can be posion 3534 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have 3535 // ; single guaranteed-non-poison operands 3536 // ... = Freeze(Op0) 3537 // => 3538 // Op1 = ... 3539 // Op1.fr = Freeze(Op1) 3540 // ... = Inst(Op1.fr, NonPoisonOps...) 3541 auto *OrigOp = OrigFI.getOperand(0); 3542 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp); 3543 3544 // While we could change the other users of OrigOp to use freeze(OrigOp), that 3545 // potentially reduces their optimization potential, so let's only do this iff 3546 // the OrigOp is only used by the freeze. 3547 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp)) 3548 return nullptr; 3549 3550 // We can't push the freeze through an instruction which can itself create 3551 // poison. If the only source of new poison is flags, we can simply 3552 // strip them (since we know the only use is the freeze and nothing can 3553 // benefit from them.) 3554 if (canCreateUndefOrPoison(cast<Operator>(OrigOp), /*ConsiderFlags*/ false)) 3555 return nullptr; 3556 3557 // If operand is guaranteed not to be poison, there is no need to add freeze 3558 // to the operand. So we first find the operand that is not guaranteed to be 3559 // poison. 3560 Use *MaybePoisonOperand = nullptr; 3561 for (Use &U : OrigOpInst->operands()) { 3562 if (isGuaranteedNotToBeUndefOrPoison(U.get())) 3563 continue; 3564 if (!MaybePoisonOperand) 3565 MaybePoisonOperand = &U; 3566 else 3567 return nullptr; 3568 } 3569 3570 OrigOpInst->dropPoisonGeneratingFlags(); 3571 3572 // If all operands are guaranteed to be non-poison, we can drop freeze. 3573 if (!MaybePoisonOperand) 3574 return OrigOp; 3575 3576 auto *FrozenMaybePoisonOperand = new FreezeInst( 3577 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); 3578 3579 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); 3580 FrozenMaybePoisonOperand->insertBefore(OrigOpInst); 3581 return OrigOp; 3582 } 3583 3584 bool InstCombinerImpl::freezeDominatedUses(FreezeInst &FI) { 3585 Value *Op = FI.getOperand(0); 3586 3587 if (isa<Constant>(Op)) 3588 return false; 3589 3590 bool Changed = false; 3591 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { 3592 bool Dominates = DT.dominates(&FI, U); 3593 Changed |= Dominates; 3594 return Dominates; 3595 }); 3596 3597 return Changed; 3598 } 3599 3600 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 3601 Value *Op0 = I.getOperand(0); 3602 3603 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3604 return replaceInstUsesWith(I, V); 3605 3606 // freeze (phi const, x) --> phi const, (freeze x) 3607 if (auto *PN = dyn_cast<PHINode>(Op0)) { 3608 if (Instruction *NV = foldOpIntoPhi(I, PN)) 3609 return NV; 3610 } 3611 3612 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) 3613 return replaceInstUsesWith(I, NI); 3614 3615 if (match(Op0, m_Undef())) { 3616 // If I is freeze(undef), see its uses and fold it to the best constant. 3617 // - or: pick -1 3618 // - select's condition: pick the value that leads to choosing a constant 3619 // - other ops: pick 0 3620 Constant *BestValue = nullptr; 3621 Constant *NullValue = Constant::getNullValue(I.getType()); 3622 for (const auto *U : I.users()) { 3623 Constant *C = NullValue; 3624 3625 if (match(U, m_Or(m_Value(), m_Value()))) 3626 C = Constant::getAllOnesValue(I.getType()); 3627 else if (const auto *SI = dyn_cast<SelectInst>(U)) { 3628 if (SI->getCondition() == &I) { 3629 APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1); 3630 C = Constant::getIntegerValue(I.getType(), CondVal); 3631 } 3632 } 3633 3634 if (!BestValue) 3635 BestValue = C; 3636 else if (BestValue != C) 3637 BestValue = NullValue; 3638 } 3639 3640 return replaceInstUsesWith(I, BestValue); 3641 } 3642 3643 // Replace all dominated uses of Op to freeze(Op). 3644 if (freezeDominatedUses(I)) 3645 return &I; 3646 3647 return nullptr; 3648 } 3649 3650 /// Try to move the specified instruction from its current block into the 3651 /// beginning of DestBlock, which can only happen if it's safe to move the 3652 /// instruction past all of the instructions between it and the end of its 3653 /// block. 3654 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 3655 assert(I->getUniqueUndroppableUser() && "Invariants didn't hold!"); 3656 BasicBlock *SrcBlock = I->getParent(); 3657 3658 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3659 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 3660 I->isTerminator()) 3661 return false; 3662 3663 // Do not sink static or dynamic alloca instructions. Static allocas must 3664 // remain in the entry block, and dynamic allocas must not be sunk in between 3665 // a stacksave / stackrestore pair, which would incorrectly shorten its 3666 // lifetime. 3667 if (isa<AllocaInst>(I)) 3668 return false; 3669 3670 // Do not sink into catchswitch blocks. 3671 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 3672 return false; 3673 3674 // Do not sink convergent call instructions. 3675 if (auto *CI = dyn_cast<CallInst>(I)) { 3676 if (CI->isConvergent()) 3677 return false; 3678 } 3679 // We can only sink load instructions if there is nothing between the load and 3680 // the end of block that could change the value. 3681 if (I->mayReadFromMemory()) { 3682 // We don't want to do any sophisticated alias analysis, so we only check 3683 // the instructions after I in I's parent block if we try to sink to its 3684 // successor block. 3685 if (DestBlock->getUniquePredecessor() != I->getParent()) 3686 return false; 3687 for (BasicBlock::iterator Scan = I->getIterator(), 3688 E = I->getParent()->end(); 3689 Scan != E; ++Scan) 3690 if (Scan->mayWriteToMemory()) 3691 return false; 3692 } 3693 3694 I->dropDroppableUses([DestBlock](const Use *U) { 3695 if (auto *I = dyn_cast<Instruction>(U->getUser())) 3696 return I->getParent() != DestBlock; 3697 return true; 3698 }); 3699 /// FIXME: We could remove droppable uses that are not dominated by 3700 /// the new position. 3701 3702 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 3703 I->moveBefore(&*InsertPos); 3704 ++NumSunkInst; 3705 3706 // Also sink all related debug uses from the source basic block. Otherwise we 3707 // get debug use before the def. Attempt to salvage debug uses first, to 3708 // maximise the range variables have location for. If we cannot salvage, then 3709 // mark the location undef: we know it was supposed to receive a new location 3710 // here, but that computation has been sunk. 3711 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 3712 findDbgUsers(DbgUsers, I); 3713 // Process the sinking DbgUsers in reverse order, as we only want to clone the 3714 // last appearing debug intrinsic for each given variable. 3715 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 3716 for (DbgVariableIntrinsic *DVI : DbgUsers) 3717 if (DVI->getParent() == SrcBlock) 3718 DbgUsersToSink.push_back(DVI); 3719 llvm::sort(DbgUsersToSink, 3720 [](auto *A, auto *B) { return B->comesBefore(A); }); 3721 3722 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 3723 SmallSet<DebugVariable, 4> SunkVariables; 3724 for (auto User : DbgUsersToSink) { 3725 // A dbg.declare instruction should not be cloned, since there can only be 3726 // one per variable fragment. It should be left in the original place 3727 // because the sunk instruction is not an alloca (otherwise we could not be 3728 // here). 3729 if (isa<DbgDeclareInst>(User)) 3730 continue; 3731 3732 DebugVariable DbgUserVariable = 3733 DebugVariable(User->getVariable(), User->getExpression(), 3734 User->getDebugLoc()->getInlinedAt()); 3735 3736 if (!SunkVariables.insert(DbgUserVariable).second) 3737 continue; 3738 3739 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 3740 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 3741 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 3742 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 3743 } 3744 3745 // Perform salvaging without the clones, then sink the clones. 3746 if (!DIIClones.empty()) { 3747 salvageDebugInfoForDbgValues(*I, DbgUsers); 3748 // The clones are in reverse order of original appearance, reverse again to 3749 // maintain the original order. 3750 for (auto &DIIClone : llvm::reverse(DIIClones)) { 3751 DIIClone->insertBefore(&*InsertPos); 3752 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 3753 } 3754 } 3755 3756 return true; 3757 } 3758 3759 bool InstCombinerImpl::run() { 3760 while (!Worklist.isEmpty()) { 3761 // Walk deferred instructions in reverse order, and push them to the 3762 // worklist, which means they'll end up popped from the worklist in-order. 3763 while (Instruction *I = Worklist.popDeferred()) { 3764 // Check to see if we can DCE the instruction. We do this already here to 3765 // reduce the number of uses and thus allow other folds to trigger. 3766 // Note that eraseInstFromFunction() may push additional instructions on 3767 // the deferred worklist, so this will DCE whole instruction chains. 3768 if (isInstructionTriviallyDead(I, &TLI)) { 3769 eraseInstFromFunction(*I); 3770 ++NumDeadInst; 3771 continue; 3772 } 3773 3774 Worklist.push(I); 3775 } 3776 3777 Instruction *I = Worklist.removeOne(); 3778 if (I == nullptr) continue; // skip null values. 3779 3780 // Check to see if we can DCE the instruction. 3781 if (isInstructionTriviallyDead(I, &TLI)) { 3782 eraseInstFromFunction(*I); 3783 ++NumDeadInst; 3784 continue; 3785 } 3786 3787 if (!DebugCounter::shouldExecute(VisitCounter)) 3788 continue; 3789 3790 // Instruction isn't dead, see if we can constant propagate it. 3791 if (!I->use_empty() && 3792 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 3793 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 3794 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 3795 << '\n'); 3796 3797 // Add operands to the worklist. 3798 replaceInstUsesWith(*I, C); 3799 ++NumConstProp; 3800 if (isInstructionTriviallyDead(I, &TLI)) 3801 eraseInstFromFunction(*I); 3802 MadeIRChange = true; 3803 continue; 3804 } 3805 } 3806 3807 // See if we can trivially sink this instruction to its user if we can 3808 // prove that the successor is not executed more frequently than our block. 3809 // Return the UserBlock if successful. 3810 auto getOptionalSinkBlockForInst = 3811 [this](Instruction *I) -> Optional<BasicBlock *> { 3812 if (!EnableCodeSinking) 3813 return None; 3814 auto *UserInst = cast_or_null<Instruction>(I->getUniqueUndroppableUser()); 3815 if (!UserInst) 3816 return None; 3817 3818 BasicBlock *BB = I->getParent(); 3819 BasicBlock *UserParent = nullptr; 3820 3821 // Special handling for Phi nodes - get the block the use occurs in. 3822 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) { 3823 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 3824 if (PN->getIncomingValue(i) == I) { 3825 // Bail out if we have uses in different blocks. We don't do any 3826 // sophisticated analysis (i.e finding NearestCommonDominator of these 3827 // use blocks). 3828 if (UserParent && UserParent != PN->getIncomingBlock(i)) 3829 return None; 3830 UserParent = PN->getIncomingBlock(i); 3831 } 3832 } 3833 assert(UserParent && "expected to find user block!"); 3834 } else 3835 UserParent = UserInst->getParent(); 3836 3837 // Try sinking to another block. If that block is unreachable, then do 3838 // not bother. SimplifyCFG should handle it. 3839 if (UserParent == BB || !DT.isReachableFromEntry(UserParent)) 3840 return None; 3841 3842 auto *Term = UserParent->getTerminator(); 3843 // See if the user is one of our successors that has only one 3844 // predecessor, so that we don't have to split the critical edge. 3845 // Another option where we can sink is a block that ends with a 3846 // terminator that does not pass control to other block (such as 3847 // return or unreachable). In this case: 3848 // - I dominates the User (by SSA form); 3849 // - the User will be executed at most once. 3850 // So sinking I down to User is always profitable or neutral. 3851 if (UserParent->getUniquePredecessor() == BB || 3852 (isa<ReturnInst>(Term) || isa<UnreachableInst>(Term))) { 3853 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?"); 3854 return UserParent; 3855 } 3856 return None; 3857 }; 3858 3859 auto OptBB = getOptionalSinkBlockForInst(I); 3860 if (OptBB) { 3861 auto *UserParent = *OptBB; 3862 // Okay, the CFG is simple enough, try to sink this instruction. 3863 if (TryToSinkInstruction(I, UserParent)) { 3864 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3865 MadeIRChange = true; 3866 // We'll add uses of the sunk instruction below, but since 3867 // sinking can expose opportunities for it's *operands* add 3868 // them to the worklist 3869 for (Use &U : I->operands()) 3870 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3871 Worklist.push(OpI); 3872 } 3873 } 3874 3875 // Now that we have an instruction, try combining it to simplify it. 3876 Builder.SetInsertPoint(I); 3877 Builder.CollectMetadataToCopy( 3878 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 3879 3880 #ifndef NDEBUG 3881 std::string OrigI; 3882 #endif 3883 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 3884 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 3885 3886 if (Instruction *Result = visit(*I)) { 3887 ++NumCombined; 3888 // Should we replace the old instruction with a new one? 3889 if (Result != I) { 3890 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 3891 << " New = " << *Result << '\n'); 3892 3893 Result->copyMetadata(*I, 3894 {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 3895 // Everything uses the new instruction now. 3896 I->replaceAllUsesWith(Result); 3897 3898 // Move the name to the new instruction first. 3899 Result->takeName(I); 3900 3901 // Insert the new instruction into the basic block... 3902 BasicBlock *InstParent = I->getParent(); 3903 BasicBlock::iterator InsertPos = I->getIterator(); 3904 3905 // Are we replace a PHI with something that isn't a PHI, or vice versa? 3906 if (isa<PHINode>(Result) != isa<PHINode>(I)) { 3907 // We need to fix up the insertion point. 3908 if (isa<PHINode>(I)) // PHI -> Non-PHI 3909 InsertPos = InstParent->getFirstInsertionPt(); 3910 else // Non-PHI -> PHI 3911 InsertPos = InstParent->getFirstNonPHI()->getIterator(); 3912 } 3913 3914 InstParent->getInstList().insert(InsertPos, Result); 3915 3916 // Push the new instruction and any users onto the worklist. 3917 Worklist.pushUsersToWorkList(*Result); 3918 Worklist.push(Result); 3919 3920 eraseInstFromFunction(*I); 3921 } else { 3922 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3923 << " New = " << *I << '\n'); 3924 3925 // If the instruction was modified, it's possible that it is now dead. 3926 // if so, remove it. 3927 if (isInstructionTriviallyDead(I, &TLI)) { 3928 eraseInstFromFunction(*I); 3929 } else { 3930 Worklist.pushUsersToWorkList(*I); 3931 Worklist.push(I); 3932 } 3933 } 3934 MadeIRChange = true; 3935 } 3936 } 3937 3938 Worklist.zap(); 3939 return MadeIRChange; 3940 } 3941 3942 // Track the scopes used by !alias.scope and !noalias. In a function, a 3943 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 3944 // by both sets. If not, the declaration of the scope can be safely omitted. 3945 // The MDNode of the scope can be omitted as well for the instructions that are 3946 // part of this function. We do not do that at this point, as this might become 3947 // too time consuming to do. 3948 class AliasScopeTracker { 3949 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 3950 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 3951 3952 public: 3953 void analyse(Instruction *I) { 3954 // This seems to be faster than checking 'mayReadOrWriteMemory()'. 3955 if (!I->hasMetadataOtherThanDebugLoc()) 3956 return; 3957 3958 auto Track = [](Metadata *ScopeList, auto &Container) { 3959 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 3960 if (!MDScopeList || !Container.insert(MDScopeList).second) 3961 return; 3962 for (auto &MDOperand : MDScopeList->operands()) 3963 if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 3964 Container.insert(MDScope); 3965 }; 3966 3967 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 3968 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 3969 } 3970 3971 bool isNoAliasScopeDeclDead(Instruction *Inst) { 3972 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 3973 if (!Decl) 3974 return false; 3975 3976 assert(Decl->use_empty() && 3977 "llvm.experimental.noalias.scope.decl in use ?"); 3978 const MDNode *MDSL = Decl->getScopeList(); 3979 assert(MDSL->getNumOperands() == 1 && 3980 "llvm.experimental.noalias.scope should refer to a single scope"); 3981 auto &MDOperand = MDSL->getOperand(0); 3982 if (auto *MD = dyn_cast<MDNode>(MDOperand)) 3983 return !UsedAliasScopesAndLists.contains(MD) || 3984 !UsedNoAliasScopesAndLists.contains(MD); 3985 3986 // Not an MDNode ? throw away. 3987 return true; 3988 } 3989 }; 3990 3991 /// Populate the IC worklist from a function, by walking it in depth-first 3992 /// order and adding all reachable code to the worklist. 3993 /// 3994 /// This has a couple of tricks to make the code faster and more powerful. In 3995 /// particular, we constant fold and DCE instructions as we go, to avoid adding 3996 /// them to the worklist (this significantly speeds up instcombine on code where 3997 /// many instructions are dead or constant). Additionally, if we find a branch 3998 /// whose condition is a known constant, we only visit the reachable successors. 3999 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 4000 const TargetLibraryInfo *TLI, 4001 InstructionWorklist &ICWorklist) { 4002 bool MadeIRChange = false; 4003 SmallPtrSet<BasicBlock *, 32> Visited; 4004 SmallVector<BasicBlock*, 256> Worklist; 4005 Worklist.push_back(&F.front()); 4006 4007 SmallVector<Instruction *, 128> InstrsForInstructionWorklist; 4008 DenseMap<Constant *, Constant *> FoldedConstants; 4009 AliasScopeTracker SeenAliasScopes; 4010 4011 do { 4012 BasicBlock *BB = Worklist.pop_back_val(); 4013 4014 // We have now visited this block! If we've already been here, ignore it. 4015 if (!Visited.insert(BB).second) 4016 continue; 4017 4018 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 4019 // ConstantProp instruction if trivially constant. 4020 if (!Inst.use_empty() && 4021 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0)))) 4022 if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) { 4023 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst 4024 << '\n'); 4025 Inst.replaceAllUsesWith(C); 4026 ++NumConstProp; 4027 if (isInstructionTriviallyDead(&Inst, TLI)) 4028 Inst.eraseFromParent(); 4029 MadeIRChange = true; 4030 continue; 4031 } 4032 4033 // See if we can constant fold its operands. 4034 for (Use &U : Inst.operands()) { 4035 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 4036 continue; 4037 4038 auto *C = cast<Constant>(U); 4039 Constant *&FoldRes = FoldedConstants[C]; 4040 if (!FoldRes) 4041 FoldRes = ConstantFoldConstant(C, DL, TLI); 4042 4043 if (FoldRes != C) { 4044 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst 4045 << "\n Old = " << *C 4046 << "\n New = " << *FoldRes << '\n'); 4047 U = FoldRes; 4048 MadeIRChange = true; 4049 } 4050 } 4051 4052 // Skip processing debug and pseudo intrinsics in InstCombine. Processing 4053 // these call instructions consumes non-trivial amount of time and 4054 // provides no value for the optimization. 4055 if (!Inst.isDebugOrPseudoInst()) { 4056 InstrsForInstructionWorklist.push_back(&Inst); 4057 SeenAliasScopes.analyse(&Inst); 4058 } 4059 } 4060 4061 // Recursively visit successors. If this is a branch or switch on a 4062 // constant, only visit the reachable successor. 4063 Instruction *TI = BB->getTerminator(); 4064 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 4065 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 4066 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 4067 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 4068 Worklist.push_back(ReachableBB); 4069 continue; 4070 } 4071 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 4072 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 4073 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 4074 continue; 4075 } 4076 } 4077 4078 append_range(Worklist, successors(TI)); 4079 } while (!Worklist.empty()); 4080 4081 // Remove instructions inside unreachable blocks. This prevents the 4082 // instcombine code from having to deal with some bad special cases, and 4083 // reduces use counts of instructions. 4084 for (BasicBlock &BB : F) { 4085 if (Visited.count(&BB)) 4086 continue; 4087 4088 unsigned NumDeadInstInBB; 4089 unsigned NumDeadDbgInstInBB; 4090 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 4091 removeAllNonTerminatorAndEHPadInstructions(&BB); 4092 4093 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 4094 NumDeadInst += NumDeadInstInBB; 4095 } 4096 4097 // Once we've found all of the instructions to add to instcombine's worklist, 4098 // add them in reverse order. This way instcombine will visit from the top 4099 // of the function down. This jives well with the way that it adds all uses 4100 // of instructions to the worklist after doing a transformation, thus avoiding 4101 // some N^2 behavior in pathological cases. 4102 ICWorklist.reserve(InstrsForInstructionWorklist.size()); 4103 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) { 4104 // DCE instruction if trivially dead. As we iterate in reverse program 4105 // order here, we will clean up whole chains of dead instructions. 4106 if (isInstructionTriviallyDead(Inst, TLI) || 4107 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 4108 ++NumDeadInst; 4109 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 4110 salvageDebugInfo(*Inst); 4111 Inst->eraseFromParent(); 4112 MadeIRChange = true; 4113 continue; 4114 } 4115 4116 ICWorklist.push(Inst); 4117 } 4118 4119 return MadeIRChange; 4120 } 4121 4122 static bool combineInstructionsOverFunction( 4123 Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, 4124 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 4125 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 4126 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) { 4127 auto &DL = F.getParent()->getDataLayout(); 4128 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 4129 4130 /// Builder - This is an IRBuilder that automatically inserts new 4131 /// instructions into the worklist when they are created. 4132 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 4133 F.getContext(), TargetFolder(DL), 4134 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 4135 Worklist.add(I); 4136 if (auto *Assume = dyn_cast<AssumeInst>(I)) 4137 AC.registerAssumption(Assume); 4138 })); 4139 4140 // Lower dbg.declare intrinsics otherwise their value may be clobbered 4141 // by instcombiner. 4142 bool MadeIRChange = false; 4143 if (ShouldLowerDbgDeclare) 4144 MadeIRChange = LowerDbgDeclare(F); 4145 4146 // Iterate while there is work to do. 4147 unsigned Iteration = 0; 4148 while (true) { 4149 ++NumWorklistIterations; 4150 ++Iteration; 4151 4152 if (Iteration > InfiniteLoopDetectionThreshold) { 4153 report_fatal_error( 4154 "Instruction Combining seems stuck in an infinite loop after " + 4155 Twine(InfiniteLoopDetectionThreshold) + " iterations."); 4156 } 4157 4158 if (Iteration > MaxIterations) { 4159 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 4160 << " on " << F.getName() 4161 << " reached; stopping before reaching a fixpoint\n"); 4162 break; 4163 } 4164 4165 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 4166 << F.getName() << "\n"); 4167 4168 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 4169 4170 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 4171 ORE, BFI, PSI, DL, LI); 4172 IC.MaxArraySizeForCombine = MaxArraySize; 4173 4174 if (!IC.run()) 4175 break; 4176 4177 MadeIRChange = true; 4178 } 4179 4180 return MadeIRChange; 4181 } 4182 4183 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {} 4184 4185 InstCombinePass::InstCombinePass(unsigned MaxIterations) 4186 : MaxIterations(MaxIterations) {} 4187 4188 PreservedAnalyses InstCombinePass::run(Function &F, 4189 FunctionAnalysisManager &AM) { 4190 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4191 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4192 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4193 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4194 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 4195 4196 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 4197 4198 auto *AA = &AM.getResult<AAManager>(F); 4199 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 4200 ProfileSummaryInfo *PSI = 4201 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 4202 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 4203 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 4204 4205 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4206 BFI, PSI, MaxIterations, LI)) 4207 // No changes, all analyses are preserved. 4208 return PreservedAnalyses::all(); 4209 4210 // Mark all the analyses that instcombine updates as preserved. 4211 PreservedAnalyses PA; 4212 PA.preserveSet<CFGAnalyses>(); 4213 return PA; 4214 } 4215 4216 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 4217 AU.setPreservesCFG(); 4218 AU.addRequired<AAResultsWrapperPass>(); 4219 AU.addRequired<AssumptionCacheTracker>(); 4220 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4221 AU.addRequired<TargetTransformInfoWrapperPass>(); 4222 AU.addRequired<DominatorTreeWrapperPass>(); 4223 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4224 AU.addPreserved<DominatorTreeWrapperPass>(); 4225 AU.addPreserved<AAResultsWrapperPass>(); 4226 AU.addPreserved<BasicAAWrapperPass>(); 4227 AU.addPreserved<GlobalsAAWrapperPass>(); 4228 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 4229 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 4230 } 4231 4232 bool InstructionCombiningPass::runOnFunction(Function &F) { 4233 if (skipFunction(F)) 4234 return false; 4235 4236 // Required analyses. 4237 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4238 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4239 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 4240 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4241 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4242 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4243 4244 // Optional analyses. 4245 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 4246 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 4247 ProfileSummaryInfo *PSI = 4248 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 4249 BlockFrequencyInfo *BFI = 4250 (PSI && PSI->hasProfileSummary()) ? 4251 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 4252 nullptr; 4253 4254 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4255 BFI, PSI, MaxIterations, LI); 4256 } 4257 4258 char InstructionCombiningPass::ID = 0; 4259 4260 InstructionCombiningPass::InstructionCombiningPass() 4261 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) { 4262 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4263 } 4264 4265 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations) 4266 : FunctionPass(ID), MaxIterations(MaxIterations) { 4267 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4268 } 4269 4270 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 4271 "Combine redundant instructions", false, false) 4272 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4273 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4274 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4275 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4276 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4277 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4278 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 4279 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 4280 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 4281 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 4282 "Combine redundant instructions", false, false) 4283 4284 // Initialization Routines 4285 void llvm::initializeInstCombine(PassRegistry &Registry) { 4286 initializeInstructionCombiningPassPass(Registry); 4287 } 4288 4289 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 4290 initializeInstructionCombiningPassPass(*unwrap(R)); 4291 } 4292 4293 FunctionPass *llvm::createInstructionCombiningPass() { 4294 return new InstructionCombiningPass(); 4295 } 4296 4297 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) { 4298 return new InstructionCombiningPass(MaxIterations); 4299 } 4300 4301 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 4302 unwrap(PM)->add(createInstructionCombiningPass()); 4303 } 4304