1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // InstructionCombining - Combine instructions to form fewer, simple 11 // instructions. This pass does not modify the CFG. This pass is where 12 // algebraic simplification happens. 13 // 14 // This pass combines things like: 15 // %Y = add i32 %X, 1 16 // %Z = add i32 %Y, 1 17 // into: 18 // %Z = add i32 %X, 2 19 // 20 // This is a simple worklist driven algorithm. 21 // 22 // This pass guarantees that the following canonicalizations are performed on 23 // the program: 24 // 1. If a binary operator has a constant operand, it is moved to the RHS 25 // 2. Bitwise operators with constant operands are always grouped so that 26 // shifts are performed first, then or's, then and's, then xor's. 27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 28 // 4. All cmp instructions on boolean values are replaced with logical ops 29 // 5. add X, X is represented as (X*2) => (X << 1) 30 // 6. Multiplies with a power-of-two constant argument are transformed into 31 // shifts. 32 // ... etc. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/Transforms/InstCombine/InstCombine.h" 37 #include "InstCombineInternal.h" 38 #include "llvm-c/Initialization.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/Statistic.h" 41 #include "llvm/ADT/StringSwitch.h" 42 #include "llvm/Analysis/AliasAnalysis.h" 43 #include "llvm/Analysis/AssumptionCache.h" 44 #include "llvm/Analysis/BasicAliasAnalysis.h" 45 #include "llvm/Analysis/CFG.h" 46 #include "llvm/Analysis/ConstantFolding.h" 47 #include "llvm/Analysis/EHPersonalities.h" 48 #include "llvm/Analysis/GlobalsModRef.h" 49 #include "llvm/Analysis/InstructionSimplify.h" 50 #include "llvm/Analysis/LoopInfo.h" 51 #include "llvm/Analysis/MemoryBuiltins.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/Analysis/ValueTracking.h" 54 #include "llvm/IR/CFG.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/GetElementPtrTypeIterator.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/ValueHandle.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Scalar.h" 65 #include "llvm/Transforms/Utils/Local.h" 66 #include <algorithm> 67 #include <climits> 68 using namespace llvm; 69 using namespace llvm::PatternMatch; 70 71 #define DEBUG_TYPE "instcombine" 72 73 STATISTIC(NumCombined , "Number of insts combined"); 74 STATISTIC(NumConstProp, "Number of constant folds"); 75 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 76 STATISTIC(NumSunkInst , "Number of instructions sunk"); 77 STATISTIC(NumExpand, "Number of expansions"); 78 STATISTIC(NumFactor , "Number of factorizations"); 79 STATISTIC(NumReassoc , "Number of reassociations"); 80 81 static cl::opt<bool> 82 EnableExpensiveCombines("expensive-combines", 83 cl::desc("Enable expensive instruction combines")); 84 85 Value *InstCombiner::EmitGEPOffset(User *GEP) { 86 return llvm::EmitGEPOffset(Builder, DL, GEP); 87 } 88 89 /// Return true if it is desirable to convert an integer computation from a 90 /// given bit width to a new bit width. 91 /// We don't want to convert from a legal to an illegal type for example or from 92 /// a smaller to a larger illegal type. 93 bool InstCombiner::ShouldChangeType(unsigned FromWidth, 94 unsigned ToWidth) const { 95 bool FromLegal = DL.isLegalInteger(FromWidth); 96 bool ToLegal = DL.isLegalInteger(ToWidth); 97 98 // If this is a legal integer from type, and the result would be an illegal 99 // type, don't do the transformation. 100 if (FromLegal && !ToLegal) 101 return false; 102 103 // Otherwise, if both are illegal, do not increase the size of the result. We 104 // do allow things like i160 -> i64, but not i64 -> i160. 105 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 106 return false; 107 108 return true; 109 } 110 111 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 112 /// We don't want to convert from a legal to an illegal type for example or from 113 /// a smaller to a larger illegal type. 114 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const { 115 assert(From->isIntegerTy() && To->isIntegerTy()); 116 117 unsigned FromWidth = From->getPrimitiveSizeInBits(); 118 unsigned ToWidth = To->getPrimitiveSizeInBits(); 119 return ShouldChangeType(FromWidth, ToWidth); 120 } 121 122 // Return true, if No Signed Wrap should be maintained for I. 123 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 124 // where both B and C should be ConstantInts, results in a constant that does 125 // not overflow. This function only handles the Add and Sub opcodes. For 126 // all other opcodes, the function conservatively returns false. 127 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 128 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 129 if (!OBO || !OBO->hasNoSignedWrap()) 130 return false; 131 132 // We reason about Add and Sub Only. 133 Instruction::BinaryOps Opcode = I.getOpcode(); 134 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 135 return false; 136 137 const APInt *BVal, *CVal; 138 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 139 return false; 140 141 bool Overflow = false; 142 if (Opcode == Instruction::Add) 143 BVal->sadd_ov(*CVal, Overflow); 144 else 145 BVal->ssub_ov(*CVal, Overflow); 146 147 return !Overflow; 148 } 149 150 /// Conservatively clears subclassOptionalData after a reassociation or 151 /// commutation. We preserve fast-math flags when applicable as they can be 152 /// preserved. 153 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 154 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 155 if (!FPMO) { 156 I.clearSubclassOptionalData(); 157 return; 158 } 159 160 FastMathFlags FMF = I.getFastMathFlags(); 161 I.clearSubclassOptionalData(); 162 I.setFastMathFlags(FMF); 163 } 164 165 /// Combine constant operands of associative operations either before or after a 166 /// cast to eliminate one of the associative operations: 167 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 168 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 169 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) { 170 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 171 if (!Cast || !Cast->hasOneUse()) 172 return false; 173 174 // TODO: Enhance logic for other casts and remove this check. 175 auto CastOpcode = Cast->getOpcode(); 176 if (CastOpcode != Instruction::ZExt) 177 return false; 178 179 // TODO: Enhance logic for other BinOps and remove this check. 180 if (!BinOp1->isBitwiseLogicOp()) 181 return false; 182 183 auto AssocOpcode = BinOp1->getOpcode(); 184 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 185 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 186 return false; 187 188 Constant *C1, *C2; 189 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 190 !match(BinOp2->getOperand(1), m_Constant(C2))) 191 return false; 192 193 // TODO: This assumes a zext cast. 194 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 195 // to the destination type might lose bits. 196 197 // Fold the constants together in the destination type: 198 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 199 Type *DestTy = C1->getType(); 200 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 201 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 202 Cast->setOperand(0, BinOp2->getOperand(0)); 203 BinOp1->setOperand(1, FoldedC); 204 return true; 205 } 206 207 /// This performs a few simplifications for operators that are associative or 208 /// commutative: 209 /// 210 /// Commutative operators: 211 /// 212 /// 1. Order operands such that they are listed from right (least complex) to 213 /// left (most complex). This puts constants before unary operators before 214 /// binary operators. 215 /// 216 /// Associative operators: 217 /// 218 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 219 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 220 /// 221 /// Associative and commutative operators: 222 /// 223 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 224 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 225 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 226 /// if C1 and C2 are constants. 227 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 228 Instruction::BinaryOps Opcode = I.getOpcode(); 229 bool Changed = false; 230 231 do { 232 // Order operands such that they are listed from right (least complex) to 233 // left (most complex). This puts constants before unary operators before 234 // binary operators. 235 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 236 getComplexity(I.getOperand(1))) 237 Changed = !I.swapOperands(); 238 239 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 240 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 241 242 if (I.isAssociative()) { 243 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 244 if (Op0 && Op0->getOpcode() == Opcode) { 245 Value *A = Op0->getOperand(0); 246 Value *B = Op0->getOperand(1); 247 Value *C = I.getOperand(1); 248 249 // Does "B op C" simplify? 250 if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) { 251 // It simplifies to V. Form "A op V". 252 I.setOperand(0, A); 253 I.setOperand(1, V); 254 // Conservatively clear the optional flags, since they may not be 255 // preserved by the reassociation. 256 if (MaintainNoSignedWrap(I, B, C) && 257 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { 258 // Note: this is only valid because SimplifyBinOp doesn't look at 259 // the operands to Op0. 260 I.clearSubclassOptionalData(); 261 I.setHasNoSignedWrap(true); 262 } else { 263 ClearSubclassDataAfterReassociation(I); 264 } 265 266 Changed = true; 267 ++NumReassoc; 268 continue; 269 } 270 } 271 272 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 273 if (Op1 && Op1->getOpcode() == Opcode) { 274 Value *A = I.getOperand(0); 275 Value *B = Op1->getOperand(0); 276 Value *C = Op1->getOperand(1); 277 278 // Does "A op B" simplify? 279 if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) { 280 // It simplifies to V. Form "V op C". 281 I.setOperand(0, V); 282 I.setOperand(1, C); 283 // Conservatively clear the optional flags, since they may not be 284 // preserved by the reassociation. 285 ClearSubclassDataAfterReassociation(I); 286 Changed = true; 287 ++NumReassoc; 288 continue; 289 } 290 } 291 } 292 293 if (I.isAssociative() && I.isCommutative()) { 294 if (simplifyAssocCastAssoc(&I)) { 295 Changed = true; 296 ++NumReassoc; 297 continue; 298 } 299 300 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 301 if (Op0 && Op0->getOpcode() == Opcode) { 302 Value *A = Op0->getOperand(0); 303 Value *B = Op0->getOperand(1); 304 Value *C = I.getOperand(1); 305 306 // Does "C op A" simplify? 307 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) { 308 // It simplifies to V. Form "V op B". 309 I.setOperand(0, V); 310 I.setOperand(1, B); 311 // Conservatively clear the optional flags, since they may not be 312 // preserved by the reassociation. 313 ClearSubclassDataAfterReassociation(I); 314 Changed = true; 315 ++NumReassoc; 316 continue; 317 } 318 } 319 320 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 321 if (Op1 && Op1->getOpcode() == Opcode) { 322 Value *A = I.getOperand(0); 323 Value *B = Op1->getOperand(0); 324 Value *C = Op1->getOperand(1); 325 326 // Does "C op A" simplify? 327 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) { 328 // It simplifies to V. Form "B op V". 329 I.setOperand(0, B); 330 I.setOperand(1, V); 331 // Conservatively clear the optional flags, since they may not be 332 // preserved by the reassociation. 333 ClearSubclassDataAfterReassociation(I); 334 Changed = true; 335 ++NumReassoc; 336 continue; 337 } 338 } 339 340 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 341 // if C1 and C2 are constants. 342 if (Op0 && Op1 && 343 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 344 isa<Constant>(Op0->getOperand(1)) && 345 isa<Constant>(Op1->getOperand(1)) && 346 Op0->hasOneUse() && Op1->hasOneUse()) { 347 Value *A = Op0->getOperand(0); 348 Constant *C1 = cast<Constant>(Op0->getOperand(1)); 349 Value *B = Op1->getOperand(0); 350 Constant *C2 = cast<Constant>(Op1->getOperand(1)); 351 352 Constant *Folded = ConstantExpr::get(Opcode, C1, C2); 353 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B); 354 if (isa<FPMathOperator>(New)) { 355 FastMathFlags Flags = I.getFastMathFlags(); 356 Flags &= Op0->getFastMathFlags(); 357 Flags &= Op1->getFastMathFlags(); 358 New->setFastMathFlags(Flags); 359 } 360 InsertNewInstWith(New, I); 361 New->takeName(Op1); 362 I.setOperand(0, New); 363 I.setOperand(1, Folded); 364 // Conservatively clear the optional flags, since they may not be 365 // preserved by the reassociation. 366 ClearSubclassDataAfterReassociation(I); 367 368 Changed = true; 369 continue; 370 } 371 } 372 373 // No further simplifications. 374 return Changed; 375 } while (1); 376 } 377 378 /// Return whether "X LOp (Y ROp Z)" is always equal to 379 /// "(X LOp Y) ROp (X LOp Z)". 380 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp, 381 Instruction::BinaryOps ROp) { 382 switch (LOp) { 383 default: 384 return false; 385 386 case Instruction::And: 387 // And distributes over Or and Xor. 388 switch (ROp) { 389 default: 390 return false; 391 case Instruction::Or: 392 case Instruction::Xor: 393 return true; 394 } 395 396 case Instruction::Mul: 397 // Multiplication distributes over addition and subtraction. 398 switch (ROp) { 399 default: 400 return false; 401 case Instruction::Add: 402 case Instruction::Sub: 403 return true; 404 } 405 406 case Instruction::Or: 407 // Or distributes over And. 408 switch (ROp) { 409 default: 410 return false; 411 case Instruction::And: 412 return true; 413 } 414 } 415 } 416 417 /// Return whether "(X LOp Y) ROp Z" is always equal to 418 /// "(X ROp Z) LOp (Y ROp Z)". 419 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp, 420 Instruction::BinaryOps ROp) { 421 if (Instruction::isCommutative(ROp)) 422 return LeftDistributesOverRight(ROp, LOp); 423 424 switch (LOp) { 425 default: 426 return false; 427 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts. 428 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts. 429 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts. 430 case Instruction::And: 431 case Instruction::Or: 432 case Instruction::Xor: 433 switch (ROp) { 434 default: 435 return false; 436 case Instruction::Shl: 437 case Instruction::LShr: 438 case Instruction::AShr: 439 return true; 440 } 441 } 442 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 443 // but this requires knowing that the addition does not overflow and other 444 // such subtleties. 445 return false; 446 } 447 448 /// This function returns identity value for given opcode, which can be used to 449 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 450 static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) { 451 if (isa<Constant>(V)) 452 return nullptr; 453 454 if (OpCode == Instruction::Mul) 455 return ConstantInt::get(V->getType(), 1); 456 457 // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc. 458 459 return nullptr; 460 } 461 462 /// This function factors binary ops which can be combined using distributive 463 /// laws. This function tries to transform 'Op' based TopLevelOpcode to enable 464 /// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called 465 /// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms 466 /// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and 467 /// RHS to 4. 468 static Instruction::BinaryOps 469 getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode, 470 BinaryOperator *Op, Value *&LHS, Value *&RHS) { 471 if (!Op) 472 return Instruction::BinaryOpsEnd; 473 474 LHS = Op->getOperand(0); 475 RHS = Op->getOperand(1); 476 477 switch (TopLevelOpcode) { 478 default: 479 return Op->getOpcode(); 480 481 case Instruction::Add: 482 case Instruction::Sub: 483 if (Op->getOpcode() == Instruction::Shl) { 484 if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) { 485 // The multiplier is really 1 << CST. 486 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST); 487 return Instruction::Mul; 488 } 489 } 490 return Op->getOpcode(); 491 } 492 493 // TODO: We can add other conversions e.g. shr => div etc. 494 } 495 496 /// This tries to simplify binary operations by factorizing out common terms 497 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 498 static Value *tryFactorization(InstCombiner::BuilderTy *Builder, 499 const DataLayout &DL, BinaryOperator &I, 500 Instruction::BinaryOps InnerOpcode, Value *A, 501 Value *B, Value *C, Value *D) { 502 503 // If any of A, B, C, D are null, we can not factor I, return early. 504 // Checking A and C should be enough. 505 if (!A || !C || !B || !D) 506 return nullptr; 507 508 Value *V = nullptr; 509 Value *SimplifiedInst = nullptr; 510 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 511 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 512 513 // Does "X op' Y" always equal "Y op' X"? 514 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 515 516 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 517 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 518 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 519 // commutative case, "(A op' B) op (C op' A)"? 520 if (A == C || (InnerCommutative && A == D)) { 521 if (A != C) 522 std::swap(C, D); 523 // Consider forming "A op' (B op D)". 524 // If "B op D" simplifies then it can be formed with no cost. 525 V = SimplifyBinOp(TopLevelOpcode, B, D, DL); 526 // If "B op D" doesn't simplify then only go on if both of the existing 527 // operations "A op' B" and "C op' D" will be zapped as no longer used. 528 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 529 V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 530 if (V) { 531 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V); 532 } 533 } 534 535 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 536 if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 537 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 538 // commutative case, "(A op' B) op (B op' D)"? 539 if (B == D || (InnerCommutative && B == C)) { 540 if (B != D) 541 std::swap(C, D); 542 // Consider forming "(A op C) op' B". 543 // If "A op C" simplifies then it can be formed with no cost. 544 V = SimplifyBinOp(TopLevelOpcode, A, C, DL); 545 546 // If "A op C" doesn't simplify then only go on if both of the existing 547 // operations "A op' B" and "C op' D" will be zapped as no longer used. 548 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 549 V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 550 if (V) { 551 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B); 552 } 553 } 554 555 if (SimplifiedInst) { 556 ++NumFactor; 557 SimplifiedInst->takeName(&I); 558 559 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag. 560 // TODO: Check for NUW. 561 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 562 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 563 bool HasNSW = false; 564 if (isa<OverflowingBinaryOperator>(&I)) 565 HasNSW = I.hasNoSignedWrap(); 566 567 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 568 if (isa<OverflowingBinaryOperator>(Op0)) 569 HasNSW &= Op0->hasNoSignedWrap(); 570 571 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 572 if (isa<OverflowingBinaryOperator>(Op1)) 573 HasNSW &= Op1->hasNoSignedWrap(); 574 575 // We can propagate 'nsw' if we know that 576 // %Y = mul nsw i16 %X, C 577 // %Z = add nsw i16 %Y, %X 578 // => 579 // %Z = mul nsw i16 %X, C+1 580 // 581 // iff C+1 isn't INT_MIN 582 const APInt *CInt; 583 if (TopLevelOpcode == Instruction::Add && 584 InnerOpcode == Instruction::Mul) 585 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) 586 BO->setHasNoSignedWrap(HasNSW); 587 } 588 } 589 } 590 return SimplifiedInst; 591 } 592 593 /// This tries to simplify binary operations which some other binary operation 594 /// distributes over either by factorizing out common terms 595 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 596 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 597 /// Returns the simplified value, or null if it didn't simplify. 598 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 599 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 600 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 601 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 602 603 // Factorization. 604 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 605 auto TopLevelOpcode = I.getOpcode(); 606 auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 607 auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 608 609 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 610 // a common term. 611 if (LHSOpcode == RHSOpcode) { 612 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D)) 613 return V; 614 } 615 616 // The instruction has the form "(A op' B) op (C)". Try to factorize common 617 // term. 618 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS, 619 getIdentityValue(LHSOpcode, RHS))) 620 return V; 621 622 // The instruction has the form "(B) op (C op' D)". Try to factorize common 623 // term. 624 if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS, 625 getIdentityValue(RHSOpcode, LHS), C, D)) 626 return V; 627 628 // Expansion. 629 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 630 // The instruction has the form "(A op' B) op C". See if expanding it out 631 // to "(A op C) op' (B op C)" results in simplifications. 632 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 633 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 634 635 // Do "A op C" and "B op C" both simplify? 636 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL)) 637 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) { 638 // They do! Return "L op' R". 639 ++NumExpand; 640 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 641 if ((L == A && R == B) || 642 (Instruction::isCommutative(InnerOpcode) && L == B && R == A)) 643 return Op0; 644 // Otherwise return "L op' R" if it simplifies. 645 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL)) 646 return V; 647 // Otherwise, create a new instruction. 648 C = Builder->CreateBinOp(InnerOpcode, L, R); 649 C->takeName(&I); 650 return C; 651 } 652 } 653 654 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 655 // The instruction has the form "A op (B op' C)". See if expanding it out 656 // to "(A op B) op' (A op C)" results in simplifications. 657 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 658 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 659 660 // Do "A op B" and "A op C" both simplify? 661 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL)) 662 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) { 663 // They do! Return "L op' R". 664 ++NumExpand; 665 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 666 if ((L == B && R == C) || 667 (Instruction::isCommutative(InnerOpcode) && L == C && R == B)) 668 return Op1; 669 // Otherwise return "L op' R" if it simplifies. 670 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL)) 671 return V; 672 // Otherwise, create a new instruction. 673 A = Builder->CreateBinOp(InnerOpcode, L, R); 674 A->takeName(&I); 675 return A; 676 } 677 } 678 679 // (op (select (a, c, b)), (select (a, d, b))) -> (select (a, (op c, d), 0)) 680 // (op (select (a, b, c)), (select (a, b, d))) -> (select (a, 0, (op c, d))) 681 if (auto *SI0 = dyn_cast<SelectInst>(LHS)) { 682 if (auto *SI1 = dyn_cast<SelectInst>(RHS)) { 683 if (SI0->getCondition() == SI1->getCondition()) { 684 Value *SI = nullptr; 685 if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getFalseValue(), 686 SI1->getFalseValue(), DL, &TLI, &DT, &AC)) 687 SI = Builder->CreateSelect(SI0->getCondition(), 688 Builder->CreateBinOp(TopLevelOpcode, 689 SI0->getTrueValue(), 690 SI1->getTrueValue()), 691 V); 692 if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getTrueValue(), 693 SI1->getTrueValue(), DL, &TLI, &DT, &AC)) 694 SI = Builder->CreateSelect( 695 SI0->getCondition(), V, 696 Builder->CreateBinOp(TopLevelOpcode, SI0->getFalseValue(), 697 SI1->getFalseValue())); 698 if (SI) { 699 SI->takeName(&I); 700 return SI; 701 } 702 } 703 } 704 } 705 706 return nullptr; 707 } 708 709 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 710 /// constant zero (which is the 'negate' form). 711 Value *InstCombiner::dyn_castNegVal(Value *V) const { 712 if (BinaryOperator::isNeg(V)) 713 return BinaryOperator::getNegArgument(V); 714 715 // Constants can be considered to be negated values if they can be folded. 716 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 717 return ConstantExpr::getNeg(C); 718 719 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 720 if (C->getType()->getElementType()->isIntegerTy()) 721 return ConstantExpr::getNeg(C); 722 723 return nullptr; 724 } 725 726 /// Given a 'fsub' instruction, return the RHS of the instruction if the LHS is 727 /// a constant negative zero (which is the 'negate' form). 728 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const { 729 if (BinaryOperator::isFNeg(V, IgnoreZeroSign)) 730 return BinaryOperator::getFNegArgument(V); 731 732 // Constants can be considered to be negated values if they can be folded. 733 if (ConstantFP *C = dyn_cast<ConstantFP>(V)) 734 return ConstantExpr::getFNeg(C); 735 736 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 737 if (C->getType()->getElementType()->isFloatingPointTy()) 738 return ConstantExpr::getFNeg(C); 739 740 return nullptr; 741 } 742 743 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 744 InstCombiner *IC) { 745 if (auto *Cast = dyn_cast<CastInst>(&I)) 746 return IC->Builder->CreateCast(Cast->getOpcode(), SO, I.getType()); 747 748 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 749 750 // Figure out if the constant is the left or the right argument. 751 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 752 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 753 754 if (auto *SOC = dyn_cast<Constant>(SO)) { 755 if (ConstIsRHS) 756 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 757 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 758 } 759 760 Value *Op0 = SO, *Op1 = ConstOperand; 761 if (!ConstIsRHS) 762 std::swap(Op0, Op1); 763 764 auto *BO = cast<BinaryOperator>(&I); 765 Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1, 766 SO->getName() + ".op"); 767 auto *FPInst = dyn_cast<Instruction>(RI); 768 if (FPInst && isa<FPMathOperator>(FPInst)) 769 FPInst->copyFastMathFlags(BO); 770 return RI; 771 } 772 773 /// Given an instruction with a select as one operand and a constant as the 774 /// other operand, try to fold the binary operator into the select arguments. 775 /// This also works for Cast instructions, which obviously do not have a second 776 /// operand. 777 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 778 // Don't modify shared select instructions. 779 if (!SI->hasOneUse()) 780 return nullptr; 781 782 Value *TV = SI->getTrueValue(); 783 Value *FV = SI->getFalseValue(); 784 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 785 return nullptr; 786 787 // Bool selects with constant operands can be folded to logical ops. 788 if (SI->getType()->getScalarType()->isIntegerTy(1)) 789 return nullptr; 790 791 // If it's a bitcast involving vectors, make sure it has the same number of 792 // elements on both sides. 793 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 794 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 795 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 796 797 // Verify that either both or neither are vectors. 798 if ((SrcTy == nullptr) != (DestTy == nullptr)) 799 return nullptr; 800 801 // If vectors, verify that they have the same number of elements. 802 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 803 return nullptr; 804 } 805 806 // Test if a CmpInst instruction is used exclusively by a select as 807 // part of a minimum or maximum operation. If so, refrain from doing 808 // any other folding. This helps out other analyses which understand 809 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 810 // and CodeGen. And in this case, at least one of the comparison 811 // operands has at least one user besides the compare (the select), 812 // which would often largely negate the benefit of folding anyway. 813 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 814 if (CI->hasOneUse()) { 815 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 816 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 817 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 818 return nullptr; 819 } 820 } 821 822 Value *SelectTVal = foldOperationIntoSelectOperand(Op, TV, this); 823 Value *SelectFVal = foldOperationIntoSelectOperand(Op, FV, this); 824 return SelectInst::Create(SI->getCondition(), SelectTVal, SelectFVal); 825 } 826 827 /// Given a binary operator, cast instruction, or select which has a PHI node as 828 /// operand #0, see if we can fold the instruction into the PHI (which is only 829 /// possible if all operands to the PHI are constants). 830 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { 831 PHINode *PN = cast<PHINode>(I.getOperand(0)); 832 unsigned NumPHIValues = PN->getNumIncomingValues(); 833 if (NumPHIValues == 0) 834 return nullptr; 835 836 // We normally only transform phis with a single use. However, if a PHI has 837 // multiple uses and they are all the same operation, we can fold *all* of the 838 // uses into the PHI. 839 if (!PN->hasOneUse()) { 840 // Walk the use list for the instruction, comparing them to I. 841 for (User *U : PN->users()) { 842 Instruction *UI = cast<Instruction>(U); 843 if (UI != &I && !I.isIdenticalTo(UI)) 844 return nullptr; 845 } 846 // Otherwise, we can replace *all* users with the new PHI we form. 847 } 848 849 // Check to see if all of the operands of the PHI are simple constants 850 // (constantint/constantfp/undef). If there is one non-constant value, 851 // remember the BB it is in. If there is more than one or if *it* is a PHI, 852 // bail out. We don't do arbitrary constant expressions here because moving 853 // their computation can be expensive without a cost model. 854 BasicBlock *NonConstBB = nullptr; 855 for (unsigned i = 0; i != NumPHIValues; ++i) { 856 Value *InVal = PN->getIncomingValue(i); 857 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 858 continue; 859 860 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 861 if (NonConstBB) return nullptr; // More than one non-const value. 862 863 NonConstBB = PN->getIncomingBlock(i); 864 865 // If the InVal is an invoke at the end of the pred block, then we can't 866 // insert a computation after it without breaking the edge. 867 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal)) 868 if (II->getParent() == NonConstBB) 869 return nullptr; 870 871 // If the incoming non-constant value is in I's block, we will remove one 872 // instruction, but insert another equivalent one, leading to infinite 873 // instcombine. 874 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI)) 875 return nullptr; 876 } 877 878 // If there is exactly one non-constant value, we can insert a copy of the 879 // operation in that block. However, if this is a critical edge, we would be 880 // inserting the computation on some other paths (e.g. inside a loop). Only 881 // do this if the pred block is unconditionally branching into the phi block. 882 if (NonConstBB != nullptr) { 883 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 884 if (!BI || !BI->isUnconditional()) return nullptr; 885 } 886 887 // Okay, we can do the transformation: create the new PHI node. 888 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 889 InsertNewInstBefore(NewPN, *PN); 890 NewPN->takeName(PN); 891 892 // If we are going to have to insert a new computation, do so right before the 893 // predecessor's terminator. 894 if (NonConstBB) 895 Builder->SetInsertPoint(NonConstBB->getTerminator()); 896 897 // Next, add all of the operands to the PHI. 898 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 899 // We only currently try to fold the condition of a select when it is a phi, 900 // not the true/false values. 901 Value *TrueV = SI->getTrueValue(); 902 Value *FalseV = SI->getFalseValue(); 903 BasicBlock *PhiTransBB = PN->getParent(); 904 for (unsigned i = 0; i != NumPHIValues; ++i) { 905 BasicBlock *ThisBB = PN->getIncomingBlock(i); 906 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 907 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 908 Value *InV = nullptr; 909 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 910 // even if currently isNullValue gives false. 911 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 912 if (InC && !isa<ConstantExpr>(InC)) 913 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 914 else 915 InV = Builder->CreateSelect(PN->getIncomingValue(i), 916 TrueVInPred, FalseVInPred, "phitmp"); 917 NewPN->addIncoming(InV, ThisBB); 918 } 919 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 920 Constant *C = cast<Constant>(I.getOperand(1)); 921 for (unsigned i = 0; i != NumPHIValues; ++i) { 922 Value *InV = nullptr; 923 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 924 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 925 else if (isa<ICmpInst>(CI)) 926 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 927 C, "phitmp"); 928 else 929 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 930 C, "phitmp"); 931 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 932 } 933 } else if (I.getNumOperands() == 2) { 934 Constant *C = cast<Constant>(I.getOperand(1)); 935 for (unsigned i = 0; i != NumPHIValues; ++i) { 936 Value *InV = nullptr; 937 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 938 InV = ConstantExpr::get(I.getOpcode(), InC, C); 939 else 940 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 941 PN->getIncomingValue(i), C, "phitmp"); 942 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 943 } 944 } else { 945 CastInst *CI = cast<CastInst>(&I); 946 Type *RetTy = CI->getType(); 947 for (unsigned i = 0; i != NumPHIValues; ++i) { 948 Value *InV; 949 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 950 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 951 else 952 InV = Builder->CreateCast(CI->getOpcode(), 953 PN->getIncomingValue(i), I.getType(), "phitmp"); 954 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 955 } 956 } 957 958 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 959 Instruction *User = cast<Instruction>(*UI++); 960 if (User == &I) continue; 961 replaceInstUsesWith(*User, NewPN); 962 eraseInstFromFunction(*User); 963 } 964 return replaceInstUsesWith(I, NewPN); 965 } 966 967 /// Given a pointer type and a constant offset, determine whether or not there 968 /// is a sequence of GEP indices into the pointed type that will land us at the 969 /// specified offset. If so, fill them into NewIndices and return the resultant 970 /// element type, otherwise return null. 971 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 972 SmallVectorImpl<Value *> &NewIndices) { 973 Type *Ty = PtrTy->getElementType(); 974 if (!Ty->isSized()) 975 return nullptr; 976 977 // Start with the index over the outer type. Note that the type size 978 // might be zero (even if the offset isn't zero) if the indexed type 979 // is something like [0 x {int, int}] 980 Type *IntPtrTy = DL.getIntPtrType(PtrTy); 981 int64_t FirstIdx = 0; 982 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 983 FirstIdx = Offset/TySize; 984 Offset -= FirstIdx*TySize; 985 986 // Handle hosts where % returns negative instead of values [0..TySize). 987 if (Offset < 0) { 988 --FirstIdx; 989 Offset += TySize; 990 assert(Offset >= 0); 991 } 992 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 993 } 994 995 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx)); 996 997 // Index into the types. If we fail, set OrigBase to null. 998 while (Offset) { 999 // Indexing into tail padding between struct/array elements. 1000 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1001 return nullptr; 1002 1003 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1004 const StructLayout *SL = DL.getStructLayout(STy); 1005 assert(Offset < (int64_t)SL->getSizeInBytes() && 1006 "Offset must stay within the indexed type"); 1007 1008 unsigned Elt = SL->getElementContainingOffset(Offset); 1009 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1010 Elt)); 1011 1012 Offset -= SL->getElementOffset(Elt); 1013 Ty = STy->getElementType(Elt); 1014 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1015 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1016 assert(EltSize && "Cannot index into a zero-sized array"); 1017 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize)); 1018 Offset %= EltSize; 1019 Ty = AT->getElementType(); 1020 } else { 1021 // Otherwise, we can't index into the middle of this atomic type, bail. 1022 return nullptr; 1023 } 1024 } 1025 1026 return Ty; 1027 } 1028 1029 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1030 // If this GEP has only 0 indices, it is the same pointer as 1031 // Src. If Src is not a trivial GEP too, don't combine 1032 // the indices. 1033 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1034 !Src.hasOneUse()) 1035 return false; 1036 return true; 1037 } 1038 1039 /// Return a value X such that Val = X * Scale, or null if none. 1040 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1041 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1042 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1043 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1044 Scale.getBitWidth() && "Scale not compatible with value!"); 1045 1046 // If Val is zero or Scale is one then Val = Val * Scale. 1047 if (match(Val, m_Zero()) || Scale == 1) { 1048 NoSignedWrap = true; 1049 return Val; 1050 } 1051 1052 // If Scale is zero then it does not divide Val. 1053 if (Scale.isMinValue()) 1054 return nullptr; 1055 1056 // Look through chains of multiplications, searching for a constant that is 1057 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1058 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1059 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1060 // down from Val: 1061 // 1062 // Val = M1 * X || Analysis starts here and works down 1063 // M1 = M2 * Y || Doesn't descend into terms with more 1064 // M2 = Z * 4 \/ than one use 1065 // 1066 // Then to modify a term at the bottom: 1067 // 1068 // Val = M1 * X 1069 // M1 = Z * Y || Replaced M2 with Z 1070 // 1071 // Then to work back up correcting nsw flags. 1072 1073 // Op - the term we are currently analyzing. Starts at Val then drills down. 1074 // Replaced with its descaled value before exiting from the drill down loop. 1075 Value *Op = Val; 1076 1077 // Parent - initially null, but after drilling down notes where Op came from. 1078 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1079 // 0'th operand of Val. 1080 std::pair<Instruction*, unsigned> Parent; 1081 1082 // Set if the transform requires a descaling at deeper levels that doesn't 1083 // overflow. 1084 bool RequireNoSignedWrap = false; 1085 1086 // Log base 2 of the scale. Negative if not a power of 2. 1087 int32_t logScale = Scale.exactLogBase2(); 1088 1089 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1090 1091 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1092 // If Op is a constant divisible by Scale then descale to the quotient. 1093 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1094 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1095 if (!Remainder.isMinValue()) 1096 // Not divisible by Scale. 1097 return nullptr; 1098 // Replace with the quotient in the parent. 1099 Op = ConstantInt::get(CI->getType(), Quotient); 1100 NoSignedWrap = true; 1101 break; 1102 } 1103 1104 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1105 1106 if (BO->getOpcode() == Instruction::Mul) { 1107 // Multiplication. 1108 NoSignedWrap = BO->hasNoSignedWrap(); 1109 if (RequireNoSignedWrap && !NoSignedWrap) 1110 return nullptr; 1111 1112 // There are three cases for multiplication: multiplication by exactly 1113 // the scale, multiplication by a constant different to the scale, and 1114 // multiplication by something else. 1115 Value *LHS = BO->getOperand(0); 1116 Value *RHS = BO->getOperand(1); 1117 1118 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1119 // Multiplication by a constant. 1120 if (CI->getValue() == Scale) { 1121 // Multiplication by exactly the scale, replace the multiplication 1122 // by its left-hand side in the parent. 1123 Op = LHS; 1124 break; 1125 } 1126 1127 // Otherwise drill down into the constant. 1128 if (!Op->hasOneUse()) 1129 return nullptr; 1130 1131 Parent = std::make_pair(BO, 1); 1132 continue; 1133 } 1134 1135 // Multiplication by something else. Drill down into the left-hand side 1136 // since that's where the reassociate pass puts the good stuff. 1137 if (!Op->hasOneUse()) 1138 return nullptr; 1139 1140 Parent = std::make_pair(BO, 0); 1141 continue; 1142 } 1143 1144 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1145 isa<ConstantInt>(BO->getOperand(1))) { 1146 // Multiplication by a power of 2. 1147 NoSignedWrap = BO->hasNoSignedWrap(); 1148 if (RequireNoSignedWrap && !NoSignedWrap) 1149 return nullptr; 1150 1151 Value *LHS = BO->getOperand(0); 1152 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1153 getLimitedValue(Scale.getBitWidth()); 1154 // Op = LHS << Amt. 1155 1156 if (Amt == logScale) { 1157 // Multiplication by exactly the scale, replace the multiplication 1158 // by its left-hand side in the parent. 1159 Op = LHS; 1160 break; 1161 } 1162 if (Amt < logScale || !Op->hasOneUse()) 1163 return nullptr; 1164 1165 // Multiplication by more than the scale. Reduce the multiplying amount 1166 // by the scale in the parent. 1167 Parent = std::make_pair(BO, 1); 1168 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1169 break; 1170 } 1171 } 1172 1173 if (!Op->hasOneUse()) 1174 return nullptr; 1175 1176 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1177 if (Cast->getOpcode() == Instruction::SExt) { 1178 // Op is sign-extended from a smaller type, descale in the smaller type. 1179 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1180 APInt SmallScale = Scale.trunc(SmallSize); 1181 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1182 // descale Op as (sext Y) * Scale. In order to have 1183 // sext (Y * SmallScale) = (sext Y) * Scale 1184 // some conditions need to hold however: SmallScale must sign-extend to 1185 // Scale and the multiplication Y * SmallScale should not overflow. 1186 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1187 // SmallScale does not sign-extend to Scale. 1188 return nullptr; 1189 assert(SmallScale.exactLogBase2() == logScale); 1190 // Require that Y * SmallScale must not overflow. 1191 RequireNoSignedWrap = true; 1192 1193 // Drill down through the cast. 1194 Parent = std::make_pair(Cast, 0); 1195 Scale = SmallScale; 1196 continue; 1197 } 1198 1199 if (Cast->getOpcode() == Instruction::Trunc) { 1200 // Op is truncated from a larger type, descale in the larger type. 1201 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1202 // trunc (Y * sext Scale) = (trunc Y) * Scale 1203 // always holds. However (trunc Y) * Scale may overflow even if 1204 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1205 // from this point up in the expression (see later). 1206 if (RequireNoSignedWrap) 1207 return nullptr; 1208 1209 // Drill down through the cast. 1210 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1211 Parent = std::make_pair(Cast, 0); 1212 Scale = Scale.sext(LargeSize); 1213 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1214 logScale = -1; 1215 assert(Scale.exactLogBase2() == logScale); 1216 continue; 1217 } 1218 } 1219 1220 // Unsupported expression, bail out. 1221 return nullptr; 1222 } 1223 1224 // If Op is zero then Val = Op * Scale. 1225 if (match(Op, m_Zero())) { 1226 NoSignedWrap = true; 1227 return Op; 1228 } 1229 1230 // We know that we can successfully descale, so from here on we can safely 1231 // modify the IR. Op holds the descaled version of the deepest term in the 1232 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1233 // not to overflow. 1234 1235 if (!Parent.first) 1236 // The expression only had one term. 1237 return Op; 1238 1239 // Rewrite the parent using the descaled version of its operand. 1240 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1241 assert(Op != Parent.first->getOperand(Parent.second) && 1242 "Descaling was a no-op?"); 1243 Parent.first->setOperand(Parent.second, Op); 1244 Worklist.Add(Parent.first); 1245 1246 // Now work back up the expression correcting nsw flags. The logic is based 1247 // on the following observation: if X * Y is known not to overflow as a signed 1248 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1249 // then X * Z will not overflow as a signed multiplication either. As we work 1250 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1251 // current level has strictly smaller absolute value than the original. 1252 Instruction *Ancestor = Parent.first; 1253 do { 1254 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1255 // If the multiplication wasn't nsw then we can't say anything about the 1256 // value of the descaled multiplication, and we have to clear nsw flags 1257 // from this point on up. 1258 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1259 NoSignedWrap &= OpNoSignedWrap; 1260 if (NoSignedWrap != OpNoSignedWrap) { 1261 BO->setHasNoSignedWrap(NoSignedWrap); 1262 Worklist.Add(Ancestor); 1263 } 1264 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1265 // The fact that the descaled input to the trunc has smaller absolute 1266 // value than the original input doesn't tell us anything useful about 1267 // the absolute values of the truncations. 1268 NoSignedWrap = false; 1269 } 1270 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1271 "Failed to keep proper track of nsw flags while drilling down?"); 1272 1273 if (Ancestor == Val) 1274 // Got to the top, all done! 1275 return Val; 1276 1277 // Move up one level in the expression. 1278 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1279 Ancestor = Ancestor->user_back(); 1280 } while (1); 1281 } 1282 1283 /// \brief Creates node of binary operation with the same attributes as the 1284 /// specified one but with other operands. 1285 static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS, 1286 InstCombiner::BuilderTy *B) { 1287 Value *BO = B->CreateBinOp(Inst.getOpcode(), LHS, RHS); 1288 // If LHS and RHS are constant, BO won't be a binary operator. 1289 if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BO)) 1290 NewBO->copyIRFlags(&Inst); 1291 return BO; 1292 } 1293 1294 /// \brief Makes transformation of binary operation specific for vector types. 1295 /// \param Inst Binary operator to transform. 1296 /// \return Pointer to node that must replace the original binary operator, or 1297 /// null pointer if no transformation was made. 1298 Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) { 1299 if (!Inst.getType()->isVectorTy()) return nullptr; 1300 1301 // It may not be safe to reorder shuffles and things like div, urem, etc. 1302 // because we may trap when executing those ops on unknown vector elements. 1303 // See PR20059. 1304 if (!isSafeToSpeculativelyExecute(&Inst)) 1305 return nullptr; 1306 1307 unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements(); 1308 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1309 assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth); 1310 assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth); 1311 1312 // If both arguments of binary operation are shuffles, which use the same 1313 // mask and shuffle within a single vector, it is worthwhile to move the 1314 // shuffle after binary operation: 1315 // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m) 1316 if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) { 1317 ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS); 1318 ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS); 1319 if (isa<UndefValue>(LShuf->getOperand(1)) && 1320 isa<UndefValue>(RShuf->getOperand(1)) && 1321 LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() && 1322 LShuf->getMask() == RShuf->getMask()) { 1323 Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0), 1324 RShuf->getOperand(0), Builder); 1325 return Builder->CreateShuffleVector(NewBO, 1326 UndefValue::get(NewBO->getType()), LShuf->getMask()); 1327 } 1328 } 1329 1330 // If one argument is a shuffle within one vector, the other is a constant, 1331 // try moving the shuffle after the binary operation. 1332 ShuffleVectorInst *Shuffle = nullptr; 1333 Constant *C1 = nullptr; 1334 if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS); 1335 if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS); 1336 if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS); 1337 if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS); 1338 if (Shuffle && C1 && 1339 (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) && 1340 isa<UndefValue>(Shuffle->getOperand(1)) && 1341 Shuffle->getType() == Shuffle->getOperand(0)->getType()) { 1342 SmallVector<int, 16> ShMask = Shuffle->getShuffleMask(); 1343 // Find constant C2 that has property: 1344 // shuffle(C2, ShMask) = C1 1345 // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>) 1346 // reorder is not possible. 1347 SmallVector<Constant*, 16> C2M(VWidth, 1348 UndefValue::get(C1->getType()->getScalarType())); 1349 bool MayChange = true; 1350 for (unsigned I = 0; I < VWidth; ++I) { 1351 if (ShMask[I] >= 0) { 1352 assert(ShMask[I] < (int)VWidth); 1353 if (!isa<UndefValue>(C2M[ShMask[I]])) { 1354 MayChange = false; 1355 break; 1356 } 1357 C2M[ShMask[I]] = C1->getAggregateElement(I); 1358 } 1359 } 1360 if (MayChange) { 1361 Constant *C2 = ConstantVector::get(C2M); 1362 Value *NewLHS = isa<Constant>(LHS) ? C2 : Shuffle->getOperand(0); 1363 Value *NewRHS = isa<Constant>(LHS) ? Shuffle->getOperand(0) : C2; 1364 Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder); 1365 return Builder->CreateShuffleVector(NewBO, 1366 UndefValue::get(Inst.getType()), Shuffle->getMask()); 1367 } 1368 } 1369 1370 return nullptr; 1371 } 1372 1373 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1374 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1375 1376 if (Value *V = 1377 SimplifyGEPInst(GEP.getSourceElementType(), Ops, DL, &TLI, &DT, &AC)) 1378 return replaceInstUsesWith(GEP, V); 1379 1380 Value *PtrOp = GEP.getOperand(0); 1381 1382 // Eliminate unneeded casts for indices, and replace indices which displace 1383 // by multiples of a zero size type with zero. 1384 bool MadeChange = false; 1385 Type *IntPtrTy = 1386 DL.getIntPtrType(GEP.getPointerOperandType()->getScalarType()); 1387 1388 gep_type_iterator GTI = gep_type_begin(GEP); 1389 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1390 ++I, ++GTI) { 1391 // Skip indices into struct types. 1392 if (isa<StructType>(*GTI)) 1393 continue; 1394 1395 // Index type should have the same width as IntPtr 1396 Type *IndexTy = (*I)->getType(); 1397 Type *NewIndexType = IndexTy->isVectorTy() ? 1398 VectorType::get(IntPtrTy, IndexTy->getVectorNumElements()) : IntPtrTy; 1399 1400 // If the element type has zero size then any index over it is equivalent 1401 // to an index of zero, so replace it with zero if it is not zero already. 1402 Type *EltTy = GTI.getIndexedType(); 1403 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0) 1404 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { 1405 *I = Constant::getNullValue(NewIndexType); 1406 MadeChange = true; 1407 } 1408 1409 if (IndexTy != NewIndexType) { 1410 // If we are using a wider index than needed for this platform, shrink 1411 // it to what we need. If narrower, sign-extend it to what we need. 1412 // This explicit cast can make subsequent optimizations more obvious. 1413 *I = Builder->CreateIntCast(*I, NewIndexType, true); 1414 MadeChange = true; 1415 } 1416 } 1417 if (MadeChange) 1418 return &GEP; 1419 1420 // Check to see if the inputs to the PHI node are getelementptr instructions. 1421 if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) { 1422 GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1423 if (!Op1) 1424 return nullptr; 1425 1426 // Don't fold a GEP into itself through a PHI node. This can only happen 1427 // through the back-edge of a loop. Folding a GEP into itself means that 1428 // the value of the previous iteration needs to be stored in the meantime, 1429 // thus requiring an additional register variable to be live, but not 1430 // actually achieving anything (the GEP still needs to be executed once per 1431 // loop iteration). 1432 if (Op1 == &GEP) 1433 return nullptr; 1434 1435 int DI = -1; 1436 1437 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1438 GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I); 1439 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1440 return nullptr; 1441 1442 // As for Op1 above, don't try to fold a GEP into itself. 1443 if (Op2 == &GEP) 1444 return nullptr; 1445 1446 // Keep track of the type as we walk the GEP. 1447 Type *CurTy = nullptr; 1448 1449 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1450 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1451 return nullptr; 1452 1453 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1454 if (DI == -1) { 1455 // We have not seen any differences yet in the GEPs feeding the 1456 // PHI yet, so we record this one if it is allowed to be a 1457 // variable. 1458 1459 // The first two arguments can vary for any GEP, the rest have to be 1460 // static for struct slots 1461 if (J > 1 && CurTy->isStructTy()) 1462 return nullptr; 1463 1464 DI = J; 1465 } else { 1466 // The GEP is different by more than one input. While this could be 1467 // extended to support GEPs that vary by more than one variable it 1468 // doesn't make sense since it greatly increases the complexity and 1469 // would result in an R+R+R addressing mode which no backend 1470 // directly supports and would need to be broken into several 1471 // simpler instructions anyway. 1472 return nullptr; 1473 } 1474 } 1475 1476 // Sink down a layer of the type for the next iteration. 1477 if (J > 0) { 1478 if (J == 1) { 1479 CurTy = Op1->getSourceElementType(); 1480 } else if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) { 1481 CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); 1482 } else { 1483 CurTy = nullptr; 1484 } 1485 } 1486 } 1487 } 1488 1489 // If not all GEPs are identical we'll have to create a new PHI node. 1490 // Check that the old PHI node has only one use so that it will get 1491 // removed. 1492 if (DI != -1 && !PN->hasOneUse()) 1493 return nullptr; 1494 1495 GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1496 if (DI == -1) { 1497 // All the GEPs feeding the PHI are identical. Clone one down into our 1498 // BB so that it can be merged with the current GEP. 1499 GEP.getParent()->getInstList().insert( 1500 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1501 } else { 1502 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1503 // into the current block so it can be merged, and create a new PHI to 1504 // set that index. 1505 PHINode *NewPN; 1506 { 1507 IRBuilderBase::InsertPointGuard Guard(*Builder); 1508 Builder->SetInsertPoint(PN); 1509 NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(), 1510 PN->getNumOperands()); 1511 } 1512 1513 for (auto &I : PN->operands()) 1514 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1515 PN->getIncomingBlock(I)); 1516 1517 NewGEP->setOperand(DI, NewPN); 1518 GEP.getParent()->getInstList().insert( 1519 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1520 NewGEP->setOperand(DI, NewPN); 1521 } 1522 1523 GEP.setOperand(0, NewGEP); 1524 PtrOp = NewGEP; 1525 } 1526 1527 // Combine Indices - If the source pointer to this getelementptr instruction 1528 // is a getelementptr instruction, combine the indices of the two 1529 // getelementptr instructions into a single instruction. 1530 // 1531 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) { 1532 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1533 return nullptr; 1534 1535 // Note that if our source is a gep chain itself then we wait for that 1536 // chain to be resolved before we perform this transformation. This 1537 // avoids us creating a TON of code in some cases. 1538 if (GEPOperator *SrcGEP = 1539 dyn_cast<GEPOperator>(Src->getOperand(0))) 1540 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1541 return nullptr; // Wait until our source is folded to completion. 1542 1543 SmallVector<Value*, 8> Indices; 1544 1545 // Find out whether the last index in the source GEP is a sequential idx. 1546 bool EndsWithSequential = false; 1547 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1548 I != E; ++I) 1549 EndsWithSequential = !(*I)->isStructTy(); 1550 1551 // Can we combine the two pointer arithmetics offsets? 1552 if (EndsWithSequential) { 1553 // Replace: gep (gep %P, long B), long A, ... 1554 // With: T = long A+B; gep %P, T, ... 1555 // 1556 Value *Sum; 1557 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1558 Value *GO1 = GEP.getOperand(1); 1559 if (SO1 == Constant::getNullValue(SO1->getType())) { 1560 Sum = GO1; 1561 } else if (GO1 == Constant::getNullValue(GO1->getType())) { 1562 Sum = SO1; 1563 } else { 1564 // If they aren't the same type, then the input hasn't been processed 1565 // by the loop above yet (which canonicalizes sequential index types to 1566 // intptr_t). Just avoid transforming this until the input has been 1567 // normalized. 1568 if (SO1->getType() != GO1->getType()) 1569 return nullptr; 1570 // Only do the combine when GO1 and SO1 are both constants. Only in 1571 // this case, we are sure the cost after the merge is never more than 1572 // that before the merge. 1573 if (!isa<Constant>(GO1) || !isa<Constant>(SO1)) 1574 return nullptr; 1575 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum"); 1576 } 1577 1578 // Update the GEP in place if possible. 1579 if (Src->getNumOperands() == 2) { 1580 GEP.setOperand(0, Src->getOperand(0)); 1581 GEP.setOperand(1, Sum); 1582 return &GEP; 1583 } 1584 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1585 Indices.push_back(Sum); 1586 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1587 } else if (isa<Constant>(*GEP.idx_begin()) && 1588 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1589 Src->getNumOperands() != 1) { 1590 // Otherwise we can do the fold if the first index of the GEP is a zero 1591 Indices.append(Src->op_begin()+1, Src->op_end()); 1592 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1593 } 1594 1595 if (!Indices.empty()) 1596 return GEP.isInBounds() && Src->isInBounds() 1597 ? GetElementPtrInst::CreateInBounds( 1598 Src->getSourceElementType(), Src->getOperand(0), Indices, 1599 GEP.getName()) 1600 : GetElementPtrInst::Create(Src->getSourceElementType(), 1601 Src->getOperand(0), Indices, 1602 GEP.getName()); 1603 } 1604 1605 if (GEP.getNumIndices() == 1) { 1606 unsigned AS = GEP.getPointerAddressSpace(); 1607 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 1608 DL.getPointerSizeInBits(AS)) { 1609 Type *Ty = GEP.getSourceElementType(); 1610 uint64_t TyAllocSize = DL.getTypeAllocSize(Ty); 1611 1612 bool Matched = false; 1613 uint64_t C; 1614 Value *V = nullptr; 1615 if (TyAllocSize == 1) { 1616 V = GEP.getOperand(1); 1617 Matched = true; 1618 } else if (match(GEP.getOperand(1), 1619 m_AShr(m_Value(V), m_ConstantInt(C)))) { 1620 if (TyAllocSize == 1ULL << C) 1621 Matched = true; 1622 } else if (match(GEP.getOperand(1), 1623 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 1624 if (TyAllocSize == C) 1625 Matched = true; 1626 } 1627 1628 if (Matched) { 1629 // Canonicalize (gep i8* X, -(ptrtoint Y)) 1630 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) 1631 // The GEP pattern is emitted by the SCEV expander for certain kinds of 1632 // pointer arithmetic. 1633 if (match(V, m_Neg(m_PtrToInt(m_Value())))) { 1634 Operator *Index = cast<Operator>(V); 1635 Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType()); 1636 Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1)); 1637 return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType()); 1638 } 1639 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) 1640 // to (bitcast Y) 1641 Value *Y; 1642 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), 1643 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) { 1644 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, 1645 GEP.getType()); 1646 } 1647 } 1648 } 1649 } 1650 1651 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 1652 Value *StrippedPtr = PtrOp->stripPointerCasts(); 1653 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType()); 1654 1655 // We do not handle pointer-vector geps here. 1656 if (!StrippedPtrTy) 1657 return nullptr; 1658 1659 if (StrippedPtr != PtrOp) { 1660 bool HasZeroPointerIndex = false; 1661 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 1662 HasZeroPointerIndex = C->isZero(); 1663 1664 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 1665 // into : GEP [10 x i8]* X, i32 0, ... 1666 // 1667 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 1668 // into : GEP i8* X, ... 1669 // 1670 // This occurs when the program declares an array extern like "int X[];" 1671 if (HasZeroPointerIndex) { 1672 if (ArrayType *CATy = 1673 dyn_cast<ArrayType>(GEP.getSourceElementType())) { 1674 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 1675 if (CATy->getElementType() == StrippedPtrTy->getElementType()) { 1676 // -> GEP i8* X, ... 1677 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 1678 GetElementPtrInst *Res = GetElementPtrInst::Create( 1679 StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName()); 1680 Res->setIsInBounds(GEP.isInBounds()); 1681 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 1682 return Res; 1683 // Insert Res, and create an addrspacecast. 1684 // e.g., 1685 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 1686 // -> 1687 // %0 = GEP i8 addrspace(1)* X, ... 1688 // addrspacecast i8 addrspace(1)* %0 to i8* 1689 return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType()); 1690 } 1691 1692 if (ArrayType *XATy = 1693 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){ 1694 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 1695 if (CATy->getElementType() == XATy->getElementType()) { 1696 // -> GEP [10 x i8]* X, i32 0, ... 1697 // At this point, we know that the cast source type is a pointer 1698 // to an array of the same type as the destination pointer 1699 // array. Because the array type is never stepped over (there 1700 // is a leading zero) we can fold the cast into this GEP. 1701 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 1702 GEP.setOperand(0, StrippedPtr); 1703 GEP.setSourceElementType(XATy); 1704 return &GEP; 1705 } 1706 // Cannot replace the base pointer directly because StrippedPtr's 1707 // address space is different. Instead, create a new GEP followed by 1708 // an addrspacecast. 1709 // e.g., 1710 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 1711 // i32 0, ... 1712 // -> 1713 // %0 = GEP [10 x i8] addrspace(1)* X, ... 1714 // addrspacecast i8 addrspace(1)* %0 to i8* 1715 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 1716 Value *NewGEP = GEP.isInBounds() 1717 ? Builder->CreateInBoundsGEP( 1718 nullptr, StrippedPtr, Idx, GEP.getName()) 1719 : Builder->CreateGEP(nullptr, StrippedPtr, Idx, 1720 GEP.getName()); 1721 return new AddrSpaceCastInst(NewGEP, GEP.getType()); 1722 } 1723 } 1724 } 1725 } else if (GEP.getNumOperands() == 2) { 1726 // Transform things like: 1727 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 1728 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 1729 Type *SrcElTy = StrippedPtrTy->getElementType(); 1730 Type *ResElTy = GEP.getSourceElementType(); 1731 if (SrcElTy->isArrayTy() && 1732 DL.getTypeAllocSize(SrcElTy->getArrayElementType()) == 1733 DL.getTypeAllocSize(ResElTy)) { 1734 Type *IdxType = DL.getIntPtrType(GEP.getType()); 1735 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 1736 Value *NewGEP = 1737 GEP.isInBounds() 1738 ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, Idx, 1739 GEP.getName()) 1740 : Builder->CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName()); 1741 1742 // V and GEP are both pointer types --> BitCast 1743 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1744 GEP.getType()); 1745 } 1746 1747 // Transform things like: 1748 // %V = mul i64 %N, 4 1749 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 1750 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 1751 if (ResElTy->isSized() && SrcElTy->isSized()) { 1752 // Check that changing the type amounts to dividing the index by a scale 1753 // factor. 1754 uint64_t ResSize = DL.getTypeAllocSize(ResElTy); 1755 uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy); 1756 if (ResSize && SrcSize % ResSize == 0) { 1757 Value *Idx = GEP.getOperand(1); 1758 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1759 uint64_t Scale = SrcSize / ResSize; 1760 1761 // Earlier transforms ensure that the index has type IntPtrType, which 1762 // considerably simplifies the logic by eliminating implicit casts. 1763 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) && 1764 "Index not cast to pointer width?"); 1765 1766 bool NSW; 1767 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1768 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1769 // If the multiplication NewIdx * Scale may overflow then the new 1770 // GEP may not be "inbounds". 1771 Value *NewGEP = 1772 GEP.isInBounds() && NSW 1773 ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx, 1774 GEP.getName()) 1775 : Builder->CreateGEP(nullptr, StrippedPtr, NewIdx, 1776 GEP.getName()); 1777 1778 // The NewGEP must be pointer typed, so must the old one -> BitCast 1779 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1780 GEP.getType()); 1781 } 1782 } 1783 } 1784 1785 // Similarly, transform things like: 1786 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 1787 // (where tmp = 8*tmp2) into: 1788 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 1789 if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) { 1790 // Check that changing to the array element type amounts to dividing the 1791 // index by a scale factor. 1792 uint64_t ResSize = DL.getTypeAllocSize(ResElTy); 1793 uint64_t ArrayEltSize = 1794 DL.getTypeAllocSize(SrcElTy->getArrayElementType()); 1795 if (ResSize && ArrayEltSize % ResSize == 0) { 1796 Value *Idx = GEP.getOperand(1); 1797 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1798 uint64_t Scale = ArrayEltSize / ResSize; 1799 1800 // Earlier transforms ensure that the index has type IntPtrType, which 1801 // considerably simplifies the logic by eliminating implicit casts. 1802 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) && 1803 "Index not cast to pointer width?"); 1804 1805 bool NSW; 1806 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1807 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1808 // If the multiplication NewIdx * Scale may overflow then the new 1809 // GEP may not be "inbounds". 1810 Value *Off[2] = { 1811 Constant::getNullValue(DL.getIntPtrType(GEP.getType())), 1812 NewIdx}; 1813 1814 Value *NewGEP = GEP.isInBounds() && NSW 1815 ? Builder->CreateInBoundsGEP( 1816 SrcElTy, StrippedPtr, Off, GEP.getName()) 1817 : Builder->CreateGEP(SrcElTy, StrippedPtr, Off, 1818 GEP.getName()); 1819 // The NewGEP must be pointer typed, so must the old one -> BitCast 1820 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1821 GEP.getType()); 1822 } 1823 } 1824 } 1825 } 1826 } 1827 1828 // addrspacecast between types is canonicalized as a bitcast, then an 1829 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 1830 // through the addrspacecast. 1831 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 1832 // X = bitcast A addrspace(1)* to B addrspace(1)* 1833 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 1834 // Z = gep Y, <...constant indices...> 1835 // Into an addrspacecasted GEP of the struct. 1836 if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 1837 PtrOp = BC; 1838 } 1839 1840 /// See if we can simplify: 1841 /// X = bitcast A* to B* 1842 /// Y = gep X, <...constant indices...> 1843 /// into a gep of the original struct. This is important for SROA and alias 1844 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 1845 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) { 1846 Value *Operand = BCI->getOperand(0); 1847 PointerType *OpType = cast<PointerType>(Operand->getType()); 1848 unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType()); 1849 APInt Offset(OffsetBits, 0); 1850 if (!isa<BitCastInst>(Operand) && 1851 GEP.accumulateConstantOffset(DL, Offset)) { 1852 1853 // If this GEP instruction doesn't move the pointer, just replace the GEP 1854 // with a bitcast of the real input to the dest type. 1855 if (!Offset) { 1856 // If the bitcast is of an allocation, and the allocation will be 1857 // converted to match the type of the cast, don't touch this. 1858 if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, &TLI)) { 1859 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 1860 if (Instruction *I = visitBitCast(*BCI)) { 1861 if (I != BCI) { 1862 I->takeName(BCI); 1863 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 1864 replaceInstUsesWith(*BCI, I); 1865 } 1866 return &GEP; 1867 } 1868 } 1869 1870 if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 1871 return new AddrSpaceCastInst(Operand, GEP.getType()); 1872 return new BitCastInst(Operand, GEP.getType()); 1873 } 1874 1875 // Otherwise, if the offset is non-zero, we need to find out if there is a 1876 // field at Offset in 'A's type. If so, we can pull the cast through the 1877 // GEP. 1878 SmallVector<Value*, 8> NewIndices; 1879 if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) { 1880 Value *NGEP = 1881 GEP.isInBounds() 1882 ? Builder->CreateInBoundsGEP(nullptr, Operand, NewIndices) 1883 : Builder->CreateGEP(nullptr, Operand, NewIndices); 1884 1885 if (NGEP->getType() == GEP.getType()) 1886 return replaceInstUsesWith(GEP, NGEP); 1887 NGEP->takeName(&GEP); 1888 1889 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 1890 return new AddrSpaceCastInst(NGEP, GEP.getType()); 1891 return new BitCastInst(NGEP, GEP.getType()); 1892 } 1893 } 1894 } 1895 1896 if (!GEP.isInBounds()) { 1897 unsigned PtrWidth = 1898 DL.getPointerSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 1899 APInt BasePtrOffset(PtrWidth, 0); 1900 Value *UnderlyingPtrOp = 1901 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 1902 BasePtrOffset); 1903 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 1904 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 1905 BasePtrOffset.isNonNegative()) { 1906 APInt AllocSize(PtrWidth, DL.getTypeAllocSize(AI->getAllocatedType())); 1907 if (BasePtrOffset.ule(AllocSize)) { 1908 return GetElementPtrInst::CreateInBounds( 1909 PtrOp, makeArrayRef(Ops).slice(1), GEP.getName()); 1910 } 1911 } 1912 } 1913 } 1914 1915 return nullptr; 1916 } 1917 1918 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 1919 Instruction *AI) { 1920 if (isa<ConstantPointerNull>(V)) 1921 return true; 1922 if (auto *LI = dyn_cast<LoadInst>(V)) 1923 return isa<GlobalVariable>(LI->getPointerOperand()); 1924 // Two distinct allocations will never be equal. 1925 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 1926 // through bitcasts of V can cause 1927 // the result statement below to be true, even when AI and V (ex: 1928 // i8* ->i32* ->i8* of AI) are the same allocations. 1929 return isAllocLikeFn(V, TLI) && V != AI; 1930 } 1931 1932 static bool 1933 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users, 1934 const TargetLibraryInfo *TLI) { 1935 SmallVector<Instruction*, 4> Worklist; 1936 Worklist.push_back(AI); 1937 1938 do { 1939 Instruction *PI = Worklist.pop_back_val(); 1940 for (User *U : PI->users()) { 1941 Instruction *I = cast<Instruction>(U); 1942 switch (I->getOpcode()) { 1943 default: 1944 // Give up the moment we see something we can't handle. 1945 return false; 1946 1947 case Instruction::BitCast: 1948 case Instruction::GetElementPtr: 1949 Users.emplace_back(I); 1950 Worklist.push_back(I); 1951 continue; 1952 1953 case Instruction::ICmp: { 1954 ICmpInst *ICI = cast<ICmpInst>(I); 1955 // We can fold eq/ne comparisons with null to false/true, respectively. 1956 // We also fold comparisons in some conditions provided the alloc has 1957 // not escaped (see isNeverEqualToUnescapedAlloc). 1958 if (!ICI->isEquality()) 1959 return false; 1960 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 1961 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 1962 return false; 1963 Users.emplace_back(I); 1964 continue; 1965 } 1966 1967 case Instruction::Call: 1968 // Ignore no-op and store intrinsics. 1969 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1970 switch (II->getIntrinsicID()) { 1971 default: 1972 return false; 1973 1974 case Intrinsic::memmove: 1975 case Intrinsic::memcpy: 1976 case Intrinsic::memset: { 1977 MemIntrinsic *MI = cast<MemIntrinsic>(II); 1978 if (MI->isVolatile() || MI->getRawDest() != PI) 1979 return false; 1980 LLVM_FALLTHROUGH; 1981 } 1982 case Intrinsic::dbg_declare: 1983 case Intrinsic::dbg_value: 1984 case Intrinsic::invariant_start: 1985 case Intrinsic::invariant_end: 1986 case Intrinsic::lifetime_start: 1987 case Intrinsic::lifetime_end: 1988 case Intrinsic::objectsize: 1989 Users.emplace_back(I); 1990 continue; 1991 } 1992 } 1993 1994 if (isFreeCall(I, TLI)) { 1995 Users.emplace_back(I); 1996 continue; 1997 } 1998 return false; 1999 2000 case Instruction::Store: { 2001 StoreInst *SI = cast<StoreInst>(I); 2002 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2003 return false; 2004 Users.emplace_back(I); 2005 continue; 2006 } 2007 } 2008 llvm_unreachable("missing a return?"); 2009 } 2010 } while (!Worklist.empty()); 2011 return true; 2012 } 2013 2014 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 2015 // If we have a malloc call which is only used in any amount of comparisons 2016 // to null and free calls, delete the calls and replace the comparisons with 2017 // true or false as appropriate. 2018 SmallVector<WeakVH, 64> Users; 2019 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2020 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2021 // Lowering all @llvm.objectsize calls first because they may 2022 // use a bitcast/GEP of the alloca we are removing. 2023 if (!Users[i]) 2024 continue; 2025 2026 Instruction *I = cast<Instruction>(&*Users[i]); 2027 2028 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2029 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2030 uint64_t Size; 2031 if (!getObjectSize(II->getArgOperand(0), Size, DL, &TLI)) { 2032 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 2033 Size = CI->isZero() ? -1ULL : 0; 2034 } 2035 replaceInstUsesWith(*I, ConstantInt::get(I->getType(), Size)); 2036 eraseInstFromFunction(*I); 2037 Users[i] = nullptr; // Skip examining in the next loop. 2038 } 2039 } 2040 } 2041 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2042 if (!Users[i]) 2043 continue; 2044 2045 Instruction *I = cast<Instruction>(&*Users[i]); 2046 2047 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2048 replaceInstUsesWith(*C, 2049 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2050 C->isFalseWhenEqual())); 2051 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) { 2052 replaceInstUsesWith(*I, UndefValue::get(I->getType())); 2053 } 2054 eraseInstFromFunction(*I); 2055 } 2056 2057 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2058 // Replace invoke with a NOP intrinsic to maintain the original CFG 2059 Module *M = II->getModule(); 2060 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2061 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2062 None, "", II->getParent()); 2063 } 2064 return eraseInstFromFunction(MI); 2065 } 2066 return nullptr; 2067 } 2068 2069 /// \brief Move the call to free before a NULL test. 2070 /// 2071 /// Check if this free is accessed after its argument has been test 2072 /// against NULL (property 0). 2073 /// If yes, it is legal to move this call in its predecessor block. 2074 /// 2075 /// The move is performed only if the block containing the call to free 2076 /// will be removed, i.e.: 2077 /// 1. it has only one predecessor P, and P has two successors 2078 /// 2. it contains the call and an unconditional branch 2079 /// 3. its successor is the same as its predecessor's successor 2080 /// 2081 /// The profitability is out-of concern here and this function should 2082 /// be called only if the caller knows this transformation would be 2083 /// profitable (e.g., for code size). 2084 static Instruction * 2085 tryToMoveFreeBeforeNullTest(CallInst &FI) { 2086 Value *Op = FI.getArgOperand(0); 2087 BasicBlock *FreeInstrBB = FI.getParent(); 2088 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2089 2090 // Validate part of constraint #1: Only one predecessor 2091 // FIXME: We can extend the number of predecessor, but in that case, we 2092 // would duplicate the call to free in each predecessor and it may 2093 // not be profitable even for code size. 2094 if (!PredBB) 2095 return nullptr; 2096 2097 // Validate constraint #2: Does this block contains only the call to 2098 // free and an unconditional branch? 2099 // FIXME: We could check if we can speculate everything in the 2100 // predecessor block 2101 if (FreeInstrBB->size() != 2) 2102 return nullptr; 2103 BasicBlock *SuccBB; 2104 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB))) 2105 return nullptr; 2106 2107 // Validate the rest of constraint #1 by matching on the pred branch. 2108 TerminatorInst *TI = PredBB->getTerminator(); 2109 BasicBlock *TrueBB, *FalseBB; 2110 ICmpInst::Predicate Pred; 2111 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB))) 2112 return nullptr; 2113 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2114 return nullptr; 2115 2116 // Validate constraint #3: Ensure the null case just falls through. 2117 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2118 return nullptr; 2119 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2120 "Broken CFG: missing edge from predecessor to successor"); 2121 2122 FI.moveBefore(TI); 2123 return &FI; 2124 } 2125 2126 2127 Instruction *InstCombiner::visitFree(CallInst &FI) { 2128 Value *Op = FI.getArgOperand(0); 2129 2130 // free undef -> unreachable. 2131 if (isa<UndefValue>(Op)) { 2132 // Insert a new store to null because we cannot modify the CFG here. 2133 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()), 2134 UndefValue::get(Type::getInt1PtrTy(FI.getContext()))); 2135 return eraseInstFromFunction(FI); 2136 } 2137 2138 // If we have 'free null' delete the instruction. This can happen in stl code 2139 // when lots of inlining happens. 2140 if (isa<ConstantPointerNull>(Op)) 2141 return eraseInstFromFunction(FI); 2142 2143 // If we optimize for code size, try to move the call to free before the null 2144 // test so that simplify cfg can remove the empty block and dead code 2145 // elimination the branch. I.e., helps to turn something like: 2146 // if (foo) free(foo); 2147 // into 2148 // free(foo); 2149 if (MinimizeSize) 2150 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI)) 2151 return I; 2152 2153 return nullptr; 2154 } 2155 2156 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { 2157 if (RI.getNumOperands() == 0) // ret void 2158 return nullptr; 2159 2160 Value *ResultOp = RI.getOperand(0); 2161 Type *VTy = ResultOp->getType(); 2162 if (!VTy->isIntegerTy()) 2163 return nullptr; 2164 2165 // There might be assume intrinsics dominating this return that completely 2166 // determine the value. If so, constant fold it. 2167 unsigned BitWidth = VTy->getPrimitiveSizeInBits(); 2168 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 2169 computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI); 2170 if ((KnownZero|KnownOne).isAllOnesValue()) 2171 RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne)); 2172 2173 return nullptr; 2174 } 2175 2176 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 2177 // Change br (not X), label True, label False to: br X, label False, True 2178 Value *X = nullptr; 2179 BasicBlock *TrueDest; 2180 BasicBlock *FalseDest; 2181 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && 2182 !isa<Constant>(X)) { 2183 // Swap Destinations and condition... 2184 BI.setCondition(X); 2185 BI.swapSuccessors(); 2186 return &BI; 2187 } 2188 2189 // If the condition is irrelevant, remove the use so that other 2190 // transforms on the condition become more effective. 2191 if (BI.isConditional() && 2192 BI.getSuccessor(0) == BI.getSuccessor(1) && 2193 !isa<UndefValue>(BI.getCondition())) { 2194 BI.setCondition(UndefValue::get(BI.getCondition()->getType())); 2195 return &BI; 2196 } 2197 2198 // Canonicalize fcmp_one -> fcmp_oeq 2199 FCmpInst::Predicate FPred; Value *Y; 2200 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), 2201 TrueDest, FalseDest)) && 2202 BI.getCondition()->hasOneUse()) 2203 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE || 2204 FPred == FCmpInst::FCMP_OGE) { 2205 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition()); 2206 Cond->setPredicate(FCmpInst::getInversePredicate(FPred)); 2207 2208 // Swap Destinations and condition. 2209 BI.swapSuccessors(); 2210 Worklist.Add(Cond); 2211 return &BI; 2212 } 2213 2214 // Canonicalize icmp_ne -> icmp_eq 2215 ICmpInst::Predicate IPred; 2216 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)), 2217 TrueDest, FalseDest)) && 2218 BI.getCondition()->hasOneUse()) 2219 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE || 2220 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE || 2221 IPred == ICmpInst::ICMP_SGE) { 2222 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition()); 2223 Cond->setPredicate(ICmpInst::getInversePredicate(IPred)); 2224 // Swap Destinations and condition. 2225 BI.swapSuccessors(); 2226 Worklist.Add(Cond); 2227 return &BI; 2228 } 2229 2230 return nullptr; 2231 } 2232 2233 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 2234 Value *Cond = SI.getCondition(); 2235 unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth(); 2236 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 2237 computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI); 2238 unsigned LeadingKnownZeros = KnownZero.countLeadingOnes(); 2239 unsigned LeadingKnownOnes = KnownOne.countLeadingOnes(); 2240 2241 // Compute the number of leading bits we can ignore. 2242 // TODO: A better way to determine this would use ComputeNumSignBits(). 2243 for (auto &C : SI.cases()) { 2244 LeadingKnownZeros = std::min( 2245 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2246 LeadingKnownOnes = std::min( 2247 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2248 } 2249 2250 unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes); 2251 2252 // Shrink the condition operand if the new type is smaller than the old type. 2253 // This may produce a non-standard type for the switch, but that's ok because 2254 // the backend should extend back to a legal type for the target. 2255 bool TruncCond = false; 2256 if (NewWidth > 0 && NewWidth < BitWidth) { 2257 TruncCond = true; 2258 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2259 Builder->SetInsertPoint(&SI); 2260 Value *NewCond = Builder->CreateTrunc(Cond, Ty, "trunc"); 2261 SI.setCondition(NewCond); 2262 2263 for (auto &C : SI.cases()) 2264 static_cast<SwitchInst::CaseIt *>(&C)->setValue(ConstantInt::get( 2265 SI.getContext(), C.getCaseValue()->getValue().trunc(NewWidth))); 2266 } 2267 2268 Value *Op0 = nullptr; 2269 ConstantInt *AddRHS = nullptr; 2270 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 2271 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2272 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; 2273 ++i) { 2274 ConstantInt *CaseVal = i.getCaseValue(); 2275 Constant *LHS = CaseVal; 2276 if (TruncCond) { 2277 LHS = LeadingKnownZeros 2278 ? ConstantExpr::getZExt(CaseVal, Cond->getType()) 2279 : ConstantExpr::getSExt(CaseVal, Cond->getType()); 2280 } 2281 Constant *NewCaseVal = ConstantExpr::getSub(LHS, AddRHS); 2282 assert(isa<ConstantInt>(NewCaseVal) && 2283 "Result of expression should be constant"); 2284 i.setValue(cast<ConstantInt>(NewCaseVal)); 2285 } 2286 SI.setCondition(Op0); 2287 if (auto *CondI = dyn_cast<Instruction>(Cond)) 2288 Worklist.Add(CondI); 2289 return &SI; 2290 } 2291 2292 return TruncCond ? &SI : nullptr; 2293 } 2294 2295 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 2296 Value *Agg = EV.getAggregateOperand(); 2297 2298 if (!EV.hasIndices()) 2299 return replaceInstUsesWith(EV, Agg); 2300 2301 if (Value *V = 2302 SimplifyExtractValueInst(Agg, EV.getIndices(), DL, &TLI, &DT, &AC)) 2303 return replaceInstUsesWith(EV, V); 2304 2305 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 2306 // We're extracting from an insertvalue instruction, compare the indices 2307 const unsigned *exti, *exte, *insi, *inse; 2308 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 2309 exte = EV.idx_end(), inse = IV->idx_end(); 2310 exti != exte && insi != inse; 2311 ++exti, ++insi) { 2312 if (*insi != *exti) 2313 // The insert and extract both reference distinctly different elements. 2314 // This means the extract is not influenced by the insert, and we can 2315 // replace the aggregate operand of the extract with the aggregate 2316 // operand of the insert. i.e., replace 2317 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2318 // %E = extractvalue { i32, { i32 } } %I, 0 2319 // with 2320 // %E = extractvalue { i32, { i32 } } %A, 0 2321 return ExtractValueInst::Create(IV->getAggregateOperand(), 2322 EV.getIndices()); 2323 } 2324 if (exti == exte && insi == inse) 2325 // Both iterators are at the end: Index lists are identical. Replace 2326 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2327 // %C = extractvalue { i32, { i32 } } %B, 1, 0 2328 // with "i32 42" 2329 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 2330 if (exti == exte) { 2331 // The extract list is a prefix of the insert list. i.e. replace 2332 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2333 // %E = extractvalue { i32, { i32 } } %I, 1 2334 // with 2335 // %X = extractvalue { i32, { i32 } } %A, 1 2336 // %E = insertvalue { i32 } %X, i32 42, 0 2337 // by switching the order of the insert and extract (though the 2338 // insertvalue should be left in, since it may have other uses). 2339 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(), 2340 EV.getIndices()); 2341 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 2342 makeArrayRef(insi, inse)); 2343 } 2344 if (insi == inse) 2345 // The insert list is a prefix of the extract list 2346 // We can simply remove the common indices from the extract and make it 2347 // operate on the inserted value instead of the insertvalue result. 2348 // i.e., replace 2349 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2350 // %E = extractvalue { i32, { i32 } } %I, 1, 0 2351 // with 2352 // %E extractvalue { i32 } { i32 42 }, 0 2353 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 2354 makeArrayRef(exti, exte)); 2355 } 2356 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { 2357 // We're extracting from an intrinsic, see if we're the only user, which 2358 // allows us to simplify multiple result intrinsics to simpler things that 2359 // just get one value. 2360 if (II->hasOneUse()) { 2361 // Check if we're grabbing the overflow bit or the result of a 'with 2362 // overflow' intrinsic. If it's the latter we can remove the intrinsic 2363 // and replace it with a traditional binary instruction. 2364 switch (II->getIntrinsicID()) { 2365 case Intrinsic::uadd_with_overflow: 2366 case Intrinsic::sadd_with_overflow: 2367 if (*EV.idx_begin() == 0) { // Normal result. 2368 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2369 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2370 eraseInstFromFunction(*II); 2371 return BinaryOperator::CreateAdd(LHS, RHS); 2372 } 2373 2374 // If the normal result of the add is dead, and the RHS is a constant, 2375 // we can transform this into a range comparison. 2376 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 2377 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) 2378 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1))) 2379 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0), 2380 ConstantExpr::getNot(CI)); 2381 break; 2382 case Intrinsic::usub_with_overflow: 2383 case Intrinsic::ssub_with_overflow: 2384 if (*EV.idx_begin() == 0) { // Normal result. 2385 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2386 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2387 eraseInstFromFunction(*II); 2388 return BinaryOperator::CreateSub(LHS, RHS); 2389 } 2390 break; 2391 case Intrinsic::umul_with_overflow: 2392 case Intrinsic::smul_with_overflow: 2393 if (*EV.idx_begin() == 0) { // Normal result. 2394 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2395 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2396 eraseInstFromFunction(*II); 2397 return BinaryOperator::CreateMul(LHS, RHS); 2398 } 2399 break; 2400 default: 2401 break; 2402 } 2403 } 2404 } 2405 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2406 // If the (non-volatile) load only has one use, we can rewrite this to a 2407 // load from a GEP. This reduces the size of the load. If a load is used 2408 // only by extractvalue instructions then this either must have been 2409 // optimized before, or it is a struct with padding, in which case we 2410 // don't want to do the transformation as it loses padding knowledge. 2411 if (L->isSimple() && L->hasOneUse()) { 2412 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2413 SmallVector<Value*, 4> Indices; 2414 // Prefix an i32 0 since we need the first element. 2415 Indices.push_back(Builder->getInt32(0)); 2416 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2417 I != E; ++I) 2418 Indices.push_back(Builder->getInt32(*I)); 2419 2420 // We need to insert these at the location of the old load, not at that of 2421 // the extractvalue. 2422 Builder->SetInsertPoint(L); 2423 Value *GEP = Builder->CreateInBoundsGEP(L->getType(), 2424 L->getPointerOperand(), Indices); 2425 // Returning the load directly will cause the main loop to insert it in 2426 // the wrong spot, so use replaceInstUsesWith(). 2427 return replaceInstUsesWith(EV, Builder->CreateLoad(GEP)); 2428 } 2429 // We could simplify extracts from other values. Note that nested extracts may 2430 // already be simplified implicitly by the above: extract (extract (insert) ) 2431 // will be translated into extract ( insert ( extract ) ) first and then just 2432 // the value inserted, if appropriate. Similarly for extracts from single-use 2433 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2434 // and if again single-use then via load (gep (gep)) to load (gep). 2435 // However, double extracts from e.g. function arguments or return values 2436 // aren't handled yet. 2437 return nullptr; 2438 } 2439 2440 /// Return 'true' if the given typeinfo will match anything. 2441 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 2442 switch (Personality) { 2443 case EHPersonality::GNU_C: 2444 case EHPersonality::GNU_C_SjLj: 2445 case EHPersonality::Rust: 2446 // The GCC C EH and Rust personality only exists to support cleanups, so 2447 // it's not clear what the semantics of catch clauses are. 2448 return false; 2449 case EHPersonality::Unknown: 2450 return false; 2451 case EHPersonality::GNU_Ada: 2452 // While __gnat_all_others_value will match any Ada exception, it doesn't 2453 // match foreign exceptions (or didn't, before gcc-4.7). 2454 return false; 2455 case EHPersonality::GNU_CXX: 2456 case EHPersonality::GNU_CXX_SjLj: 2457 case EHPersonality::GNU_ObjC: 2458 case EHPersonality::MSVC_X86SEH: 2459 case EHPersonality::MSVC_Win64SEH: 2460 case EHPersonality::MSVC_CXX: 2461 case EHPersonality::CoreCLR: 2462 return TypeInfo->isNullValue(); 2463 } 2464 llvm_unreachable("invalid enum"); 2465 } 2466 2467 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2468 return 2469 cast<ArrayType>(LHS->getType())->getNumElements() 2470 < 2471 cast<ArrayType>(RHS->getType())->getNumElements(); 2472 } 2473 2474 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2475 // The logic here should be correct for any real-world personality function. 2476 // However if that turns out not to be true, the offending logic can always 2477 // be conditioned on the personality function, like the catch-all logic is. 2478 EHPersonality Personality = 2479 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 2480 2481 // Simplify the list of clauses, eg by removing repeated catch clauses 2482 // (these are often created by inlining). 2483 bool MakeNewInstruction = false; // If true, recreate using the following: 2484 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2485 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2486 2487 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 2488 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 2489 bool isLastClause = i + 1 == e; 2490 if (LI.isCatch(i)) { 2491 // A catch clause. 2492 Constant *CatchClause = LI.getClause(i); 2493 Constant *TypeInfo = CatchClause->stripPointerCasts(); 2494 2495 // If we already saw this clause, there is no point in having a second 2496 // copy of it. 2497 if (AlreadyCaught.insert(TypeInfo).second) { 2498 // This catch clause was not already seen. 2499 NewClauses.push_back(CatchClause); 2500 } else { 2501 // Repeated catch clause - drop the redundant copy. 2502 MakeNewInstruction = true; 2503 } 2504 2505 // If this is a catch-all then there is no point in keeping any following 2506 // clauses or marking the landingpad as having a cleanup. 2507 if (isCatchAll(Personality, TypeInfo)) { 2508 if (!isLastClause) 2509 MakeNewInstruction = true; 2510 CleanupFlag = false; 2511 break; 2512 } 2513 } else { 2514 // A filter clause. If any of the filter elements were already caught 2515 // then they can be dropped from the filter. It is tempting to try to 2516 // exploit the filter further by saying that any typeinfo that does not 2517 // occur in the filter can't be caught later (and thus can be dropped). 2518 // However this would be wrong, since typeinfos can match without being 2519 // equal (for example if one represents a C++ class, and the other some 2520 // class derived from it). 2521 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 2522 Constant *FilterClause = LI.getClause(i); 2523 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 2524 unsigned NumTypeInfos = FilterType->getNumElements(); 2525 2526 // An empty filter catches everything, so there is no point in keeping any 2527 // following clauses or marking the landingpad as having a cleanup. By 2528 // dealing with this case here the following code is made a bit simpler. 2529 if (!NumTypeInfos) { 2530 NewClauses.push_back(FilterClause); 2531 if (!isLastClause) 2532 MakeNewInstruction = true; 2533 CleanupFlag = false; 2534 break; 2535 } 2536 2537 bool MakeNewFilter = false; // If true, make a new filter. 2538 SmallVector<Constant *, 16> NewFilterElts; // New elements. 2539 if (isa<ConstantAggregateZero>(FilterClause)) { 2540 // Not an empty filter - it contains at least one null typeinfo. 2541 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 2542 Constant *TypeInfo = 2543 Constant::getNullValue(FilterType->getElementType()); 2544 // If this typeinfo is a catch-all then the filter can never match. 2545 if (isCatchAll(Personality, TypeInfo)) { 2546 // Throw the filter away. 2547 MakeNewInstruction = true; 2548 continue; 2549 } 2550 2551 // There is no point in having multiple copies of this typeinfo, so 2552 // discard all but the first copy if there is more than one. 2553 NewFilterElts.push_back(TypeInfo); 2554 if (NumTypeInfos > 1) 2555 MakeNewFilter = true; 2556 } else { 2557 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 2558 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 2559 NewFilterElts.reserve(NumTypeInfos); 2560 2561 // Remove any filter elements that were already caught or that already 2562 // occurred in the filter. While there, see if any of the elements are 2563 // catch-alls. If so, the filter can be discarded. 2564 bool SawCatchAll = false; 2565 for (unsigned j = 0; j != NumTypeInfos; ++j) { 2566 Constant *Elt = Filter->getOperand(j); 2567 Constant *TypeInfo = Elt->stripPointerCasts(); 2568 if (isCatchAll(Personality, TypeInfo)) { 2569 // This element is a catch-all. Bail out, noting this fact. 2570 SawCatchAll = true; 2571 break; 2572 } 2573 2574 // Even if we've seen a type in a catch clause, we don't want to 2575 // remove it from the filter. An unexpected type handler may be 2576 // set up for a call site which throws an exception of the same 2577 // type caught. In order for the exception thrown by the unexpected 2578 // handler to propagate correctly, the filter must be correctly 2579 // described for the call site. 2580 // 2581 // Example: 2582 // 2583 // void unexpected() { throw 1;} 2584 // void foo() throw (int) { 2585 // std::set_unexpected(unexpected); 2586 // try { 2587 // throw 2.0; 2588 // } catch (int i) {} 2589 // } 2590 2591 // There is no point in having multiple copies of the same typeinfo in 2592 // a filter, so only add it if we didn't already. 2593 if (SeenInFilter.insert(TypeInfo).second) 2594 NewFilterElts.push_back(cast<Constant>(Elt)); 2595 } 2596 // A filter containing a catch-all cannot match anything by definition. 2597 if (SawCatchAll) { 2598 // Throw the filter away. 2599 MakeNewInstruction = true; 2600 continue; 2601 } 2602 2603 // If we dropped something from the filter, make a new one. 2604 if (NewFilterElts.size() < NumTypeInfos) 2605 MakeNewFilter = true; 2606 } 2607 if (MakeNewFilter) { 2608 FilterType = ArrayType::get(FilterType->getElementType(), 2609 NewFilterElts.size()); 2610 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 2611 MakeNewInstruction = true; 2612 } 2613 2614 NewClauses.push_back(FilterClause); 2615 2616 // If the new filter is empty then it will catch everything so there is 2617 // no point in keeping any following clauses or marking the landingpad 2618 // as having a cleanup. The case of the original filter being empty was 2619 // already handled above. 2620 if (MakeNewFilter && !NewFilterElts.size()) { 2621 assert(MakeNewInstruction && "New filter but not a new instruction!"); 2622 CleanupFlag = false; 2623 break; 2624 } 2625 } 2626 } 2627 2628 // If several filters occur in a row then reorder them so that the shortest 2629 // filters come first (those with the smallest number of elements). This is 2630 // advantageous because shorter filters are more likely to match, speeding up 2631 // unwinding, but mostly because it increases the effectiveness of the other 2632 // filter optimizations below. 2633 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 2634 unsigned j; 2635 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 2636 for (j = i; j != e; ++j) 2637 if (!isa<ArrayType>(NewClauses[j]->getType())) 2638 break; 2639 2640 // Check whether the filters are already sorted by length. We need to know 2641 // if sorting them is actually going to do anything so that we only make a 2642 // new landingpad instruction if it does. 2643 for (unsigned k = i; k + 1 < j; ++k) 2644 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 2645 // Not sorted, so sort the filters now. Doing an unstable sort would be 2646 // correct too but reordering filters pointlessly might confuse users. 2647 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 2648 shorter_filter); 2649 MakeNewInstruction = true; 2650 break; 2651 } 2652 2653 // Look for the next batch of filters. 2654 i = j + 1; 2655 } 2656 2657 // If typeinfos matched if and only if equal, then the elements of a filter L 2658 // that occurs later than a filter F could be replaced by the intersection of 2659 // the elements of F and L. In reality two typeinfos can match without being 2660 // equal (for example if one represents a C++ class, and the other some class 2661 // derived from it) so it would be wrong to perform this transform in general. 2662 // However the transform is correct and useful if F is a subset of L. In that 2663 // case L can be replaced by F, and thus removed altogether since repeating a 2664 // filter is pointless. So here we look at all pairs of filters F and L where 2665 // L follows F in the list of clauses, and remove L if every element of F is 2666 // an element of L. This can occur when inlining C++ functions with exception 2667 // specifications. 2668 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 2669 // Examine each filter in turn. 2670 Value *Filter = NewClauses[i]; 2671 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 2672 if (!FTy) 2673 // Not a filter - skip it. 2674 continue; 2675 unsigned FElts = FTy->getNumElements(); 2676 // Examine each filter following this one. Doing this backwards means that 2677 // we don't have to worry about filters disappearing under us when removed. 2678 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 2679 Value *LFilter = NewClauses[j]; 2680 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 2681 if (!LTy) 2682 // Not a filter - skip it. 2683 continue; 2684 // If Filter is a subset of LFilter, i.e. every element of Filter is also 2685 // an element of LFilter, then discard LFilter. 2686 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 2687 // If Filter is empty then it is a subset of LFilter. 2688 if (!FElts) { 2689 // Discard LFilter. 2690 NewClauses.erase(J); 2691 MakeNewInstruction = true; 2692 // Move on to the next filter. 2693 continue; 2694 } 2695 unsigned LElts = LTy->getNumElements(); 2696 // If Filter is longer than LFilter then it cannot be a subset of it. 2697 if (FElts > LElts) 2698 // Move on to the next filter. 2699 continue; 2700 // At this point we know that LFilter has at least one element. 2701 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 2702 // Filter is a subset of LFilter iff Filter contains only zeros (as we 2703 // already know that Filter is not longer than LFilter). 2704 if (isa<ConstantAggregateZero>(Filter)) { 2705 assert(FElts <= LElts && "Should have handled this case earlier!"); 2706 // Discard LFilter. 2707 NewClauses.erase(J); 2708 MakeNewInstruction = true; 2709 } 2710 // Move on to the next filter. 2711 continue; 2712 } 2713 ConstantArray *LArray = cast<ConstantArray>(LFilter); 2714 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 2715 // Since Filter is non-empty and contains only zeros, it is a subset of 2716 // LFilter iff LFilter contains a zero. 2717 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 2718 for (unsigned l = 0; l != LElts; ++l) 2719 if (LArray->getOperand(l)->isNullValue()) { 2720 // LFilter contains a zero - discard it. 2721 NewClauses.erase(J); 2722 MakeNewInstruction = true; 2723 break; 2724 } 2725 // Move on to the next filter. 2726 continue; 2727 } 2728 // At this point we know that both filters are ConstantArrays. Loop over 2729 // operands to see whether every element of Filter is also an element of 2730 // LFilter. Since filters tend to be short this is probably faster than 2731 // using a method that scales nicely. 2732 ConstantArray *FArray = cast<ConstantArray>(Filter); 2733 bool AllFound = true; 2734 for (unsigned f = 0; f != FElts; ++f) { 2735 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 2736 AllFound = false; 2737 for (unsigned l = 0; l != LElts; ++l) { 2738 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 2739 if (LTypeInfo == FTypeInfo) { 2740 AllFound = true; 2741 break; 2742 } 2743 } 2744 if (!AllFound) 2745 break; 2746 } 2747 if (AllFound) { 2748 // Discard LFilter. 2749 NewClauses.erase(J); 2750 MakeNewInstruction = true; 2751 } 2752 // Move on to the next filter. 2753 } 2754 } 2755 2756 // If we changed any of the clauses, replace the old landingpad instruction 2757 // with a new one. 2758 if (MakeNewInstruction) { 2759 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 2760 NewClauses.size()); 2761 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 2762 NLI->addClause(NewClauses[i]); 2763 // A landing pad with no clauses must have the cleanup flag set. It is 2764 // theoretically possible, though highly unlikely, that we eliminated all 2765 // clauses. If so, force the cleanup flag to true. 2766 if (NewClauses.empty()) 2767 CleanupFlag = true; 2768 NLI->setCleanup(CleanupFlag); 2769 return NLI; 2770 } 2771 2772 // Even if none of the clauses changed, we may nonetheless have understood 2773 // that the cleanup flag is pointless. Clear it if so. 2774 if (LI.isCleanup() != CleanupFlag) { 2775 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 2776 LI.setCleanup(CleanupFlag); 2777 return &LI; 2778 } 2779 2780 return nullptr; 2781 } 2782 2783 /// Try to move the specified instruction from its current block into the 2784 /// beginning of DestBlock, which can only happen if it's safe to move the 2785 /// instruction past all of the instructions between it and the end of its 2786 /// block. 2787 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 2788 assert(I->hasOneUse() && "Invariants didn't hold!"); 2789 2790 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 2791 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 2792 isa<TerminatorInst>(I)) 2793 return false; 2794 2795 // Do not sink alloca instructions out of the entry block. 2796 if (isa<AllocaInst>(I) && I->getParent() == 2797 &DestBlock->getParent()->getEntryBlock()) 2798 return false; 2799 2800 // Do not sink into catchswitch blocks. 2801 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 2802 return false; 2803 2804 // Do not sink convergent call instructions. 2805 if (auto *CI = dyn_cast<CallInst>(I)) { 2806 if (CI->isConvergent()) 2807 return false; 2808 } 2809 // We can only sink load instructions if there is nothing between the load and 2810 // the end of block that could change the value. 2811 if (I->mayReadFromMemory()) { 2812 for (BasicBlock::iterator Scan = I->getIterator(), 2813 E = I->getParent()->end(); 2814 Scan != E; ++Scan) 2815 if (Scan->mayWriteToMemory()) 2816 return false; 2817 } 2818 2819 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 2820 I->moveBefore(&*InsertPos); 2821 ++NumSunkInst; 2822 return true; 2823 } 2824 2825 bool InstCombiner::run() { 2826 while (!Worklist.isEmpty()) { 2827 Instruction *I = Worklist.RemoveOne(); 2828 if (I == nullptr) continue; // skip null values. 2829 2830 // Check to see if we can DCE the instruction. 2831 if (isInstructionTriviallyDead(I, &TLI)) { 2832 DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); 2833 eraseInstFromFunction(*I); 2834 ++NumDeadInst; 2835 MadeIRChange = true; 2836 continue; 2837 } 2838 2839 // Instruction isn't dead, see if we can constant propagate it. 2840 if (!I->use_empty() && 2841 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 2842 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 2843 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n'); 2844 2845 // Add operands to the worklist. 2846 replaceInstUsesWith(*I, C); 2847 ++NumConstProp; 2848 if (isInstructionTriviallyDead(I, &TLI)) 2849 eraseInstFromFunction(*I); 2850 MadeIRChange = true; 2851 continue; 2852 } 2853 } 2854 2855 // In general, it is possible for computeKnownBits to determine all bits in 2856 // a value even when the operands are not all constants. 2857 Type *Ty = I->getType(); 2858 if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) { 2859 unsigned BitWidth = Ty->getScalarSizeInBits(); 2860 APInt KnownZero(BitWidth, 0); 2861 APInt KnownOne(BitWidth, 0); 2862 computeKnownBits(I, KnownZero, KnownOne, /*Depth*/0, I); 2863 if ((KnownZero | KnownOne).isAllOnesValue()) { 2864 Constant *C = ConstantInt::get(Ty, KnownOne); 2865 DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C << 2866 " from: " << *I << '\n'); 2867 2868 // Add operands to the worklist. 2869 replaceInstUsesWith(*I, C); 2870 ++NumConstProp; 2871 if (isInstructionTriviallyDead(I, &TLI)) 2872 eraseInstFromFunction(*I); 2873 MadeIRChange = true; 2874 continue; 2875 } 2876 } 2877 2878 // See if we can trivially sink this instruction to a successor basic block. 2879 if (I->hasOneUse()) { 2880 BasicBlock *BB = I->getParent(); 2881 Instruction *UserInst = cast<Instruction>(*I->user_begin()); 2882 BasicBlock *UserParent; 2883 2884 // Get the block the use occurs in. 2885 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 2886 UserParent = PN->getIncomingBlock(*I->use_begin()); 2887 else 2888 UserParent = UserInst->getParent(); 2889 2890 if (UserParent != BB) { 2891 bool UserIsSuccessor = false; 2892 // See if the user is one of our successors. 2893 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 2894 if (*SI == UserParent) { 2895 UserIsSuccessor = true; 2896 break; 2897 } 2898 2899 // If the user is one of our immediate successors, and if that successor 2900 // only has us as a predecessors (we'd have to split the critical edge 2901 // otherwise), we can keep going. 2902 if (UserIsSuccessor && UserParent->getUniquePredecessor()) { 2903 // Okay, the CFG is simple enough, try to sink this instruction. 2904 if (TryToSinkInstruction(I, UserParent)) { 2905 DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 2906 MadeIRChange = true; 2907 // We'll add uses of the sunk instruction below, but since sinking 2908 // can expose opportunities for it's *operands* add them to the 2909 // worklist 2910 for (Use &U : I->operands()) 2911 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 2912 Worklist.Add(OpI); 2913 } 2914 } 2915 } 2916 } 2917 2918 // Now that we have an instruction, try combining it to simplify it. 2919 Builder->SetInsertPoint(I); 2920 Builder->SetCurrentDebugLocation(I->getDebugLoc()); 2921 2922 #ifndef NDEBUG 2923 std::string OrigI; 2924 #endif 2925 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 2926 DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 2927 2928 if (Instruction *Result = visit(*I)) { 2929 ++NumCombined; 2930 // Should we replace the old instruction with a new one? 2931 if (Result != I) { 2932 DEBUG(dbgs() << "IC: Old = " << *I << '\n' 2933 << " New = " << *Result << '\n'); 2934 2935 if (I->getDebugLoc()) 2936 Result->setDebugLoc(I->getDebugLoc()); 2937 // Everything uses the new instruction now. 2938 I->replaceAllUsesWith(Result); 2939 2940 // Move the name to the new instruction first. 2941 Result->takeName(I); 2942 2943 // Push the new instruction and any users onto the worklist. 2944 Worklist.Add(Result); 2945 Worklist.AddUsersToWorkList(*Result); 2946 2947 // Insert the new instruction into the basic block... 2948 BasicBlock *InstParent = I->getParent(); 2949 BasicBlock::iterator InsertPos = I->getIterator(); 2950 2951 // If we replace a PHI with something that isn't a PHI, fix up the 2952 // insertion point. 2953 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 2954 InsertPos = InstParent->getFirstInsertionPt(); 2955 2956 InstParent->getInstList().insert(InsertPos, Result); 2957 2958 eraseInstFromFunction(*I); 2959 } else { 2960 DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 2961 << " New = " << *I << '\n'); 2962 2963 // If the instruction was modified, it's possible that it is now dead. 2964 // if so, remove it. 2965 if (isInstructionTriviallyDead(I, &TLI)) { 2966 eraseInstFromFunction(*I); 2967 } else { 2968 Worklist.Add(I); 2969 Worklist.AddUsersToWorkList(*I); 2970 } 2971 } 2972 MadeIRChange = true; 2973 } 2974 } 2975 2976 Worklist.Zap(); 2977 return MadeIRChange; 2978 } 2979 2980 /// Walk the function in depth-first order, adding all reachable code to the 2981 /// worklist. 2982 /// 2983 /// This has a couple of tricks to make the code faster and more powerful. In 2984 /// particular, we constant fold and DCE instructions as we go, to avoid adding 2985 /// them to the worklist (this significantly speeds up instcombine on code where 2986 /// many instructions are dead or constant). Additionally, if we find a branch 2987 /// whose condition is a known constant, we only visit the reachable successors. 2988 /// 2989 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, 2990 SmallPtrSetImpl<BasicBlock *> &Visited, 2991 InstCombineWorklist &ICWorklist, 2992 const TargetLibraryInfo *TLI) { 2993 bool MadeIRChange = false; 2994 SmallVector<BasicBlock*, 256> Worklist; 2995 Worklist.push_back(BB); 2996 2997 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 2998 DenseMap<Constant *, Constant *> FoldedConstants; 2999 3000 do { 3001 BB = Worklist.pop_back_val(); 3002 3003 // We have now visited this block! If we've already been here, ignore it. 3004 if (!Visited.insert(BB).second) 3005 continue; 3006 3007 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 3008 Instruction *Inst = &*BBI++; 3009 3010 // DCE instruction if trivially dead. 3011 if (isInstructionTriviallyDead(Inst, TLI)) { 3012 ++NumDeadInst; 3013 DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 3014 Inst->eraseFromParent(); 3015 continue; 3016 } 3017 3018 // ConstantProp instruction if trivially constant. 3019 if (!Inst->use_empty() && 3020 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 3021 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 3022 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " 3023 << *Inst << '\n'); 3024 Inst->replaceAllUsesWith(C); 3025 ++NumConstProp; 3026 if (isInstructionTriviallyDead(Inst, TLI)) 3027 Inst->eraseFromParent(); 3028 continue; 3029 } 3030 3031 // See if we can constant fold its operands. 3032 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); i != e; 3033 ++i) { 3034 if (!isa<ConstantVector>(i) && !isa<ConstantExpr>(i)) 3035 continue; 3036 3037 auto *C = cast<Constant>(i); 3038 Constant *&FoldRes = FoldedConstants[C]; 3039 if (!FoldRes) 3040 FoldRes = ConstantFoldConstant(C, DL, TLI); 3041 if (!FoldRes) 3042 FoldRes = C; 3043 3044 if (FoldRes != C) { 3045 *i = FoldRes; 3046 MadeIRChange = true; 3047 } 3048 } 3049 3050 InstrsForInstCombineWorklist.push_back(Inst); 3051 } 3052 3053 // Recursively visit successors. If this is a branch or switch on a 3054 // constant, only visit the reachable successor. 3055 TerminatorInst *TI = BB->getTerminator(); 3056 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3057 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 3058 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 3059 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 3060 Worklist.push_back(ReachableBB); 3061 continue; 3062 } 3063 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3064 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 3065 // See if this is an explicit destination. 3066 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3067 i != e; ++i) 3068 if (i.getCaseValue() == Cond) { 3069 BasicBlock *ReachableBB = i.getCaseSuccessor(); 3070 Worklist.push_back(ReachableBB); 3071 continue; 3072 } 3073 3074 // Otherwise it is the default destination. 3075 Worklist.push_back(SI->getDefaultDest()); 3076 continue; 3077 } 3078 } 3079 3080 for (BasicBlock *SuccBB : TI->successors()) 3081 Worklist.push_back(SuccBB); 3082 } while (!Worklist.empty()); 3083 3084 // Once we've found all of the instructions to add to instcombine's worklist, 3085 // add them in reverse order. This way instcombine will visit from the top 3086 // of the function down. This jives well with the way that it adds all uses 3087 // of instructions to the worklist after doing a transformation, thus avoiding 3088 // some N^2 behavior in pathological cases. 3089 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist); 3090 3091 return MadeIRChange; 3092 } 3093 3094 /// \brief Populate the IC worklist from a function, and prune any dead basic 3095 /// blocks discovered in the process. 3096 /// 3097 /// This also does basic constant propagation and other forward fixing to make 3098 /// the combiner itself run much faster. 3099 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 3100 TargetLibraryInfo *TLI, 3101 InstCombineWorklist &ICWorklist) { 3102 bool MadeIRChange = false; 3103 3104 // Do a depth-first traversal of the function, populate the worklist with 3105 // the reachable instructions. Ignore blocks that are not reachable. Keep 3106 // track of which blocks we visit. 3107 SmallPtrSet<BasicBlock *, 32> Visited; 3108 MadeIRChange |= 3109 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI); 3110 3111 // Do a quick scan over the function. If we find any blocks that are 3112 // unreachable, remove any instructions inside of them. This prevents 3113 // the instcombine code from having to deal with some bad special cases. 3114 for (BasicBlock &BB : F) { 3115 if (Visited.count(&BB)) 3116 continue; 3117 3118 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB); 3119 MadeIRChange |= NumDeadInstInBB > 0; 3120 NumDeadInst += NumDeadInstInBB; 3121 } 3122 3123 return MadeIRChange; 3124 } 3125 3126 static bool 3127 combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist, 3128 AliasAnalysis *AA, AssumptionCache &AC, 3129 TargetLibraryInfo &TLI, DominatorTree &DT, 3130 bool ExpensiveCombines = true, 3131 LoopInfo *LI = nullptr) { 3132 auto &DL = F.getParent()->getDataLayout(); 3133 ExpensiveCombines |= EnableExpensiveCombines; 3134 3135 /// Builder - This is an IRBuilder that automatically inserts new 3136 /// instructions into the worklist when they are created. 3137 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 3138 F.getContext(), TargetFolder(DL), 3139 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 3140 Worklist.Add(I); 3141 3142 using namespace llvm::PatternMatch; 3143 if (match(I, m_Intrinsic<Intrinsic::assume>())) 3144 AC.registerAssumption(cast<CallInst>(I)); 3145 })); 3146 3147 // Lower dbg.declare intrinsics otherwise their value may be clobbered 3148 // by instcombiner. 3149 bool DbgDeclaresChanged = LowerDbgDeclare(F); 3150 3151 // Iterate while there is work to do. 3152 int Iteration = 0; 3153 for (;;) { 3154 ++Iteration; 3155 DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 3156 << F.getName() << "\n"); 3157 3158 bool Changed = prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 3159 3160 InstCombiner IC(Worklist, &Builder, F.optForMinSize(), ExpensiveCombines, 3161 AA, AC, TLI, DT, DL, LI); 3162 Changed |= IC.run(); 3163 3164 if (!Changed) 3165 break; 3166 } 3167 3168 return DbgDeclaresChanged || Iteration > 1; 3169 } 3170 3171 PreservedAnalyses InstCombinePass::run(Function &F, 3172 FunctionAnalysisManager &AM) { 3173 auto &AC = AM.getResult<AssumptionAnalysis>(F); 3174 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 3175 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 3176 3177 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 3178 3179 // FIXME: The AliasAnalysis is not yet supported in the new pass manager 3180 if (!combineInstructionsOverFunction(F, Worklist, nullptr, AC, TLI, DT, 3181 ExpensiveCombines, LI)) 3182 // No changes, all analyses are preserved. 3183 return PreservedAnalyses::all(); 3184 3185 // Mark all the analyses that instcombine updates as preserved. 3186 // FIXME: This should also 'preserve the CFG'. 3187 PreservedAnalyses PA; 3188 PA.preserve<DominatorTreeAnalysis>(); 3189 return PA; 3190 } 3191 3192 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 3193 AU.setPreservesCFG(); 3194 AU.addRequired<AAResultsWrapperPass>(); 3195 AU.addRequired<AssumptionCacheTracker>(); 3196 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3197 AU.addRequired<DominatorTreeWrapperPass>(); 3198 AU.addPreserved<DominatorTreeWrapperPass>(); 3199 AU.addPreserved<AAResultsWrapperPass>(); 3200 AU.addPreserved<BasicAAWrapperPass>(); 3201 AU.addPreserved<GlobalsAAWrapperPass>(); 3202 } 3203 3204 bool InstructionCombiningPass::runOnFunction(Function &F) { 3205 if (skipFunction(F)) 3206 return false; 3207 3208 // Required analyses. 3209 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3210 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3211 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 3212 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3213 3214 // Optional analyses. 3215 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3216 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 3217 3218 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, 3219 ExpensiveCombines, LI); 3220 } 3221 3222 char InstructionCombiningPass::ID = 0; 3223 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 3224 "Combine redundant instructions", false, false) 3225 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3226 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3227 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3228 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3229 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3230 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 3231 "Combine redundant instructions", false, false) 3232 3233 // Initialization Routines 3234 void llvm::initializeInstCombine(PassRegistry &Registry) { 3235 initializeInstructionCombiningPassPass(Registry); 3236 } 3237 3238 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 3239 initializeInstructionCombiningPassPass(*unwrap(R)); 3240 } 3241 3242 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) { 3243 return new InstructionCombiningPass(ExpensiveCombines); 3244 } 3245