1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // InstructionCombining - Combine instructions to form fewer, simple 11 // instructions. This pass does not modify the CFG. This pass is where 12 // algebraic simplification happens. 13 // 14 // This pass combines things like: 15 // %Y = add i32 %X, 1 16 // %Z = add i32 %Y, 1 17 // into: 18 // %Z = add i32 %X, 2 19 // 20 // This is a simple worklist driven algorithm. 21 // 22 // This pass guarantees that the following canonicalizations are performed on 23 // the program: 24 // 1. If a binary operator has a constant operand, it is moved to the RHS 25 // 2. Bitwise operators with constant operands are always grouped so that 26 // shifts are performed first, then or's, then and's, then xor's. 27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 28 // 4. All cmp instructions on boolean values are replaced with logical ops 29 // 5. add X, X is represented as (X*2) => (X << 1) 30 // 6. Multiplies with a power-of-two constant argument are transformed into 31 // shifts. 32 // ... etc. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "InstCombineInternal.h" 37 #include "llvm-c/Initialization.h" 38 #include "llvm-c/Transforms/InstCombine.h" 39 #include "llvm/ADT/APInt.h" 40 #include "llvm/ADT/ArrayRef.h" 41 #include "llvm/ADT/DenseMap.h" 42 #include "llvm/ADT/None.h" 43 #include "llvm/ADT/SmallPtrSet.h" 44 #include "llvm/ADT/SmallVector.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/ADT/TinyPtrVector.h" 47 #include "llvm/Analysis/AliasAnalysis.h" 48 #include "llvm/Analysis/AssumptionCache.h" 49 #include "llvm/Analysis/BasicAliasAnalysis.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LoopInfo.h" 56 #include "llvm/Analysis/MemoryBuiltins.h" 57 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 58 #include "llvm/Analysis/TargetFolder.h" 59 #include "llvm/Analysis/TargetLibraryInfo.h" 60 #include "llvm/Analysis/Utils/Local.h" 61 #include "llvm/Analysis/ValueTracking.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/CFG.h" 64 #include "llvm/IR/Constant.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DIBuilder.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Dominators.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GetElementPtrTypeIterator.h" 72 #include "llvm/IR/IRBuilder.h" 73 #include "llvm/IR/InstrTypes.h" 74 #include "llvm/IR/Instruction.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Intrinsics.h" 78 #include "llvm/IR/LegacyPassManager.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Operator.h" 81 #include "llvm/IR/PassManager.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Use.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/IR/ValueHandle.h" 88 #include "llvm/Pass.h" 89 #include "llvm/Support/CBindingWrapping.h" 90 #include "llvm/Support/Casting.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Compiler.h" 93 #include "llvm/Support/Debug.h" 94 #include "llvm/Support/DebugCounter.h" 95 #include "llvm/Support/ErrorHandling.h" 96 #include "llvm/Support/KnownBits.h" 97 #include "llvm/Support/raw_ostream.h" 98 #include "llvm/Transforms/InstCombine/InstCombine.h" 99 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 100 #include <algorithm> 101 #include <cassert> 102 #include <cstdint> 103 #include <memory> 104 #include <string> 105 #include <utility> 106 107 using namespace llvm; 108 using namespace llvm::PatternMatch; 109 110 #define DEBUG_TYPE "instcombine" 111 112 STATISTIC(NumCombined , "Number of insts combined"); 113 STATISTIC(NumConstProp, "Number of constant folds"); 114 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 115 STATISTIC(NumSunkInst , "Number of instructions sunk"); 116 STATISTIC(NumExpand, "Number of expansions"); 117 STATISTIC(NumFactor , "Number of factorizations"); 118 STATISTIC(NumReassoc , "Number of reassociations"); 119 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 120 "Controls which instructions are visited"); 121 122 static cl::opt<bool> 123 EnableExpensiveCombines("expensive-combines", 124 cl::desc("Enable expensive instruction combines")); 125 126 static cl::opt<unsigned> 127 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 128 cl::desc("Maximum array size considered when doing a combine")); 129 130 // FIXME: Remove this flag when it is no longer necessary to convert 131 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 132 // increases variable availability at the cost of accuracy. Variables that 133 // cannot be promoted by mem2reg or SROA will be described as living in memory 134 // for their entire lifetime. However, passes like DSE and instcombine can 135 // delete stores to the alloca, leading to misleading and inaccurate debug 136 // information. This flag can be removed when those passes are fixed. 137 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 138 cl::Hidden, cl::init(true)); 139 140 Value *InstCombiner::EmitGEPOffset(User *GEP) { 141 return llvm::EmitGEPOffset(&Builder, DL, GEP); 142 } 143 144 /// Return true if it is desirable to convert an integer computation from a 145 /// given bit width to a new bit width. 146 /// We don't want to convert from a legal to an illegal type or from a smaller 147 /// to a larger illegal type. A width of '1' is always treated as a legal type 148 /// because i1 is a fundamental type in IR, and there are many specialized 149 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as 150 /// legal to convert to, in order to open up more combining opportunities. 151 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common 152 /// from frontend languages. 153 bool InstCombiner::shouldChangeType(unsigned FromWidth, 154 unsigned ToWidth) const { 155 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 156 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 157 158 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only 159 // shrink types, to prevent infinite loops. 160 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32)) 161 return true; 162 163 // If this is a legal integer from type, and the result would be an illegal 164 // type, don't do the transformation. 165 if (FromLegal && !ToLegal) 166 return false; 167 168 // Otherwise, if both are illegal, do not increase the size of the result. We 169 // do allow things like i160 -> i64, but not i64 -> i160. 170 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 171 return false; 172 173 return true; 174 } 175 176 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 177 /// We don't want to convert from a legal to an illegal type or from a smaller 178 /// to a larger illegal type. i1 is always treated as a legal type because it is 179 /// a fundamental type in IR, and there are many specialized optimizations for 180 /// i1 types. 181 bool InstCombiner::shouldChangeType(Type *From, Type *To) const { 182 assert(From->isIntegerTy() && To->isIntegerTy()); 183 184 unsigned FromWidth = From->getPrimitiveSizeInBits(); 185 unsigned ToWidth = To->getPrimitiveSizeInBits(); 186 return shouldChangeType(FromWidth, ToWidth); 187 } 188 189 // Return true, if No Signed Wrap should be maintained for I. 190 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 191 // where both B and C should be ConstantInts, results in a constant that does 192 // not overflow. This function only handles the Add and Sub opcodes. For 193 // all other opcodes, the function conservatively returns false. 194 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 195 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 196 if (!OBO || !OBO->hasNoSignedWrap()) 197 return false; 198 199 // We reason about Add and Sub Only. 200 Instruction::BinaryOps Opcode = I.getOpcode(); 201 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 202 return false; 203 204 const APInt *BVal, *CVal; 205 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 206 return false; 207 208 bool Overflow = false; 209 if (Opcode == Instruction::Add) 210 (void)BVal->sadd_ov(*CVal, Overflow); 211 else 212 (void)BVal->ssub_ov(*CVal, Overflow); 213 214 return !Overflow; 215 } 216 217 /// Conservatively clears subclassOptionalData after a reassociation or 218 /// commutation. We preserve fast-math flags when applicable as they can be 219 /// preserved. 220 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 221 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 222 if (!FPMO) { 223 I.clearSubclassOptionalData(); 224 return; 225 } 226 227 FastMathFlags FMF = I.getFastMathFlags(); 228 I.clearSubclassOptionalData(); 229 I.setFastMathFlags(FMF); 230 } 231 232 /// Combine constant operands of associative operations either before or after a 233 /// cast to eliminate one of the associative operations: 234 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 235 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 236 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) { 237 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 238 if (!Cast || !Cast->hasOneUse()) 239 return false; 240 241 // TODO: Enhance logic for other casts and remove this check. 242 auto CastOpcode = Cast->getOpcode(); 243 if (CastOpcode != Instruction::ZExt) 244 return false; 245 246 // TODO: Enhance logic for other BinOps and remove this check. 247 if (!BinOp1->isBitwiseLogicOp()) 248 return false; 249 250 auto AssocOpcode = BinOp1->getOpcode(); 251 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 252 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 253 return false; 254 255 Constant *C1, *C2; 256 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 257 !match(BinOp2->getOperand(1), m_Constant(C2))) 258 return false; 259 260 // TODO: This assumes a zext cast. 261 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 262 // to the destination type might lose bits. 263 264 // Fold the constants together in the destination type: 265 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 266 Type *DestTy = C1->getType(); 267 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 268 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 269 Cast->setOperand(0, BinOp2->getOperand(0)); 270 BinOp1->setOperand(1, FoldedC); 271 return true; 272 } 273 274 /// This performs a few simplifications for operators that are associative or 275 /// commutative: 276 /// 277 /// Commutative operators: 278 /// 279 /// 1. Order operands such that they are listed from right (least complex) to 280 /// left (most complex). This puts constants before unary operators before 281 /// binary operators. 282 /// 283 /// Associative operators: 284 /// 285 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 286 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 287 /// 288 /// Associative and commutative operators: 289 /// 290 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 291 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 292 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 293 /// if C1 and C2 are constants. 294 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 295 Instruction::BinaryOps Opcode = I.getOpcode(); 296 bool Changed = false; 297 298 do { 299 // Order operands such that they are listed from right (least complex) to 300 // left (most complex). This puts constants before unary operators before 301 // binary operators. 302 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 303 getComplexity(I.getOperand(1))) 304 Changed = !I.swapOperands(); 305 306 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 307 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 308 309 if (I.isAssociative()) { 310 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 311 if (Op0 && Op0->getOpcode() == Opcode) { 312 Value *A = Op0->getOperand(0); 313 Value *B = Op0->getOperand(1); 314 Value *C = I.getOperand(1); 315 316 // Does "B op C" simplify? 317 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 318 // It simplifies to V. Form "A op V". 319 I.setOperand(0, A); 320 I.setOperand(1, V); 321 // Conservatively clear the optional flags, since they may not be 322 // preserved by the reassociation. 323 if (MaintainNoSignedWrap(I, B, C) && 324 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { 325 // Note: this is only valid because SimplifyBinOp doesn't look at 326 // the operands to Op0. 327 I.clearSubclassOptionalData(); 328 I.setHasNoSignedWrap(true); 329 } else { 330 ClearSubclassDataAfterReassociation(I); 331 } 332 333 Changed = true; 334 ++NumReassoc; 335 continue; 336 } 337 } 338 339 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 340 if (Op1 && Op1->getOpcode() == Opcode) { 341 Value *A = I.getOperand(0); 342 Value *B = Op1->getOperand(0); 343 Value *C = Op1->getOperand(1); 344 345 // Does "A op B" simplify? 346 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 347 // It simplifies to V. Form "V op C". 348 I.setOperand(0, V); 349 I.setOperand(1, C); 350 // Conservatively clear the optional flags, since they may not be 351 // preserved by the reassociation. 352 ClearSubclassDataAfterReassociation(I); 353 Changed = true; 354 ++NumReassoc; 355 continue; 356 } 357 } 358 } 359 360 if (I.isAssociative() && I.isCommutative()) { 361 if (simplifyAssocCastAssoc(&I)) { 362 Changed = true; 363 ++NumReassoc; 364 continue; 365 } 366 367 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 368 if (Op0 && Op0->getOpcode() == Opcode) { 369 Value *A = Op0->getOperand(0); 370 Value *B = Op0->getOperand(1); 371 Value *C = I.getOperand(1); 372 373 // Does "C op A" simplify? 374 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 375 // It simplifies to V. Form "V op B". 376 I.setOperand(0, V); 377 I.setOperand(1, B); 378 // Conservatively clear the optional flags, since they may not be 379 // preserved by the reassociation. 380 ClearSubclassDataAfterReassociation(I); 381 Changed = true; 382 ++NumReassoc; 383 continue; 384 } 385 } 386 387 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 388 if (Op1 && Op1->getOpcode() == Opcode) { 389 Value *A = I.getOperand(0); 390 Value *B = Op1->getOperand(0); 391 Value *C = Op1->getOperand(1); 392 393 // Does "C op A" simplify? 394 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 395 // It simplifies to V. Form "B op V". 396 I.setOperand(0, B); 397 I.setOperand(1, V); 398 // Conservatively clear the optional flags, since they may not be 399 // preserved by the reassociation. 400 ClearSubclassDataAfterReassociation(I); 401 Changed = true; 402 ++NumReassoc; 403 continue; 404 } 405 } 406 407 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 408 // if C1 and C2 are constants. 409 Value *A, *B; 410 Constant *C1, *C2; 411 if (Op0 && Op1 && 412 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 413 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 414 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 415 BinaryOperator *NewBO = BinaryOperator::Create(Opcode, A, B); 416 if (isa<FPMathOperator>(NewBO)) { 417 FastMathFlags Flags = I.getFastMathFlags(); 418 Flags &= Op0->getFastMathFlags(); 419 Flags &= Op1->getFastMathFlags(); 420 NewBO->setFastMathFlags(Flags); 421 } 422 InsertNewInstWith(NewBO, I); 423 NewBO->takeName(Op1); 424 I.setOperand(0, NewBO); 425 I.setOperand(1, ConstantExpr::get(Opcode, C1, C2)); 426 // Conservatively clear the optional flags, since they may not be 427 // preserved by the reassociation. 428 ClearSubclassDataAfterReassociation(I); 429 430 Changed = true; 431 continue; 432 } 433 } 434 435 // No further simplifications. 436 return Changed; 437 } while (true); 438 } 439 440 /// Return whether "X LOp (Y ROp Z)" is always equal to 441 /// "(X LOp Y) ROp (X LOp Z)". 442 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 443 Instruction::BinaryOps ROp) { 444 // X & (Y | Z) <--> (X & Y) | (X & Z) 445 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 446 if (LOp == Instruction::And) 447 return ROp == Instruction::Or || ROp == Instruction::Xor; 448 449 // X | (Y & Z) <--> (X | Y) & (X | Z) 450 if (LOp == Instruction::Or) 451 return ROp == Instruction::And; 452 453 // X * (Y + Z) <--> (X * Y) + (X * Z) 454 // X * (Y - Z) <--> (X * Y) - (X * Z) 455 if (LOp == Instruction::Mul) 456 return ROp == Instruction::Add || ROp == Instruction::Sub; 457 458 return false; 459 } 460 461 /// Return whether "(X LOp Y) ROp Z" is always equal to 462 /// "(X ROp Z) LOp (Y ROp Z)". 463 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 464 Instruction::BinaryOps ROp) { 465 if (Instruction::isCommutative(ROp)) 466 return leftDistributesOverRight(ROp, LOp); 467 468 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 469 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 470 471 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 472 // but this requires knowing that the addition does not overflow and other 473 // such subtleties. 474 } 475 476 /// This function returns identity value for given opcode, which can be used to 477 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 478 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 479 if (isa<Constant>(V)) 480 return nullptr; 481 482 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 483 } 484 485 /// This function predicates factorization using distributive laws. By default, 486 /// it just returns the 'Op' inputs. But for special-cases like 487 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 488 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 489 /// allow more factorization opportunities. 490 static Instruction::BinaryOps 491 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 492 Value *&LHS, Value *&RHS) { 493 assert(Op && "Expected a binary operator"); 494 LHS = Op->getOperand(0); 495 RHS = Op->getOperand(1); 496 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 497 Constant *C; 498 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 499 // X << C --> X * (1 << C) 500 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 501 return Instruction::Mul; 502 } 503 // TODO: We can add other conversions e.g. shr => div etc. 504 } 505 return Op->getOpcode(); 506 } 507 508 /// This tries to simplify binary operations by factorizing out common terms 509 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 510 Value *InstCombiner::tryFactorization(BinaryOperator &I, 511 Instruction::BinaryOps InnerOpcode, 512 Value *A, Value *B, Value *C, Value *D) { 513 assert(A && B && C && D && "All values must be provided"); 514 515 Value *V = nullptr; 516 Value *SimplifiedInst = nullptr; 517 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 518 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 519 520 // Does "X op' Y" always equal "Y op' X"? 521 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 522 523 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 524 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 525 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 526 // commutative case, "(A op' B) op (C op' A)"? 527 if (A == C || (InnerCommutative && A == D)) { 528 if (A != C) 529 std::swap(C, D); 530 // Consider forming "A op' (B op D)". 531 // If "B op D" simplifies then it can be formed with no cost. 532 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 533 // If "B op D" doesn't simplify then only go on if both of the existing 534 // operations "A op' B" and "C op' D" will be zapped as no longer used. 535 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 536 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 537 if (V) { 538 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 539 } 540 } 541 542 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 543 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 544 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 545 // commutative case, "(A op' B) op (B op' D)"? 546 if (B == D || (InnerCommutative && B == C)) { 547 if (B != D) 548 std::swap(C, D); 549 // Consider forming "(A op C) op' B". 550 // If "A op C" simplifies then it can be formed with no cost. 551 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 552 553 // If "A op C" doesn't simplify then only go on if both of the existing 554 // operations "A op' B" and "C op' D" will be zapped as no longer used. 555 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 556 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 557 if (V) { 558 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 559 } 560 } 561 562 if (SimplifiedInst) { 563 ++NumFactor; 564 SimplifiedInst->takeName(&I); 565 566 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag. 567 // TODO: Check for NUW. 568 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 569 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 570 bool HasNSW = false; 571 if (isa<OverflowingBinaryOperator>(&I)) 572 HasNSW = I.hasNoSignedWrap(); 573 574 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) 575 HasNSW &= LOBO->hasNoSignedWrap(); 576 577 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) 578 HasNSW &= ROBO->hasNoSignedWrap(); 579 580 // We can propagate 'nsw' if we know that 581 // %Y = mul nsw i16 %X, C 582 // %Z = add nsw i16 %Y, %X 583 // => 584 // %Z = mul nsw i16 %X, C+1 585 // 586 // iff C+1 isn't INT_MIN 587 const APInt *CInt; 588 if (TopLevelOpcode == Instruction::Add && 589 InnerOpcode == Instruction::Mul) 590 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) 591 BO->setHasNoSignedWrap(HasNSW); 592 } 593 } 594 } 595 return SimplifiedInst; 596 } 597 598 /// This tries to simplify binary operations which some other binary operation 599 /// distributes over either by factorizing out common terms 600 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 601 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 602 /// Returns the simplified value, or null if it didn't simplify. 603 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 604 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 605 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 606 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 607 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 608 609 { 610 // Factorization. 611 Value *A, *B, *C, *D; 612 Instruction::BinaryOps LHSOpcode, RHSOpcode; 613 if (Op0) 614 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 615 if (Op1) 616 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 617 618 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 619 // a common term. 620 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 621 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 622 return V; 623 624 // The instruction has the form "(A op' B) op (C)". Try to factorize common 625 // term. 626 if (Op0) 627 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 628 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 629 return V; 630 631 // The instruction has the form "(B) op (C op' D)". Try to factorize common 632 // term. 633 if (Op1) 634 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 635 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 636 return V; 637 } 638 639 // Expansion. 640 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 641 // The instruction has the form "(A op' B) op C". See if expanding it out 642 // to "(A op C) op' (B op C)" results in simplifications. 643 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 644 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 645 646 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 647 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I)); 648 649 // Do "A op C" and "B op C" both simplify? 650 if (L && R) { 651 // They do! Return "L op' R". 652 ++NumExpand; 653 C = Builder.CreateBinOp(InnerOpcode, L, R); 654 C->takeName(&I); 655 return C; 656 } 657 658 // Does "A op C" simplify to the identity value for the inner opcode? 659 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 660 // They do! Return "B op C". 661 ++NumExpand; 662 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 663 C->takeName(&I); 664 return C; 665 } 666 667 // Does "B op C" simplify to the identity value for the inner opcode? 668 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 669 // They do! Return "A op C". 670 ++NumExpand; 671 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 672 C->takeName(&I); 673 return C; 674 } 675 } 676 677 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 678 // The instruction has the form "A op (B op' C)". See if expanding it out 679 // to "(A op B) op' (A op C)" results in simplifications. 680 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 681 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 682 683 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I)); 684 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 685 686 // Do "A op B" and "A op C" both simplify? 687 if (L && R) { 688 // They do! Return "L op' R". 689 ++NumExpand; 690 A = Builder.CreateBinOp(InnerOpcode, L, R); 691 A->takeName(&I); 692 return A; 693 } 694 695 // Does "A op B" simplify to the identity value for the inner opcode? 696 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 697 // They do! Return "A op C". 698 ++NumExpand; 699 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 700 A->takeName(&I); 701 return A; 702 } 703 704 // Does "A op C" simplify to the identity value for the inner opcode? 705 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 706 // They do! Return "A op B". 707 ++NumExpand; 708 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 709 A->takeName(&I); 710 return A; 711 } 712 } 713 714 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 715 } 716 717 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 718 Value *LHS, Value *RHS) { 719 Instruction::BinaryOps Opcode = I.getOpcode(); 720 // (op (select (a, b, c)), (select (a, d, e))) -> (select (a, (op b, d), (op 721 // c, e))) 722 Value *A, *B, *C, *D, *E; 723 Value *SI = nullptr; 724 if (match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))) && 725 match(RHS, m_Select(m_Specific(A), m_Value(D), m_Value(E)))) { 726 bool SelectsHaveOneUse = LHS->hasOneUse() && RHS->hasOneUse(); 727 BuilderTy::FastMathFlagGuard Guard(Builder); 728 if (isa<FPMathOperator>(&I)) 729 Builder.setFastMathFlags(I.getFastMathFlags()); 730 731 Value *V1 = SimplifyBinOp(Opcode, C, E, SQ.getWithInstruction(&I)); 732 Value *V2 = SimplifyBinOp(Opcode, B, D, SQ.getWithInstruction(&I)); 733 if (V1 && V2) 734 SI = Builder.CreateSelect(A, V2, V1); 735 else if (V2 && SelectsHaveOneUse) 736 SI = Builder.CreateSelect(A, V2, Builder.CreateBinOp(Opcode, C, E)); 737 else if (V1 && SelectsHaveOneUse) 738 SI = Builder.CreateSelect(A, Builder.CreateBinOp(Opcode, B, D), V1); 739 740 if (SI) 741 SI->takeName(&I); 742 } 743 744 return SI; 745 } 746 747 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 748 /// constant zero (which is the 'negate' form). 749 Value *InstCombiner::dyn_castNegVal(Value *V) const { 750 if (BinaryOperator::isNeg(V)) 751 return BinaryOperator::getNegArgument(V); 752 753 // Constants can be considered to be negated values if they can be folded. 754 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 755 return ConstantExpr::getNeg(C); 756 757 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 758 if (C->getType()->getElementType()->isIntegerTy()) 759 return ConstantExpr::getNeg(C); 760 761 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 762 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 763 Constant *Elt = CV->getAggregateElement(i); 764 if (!Elt) 765 return nullptr; 766 767 if (isa<UndefValue>(Elt)) 768 continue; 769 770 if (!isa<ConstantInt>(Elt)) 771 return nullptr; 772 } 773 return ConstantExpr::getNeg(CV); 774 } 775 776 return nullptr; 777 } 778 779 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 780 InstCombiner::BuilderTy &Builder) { 781 if (auto *Cast = dyn_cast<CastInst>(&I)) 782 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 783 784 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 785 786 // Figure out if the constant is the left or the right argument. 787 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 788 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 789 790 if (auto *SOC = dyn_cast<Constant>(SO)) { 791 if (ConstIsRHS) 792 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 793 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 794 } 795 796 Value *Op0 = SO, *Op1 = ConstOperand; 797 if (!ConstIsRHS) 798 std::swap(Op0, Op1); 799 800 auto *BO = cast<BinaryOperator>(&I); 801 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 802 SO->getName() + ".op"); 803 auto *FPInst = dyn_cast<Instruction>(RI); 804 if (FPInst && isa<FPMathOperator>(FPInst)) 805 FPInst->copyFastMathFlags(BO); 806 return RI; 807 } 808 809 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 810 // Don't modify shared select instructions. 811 if (!SI->hasOneUse()) 812 return nullptr; 813 814 Value *TV = SI->getTrueValue(); 815 Value *FV = SI->getFalseValue(); 816 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 817 return nullptr; 818 819 // Bool selects with constant operands can be folded to logical ops. 820 if (SI->getType()->isIntOrIntVectorTy(1)) 821 return nullptr; 822 823 // If it's a bitcast involving vectors, make sure it has the same number of 824 // elements on both sides. 825 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 826 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 827 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 828 829 // Verify that either both or neither are vectors. 830 if ((SrcTy == nullptr) != (DestTy == nullptr)) 831 return nullptr; 832 833 // If vectors, verify that they have the same number of elements. 834 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 835 return nullptr; 836 } 837 838 // Test if a CmpInst instruction is used exclusively by a select as 839 // part of a minimum or maximum operation. If so, refrain from doing 840 // any other folding. This helps out other analyses which understand 841 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 842 // and CodeGen. And in this case, at least one of the comparison 843 // operands has at least one user besides the compare (the select), 844 // which would often largely negate the benefit of folding anyway. 845 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 846 if (CI->hasOneUse()) { 847 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 848 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 849 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 850 return nullptr; 851 } 852 } 853 854 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 855 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 856 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 857 } 858 859 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 860 InstCombiner::BuilderTy &Builder) { 861 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 862 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 863 864 if (auto *InC = dyn_cast<Constant>(InV)) { 865 if (ConstIsRHS) 866 return ConstantExpr::get(I->getOpcode(), InC, C); 867 return ConstantExpr::get(I->getOpcode(), C, InC); 868 } 869 870 Value *Op0 = InV, *Op1 = C; 871 if (!ConstIsRHS) 872 std::swap(Op0, Op1); 873 874 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp"); 875 auto *FPInst = dyn_cast<Instruction>(RI); 876 if (FPInst && isa<FPMathOperator>(FPInst)) 877 FPInst->copyFastMathFlags(I); 878 return RI; 879 } 880 881 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) { 882 unsigned NumPHIValues = PN->getNumIncomingValues(); 883 if (NumPHIValues == 0) 884 return nullptr; 885 886 // We normally only transform phis with a single use. However, if a PHI has 887 // multiple uses and they are all the same operation, we can fold *all* of the 888 // uses into the PHI. 889 if (!PN->hasOneUse()) { 890 // Walk the use list for the instruction, comparing them to I. 891 for (User *U : PN->users()) { 892 Instruction *UI = cast<Instruction>(U); 893 if (UI != &I && !I.isIdenticalTo(UI)) 894 return nullptr; 895 } 896 // Otherwise, we can replace *all* users with the new PHI we form. 897 } 898 899 // Check to see if all of the operands of the PHI are simple constants 900 // (constantint/constantfp/undef). If there is one non-constant value, 901 // remember the BB it is in. If there is more than one or if *it* is a PHI, 902 // bail out. We don't do arbitrary constant expressions here because moving 903 // their computation can be expensive without a cost model. 904 BasicBlock *NonConstBB = nullptr; 905 for (unsigned i = 0; i != NumPHIValues; ++i) { 906 Value *InVal = PN->getIncomingValue(i); 907 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 908 continue; 909 910 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 911 if (NonConstBB) return nullptr; // More than one non-const value. 912 913 NonConstBB = PN->getIncomingBlock(i); 914 915 // If the InVal is an invoke at the end of the pred block, then we can't 916 // insert a computation after it without breaking the edge. 917 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal)) 918 if (II->getParent() == NonConstBB) 919 return nullptr; 920 921 // If the incoming non-constant value is in I's block, we will remove one 922 // instruction, but insert another equivalent one, leading to infinite 923 // instcombine. 924 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI)) 925 return nullptr; 926 } 927 928 // If there is exactly one non-constant value, we can insert a copy of the 929 // operation in that block. However, if this is a critical edge, we would be 930 // inserting the computation on some other paths (e.g. inside a loop). Only 931 // do this if the pred block is unconditionally branching into the phi block. 932 if (NonConstBB != nullptr) { 933 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 934 if (!BI || !BI->isUnconditional()) return nullptr; 935 } 936 937 // Okay, we can do the transformation: create the new PHI node. 938 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 939 InsertNewInstBefore(NewPN, *PN); 940 NewPN->takeName(PN); 941 942 // If we are going to have to insert a new computation, do so right before the 943 // predecessor's terminator. 944 if (NonConstBB) 945 Builder.SetInsertPoint(NonConstBB->getTerminator()); 946 947 // Next, add all of the operands to the PHI. 948 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 949 // We only currently try to fold the condition of a select when it is a phi, 950 // not the true/false values. 951 Value *TrueV = SI->getTrueValue(); 952 Value *FalseV = SI->getFalseValue(); 953 BasicBlock *PhiTransBB = PN->getParent(); 954 for (unsigned i = 0; i != NumPHIValues; ++i) { 955 BasicBlock *ThisBB = PN->getIncomingBlock(i); 956 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 957 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 958 Value *InV = nullptr; 959 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 960 // even if currently isNullValue gives false. 961 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 962 // For vector constants, we cannot use isNullValue to fold into 963 // FalseVInPred versus TrueVInPred. When we have individual nonzero 964 // elements in the vector, we will incorrectly fold InC to 965 // `TrueVInPred`. 966 if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC)) 967 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 968 else { 969 // Generate the select in the same block as PN's current incoming block. 970 // Note: ThisBB need not be the NonConstBB because vector constants 971 // which are constants by definition are handled here. 972 // FIXME: This can lead to an increase in IR generation because we might 973 // generate selects for vector constant phi operand, that could not be 974 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 975 // non-vector phis, this transformation was always profitable because 976 // the select would be generated exactly once in the NonConstBB. 977 Builder.SetInsertPoint(ThisBB->getTerminator()); 978 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 979 FalseVInPred, "phitmp"); 980 } 981 NewPN->addIncoming(InV, ThisBB); 982 } 983 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 984 Constant *C = cast<Constant>(I.getOperand(1)); 985 for (unsigned i = 0; i != NumPHIValues; ++i) { 986 Value *InV = nullptr; 987 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 988 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 989 else if (isa<ICmpInst>(CI)) 990 InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 991 C, "phitmp"); 992 else 993 InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 994 C, "phitmp"); 995 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 996 } 997 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 998 for (unsigned i = 0; i != NumPHIValues; ++i) { 999 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1000 Builder); 1001 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1002 } 1003 } else { 1004 CastInst *CI = cast<CastInst>(&I); 1005 Type *RetTy = CI->getType(); 1006 for (unsigned i = 0; i != NumPHIValues; ++i) { 1007 Value *InV; 1008 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1009 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1010 else 1011 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1012 I.getType(), "phitmp"); 1013 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1014 } 1015 } 1016 1017 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1018 Instruction *User = cast<Instruction>(*UI++); 1019 if (User == &I) continue; 1020 replaceInstUsesWith(*User, NewPN); 1021 eraseInstFromFunction(*User); 1022 } 1023 return replaceInstUsesWith(I, NewPN); 1024 } 1025 1026 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1027 if (!isa<Constant>(I.getOperand(1))) 1028 return nullptr; 1029 1030 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1031 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1032 return NewSel; 1033 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1034 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1035 return NewPhi; 1036 } 1037 return nullptr; 1038 } 1039 1040 /// Given a pointer type and a constant offset, determine whether or not there 1041 /// is a sequence of GEP indices into the pointed type that will land us at the 1042 /// specified offset. If so, fill them into NewIndices and return the resultant 1043 /// element type, otherwise return null. 1044 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 1045 SmallVectorImpl<Value *> &NewIndices) { 1046 Type *Ty = PtrTy->getElementType(); 1047 if (!Ty->isSized()) 1048 return nullptr; 1049 1050 // Start with the index over the outer type. Note that the type size 1051 // might be zero (even if the offset isn't zero) if the indexed type 1052 // is something like [0 x {int, int}] 1053 Type *IndexTy = DL.getIndexType(PtrTy); 1054 int64_t FirstIdx = 0; 1055 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 1056 FirstIdx = Offset/TySize; 1057 Offset -= FirstIdx*TySize; 1058 1059 // Handle hosts where % returns negative instead of values [0..TySize). 1060 if (Offset < 0) { 1061 --FirstIdx; 1062 Offset += TySize; 1063 assert(Offset >= 0); 1064 } 1065 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 1066 } 1067 1068 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx)); 1069 1070 // Index into the types. If we fail, set OrigBase to null. 1071 while (Offset) { 1072 // Indexing into tail padding between struct/array elements. 1073 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1074 return nullptr; 1075 1076 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1077 const StructLayout *SL = DL.getStructLayout(STy); 1078 assert(Offset < (int64_t)SL->getSizeInBytes() && 1079 "Offset must stay within the indexed type"); 1080 1081 unsigned Elt = SL->getElementContainingOffset(Offset); 1082 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1083 Elt)); 1084 1085 Offset -= SL->getElementOffset(Elt); 1086 Ty = STy->getElementType(Elt); 1087 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1088 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1089 assert(EltSize && "Cannot index into a zero-sized array"); 1090 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize)); 1091 Offset %= EltSize; 1092 Ty = AT->getElementType(); 1093 } else { 1094 // Otherwise, we can't index into the middle of this atomic type, bail. 1095 return nullptr; 1096 } 1097 } 1098 1099 return Ty; 1100 } 1101 1102 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1103 // If this GEP has only 0 indices, it is the same pointer as 1104 // Src. If Src is not a trivial GEP too, don't combine 1105 // the indices. 1106 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1107 !Src.hasOneUse()) 1108 return false; 1109 return true; 1110 } 1111 1112 /// Return a value X such that Val = X * Scale, or null if none. 1113 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1114 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1115 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1116 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1117 Scale.getBitWidth() && "Scale not compatible with value!"); 1118 1119 // If Val is zero or Scale is one then Val = Val * Scale. 1120 if (match(Val, m_Zero()) || Scale == 1) { 1121 NoSignedWrap = true; 1122 return Val; 1123 } 1124 1125 // If Scale is zero then it does not divide Val. 1126 if (Scale.isMinValue()) 1127 return nullptr; 1128 1129 // Look through chains of multiplications, searching for a constant that is 1130 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1131 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1132 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1133 // down from Val: 1134 // 1135 // Val = M1 * X || Analysis starts here and works down 1136 // M1 = M2 * Y || Doesn't descend into terms with more 1137 // M2 = Z * 4 \/ than one use 1138 // 1139 // Then to modify a term at the bottom: 1140 // 1141 // Val = M1 * X 1142 // M1 = Z * Y || Replaced M2 with Z 1143 // 1144 // Then to work back up correcting nsw flags. 1145 1146 // Op - the term we are currently analyzing. Starts at Val then drills down. 1147 // Replaced with its descaled value before exiting from the drill down loop. 1148 Value *Op = Val; 1149 1150 // Parent - initially null, but after drilling down notes where Op came from. 1151 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1152 // 0'th operand of Val. 1153 std::pair<Instruction *, unsigned> Parent; 1154 1155 // Set if the transform requires a descaling at deeper levels that doesn't 1156 // overflow. 1157 bool RequireNoSignedWrap = false; 1158 1159 // Log base 2 of the scale. Negative if not a power of 2. 1160 int32_t logScale = Scale.exactLogBase2(); 1161 1162 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1163 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1164 // If Op is a constant divisible by Scale then descale to the quotient. 1165 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1166 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1167 if (!Remainder.isMinValue()) 1168 // Not divisible by Scale. 1169 return nullptr; 1170 // Replace with the quotient in the parent. 1171 Op = ConstantInt::get(CI->getType(), Quotient); 1172 NoSignedWrap = true; 1173 break; 1174 } 1175 1176 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1177 if (BO->getOpcode() == Instruction::Mul) { 1178 // Multiplication. 1179 NoSignedWrap = BO->hasNoSignedWrap(); 1180 if (RequireNoSignedWrap && !NoSignedWrap) 1181 return nullptr; 1182 1183 // There are three cases for multiplication: multiplication by exactly 1184 // the scale, multiplication by a constant different to the scale, and 1185 // multiplication by something else. 1186 Value *LHS = BO->getOperand(0); 1187 Value *RHS = BO->getOperand(1); 1188 1189 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1190 // Multiplication by a constant. 1191 if (CI->getValue() == Scale) { 1192 // Multiplication by exactly the scale, replace the multiplication 1193 // by its left-hand side in the parent. 1194 Op = LHS; 1195 break; 1196 } 1197 1198 // Otherwise drill down into the constant. 1199 if (!Op->hasOneUse()) 1200 return nullptr; 1201 1202 Parent = std::make_pair(BO, 1); 1203 continue; 1204 } 1205 1206 // Multiplication by something else. Drill down into the left-hand side 1207 // since that's where the reassociate pass puts the good stuff. 1208 if (!Op->hasOneUse()) 1209 return nullptr; 1210 1211 Parent = std::make_pair(BO, 0); 1212 continue; 1213 } 1214 1215 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1216 isa<ConstantInt>(BO->getOperand(1))) { 1217 // Multiplication by a power of 2. 1218 NoSignedWrap = BO->hasNoSignedWrap(); 1219 if (RequireNoSignedWrap && !NoSignedWrap) 1220 return nullptr; 1221 1222 Value *LHS = BO->getOperand(0); 1223 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1224 getLimitedValue(Scale.getBitWidth()); 1225 // Op = LHS << Amt. 1226 1227 if (Amt == logScale) { 1228 // Multiplication by exactly the scale, replace the multiplication 1229 // by its left-hand side in the parent. 1230 Op = LHS; 1231 break; 1232 } 1233 if (Amt < logScale || !Op->hasOneUse()) 1234 return nullptr; 1235 1236 // Multiplication by more than the scale. Reduce the multiplying amount 1237 // by the scale in the parent. 1238 Parent = std::make_pair(BO, 1); 1239 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1240 break; 1241 } 1242 } 1243 1244 if (!Op->hasOneUse()) 1245 return nullptr; 1246 1247 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1248 if (Cast->getOpcode() == Instruction::SExt) { 1249 // Op is sign-extended from a smaller type, descale in the smaller type. 1250 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1251 APInt SmallScale = Scale.trunc(SmallSize); 1252 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1253 // descale Op as (sext Y) * Scale. In order to have 1254 // sext (Y * SmallScale) = (sext Y) * Scale 1255 // some conditions need to hold however: SmallScale must sign-extend to 1256 // Scale and the multiplication Y * SmallScale should not overflow. 1257 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1258 // SmallScale does not sign-extend to Scale. 1259 return nullptr; 1260 assert(SmallScale.exactLogBase2() == logScale); 1261 // Require that Y * SmallScale must not overflow. 1262 RequireNoSignedWrap = true; 1263 1264 // Drill down through the cast. 1265 Parent = std::make_pair(Cast, 0); 1266 Scale = SmallScale; 1267 continue; 1268 } 1269 1270 if (Cast->getOpcode() == Instruction::Trunc) { 1271 // Op is truncated from a larger type, descale in the larger type. 1272 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1273 // trunc (Y * sext Scale) = (trunc Y) * Scale 1274 // always holds. However (trunc Y) * Scale may overflow even if 1275 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1276 // from this point up in the expression (see later). 1277 if (RequireNoSignedWrap) 1278 return nullptr; 1279 1280 // Drill down through the cast. 1281 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1282 Parent = std::make_pair(Cast, 0); 1283 Scale = Scale.sext(LargeSize); 1284 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1285 logScale = -1; 1286 assert(Scale.exactLogBase2() == logScale); 1287 continue; 1288 } 1289 } 1290 1291 // Unsupported expression, bail out. 1292 return nullptr; 1293 } 1294 1295 // If Op is zero then Val = Op * Scale. 1296 if (match(Op, m_Zero())) { 1297 NoSignedWrap = true; 1298 return Op; 1299 } 1300 1301 // We know that we can successfully descale, so from here on we can safely 1302 // modify the IR. Op holds the descaled version of the deepest term in the 1303 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1304 // not to overflow. 1305 1306 if (!Parent.first) 1307 // The expression only had one term. 1308 return Op; 1309 1310 // Rewrite the parent using the descaled version of its operand. 1311 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1312 assert(Op != Parent.first->getOperand(Parent.second) && 1313 "Descaling was a no-op?"); 1314 Parent.first->setOperand(Parent.second, Op); 1315 Worklist.Add(Parent.first); 1316 1317 // Now work back up the expression correcting nsw flags. The logic is based 1318 // on the following observation: if X * Y is known not to overflow as a signed 1319 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1320 // then X * Z will not overflow as a signed multiplication either. As we work 1321 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1322 // current level has strictly smaller absolute value than the original. 1323 Instruction *Ancestor = Parent.first; 1324 do { 1325 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1326 // If the multiplication wasn't nsw then we can't say anything about the 1327 // value of the descaled multiplication, and we have to clear nsw flags 1328 // from this point on up. 1329 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1330 NoSignedWrap &= OpNoSignedWrap; 1331 if (NoSignedWrap != OpNoSignedWrap) { 1332 BO->setHasNoSignedWrap(NoSignedWrap); 1333 Worklist.Add(Ancestor); 1334 } 1335 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1336 // The fact that the descaled input to the trunc has smaller absolute 1337 // value than the original input doesn't tell us anything useful about 1338 // the absolute values of the truncations. 1339 NoSignedWrap = false; 1340 } 1341 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1342 "Failed to keep proper track of nsw flags while drilling down?"); 1343 1344 if (Ancestor == Val) 1345 // Got to the top, all done! 1346 return Val; 1347 1348 // Move up one level in the expression. 1349 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1350 Ancestor = Ancestor->user_back(); 1351 } while (true); 1352 } 1353 1354 /// Makes transformation of binary operation specific for vector types. 1355 /// \param Inst Binary operator to transform. 1356 /// \return Pointer to node that must replace the original binary operator, or 1357 /// null pointer if no transformation was made. 1358 Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) { 1359 if (!Inst.getType()->isVectorTy()) return nullptr; 1360 1361 // It may not be safe to reorder shuffles and things like div, urem, etc. 1362 // because we may trap when executing those ops on unknown vector elements. 1363 // See PR20059. 1364 if (!isSafeToSpeculativelyExecute(&Inst)) 1365 return nullptr; 1366 1367 unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements(); 1368 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1369 assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth); 1370 assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth); 1371 1372 auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) { 1373 Value *XY = Builder.CreateBinOp(Inst.getOpcode(), X, Y); 1374 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1375 BO->copyIRFlags(&Inst); 1376 return Builder.CreateShuffleVector(XY, UndefValue::get(XY->getType()), M); 1377 }; 1378 1379 // If both arguments of the binary operation are shuffles that use the same 1380 // mask and shuffle within a single vector, move the shuffle after the binop. 1381 Value *V1, *V2; 1382 Constant *Mask; 1383 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) && 1384 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) && 1385 V1->getType() == V2->getType() && 1386 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1387 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1388 return createBinOpShuffle(V1, V2, Mask); 1389 } 1390 1391 // If one argument is a shuffle within one vector and the other is a constant, 1392 // try moving the shuffle after the binary operation. This canonicalization 1393 // intends to move shuffles closer to other shuffles and binops closer to 1394 // other binops, so they can be folded. It may also enable demanded elements 1395 // transforms. 1396 Constant *C; 1397 if (match(&Inst, m_c_BinOp( 1398 m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))), 1399 m_Constant(C))) && 1400 V1->getType() == Inst.getType()) { 1401 // Find constant NewC that has property: 1402 // shuffle(NewC, ShMask) = C 1403 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1404 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1405 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1406 SmallVector<int, 16> ShMask; 1407 ShuffleVectorInst::getShuffleMask(Mask, ShMask); 1408 SmallVector<Constant *, 16> 1409 NewVecC(VWidth, UndefValue::get(C->getType()->getScalarType())); 1410 bool MayChange = true; 1411 for (unsigned I = 0; I < VWidth; ++I) { 1412 if (ShMask[I] >= 0) { 1413 assert(ShMask[I] < (int)VWidth); 1414 Constant *CElt = C->getAggregateElement(I); 1415 Constant *NewCElt = NewVecC[ShMask[I]]; 1416 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt)) { 1417 MayChange = false; 1418 break; 1419 } 1420 NewVecC[ShMask[I]] = CElt; 1421 } 1422 } 1423 if (MayChange) { 1424 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1425 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1426 Constant *NewC = ConstantVector::get(NewVecC); 1427 Value *NewLHS = isa<Constant>(LHS) ? NewC : V1; 1428 Value *NewRHS = isa<Constant>(LHS) ? V1 : NewC; 1429 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1430 } 1431 } 1432 1433 return nullptr; 1434 } 1435 1436 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1437 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1438 Type *GEPType = GEP.getType(); 1439 Type *GEPEltType = GEP.getSourceElementType(); 1440 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP))) 1441 return replaceInstUsesWith(GEP, V); 1442 1443 Value *PtrOp = GEP.getOperand(0); 1444 1445 // Eliminate unneeded casts for indices, and replace indices which displace 1446 // by multiples of a zero size type with zero. 1447 bool MadeChange = false; 1448 1449 // Index width may not be the same width as pointer width. 1450 // Data layout chooses the right type based on supported integer types. 1451 Type *NewScalarIndexTy = 1452 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 1453 1454 gep_type_iterator GTI = gep_type_begin(GEP); 1455 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1456 ++I, ++GTI) { 1457 // Skip indices into struct types. 1458 if (GTI.isStruct()) 1459 continue; 1460 1461 Type *IndexTy = (*I)->getType(); 1462 Type *NewIndexType = 1463 IndexTy->isVectorTy() 1464 ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements()) 1465 : NewScalarIndexTy; 1466 1467 // If the element type has zero size then any index over it is equivalent 1468 // to an index of zero, so replace it with zero if it is not zero already. 1469 Type *EltTy = GTI.getIndexedType(); 1470 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0) 1471 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { 1472 *I = Constant::getNullValue(NewIndexType); 1473 MadeChange = true; 1474 } 1475 1476 if (IndexTy != NewIndexType) { 1477 // If we are using a wider index than needed for this platform, shrink 1478 // it to what we need. If narrower, sign-extend it to what we need. 1479 // This explicit cast can make subsequent optimizations more obvious. 1480 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1481 MadeChange = true; 1482 } 1483 } 1484 if (MadeChange) 1485 return &GEP; 1486 1487 // Check to see if the inputs to the PHI node are getelementptr instructions. 1488 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 1489 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1490 if (!Op1) 1491 return nullptr; 1492 1493 // Don't fold a GEP into itself through a PHI node. This can only happen 1494 // through the back-edge of a loop. Folding a GEP into itself means that 1495 // the value of the previous iteration needs to be stored in the meantime, 1496 // thus requiring an additional register variable to be live, but not 1497 // actually achieving anything (the GEP still needs to be executed once per 1498 // loop iteration). 1499 if (Op1 == &GEP) 1500 return nullptr; 1501 1502 int DI = -1; 1503 1504 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1505 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 1506 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1507 return nullptr; 1508 1509 // As for Op1 above, don't try to fold a GEP into itself. 1510 if (Op2 == &GEP) 1511 return nullptr; 1512 1513 // Keep track of the type as we walk the GEP. 1514 Type *CurTy = nullptr; 1515 1516 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1517 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1518 return nullptr; 1519 1520 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1521 if (DI == -1) { 1522 // We have not seen any differences yet in the GEPs feeding the 1523 // PHI yet, so we record this one if it is allowed to be a 1524 // variable. 1525 1526 // The first two arguments can vary for any GEP, the rest have to be 1527 // static for struct slots 1528 if (J > 1 && CurTy->isStructTy()) 1529 return nullptr; 1530 1531 DI = J; 1532 } else { 1533 // The GEP is different by more than one input. While this could be 1534 // extended to support GEPs that vary by more than one variable it 1535 // doesn't make sense since it greatly increases the complexity and 1536 // would result in an R+R+R addressing mode which no backend 1537 // directly supports and would need to be broken into several 1538 // simpler instructions anyway. 1539 return nullptr; 1540 } 1541 } 1542 1543 // Sink down a layer of the type for the next iteration. 1544 if (J > 0) { 1545 if (J == 1) { 1546 CurTy = Op1->getSourceElementType(); 1547 } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) { 1548 CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); 1549 } else { 1550 CurTy = nullptr; 1551 } 1552 } 1553 } 1554 } 1555 1556 // If not all GEPs are identical we'll have to create a new PHI node. 1557 // Check that the old PHI node has only one use so that it will get 1558 // removed. 1559 if (DI != -1 && !PN->hasOneUse()) 1560 return nullptr; 1561 1562 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1563 if (DI == -1) { 1564 // All the GEPs feeding the PHI are identical. Clone one down into our 1565 // BB so that it can be merged with the current GEP. 1566 GEP.getParent()->getInstList().insert( 1567 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1568 } else { 1569 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1570 // into the current block so it can be merged, and create a new PHI to 1571 // set that index. 1572 PHINode *NewPN; 1573 { 1574 IRBuilderBase::InsertPointGuard Guard(Builder); 1575 Builder.SetInsertPoint(PN); 1576 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 1577 PN->getNumOperands()); 1578 } 1579 1580 for (auto &I : PN->operands()) 1581 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1582 PN->getIncomingBlock(I)); 1583 1584 NewGEP->setOperand(DI, NewPN); 1585 GEP.getParent()->getInstList().insert( 1586 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1587 NewGEP->setOperand(DI, NewPN); 1588 } 1589 1590 GEP.setOperand(0, NewGEP); 1591 PtrOp = NewGEP; 1592 } 1593 1594 // Combine Indices - If the source pointer to this getelementptr instruction 1595 // is a getelementptr instruction, combine the indices of the two 1596 // getelementptr instructions into a single instruction. 1597 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { 1598 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1599 return nullptr; 1600 1601 // Try to reassociate loop invariant GEP chains to enable LICM. 1602 if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1603 Src->hasOneUse()) { 1604 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1605 Value *GO1 = GEP.getOperand(1); 1606 Value *SO1 = Src->getOperand(1); 1607 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1608 // invariant: this breaks the dependence between GEPs and allows LICM 1609 // to hoist the invariant part out of the loop. 1610 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1611 // We have to be careful here. 1612 // We have something like: 1613 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 1614 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 1615 // If we just swap idx & idx2 then we could inadvertantly 1616 // change %src from a vector to a scalar, or vice versa. 1617 // Cases: 1618 // 1) %base a scalar & idx a scalar & idx2 a vector 1619 // => Swapping idx & idx2 turns %src into a vector type. 1620 // 2) %base a scalar & idx a vector & idx2 a scalar 1621 // => Swapping idx & idx2 turns %src in a scalar type 1622 // 3) %base, %idx, and %idx2 are scalars 1623 // => %src & %gep are scalars 1624 // => swapping idx & idx2 is safe 1625 // 4) %base a vector 1626 // => %src is a vector 1627 // => swapping idx & idx2 is safe. 1628 auto *SO0 = Src->getOperand(0); 1629 auto *SO0Ty = SO0->getType(); 1630 if (!isa<VectorType>(GEPType) || // case 3 1631 isa<VectorType>(SO0Ty)) { // case 4 1632 Src->setOperand(1, GO1); 1633 GEP.setOperand(1, SO1); 1634 return &GEP; 1635 } else { 1636 // Case 1 or 2 1637 // -- have to recreate %src & %gep 1638 // put NewSrc at same location as %src 1639 Builder.SetInsertPoint(cast<Instruction>(PtrOp)); 1640 auto *NewSrc = cast<GetElementPtrInst>( 1641 Builder.CreateGEP(SO0, GO1, Src->getName())); 1642 NewSrc->setIsInBounds(Src->isInBounds()); 1643 auto *NewGEP = GetElementPtrInst::Create(nullptr, NewSrc, {SO1}); 1644 NewGEP->setIsInBounds(GEP.isInBounds()); 1645 return NewGEP; 1646 } 1647 } 1648 } 1649 } 1650 1651 // Note that if our source is a gep chain itself then we wait for that 1652 // chain to be resolved before we perform this transformation. This 1653 // avoids us creating a TON of code in some cases. 1654 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 1655 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1656 return nullptr; // Wait until our source is folded to completion. 1657 1658 SmallVector<Value*, 8> Indices; 1659 1660 // Find out whether the last index in the source GEP is a sequential idx. 1661 bool EndsWithSequential = false; 1662 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1663 I != E; ++I) 1664 EndsWithSequential = I.isSequential(); 1665 1666 // Can we combine the two pointer arithmetics offsets? 1667 if (EndsWithSequential) { 1668 // Replace: gep (gep %P, long B), long A, ... 1669 // With: T = long A+B; gep %P, T, ... 1670 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1671 Value *GO1 = GEP.getOperand(1); 1672 1673 // If they aren't the same type, then the input hasn't been processed 1674 // by the loop above yet (which canonicalizes sequential index types to 1675 // intptr_t). Just avoid transforming this until the input has been 1676 // normalized. 1677 if (SO1->getType() != GO1->getType()) 1678 return nullptr; 1679 1680 Value *Sum = 1681 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 1682 // Only do the combine when we are sure the cost after the 1683 // merge is never more than that before the merge. 1684 if (Sum == nullptr) 1685 return nullptr; 1686 1687 // Update the GEP in place if possible. 1688 if (Src->getNumOperands() == 2) { 1689 GEP.setOperand(0, Src->getOperand(0)); 1690 GEP.setOperand(1, Sum); 1691 return &GEP; 1692 } 1693 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1694 Indices.push_back(Sum); 1695 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1696 } else if (isa<Constant>(*GEP.idx_begin()) && 1697 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1698 Src->getNumOperands() != 1) { 1699 // Otherwise we can do the fold if the first index of the GEP is a zero 1700 Indices.append(Src->op_begin()+1, Src->op_end()); 1701 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1702 } 1703 1704 if (!Indices.empty()) 1705 return GEP.isInBounds() && Src->isInBounds() 1706 ? GetElementPtrInst::CreateInBounds( 1707 Src->getSourceElementType(), Src->getOperand(0), Indices, 1708 GEP.getName()) 1709 : GetElementPtrInst::Create(Src->getSourceElementType(), 1710 Src->getOperand(0), Indices, 1711 GEP.getName()); 1712 } 1713 1714 if (GEP.getNumIndices() == 1) { 1715 unsigned AS = GEP.getPointerAddressSpace(); 1716 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 1717 DL.getIndexSizeInBits(AS)) { 1718 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType); 1719 1720 bool Matched = false; 1721 uint64_t C; 1722 Value *V = nullptr; 1723 if (TyAllocSize == 1) { 1724 V = GEP.getOperand(1); 1725 Matched = true; 1726 } else if (match(GEP.getOperand(1), 1727 m_AShr(m_Value(V), m_ConstantInt(C)))) { 1728 if (TyAllocSize == 1ULL << C) 1729 Matched = true; 1730 } else if (match(GEP.getOperand(1), 1731 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 1732 if (TyAllocSize == C) 1733 Matched = true; 1734 } 1735 1736 if (Matched) { 1737 // Canonicalize (gep i8* X, -(ptrtoint Y)) 1738 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) 1739 // The GEP pattern is emitted by the SCEV expander for certain kinds of 1740 // pointer arithmetic. 1741 if (match(V, m_Neg(m_PtrToInt(m_Value())))) { 1742 Operator *Index = cast<Operator>(V); 1743 Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType()); 1744 Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1)); 1745 return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType); 1746 } 1747 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) 1748 // to (bitcast Y) 1749 Value *Y; 1750 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), 1751 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) 1752 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 1753 } 1754 } 1755 } 1756 1757 // We do not handle pointer-vector geps here. 1758 if (GEPType->isVectorTy()) 1759 return nullptr; 1760 1761 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 1762 Value *StrippedPtr = PtrOp->stripPointerCasts(); 1763 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 1764 1765 if (StrippedPtr != PtrOp) { 1766 bool HasZeroPointerIndex = false; 1767 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 1768 HasZeroPointerIndex = C->isZero(); 1769 1770 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 1771 // into : GEP [10 x i8]* X, i32 0, ... 1772 // 1773 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 1774 // into : GEP i8* X, ... 1775 // 1776 // This occurs when the program declares an array extern like "int X[];" 1777 if (HasZeroPointerIndex) { 1778 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 1779 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 1780 if (CATy->getElementType() == StrippedPtrTy->getElementType()) { 1781 // -> GEP i8* X, ... 1782 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 1783 GetElementPtrInst *Res = GetElementPtrInst::Create( 1784 StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName()); 1785 Res->setIsInBounds(GEP.isInBounds()); 1786 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 1787 return Res; 1788 // Insert Res, and create an addrspacecast. 1789 // e.g., 1790 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 1791 // -> 1792 // %0 = GEP i8 addrspace(1)* X, ... 1793 // addrspacecast i8 addrspace(1)* %0 to i8* 1794 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 1795 } 1796 1797 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrTy->getElementType())) { 1798 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 1799 if (CATy->getElementType() == XATy->getElementType()) { 1800 // -> GEP [10 x i8]* X, i32 0, ... 1801 // At this point, we know that the cast source type is a pointer 1802 // to an array of the same type as the destination pointer 1803 // array. Because the array type is never stepped over (there 1804 // is a leading zero) we can fold the cast into this GEP. 1805 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 1806 GEP.setOperand(0, StrippedPtr); 1807 GEP.setSourceElementType(XATy); 1808 return &GEP; 1809 } 1810 // Cannot replace the base pointer directly because StrippedPtr's 1811 // address space is different. Instead, create a new GEP followed by 1812 // an addrspacecast. 1813 // e.g., 1814 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 1815 // i32 0, ... 1816 // -> 1817 // %0 = GEP [10 x i8] addrspace(1)* X, ... 1818 // addrspacecast i8 addrspace(1)* %0 to i8* 1819 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 1820 Value *NewGEP = GEP.isInBounds() 1821 ? Builder.CreateInBoundsGEP( 1822 nullptr, StrippedPtr, Idx, GEP.getName()) 1823 : Builder.CreateGEP(nullptr, StrippedPtr, Idx, 1824 GEP.getName()); 1825 return new AddrSpaceCastInst(NewGEP, GEPType); 1826 } 1827 } 1828 } 1829 } else if (GEP.getNumOperands() == 2) { 1830 // Transform things like: 1831 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 1832 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 1833 Type *SrcEltTy = StrippedPtrTy->getElementType(); 1834 if (SrcEltTy->isArrayTy() && 1835 DL.getTypeAllocSize(SrcEltTy->getArrayElementType()) == 1836 DL.getTypeAllocSize(GEPEltType)) { 1837 Type *IdxType = DL.getIndexType(GEPType); 1838 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 1839 Value *NewGEP = 1840 GEP.isInBounds() 1841 ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, Idx, 1842 GEP.getName()) 1843 : Builder.CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName()); 1844 1845 // V and GEP are both pointer types --> BitCast 1846 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 1847 } 1848 1849 // Transform things like: 1850 // %V = mul i64 %N, 4 1851 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 1852 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 1853 if (GEPEltType->isSized() && SrcEltTy->isSized()) { 1854 // Check that changing the type amounts to dividing the index by a scale 1855 // factor. 1856 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 1857 uint64_t SrcSize = DL.getTypeAllocSize(SrcEltTy); 1858 if (ResSize && SrcSize % ResSize == 0) { 1859 Value *Idx = GEP.getOperand(1); 1860 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1861 uint64_t Scale = SrcSize / ResSize; 1862 1863 // Earlier transforms ensure that the index has the right type 1864 // according to Data Layout, which considerably simplifies the 1865 // logic by eliminating implicit casts. 1866 assert(Idx->getType() == DL.getIndexType(GEPType) && 1867 "Index type does not match the Data Layout preferences"); 1868 1869 bool NSW; 1870 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1871 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1872 // If the multiplication NewIdx * Scale may overflow then the new 1873 // GEP may not be "inbounds". 1874 Value *NewGEP = 1875 GEP.isInBounds() && NSW 1876 ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx, 1877 GEP.getName()) 1878 : Builder.CreateGEP(nullptr, StrippedPtr, NewIdx, 1879 GEP.getName()); 1880 1881 // The NewGEP must be pointer typed, so must the old one -> BitCast 1882 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1883 GEPType); 1884 } 1885 } 1886 } 1887 1888 // Similarly, transform things like: 1889 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 1890 // (where tmp = 8*tmp2) into: 1891 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 1892 if (GEPEltType->isSized() && SrcEltTy->isSized() && 1893 SrcEltTy->isArrayTy()) { 1894 // Check that changing to the array element type amounts to dividing the 1895 // index by a scale factor. 1896 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 1897 uint64_t ArrayEltSize = 1898 DL.getTypeAllocSize(SrcEltTy->getArrayElementType()); 1899 if (ResSize && ArrayEltSize % ResSize == 0) { 1900 Value *Idx = GEP.getOperand(1); 1901 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1902 uint64_t Scale = ArrayEltSize / ResSize; 1903 1904 // Earlier transforms ensure that the index has the right type 1905 // according to the Data Layout, which considerably simplifies 1906 // the logic by eliminating implicit casts. 1907 assert(Idx->getType() == DL.getIndexType(GEPType) && 1908 "Index type does not match the Data Layout preferences"); 1909 1910 bool NSW; 1911 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1912 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1913 // If the multiplication NewIdx * Scale may overflow then the new 1914 // GEP may not be "inbounds". 1915 Type *IndTy = DL.getIndexType(GEPType); 1916 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 1917 1918 Value *NewGEP = GEP.isInBounds() && NSW 1919 ? Builder.CreateInBoundsGEP( 1920 SrcEltTy, StrippedPtr, Off, GEP.getName()) 1921 : Builder.CreateGEP(SrcEltTy, StrippedPtr, Off, 1922 GEP.getName()); 1923 // The NewGEP must be pointer typed, so must the old one -> BitCast 1924 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1925 GEPType); 1926 } 1927 } 1928 } 1929 } 1930 } 1931 1932 // addrspacecast between types is canonicalized as a bitcast, then an 1933 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 1934 // through the addrspacecast. 1935 Value *ASCStrippedPtrOp = PtrOp; 1936 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 1937 // X = bitcast A addrspace(1)* to B addrspace(1)* 1938 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 1939 // Z = gep Y, <...constant indices...> 1940 // Into an addrspacecasted GEP of the struct. 1941 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 1942 ASCStrippedPtrOp = BC; 1943 } 1944 1945 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 1946 Value *SrcOp = BCI->getOperand(0); 1947 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 1948 Type *SrcEltType = SrcType->getElementType(); 1949 1950 // GEP directly using the source operand if this GEP is accessing an element 1951 // of a bitcasted pointer to vector or array of the same dimensions: 1952 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 1953 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 1954 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy) { 1955 return ArrTy->getArrayElementType() == VecTy->getVectorElementType() && 1956 ArrTy->getArrayNumElements() == VecTy->getVectorNumElements(); 1957 }; 1958 if (GEP.getNumOperands() == 3 && 1959 ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() && 1960 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType)) || 1961 (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() && 1962 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType)))) { 1963 GEP.setOperand(0, SrcOp); 1964 GEP.setSourceElementType(SrcEltType); 1965 return &GEP; 1966 } 1967 1968 // See if we can simplify: 1969 // X = bitcast A* to B* 1970 // Y = gep X, <...constant indices...> 1971 // into a gep of the original struct. This is important for SROA and alias 1972 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 1973 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 1974 APInt Offset(OffsetBits, 0); 1975 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) { 1976 // If this GEP instruction doesn't move the pointer, just replace the GEP 1977 // with a bitcast of the real input to the dest type. 1978 if (!Offset) { 1979 // If the bitcast is of an allocation, and the allocation will be 1980 // converted to match the type of the cast, don't touch this. 1981 if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) { 1982 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 1983 if (Instruction *I = visitBitCast(*BCI)) { 1984 if (I != BCI) { 1985 I->takeName(BCI); 1986 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 1987 replaceInstUsesWith(*BCI, I); 1988 } 1989 return &GEP; 1990 } 1991 } 1992 1993 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 1994 return new AddrSpaceCastInst(SrcOp, GEPType); 1995 return new BitCastInst(SrcOp, GEPType); 1996 } 1997 1998 // Otherwise, if the offset is non-zero, we need to find out if there is a 1999 // field at Offset in 'A's type. If so, we can pull the cast through the 2000 // GEP. 2001 SmallVector<Value*, 8> NewIndices; 2002 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2003 Value *NGEP = 2004 GEP.isInBounds() 2005 ? Builder.CreateInBoundsGEP(nullptr, SrcOp, NewIndices) 2006 : Builder.CreateGEP(nullptr, SrcOp, NewIndices); 2007 2008 if (NGEP->getType() == GEPType) 2009 return replaceInstUsesWith(GEP, NGEP); 2010 NGEP->takeName(&GEP); 2011 2012 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2013 return new AddrSpaceCastInst(NGEP, GEPType); 2014 return new BitCastInst(NGEP, GEPType); 2015 } 2016 } 2017 } 2018 2019 if (!GEP.isInBounds()) { 2020 unsigned IdxWidth = 2021 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2022 APInt BasePtrOffset(IdxWidth, 0); 2023 Value *UnderlyingPtrOp = 2024 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2025 BasePtrOffset); 2026 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2027 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2028 BasePtrOffset.isNonNegative()) { 2029 APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType())); 2030 if (BasePtrOffset.ule(AllocSize)) { 2031 return GetElementPtrInst::CreateInBounds( 2032 PtrOp, makeArrayRef(Ops).slice(1), GEP.getName()); 2033 } 2034 } 2035 } 2036 } 2037 2038 return nullptr; 2039 } 2040 2041 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 2042 Instruction *AI) { 2043 if (isa<ConstantPointerNull>(V)) 2044 return true; 2045 if (auto *LI = dyn_cast<LoadInst>(V)) 2046 return isa<GlobalVariable>(LI->getPointerOperand()); 2047 // Two distinct allocations will never be equal. 2048 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2049 // through bitcasts of V can cause 2050 // the result statement below to be true, even when AI and V (ex: 2051 // i8* ->i32* ->i8* of AI) are the same allocations. 2052 return isAllocLikeFn(V, TLI) && V != AI; 2053 } 2054 2055 static bool isAllocSiteRemovable(Instruction *AI, 2056 SmallVectorImpl<WeakTrackingVH> &Users, 2057 const TargetLibraryInfo *TLI) { 2058 SmallVector<Instruction*, 4> Worklist; 2059 Worklist.push_back(AI); 2060 2061 do { 2062 Instruction *PI = Worklist.pop_back_val(); 2063 for (User *U : PI->users()) { 2064 Instruction *I = cast<Instruction>(U); 2065 switch (I->getOpcode()) { 2066 default: 2067 // Give up the moment we see something we can't handle. 2068 return false; 2069 2070 case Instruction::AddrSpaceCast: 2071 case Instruction::BitCast: 2072 case Instruction::GetElementPtr: 2073 Users.emplace_back(I); 2074 Worklist.push_back(I); 2075 continue; 2076 2077 case Instruction::ICmp: { 2078 ICmpInst *ICI = cast<ICmpInst>(I); 2079 // We can fold eq/ne comparisons with null to false/true, respectively. 2080 // We also fold comparisons in some conditions provided the alloc has 2081 // not escaped (see isNeverEqualToUnescapedAlloc). 2082 if (!ICI->isEquality()) 2083 return false; 2084 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2085 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2086 return false; 2087 Users.emplace_back(I); 2088 continue; 2089 } 2090 2091 case Instruction::Call: 2092 // Ignore no-op and store intrinsics. 2093 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2094 switch (II->getIntrinsicID()) { 2095 default: 2096 return false; 2097 2098 case Intrinsic::memmove: 2099 case Intrinsic::memcpy: 2100 case Intrinsic::memset: { 2101 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2102 if (MI->isVolatile() || MI->getRawDest() != PI) 2103 return false; 2104 LLVM_FALLTHROUGH; 2105 } 2106 case Intrinsic::invariant_start: 2107 case Intrinsic::invariant_end: 2108 case Intrinsic::lifetime_start: 2109 case Intrinsic::lifetime_end: 2110 case Intrinsic::objectsize: 2111 Users.emplace_back(I); 2112 continue; 2113 } 2114 } 2115 2116 if (isFreeCall(I, TLI)) { 2117 Users.emplace_back(I); 2118 continue; 2119 } 2120 return false; 2121 2122 case Instruction::Store: { 2123 StoreInst *SI = cast<StoreInst>(I); 2124 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2125 return false; 2126 Users.emplace_back(I); 2127 continue; 2128 } 2129 } 2130 llvm_unreachable("missing a return?"); 2131 } 2132 } while (!Worklist.empty()); 2133 return true; 2134 } 2135 2136 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 2137 // If we have a malloc call which is only used in any amount of comparisons 2138 // to null and free calls, delete the calls and replace the comparisons with 2139 // true or false as appropriate. 2140 SmallVector<WeakTrackingVH, 64> Users; 2141 2142 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2143 // before each store. 2144 TinyPtrVector<DbgInfoIntrinsic *> DIIs; 2145 std::unique_ptr<DIBuilder> DIB; 2146 if (isa<AllocaInst>(MI)) { 2147 DIIs = FindDbgAddrUses(&MI); 2148 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2149 } 2150 2151 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2152 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2153 // Lowering all @llvm.objectsize calls first because they may 2154 // use a bitcast/GEP of the alloca we are removing. 2155 if (!Users[i]) 2156 continue; 2157 2158 Instruction *I = cast<Instruction>(&*Users[i]); 2159 2160 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2161 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2162 ConstantInt *Result = lowerObjectSizeCall(II, DL, &TLI, 2163 /*MustSucceed=*/true); 2164 replaceInstUsesWith(*I, Result); 2165 eraseInstFromFunction(*I); 2166 Users[i] = nullptr; // Skip examining in the next loop. 2167 } 2168 } 2169 } 2170 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2171 if (!Users[i]) 2172 continue; 2173 2174 Instruction *I = cast<Instruction>(&*Users[i]); 2175 2176 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2177 replaceInstUsesWith(*C, 2178 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2179 C->isFalseWhenEqual())); 2180 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) || 2181 isa<AddrSpaceCastInst>(I)) { 2182 replaceInstUsesWith(*I, UndefValue::get(I->getType())); 2183 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2184 for (auto *DII : DIIs) 2185 ConvertDebugDeclareToDebugValue(DII, SI, *DIB); 2186 } 2187 eraseInstFromFunction(*I); 2188 } 2189 2190 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2191 // Replace invoke with a NOP intrinsic to maintain the original CFG 2192 Module *M = II->getModule(); 2193 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2194 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2195 None, "", II->getParent()); 2196 } 2197 2198 for (auto *DII : DIIs) 2199 eraseInstFromFunction(*DII); 2200 2201 return eraseInstFromFunction(MI); 2202 } 2203 return nullptr; 2204 } 2205 2206 /// Move the call to free before a NULL test. 2207 /// 2208 /// Check if this free is accessed after its argument has been test 2209 /// against NULL (property 0). 2210 /// If yes, it is legal to move this call in its predecessor block. 2211 /// 2212 /// The move is performed only if the block containing the call to free 2213 /// will be removed, i.e.: 2214 /// 1. it has only one predecessor P, and P has two successors 2215 /// 2. it contains the call and an unconditional branch 2216 /// 3. its successor is the same as its predecessor's successor 2217 /// 2218 /// The profitability is out-of concern here and this function should 2219 /// be called only if the caller knows this transformation would be 2220 /// profitable (e.g., for code size). 2221 static Instruction * 2222 tryToMoveFreeBeforeNullTest(CallInst &FI) { 2223 Value *Op = FI.getArgOperand(0); 2224 BasicBlock *FreeInstrBB = FI.getParent(); 2225 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2226 2227 // Validate part of constraint #1: Only one predecessor 2228 // FIXME: We can extend the number of predecessor, but in that case, we 2229 // would duplicate the call to free in each predecessor and it may 2230 // not be profitable even for code size. 2231 if (!PredBB) 2232 return nullptr; 2233 2234 // Validate constraint #2: Does this block contains only the call to 2235 // free and an unconditional branch? 2236 // FIXME: We could check if we can speculate everything in the 2237 // predecessor block 2238 if (FreeInstrBB->size() != 2) 2239 return nullptr; 2240 BasicBlock *SuccBB; 2241 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB))) 2242 return nullptr; 2243 2244 // Validate the rest of constraint #1 by matching on the pred branch. 2245 TerminatorInst *TI = PredBB->getTerminator(); 2246 BasicBlock *TrueBB, *FalseBB; 2247 ICmpInst::Predicate Pred; 2248 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB))) 2249 return nullptr; 2250 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2251 return nullptr; 2252 2253 // Validate constraint #3: Ensure the null case just falls through. 2254 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2255 return nullptr; 2256 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2257 "Broken CFG: missing edge from predecessor to successor"); 2258 2259 FI.moveBefore(TI); 2260 return &FI; 2261 } 2262 2263 Instruction *InstCombiner::visitFree(CallInst &FI) { 2264 Value *Op = FI.getArgOperand(0); 2265 2266 // free undef -> unreachable. 2267 if (isa<UndefValue>(Op)) { 2268 // Insert a new store to null because we cannot modify the CFG here. 2269 Builder.CreateStore(ConstantInt::getTrue(FI.getContext()), 2270 UndefValue::get(Type::getInt1PtrTy(FI.getContext()))); 2271 return eraseInstFromFunction(FI); 2272 } 2273 2274 // If we have 'free null' delete the instruction. This can happen in stl code 2275 // when lots of inlining happens. 2276 if (isa<ConstantPointerNull>(Op)) 2277 return eraseInstFromFunction(FI); 2278 2279 // If we optimize for code size, try to move the call to free before the null 2280 // test so that simplify cfg can remove the empty block and dead code 2281 // elimination the branch. I.e., helps to turn something like: 2282 // if (foo) free(foo); 2283 // into 2284 // free(foo); 2285 if (MinimizeSize) 2286 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI)) 2287 return I; 2288 2289 return nullptr; 2290 } 2291 2292 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { 2293 if (RI.getNumOperands() == 0) // ret void 2294 return nullptr; 2295 2296 Value *ResultOp = RI.getOperand(0); 2297 Type *VTy = ResultOp->getType(); 2298 if (!VTy->isIntegerTy()) 2299 return nullptr; 2300 2301 // There might be assume intrinsics dominating this return that completely 2302 // determine the value. If so, constant fold it. 2303 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2304 if (Known.isConstant()) 2305 RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant())); 2306 2307 return nullptr; 2308 } 2309 2310 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 2311 // Change br (not X), label True, label False to: br X, label False, True 2312 Value *X = nullptr; 2313 BasicBlock *TrueDest; 2314 BasicBlock *FalseDest; 2315 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && 2316 !isa<Constant>(X)) { 2317 // Swap Destinations and condition... 2318 BI.setCondition(X); 2319 BI.swapSuccessors(); 2320 return &BI; 2321 } 2322 2323 // If the condition is irrelevant, remove the use so that other 2324 // transforms on the condition become more effective. 2325 if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) && 2326 BI.getSuccessor(0) == BI.getSuccessor(1)) { 2327 BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType())); 2328 return &BI; 2329 } 2330 2331 // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq. 2332 CmpInst::Predicate Pred; 2333 if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), TrueDest, 2334 FalseDest)) && 2335 !isCanonicalPredicate(Pred)) { 2336 // Swap destinations and condition. 2337 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 2338 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2339 BI.swapSuccessors(); 2340 Worklist.Add(Cond); 2341 return &BI; 2342 } 2343 2344 return nullptr; 2345 } 2346 2347 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 2348 Value *Cond = SI.getCondition(); 2349 Value *Op0; 2350 ConstantInt *AddRHS; 2351 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 2352 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2353 for (auto Case : SI.cases()) { 2354 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 2355 assert(isa<ConstantInt>(NewCase) && 2356 "Result of expression should be constant"); 2357 Case.setValue(cast<ConstantInt>(NewCase)); 2358 } 2359 SI.setCondition(Op0); 2360 return &SI; 2361 } 2362 2363 KnownBits Known = computeKnownBits(Cond, 0, &SI); 2364 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 2365 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 2366 2367 // Compute the number of leading bits we can ignore. 2368 // TODO: A better way to determine this would use ComputeNumSignBits(). 2369 for (auto &C : SI.cases()) { 2370 LeadingKnownZeros = std::min( 2371 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2372 LeadingKnownOnes = std::min( 2373 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2374 } 2375 2376 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 2377 2378 // Shrink the condition operand if the new type is smaller than the old type. 2379 // This may produce a non-standard type for the switch, but that's ok because 2380 // the backend should extend back to a legal type for the target. 2381 if (NewWidth > 0 && NewWidth < Known.getBitWidth()) { 2382 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2383 Builder.SetInsertPoint(&SI); 2384 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 2385 SI.setCondition(NewCond); 2386 2387 for (auto Case : SI.cases()) { 2388 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 2389 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 2390 } 2391 return &SI; 2392 } 2393 2394 return nullptr; 2395 } 2396 2397 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 2398 Value *Agg = EV.getAggregateOperand(); 2399 2400 if (!EV.hasIndices()) 2401 return replaceInstUsesWith(EV, Agg); 2402 2403 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 2404 SQ.getWithInstruction(&EV))) 2405 return replaceInstUsesWith(EV, V); 2406 2407 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 2408 // We're extracting from an insertvalue instruction, compare the indices 2409 const unsigned *exti, *exte, *insi, *inse; 2410 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 2411 exte = EV.idx_end(), inse = IV->idx_end(); 2412 exti != exte && insi != inse; 2413 ++exti, ++insi) { 2414 if (*insi != *exti) 2415 // The insert and extract both reference distinctly different elements. 2416 // This means the extract is not influenced by the insert, and we can 2417 // replace the aggregate operand of the extract with the aggregate 2418 // operand of the insert. i.e., replace 2419 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2420 // %E = extractvalue { i32, { i32 } } %I, 0 2421 // with 2422 // %E = extractvalue { i32, { i32 } } %A, 0 2423 return ExtractValueInst::Create(IV->getAggregateOperand(), 2424 EV.getIndices()); 2425 } 2426 if (exti == exte && insi == inse) 2427 // Both iterators are at the end: Index lists are identical. Replace 2428 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2429 // %C = extractvalue { i32, { i32 } } %B, 1, 0 2430 // with "i32 42" 2431 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 2432 if (exti == exte) { 2433 // The extract list is a prefix of the insert list. i.e. replace 2434 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2435 // %E = extractvalue { i32, { i32 } } %I, 1 2436 // with 2437 // %X = extractvalue { i32, { i32 } } %A, 1 2438 // %E = insertvalue { i32 } %X, i32 42, 0 2439 // by switching the order of the insert and extract (though the 2440 // insertvalue should be left in, since it may have other uses). 2441 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 2442 EV.getIndices()); 2443 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 2444 makeArrayRef(insi, inse)); 2445 } 2446 if (insi == inse) 2447 // The insert list is a prefix of the extract list 2448 // We can simply remove the common indices from the extract and make it 2449 // operate on the inserted value instead of the insertvalue result. 2450 // i.e., replace 2451 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2452 // %E = extractvalue { i32, { i32 } } %I, 1, 0 2453 // with 2454 // %E extractvalue { i32 } { i32 42 }, 0 2455 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 2456 makeArrayRef(exti, exte)); 2457 } 2458 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { 2459 // We're extracting from an intrinsic, see if we're the only user, which 2460 // allows us to simplify multiple result intrinsics to simpler things that 2461 // just get one value. 2462 if (II->hasOneUse()) { 2463 // Check if we're grabbing the overflow bit or the result of a 'with 2464 // overflow' intrinsic. If it's the latter we can remove the intrinsic 2465 // and replace it with a traditional binary instruction. 2466 switch (II->getIntrinsicID()) { 2467 case Intrinsic::uadd_with_overflow: 2468 case Intrinsic::sadd_with_overflow: 2469 if (*EV.idx_begin() == 0) { // Normal result. 2470 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2471 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2472 eraseInstFromFunction(*II); 2473 return BinaryOperator::CreateAdd(LHS, RHS); 2474 } 2475 2476 // If the normal result of the add is dead, and the RHS is a constant, 2477 // we can transform this into a range comparison. 2478 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 2479 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) 2480 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1))) 2481 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0), 2482 ConstantExpr::getNot(CI)); 2483 break; 2484 case Intrinsic::usub_with_overflow: 2485 case Intrinsic::ssub_with_overflow: 2486 if (*EV.idx_begin() == 0) { // Normal result. 2487 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2488 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2489 eraseInstFromFunction(*II); 2490 return BinaryOperator::CreateSub(LHS, RHS); 2491 } 2492 break; 2493 case Intrinsic::umul_with_overflow: 2494 case Intrinsic::smul_with_overflow: 2495 if (*EV.idx_begin() == 0) { // Normal result. 2496 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2497 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2498 eraseInstFromFunction(*II); 2499 return BinaryOperator::CreateMul(LHS, RHS); 2500 } 2501 break; 2502 default: 2503 break; 2504 } 2505 } 2506 } 2507 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2508 // If the (non-volatile) load only has one use, we can rewrite this to a 2509 // load from a GEP. This reduces the size of the load. If a load is used 2510 // only by extractvalue instructions then this either must have been 2511 // optimized before, or it is a struct with padding, in which case we 2512 // don't want to do the transformation as it loses padding knowledge. 2513 if (L->isSimple() && L->hasOneUse()) { 2514 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2515 SmallVector<Value*, 4> Indices; 2516 // Prefix an i32 0 since we need the first element. 2517 Indices.push_back(Builder.getInt32(0)); 2518 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2519 I != E; ++I) 2520 Indices.push_back(Builder.getInt32(*I)); 2521 2522 // We need to insert these at the location of the old load, not at that of 2523 // the extractvalue. 2524 Builder.SetInsertPoint(L); 2525 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 2526 L->getPointerOperand(), Indices); 2527 Instruction *NL = Builder.CreateLoad(GEP); 2528 // Whatever aliasing information we had for the orignal load must also 2529 // hold for the smaller load, so propagate the annotations. 2530 AAMDNodes Nodes; 2531 L->getAAMetadata(Nodes); 2532 NL->setAAMetadata(Nodes); 2533 // Returning the load directly will cause the main loop to insert it in 2534 // the wrong spot, so use replaceInstUsesWith(). 2535 return replaceInstUsesWith(EV, NL); 2536 } 2537 // We could simplify extracts from other values. Note that nested extracts may 2538 // already be simplified implicitly by the above: extract (extract (insert) ) 2539 // will be translated into extract ( insert ( extract ) ) first and then just 2540 // the value inserted, if appropriate. Similarly for extracts from single-use 2541 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2542 // and if again single-use then via load (gep (gep)) to load (gep). 2543 // However, double extracts from e.g. function arguments or return values 2544 // aren't handled yet. 2545 return nullptr; 2546 } 2547 2548 /// Return 'true' if the given typeinfo will match anything. 2549 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 2550 switch (Personality) { 2551 case EHPersonality::GNU_C: 2552 case EHPersonality::GNU_C_SjLj: 2553 case EHPersonality::Rust: 2554 // The GCC C EH and Rust personality only exists to support cleanups, so 2555 // it's not clear what the semantics of catch clauses are. 2556 return false; 2557 case EHPersonality::Unknown: 2558 return false; 2559 case EHPersonality::GNU_Ada: 2560 // While __gnat_all_others_value will match any Ada exception, it doesn't 2561 // match foreign exceptions (or didn't, before gcc-4.7). 2562 return false; 2563 case EHPersonality::GNU_CXX: 2564 case EHPersonality::GNU_CXX_SjLj: 2565 case EHPersonality::GNU_ObjC: 2566 case EHPersonality::MSVC_X86SEH: 2567 case EHPersonality::MSVC_Win64SEH: 2568 case EHPersonality::MSVC_CXX: 2569 case EHPersonality::CoreCLR: 2570 case EHPersonality::Wasm_CXX: 2571 return TypeInfo->isNullValue(); 2572 } 2573 llvm_unreachable("invalid enum"); 2574 } 2575 2576 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2577 return 2578 cast<ArrayType>(LHS->getType())->getNumElements() 2579 < 2580 cast<ArrayType>(RHS->getType())->getNumElements(); 2581 } 2582 2583 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2584 // The logic here should be correct for any real-world personality function. 2585 // However if that turns out not to be true, the offending logic can always 2586 // be conditioned on the personality function, like the catch-all logic is. 2587 EHPersonality Personality = 2588 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 2589 2590 // Simplify the list of clauses, eg by removing repeated catch clauses 2591 // (these are often created by inlining). 2592 bool MakeNewInstruction = false; // If true, recreate using the following: 2593 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2594 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2595 2596 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 2597 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 2598 bool isLastClause = i + 1 == e; 2599 if (LI.isCatch(i)) { 2600 // A catch clause. 2601 Constant *CatchClause = LI.getClause(i); 2602 Constant *TypeInfo = CatchClause->stripPointerCasts(); 2603 2604 // If we already saw this clause, there is no point in having a second 2605 // copy of it. 2606 if (AlreadyCaught.insert(TypeInfo).second) { 2607 // This catch clause was not already seen. 2608 NewClauses.push_back(CatchClause); 2609 } else { 2610 // Repeated catch clause - drop the redundant copy. 2611 MakeNewInstruction = true; 2612 } 2613 2614 // If this is a catch-all then there is no point in keeping any following 2615 // clauses or marking the landingpad as having a cleanup. 2616 if (isCatchAll(Personality, TypeInfo)) { 2617 if (!isLastClause) 2618 MakeNewInstruction = true; 2619 CleanupFlag = false; 2620 break; 2621 } 2622 } else { 2623 // A filter clause. If any of the filter elements were already caught 2624 // then they can be dropped from the filter. It is tempting to try to 2625 // exploit the filter further by saying that any typeinfo that does not 2626 // occur in the filter can't be caught later (and thus can be dropped). 2627 // However this would be wrong, since typeinfos can match without being 2628 // equal (for example if one represents a C++ class, and the other some 2629 // class derived from it). 2630 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 2631 Constant *FilterClause = LI.getClause(i); 2632 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 2633 unsigned NumTypeInfos = FilterType->getNumElements(); 2634 2635 // An empty filter catches everything, so there is no point in keeping any 2636 // following clauses or marking the landingpad as having a cleanup. By 2637 // dealing with this case here the following code is made a bit simpler. 2638 if (!NumTypeInfos) { 2639 NewClauses.push_back(FilterClause); 2640 if (!isLastClause) 2641 MakeNewInstruction = true; 2642 CleanupFlag = false; 2643 break; 2644 } 2645 2646 bool MakeNewFilter = false; // If true, make a new filter. 2647 SmallVector<Constant *, 16> NewFilterElts; // New elements. 2648 if (isa<ConstantAggregateZero>(FilterClause)) { 2649 // Not an empty filter - it contains at least one null typeinfo. 2650 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 2651 Constant *TypeInfo = 2652 Constant::getNullValue(FilterType->getElementType()); 2653 // If this typeinfo is a catch-all then the filter can never match. 2654 if (isCatchAll(Personality, TypeInfo)) { 2655 // Throw the filter away. 2656 MakeNewInstruction = true; 2657 continue; 2658 } 2659 2660 // There is no point in having multiple copies of this typeinfo, so 2661 // discard all but the first copy if there is more than one. 2662 NewFilterElts.push_back(TypeInfo); 2663 if (NumTypeInfos > 1) 2664 MakeNewFilter = true; 2665 } else { 2666 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 2667 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 2668 NewFilterElts.reserve(NumTypeInfos); 2669 2670 // Remove any filter elements that were already caught or that already 2671 // occurred in the filter. While there, see if any of the elements are 2672 // catch-alls. If so, the filter can be discarded. 2673 bool SawCatchAll = false; 2674 for (unsigned j = 0; j != NumTypeInfos; ++j) { 2675 Constant *Elt = Filter->getOperand(j); 2676 Constant *TypeInfo = Elt->stripPointerCasts(); 2677 if (isCatchAll(Personality, TypeInfo)) { 2678 // This element is a catch-all. Bail out, noting this fact. 2679 SawCatchAll = true; 2680 break; 2681 } 2682 2683 // Even if we've seen a type in a catch clause, we don't want to 2684 // remove it from the filter. An unexpected type handler may be 2685 // set up for a call site which throws an exception of the same 2686 // type caught. In order for the exception thrown by the unexpected 2687 // handler to propagate correctly, the filter must be correctly 2688 // described for the call site. 2689 // 2690 // Example: 2691 // 2692 // void unexpected() { throw 1;} 2693 // void foo() throw (int) { 2694 // std::set_unexpected(unexpected); 2695 // try { 2696 // throw 2.0; 2697 // } catch (int i) {} 2698 // } 2699 2700 // There is no point in having multiple copies of the same typeinfo in 2701 // a filter, so only add it if we didn't already. 2702 if (SeenInFilter.insert(TypeInfo).second) 2703 NewFilterElts.push_back(cast<Constant>(Elt)); 2704 } 2705 // A filter containing a catch-all cannot match anything by definition. 2706 if (SawCatchAll) { 2707 // Throw the filter away. 2708 MakeNewInstruction = true; 2709 continue; 2710 } 2711 2712 // If we dropped something from the filter, make a new one. 2713 if (NewFilterElts.size() < NumTypeInfos) 2714 MakeNewFilter = true; 2715 } 2716 if (MakeNewFilter) { 2717 FilterType = ArrayType::get(FilterType->getElementType(), 2718 NewFilterElts.size()); 2719 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 2720 MakeNewInstruction = true; 2721 } 2722 2723 NewClauses.push_back(FilterClause); 2724 2725 // If the new filter is empty then it will catch everything so there is 2726 // no point in keeping any following clauses or marking the landingpad 2727 // as having a cleanup. The case of the original filter being empty was 2728 // already handled above. 2729 if (MakeNewFilter && !NewFilterElts.size()) { 2730 assert(MakeNewInstruction && "New filter but not a new instruction!"); 2731 CleanupFlag = false; 2732 break; 2733 } 2734 } 2735 } 2736 2737 // If several filters occur in a row then reorder them so that the shortest 2738 // filters come first (those with the smallest number of elements). This is 2739 // advantageous because shorter filters are more likely to match, speeding up 2740 // unwinding, but mostly because it increases the effectiveness of the other 2741 // filter optimizations below. 2742 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 2743 unsigned j; 2744 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 2745 for (j = i; j != e; ++j) 2746 if (!isa<ArrayType>(NewClauses[j]->getType())) 2747 break; 2748 2749 // Check whether the filters are already sorted by length. We need to know 2750 // if sorting them is actually going to do anything so that we only make a 2751 // new landingpad instruction if it does. 2752 for (unsigned k = i; k + 1 < j; ++k) 2753 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 2754 // Not sorted, so sort the filters now. Doing an unstable sort would be 2755 // correct too but reordering filters pointlessly might confuse users. 2756 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 2757 shorter_filter); 2758 MakeNewInstruction = true; 2759 break; 2760 } 2761 2762 // Look for the next batch of filters. 2763 i = j + 1; 2764 } 2765 2766 // If typeinfos matched if and only if equal, then the elements of a filter L 2767 // that occurs later than a filter F could be replaced by the intersection of 2768 // the elements of F and L. In reality two typeinfos can match without being 2769 // equal (for example if one represents a C++ class, and the other some class 2770 // derived from it) so it would be wrong to perform this transform in general. 2771 // However the transform is correct and useful if F is a subset of L. In that 2772 // case L can be replaced by F, and thus removed altogether since repeating a 2773 // filter is pointless. So here we look at all pairs of filters F and L where 2774 // L follows F in the list of clauses, and remove L if every element of F is 2775 // an element of L. This can occur when inlining C++ functions with exception 2776 // specifications. 2777 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 2778 // Examine each filter in turn. 2779 Value *Filter = NewClauses[i]; 2780 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 2781 if (!FTy) 2782 // Not a filter - skip it. 2783 continue; 2784 unsigned FElts = FTy->getNumElements(); 2785 // Examine each filter following this one. Doing this backwards means that 2786 // we don't have to worry about filters disappearing under us when removed. 2787 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 2788 Value *LFilter = NewClauses[j]; 2789 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 2790 if (!LTy) 2791 // Not a filter - skip it. 2792 continue; 2793 // If Filter is a subset of LFilter, i.e. every element of Filter is also 2794 // an element of LFilter, then discard LFilter. 2795 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 2796 // If Filter is empty then it is a subset of LFilter. 2797 if (!FElts) { 2798 // Discard LFilter. 2799 NewClauses.erase(J); 2800 MakeNewInstruction = true; 2801 // Move on to the next filter. 2802 continue; 2803 } 2804 unsigned LElts = LTy->getNumElements(); 2805 // If Filter is longer than LFilter then it cannot be a subset of it. 2806 if (FElts > LElts) 2807 // Move on to the next filter. 2808 continue; 2809 // At this point we know that LFilter has at least one element. 2810 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 2811 // Filter is a subset of LFilter iff Filter contains only zeros (as we 2812 // already know that Filter is not longer than LFilter). 2813 if (isa<ConstantAggregateZero>(Filter)) { 2814 assert(FElts <= LElts && "Should have handled this case earlier!"); 2815 // Discard LFilter. 2816 NewClauses.erase(J); 2817 MakeNewInstruction = true; 2818 } 2819 // Move on to the next filter. 2820 continue; 2821 } 2822 ConstantArray *LArray = cast<ConstantArray>(LFilter); 2823 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 2824 // Since Filter is non-empty and contains only zeros, it is a subset of 2825 // LFilter iff LFilter contains a zero. 2826 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 2827 for (unsigned l = 0; l != LElts; ++l) 2828 if (LArray->getOperand(l)->isNullValue()) { 2829 // LFilter contains a zero - discard it. 2830 NewClauses.erase(J); 2831 MakeNewInstruction = true; 2832 break; 2833 } 2834 // Move on to the next filter. 2835 continue; 2836 } 2837 // At this point we know that both filters are ConstantArrays. Loop over 2838 // operands to see whether every element of Filter is also an element of 2839 // LFilter. Since filters tend to be short this is probably faster than 2840 // using a method that scales nicely. 2841 ConstantArray *FArray = cast<ConstantArray>(Filter); 2842 bool AllFound = true; 2843 for (unsigned f = 0; f != FElts; ++f) { 2844 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 2845 AllFound = false; 2846 for (unsigned l = 0; l != LElts; ++l) { 2847 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 2848 if (LTypeInfo == FTypeInfo) { 2849 AllFound = true; 2850 break; 2851 } 2852 } 2853 if (!AllFound) 2854 break; 2855 } 2856 if (AllFound) { 2857 // Discard LFilter. 2858 NewClauses.erase(J); 2859 MakeNewInstruction = true; 2860 } 2861 // Move on to the next filter. 2862 } 2863 } 2864 2865 // If we changed any of the clauses, replace the old landingpad instruction 2866 // with a new one. 2867 if (MakeNewInstruction) { 2868 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 2869 NewClauses.size()); 2870 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 2871 NLI->addClause(NewClauses[i]); 2872 // A landing pad with no clauses must have the cleanup flag set. It is 2873 // theoretically possible, though highly unlikely, that we eliminated all 2874 // clauses. If so, force the cleanup flag to true. 2875 if (NewClauses.empty()) 2876 CleanupFlag = true; 2877 NLI->setCleanup(CleanupFlag); 2878 return NLI; 2879 } 2880 2881 // Even if none of the clauses changed, we may nonetheless have understood 2882 // that the cleanup flag is pointless. Clear it if so. 2883 if (LI.isCleanup() != CleanupFlag) { 2884 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 2885 LI.setCleanup(CleanupFlag); 2886 return &LI; 2887 } 2888 2889 return nullptr; 2890 } 2891 2892 /// Try to move the specified instruction from its current block into the 2893 /// beginning of DestBlock, which can only happen if it's safe to move the 2894 /// instruction past all of the instructions between it and the end of its 2895 /// block. 2896 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 2897 assert(I->hasOneUse() && "Invariants didn't hold!"); 2898 BasicBlock *SrcBlock = I->getParent(); 2899 2900 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 2901 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 2902 isa<TerminatorInst>(I)) 2903 return false; 2904 2905 // Do not sink alloca instructions out of the entry block. 2906 if (isa<AllocaInst>(I) && I->getParent() == 2907 &DestBlock->getParent()->getEntryBlock()) 2908 return false; 2909 2910 // Do not sink into catchswitch blocks. 2911 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 2912 return false; 2913 2914 // Do not sink convergent call instructions. 2915 if (auto *CI = dyn_cast<CallInst>(I)) { 2916 if (CI->isConvergent()) 2917 return false; 2918 } 2919 // We can only sink load instructions if there is nothing between the load and 2920 // the end of block that could change the value. 2921 if (I->mayReadFromMemory()) { 2922 for (BasicBlock::iterator Scan = I->getIterator(), 2923 E = I->getParent()->end(); 2924 Scan != E; ++Scan) 2925 if (Scan->mayWriteToMemory()) 2926 return false; 2927 } 2928 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 2929 I->moveBefore(&*InsertPos); 2930 ++NumSunkInst; 2931 2932 // Also sink all related debug uses from the source basic block. Otherwise we 2933 // get debug use before the def. 2934 SmallVector<DbgInfoIntrinsic *, 1> DbgUsers; 2935 findDbgUsers(DbgUsers, I); 2936 for (auto *DII : DbgUsers) { 2937 if (DII->getParent() == SrcBlock) { 2938 DII->moveBefore(&*InsertPos); 2939 LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n'); 2940 } 2941 } 2942 return true; 2943 } 2944 2945 bool InstCombiner::run() { 2946 while (!Worklist.isEmpty()) { 2947 Instruction *I = Worklist.RemoveOne(); 2948 if (I == nullptr) continue; // skip null values. 2949 2950 // Check to see if we can DCE the instruction. 2951 if (isInstructionTriviallyDead(I, &TLI)) { 2952 LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); 2953 eraseInstFromFunction(*I); 2954 ++NumDeadInst; 2955 MadeIRChange = true; 2956 continue; 2957 } 2958 2959 if (!DebugCounter::shouldExecute(VisitCounter)) 2960 continue; 2961 2962 // Instruction isn't dead, see if we can constant propagate it. 2963 if (!I->use_empty() && 2964 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 2965 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 2966 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 2967 << '\n'); 2968 2969 // Add operands to the worklist. 2970 replaceInstUsesWith(*I, C); 2971 ++NumConstProp; 2972 if (isInstructionTriviallyDead(I, &TLI)) 2973 eraseInstFromFunction(*I); 2974 MadeIRChange = true; 2975 continue; 2976 } 2977 } 2978 2979 // In general, it is possible for computeKnownBits to determine all bits in 2980 // a value even when the operands are not all constants. 2981 Type *Ty = I->getType(); 2982 if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) { 2983 KnownBits Known = computeKnownBits(I, /*Depth*/0, I); 2984 if (Known.isConstant()) { 2985 Constant *C = ConstantInt::get(Ty, Known.getConstant()); 2986 LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C 2987 << " from: " << *I << '\n'); 2988 2989 // Add operands to the worklist. 2990 replaceInstUsesWith(*I, C); 2991 ++NumConstProp; 2992 if (isInstructionTriviallyDead(I, &TLI)) 2993 eraseInstFromFunction(*I); 2994 MadeIRChange = true; 2995 continue; 2996 } 2997 } 2998 2999 // See if we can trivially sink this instruction to a successor basic block. 3000 if (I->hasOneUse()) { 3001 BasicBlock *BB = I->getParent(); 3002 Instruction *UserInst = cast<Instruction>(*I->user_begin()); 3003 BasicBlock *UserParent; 3004 3005 // Get the block the use occurs in. 3006 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 3007 UserParent = PN->getIncomingBlock(*I->use_begin()); 3008 else 3009 UserParent = UserInst->getParent(); 3010 3011 if (UserParent != BB) { 3012 bool UserIsSuccessor = false; 3013 // See if the user is one of our successors. 3014 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 3015 if (*SI == UserParent) { 3016 UserIsSuccessor = true; 3017 break; 3018 } 3019 3020 // If the user is one of our immediate successors, and if that successor 3021 // only has us as a predecessors (we'd have to split the critical edge 3022 // otherwise), we can keep going. 3023 if (UserIsSuccessor && UserParent->getUniquePredecessor()) { 3024 // Okay, the CFG is simple enough, try to sink this instruction. 3025 if (TryToSinkInstruction(I, UserParent)) { 3026 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3027 MadeIRChange = true; 3028 // We'll add uses of the sunk instruction below, but since sinking 3029 // can expose opportunities for it's *operands* add them to the 3030 // worklist 3031 for (Use &U : I->operands()) 3032 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3033 Worklist.Add(OpI); 3034 } 3035 } 3036 } 3037 } 3038 3039 // Now that we have an instruction, try combining it to simplify it. 3040 Builder.SetInsertPoint(I); 3041 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 3042 3043 #ifndef NDEBUG 3044 std::string OrigI; 3045 #endif 3046 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 3047 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 3048 3049 if (Instruction *Result = visit(*I)) { 3050 ++NumCombined; 3051 // Should we replace the old instruction with a new one? 3052 if (Result != I) { 3053 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 3054 << " New = " << *Result << '\n'); 3055 3056 if (I->getDebugLoc()) 3057 Result->setDebugLoc(I->getDebugLoc()); 3058 // Everything uses the new instruction now. 3059 I->replaceAllUsesWith(Result); 3060 3061 // Move the name to the new instruction first. 3062 Result->takeName(I); 3063 3064 // Push the new instruction and any users onto the worklist. 3065 Worklist.AddUsersToWorkList(*Result); 3066 Worklist.Add(Result); 3067 3068 // Insert the new instruction into the basic block... 3069 BasicBlock *InstParent = I->getParent(); 3070 BasicBlock::iterator InsertPos = I->getIterator(); 3071 3072 // If we replace a PHI with something that isn't a PHI, fix up the 3073 // insertion point. 3074 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 3075 InsertPos = InstParent->getFirstInsertionPt(); 3076 3077 InstParent->getInstList().insert(InsertPos, Result); 3078 3079 eraseInstFromFunction(*I); 3080 } else { 3081 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3082 << " New = " << *I << '\n'); 3083 3084 // If the instruction was modified, it's possible that it is now dead. 3085 // if so, remove it. 3086 if (isInstructionTriviallyDead(I, &TLI)) { 3087 eraseInstFromFunction(*I); 3088 } else { 3089 Worklist.AddUsersToWorkList(*I); 3090 Worklist.Add(I); 3091 } 3092 } 3093 MadeIRChange = true; 3094 } 3095 } 3096 3097 Worklist.Zap(); 3098 return MadeIRChange; 3099 } 3100 3101 /// Walk the function in depth-first order, adding all reachable code to the 3102 /// worklist. 3103 /// 3104 /// This has a couple of tricks to make the code faster and more powerful. In 3105 /// particular, we constant fold and DCE instructions as we go, to avoid adding 3106 /// them to the worklist (this significantly speeds up instcombine on code where 3107 /// many instructions are dead or constant). Additionally, if we find a branch 3108 /// whose condition is a known constant, we only visit the reachable successors. 3109 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, 3110 SmallPtrSetImpl<BasicBlock *> &Visited, 3111 InstCombineWorklist &ICWorklist, 3112 const TargetLibraryInfo *TLI) { 3113 bool MadeIRChange = false; 3114 SmallVector<BasicBlock*, 256> Worklist; 3115 Worklist.push_back(BB); 3116 3117 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 3118 DenseMap<Constant *, Constant *> FoldedConstants; 3119 3120 do { 3121 BB = Worklist.pop_back_val(); 3122 3123 // We have now visited this block! If we've already been here, ignore it. 3124 if (!Visited.insert(BB).second) 3125 continue; 3126 3127 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 3128 Instruction *Inst = &*BBI++; 3129 3130 // DCE instruction if trivially dead. 3131 if (isInstructionTriviallyDead(Inst, TLI)) { 3132 ++NumDeadInst; 3133 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 3134 salvageDebugInfo(*Inst); 3135 Inst->eraseFromParent(); 3136 MadeIRChange = true; 3137 continue; 3138 } 3139 3140 // ConstantProp instruction if trivially constant. 3141 if (!Inst->use_empty() && 3142 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 3143 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 3144 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst 3145 << '\n'); 3146 Inst->replaceAllUsesWith(C); 3147 ++NumConstProp; 3148 if (isInstructionTriviallyDead(Inst, TLI)) 3149 Inst->eraseFromParent(); 3150 MadeIRChange = true; 3151 continue; 3152 } 3153 3154 // See if we can constant fold its operands. 3155 for (Use &U : Inst->operands()) { 3156 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 3157 continue; 3158 3159 auto *C = cast<Constant>(U); 3160 Constant *&FoldRes = FoldedConstants[C]; 3161 if (!FoldRes) 3162 FoldRes = ConstantFoldConstant(C, DL, TLI); 3163 if (!FoldRes) 3164 FoldRes = C; 3165 3166 if (FoldRes != C) { 3167 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst 3168 << "\n Old = " << *C 3169 << "\n New = " << *FoldRes << '\n'); 3170 U = FoldRes; 3171 MadeIRChange = true; 3172 } 3173 } 3174 3175 // Skip processing debug intrinsics in InstCombine. Processing these call instructions 3176 // consumes non-trivial amount of time and provides no value for the optimization. 3177 if (!isa<DbgInfoIntrinsic>(Inst)) 3178 InstrsForInstCombineWorklist.push_back(Inst); 3179 } 3180 3181 // Recursively visit successors. If this is a branch or switch on a 3182 // constant, only visit the reachable successor. 3183 TerminatorInst *TI = BB->getTerminator(); 3184 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3185 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 3186 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 3187 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 3188 Worklist.push_back(ReachableBB); 3189 continue; 3190 } 3191 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3192 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 3193 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 3194 continue; 3195 } 3196 } 3197 3198 for (BasicBlock *SuccBB : TI->successors()) 3199 Worklist.push_back(SuccBB); 3200 } while (!Worklist.empty()); 3201 3202 // Once we've found all of the instructions to add to instcombine's worklist, 3203 // add them in reverse order. This way instcombine will visit from the top 3204 // of the function down. This jives well with the way that it adds all uses 3205 // of instructions to the worklist after doing a transformation, thus avoiding 3206 // some N^2 behavior in pathological cases. 3207 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist); 3208 3209 return MadeIRChange; 3210 } 3211 3212 /// Populate the IC worklist from a function, and prune any dead basic 3213 /// blocks discovered in the process. 3214 /// 3215 /// This also does basic constant propagation and other forward fixing to make 3216 /// the combiner itself run much faster. 3217 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 3218 TargetLibraryInfo *TLI, 3219 InstCombineWorklist &ICWorklist) { 3220 bool MadeIRChange = false; 3221 3222 // Do a depth-first traversal of the function, populate the worklist with 3223 // the reachable instructions. Ignore blocks that are not reachable. Keep 3224 // track of which blocks we visit. 3225 SmallPtrSet<BasicBlock *, 32> Visited; 3226 MadeIRChange |= 3227 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI); 3228 3229 // Do a quick scan over the function. If we find any blocks that are 3230 // unreachable, remove any instructions inside of them. This prevents 3231 // the instcombine code from having to deal with some bad special cases. 3232 for (BasicBlock &BB : F) { 3233 if (Visited.count(&BB)) 3234 continue; 3235 3236 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB); 3237 MadeIRChange |= NumDeadInstInBB > 0; 3238 NumDeadInst += NumDeadInstInBB; 3239 } 3240 3241 return MadeIRChange; 3242 } 3243 3244 static bool combineInstructionsOverFunction( 3245 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, 3246 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, 3247 OptimizationRemarkEmitter &ORE, bool ExpensiveCombines = true, 3248 LoopInfo *LI = nullptr) { 3249 auto &DL = F.getParent()->getDataLayout(); 3250 ExpensiveCombines |= EnableExpensiveCombines; 3251 3252 /// Builder - This is an IRBuilder that automatically inserts new 3253 /// instructions into the worklist when they are created. 3254 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 3255 F.getContext(), TargetFolder(DL), 3256 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 3257 Worklist.Add(I); 3258 if (match(I, m_Intrinsic<Intrinsic::assume>())) 3259 AC.registerAssumption(cast<CallInst>(I)); 3260 })); 3261 3262 // Lower dbg.declare intrinsics otherwise their value may be clobbered 3263 // by instcombiner. 3264 bool MadeIRChange = false; 3265 if (ShouldLowerDbgDeclare) 3266 MadeIRChange = LowerDbgDeclare(F); 3267 3268 // Iterate while there is work to do. 3269 int Iteration = 0; 3270 while (true) { 3271 ++Iteration; 3272 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 3273 << F.getName() << "\n"); 3274 3275 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 3276 3277 InstCombiner IC(Worklist, Builder, F.optForMinSize(), ExpensiveCombines, AA, 3278 AC, TLI, DT, ORE, DL, LI); 3279 IC.MaxArraySizeForCombine = MaxArraySize; 3280 3281 if (!IC.run()) 3282 break; 3283 } 3284 3285 return MadeIRChange || Iteration > 1; 3286 } 3287 3288 PreservedAnalyses InstCombinePass::run(Function &F, 3289 FunctionAnalysisManager &AM) { 3290 auto &AC = AM.getResult<AssumptionAnalysis>(F); 3291 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 3292 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 3293 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3294 3295 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 3296 3297 auto *AA = &AM.getResult<AAManager>(F); 3298 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, 3299 ExpensiveCombines, LI)) 3300 // No changes, all analyses are preserved. 3301 return PreservedAnalyses::all(); 3302 3303 // Mark all the analyses that instcombine updates as preserved. 3304 PreservedAnalyses PA; 3305 PA.preserveSet<CFGAnalyses>(); 3306 PA.preserve<AAManager>(); 3307 PA.preserve<BasicAA>(); 3308 PA.preserve<GlobalsAA>(); 3309 return PA; 3310 } 3311 3312 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 3313 AU.setPreservesCFG(); 3314 AU.addRequired<AAResultsWrapperPass>(); 3315 AU.addRequired<AssumptionCacheTracker>(); 3316 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3317 AU.addRequired<DominatorTreeWrapperPass>(); 3318 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3319 AU.addPreserved<DominatorTreeWrapperPass>(); 3320 AU.addPreserved<AAResultsWrapperPass>(); 3321 AU.addPreserved<BasicAAWrapperPass>(); 3322 AU.addPreserved<GlobalsAAWrapperPass>(); 3323 } 3324 3325 bool InstructionCombiningPass::runOnFunction(Function &F) { 3326 if (skipFunction(F)) 3327 return false; 3328 3329 // Required analyses. 3330 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3331 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3332 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 3333 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3334 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 3335 3336 // Optional analyses. 3337 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3338 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 3339 3340 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, 3341 ExpensiveCombines, LI); 3342 } 3343 3344 char InstructionCombiningPass::ID = 0; 3345 3346 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 3347 "Combine redundant instructions", false, false) 3348 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3349 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3350 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3351 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3352 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3353 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3354 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 3355 "Combine redundant instructions", false, false) 3356 3357 // Initialization Routines 3358 void llvm::initializeInstCombine(PassRegistry &Registry) { 3359 initializeInstructionCombiningPassPass(Registry); 3360 } 3361 3362 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 3363 initializeInstructionCombiningPassPass(*unwrap(R)); 3364 } 3365 3366 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) { 3367 return new InstructionCombiningPass(ExpensiveCombines); 3368 } 3369 3370 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 3371 unwrap(PM)->add(createInstructionCombiningPass()); 3372 } 3373