1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Analysis/AliasAnalysis.h" 46 #include "llvm/Analysis/AssumptionCache.h" 47 #include "llvm/Analysis/BasicAliasAnalysis.h" 48 #include "llvm/Analysis/BlockFrequencyInfo.h" 49 #include "llvm/Analysis/CFG.h" 50 #include "llvm/Analysis/ConstantFolding.h" 51 #include "llvm/Analysis/EHPersonalities.h" 52 #include "llvm/Analysis/GlobalsModRef.h" 53 #include "llvm/Analysis/InstructionSimplify.h" 54 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 55 #include "llvm/Analysis/LoopInfo.h" 56 #include "llvm/Analysis/MemoryBuiltins.h" 57 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 58 #include "llvm/Analysis/ProfileSummaryInfo.h" 59 #include "llvm/Analysis/TargetFolder.h" 60 #include "llvm/Analysis/TargetLibraryInfo.h" 61 #include "llvm/Analysis/TargetTransformInfo.h" 62 #include "llvm/Analysis/Utils/Local.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/Analysis/VectorUtils.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugInfo.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/Dominators.h" 74 #include "llvm/IR/Function.h" 75 #include "llvm/IR/GetElementPtrTypeIterator.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/InstrTypes.h" 78 #include "llvm/IR/Instruction.h" 79 #include "llvm/IR/Instructions.h" 80 #include "llvm/IR/IntrinsicInst.h" 81 #include "llvm/IR/Intrinsics.h" 82 #include "llvm/IR/LegacyPassManager.h" 83 #include "llvm/IR/Metadata.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PassManager.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/Use.h" 89 #include "llvm/IR/User.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/InitializePasses.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/DebugCounter.h" 98 #include "llvm/Support/ErrorHandling.h" 99 #include "llvm/Support/KnownBits.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Transforms/InstCombine/InstCombine.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <algorithm> 104 #include <cassert> 105 #include <cstdint> 106 #include <memory> 107 #include <string> 108 #include <utility> 109 110 #define DEBUG_TYPE "instcombine" 111 #include "llvm/Transforms/Utils/InstructionWorklist.h" 112 113 using namespace llvm; 114 using namespace llvm::PatternMatch; 115 116 STATISTIC(NumWorklistIterations, 117 "Number of instruction combining iterations performed"); 118 119 STATISTIC(NumCombined , "Number of insts combined"); 120 STATISTIC(NumConstProp, "Number of constant folds"); 121 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 122 STATISTIC(NumSunkInst , "Number of instructions sunk"); 123 STATISTIC(NumExpand, "Number of expansions"); 124 STATISTIC(NumFactor , "Number of factorizations"); 125 STATISTIC(NumReassoc , "Number of reassociations"); 126 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 127 "Controls which instructions are visited"); 128 129 // FIXME: these limits eventually should be as low as 2. 130 static constexpr unsigned InstCombineDefaultMaxIterations = 1000; 131 #ifndef NDEBUG 132 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100; 133 #else 134 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; 135 #endif 136 137 static cl::opt<bool> 138 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 139 cl::init(true)); 140 141 static cl::opt<unsigned> MaxSinkNumUsers( 142 "instcombine-max-sink-users", cl::init(32), 143 cl::desc("Maximum number of undroppable users for instruction sinking")); 144 145 static cl::opt<unsigned> LimitMaxIterations( 146 "instcombine-max-iterations", 147 cl::desc("Limit the maximum number of instruction combining iterations"), 148 cl::init(InstCombineDefaultMaxIterations)); 149 150 static cl::opt<unsigned> InfiniteLoopDetectionThreshold( 151 "instcombine-infinite-loop-threshold", 152 cl::desc("Number of instruction combining iterations considered an " 153 "infinite loop"), 154 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); 155 156 static cl::opt<unsigned> 157 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 158 cl::desc("Maximum array size considered when doing a combine")); 159 160 // FIXME: Remove this flag when it is no longer necessary to convert 161 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 162 // increases variable availability at the cost of accuracy. Variables that 163 // cannot be promoted by mem2reg or SROA will be described as living in memory 164 // for their entire lifetime. However, passes like DSE and instcombine can 165 // delete stores to the alloca, leading to misleading and inaccurate debug 166 // information. This flag can be removed when those passes are fixed. 167 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 168 cl::Hidden, cl::init(true)); 169 170 Optional<Instruction *> 171 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 172 // Handle target specific intrinsics 173 if (II.getCalledFunction()->isTargetIntrinsic()) { 174 return TTI.instCombineIntrinsic(*this, II); 175 } 176 return None; 177 } 178 179 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 180 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 181 bool &KnownBitsComputed) { 182 // Handle target specific intrinsics 183 if (II.getCalledFunction()->isTargetIntrinsic()) { 184 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, 185 KnownBitsComputed); 186 } 187 return None; 188 } 189 190 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 191 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, 192 APInt &UndefElts3, 193 std::function<void(Instruction *, unsigned, APInt, APInt &)> 194 SimplifyAndSetOp) { 195 // Handle target specific intrinsics 196 if (II.getCalledFunction()->isTargetIntrinsic()) { 197 return TTI.simplifyDemandedVectorEltsIntrinsic( 198 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 199 SimplifyAndSetOp); 200 } 201 return None; 202 } 203 204 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { 205 return llvm::EmitGEPOffset(&Builder, DL, GEP); 206 } 207 208 /// Legal integers and common types are considered desirable. This is used to 209 /// avoid creating instructions with types that may not be supported well by the 210 /// the backend. 211 /// NOTE: This treats i8, i16 and i32 specially because they are common 212 /// types in frontend languages. 213 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { 214 switch (BitWidth) { 215 case 8: 216 case 16: 217 case 32: 218 return true; 219 default: 220 return DL.isLegalInteger(BitWidth); 221 } 222 } 223 224 /// Return true if it is desirable to convert an integer computation from a 225 /// given bit width to a new bit width. 226 /// We don't want to convert from a legal to an illegal type or from a smaller 227 /// to a larger illegal type. A width of '1' is always treated as a desirable 228 /// type because i1 is a fundamental type in IR, and there are many specialized 229 /// optimizations for i1 types. Common/desirable widths are equally treated as 230 /// legal to convert to, in order to open up more combining opportunities. 231 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 232 unsigned ToWidth) const { 233 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 234 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 235 236 // Convert to desirable widths even if they are not legal types. 237 // Only shrink types, to prevent infinite loops. 238 if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) 239 return true; 240 241 // If this is a legal integer from type, and the result would be an illegal 242 // type, don't do the transformation. 243 if (FromLegal && !ToLegal) 244 return false; 245 246 // Otherwise, if both are illegal, do not increase the size of the result. We 247 // do allow things like i160 -> i64, but not i64 -> i160. 248 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 249 return false; 250 251 return true; 252 } 253 254 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 255 /// We don't want to convert from a legal to an illegal type or from a smaller 256 /// to a larger illegal type. i1 is always treated as a legal type because it is 257 /// a fundamental type in IR, and there are many specialized optimizations for 258 /// i1 types. 259 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 260 // TODO: This could be extended to allow vectors. Datalayout changes might be 261 // needed to properly support that. 262 if (!From->isIntegerTy() || !To->isIntegerTy()) 263 return false; 264 265 unsigned FromWidth = From->getPrimitiveSizeInBits(); 266 unsigned ToWidth = To->getPrimitiveSizeInBits(); 267 return shouldChangeType(FromWidth, ToWidth); 268 } 269 270 // Return true, if No Signed Wrap should be maintained for I. 271 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 272 // where both B and C should be ConstantInts, results in a constant that does 273 // not overflow. This function only handles the Add and Sub opcodes. For 274 // all other opcodes, the function conservatively returns false. 275 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 276 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 277 if (!OBO || !OBO->hasNoSignedWrap()) 278 return false; 279 280 // We reason about Add and Sub Only. 281 Instruction::BinaryOps Opcode = I.getOpcode(); 282 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 283 return false; 284 285 const APInt *BVal, *CVal; 286 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 287 return false; 288 289 bool Overflow = false; 290 if (Opcode == Instruction::Add) 291 (void)BVal->sadd_ov(*CVal, Overflow); 292 else 293 (void)BVal->ssub_ov(*CVal, Overflow); 294 295 return !Overflow; 296 } 297 298 static bool hasNoUnsignedWrap(BinaryOperator &I) { 299 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 300 return OBO && OBO->hasNoUnsignedWrap(); 301 } 302 303 static bool hasNoSignedWrap(BinaryOperator &I) { 304 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 305 return OBO && OBO->hasNoSignedWrap(); 306 } 307 308 /// Conservatively clears subclassOptionalData after a reassociation or 309 /// commutation. We preserve fast-math flags when applicable as they can be 310 /// preserved. 311 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 312 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 313 if (!FPMO) { 314 I.clearSubclassOptionalData(); 315 return; 316 } 317 318 FastMathFlags FMF = I.getFastMathFlags(); 319 I.clearSubclassOptionalData(); 320 I.setFastMathFlags(FMF); 321 } 322 323 /// Combine constant operands of associative operations either before or after a 324 /// cast to eliminate one of the associative operations: 325 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 326 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 327 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 328 InstCombinerImpl &IC) { 329 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 330 if (!Cast || !Cast->hasOneUse()) 331 return false; 332 333 // TODO: Enhance logic for other casts and remove this check. 334 auto CastOpcode = Cast->getOpcode(); 335 if (CastOpcode != Instruction::ZExt) 336 return false; 337 338 // TODO: Enhance logic for other BinOps and remove this check. 339 if (!BinOp1->isBitwiseLogicOp()) 340 return false; 341 342 auto AssocOpcode = BinOp1->getOpcode(); 343 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 344 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 345 return false; 346 347 Constant *C1, *C2; 348 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 349 !match(BinOp2->getOperand(1), m_Constant(C2))) 350 return false; 351 352 // TODO: This assumes a zext cast. 353 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 354 // to the destination type might lose bits. 355 356 // Fold the constants together in the destination type: 357 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 358 Type *DestTy = C1->getType(); 359 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 360 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 361 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 362 IC.replaceOperand(*BinOp1, 1, FoldedC); 363 return true; 364 } 365 366 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast. 367 // inttoptr ( ptrtoint (x) ) --> x 368 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { 369 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); 370 if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) == 371 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { 372 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); 373 Type *CastTy = IntToPtr->getDestTy(); 374 if (PtrToInt && 375 CastTy->getPointerAddressSpace() == 376 PtrToInt->getSrcTy()->getPointerAddressSpace() && 377 DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) == 378 DL.getTypeSizeInBits(PtrToInt->getDestTy())) { 379 return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy, 380 "", PtrToInt); 381 } 382 } 383 return nullptr; 384 } 385 386 /// This performs a few simplifications for operators that are associative or 387 /// commutative: 388 /// 389 /// Commutative operators: 390 /// 391 /// 1. Order operands such that they are listed from right (least complex) to 392 /// left (most complex). This puts constants before unary operators before 393 /// binary operators. 394 /// 395 /// Associative operators: 396 /// 397 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 398 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 399 /// 400 /// Associative and commutative operators: 401 /// 402 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 403 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 404 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 405 /// if C1 and C2 are constants. 406 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 407 Instruction::BinaryOps Opcode = I.getOpcode(); 408 bool Changed = false; 409 410 do { 411 // Order operands such that they are listed from right (least complex) to 412 // left (most complex). This puts constants before unary operators before 413 // binary operators. 414 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 415 getComplexity(I.getOperand(1))) 416 Changed = !I.swapOperands(); 417 418 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 419 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 420 421 if (I.isAssociative()) { 422 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 423 if (Op0 && Op0->getOpcode() == Opcode) { 424 Value *A = Op0->getOperand(0); 425 Value *B = Op0->getOperand(1); 426 Value *C = I.getOperand(1); 427 428 // Does "B op C" simplify? 429 if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 430 // It simplifies to V. Form "A op V". 431 replaceOperand(I, 0, A); 432 replaceOperand(I, 1, V); 433 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 434 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 435 436 // Conservatively clear all optional flags since they may not be 437 // preserved by the reassociation. Reset nsw/nuw based on the above 438 // analysis. 439 ClearSubclassDataAfterReassociation(I); 440 441 // Note: this is only valid because SimplifyBinOp doesn't look at 442 // the operands to Op0. 443 if (IsNUW) 444 I.setHasNoUnsignedWrap(true); 445 446 if (IsNSW) 447 I.setHasNoSignedWrap(true); 448 449 Changed = true; 450 ++NumReassoc; 451 continue; 452 } 453 } 454 455 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 456 if (Op1 && Op1->getOpcode() == Opcode) { 457 Value *A = I.getOperand(0); 458 Value *B = Op1->getOperand(0); 459 Value *C = Op1->getOperand(1); 460 461 // Does "A op B" simplify? 462 if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 463 // It simplifies to V. Form "V op C". 464 replaceOperand(I, 0, V); 465 replaceOperand(I, 1, C); 466 // Conservatively clear the optional flags, since they may not be 467 // preserved by the reassociation. 468 ClearSubclassDataAfterReassociation(I); 469 Changed = true; 470 ++NumReassoc; 471 continue; 472 } 473 } 474 } 475 476 if (I.isAssociative() && I.isCommutative()) { 477 if (simplifyAssocCastAssoc(&I, *this)) { 478 Changed = true; 479 ++NumReassoc; 480 continue; 481 } 482 483 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 484 if (Op0 && Op0->getOpcode() == Opcode) { 485 Value *A = Op0->getOperand(0); 486 Value *B = Op0->getOperand(1); 487 Value *C = I.getOperand(1); 488 489 // Does "C op A" simplify? 490 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 491 // It simplifies to V. Form "V op B". 492 replaceOperand(I, 0, V); 493 replaceOperand(I, 1, B); 494 // Conservatively clear the optional flags, since they may not be 495 // preserved by the reassociation. 496 ClearSubclassDataAfterReassociation(I); 497 Changed = true; 498 ++NumReassoc; 499 continue; 500 } 501 } 502 503 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 504 if (Op1 && Op1->getOpcode() == Opcode) { 505 Value *A = I.getOperand(0); 506 Value *B = Op1->getOperand(0); 507 Value *C = Op1->getOperand(1); 508 509 // Does "C op A" simplify? 510 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 511 // It simplifies to V. Form "B op V". 512 replaceOperand(I, 0, B); 513 replaceOperand(I, 1, V); 514 // Conservatively clear the optional flags, since they may not be 515 // preserved by the reassociation. 516 ClearSubclassDataAfterReassociation(I); 517 Changed = true; 518 ++NumReassoc; 519 continue; 520 } 521 } 522 523 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 524 // if C1 and C2 are constants. 525 Value *A, *B; 526 Constant *C1, *C2; 527 if (Op0 && Op1 && 528 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 529 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 530 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 531 bool IsNUW = hasNoUnsignedWrap(I) && 532 hasNoUnsignedWrap(*Op0) && 533 hasNoUnsignedWrap(*Op1); 534 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 535 BinaryOperator::CreateNUW(Opcode, A, B) : 536 BinaryOperator::Create(Opcode, A, B); 537 538 if (isa<FPMathOperator>(NewBO)) { 539 FastMathFlags Flags = I.getFastMathFlags(); 540 Flags &= Op0->getFastMathFlags(); 541 Flags &= Op1->getFastMathFlags(); 542 NewBO->setFastMathFlags(Flags); 543 } 544 InsertNewInstWith(NewBO, I); 545 NewBO->takeName(Op1); 546 replaceOperand(I, 0, NewBO); 547 replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2)); 548 // Conservatively clear the optional flags, since they may not be 549 // preserved by the reassociation. 550 ClearSubclassDataAfterReassociation(I); 551 if (IsNUW) 552 I.setHasNoUnsignedWrap(true); 553 554 Changed = true; 555 continue; 556 } 557 } 558 559 // No further simplifications. 560 return Changed; 561 } while (true); 562 } 563 564 /// Return whether "X LOp (Y ROp Z)" is always equal to 565 /// "(X LOp Y) ROp (X LOp Z)". 566 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 567 Instruction::BinaryOps ROp) { 568 // X & (Y | Z) <--> (X & Y) | (X & Z) 569 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 570 if (LOp == Instruction::And) 571 return ROp == Instruction::Or || ROp == Instruction::Xor; 572 573 // X | (Y & Z) <--> (X | Y) & (X | Z) 574 if (LOp == Instruction::Or) 575 return ROp == Instruction::And; 576 577 // X * (Y + Z) <--> (X * Y) + (X * Z) 578 // X * (Y - Z) <--> (X * Y) - (X * Z) 579 if (LOp == Instruction::Mul) 580 return ROp == Instruction::Add || ROp == Instruction::Sub; 581 582 return false; 583 } 584 585 /// Return whether "(X LOp Y) ROp Z" is always equal to 586 /// "(X ROp Z) LOp (Y ROp Z)". 587 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 588 Instruction::BinaryOps ROp) { 589 if (Instruction::isCommutative(ROp)) 590 return leftDistributesOverRight(ROp, LOp); 591 592 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 593 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 594 595 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 596 // but this requires knowing that the addition does not overflow and other 597 // such subtleties. 598 } 599 600 /// This function returns identity value for given opcode, which can be used to 601 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 602 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 603 if (isa<Constant>(V)) 604 return nullptr; 605 606 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 607 } 608 609 /// This function predicates factorization using distributive laws. By default, 610 /// it just returns the 'Op' inputs. But for special-cases like 611 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 612 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 613 /// allow more factorization opportunities. 614 static Instruction::BinaryOps 615 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 616 Value *&LHS, Value *&RHS) { 617 assert(Op && "Expected a binary operator"); 618 LHS = Op->getOperand(0); 619 RHS = Op->getOperand(1); 620 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 621 Constant *C; 622 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 623 // X << C --> X * (1 << C) 624 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 625 return Instruction::Mul; 626 } 627 // TODO: We can add other conversions e.g. shr => div etc. 628 } 629 return Op->getOpcode(); 630 } 631 632 /// This tries to simplify binary operations by factorizing out common terms 633 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 634 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I, 635 Instruction::BinaryOps InnerOpcode, 636 Value *A, Value *B, Value *C, 637 Value *D) { 638 assert(A && B && C && D && "All values must be provided"); 639 640 Value *V = nullptr; 641 Value *SimplifiedInst = nullptr; 642 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 643 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 644 645 // Does "X op' Y" always equal "Y op' X"? 646 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 647 648 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 649 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 650 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 651 // commutative case, "(A op' B) op (C op' A)"? 652 if (A == C || (InnerCommutative && A == D)) { 653 if (A != C) 654 std::swap(C, D); 655 // Consider forming "A op' (B op D)". 656 // If "B op D" simplifies then it can be formed with no cost. 657 V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 658 // If "B op D" doesn't simplify then only go on if both of the existing 659 // operations "A op' B" and "C op' D" will be zapped as no longer used. 660 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 661 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 662 if (V) { 663 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 664 } 665 } 666 667 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 668 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 669 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 670 // commutative case, "(A op' B) op (B op' D)"? 671 if (B == D || (InnerCommutative && B == C)) { 672 if (B != D) 673 std::swap(C, D); 674 // Consider forming "(A op C) op' B". 675 // If "A op C" simplifies then it can be formed with no cost. 676 V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 677 678 // If "A op C" doesn't simplify then only go on if both of the existing 679 // operations "A op' B" and "C op' D" will be zapped as no longer used. 680 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 681 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 682 if (V) { 683 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 684 } 685 } 686 687 if (SimplifiedInst) { 688 ++NumFactor; 689 SimplifiedInst->takeName(&I); 690 691 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 692 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 693 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 694 bool HasNSW = false; 695 bool HasNUW = false; 696 if (isa<OverflowingBinaryOperator>(&I)) { 697 HasNSW = I.hasNoSignedWrap(); 698 HasNUW = I.hasNoUnsignedWrap(); 699 } 700 701 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 702 HasNSW &= LOBO->hasNoSignedWrap(); 703 HasNUW &= LOBO->hasNoUnsignedWrap(); 704 } 705 706 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 707 HasNSW &= ROBO->hasNoSignedWrap(); 708 HasNUW &= ROBO->hasNoUnsignedWrap(); 709 } 710 711 if (TopLevelOpcode == Instruction::Add && 712 InnerOpcode == Instruction::Mul) { 713 // We can propagate 'nsw' if we know that 714 // %Y = mul nsw i16 %X, C 715 // %Z = add nsw i16 %Y, %X 716 // => 717 // %Z = mul nsw i16 %X, C+1 718 // 719 // iff C+1 isn't INT_MIN 720 const APInt *CInt; 721 if (match(V, m_APInt(CInt))) { 722 if (!CInt->isMinSignedValue()) 723 BO->setHasNoSignedWrap(HasNSW); 724 } 725 726 // nuw can be propagated with any constant or nuw value. 727 BO->setHasNoUnsignedWrap(HasNUW); 728 } 729 } 730 } 731 } 732 return SimplifiedInst; 733 } 734 735 /// This tries to simplify binary operations which some other binary operation 736 /// distributes over either by factorizing out common terms 737 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 738 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 739 /// Returns the simplified value, or null if it didn't simplify. 740 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 741 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 742 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 743 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 744 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 745 746 { 747 // Factorization. 748 Value *A, *B, *C, *D; 749 Instruction::BinaryOps LHSOpcode, RHSOpcode; 750 if (Op0) 751 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 752 if (Op1) 753 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 754 755 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 756 // a common term. 757 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 758 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 759 return V; 760 761 // The instruction has the form "(A op' B) op (C)". Try to factorize common 762 // term. 763 if (Op0) 764 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 765 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 766 return V; 767 768 // The instruction has the form "(B) op (C op' D)". Try to factorize common 769 // term. 770 if (Op1) 771 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 772 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 773 return V; 774 } 775 776 // Expansion. 777 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 778 // The instruction has the form "(A op' B) op C". See if expanding it out 779 // to "(A op C) op' (B op C)" results in simplifications. 780 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 781 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 782 783 // Disable the use of undef because it's not safe to distribute undef. 784 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 785 Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 786 Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 787 788 // Do "A op C" and "B op C" both simplify? 789 if (L && R) { 790 // They do! Return "L op' R". 791 ++NumExpand; 792 C = Builder.CreateBinOp(InnerOpcode, L, R); 793 C->takeName(&I); 794 return C; 795 } 796 797 // Does "A op C" simplify to the identity value for the inner opcode? 798 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 799 // They do! Return "B op C". 800 ++NumExpand; 801 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 802 C->takeName(&I); 803 return C; 804 } 805 806 // Does "B op C" simplify to the identity value for the inner opcode? 807 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 808 // They do! Return "A op C". 809 ++NumExpand; 810 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 811 C->takeName(&I); 812 return C; 813 } 814 } 815 816 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 817 // The instruction has the form "A op (B op' C)". See if expanding it out 818 // to "(A op B) op' (A op C)" results in simplifications. 819 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 820 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 821 822 // Disable the use of undef because it's not safe to distribute undef. 823 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 824 Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 825 Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 826 827 // Do "A op B" and "A op C" both simplify? 828 if (L && R) { 829 // They do! Return "L op' R". 830 ++NumExpand; 831 A = Builder.CreateBinOp(InnerOpcode, L, R); 832 A->takeName(&I); 833 return A; 834 } 835 836 // Does "A op B" simplify to the identity value for the inner opcode? 837 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 838 // They do! Return "A op C". 839 ++NumExpand; 840 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 841 A->takeName(&I); 842 return A; 843 } 844 845 // Does "A op C" simplify to the identity value for the inner opcode? 846 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 847 // They do! Return "A op B". 848 ++NumExpand; 849 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 850 A->takeName(&I); 851 return A; 852 } 853 } 854 855 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 856 } 857 858 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 859 Value *LHS, 860 Value *RHS) { 861 Value *A, *B, *C, *D, *E, *F; 862 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 863 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 864 if (!LHSIsSelect && !RHSIsSelect) 865 return nullptr; 866 867 FastMathFlags FMF; 868 BuilderTy::FastMathFlagGuard Guard(Builder); 869 if (isa<FPMathOperator>(&I)) { 870 FMF = I.getFastMathFlags(); 871 Builder.setFastMathFlags(FMF); 872 } 873 874 Instruction::BinaryOps Opcode = I.getOpcode(); 875 SimplifyQuery Q = SQ.getWithInstruction(&I); 876 877 Value *Cond, *True = nullptr, *False = nullptr; 878 if (LHSIsSelect && RHSIsSelect && A == D) { 879 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 880 Cond = A; 881 True = simplifyBinOp(Opcode, B, E, FMF, Q); 882 False = simplifyBinOp(Opcode, C, F, FMF, Q); 883 884 if (LHS->hasOneUse() && RHS->hasOneUse()) { 885 if (False && !True) 886 True = Builder.CreateBinOp(Opcode, B, E); 887 else if (True && !False) 888 False = Builder.CreateBinOp(Opcode, C, F); 889 } 890 } else if (LHSIsSelect && LHS->hasOneUse()) { 891 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 892 Cond = A; 893 True = simplifyBinOp(Opcode, B, RHS, FMF, Q); 894 False = simplifyBinOp(Opcode, C, RHS, FMF, Q); 895 } else if (RHSIsSelect && RHS->hasOneUse()) { 896 // X op (D ? E : F) -> D ? (X op E) : (X op F) 897 Cond = D; 898 True = simplifyBinOp(Opcode, LHS, E, FMF, Q); 899 False = simplifyBinOp(Opcode, LHS, F, FMF, Q); 900 } 901 902 if (!True || !False) 903 return nullptr; 904 905 Value *SI = Builder.CreateSelect(Cond, True, False); 906 SI->takeName(&I); 907 return SI; 908 } 909 910 /// Freely adapt every user of V as-if V was changed to !V. 911 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 912 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) { 913 for (User *U : I->users()) { 914 switch (cast<Instruction>(U)->getOpcode()) { 915 case Instruction::Select: { 916 auto *SI = cast<SelectInst>(U); 917 SI->swapValues(); 918 SI->swapProfMetadata(); 919 break; 920 } 921 case Instruction::Br: 922 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 923 break; 924 case Instruction::Xor: 925 replaceInstUsesWith(cast<Instruction>(*U), I); 926 break; 927 default: 928 llvm_unreachable("Got unexpected user - out of sync with " 929 "canFreelyInvertAllUsersOf() ?"); 930 } 931 } 932 } 933 934 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 935 /// constant zero (which is the 'negate' form). 936 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 937 Value *NegV; 938 if (match(V, m_Neg(m_Value(NegV)))) 939 return NegV; 940 941 // Constants can be considered to be negated values if they can be folded. 942 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 943 return ConstantExpr::getNeg(C); 944 945 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 946 if (C->getType()->getElementType()->isIntegerTy()) 947 return ConstantExpr::getNeg(C); 948 949 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 950 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 951 Constant *Elt = CV->getAggregateElement(i); 952 if (!Elt) 953 return nullptr; 954 955 if (isa<UndefValue>(Elt)) 956 continue; 957 958 if (!isa<ConstantInt>(Elt)) 959 return nullptr; 960 } 961 return ConstantExpr::getNeg(CV); 962 } 963 964 // Negate integer vector splats. 965 if (auto *CV = dyn_cast<Constant>(V)) 966 if (CV->getType()->isVectorTy() && 967 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 968 return ConstantExpr::getNeg(CV); 969 970 return nullptr; 971 } 972 973 /// A binop with a constant operand and a sign-extended boolean operand may be 974 /// converted into a select of constants by applying the binary operation to 975 /// the constant with the two possible values of the extended boolean (0 or -1). 976 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) { 977 // TODO: Handle non-commutative binop (constant is operand 0). 978 // TODO: Handle zext. 979 // TODO: Peek through 'not' of cast. 980 Value *BO0 = BO.getOperand(0); 981 Value *BO1 = BO.getOperand(1); 982 Value *X; 983 Constant *C; 984 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) || 985 !X->getType()->isIntOrIntVectorTy(1)) 986 return nullptr; 987 988 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C) 989 Constant *Ones = ConstantInt::getAllOnesValue(BO.getType()); 990 Constant *Zero = ConstantInt::getNullValue(BO.getType()); 991 Constant *TVal = ConstantExpr::get(BO.getOpcode(), Ones, C); 992 Constant *FVal = ConstantExpr::get(BO.getOpcode(), Zero, C); 993 return SelectInst::Create(X, TVal, FVal); 994 } 995 996 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 997 InstCombiner::BuilderTy &Builder) { 998 if (auto *Cast = dyn_cast<CastInst>(&I)) 999 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 1000 1001 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1002 assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) && 1003 "Expected constant-foldable intrinsic"); 1004 Intrinsic::ID IID = II->getIntrinsicID(); 1005 if (II->arg_size() == 1) 1006 return Builder.CreateUnaryIntrinsic(IID, SO); 1007 1008 // This works for real binary ops like min/max (where we always expect the 1009 // constant operand to be canonicalized as op1) and unary ops with a bonus 1010 // constant argument like ctlz/cttz. 1011 // TODO: Handle non-commutative binary intrinsics as below for binops. 1012 assert(II->arg_size() == 2 && "Expected binary intrinsic"); 1013 assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand"); 1014 return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1)); 1015 } 1016 1017 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 1018 1019 // Figure out if the constant is the left or the right argument. 1020 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 1021 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 1022 1023 if (auto *SOC = dyn_cast<Constant>(SO)) { 1024 if (ConstIsRHS) 1025 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 1026 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 1027 } 1028 1029 Value *Op0 = SO, *Op1 = ConstOperand; 1030 if (!ConstIsRHS) 1031 std::swap(Op0, Op1); 1032 1033 Value *NewBO = Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), Op0, 1034 Op1, SO->getName() + ".op"); 1035 if (auto *NewBOI = dyn_cast<Instruction>(NewBO)) 1036 NewBOI->copyIRFlags(&I); 1037 return NewBO; 1038 } 1039 1040 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI, 1041 bool FoldWithMultiUse) { 1042 // Don't modify shared select instructions unless set FoldWithMultiUse 1043 if (!SI->hasOneUse() && !FoldWithMultiUse) 1044 return nullptr; 1045 1046 Value *TV = SI->getTrueValue(); 1047 Value *FV = SI->getFalseValue(); 1048 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 1049 return nullptr; 1050 1051 // Bool selects with constant operands can be folded to logical ops. 1052 if (SI->getType()->isIntOrIntVectorTy(1)) 1053 return nullptr; 1054 1055 // If it's a bitcast involving vectors, make sure it has the same number of 1056 // elements on both sides. 1057 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 1058 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 1059 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 1060 1061 // Verify that either both or neither are vectors. 1062 if ((SrcTy == nullptr) != (DestTy == nullptr)) 1063 return nullptr; 1064 1065 // If vectors, verify that they have the same number of elements. 1066 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) 1067 return nullptr; 1068 } 1069 1070 // Test if a CmpInst instruction is used exclusively by a select as 1071 // part of a minimum or maximum operation. If so, refrain from doing 1072 // any other folding. This helps out other analyses which understand 1073 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 1074 // and CodeGen. And in this case, at least one of the comparison 1075 // operands has at least one user besides the compare (the select), 1076 // which would often largely negate the benefit of folding anyway. 1077 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 1078 if (CI->hasOneUse()) { 1079 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 1080 1081 // FIXME: This is a hack to avoid infinite looping with min/max patterns. 1082 // We have to ensure that vector constants that only differ with 1083 // undef elements are treated as equivalent. 1084 auto areLooselyEqual = [](Value *A, Value *B) { 1085 if (A == B) 1086 return true; 1087 1088 // Test for vector constants. 1089 Constant *ConstA, *ConstB; 1090 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB))) 1091 return false; 1092 1093 // TODO: Deal with FP constants? 1094 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType()) 1095 return false; 1096 1097 // Compare for equality including undefs as equal. 1098 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB); 1099 const APInt *C; 1100 return match(Cmp, m_APIntAllowUndef(C)) && C->isOne(); 1101 }; 1102 1103 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) || 1104 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1))) 1105 return nullptr; 1106 } 1107 } 1108 1109 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 1110 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 1111 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 1112 } 1113 1114 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 1115 InstCombiner::BuilderTy &Builder) { 1116 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 1117 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 1118 1119 if (auto *InC = dyn_cast<Constant>(InV)) { 1120 if (ConstIsRHS) 1121 return ConstantExpr::get(I->getOpcode(), InC, C); 1122 return ConstantExpr::get(I->getOpcode(), C, InC); 1123 } 1124 1125 Value *Op0 = InV, *Op1 = C; 1126 if (!ConstIsRHS) 1127 std::swap(Op0, Op1); 1128 1129 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo"); 1130 auto *FPInst = dyn_cast<Instruction>(RI); 1131 if (FPInst && isa<FPMathOperator>(FPInst)) 1132 FPInst->copyFastMathFlags(I); 1133 return RI; 1134 } 1135 1136 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { 1137 unsigned NumPHIValues = PN->getNumIncomingValues(); 1138 if (NumPHIValues == 0) 1139 return nullptr; 1140 1141 // We normally only transform phis with a single use. However, if a PHI has 1142 // multiple uses and they are all the same operation, we can fold *all* of the 1143 // uses into the PHI. 1144 if (!PN->hasOneUse()) { 1145 // Walk the use list for the instruction, comparing them to I. 1146 for (User *U : PN->users()) { 1147 Instruction *UI = cast<Instruction>(U); 1148 if (UI != &I && !I.isIdenticalTo(UI)) 1149 return nullptr; 1150 } 1151 // Otherwise, we can replace *all* users with the new PHI we form. 1152 } 1153 1154 // Check to see if all of the operands of the PHI are simple constants 1155 // (constantint/constantfp/undef). If there is one non-constant value, 1156 // remember the BB it is in. If there is more than one or if *it* is a PHI, 1157 // bail out. We don't do arbitrary constant expressions here because moving 1158 // their computation can be expensive without a cost model. 1159 BasicBlock *NonConstBB = nullptr; 1160 for (unsigned i = 0; i != NumPHIValues; ++i) { 1161 Value *InVal = PN->getIncomingValue(i); 1162 // For non-freeze, require constant operand 1163 // For freeze, require non-undef, non-poison operand 1164 if (!isa<FreezeInst>(I) && match(InVal, m_ImmConstant())) 1165 continue; 1166 if (isa<FreezeInst>(I) && isGuaranteedNotToBeUndefOrPoison(InVal)) 1167 continue; 1168 1169 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 1170 if (NonConstBB) return nullptr; // More than one non-const value. 1171 1172 NonConstBB = PN->getIncomingBlock(i); 1173 1174 // If the InVal is an invoke at the end of the pred block, then we can't 1175 // insert a computation after it without breaking the edge. 1176 if (isa<InvokeInst>(InVal)) 1177 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 1178 return nullptr; 1179 1180 // If the incoming non-constant value is reachable from the phis block, 1181 // we'll push the operation across a loop backedge. This could result in 1182 // an infinite combine loop, and is generally non-profitable (especially 1183 // if the operation was originally outside the loop). 1184 if (isPotentiallyReachable(PN->getParent(), NonConstBB, nullptr, &DT, LI)) 1185 return nullptr; 1186 } 1187 1188 // If there is exactly one non-constant value, we can insert a copy of the 1189 // operation in that block. However, if this is a critical edge, we would be 1190 // inserting the computation on some other paths (e.g. inside a loop). Only 1191 // do this if the pred block is unconditionally branching into the phi block. 1192 // Also, make sure that the pred block is not dead code. 1193 if (NonConstBB != nullptr) { 1194 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1195 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB)) 1196 return nullptr; 1197 } 1198 1199 // Okay, we can do the transformation: create the new PHI node. 1200 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1201 InsertNewInstBefore(NewPN, *PN); 1202 NewPN->takeName(PN); 1203 1204 // If we are going to have to insert a new computation, do so right before the 1205 // predecessor's terminator. 1206 if (NonConstBB) 1207 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1208 1209 // Next, add all of the operands to the PHI. 1210 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1211 // We only currently try to fold the condition of a select when it is a phi, 1212 // not the true/false values. 1213 Value *TrueV = SI->getTrueValue(); 1214 Value *FalseV = SI->getFalseValue(); 1215 BasicBlock *PhiTransBB = PN->getParent(); 1216 for (unsigned i = 0; i != NumPHIValues; ++i) { 1217 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1218 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1219 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1220 Value *InV = nullptr; 1221 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1222 // even if currently isNullValue gives false. 1223 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1224 // For vector constants, we cannot use isNullValue to fold into 1225 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1226 // elements in the vector, we will incorrectly fold InC to 1227 // `TrueVInPred`. 1228 if (InC && isa<ConstantInt>(InC)) 1229 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1230 else { 1231 // Generate the select in the same block as PN's current incoming block. 1232 // Note: ThisBB need not be the NonConstBB because vector constants 1233 // which are constants by definition are handled here. 1234 // FIXME: This can lead to an increase in IR generation because we might 1235 // generate selects for vector constant phi operand, that could not be 1236 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1237 // non-vector phis, this transformation was always profitable because 1238 // the select would be generated exactly once in the NonConstBB. 1239 Builder.SetInsertPoint(ThisBB->getTerminator()); 1240 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1241 FalseVInPred, "phi.sel"); 1242 } 1243 NewPN->addIncoming(InV, ThisBB); 1244 } 1245 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1246 Constant *C = cast<Constant>(I.getOperand(1)); 1247 for (unsigned i = 0; i != NumPHIValues; ++i) { 1248 Value *InV = nullptr; 1249 if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1250 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1251 else 1252 InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i), 1253 C, "phi.cmp"); 1254 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1255 } 1256 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1257 for (unsigned i = 0; i != NumPHIValues; ++i) { 1258 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1259 Builder); 1260 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1261 } 1262 } else if (isa<FreezeInst>(&I)) { 1263 for (unsigned i = 0; i != NumPHIValues; ++i) { 1264 Value *InV; 1265 if (NonConstBB == PN->getIncomingBlock(i)) 1266 InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr"); 1267 else 1268 InV = PN->getIncomingValue(i); 1269 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1270 } 1271 } else { 1272 CastInst *CI = cast<CastInst>(&I); 1273 Type *RetTy = CI->getType(); 1274 for (unsigned i = 0; i != NumPHIValues; ++i) { 1275 Value *InV; 1276 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1277 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1278 else 1279 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1280 I.getType(), "phi.cast"); 1281 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1282 } 1283 } 1284 1285 for (User *U : make_early_inc_range(PN->users())) { 1286 Instruction *User = cast<Instruction>(U); 1287 if (User == &I) continue; 1288 replaceInstUsesWith(*User, NewPN); 1289 eraseInstFromFunction(*User); 1290 } 1291 return replaceInstUsesWith(I, NewPN); 1292 } 1293 1294 Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) { 1295 // TODO: This should be similar to the incoming values check in foldOpIntoPhi: 1296 // we are guarding against replicating the binop in >1 predecessor. 1297 // This could miss matching a phi with 2 constant incoming values. 1298 auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0)); 1299 auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1)); 1300 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() || 1301 Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2) 1302 return nullptr; 1303 1304 // TODO: Remove the restriction for binop being in the same block as the phis. 1305 if (BO.getParent() != Phi0->getParent() || 1306 BO.getParent() != Phi1->getParent()) 1307 return nullptr; 1308 1309 // Match a pair of incoming constants for one of the predecessor blocks. 1310 BasicBlock *ConstBB, *OtherBB; 1311 Constant *C0, *C1; 1312 if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) { 1313 ConstBB = Phi0->getIncomingBlock(0); 1314 OtherBB = Phi0->getIncomingBlock(1); 1315 } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) { 1316 ConstBB = Phi0->getIncomingBlock(1); 1317 OtherBB = Phi0->getIncomingBlock(0); 1318 } else { 1319 return nullptr; 1320 } 1321 if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1))) 1322 return nullptr; 1323 1324 // The block that we are hoisting to must reach here unconditionally. 1325 // Otherwise, we could be speculatively executing an expensive or 1326 // non-speculative op. 1327 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator()); 1328 if (!PredBlockBranch || PredBlockBranch->isConditional() || 1329 !DT.isReachableFromEntry(OtherBB)) 1330 return nullptr; 1331 1332 // TODO: This check could be tightened to only apply to binops (div/rem) that 1333 // are not safe to speculatively execute. But that could allow hoisting 1334 // potentially expensive instructions (fdiv for example). 1335 for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter) 1336 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter)) 1337 return nullptr; 1338 1339 // Make a new binop in the predecessor block with the non-constant incoming 1340 // values. 1341 Builder.SetInsertPoint(PredBlockBranch); 1342 Value *NewBO = Builder.CreateBinOp(BO.getOpcode(), 1343 Phi0->getIncomingValueForBlock(OtherBB), 1344 Phi1->getIncomingValueForBlock(OtherBB)); 1345 if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO)) 1346 NotFoldedNewBO->copyIRFlags(&BO); 1347 1348 // Fold constants for the predecessor block with constant incoming values. 1349 Constant *NewC = ConstantExpr::get(BO.getOpcode(), C0, C1); 1350 1351 // Replace the binop with a phi of the new values. The old phis are dead. 1352 PHINode *NewPhi = PHINode::Create(BO.getType(), 2); 1353 NewPhi->addIncoming(NewBO, OtherBB); 1354 NewPhi->addIncoming(NewC, ConstBB); 1355 return NewPhi; 1356 } 1357 1358 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1359 if (!isa<Constant>(I.getOperand(1))) 1360 return nullptr; 1361 1362 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1363 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1364 return NewSel; 1365 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1366 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1367 return NewPhi; 1368 } 1369 return nullptr; 1370 } 1371 1372 /// Given a pointer type and a constant offset, determine whether or not there 1373 /// is a sequence of GEP indices into the pointed type that will land us at the 1374 /// specified offset. If so, fill them into NewIndices and return the resultant 1375 /// element type, otherwise return null. 1376 static Type *findElementAtOffset(PointerType *PtrTy, int64_t IntOffset, 1377 SmallVectorImpl<Value *> &NewIndices, 1378 const DataLayout &DL) { 1379 // Only used by visitGEPOfBitcast(), which is skipped for opaque pointers. 1380 Type *Ty = PtrTy->getNonOpaquePointerElementType(); 1381 if (!Ty->isSized()) 1382 return nullptr; 1383 1384 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset); 1385 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset); 1386 if (!Offset.isZero()) 1387 return nullptr; 1388 1389 for (const APInt &Index : Indices) 1390 NewIndices.push_back(ConstantInt::get(PtrTy->getContext(), Index)); 1391 return Ty; 1392 } 1393 1394 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1395 // If this GEP has only 0 indices, it is the same pointer as 1396 // Src. If Src is not a trivial GEP too, don't combine 1397 // the indices. 1398 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1399 !Src.hasOneUse()) 1400 return false; 1401 return true; 1402 } 1403 1404 /// Return a value X such that Val = X * Scale, or null if none. 1405 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1406 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1407 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1408 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1409 Scale.getBitWidth() && "Scale not compatible with value!"); 1410 1411 // If Val is zero or Scale is one then Val = Val * Scale. 1412 if (match(Val, m_Zero()) || Scale == 1) { 1413 NoSignedWrap = true; 1414 return Val; 1415 } 1416 1417 // If Scale is zero then it does not divide Val. 1418 if (Scale.isMinValue()) 1419 return nullptr; 1420 1421 // Look through chains of multiplications, searching for a constant that is 1422 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1423 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1424 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1425 // down from Val: 1426 // 1427 // Val = M1 * X || Analysis starts here and works down 1428 // M1 = M2 * Y || Doesn't descend into terms with more 1429 // M2 = Z * 4 \/ than one use 1430 // 1431 // Then to modify a term at the bottom: 1432 // 1433 // Val = M1 * X 1434 // M1 = Z * Y || Replaced M2 with Z 1435 // 1436 // Then to work back up correcting nsw flags. 1437 1438 // Op - the term we are currently analyzing. Starts at Val then drills down. 1439 // Replaced with its descaled value before exiting from the drill down loop. 1440 Value *Op = Val; 1441 1442 // Parent - initially null, but after drilling down notes where Op came from. 1443 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1444 // 0'th operand of Val. 1445 std::pair<Instruction *, unsigned> Parent; 1446 1447 // Set if the transform requires a descaling at deeper levels that doesn't 1448 // overflow. 1449 bool RequireNoSignedWrap = false; 1450 1451 // Log base 2 of the scale. Negative if not a power of 2. 1452 int32_t logScale = Scale.exactLogBase2(); 1453 1454 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1455 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1456 // If Op is a constant divisible by Scale then descale to the quotient. 1457 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1458 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1459 if (!Remainder.isMinValue()) 1460 // Not divisible by Scale. 1461 return nullptr; 1462 // Replace with the quotient in the parent. 1463 Op = ConstantInt::get(CI->getType(), Quotient); 1464 NoSignedWrap = true; 1465 break; 1466 } 1467 1468 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1469 if (BO->getOpcode() == Instruction::Mul) { 1470 // Multiplication. 1471 NoSignedWrap = BO->hasNoSignedWrap(); 1472 if (RequireNoSignedWrap && !NoSignedWrap) 1473 return nullptr; 1474 1475 // There are three cases for multiplication: multiplication by exactly 1476 // the scale, multiplication by a constant different to the scale, and 1477 // multiplication by something else. 1478 Value *LHS = BO->getOperand(0); 1479 Value *RHS = BO->getOperand(1); 1480 1481 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1482 // Multiplication by a constant. 1483 if (CI->getValue() == Scale) { 1484 // Multiplication by exactly the scale, replace the multiplication 1485 // by its left-hand side in the parent. 1486 Op = LHS; 1487 break; 1488 } 1489 1490 // Otherwise drill down into the constant. 1491 if (!Op->hasOneUse()) 1492 return nullptr; 1493 1494 Parent = std::make_pair(BO, 1); 1495 continue; 1496 } 1497 1498 // Multiplication by something else. Drill down into the left-hand side 1499 // since that's where the reassociate pass puts the good stuff. 1500 if (!Op->hasOneUse()) 1501 return nullptr; 1502 1503 Parent = std::make_pair(BO, 0); 1504 continue; 1505 } 1506 1507 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1508 isa<ConstantInt>(BO->getOperand(1))) { 1509 // Multiplication by a power of 2. 1510 NoSignedWrap = BO->hasNoSignedWrap(); 1511 if (RequireNoSignedWrap && !NoSignedWrap) 1512 return nullptr; 1513 1514 Value *LHS = BO->getOperand(0); 1515 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1516 getLimitedValue(Scale.getBitWidth()); 1517 // Op = LHS << Amt. 1518 1519 if (Amt == logScale) { 1520 // Multiplication by exactly the scale, replace the multiplication 1521 // by its left-hand side in the parent. 1522 Op = LHS; 1523 break; 1524 } 1525 if (Amt < logScale || !Op->hasOneUse()) 1526 return nullptr; 1527 1528 // Multiplication by more than the scale. Reduce the multiplying amount 1529 // by the scale in the parent. 1530 Parent = std::make_pair(BO, 1); 1531 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1532 break; 1533 } 1534 } 1535 1536 if (!Op->hasOneUse()) 1537 return nullptr; 1538 1539 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1540 if (Cast->getOpcode() == Instruction::SExt) { 1541 // Op is sign-extended from a smaller type, descale in the smaller type. 1542 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1543 APInt SmallScale = Scale.trunc(SmallSize); 1544 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1545 // descale Op as (sext Y) * Scale. In order to have 1546 // sext (Y * SmallScale) = (sext Y) * Scale 1547 // some conditions need to hold however: SmallScale must sign-extend to 1548 // Scale and the multiplication Y * SmallScale should not overflow. 1549 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1550 // SmallScale does not sign-extend to Scale. 1551 return nullptr; 1552 assert(SmallScale.exactLogBase2() == logScale); 1553 // Require that Y * SmallScale must not overflow. 1554 RequireNoSignedWrap = true; 1555 1556 // Drill down through the cast. 1557 Parent = std::make_pair(Cast, 0); 1558 Scale = SmallScale; 1559 continue; 1560 } 1561 1562 if (Cast->getOpcode() == Instruction::Trunc) { 1563 // Op is truncated from a larger type, descale in the larger type. 1564 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1565 // trunc (Y * sext Scale) = (trunc Y) * Scale 1566 // always holds. However (trunc Y) * Scale may overflow even if 1567 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1568 // from this point up in the expression (see later). 1569 if (RequireNoSignedWrap) 1570 return nullptr; 1571 1572 // Drill down through the cast. 1573 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1574 Parent = std::make_pair(Cast, 0); 1575 Scale = Scale.sext(LargeSize); 1576 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1577 logScale = -1; 1578 assert(Scale.exactLogBase2() == logScale); 1579 continue; 1580 } 1581 } 1582 1583 // Unsupported expression, bail out. 1584 return nullptr; 1585 } 1586 1587 // If Op is zero then Val = Op * Scale. 1588 if (match(Op, m_Zero())) { 1589 NoSignedWrap = true; 1590 return Op; 1591 } 1592 1593 // We know that we can successfully descale, so from here on we can safely 1594 // modify the IR. Op holds the descaled version of the deepest term in the 1595 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1596 // not to overflow. 1597 1598 if (!Parent.first) 1599 // The expression only had one term. 1600 return Op; 1601 1602 // Rewrite the parent using the descaled version of its operand. 1603 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1604 assert(Op != Parent.first->getOperand(Parent.second) && 1605 "Descaling was a no-op?"); 1606 replaceOperand(*Parent.first, Parent.second, Op); 1607 Worklist.push(Parent.first); 1608 1609 // Now work back up the expression correcting nsw flags. The logic is based 1610 // on the following observation: if X * Y is known not to overflow as a signed 1611 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1612 // then X * Z will not overflow as a signed multiplication either. As we work 1613 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1614 // current level has strictly smaller absolute value than the original. 1615 Instruction *Ancestor = Parent.first; 1616 do { 1617 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1618 // If the multiplication wasn't nsw then we can't say anything about the 1619 // value of the descaled multiplication, and we have to clear nsw flags 1620 // from this point on up. 1621 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1622 NoSignedWrap &= OpNoSignedWrap; 1623 if (NoSignedWrap != OpNoSignedWrap) { 1624 BO->setHasNoSignedWrap(NoSignedWrap); 1625 Worklist.push(Ancestor); 1626 } 1627 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1628 // The fact that the descaled input to the trunc has smaller absolute 1629 // value than the original input doesn't tell us anything useful about 1630 // the absolute values of the truncations. 1631 NoSignedWrap = false; 1632 } 1633 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1634 "Failed to keep proper track of nsw flags while drilling down?"); 1635 1636 if (Ancestor == Val) 1637 // Got to the top, all done! 1638 return Val; 1639 1640 // Move up one level in the expression. 1641 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1642 Ancestor = Ancestor->user_back(); 1643 } while (true); 1644 } 1645 1646 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 1647 if (!isa<VectorType>(Inst.getType())) 1648 return nullptr; 1649 1650 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1651 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1652 assert(cast<VectorType>(LHS->getType())->getElementCount() == 1653 cast<VectorType>(Inst.getType())->getElementCount()); 1654 assert(cast<VectorType>(RHS->getType())->getElementCount() == 1655 cast<VectorType>(Inst.getType())->getElementCount()); 1656 1657 // If both operands of the binop are vector concatenations, then perform the 1658 // narrow binop on each pair of the source operands followed by concatenation 1659 // of the results. 1660 Value *L0, *L1, *R0, *R1; 1661 ArrayRef<int> Mask; 1662 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 1663 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 1664 LHS->hasOneUse() && RHS->hasOneUse() && 1665 cast<ShuffleVectorInst>(LHS)->isConcat() && 1666 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1667 // This transform does not have the speculative execution constraint as 1668 // below because the shuffle is a concatenation. The new binops are 1669 // operating on exactly the same elements as the existing binop. 1670 // TODO: We could ease the mask requirement to allow different undef lanes, 1671 // but that requires an analysis of the binop-with-undef output value. 1672 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1673 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1674 BO->copyIRFlags(&Inst); 1675 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1676 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1677 BO->copyIRFlags(&Inst); 1678 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1679 } 1680 1681 // It may not be safe to reorder shuffles and things like div, urem, etc. 1682 // because we may trap when executing those ops on unknown vector elements. 1683 // See PR20059. 1684 if (!isSafeToSpeculativelyExecute(&Inst)) 1685 return nullptr; 1686 1687 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 1688 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1689 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1690 BO->copyIRFlags(&Inst); 1691 return new ShuffleVectorInst(XY, M); 1692 }; 1693 1694 // If both arguments of the binary operation are shuffles that use the same 1695 // mask and shuffle within a single vector, move the shuffle after the binop. 1696 Value *V1, *V2; 1697 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) && 1698 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) && 1699 V1->getType() == V2->getType() && 1700 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1701 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1702 return createBinOpShuffle(V1, V2, Mask); 1703 } 1704 1705 // If both arguments of a commutative binop are select-shuffles that use the 1706 // same mask with commuted operands, the shuffles are unnecessary. 1707 if (Inst.isCommutative() && 1708 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 1709 match(RHS, 1710 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 1711 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1712 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1713 // TODO: Allow shuffles that contain undefs in the mask? 1714 // That is legal, but it reduces undef knowledge. 1715 // TODO: Allow arbitrary shuffles by shuffling after binop? 1716 // That might be legal, but we have to deal with poison. 1717 if (LShuf->isSelect() && 1718 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) && 1719 RShuf->isSelect() && 1720 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) { 1721 // Example: 1722 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1723 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1724 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1725 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1726 NewBO->copyIRFlags(&Inst); 1727 return NewBO; 1728 } 1729 } 1730 1731 // If one argument is a shuffle within one vector and the other is a constant, 1732 // try moving the shuffle after the binary operation. This canonicalization 1733 // intends to move shuffles closer to other shuffles and binops closer to 1734 // other binops, so they can be folded. It may also enable demanded elements 1735 // transforms. 1736 Constant *C; 1737 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 1738 if (InstVTy && 1739 match(&Inst, 1740 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))), 1741 m_ImmConstant(C))) && 1742 cast<FixedVectorType>(V1->getType())->getNumElements() <= 1743 InstVTy->getNumElements()) { 1744 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 1745 "Shuffle should not change scalar type"); 1746 1747 // Find constant NewC that has property: 1748 // shuffle(NewC, ShMask) = C 1749 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1750 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1751 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1752 bool ConstOp1 = isa<Constant>(RHS); 1753 ArrayRef<int> ShMask = Mask; 1754 unsigned SrcVecNumElts = 1755 cast<FixedVectorType>(V1->getType())->getNumElements(); 1756 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1757 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1758 bool MayChange = true; 1759 unsigned NumElts = InstVTy->getNumElements(); 1760 for (unsigned I = 0; I < NumElts; ++I) { 1761 Constant *CElt = C->getAggregateElement(I); 1762 if (ShMask[I] >= 0) { 1763 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1764 Constant *NewCElt = NewVecC[ShMask[I]]; 1765 // Bail out if: 1766 // 1. The constant vector contains a constant expression. 1767 // 2. The shuffle needs an element of the constant vector that can't 1768 // be mapped to a new constant vector. 1769 // 3. This is a widening shuffle that copies elements of V1 into the 1770 // extended elements (extending with undef is allowed). 1771 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1772 I >= SrcVecNumElts) { 1773 MayChange = false; 1774 break; 1775 } 1776 NewVecC[ShMask[I]] = CElt; 1777 } 1778 // If this is a widening shuffle, we must be able to extend with undef 1779 // elements. If the original binop does not produce an undef in the high 1780 // lanes, then this transform is not safe. 1781 // Similarly for undef lanes due to the shuffle mask, we can only 1782 // transform binops that preserve undef. 1783 // TODO: We could shuffle those non-undef constant values into the 1784 // result by using a constant vector (rather than an undef vector) 1785 // as operand 1 of the new binop, but that might be too aggressive 1786 // for target-independent shuffle creation. 1787 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1788 Constant *MaybeUndef = 1789 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1790 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1791 if (!match(MaybeUndef, m_Undef())) { 1792 MayChange = false; 1793 break; 1794 } 1795 } 1796 } 1797 if (MayChange) { 1798 Constant *NewC = ConstantVector::get(NewVecC); 1799 // It may not be safe to execute a binop on a vector with undef elements 1800 // because the entire instruction can be folded to undef or create poison 1801 // that did not exist in the original code. 1802 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1803 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1804 1805 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1806 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1807 Value *NewLHS = ConstOp1 ? V1 : NewC; 1808 Value *NewRHS = ConstOp1 ? NewC : V1; 1809 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1810 } 1811 } 1812 1813 // Try to reassociate to sink a splat shuffle after a binary operation. 1814 if (Inst.isAssociative() && Inst.isCommutative()) { 1815 // Canonicalize shuffle operand as LHS. 1816 if (isa<ShuffleVectorInst>(RHS)) 1817 std::swap(LHS, RHS); 1818 1819 Value *X; 1820 ArrayRef<int> MaskC; 1821 int SplatIndex; 1822 Value *Y, *OtherOp; 1823 if (!match(LHS, 1824 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 1825 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || 1826 X->getType() != Inst.getType() || 1827 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp))))) 1828 return nullptr; 1829 1830 // FIXME: This may not be safe if the analysis allows undef elements. By 1831 // moving 'Y' before the splat shuffle, we are implicitly assuming 1832 // that it is not undef/poison at the splat index. 1833 if (isSplatValue(OtherOp, SplatIndex)) { 1834 std::swap(Y, OtherOp); 1835 } else if (!isSplatValue(Y, SplatIndex)) { 1836 return nullptr; 1837 } 1838 1839 // X and Y are splatted values, so perform the binary operation on those 1840 // values followed by a splat followed by the 2nd binary operation: 1841 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 1842 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 1843 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 1844 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 1845 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 1846 1847 // Intersect FMF on both new binops. Other (poison-generating) flags are 1848 // dropped to be safe. 1849 if (isa<FPMathOperator>(R)) { 1850 R->copyFastMathFlags(&Inst); 1851 R->andIRFlags(RHS); 1852 } 1853 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 1854 NewInstBO->copyIRFlags(R); 1855 return R; 1856 } 1857 1858 return nullptr; 1859 } 1860 1861 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1862 /// of a value. This requires a potentially expensive known bits check to make 1863 /// sure the narrow op does not overflow. 1864 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 1865 // We need at least one extended operand. 1866 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1867 1868 // If this is a sub, we swap the operands since we always want an extension 1869 // on the RHS. The LHS can be an extension or a constant. 1870 if (BO.getOpcode() == Instruction::Sub) 1871 std::swap(Op0, Op1); 1872 1873 Value *X; 1874 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1875 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1876 return nullptr; 1877 1878 // If both operands are the same extension from the same source type and we 1879 // can eliminate at least one (hasOneUse), this might work. 1880 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1881 Value *Y; 1882 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1883 cast<Operator>(Op1)->getOpcode() == CastOpc && 1884 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1885 // If that did not match, see if we have a suitable constant operand. 1886 // Truncating and extending must produce the same constant. 1887 Constant *WideC; 1888 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1889 return nullptr; 1890 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1891 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1892 return nullptr; 1893 Y = NarrowC; 1894 } 1895 1896 // Swap back now that we found our operands. 1897 if (BO.getOpcode() == Instruction::Sub) 1898 std::swap(X, Y); 1899 1900 // Both operands have narrow versions. Last step: the math must not overflow 1901 // in the narrow width. 1902 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1903 return nullptr; 1904 1905 // bo (ext X), (ext Y) --> ext (bo X, Y) 1906 // bo (ext X), C --> ext (bo X, C') 1907 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1908 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1909 if (IsSext) 1910 NewBinOp->setHasNoSignedWrap(); 1911 else 1912 NewBinOp->setHasNoUnsignedWrap(); 1913 } 1914 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1915 } 1916 1917 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 1918 // At least one GEP must be inbounds. 1919 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 1920 return false; 1921 1922 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 1923 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 1924 } 1925 1926 /// Thread a GEP operation with constant indices through the constant true/false 1927 /// arms of a select. 1928 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 1929 InstCombiner::BuilderTy &Builder) { 1930 if (!GEP.hasAllConstantIndices()) 1931 return nullptr; 1932 1933 Instruction *Sel; 1934 Value *Cond; 1935 Constant *TrueC, *FalseC; 1936 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 1937 !match(Sel, 1938 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 1939 return nullptr; 1940 1941 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 1942 // Propagate 'inbounds' and metadata from existing instructions. 1943 // Note: using IRBuilder to create the constants for efficiency. 1944 SmallVector<Value *, 4> IndexC(GEP.indices()); 1945 bool IsInBounds = GEP.isInBounds(); 1946 Type *Ty = GEP.getSourceElementType(); 1947 Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", IsInBounds); 1948 Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", IsInBounds); 1949 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 1950 } 1951 1952 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP, 1953 GEPOperator *Src) { 1954 // Combine Indices - If the source pointer to this getelementptr instruction 1955 // is a getelementptr instruction with matching element type, combine the 1956 // indices of the two getelementptr instructions into a single instruction. 1957 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1958 return nullptr; 1959 1960 if (Src->getResultElementType() == GEP.getSourceElementType() && 1961 Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1962 Src->hasOneUse()) { 1963 Value *GO1 = GEP.getOperand(1); 1964 Value *SO1 = Src->getOperand(1); 1965 1966 if (LI) { 1967 // Try to reassociate loop invariant GEP chains to enable LICM. 1968 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1969 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1970 // invariant: this breaks the dependence between GEPs and allows LICM 1971 // to hoist the invariant part out of the loop. 1972 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1973 // The swapped GEPs are inbounds if both original GEPs are inbounds 1974 // and the sign of the offsets is the same. For simplicity, only 1975 // handle both offsets being non-negative. 1976 bool IsInBounds = Src->isInBounds() && GEP.isInBounds() && 1977 isKnownNonNegative(SO1, DL, 0, &AC, &GEP, &DT) && 1978 isKnownNonNegative(GO1, DL, 0, &AC, &GEP, &DT); 1979 // Put NewSrc at same location as %src. 1980 Builder.SetInsertPoint(cast<Instruction>(Src)); 1981 Value *NewSrc = Builder.CreateGEP(GEP.getSourceElementType(), 1982 Src->getPointerOperand(), GO1, 1983 Src->getName(), IsInBounds); 1984 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 1985 GEP.getSourceElementType(), NewSrc, {SO1}); 1986 NewGEP->setIsInBounds(IsInBounds); 1987 return NewGEP; 1988 } 1989 } 1990 } 1991 } 1992 1993 // Note that if our source is a gep chain itself then we wait for that 1994 // chain to be resolved before we perform this transformation. This 1995 // avoids us creating a TON of code in some cases. 1996 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 1997 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1998 return nullptr; // Wait until our source is folded to completion. 1999 2000 // For constant GEPs, use a more general offset-based folding approach. 2001 // Only do this for opaque pointers, as the result element type may change. 2002 Type *PtrTy = Src->getType()->getScalarType(); 2003 if (PtrTy->isOpaquePointerTy() && GEP.hasAllConstantIndices() && 2004 (Src->hasOneUse() || Src->hasAllConstantIndices())) { 2005 // Split Src into a variable part and a constant suffix. 2006 gep_type_iterator GTI = gep_type_begin(*Src); 2007 Type *BaseType = GTI.getIndexedType(); 2008 bool IsFirstType = true; 2009 unsigned NumVarIndices = 0; 2010 for (auto Pair : enumerate(Src->indices())) { 2011 if (!isa<ConstantInt>(Pair.value())) { 2012 BaseType = GTI.getIndexedType(); 2013 IsFirstType = false; 2014 NumVarIndices = Pair.index() + 1; 2015 } 2016 ++GTI; 2017 } 2018 2019 // Determine the offset for the constant suffix of Src. 2020 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0); 2021 if (NumVarIndices != Src->getNumIndices()) { 2022 // FIXME: getIndexedOffsetInType() does not handled scalable vectors. 2023 if (isa<ScalableVectorType>(BaseType)) 2024 return nullptr; 2025 2026 SmallVector<Value *> ConstantIndices; 2027 if (!IsFirstType) 2028 ConstantIndices.push_back( 2029 Constant::getNullValue(Type::getInt32Ty(GEP.getContext()))); 2030 append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices)); 2031 Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices); 2032 } 2033 2034 // Add the offset for GEP (which is fully constant). 2035 if (!GEP.accumulateConstantOffset(DL, Offset)) 2036 return nullptr; 2037 2038 // Convert the total offset back into indices. 2039 SmallVector<APInt> ConstIndices = 2040 DL.getGEPIndicesForOffset(BaseType, Offset); 2041 if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) 2042 return nullptr; 2043 2044 bool IsInBounds = isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)); 2045 SmallVector<Value *> Indices; 2046 append_range(Indices, drop_end(Src->indices(), 2047 Src->getNumIndices() - NumVarIndices)); 2048 for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) { 2049 Indices.push_back(ConstantInt::get(GEP.getContext(), Idx)); 2050 // Even if the total offset is inbounds, we may end up representing it 2051 // by first performing a larger negative offset, and then a smaller 2052 // positive one. The large negative offset might go out of bounds. Only 2053 // preserve inbounds if all signs are the same. 2054 IsInBounds &= Idx.isNonNegative() == ConstIndices[0].isNonNegative(); 2055 } 2056 2057 return IsInBounds 2058 ? GetElementPtrInst::CreateInBounds(Src->getSourceElementType(), 2059 Src->getOperand(0), Indices, 2060 GEP.getName()) 2061 : GetElementPtrInst::Create(Src->getSourceElementType(), 2062 Src->getOperand(0), Indices, 2063 GEP.getName()); 2064 } 2065 2066 if (Src->getResultElementType() != GEP.getSourceElementType()) 2067 return nullptr; 2068 2069 SmallVector<Value*, 8> Indices; 2070 2071 // Find out whether the last index in the source GEP is a sequential idx. 2072 bool EndsWithSequential = false; 2073 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 2074 I != E; ++I) 2075 EndsWithSequential = I.isSequential(); 2076 2077 // Can we combine the two pointer arithmetics offsets? 2078 if (EndsWithSequential) { 2079 // Replace: gep (gep %P, long B), long A, ... 2080 // With: T = long A+B; gep %P, T, ... 2081 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 2082 Value *GO1 = GEP.getOperand(1); 2083 2084 // If they aren't the same type, then the input hasn't been processed 2085 // by the loop above yet (which canonicalizes sequential index types to 2086 // intptr_t). Just avoid transforming this until the input has been 2087 // normalized. 2088 if (SO1->getType() != GO1->getType()) 2089 return nullptr; 2090 2091 Value *Sum = 2092 simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 2093 // Only do the combine when we are sure the cost after the 2094 // merge is never more than that before the merge. 2095 if (Sum == nullptr) 2096 return nullptr; 2097 2098 // Update the GEP in place if possible. 2099 if (Src->getNumOperands() == 2) { 2100 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 2101 replaceOperand(GEP, 0, Src->getOperand(0)); 2102 replaceOperand(GEP, 1, Sum); 2103 return &GEP; 2104 } 2105 Indices.append(Src->op_begin()+1, Src->op_end()-1); 2106 Indices.push_back(Sum); 2107 Indices.append(GEP.op_begin()+2, GEP.op_end()); 2108 } else if (isa<Constant>(*GEP.idx_begin()) && 2109 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2110 Src->getNumOperands() != 1) { 2111 // Otherwise we can do the fold if the first index of the GEP is a zero 2112 Indices.append(Src->op_begin()+1, Src->op_end()); 2113 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2114 } 2115 2116 if (!Indices.empty()) 2117 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2118 ? GetElementPtrInst::CreateInBounds( 2119 Src->getSourceElementType(), Src->getOperand(0), Indices, 2120 GEP.getName()) 2121 : GetElementPtrInst::Create(Src->getSourceElementType(), 2122 Src->getOperand(0), Indices, 2123 GEP.getName()); 2124 2125 return nullptr; 2126 } 2127 2128 // Note that we may have also stripped an address space cast in between. 2129 Instruction *InstCombinerImpl::visitGEPOfBitcast(BitCastInst *BCI, 2130 GetElementPtrInst &GEP) { 2131 // With opaque pointers, there is no pointer element type we can use to 2132 // adjust the GEP type. 2133 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2134 if (SrcType->isOpaque()) 2135 return nullptr; 2136 2137 Type *GEPEltType = GEP.getSourceElementType(); 2138 Type *SrcEltType = SrcType->getNonOpaquePointerElementType(); 2139 Value *SrcOp = BCI->getOperand(0); 2140 2141 // GEP directly using the source operand if this GEP is accessing an element 2142 // of a bitcasted pointer to vector or array of the same dimensions: 2143 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2144 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2145 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, 2146 const DataLayout &DL) { 2147 auto *VecVTy = cast<FixedVectorType>(VecTy); 2148 return ArrTy->getArrayElementType() == VecVTy->getElementType() && 2149 ArrTy->getArrayNumElements() == VecVTy->getNumElements() && 2150 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); 2151 }; 2152 if (GEP.getNumOperands() == 3 && 2153 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) && 2154 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || 2155 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() && 2156 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { 2157 2158 // Create a new GEP here, as using `setOperand()` followed by 2159 // `setSourceElementType()` won't actually update the type of the 2160 // existing GEP Value. Causing issues if this Value is accessed when 2161 // constructing an AddrSpaceCastInst 2162 SmallVector<Value *, 8> Indices(GEP.indices()); 2163 Value *NGEP = 2164 Builder.CreateGEP(SrcEltType, SrcOp, Indices, "", GEP.isInBounds()); 2165 NGEP->takeName(&GEP); 2166 2167 // Preserve GEP address space to satisfy users 2168 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2169 return new AddrSpaceCastInst(NGEP, GEP.getType()); 2170 2171 return replaceInstUsesWith(GEP, NGEP); 2172 } 2173 2174 // See if we can simplify: 2175 // X = bitcast A* to B* 2176 // Y = gep X, <...constant indices...> 2177 // into a gep of the original struct. This is important for SROA and alias 2178 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2179 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEP.getType()); 2180 APInt Offset(OffsetBits, 0); 2181 2182 // If the bitcast argument is an allocation, The bitcast is for convertion 2183 // to actual type of allocation. Removing such bitcasts, results in having 2184 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of 2185 // struct or array hierarchy. 2186 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have 2187 // a better chance to succeed. 2188 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) && 2189 !isAllocationFn(SrcOp, &TLI)) { 2190 // If this GEP instruction doesn't move the pointer, just replace the GEP 2191 // with a bitcast of the real input to the dest type. 2192 if (!Offset) { 2193 // If the bitcast is of an allocation, and the allocation will be 2194 // converted to match the type of the cast, don't touch this. 2195 if (isa<AllocaInst>(SrcOp)) { 2196 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2197 if (Instruction *I = visitBitCast(*BCI)) { 2198 if (I != BCI) { 2199 I->takeName(BCI); 2200 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2201 replaceInstUsesWith(*BCI, I); 2202 } 2203 return &GEP; 2204 } 2205 } 2206 2207 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2208 return new AddrSpaceCastInst(SrcOp, GEP.getType()); 2209 return new BitCastInst(SrcOp, GEP.getType()); 2210 } 2211 2212 // Otherwise, if the offset is non-zero, we need to find out if there is a 2213 // field at Offset in 'A's type. If so, we can pull the cast through the 2214 // GEP. 2215 SmallVector<Value *, 8> NewIndices; 2216 if (findElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices, DL)) { 2217 Value *NGEP = Builder.CreateGEP(SrcEltType, SrcOp, NewIndices, "", 2218 GEP.isInBounds()); 2219 2220 if (NGEP->getType() == GEP.getType()) 2221 return replaceInstUsesWith(GEP, NGEP); 2222 NGEP->takeName(&GEP); 2223 2224 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2225 return new AddrSpaceCastInst(NGEP, GEP.getType()); 2226 return new BitCastInst(NGEP, GEP.getType()); 2227 } 2228 } 2229 2230 return nullptr; 2231 } 2232 2233 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 2234 Value *PtrOp = GEP.getOperand(0); 2235 SmallVector<Value *, 8> Indices(GEP.indices()); 2236 Type *GEPType = GEP.getType(); 2237 Type *GEPEltType = GEP.getSourceElementType(); 2238 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType); 2239 if (Value *V = simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(), 2240 SQ.getWithInstruction(&GEP))) 2241 return replaceInstUsesWith(GEP, V); 2242 2243 // For vector geps, use the generic demanded vector support. 2244 // Skip if GEP return type is scalable. The number of elements is unknown at 2245 // compile-time. 2246 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 2247 auto VWidth = GEPFVTy->getNumElements(); 2248 APInt UndefElts(VWidth, 0); 2249 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2250 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 2251 UndefElts)) { 2252 if (V != &GEP) 2253 return replaceInstUsesWith(GEP, V); 2254 return &GEP; 2255 } 2256 2257 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 2258 // possible (decide on canonical form for pointer broadcast), 3) exploit 2259 // undef elements to decrease demanded bits 2260 } 2261 2262 // Eliminate unneeded casts for indices, and replace indices which displace 2263 // by multiples of a zero size type with zero. 2264 bool MadeChange = false; 2265 2266 // Index width may not be the same width as pointer width. 2267 // Data layout chooses the right type based on supported integer types. 2268 Type *NewScalarIndexTy = 2269 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 2270 2271 gep_type_iterator GTI = gep_type_begin(GEP); 2272 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 2273 ++I, ++GTI) { 2274 // Skip indices into struct types. 2275 if (GTI.isStruct()) 2276 continue; 2277 2278 Type *IndexTy = (*I)->getType(); 2279 Type *NewIndexType = 2280 IndexTy->isVectorTy() 2281 ? VectorType::get(NewScalarIndexTy, 2282 cast<VectorType>(IndexTy)->getElementCount()) 2283 : NewScalarIndexTy; 2284 2285 // If the element type has zero size then any index over it is equivalent 2286 // to an index of zero, so replace it with zero if it is not zero already. 2287 Type *EltTy = GTI.getIndexedType(); 2288 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 2289 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 2290 *I = Constant::getNullValue(NewIndexType); 2291 MadeChange = true; 2292 } 2293 2294 if (IndexTy != NewIndexType) { 2295 // If we are using a wider index than needed for this platform, shrink 2296 // it to what we need. If narrower, sign-extend it to what we need. 2297 // This explicit cast can make subsequent optimizations more obvious. 2298 *I = Builder.CreateIntCast(*I, NewIndexType, true); 2299 MadeChange = true; 2300 } 2301 } 2302 if (MadeChange) 2303 return &GEP; 2304 2305 // Check to see if the inputs to the PHI node are getelementptr instructions. 2306 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 2307 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 2308 if (!Op1) 2309 return nullptr; 2310 2311 // Don't fold a GEP into itself through a PHI node. This can only happen 2312 // through the back-edge of a loop. Folding a GEP into itself means that 2313 // the value of the previous iteration needs to be stored in the meantime, 2314 // thus requiring an additional register variable to be live, but not 2315 // actually achieving anything (the GEP still needs to be executed once per 2316 // loop iteration). 2317 if (Op1 == &GEP) 2318 return nullptr; 2319 2320 int DI = -1; 2321 2322 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 2323 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 2324 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() || 2325 Op1->getSourceElementType() != Op2->getSourceElementType()) 2326 return nullptr; 2327 2328 // As for Op1 above, don't try to fold a GEP into itself. 2329 if (Op2 == &GEP) 2330 return nullptr; 2331 2332 // Keep track of the type as we walk the GEP. 2333 Type *CurTy = nullptr; 2334 2335 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 2336 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 2337 return nullptr; 2338 2339 if (Op1->getOperand(J) != Op2->getOperand(J)) { 2340 if (DI == -1) { 2341 // We have not seen any differences yet in the GEPs feeding the 2342 // PHI yet, so we record this one if it is allowed to be a 2343 // variable. 2344 2345 // The first two arguments can vary for any GEP, the rest have to be 2346 // static for struct slots 2347 if (J > 1) { 2348 assert(CurTy && "No current type?"); 2349 if (CurTy->isStructTy()) 2350 return nullptr; 2351 } 2352 2353 DI = J; 2354 } else { 2355 // The GEP is different by more than one input. While this could be 2356 // extended to support GEPs that vary by more than one variable it 2357 // doesn't make sense since it greatly increases the complexity and 2358 // would result in an R+R+R addressing mode which no backend 2359 // directly supports and would need to be broken into several 2360 // simpler instructions anyway. 2361 return nullptr; 2362 } 2363 } 2364 2365 // Sink down a layer of the type for the next iteration. 2366 if (J > 0) { 2367 if (J == 1) { 2368 CurTy = Op1->getSourceElementType(); 2369 } else { 2370 CurTy = 2371 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 2372 } 2373 } 2374 } 2375 } 2376 2377 // If not all GEPs are identical we'll have to create a new PHI node. 2378 // Check that the old PHI node has only one use so that it will get 2379 // removed. 2380 if (DI != -1 && !PN->hasOneUse()) 2381 return nullptr; 2382 2383 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 2384 if (DI == -1) { 2385 // All the GEPs feeding the PHI are identical. Clone one down into our 2386 // BB so that it can be merged with the current GEP. 2387 } else { 2388 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 2389 // into the current block so it can be merged, and create a new PHI to 2390 // set that index. 2391 PHINode *NewPN; 2392 { 2393 IRBuilderBase::InsertPointGuard Guard(Builder); 2394 Builder.SetInsertPoint(PN); 2395 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 2396 PN->getNumOperands()); 2397 } 2398 2399 for (auto &I : PN->operands()) 2400 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 2401 PN->getIncomingBlock(I)); 2402 2403 NewGEP->setOperand(DI, NewPN); 2404 } 2405 2406 GEP.getParent()->getInstList().insert( 2407 GEP.getParent()->getFirstInsertionPt(), NewGEP); 2408 replaceOperand(GEP, 0, NewGEP); 2409 PtrOp = NewGEP; 2410 } 2411 2412 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) 2413 if (Instruction *I = visitGEPOfGEP(GEP, Src)) 2414 return I; 2415 2416 // Skip if GEP source element type is scalable. The type alloc size is unknown 2417 // at compile-time. 2418 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { 2419 unsigned AS = GEP.getPointerAddressSpace(); 2420 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 2421 DL.getIndexSizeInBits(AS)) { 2422 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2423 2424 bool Matched = false; 2425 uint64_t C; 2426 Value *V = nullptr; 2427 if (TyAllocSize == 1) { 2428 V = GEP.getOperand(1); 2429 Matched = true; 2430 } else if (match(GEP.getOperand(1), 2431 m_AShr(m_Value(V), m_ConstantInt(C)))) { 2432 if (TyAllocSize == 1ULL << C) 2433 Matched = true; 2434 } else if (match(GEP.getOperand(1), 2435 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 2436 if (TyAllocSize == C) 2437 Matched = true; 2438 } 2439 2440 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but 2441 // only if both point to the same underlying object (otherwise provenance 2442 // is not necessarily retained). 2443 Value *Y; 2444 Value *X = GEP.getOperand(0); 2445 if (Matched && 2446 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 2447 getUnderlyingObject(X) == getUnderlyingObject(Y)) 2448 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 2449 } 2450 } 2451 2452 // We do not handle pointer-vector geps here. 2453 if (GEPType->isVectorTy()) 2454 return nullptr; 2455 2456 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 2457 Value *StrippedPtr = PtrOp->stripPointerCasts(); 2458 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 2459 2460 // TODO: The basic approach of these folds is not compatible with opaque 2461 // pointers, because we can't use bitcasts as a hint for a desirable GEP 2462 // type. Instead, we should perform canonicalization directly on the GEP 2463 // type. For now, skip these. 2464 if (StrippedPtr != PtrOp && !StrippedPtrTy->isOpaque()) { 2465 bool HasZeroPointerIndex = false; 2466 Type *StrippedPtrEltTy = StrippedPtrTy->getNonOpaquePointerElementType(); 2467 2468 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 2469 HasZeroPointerIndex = C->isZero(); 2470 2471 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2472 // into : GEP [10 x i8]* X, i32 0, ... 2473 // 2474 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2475 // into : GEP i8* X, ... 2476 // 2477 // This occurs when the program declares an array extern like "int X[];" 2478 if (HasZeroPointerIndex) { 2479 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2480 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2481 if (CATy->getElementType() == StrippedPtrEltTy) { 2482 // -> GEP i8* X, ... 2483 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices())); 2484 GetElementPtrInst *Res = GetElementPtrInst::Create( 2485 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2486 Res->setIsInBounds(GEP.isInBounds()); 2487 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2488 return Res; 2489 // Insert Res, and create an addrspacecast. 2490 // e.g., 2491 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2492 // -> 2493 // %0 = GEP i8 addrspace(1)* X, ... 2494 // addrspacecast i8 addrspace(1)* %0 to i8* 2495 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2496 } 2497 2498 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2499 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2500 if (CATy->getElementType() == XATy->getElementType()) { 2501 // -> GEP [10 x i8]* X, i32 0, ... 2502 // At this point, we know that the cast source type is a pointer 2503 // to an array of the same type as the destination pointer 2504 // array. Because the array type is never stepped over (there 2505 // is a leading zero) we can fold the cast into this GEP. 2506 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2507 GEP.setSourceElementType(XATy); 2508 return replaceOperand(GEP, 0, StrippedPtr); 2509 } 2510 // Cannot replace the base pointer directly because StrippedPtr's 2511 // address space is different. Instead, create a new GEP followed by 2512 // an addrspacecast. 2513 // e.g., 2514 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2515 // i32 0, ... 2516 // -> 2517 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2518 // addrspacecast i8 addrspace(1)* %0 to i8* 2519 SmallVector<Value *, 8> Idx(GEP.indices()); 2520 Value *NewGEP = 2521 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2522 GEP.getName(), GEP.isInBounds()); 2523 return new AddrSpaceCastInst(NewGEP, GEPType); 2524 } 2525 } 2526 } 2527 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) { 2528 // Skip if GEP source element type is scalable. The type alloc size is 2529 // unknown at compile-time. 2530 // Transform things like: %t = getelementptr i32* 2531 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2 2532 // x i32]* %str, i32 0, i32 %V; bitcast 2533 if (StrippedPtrEltTy->isArrayTy() && 2534 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2535 DL.getTypeAllocSize(GEPEltType)) { 2536 Type *IdxType = DL.getIndexType(GEPType); 2537 Value *Idx[2] = {Constant::getNullValue(IdxType), GEP.getOperand(1)}; 2538 Value *NewGEP = Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2539 GEP.getName(), GEP.isInBounds()); 2540 2541 // V and GEP are both pointer types --> BitCast 2542 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2543 } 2544 2545 // Transform things like: 2546 // %V = mul i64 %N, 4 2547 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2548 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2549 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2550 // Check that changing the type amounts to dividing the index by a scale 2551 // factor. 2552 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2553 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize(); 2554 if (ResSize && SrcSize % ResSize == 0) { 2555 Value *Idx = GEP.getOperand(1); 2556 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2557 uint64_t Scale = SrcSize / ResSize; 2558 2559 // Earlier transforms ensure that the index has the right type 2560 // according to Data Layout, which considerably simplifies the 2561 // logic by eliminating implicit casts. 2562 assert(Idx->getType() == DL.getIndexType(GEPType) && 2563 "Index type does not match the Data Layout preferences"); 2564 2565 bool NSW; 2566 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2567 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2568 // If the multiplication NewIdx * Scale may overflow then the new 2569 // GEP may not be "inbounds". 2570 Value *NewGEP = 2571 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2572 GEP.getName(), GEP.isInBounds() && NSW); 2573 2574 // The NewGEP must be pointer typed, so must the old one -> BitCast 2575 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2576 GEPType); 2577 } 2578 } 2579 } 2580 2581 // Similarly, transform things like: 2582 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2583 // (where tmp = 8*tmp2) into: 2584 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2585 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2586 StrippedPtrEltTy->isArrayTy()) { 2587 // Check that changing to the array element type amounts to dividing the 2588 // index by a scale factor. 2589 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2590 uint64_t ArrayEltSize = 2591 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) 2592 .getFixedSize(); 2593 if (ResSize && ArrayEltSize % ResSize == 0) { 2594 Value *Idx = GEP.getOperand(1); 2595 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2596 uint64_t Scale = ArrayEltSize / ResSize; 2597 2598 // Earlier transforms ensure that the index has the right type 2599 // according to the Data Layout, which considerably simplifies 2600 // the logic by eliminating implicit casts. 2601 assert(Idx->getType() == DL.getIndexType(GEPType) && 2602 "Index type does not match the Data Layout preferences"); 2603 2604 bool NSW; 2605 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2606 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2607 // If the multiplication NewIdx * Scale may overflow then the new 2608 // GEP may not be "inbounds". 2609 Type *IndTy = DL.getIndexType(GEPType); 2610 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2611 2612 Value *NewGEP = 2613 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2614 GEP.getName(), GEP.isInBounds() && NSW); 2615 // The NewGEP must be pointer typed, so must the old one -> BitCast 2616 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2617 GEPType); 2618 } 2619 } 2620 } 2621 } 2622 } 2623 2624 // addrspacecast between types is canonicalized as a bitcast, then an 2625 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2626 // through the addrspacecast. 2627 Value *ASCStrippedPtrOp = PtrOp; 2628 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2629 // X = bitcast A addrspace(1)* to B addrspace(1)* 2630 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2631 // Z = gep Y, <...constant indices...> 2632 // Into an addrspacecasted GEP of the struct. 2633 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2634 ASCStrippedPtrOp = BC; 2635 } 2636 2637 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) 2638 if (Instruction *I = visitGEPOfBitcast(BCI, GEP)) 2639 return I; 2640 2641 if (!GEP.isInBounds()) { 2642 unsigned IdxWidth = 2643 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2644 APInt BasePtrOffset(IdxWidth, 0); 2645 Value *UnderlyingPtrOp = 2646 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2647 BasePtrOffset); 2648 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2649 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2650 BasePtrOffset.isNonNegative()) { 2651 APInt AllocSize( 2652 IdxWidth, 2653 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize()); 2654 if (BasePtrOffset.ule(AllocSize)) { 2655 return GetElementPtrInst::CreateInBounds( 2656 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName()); 2657 } 2658 } 2659 } 2660 } 2661 2662 if (Instruction *R = foldSelectGEP(GEP, Builder)) 2663 return R; 2664 2665 return nullptr; 2666 } 2667 2668 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, 2669 Instruction *AI) { 2670 if (isa<ConstantPointerNull>(V)) 2671 return true; 2672 if (auto *LI = dyn_cast<LoadInst>(V)) 2673 return isa<GlobalVariable>(LI->getPointerOperand()); 2674 // Two distinct allocations will never be equal. 2675 return isAllocLikeFn(V, &TLI) && V != AI; 2676 } 2677 2678 /// Given a call CB which uses an address UsedV, return true if we can prove the 2679 /// call's only possible effect is storing to V. 2680 static bool isRemovableWrite(CallBase &CB, Value *UsedV, 2681 const TargetLibraryInfo &TLI) { 2682 if (!CB.use_empty()) 2683 // TODO: add recursion if returned attribute is present 2684 return false; 2685 2686 if (CB.isTerminator()) 2687 // TODO: remove implementation restriction 2688 return false; 2689 2690 if (!CB.willReturn() || !CB.doesNotThrow()) 2691 return false; 2692 2693 // If the only possible side effect of the call is writing to the alloca, 2694 // and the result isn't used, we can safely remove any reads implied by the 2695 // call including those which might read the alloca itself. 2696 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI); 2697 return Dest && Dest->Ptr == UsedV; 2698 } 2699 2700 static bool isAllocSiteRemovable(Instruction *AI, 2701 SmallVectorImpl<WeakTrackingVH> &Users, 2702 const TargetLibraryInfo &TLI) { 2703 SmallVector<Instruction*, 4> Worklist; 2704 const Optional<StringRef> Family = getAllocationFamily(AI, &TLI); 2705 Worklist.push_back(AI); 2706 2707 do { 2708 Instruction *PI = Worklist.pop_back_val(); 2709 for (User *U : PI->users()) { 2710 Instruction *I = cast<Instruction>(U); 2711 switch (I->getOpcode()) { 2712 default: 2713 // Give up the moment we see something we can't handle. 2714 return false; 2715 2716 case Instruction::AddrSpaceCast: 2717 case Instruction::BitCast: 2718 case Instruction::GetElementPtr: 2719 Users.emplace_back(I); 2720 Worklist.push_back(I); 2721 continue; 2722 2723 case Instruction::ICmp: { 2724 ICmpInst *ICI = cast<ICmpInst>(I); 2725 // We can fold eq/ne comparisons with null to false/true, respectively. 2726 // We also fold comparisons in some conditions provided the alloc has 2727 // not escaped (see isNeverEqualToUnescapedAlloc). 2728 if (!ICI->isEquality()) 2729 return false; 2730 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2731 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2732 return false; 2733 Users.emplace_back(I); 2734 continue; 2735 } 2736 2737 case Instruction::Call: 2738 // Ignore no-op and store intrinsics. 2739 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2740 switch (II->getIntrinsicID()) { 2741 default: 2742 return false; 2743 2744 case Intrinsic::memmove: 2745 case Intrinsic::memcpy: 2746 case Intrinsic::memset: { 2747 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2748 if (MI->isVolatile() || MI->getRawDest() != PI) 2749 return false; 2750 LLVM_FALLTHROUGH; 2751 } 2752 case Intrinsic::assume: 2753 case Intrinsic::invariant_start: 2754 case Intrinsic::invariant_end: 2755 case Intrinsic::lifetime_start: 2756 case Intrinsic::lifetime_end: 2757 case Intrinsic::objectsize: 2758 Users.emplace_back(I); 2759 continue; 2760 case Intrinsic::launder_invariant_group: 2761 case Intrinsic::strip_invariant_group: 2762 Users.emplace_back(I); 2763 Worklist.push_back(I); 2764 continue; 2765 } 2766 } 2767 2768 if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) { 2769 Users.emplace_back(I); 2770 continue; 2771 } 2772 2773 if (isFreeCall(I, &TLI) && getAllocationFamily(I, &TLI) == Family) { 2774 assert(Family); 2775 Users.emplace_back(I); 2776 continue; 2777 } 2778 2779 if (isReallocLikeFn(I, &TLI) && 2780 getAllocationFamily(I, &TLI) == Family) { 2781 assert(Family); 2782 Users.emplace_back(I); 2783 Worklist.push_back(I); 2784 continue; 2785 } 2786 2787 return false; 2788 2789 case Instruction::Store: { 2790 StoreInst *SI = cast<StoreInst>(I); 2791 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2792 return false; 2793 Users.emplace_back(I); 2794 continue; 2795 } 2796 } 2797 llvm_unreachable("missing a return?"); 2798 } 2799 } while (!Worklist.empty()); 2800 return true; 2801 } 2802 2803 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 2804 assert(isa<AllocaInst>(MI) || isAllocRemovable(&cast<CallBase>(MI), &TLI)); 2805 2806 // If we have a malloc call which is only used in any amount of comparisons to 2807 // null and free calls, delete the calls and replace the comparisons with true 2808 // or false as appropriate. 2809 2810 // This is based on the principle that we can substitute our own allocation 2811 // function (which will never return null) rather than knowledge of the 2812 // specific function being called. In some sense this can change the permitted 2813 // outputs of a program (when we convert a malloc to an alloca, the fact that 2814 // the allocation is now on the stack is potentially visible, for example), 2815 // but we believe in a permissible manner. 2816 SmallVector<WeakTrackingVH, 64> Users; 2817 2818 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2819 // before each store. 2820 SmallVector<DbgVariableIntrinsic *, 8> DVIs; 2821 std::unique_ptr<DIBuilder> DIB; 2822 if (isa<AllocaInst>(MI)) { 2823 findDbgUsers(DVIs, &MI); 2824 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2825 } 2826 2827 if (isAllocSiteRemovable(&MI, Users, TLI)) { 2828 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2829 // Lowering all @llvm.objectsize calls first because they may 2830 // use a bitcast/GEP of the alloca we are removing. 2831 if (!Users[i]) 2832 continue; 2833 2834 Instruction *I = cast<Instruction>(&*Users[i]); 2835 2836 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2837 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2838 Value *Result = 2839 lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/true); 2840 replaceInstUsesWith(*I, Result); 2841 eraseInstFromFunction(*I); 2842 Users[i] = nullptr; // Skip examining in the next loop. 2843 } 2844 } 2845 } 2846 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2847 if (!Users[i]) 2848 continue; 2849 2850 Instruction *I = cast<Instruction>(&*Users[i]); 2851 2852 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2853 replaceInstUsesWith(*C, 2854 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2855 C->isFalseWhenEqual())); 2856 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2857 for (auto *DVI : DVIs) 2858 if (DVI->isAddressOfVariable()) 2859 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 2860 } else { 2861 // Casts, GEP, or anything else: we're about to delete this instruction, 2862 // so it can not have any valid uses. 2863 replaceInstUsesWith(*I, PoisonValue::get(I->getType())); 2864 } 2865 eraseInstFromFunction(*I); 2866 } 2867 2868 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2869 // Replace invoke with a NOP intrinsic to maintain the original CFG 2870 Module *M = II->getModule(); 2871 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2872 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2873 None, "", II->getParent()); 2874 } 2875 2876 // Remove debug intrinsics which describe the value contained within the 2877 // alloca. In addition to removing dbg.{declare,addr} which simply point to 2878 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 2879 // 2880 // ``` 2881 // define void @foo(i32 %0) { 2882 // %a = alloca i32 ; Deleted. 2883 // store i32 %0, i32* %a 2884 // dbg.value(i32 %0, "arg0") ; Not deleted. 2885 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 2886 // call void @trivially_inlinable_no_op(i32* %a) 2887 // ret void 2888 // } 2889 // ``` 2890 // 2891 // This may not be required if we stop describing the contents of allocas 2892 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 2893 // the LowerDbgDeclare utility. 2894 // 2895 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 2896 // "arg0" dbg.value may be stale after the call. However, failing to remove 2897 // the DW_OP_deref dbg.value causes large gaps in location coverage. 2898 for (auto *DVI : DVIs) 2899 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 2900 DVI->eraseFromParent(); 2901 2902 return eraseInstFromFunction(MI); 2903 } 2904 return nullptr; 2905 } 2906 2907 /// Move the call to free before a NULL test. 2908 /// 2909 /// Check if this free is accessed after its argument has been test 2910 /// against NULL (property 0). 2911 /// If yes, it is legal to move this call in its predecessor block. 2912 /// 2913 /// The move is performed only if the block containing the call to free 2914 /// will be removed, i.e.: 2915 /// 1. it has only one predecessor P, and P has two successors 2916 /// 2. it contains the call, noops, and an unconditional branch 2917 /// 3. its successor is the same as its predecessor's successor 2918 /// 2919 /// The profitability is out-of concern here and this function should 2920 /// be called only if the caller knows this transformation would be 2921 /// profitable (e.g., for code size). 2922 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2923 const DataLayout &DL) { 2924 Value *Op = FI.getArgOperand(0); 2925 BasicBlock *FreeInstrBB = FI.getParent(); 2926 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2927 2928 // Validate part of constraint #1: Only one predecessor 2929 // FIXME: We can extend the number of predecessor, but in that case, we 2930 // would duplicate the call to free in each predecessor and it may 2931 // not be profitable even for code size. 2932 if (!PredBB) 2933 return nullptr; 2934 2935 // Validate constraint #2: Does this block contains only the call to 2936 // free, noops, and an unconditional branch? 2937 BasicBlock *SuccBB; 2938 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2939 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2940 return nullptr; 2941 2942 // If there are only 2 instructions in the block, at this point, 2943 // this is the call to free and unconditional. 2944 // If there are more than 2 instructions, check that they are noops 2945 // i.e., they won't hurt the performance of the generated code. 2946 if (FreeInstrBB->size() != 2) { 2947 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 2948 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2949 continue; 2950 auto *Cast = dyn_cast<CastInst>(&Inst); 2951 if (!Cast || !Cast->isNoopCast(DL)) 2952 return nullptr; 2953 } 2954 } 2955 // Validate the rest of constraint #1 by matching on the pred branch. 2956 Instruction *TI = PredBB->getTerminator(); 2957 BasicBlock *TrueBB, *FalseBB; 2958 ICmpInst::Predicate Pred; 2959 if (!match(TI, m_Br(m_ICmp(Pred, 2960 m_CombineOr(m_Specific(Op), 2961 m_Specific(Op->stripPointerCasts())), 2962 m_Zero()), 2963 TrueBB, FalseBB))) 2964 return nullptr; 2965 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2966 return nullptr; 2967 2968 // Validate constraint #3: Ensure the null case just falls through. 2969 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2970 return nullptr; 2971 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2972 "Broken CFG: missing edge from predecessor to successor"); 2973 2974 // At this point, we know that everything in FreeInstrBB can be moved 2975 // before TI. 2976 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) { 2977 if (&Instr == FreeInstrBBTerminator) 2978 break; 2979 Instr.moveBefore(TI); 2980 } 2981 assert(FreeInstrBB->size() == 1 && 2982 "Only the branch instruction should remain"); 2983 2984 // Now that we've moved the call to free before the NULL check, we have to 2985 // remove any attributes on its parameter that imply it's non-null, because 2986 // those attributes might have only been valid because of the NULL check, and 2987 // we can get miscompiles if we keep them. This is conservative if non-null is 2988 // also implied by something other than the NULL check, but it's guaranteed to 2989 // be correct, and the conservativeness won't matter in practice, since the 2990 // attributes are irrelevant for the call to free itself and the pointer 2991 // shouldn't be used after the call. 2992 AttributeList Attrs = FI.getAttributes(); 2993 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull); 2994 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable); 2995 if (Dereferenceable.isValid()) { 2996 uint64_t Bytes = Dereferenceable.getDereferenceableBytes(); 2997 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, 2998 Attribute::Dereferenceable); 2999 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes); 3000 } 3001 FI.setAttributes(Attrs); 3002 3003 return &FI; 3004 } 3005 3006 Instruction *InstCombinerImpl::visitFree(CallInst &FI) { 3007 Value *Op = FI.getArgOperand(0); 3008 3009 // free undef -> unreachable. 3010 if (isa<UndefValue>(Op)) { 3011 // Leave a marker since we can't modify the CFG here. 3012 CreateNonTerminatorUnreachable(&FI); 3013 return eraseInstFromFunction(FI); 3014 } 3015 3016 // If we have 'free null' delete the instruction. This can happen in stl code 3017 // when lots of inlining happens. 3018 if (isa<ConstantPointerNull>(Op)) 3019 return eraseInstFromFunction(FI); 3020 3021 // If we had free(realloc(...)) with no intervening uses, then eliminate the 3022 // realloc() entirely. 3023 if (CallInst *CI = dyn_cast<CallInst>(Op)) { 3024 if (CI->hasOneUse() && isReallocLikeFn(CI, &TLI)) { 3025 return eraseInstFromFunction( 3026 *replaceInstUsesWith(*CI, CI->getOperand(0))); 3027 } 3028 } 3029 3030 // If we optimize for code size, try to move the call to free before the null 3031 // test so that simplify cfg can remove the empty block and dead code 3032 // elimination the branch. I.e., helps to turn something like: 3033 // if (foo) free(foo); 3034 // into 3035 // free(foo); 3036 // 3037 // Note that we can only do this for 'free' and not for any flavor of 3038 // 'operator delete'; there is no 'operator delete' symbol for which we are 3039 // permitted to invent a call, even if we're passing in a null pointer. 3040 if (MinimizeSize) { 3041 LibFunc Func; 3042 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 3043 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 3044 return I; 3045 } 3046 3047 return nullptr; 3048 } 3049 3050 static bool isMustTailCall(Value *V) { 3051 if (auto *CI = dyn_cast<CallInst>(V)) 3052 return CI->isMustTailCall(); 3053 return false; 3054 } 3055 3056 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 3057 if (RI.getNumOperands() == 0) // ret void 3058 return nullptr; 3059 3060 Value *ResultOp = RI.getOperand(0); 3061 Type *VTy = ResultOp->getType(); 3062 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp)) 3063 return nullptr; 3064 3065 // Don't replace result of musttail calls. 3066 if (isMustTailCall(ResultOp)) 3067 return nullptr; 3068 3069 // There might be assume intrinsics dominating this return that completely 3070 // determine the value. If so, constant fold it. 3071 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 3072 if (Known.isConstant()) 3073 return replaceOperand(RI, 0, 3074 Constant::getIntegerValue(VTy, Known.getConstant())); 3075 3076 return nullptr; 3077 } 3078 3079 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! 3080 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 3081 // Try to remove the previous instruction if it must lead to unreachable. 3082 // This includes instructions like stores and "llvm.assume" that may not get 3083 // removed by simple dead code elimination. 3084 while (Instruction *Prev = I.getPrevNonDebugInstruction()) { 3085 // While we theoretically can erase EH, that would result in a block that 3086 // used to start with an EH no longer starting with EH, which is invalid. 3087 // To make it valid, we'd need to fixup predecessors to no longer refer to 3088 // this block, but that changes CFG, which is not allowed in InstCombine. 3089 if (Prev->isEHPad()) 3090 return nullptr; // Can not drop any more instructions. We're done here. 3091 3092 if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) 3093 return nullptr; // Can not drop any more instructions. We're done here. 3094 // Otherwise, this instruction can be freely erased, 3095 // even if it is not side-effect free. 3096 3097 // A value may still have uses before we process it here (for example, in 3098 // another unreachable block), so convert those to poison. 3099 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); 3100 eraseInstFromFunction(*Prev); 3101 } 3102 assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty."); 3103 // FIXME: recurse into unconditional predecessors? 3104 return nullptr; 3105 } 3106 3107 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 3108 assert(BI.isUnconditional() && "Only for unconditional branches."); 3109 3110 // If this store is the second-to-last instruction in the basic block 3111 // (excluding debug info and bitcasts of pointers) and if the block ends with 3112 // an unconditional branch, try to move the store to the successor block. 3113 3114 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 3115 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 3116 return BBI->isDebugOrPseudoInst() || 3117 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 3118 }; 3119 3120 BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 3121 do { 3122 if (BBI != FirstInstr) 3123 --BBI; 3124 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 3125 3126 return dyn_cast<StoreInst>(BBI); 3127 }; 3128 3129 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 3130 if (mergeStoreIntoSuccessor(*SI)) 3131 return &BI; 3132 3133 return nullptr; 3134 } 3135 3136 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 3137 if (BI.isUnconditional()) 3138 return visitUnconditionalBranchInst(BI); 3139 3140 // Change br (not X), label True, label False to: br X, label False, True 3141 Value *X = nullptr; 3142 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 3143 !isa<Constant>(X)) { 3144 // Swap Destinations and condition... 3145 BI.swapSuccessors(); 3146 return replaceOperand(BI, 0, X); 3147 } 3148 3149 // If the condition is irrelevant, remove the use so that other 3150 // transforms on the condition become more effective. 3151 if (!isa<ConstantInt>(BI.getCondition()) && 3152 BI.getSuccessor(0) == BI.getSuccessor(1)) 3153 return replaceOperand( 3154 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType())); 3155 3156 // Canonicalize, for example, fcmp_one -> fcmp_oeq. 3157 CmpInst::Predicate Pred; 3158 if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())), 3159 m_BasicBlock(), m_BasicBlock())) && 3160 !isCanonicalPredicate(Pred)) { 3161 // Swap destinations and condition. 3162 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 3163 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 3164 BI.swapSuccessors(); 3165 Worklist.push(Cond); 3166 return &BI; 3167 } 3168 3169 return nullptr; 3170 } 3171 3172 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 3173 Value *Cond = SI.getCondition(); 3174 Value *Op0; 3175 ConstantInt *AddRHS; 3176 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 3177 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 3178 for (auto Case : SI.cases()) { 3179 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 3180 assert(isa<ConstantInt>(NewCase) && 3181 "Result of expression should be constant"); 3182 Case.setValue(cast<ConstantInt>(NewCase)); 3183 } 3184 return replaceOperand(SI, 0, Op0); 3185 } 3186 3187 KnownBits Known = computeKnownBits(Cond, 0, &SI); 3188 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 3189 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 3190 3191 // Compute the number of leading bits we can ignore. 3192 // TODO: A better way to determine this would use ComputeNumSignBits(). 3193 for (auto &C : SI.cases()) { 3194 LeadingKnownZeros = std::min( 3195 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 3196 LeadingKnownOnes = std::min( 3197 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 3198 } 3199 3200 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 3201 3202 // Shrink the condition operand if the new type is smaller than the old type. 3203 // But do not shrink to a non-standard type, because backend can't generate 3204 // good code for that yet. 3205 // TODO: We can make it aggressive again after fixing PR39569. 3206 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 3207 shouldChangeType(Known.getBitWidth(), NewWidth)) { 3208 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 3209 Builder.SetInsertPoint(&SI); 3210 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 3211 3212 for (auto Case : SI.cases()) { 3213 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3214 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3215 } 3216 return replaceOperand(SI, 0, NewCond); 3217 } 3218 3219 return nullptr; 3220 } 3221 3222 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 3223 Value *Agg = EV.getAggregateOperand(); 3224 3225 if (!EV.hasIndices()) 3226 return replaceInstUsesWith(EV, Agg); 3227 3228 if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(), 3229 SQ.getWithInstruction(&EV))) 3230 return replaceInstUsesWith(EV, V); 3231 3232 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 3233 // We're extracting from an insertvalue instruction, compare the indices 3234 const unsigned *exti, *exte, *insi, *inse; 3235 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 3236 exte = EV.idx_end(), inse = IV->idx_end(); 3237 exti != exte && insi != inse; 3238 ++exti, ++insi) { 3239 if (*insi != *exti) 3240 // The insert and extract both reference distinctly different elements. 3241 // This means the extract is not influenced by the insert, and we can 3242 // replace the aggregate operand of the extract with the aggregate 3243 // operand of the insert. i.e., replace 3244 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3245 // %E = extractvalue { i32, { i32 } } %I, 0 3246 // with 3247 // %E = extractvalue { i32, { i32 } } %A, 0 3248 return ExtractValueInst::Create(IV->getAggregateOperand(), 3249 EV.getIndices()); 3250 } 3251 if (exti == exte && insi == inse) 3252 // Both iterators are at the end: Index lists are identical. Replace 3253 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3254 // %C = extractvalue { i32, { i32 } } %B, 1, 0 3255 // with "i32 42" 3256 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 3257 if (exti == exte) { 3258 // The extract list is a prefix of the insert list. i.e. replace 3259 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3260 // %E = extractvalue { i32, { i32 } } %I, 1 3261 // with 3262 // %X = extractvalue { i32, { i32 } } %A, 1 3263 // %E = insertvalue { i32 } %X, i32 42, 0 3264 // by switching the order of the insert and extract (though the 3265 // insertvalue should be left in, since it may have other uses). 3266 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 3267 EV.getIndices()); 3268 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 3269 makeArrayRef(insi, inse)); 3270 } 3271 if (insi == inse) 3272 // The insert list is a prefix of the extract list 3273 // We can simply remove the common indices from the extract and make it 3274 // operate on the inserted value instead of the insertvalue result. 3275 // i.e., replace 3276 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3277 // %E = extractvalue { i32, { i32 } } %I, 1, 0 3278 // with 3279 // %E extractvalue { i32 } { i32 42 }, 0 3280 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 3281 makeArrayRef(exti, exte)); 3282 } 3283 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 3284 // extractvalue (any_mul_with_overflow X, -1), 0 --> -X 3285 Intrinsic::ID OvID = WO->getIntrinsicID(); 3286 if (*EV.idx_begin() == 0 && 3287 (OvID == Intrinsic::smul_with_overflow || 3288 OvID == Intrinsic::umul_with_overflow) && 3289 match(WO->getArgOperand(1), m_AllOnes())) { 3290 return BinaryOperator::CreateNeg(WO->getArgOperand(0)); 3291 } 3292 3293 // We're extracting from an overflow intrinsic, see if we're the only user, 3294 // which allows us to simplify multiple result intrinsics to simpler 3295 // things that just get one value. 3296 if (WO->hasOneUse()) { 3297 // Check if we're grabbing only the result of a 'with overflow' intrinsic 3298 // and replace it with a traditional binary instruction. 3299 if (*EV.idx_begin() == 0) { 3300 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 3301 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 3302 // Replace the old instruction's uses with poison. 3303 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); 3304 eraseInstFromFunction(*WO); 3305 return BinaryOperator::Create(BinOp, LHS, RHS); 3306 } 3307 3308 assert(*EV.idx_begin() == 1 && 3309 "unexpected extract index for overflow inst"); 3310 3311 // If only the overflow result is used, and the right hand side is a 3312 // constant (or constant splat), we can remove the intrinsic by directly 3313 // checking for overflow. 3314 const APInt *C; 3315 if (match(WO->getRHS(), m_APInt(C))) { 3316 // Compute the no-wrap range for LHS given RHS=C, then construct an 3317 // equivalent icmp, potentially using an offset. 3318 ConstantRange NWR = 3319 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 3320 WO->getNoWrapKind()); 3321 3322 CmpInst::Predicate Pred; 3323 APInt NewRHSC, Offset; 3324 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 3325 auto *OpTy = WO->getRHS()->getType(); 3326 auto *NewLHS = WO->getLHS(); 3327 if (Offset != 0) 3328 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset)); 3329 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, 3330 ConstantInt::get(OpTy, NewRHSC)); 3331 } 3332 } 3333 } 3334 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 3335 // If the (non-volatile) load only has one use, we can rewrite this to a 3336 // load from a GEP. This reduces the size of the load. If a load is used 3337 // only by extractvalue instructions then this either must have been 3338 // optimized before, or it is a struct with padding, in which case we 3339 // don't want to do the transformation as it loses padding knowledge. 3340 if (L->isSimple() && L->hasOneUse()) { 3341 // extractvalue has integer indices, getelementptr has Value*s. Convert. 3342 SmallVector<Value*, 4> Indices; 3343 // Prefix an i32 0 since we need the first element. 3344 Indices.push_back(Builder.getInt32(0)); 3345 for (unsigned Idx : EV.indices()) 3346 Indices.push_back(Builder.getInt32(Idx)); 3347 3348 // We need to insert these at the location of the old load, not at that of 3349 // the extractvalue. 3350 Builder.SetInsertPoint(L); 3351 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 3352 L->getPointerOperand(), Indices); 3353 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 3354 // Whatever aliasing information we had for the orignal load must also 3355 // hold for the smaller load, so propagate the annotations. 3356 NL->setAAMetadata(L->getAAMetadata()); 3357 // Returning the load directly will cause the main loop to insert it in 3358 // the wrong spot, so use replaceInstUsesWith(). 3359 return replaceInstUsesWith(EV, NL); 3360 } 3361 // We could simplify extracts from other values. Note that nested extracts may 3362 // already be simplified implicitly by the above: extract (extract (insert) ) 3363 // will be translated into extract ( insert ( extract ) ) first and then just 3364 // the value inserted, if appropriate. Similarly for extracts from single-use 3365 // loads: extract (extract (load)) will be translated to extract (load (gep)) 3366 // and if again single-use then via load (gep (gep)) to load (gep). 3367 // However, double extracts from e.g. function arguments or return values 3368 // aren't handled yet. 3369 return nullptr; 3370 } 3371 3372 /// Return 'true' if the given typeinfo will match anything. 3373 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 3374 switch (Personality) { 3375 case EHPersonality::GNU_C: 3376 case EHPersonality::GNU_C_SjLj: 3377 case EHPersonality::Rust: 3378 // The GCC C EH and Rust personality only exists to support cleanups, so 3379 // it's not clear what the semantics of catch clauses are. 3380 return false; 3381 case EHPersonality::Unknown: 3382 return false; 3383 case EHPersonality::GNU_Ada: 3384 // While __gnat_all_others_value will match any Ada exception, it doesn't 3385 // match foreign exceptions (or didn't, before gcc-4.7). 3386 return false; 3387 case EHPersonality::GNU_CXX: 3388 case EHPersonality::GNU_CXX_SjLj: 3389 case EHPersonality::GNU_ObjC: 3390 case EHPersonality::MSVC_X86SEH: 3391 case EHPersonality::MSVC_TableSEH: 3392 case EHPersonality::MSVC_CXX: 3393 case EHPersonality::CoreCLR: 3394 case EHPersonality::Wasm_CXX: 3395 case EHPersonality::XL_CXX: 3396 return TypeInfo->isNullValue(); 3397 } 3398 llvm_unreachable("invalid enum"); 3399 } 3400 3401 static bool shorter_filter(const Value *LHS, const Value *RHS) { 3402 return 3403 cast<ArrayType>(LHS->getType())->getNumElements() 3404 < 3405 cast<ArrayType>(RHS->getType())->getNumElements(); 3406 } 3407 3408 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 3409 // The logic here should be correct for any real-world personality function. 3410 // However if that turns out not to be true, the offending logic can always 3411 // be conditioned on the personality function, like the catch-all logic is. 3412 EHPersonality Personality = 3413 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 3414 3415 // Simplify the list of clauses, eg by removing repeated catch clauses 3416 // (these are often created by inlining). 3417 bool MakeNewInstruction = false; // If true, recreate using the following: 3418 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 3419 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 3420 3421 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 3422 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 3423 bool isLastClause = i + 1 == e; 3424 if (LI.isCatch(i)) { 3425 // A catch clause. 3426 Constant *CatchClause = LI.getClause(i); 3427 Constant *TypeInfo = CatchClause->stripPointerCasts(); 3428 3429 // If we already saw this clause, there is no point in having a second 3430 // copy of it. 3431 if (AlreadyCaught.insert(TypeInfo).second) { 3432 // This catch clause was not already seen. 3433 NewClauses.push_back(CatchClause); 3434 } else { 3435 // Repeated catch clause - drop the redundant copy. 3436 MakeNewInstruction = true; 3437 } 3438 3439 // If this is a catch-all then there is no point in keeping any following 3440 // clauses or marking the landingpad as having a cleanup. 3441 if (isCatchAll(Personality, TypeInfo)) { 3442 if (!isLastClause) 3443 MakeNewInstruction = true; 3444 CleanupFlag = false; 3445 break; 3446 } 3447 } else { 3448 // A filter clause. If any of the filter elements were already caught 3449 // then they can be dropped from the filter. It is tempting to try to 3450 // exploit the filter further by saying that any typeinfo that does not 3451 // occur in the filter can't be caught later (and thus can be dropped). 3452 // However this would be wrong, since typeinfos can match without being 3453 // equal (for example if one represents a C++ class, and the other some 3454 // class derived from it). 3455 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 3456 Constant *FilterClause = LI.getClause(i); 3457 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 3458 unsigned NumTypeInfos = FilterType->getNumElements(); 3459 3460 // An empty filter catches everything, so there is no point in keeping any 3461 // following clauses or marking the landingpad as having a cleanup. By 3462 // dealing with this case here the following code is made a bit simpler. 3463 if (!NumTypeInfos) { 3464 NewClauses.push_back(FilterClause); 3465 if (!isLastClause) 3466 MakeNewInstruction = true; 3467 CleanupFlag = false; 3468 break; 3469 } 3470 3471 bool MakeNewFilter = false; // If true, make a new filter. 3472 SmallVector<Constant *, 16> NewFilterElts; // New elements. 3473 if (isa<ConstantAggregateZero>(FilterClause)) { 3474 // Not an empty filter - it contains at least one null typeinfo. 3475 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 3476 Constant *TypeInfo = 3477 Constant::getNullValue(FilterType->getElementType()); 3478 // If this typeinfo is a catch-all then the filter can never match. 3479 if (isCatchAll(Personality, TypeInfo)) { 3480 // Throw the filter away. 3481 MakeNewInstruction = true; 3482 continue; 3483 } 3484 3485 // There is no point in having multiple copies of this typeinfo, so 3486 // discard all but the first copy if there is more than one. 3487 NewFilterElts.push_back(TypeInfo); 3488 if (NumTypeInfos > 1) 3489 MakeNewFilter = true; 3490 } else { 3491 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 3492 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 3493 NewFilterElts.reserve(NumTypeInfos); 3494 3495 // Remove any filter elements that were already caught or that already 3496 // occurred in the filter. While there, see if any of the elements are 3497 // catch-alls. If so, the filter can be discarded. 3498 bool SawCatchAll = false; 3499 for (unsigned j = 0; j != NumTypeInfos; ++j) { 3500 Constant *Elt = Filter->getOperand(j); 3501 Constant *TypeInfo = Elt->stripPointerCasts(); 3502 if (isCatchAll(Personality, TypeInfo)) { 3503 // This element is a catch-all. Bail out, noting this fact. 3504 SawCatchAll = true; 3505 break; 3506 } 3507 3508 // Even if we've seen a type in a catch clause, we don't want to 3509 // remove it from the filter. An unexpected type handler may be 3510 // set up for a call site which throws an exception of the same 3511 // type caught. In order for the exception thrown by the unexpected 3512 // handler to propagate correctly, the filter must be correctly 3513 // described for the call site. 3514 // 3515 // Example: 3516 // 3517 // void unexpected() { throw 1;} 3518 // void foo() throw (int) { 3519 // std::set_unexpected(unexpected); 3520 // try { 3521 // throw 2.0; 3522 // } catch (int i) {} 3523 // } 3524 3525 // There is no point in having multiple copies of the same typeinfo in 3526 // a filter, so only add it if we didn't already. 3527 if (SeenInFilter.insert(TypeInfo).second) 3528 NewFilterElts.push_back(cast<Constant>(Elt)); 3529 } 3530 // A filter containing a catch-all cannot match anything by definition. 3531 if (SawCatchAll) { 3532 // Throw the filter away. 3533 MakeNewInstruction = true; 3534 continue; 3535 } 3536 3537 // If we dropped something from the filter, make a new one. 3538 if (NewFilterElts.size() < NumTypeInfos) 3539 MakeNewFilter = true; 3540 } 3541 if (MakeNewFilter) { 3542 FilterType = ArrayType::get(FilterType->getElementType(), 3543 NewFilterElts.size()); 3544 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 3545 MakeNewInstruction = true; 3546 } 3547 3548 NewClauses.push_back(FilterClause); 3549 3550 // If the new filter is empty then it will catch everything so there is 3551 // no point in keeping any following clauses or marking the landingpad 3552 // as having a cleanup. The case of the original filter being empty was 3553 // already handled above. 3554 if (MakeNewFilter && !NewFilterElts.size()) { 3555 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3556 CleanupFlag = false; 3557 break; 3558 } 3559 } 3560 } 3561 3562 // If several filters occur in a row then reorder them so that the shortest 3563 // filters come first (those with the smallest number of elements). This is 3564 // advantageous because shorter filters are more likely to match, speeding up 3565 // unwinding, but mostly because it increases the effectiveness of the other 3566 // filter optimizations below. 3567 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3568 unsigned j; 3569 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3570 for (j = i; j != e; ++j) 3571 if (!isa<ArrayType>(NewClauses[j]->getType())) 3572 break; 3573 3574 // Check whether the filters are already sorted by length. We need to know 3575 // if sorting them is actually going to do anything so that we only make a 3576 // new landingpad instruction if it does. 3577 for (unsigned k = i; k + 1 < j; ++k) 3578 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3579 // Not sorted, so sort the filters now. Doing an unstable sort would be 3580 // correct too but reordering filters pointlessly might confuse users. 3581 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3582 shorter_filter); 3583 MakeNewInstruction = true; 3584 break; 3585 } 3586 3587 // Look for the next batch of filters. 3588 i = j + 1; 3589 } 3590 3591 // If typeinfos matched if and only if equal, then the elements of a filter L 3592 // that occurs later than a filter F could be replaced by the intersection of 3593 // the elements of F and L. In reality two typeinfos can match without being 3594 // equal (for example if one represents a C++ class, and the other some class 3595 // derived from it) so it would be wrong to perform this transform in general. 3596 // However the transform is correct and useful if F is a subset of L. In that 3597 // case L can be replaced by F, and thus removed altogether since repeating a 3598 // filter is pointless. So here we look at all pairs of filters F and L where 3599 // L follows F in the list of clauses, and remove L if every element of F is 3600 // an element of L. This can occur when inlining C++ functions with exception 3601 // specifications. 3602 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3603 // Examine each filter in turn. 3604 Value *Filter = NewClauses[i]; 3605 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3606 if (!FTy) 3607 // Not a filter - skip it. 3608 continue; 3609 unsigned FElts = FTy->getNumElements(); 3610 // Examine each filter following this one. Doing this backwards means that 3611 // we don't have to worry about filters disappearing under us when removed. 3612 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3613 Value *LFilter = NewClauses[j]; 3614 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3615 if (!LTy) 3616 // Not a filter - skip it. 3617 continue; 3618 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3619 // an element of LFilter, then discard LFilter. 3620 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3621 // If Filter is empty then it is a subset of LFilter. 3622 if (!FElts) { 3623 // Discard LFilter. 3624 NewClauses.erase(J); 3625 MakeNewInstruction = true; 3626 // Move on to the next filter. 3627 continue; 3628 } 3629 unsigned LElts = LTy->getNumElements(); 3630 // If Filter is longer than LFilter then it cannot be a subset of it. 3631 if (FElts > LElts) 3632 // Move on to the next filter. 3633 continue; 3634 // At this point we know that LFilter has at least one element. 3635 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3636 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3637 // already know that Filter is not longer than LFilter). 3638 if (isa<ConstantAggregateZero>(Filter)) { 3639 assert(FElts <= LElts && "Should have handled this case earlier!"); 3640 // Discard LFilter. 3641 NewClauses.erase(J); 3642 MakeNewInstruction = true; 3643 } 3644 // Move on to the next filter. 3645 continue; 3646 } 3647 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3648 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3649 // Since Filter is non-empty and contains only zeros, it is a subset of 3650 // LFilter iff LFilter contains a zero. 3651 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3652 for (unsigned l = 0; l != LElts; ++l) 3653 if (LArray->getOperand(l)->isNullValue()) { 3654 // LFilter contains a zero - discard it. 3655 NewClauses.erase(J); 3656 MakeNewInstruction = true; 3657 break; 3658 } 3659 // Move on to the next filter. 3660 continue; 3661 } 3662 // At this point we know that both filters are ConstantArrays. Loop over 3663 // operands to see whether every element of Filter is also an element of 3664 // LFilter. Since filters tend to be short this is probably faster than 3665 // using a method that scales nicely. 3666 ConstantArray *FArray = cast<ConstantArray>(Filter); 3667 bool AllFound = true; 3668 for (unsigned f = 0; f != FElts; ++f) { 3669 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3670 AllFound = false; 3671 for (unsigned l = 0; l != LElts; ++l) { 3672 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3673 if (LTypeInfo == FTypeInfo) { 3674 AllFound = true; 3675 break; 3676 } 3677 } 3678 if (!AllFound) 3679 break; 3680 } 3681 if (AllFound) { 3682 // Discard LFilter. 3683 NewClauses.erase(J); 3684 MakeNewInstruction = true; 3685 } 3686 // Move on to the next filter. 3687 } 3688 } 3689 3690 // If we changed any of the clauses, replace the old landingpad instruction 3691 // with a new one. 3692 if (MakeNewInstruction) { 3693 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3694 NewClauses.size()); 3695 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3696 NLI->addClause(NewClauses[i]); 3697 // A landing pad with no clauses must have the cleanup flag set. It is 3698 // theoretically possible, though highly unlikely, that we eliminated all 3699 // clauses. If so, force the cleanup flag to true. 3700 if (NewClauses.empty()) 3701 CleanupFlag = true; 3702 NLI->setCleanup(CleanupFlag); 3703 return NLI; 3704 } 3705 3706 // Even if none of the clauses changed, we may nonetheless have understood 3707 // that the cleanup flag is pointless. Clear it if so. 3708 if (LI.isCleanup() != CleanupFlag) { 3709 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3710 LI.setCleanup(CleanupFlag); 3711 return &LI; 3712 } 3713 3714 return nullptr; 3715 } 3716 3717 Value * 3718 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { 3719 // Try to push freeze through instructions that propagate but don't produce 3720 // poison as far as possible. If an operand of freeze follows three 3721 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one 3722 // guaranteed-non-poison operands then push the freeze through to the one 3723 // operand that is not guaranteed non-poison. The actual transform is as 3724 // follows. 3725 // Op1 = ... ; Op1 can be posion 3726 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have 3727 // ; single guaranteed-non-poison operands 3728 // ... = Freeze(Op0) 3729 // => 3730 // Op1 = ... 3731 // Op1.fr = Freeze(Op1) 3732 // ... = Inst(Op1.fr, NonPoisonOps...) 3733 auto *OrigOp = OrigFI.getOperand(0); 3734 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp); 3735 3736 // While we could change the other users of OrigOp to use freeze(OrigOp), that 3737 // potentially reduces their optimization potential, so let's only do this iff 3738 // the OrigOp is only used by the freeze. 3739 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp)) 3740 return nullptr; 3741 3742 // We can't push the freeze through an instruction which can itself create 3743 // poison. If the only source of new poison is flags, we can simply 3744 // strip them (since we know the only use is the freeze and nothing can 3745 // benefit from them.) 3746 if (canCreateUndefOrPoison(cast<Operator>(OrigOp), /*ConsiderFlags*/ false)) 3747 return nullptr; 3748 3749 // If operand is guaranteed not to be poison, there is no need to add freeze 3750 // to the operand. So we first find the operand that is not guaranteed to be 3751 // poison. 3752 Use *MaybePoisonOperand = nullptr; 3753 for (Use &U : OrigOpInst->operands()) { 3754 if (isGuaranteedNotToBeUndefOrPoison(U.get())) 3755 continue; 3756 if (!MaybePoisonOperand) 3757 MaybePoisonOperand = &U; 3758 else 3759 return nullptr; 3760 } 3761 3762 OrigOpInst->dropPoisonGeneratingFlags(); 3763 3764 // If all operands are guaranteed to be non-poison, we can drop freeze. 3765 if (!MaybePoisonOperand) 3766 return OrigOp; 3767 3768 Builder.SetInsertPoint(OrigOpInst); 3769 auto *FrozenMaybePoisonOperand = Builder.CreateFreeze( 3770 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); 3771 3772 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); 3773 return OrigOp; 3774 } 3775 3776 Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI, 3777 PHINode *PN) { 3778 // Detect whether this is a recurrence with a start value and some number of 3779 // backedge values. We'll check whether we can push the freeze through the 3780 // backedge values (possibly dropping poison flags along the way) until we 3781 // reach the phi again. In that case, we can move the freeze to the start 3782 // value. 3783 Use *StartU = nullptr; 3784 SmallVector<Value *> Worklist; 3785 for (Use &U : PN->incoming_values()) { 3786 if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) { 3787 // Add backedge value to worklist. 3788 Worklist.push_back(U.get()); 3789 continue; 3790 } 3791 3792 // Don't bother handling multiple start values. 3793 if (StartU) 3794 return nullptr; 3795 StartU = &U; 3796 } 3797 3798 if (!StartU || Worklist.empty()) 3799 return nullptr; // Not a recurrence. 3800 3801 Value *StartV = StartU->get(); 3802 BasicBlock *StartBB = PN->getIncomingBlock(*StartU); 3803 bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV); 3804 // We can't insert freeze if the the start value is the result of the 3805 // terminator (e.g. an invoke). 3806 if (StartNeedsFreeze && StartBB->getTerminator() == StartV) 3807 return nullptr; 3808 3809 SmallPtrSet<Value *, 32> Visited; 3810 SmallVector<Instruction *> DropFlags; 3811 while (!Worklist.empty()) { 3812 Value *V = Worklist.pop_back_val(); 3813 if (!Visited.insert(V).second) 3814 continue; 3815 3816 if (Visited.size() > 32) 3817 return nullptr; // Limit the total number of values we inspect. 3818 3819 // Assume that PN is non-poison, because it will be after the transform. 3820 if (V == PN || isGuaranteedNotToBeUndefOrPoison(V)) 3821 continue; 3822 3823 Instruction *I = dyn_cast<Instruction>(V); 3824 if (!I || canCreateUndefOrPoison(cast<Operator>(I), 3825 /*ConsiderFlags*/ false)) 3826 return nullptr; 3827 3828 DropFlags.push_back(I); 3829 append_range(Worklist, I->operands()); 3830 } 3831 3832 for (Instruction *I : DropFlags) 3833 I->dropPoisonGeneratingFlags(); 3834 3835 if (StartNeedsFreeze) { 3836 Builder.SetInsertPoint(StartBB->getTerminator()); 3837 Value *FrozenStartV = Builder.CreateFreeze(StartV, 3838 StartV->getName() + ".fr"); 3839 replaceUse(*StartU, FrozenStartV); 3840 } 3841 return replaceInstUsesWith(FI, PN); 3842 } 3843 3844 bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) { 3845 Value *Op = FI.getOperand(0); 3846 3847 if (isa<Constant>(Op) || Op->hasOneUse()) 3848 return false; 3849 3850 // Move the freeze directly after the definition of its operand, so that 3851 // it dominates the maximum number of uses. Note that it may not dominate 3852 // *all* uses if the operand is an invoke/callbr and the use is in a phi on 3853 // the normal/default destination. This is why the domination check in the 3854 // replacement below is still necessary. 3855 Instruction *MoveBefore = nullptr; 3856 if (isa<Argument>(Op)) { 3857 MoveBefore = &FI.getFunction()->getEntryBlock().front(); 3858 while (isa<AllocaInst>(MoveBefore)) 3859 MoveBefore = MoveBefore->getNextNode(); 3860 } else if (auto *PN = dyn_cast<PHINode>(Op)) { 3861 MoveBefore = PN->getParent()->getFirstNonPHI(); 3862 } else if (auto *II = dyn_cast<InvokeInst>(Op)) { 3863 MoveBefore = II->getNormalDest()->getFirstNonPHI(); 3864 } else if (auto *CB = dyn_cast<CallBrInst>(Op)) { 3865 MoveBefore = CB->getDefaultDest()->getFirstNonPHI(); 3866 } else { 3867 auto *I = cast<Instruction>(Op); 3868 assert(!I->isTerminator() && "Cannot be a terminator"); 3869 MoveBefore = I->getNextNode(); 3870 } 3871 3872 bool Changed = false; 3873 if (&FI != MoveBefore) { 3874 FI.moveBefore(MoveBefore); 3875 Changed = true; 3876 } 3877 3878 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { 3879 bool Dominates = DT.dominates(&FI, U); 3880 Changed |= Dominates; 3881 return Dominates; 3882 }); 3883 3884 return Changed; 3885 } 3886 3887 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 3888 Value *Op0 = I.getOperand(0); 3889 3890 if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3891 return replaceInstUsesWith(I, V); 3892 3893 // freeze (phi const, x) --> phi const, (freeze x) 3894 if (auto *PN = dyn_cast<PHINode>(Op0)) { 3895 if (Instruction *NV = foldOpIntoPhi(I, PN)) 3896 return NV; 3897 if (Instruction *NV = foldFreezeIntoRecurrence(I, PN)) 3898 return NV; 3899 } 3900 3901 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) 3902 return replaceInstUsesWith(I, NI); 3903 3904 // If I is freeze(undef), check its uses and fold it to a fixed constant. 3905 // - or: pick -1 3906 // - select's condition: if the true value is constant, choose it by making 3907 // the condition true. 3908 // - default: pick 0 3909 // 3910 // Note that this transform is intentionally done here rather than 3911 // via an analysis in InstSimplify or at individual user sites. That is 3912 // because we must produce the same value for all uses of the freeze - 3913 // it's the reason "freeze" exists! 3914 // 3915 // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid 3916 // duplicating logic for binops at least. 3917 auto getUndefReplacement = [&I](Type *Ty) { 3918 Constant *BestValue = nullptr; 3919 Constant *NullValue = Constant::getNullValue(Ty); 3920 for (const auto *U : I.users()) { 3921 Constant *C = NullValue; 3922 if (match(U, m_Or(m_Value(), m_Value()))) 3923 C = ConstantInt::getAllOnesValue(Ty); 3924 else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value()))) 3925 C = ConstantInt::getTrue(Ty); 3926 3927 if (!BestValue) 3928 BestValue = C; 3929 else if (BestValue != C) 3930 BestValue = NullValue; 3931 } 3932 assert(BestValue && "Must have at least one use"); 3933 return BestValue; 3934 }; 3935 3936 if (match(Op0, m_Undef())) 3937 return replaceInstUsesWith(I, getUndefReplacement(I.getType())); 3938 3939 Constant *C; 3940 if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) { 3941 Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType()); 3942 return replaceInstUsesWith(I, Constant::replaceUndefsWith(C, ReplaceC)); 3943 } 3944 3945 // Replace uses of Op with freeze(Op). 3946 if (freezeOtherUses(I)) 3947 return &I; 3948 3949 return nullptr; 3950 } 3951 3952 /// Check for case where the call writes to an otherwise dead alloca. This 3953 /// shows up for unused out-params in idiomatic C/C++ code. Note that this 3954 /// helper *only* analyzes the write; doesn't check any other legality aspect. 3955 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) { 3956 auto *CB = dyn_cast<CallBase>(I); 3957 if (!CB) 3958 // TODO: handle e.g. store to alloca here - only worth doing if we extend 3959 // to allow reload along used path as described below. Otherwise, this 3960 // is simply a store to a dead allocation which will be removed. 3961 return false; 3962 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI); 3963 if (!Dest) 3964 return false; 3965 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr)); 3966 if (!AI) 3967 // TODO: allow malloc? 3968 return false; 3969 // TODO: allow memory access dominated by move point? Note that since AI 3970 // could have a reference to itself captured by the call, we would need to 3971 // account for cycles in doing so. 3972 SmallVector<const User *> AllocaUsers; 3973 SmallPtrSet<const User *, 4> Visited; 3974 auto pushUsers = [&](const Instruction &I) { 3975 for (const User *U : I.users()) { 3976 if (Visited.insert(U).second) 3977 AllocaUsers.push_back(U); 3978 } 3979 }; 3980 pushUsers(*AI); 3981 while (!AllocaUsers.empty()) { 3982 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val()); 3983 if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) || 3984 isa<AddrSpaceCastInst>(UserI)) { 3985 pushUsers(*UserI); 3986 continue; 3987 } 3988 if (UserI == CB) 3989 continue; 3990 // TODO: support lifetime.start/end here 3991 return false; 3992 } 3993 return true; 3994 } 3995 3996 /// Try to move the specified instruction from its current block into the 3997 /// beginning of DestBlock, which can only happen if it's safe to move the 3998 /// instruction past all of the instructions between it and the end of its 3999 /// block. 4000 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock, 4001 TargetLibraryInfo &TLI) { 4002 BasicBlock *SrcBlock = I->getParent(); 4003 4004 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 4005 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || 4006 I->isTerminator()) 4007 return false; 4008 4009 // Do not sink static or dynamic alloca instructions. Static allocas must 4010 // remain in the entry block, and dynamic allocas must not be sunk in between 4011 // a stacksave / stackrestore pair, which would incorrectly shorten its 4012 // lifetime. 4013 if (isa<AllocaInst>(I)) 4014 return false; 4015 4016 // Do not sink into catchswitch blocks. 4017 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 4018 return false; 4019 4020 // Do not sink convergent call instructions. 4021 if (auto *CI = dyn_cast<CallInst>(I)) { 4022 if (CI->isConvergent()) 4023 return false; 4024 } 4025 4026 // Unless we can prove that the memory write isn't visibile except on the 4027 // path we're sinking to, we must bail. 4028 if (I->mayWriteToMemory()) { 4029 if (!SoleWriteToDeadLocal(I, TLI)) 4030 return false; 4031 } 4032 4033 // We can only sink load instructions if there is nothing between the load and 4034 // the end of block that could change the value. 4035 if (I->mayReadFromMemory()) { 4036 // We don't want to do any sophisticated alias analysis, so we only check 4037 // the instructions after I in I's parent block if we try to sink to its 4038 // successor block. 4039 if (DestBlock->getUniquePredecessor() != I->getParent()) 4040 return false; 4041 for (BasicBlock::iterator Scan = std::next(I->getIterator()), 4042 E = I->getParent()->end(); 4043 Scan != E; ++Scan) 4044 if (Scan->mayWriteToMemory()) 4045 return false; 4046 } 4047 4048 I->dropDroppableUses([DestBlock](const Use *U) { 4049 if (auto *I = dyn_cast<Instruction>(U->getUser())) 4050 return I->getParent() != DestBlock; 4051 return true; 4052 }); 4053 /// FIXME: We could remove droppable uses that are not dominated by 4054 /// the new position. 4055 4056 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 4057 I->moveBefore(&*InsertPos); 4058 ++NumSunkInst; 4059 4060 // Also sink all related debug uses from the source basic block. Otherwise we 4061 // get debug use before the def. Attempt to salvage debug uses first, to 4062 // maximise the range variables have location for. If we cannot salvage, then 4063 // mark the location undef: we know it was supposed to receive a new location 4064 // here, but that computation has been sunk. 4065 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 4066 findDbgUsers(DbgUsers, I); 4067 // Process the sinking DbgUsers in reverse order, as we only want to clone the 4068 // last appearing debug intrinsic for each given variable. 4069 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 4070 for (DbgVariableIntrinsic *DVI : DbgUsers) 4071 if (DVI->getParent() == SrcBlock) 4072 DbgUsersToSink.push_back(DVI); 4073 llvm::sort(DbgUsersToSink, 4074 [](auto *A, auto *B) { return B->comesBefore(A); }); 4075 4076 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 4077 SmallSet<DebugVariable, 4> SunkVariables; 4078 for (auto User : DbgUsersToSink) { 4079 // A dbg.declare instruction should not be cloned, since there can only be 4080 // one per variable fragment. It should be left in the original place 4081 // because the sunk instruction is not an alloca (otherwise we could not be 4082 // here). 4083 if (isa<DbgDeclareInst>(User)) 4084 continue; 4085 4086 DebugVariable DbgUserVariable = 4087 DebugVariable(User->getVariable(), User->getExpression(), 4088 User->getDebugLoc()->getInlinedAt()); 4089 4090 if (!SunkVariables.insert(DbgUserVariable).second) 4091 continue; 4092 4093 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 4094 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 4095 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 4096 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 4097 } 4098 4099 // Perform salvaging without the clones, then sink the clones. 4100 if (!DIIClones.empty()) { 4101 salvageDebugInfoForDbgValues(*I, DbgUsers); 4102 // The clones are in reverse order of original appearance, reverse again to 4103 // maintain the original order. 4104 for (auto &DIIClone : llvm::reverse(DIIClones)) { 4105 DIIClone->insertBefore(&*InsertPos); 4106 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 4107 } 4108 } 4109 4110 return true; 4111 } 4112 4113 bool InstCombinerImpl::run() { 4114 while (!Worklist.isEmpty()) { 4115 // Walk deferred instructions in reverse order, and push them to the 4116 // worklist, which means they'll end up popped from the worklist in-order. 4117 while (Instruction *I = Worklist.popDeferred()) { 4118 // Check to see if we can DCE the instruction. We do this already here to 4119 // reduce the number of uses and thus allow other folds to trigger. 4120 // Note that eraseInstFromFunction() may push additional instructions on 4121 // the deferred worklist, so this will DCE whole instruction chains. 4122 if (isInstructionTriviallyDead(I, &TLI)) { 4123 eraseInstFromFunction(*I); 4124 ++NumDeadInst; 4125 continue; 4126 } 4127 4128 Worklist.push(I); 4129 } 4130 4131 Instruction *I = Worklist.removeOne(); 4132 if (I == nullptr) continue; // skip null values. 4133 4134 // Check to see if we can DCE the instruction. 4135 if (isInstructionTriviallyDead(I, &TLI)) { 4136 eraseInstFromFunction(*I); 4137 ++NumDeadInst; 4138 continue; 4139 } 4140 4141 if (!DebugCounter::shouldExecute(VisitCounter)) 4142 continue; 4143 4144 // Instruction isn't dead, see if we can constant propagate it. 4145 if (!I->use_empty() && 4146 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 4147 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 4148 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 4149 << '\n'); 4150 4151 // Add operands to the worklist. 4152 replaceInstUsesWith(*I, C); 4153 ++NumConstProp; 4154 if (isInstructionTriviallyDead(I, &TLI)) 4155 eraseInstFromFunction(*I); 4156 MadeIRChange = true; 4157 continue; 4158 } 4159 } 4160 4161 // See if we can trivially sink this instruction to its user if we can 4162 // prove that the successor is not executed more frequently than our block. 4163 // Return the UserBlock if successful. 4164 auto getOptionalSinkBlockForInst = 4165 [this](Instruction *I) -> Optional<BasicBlock *> { 4166 if (!EnableCodeSinking) 4167 return None; 4168 4169 BasicBlock *BB = I->getParent(); 4170 BasicBlock *UserParent = nullptr; 4171 unsigned NumUsers = 0; 4172 4173 for (auto *U : I->users()) { 4174 if (U->isDroppable()) 4175 continue; 4176 if (NumUsers > MaxSinkNumUsers) 4177 return None; 4178 4179 Instruction *UserInst = cast<Instruction>(U); 4180 // Special handling for Phi nodes - get the block the use occurs in. 4181 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) { 4182 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 4183 if (PN->getIncomingValue(i) == I) { 4184 // Bail out if we have uses in different blocks. We don't do any 4185 // sophisticated analysis (i.e finding NearestCommonDominator of 4186 // these use blocks). 4187 if (UserParent && UserParent != PN->getIncomingBlock(i)) 4188 return None; 4189 UserParent = PN->getIncomingBlock(i); 4190 } 4191 } 4192 assert(UserParent && "expected to find user block!"); 4193 } else { 4194 if (UserParent && UserParent != UserInst->getParent()) 4195 return None; 4196 UserParent = UserInst->getParent(); 4197 } 4198 4199 // Make sure these checks are done only once, naturally we do the checks 4200 // the first time we get the userparent, this will save compile time. 4201 if (NumUsers == 0) { 4202 // Try sinking to another block. If that block is unreachable, then do 4203 // not bother. SimplifyCFG should handle it. 4204 if (UserParent == BB || !DT.isReachableFromEntry(UserParent)) 4205 return None; 4206 4207 auto *Term = UserParent->getTerminator(); 4208 // See if the user is one of our successors that has only one 4209 // predecessor, so that we don't have to split the critical edge. 4210 // Another option where we can sink is a block that ends with a 4211 // terminator that does not pass control to other block (such as 4212 // return or unreachable or resume). In this case: 4213 // - I dominates the User (by SSA form); 4214 // - the User will be executed at most once. 4215 // So sinking I down to User is always profitable or neutral. 4216 if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term)) 4217 return None; 4218 4219 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?"); 4220 } 4221 4222 NumUsers++; 4223 } 4224 4225 // No user or only has droppable users. 4226 if (!UserParent) 4227 return None; 4228 4229 return UserParent; 4230 }; 4231 4232 auto OptBB = getOptionalSinkBlockForInst(I); 4233 if (OptBB) { 4234 auto *UserParent = *OptBB; 4235 // Okay, the CFG is simple enough, try to sink this instruction. 4236 if (TryToSinkInstruction(I, UserParent, TLI)) { 4237 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 4238 MadeIRChange = true; 4239 // We'll add uses of the sunk instruction below, but since 4240 // sinking can expose opportunities for it's *operands* add 4241 // them to the worklist 4242 for (Use &U : I->operands()) 4243 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 4244 Worklist.push(OpI); 4245 } 4246 } 4247 4248 // Now that we have an instruction, try combining it to simplify it. 4249 Builder.SetInsertPoint(I); 4250 Builder.CollectMetadataToCopy( 4251 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4252 4253 #ifndef NDEBUG 4254 std::string OrigI; 4255 #endif 4256 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 4257 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 4258 4259 if (Instruction *Result = visit(*I)) { 4260 ++NumCombined; 4261 // Should we replace the old instruction with a new one? 4262 if (Result != I) { 4263 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 4264 << " New = " << *Result << '\n'); 4265 4266 Result->copyMetadata(*I, 4267 {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4268 // Everything uses the new instruction now. 4269 I->replaceAllUsesWith(Result); 4270 4271 // Move the name to the new instruction first. 4272 Result->takeName(I); 4273 4274 // Insert the new instruction into the basic block... 4275 BasicBlock *InstParent = I->getParent(); 4276 BasicBlock::iterator InsertPos = I->getIterator(); 4277 4278 // Are we replace a PHI with something that isn't a PHI, or vice versa? 4279 if (isa<PHINode>(Result) != isa<PHINode>(I)) { 4280 // We need to fix up the insertion point. 4281 if (isa<PHINode>(I)) // PHI -> Non-PHI 4282 InsertPos = InstParent->getFirstInsertionPt(); 4283 else // Non-PHI -> PHI 4284 InsertPos = InstParent->getFirstNonPHI()->getIterator(); 4285 } 4286 4287 InstParent->getInstList().insert(InsertPos, Result); 4288 4289 // Push the new instruction and any users onto the worklist. 4290 Worklist.pushUsersToWorkList(*Result); 4291 Worklist.push(Result); 4292 4293 eraseInstFromFunction(*I); 4294 } else { 4295 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 4296 << " New = " << *I << '\n'); 4297 4298 // If the instruction was modified, it's possible that it is now dead. 4299 // if so, remove it. 4300 if (isInstructionTriviallyDead(I, &TLI)) { 4301 eraseInstFromFunction(*I); 4302 } else { 4303 Worklist.pushUsersToWorkList(*I); 4304 Worklist.push(I); 4305 } 4306 } 4307 MadeIRChange = true; 4308 } 4309 } 4310 4311 Worklist.zap(); 4312 return MadeIRChange; 4313 } 4314 4315 // Track the scopes used by !alias.scope and !noalias. In a function, a 4316 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 4317 // by both sets. If not, the declaration of the scope can be safely omitted. 4318 // The MDNode of the scope can be omitted as well for the instructions that are 4319 // part of this function. We do not do that at this point, as this might become 4320 // too time consuming to do. 4321 class AliasScopeTracker { 4322 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 4323 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 4324 4325 public: 4326 void analyse(Instruction *I) { 4327 // This seems to be faster than checking 'mayReadOrWriteMemory()'. 4328 if (!I->hasMetadataOtherThanDebugLoc()) 4329 return; 4330 4331 auto Track = [](Metadata *ScopeList, auto &Container) { 4332 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 4333 if (!MDScopeList || !Container.insert(MDScopeList).second) 4334 return; 4335 for (auto &MDOperand : MDScopeList->operands()) 4336 if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 4337 Container.insert(MDScope); 4338 }; 4339 4340 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 4341 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 4342 } 4343 4344 bool isNoAliasScopeDeclDead(Instruction *Inst) { 4345 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 4346 if (!Decl) 4347 return false; 4348 4349 assert(Decl->use_empty() && 4350 "llvm.experimental.noalias.scope.decl in use ?"); 4351 const MDNode *MDSL = Decl->getScopeList(); 4352 assert(MDSL->getNumOperands() == 1 && 4353 "llvm.experimental.noalias.scope should refer to a single scope"); 4354 auto &MDOperand = MDSL->getOperand(0); 4355 if (auto *MD = dyn_cast<MDNode>(MDOperand)) 4356 return !UsedAliasScopesAndLists.contains(MD) || 4357 !UsedNoAliasScopesAndLists.contains(MD); 4358 4359 // Not an MDNode ? throw away. 4360 return true; 4361 } 4362 }; 4363 4364 /// Populate the IC worklist from a function, by walking it in depth-first 4365 /// order and adding all reachable code to the worklist. 4366 /// 4367 /// This has a couple of tricks to make the code faster and more powerful. In 4368 /// particular, we constant fold and DCE instructions as we go, to avoid adding 4369 /// them to the worklist (this significantly speeds up instcombine on code where 4370 /// many instructions are dead or constant). Additionally, if we find a branch 4371 /// whose condition is a known constant, we only visit the reachable successors. 4372 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 4373 const TargetLibraryInfo *TLI, 4374 InstructionWorklist &ICWorklist) { 4375 bool MadeIRChange = false; 4376 SmallPtrSet<BasicBlock *, 32> Visited; 4377 SmallVector<BasicBlock*, 256> Worklist; 4378 Worklist.push_back(&F.front()); 4379 4380 SmallVector<Instruction *, 128> InstrsForInstructionWorklist; 4381 DenseMap<Constant *, Constant *> FoldedConstants; 4382 AliasScopeTracker SeenAliasScopes; 4383 4384 do { 4385 BasicBlock *BB = Worklist.pop_back_val(); 4386 4387 // We have now visited this block! If we've already been here, ignore it. 4388 if (!Visited.insert(BB).second) 4389 continue; 4390 4391 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 4392 // ConstantProp instruction if trivially constant. 4393 if (!Inst.use_empty() && 4394 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0)))) 4395 if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) { 4396 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst 4397 << '\n'); 4398 Inst.replaceAllUsesWith(C); 4399 ++NumConstProp; 4400 if (isInstructionTriviallyDead(&Inst, TLI)) 4401 Inst.eraseFromParent(); 4402 MadeIRChange = true; 4403 continue; 4404 } 4405 4406 // See if we can constant fold its operands. 4407 for (Use &U : Inst.operands()) { 4408 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 4409 continue; 4410 4411 auto *C = cast<Constant>(U); 4412 Constant *&FoldRes = FoldedConstants[C]; 4413 if (!FoldRes) 4414 FoldRes = ConstantFoldConstant(C, DL, TLI); 4415 4416 if (FoldRes != C) { 4417 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst 4418 << "\n Old = " << *C 4419 << "\n New = " << *FoldRes << '\n'); 4420 U = FoldRes; 4421 MadeIRChange = true; 4422 } 4423 } 4424 4425 // Skip processing debug and pseudo intrinsics in InstCombine. Processing 4426 // these call instructions consumes non-trivial amount of time and 4427 // provides no value for the optimization. 4428 if (!Inst.isDebugOrPseudoInst()) { 4429 InstrsForInstructionWorklist.push_back(&Inst); 4430 SeenAliasScopes.analyse(&Inst); 4431 } 4432 } 4433 4434 // Recursively visit successors. If this is a branch or switch on a 4435 // constant, only visit the reachable successor. 4436 Instruction *TI = BB->getTerminator(); 4437 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 4438 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 4439 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 4440 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 4441 Worklist.push_back(ReachableBB); 4442 continue; 4443 } 4444 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 4445 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 4446 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 4447 continue; 4448 } 4449 } 4450 4451 append_range(Worklist, successors(TI)); 4452 } while (!Worklist.empty()); 4453 4454 // Remove instructions inside unreachable blocks. This prevents the 4455 // instcombine code from having to deal with some bad special cases, and 4456 // reduces use counts of instructions. 4457 for (BasicBlock &BB : F) { 4458 if (Visited.count(&BB)) 4459 continue; 4460 4461 unsigned NumDeadInstInBB; 4462 unsigned NumDeadDbgInstInBB; 4463 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 4464 removeAllNonTerminatorAndEHPadInstructions(&BB); 4465 4466 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 4467 NumDeadInst += NumDeadInstInBB; 4468 } 4469 4470 // Once we've found all of the instructions to add to instcombine's worklist, 4471 // add them in reverse order. This way instcombine will visit from the top 4472 // of the function down. This jives well with the way that it adds all uses 4473 // of instructions to the worklist after doing a transformation, thus avoiding 4474 // some N^2 behavior in pathological cases. 4475 ICWorklist.reserve(InstrsForInstructionWorklist.size()); 4476 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) { 4477 // DCE instruction if trivially dead. As we iterate in reverse program 4478 // order here, we will clean up whole chains of dead instructions. 4479 if (isInstructionTriviallyDead(Inst, TLI) || 4480 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 4481 ++NumDeadInst; 4482 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 4483 salvageDebugInfo(*Inst); 4484 Inst->eraseFromParent(); 4485 MadeIRChange = true; 4486 continue; 4487 } 4488 4489 ICWorklist.push(Inst); 4490 } 4491 4492 return MadeIRChange; 4493 } 4494 4495 static bool combineInstructionsOverFunction( 4496 Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, 4497 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 4498 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 4499 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) { 4500 auto &DL = F.getParent()->getDataLayout(); 4501 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 4502 4503 /// Builder - This is an IRBuilder that automatically inserts new 4504 /// instructions into the worklist when they are created. 4505 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 4506 F.getContext(), TargetFolder(DL), 4507 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 4508 Worklist.add(I); 4509 if (auto *Assume = dyn_cast<AssumeInst>(I)) 4510 AC.registerAssumption(Assume); 4511 })); 4512 4513 // Lower dbg.declare intrinsics otherwise their value may be clobbered 4514 // by instcombiner. 4515 bool MadeIRChange = false; 4516 if (ShouldLowerDbgDeclare) 4517 MadeIRChange = LowerDbgDeclare(F); 4518 4519 // Iterate while there is work to do. 4520 unsigned Iteration = 0; 4521 while (true) { 4522 ++NumWorklistIterations; 4523 ++Iteration; 4524 4525 if (Iteration > InfiniteLoopDetectionThreshold) { 4526 report_fatal_error( 4527 "Instruction Combining seems stuck in an infinite loop after " + 4528 Twine(InfiniteLoopDetectionThreshold) + " iterations."); 4529 } 4530 4531 if (Iteration > MaxIterations) { 4532 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 4533 << " on " << F.getName() 4534 << " reached; stopping before reaching a fixpoint\n"); 4535 break; 4536 } 4537 4538 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 4539 << F.getName() << "\n"); 4540 4541 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 4542 4543 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 4544 ORE, BFI, PSI, DL, LI); 4545 IC.MaxArraySizeForCombine = MaxArraySize; 4546 4547 if (!IC.run()) 4548 break; 4549 4550 MadeIRChange = true; 4551 } 4552 4553 return MadeIRChange; 4554 } 4555 4556 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {} 4557 4558 InstCombinePass::InstCombinePass(unsigned MaxIterations) 4559 : MaxIterations(MaxIterations) {} 4560 4561 PreservedAnalyses InstCombinePass::run(Function &F, 4562 FunctionAnalysisManager &AM) { 4563 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4564 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4565 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4566 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4567 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 4568 4569 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 4570 4571 auto *AA = &AM.getResult<AAManager>(F); 4572 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 4573 ProfileSummaryInfo *PSI = 4574 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 4575 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 4576 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 4577 4578 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4579 BFI, PSI, MaxIterations, LI)) 4580 // No changes, all analyses are preserved. 4581 return PreservedAnalyses::all(); 4582 4583 // Mark all the analyses that instcombine updates as preserved. 4584 PreservedAnalyses PA; 4585 PA.preserveSet<CFGAnalyses>(); 4586 return PA; 4587 } 4588 4589 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 4590 AU.setPreservesCFG(); 4591 AU.addRequired<AAResultsWrapperPass>(); 4592 AU.addRequired<AssumptionCacheTracker>(); 4593 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4594 AU.addRequired<TargetTransformInfoWrapperPass>(); 4595 AU.addRequired<DominatorTreeWrapperPass>(); 4596 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4597 AU.addPreserved<DominatorTreeWrapperPass>(); 4598 AU.addPreserved<AAResultsWrapperPass>(); 4599 AU.addPreserved<BasicAAWrapperPass>(); 4600 AU.addPreserved<GlobalsAAWrapperPass>(); 4601 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 4602 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 4603 } 4604 4605 bool InstructionCombiningPass::runOnFunction(Function &F) { 4606 if (skipFunction(F)) 4607 return false; 4608 4609 // Required analyses. 4610 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4611 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4612 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 4613 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4614 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4615 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4616 4617 // Optional analyses. 4618 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 4619 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 4620 ProfileSummaryInfo *PSI = 4621 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 4622 BlockFrequencyInfo *BFI = 4623 (PSI && PSI->hasProfileSummary()) ? 4624 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 4625 nullptr; 4626 4627 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4628 BFI, PSI, MaxIterations, LI); 4629 } 4630 4631 char InstructionCombiningPass::ID = 0; 4632 4633 InstructionCombiningPass::InstructionCombiningPass() 4634 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) { 4635 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4636 } 4637 4638 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations) 4639 : FunctionPass(ID), MaxIterations(MaxIterations) { 4640 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4641 } 4642 4643 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 4644 "Combine redundant instructions", false, false) 4645 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4646 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4647 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4648 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4649 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4650 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4651 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 4652 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 4653 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 4654 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 4655 "Combine redundant instructions", false, false) 4656 4657 // Initialization Routines 4658 void llvm::initializeInstCombine(PassRegistry &Registry) { 4659 initializeInstructionCombiningPassPass(Registry); 4660 } 4661 4662 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 4663 initializeInstructionCombiningPassPass(*unwrap(R)); 4664 } 4665 4666 FunctionPass *llvm::createInstructionCombiningPass() { 4667 return new InstructionCombiningPass(); 4668 } 4669 4670 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) { 4671 return new InstructionCombiningPass(MaxIterations); 4672 } 4673 4674 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 4675 unwrap(PM)->add(createInstructionCombiningPass()); 4676 } 4677