1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions.  This pass does not modify the CFG.  This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 //    %Y = add i32 %X, 1
15 //    %Z = add i32 %Y, 1
16 // into:
17 //    %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 //    1. If a binary operator has a constant operand, it is moved to the RHS
24 //    2. Bitwise operators with constant operands are always grouped so that
25 //       shifts are performed first, then or's, then and's, then xor's.
26 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 //    4. All cmp instructions on boolean values are replaced with logical ops
28 //    5. add X, X is represented as (X*2) => (X << 1)
29 //    6. Multiplies with a power-of-two constant argument are transformed into
30 //       shifts.
31 //   ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BlockFrequencyInfo.h"
50 #include "llvm/Analysis/CFG.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/EHPersonalities.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/MemoryBuiltins.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ProfileSummaryInfo.h"
60 #include "llvm/Analysis/TargetFolder.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/Analysis/VectorUtils.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DIBuilder.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GetElementPtrTypeIterator.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LegacyPassManager.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PassManager.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/Use.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/IR/ValueHandle.h"
91 #include "llvm/InitializePasses.h"
92 #include "llvm/Pass.h"
93 #include "llvm/Support/CBindingWrapping.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/DebugCounter.h"
99 #include "llvm/Support/ErrorHandling.h"
100 #include "llvm/Support/KnownBits.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Transforms/InstCombine/InstCombine.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstdint>
107 #include <memory>
108 #include <string>
109 #include <utility>
110 
111 #define DEBUG_TYPE "instcombine"
112 #include "llvm/Transforms/Utils/InstructionWorklist.h"
113 
114 using namespace llvm;
115 using namespace llvm::PatternMatch;
116 
117 STATISTIC(NumWorklistIterations,
118           "Number of instruction combining iterations performed");
119 
120 STATISTIC(NumCombined , "Number of insts combined");
121 STATISTIC(NumConstProp, "Number of constant folds");
122 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
123 STATISTIC(NumSunkInst , "Number of instructions sunk");
124 STATISTIC(NumExpand,    "Number of expansions");
125 STATISTIC(NumFactor   , "Number of factorizations");
126 STATISTIC(NumReassoc  , "Number of reassociations");
127 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
128               "Controls which instructions are visited");
129 
130 // FIXME: these limits eventually should be as low as 2.
131 static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
132 #ifndef NDEBUG
133 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100;
134 #else
135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
136 #endif
137 
138 static cl::opt<bool>
139 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
140                                               cl::init(true));
141 
142 static cl::opt<unsigned> LimitMaxIterations(
143     "instcombine-max-iterations",
144     cl::desc("Limit the maximum number of instruction combining iterations"),
145     cl::init(InstCombineDefaultMaxIterations));
146 
147 static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
148     "instcombine-infinite-loop-threshold",
149     cl::desc("Number of instruction combining iterations considered an "
150              "infinite loop"),
151     cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
152 
153 static cl::opt<unsigned>
154 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
155              cl::desc("Maximum array size considered when doing a combine"));
156 
157 // FIXME: Remove this flag when it is no longer necessary to convert
158 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
159 // increases variable availability at the cost of accuracy. Variables that
160 // cannot be promoted by mem2reg or SROA will be described as living in memory
161 // for their entire lifetime. However, passes like DSE and instcombine can
162 // delete stores to the alloca, leading to misleading and inaccurate debug
163 // information. This flag can be removed when those passes are fixed.
164 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
165                                                cl::Hidden, cl::init(true));
166 
167 Optional<Instruction *>
168 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
169   // Handle target specific intrinsics
170   if (II.getCalledFunction()->isTargetIntrinsic()) {
171     return TTI.instCombineIntrinsic(*this, II);
172   }
173   return None;
174 }
175 
176 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
177     IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
178     bool &KnownBitsComputed) {
179   // Handle target specific intrinsics
180   if (II.getCalledFunction()->isTargetIntrinsic()) {
181     return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
182                                                 KnownBitsComputed);
183   }
184   return None;
185 }
186 
187 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
188     IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2,
189     APInt &UndefElts3,
190     std::function<void(Instruction *, unsigned, APInt, APInt &)>
191         SimplifyAndSetOp) {
192   // Handle target specific intrinsics
193   if (II.getCalledFunction()->isTargetIntrinsic()) {
194     return TTI.simplifyDemandedVectorEltsIntrinsic(
195         *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
196         SimplifyAndSetOp);
197   }
198   return None;
199 }
200 
201 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
202   return llvm::EmitGEPOffset(&Builder, DL, GEP);
203 }
204 
205 /// Return true if it is desirable to convert an integer computation from a
206 /// given bit width to a new bit width.
207 /// We don't want to convert from a legal to an illegal type or from a smaller
208 /// to a larger illegal type. A width of '1' is always treated as a legal type
209 /// because i1 is a fundamental type in IR, and there are many specialized
210 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
211 /// legal to convert to, in order to open up more combining opportunities.
212 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common
213 /// from frontend languages.
214 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
215                                         unsigned ToWidth) const {
216   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
217   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
218 
219   // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
220   // shrink types, to prevent infinite loops.
221   if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
222     return true;
223 
224   // If this is a legal integer from type, and the result would be an illegal
225   // type, don't do the transformation.
226   if (FromLegal && !ToLegal)
227     return false;
228 
229   // Otherwise, if both are illegal, do not increase the size of the result. We
230   // do allow things like i160 -> i64, but not i64 -> i160.
231   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
232     return false;
233 
234   return true;
235 }
236 
237 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
238 /// We don't want to convert from a legal to an illegal type or from a smaller
239 /// to a larger illegal type. i1 is always treated as a legal type because it is
240 /// a fundamental type in IR, and there are many specialized optimizations for
241 /// i1 types.
242 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
243   // TODO: This could be extended to allow vectors. Datalayout changes might be
244   // needed to properly support that.
245   if (!From->isIntegerTy() || !To->isIntegerTy())
246     return false;
247 
248   unsigned FromWidth = From->getPrimitiveSizeInBits();
249   unsigned ToWidth = To->getPrimitiveSizeInBits();
250   return shouldChangeType(FromWidth, ToWidth);
251 }
252 
253 // Return true, if No Signed Wrap should be maintained for I.
254 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
255 // where both B and C should be ConstantInts, results in a constant that does
256 // not overflow. This function only handles the Add and Sub opcodes. For
257 // all other opcodes, the function conservatively returns false.
258 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
259   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
260   if (!OBO || !OBO->hasNoSignedWrap())
261     return false;
262 
263   // We reason about Add and Sub Only.
264   Instruction::BinaryOps Opcode = I.getOpcode();
265   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
266     return false;
267 
268   const APInt *BVal, *CVal;
269   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
270     return false;
271 
272   bool Overflow = false;
273   if (Opcode == Instruction::Add)
274     (void)BVal->sadd_ov(*CVal, Overflow);
275   else
276     (void)BVal->ssub_ov(*CVal, Overflow);
277 
278   return !Overflow;
279 }
280 
281 static bool hasNoUnsignedWrap(BinaryOperator &I) {
282   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
283   return OBO && OBO->hasNoUnsignedWrap();
284 }
285 
286 static bool hasNoSignedWrap(BinaryOperator &I) {
287   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
288   return OBO && OBO->hasNoSignedWrap();
289 }
290 
291 /// Conservatively clears subclassOptionalData after a reassociation or
292 /// commutation. We preserve fast-math flags when applicable as they can be
293 /// preserved.
294 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
295   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
296   if (!FPMO) {
297     I.clearSubclassOptionalData();
298     return;
299   }
300 
301   FastMathFlags FMF = I.getFastMathFlags();
302   I.clearSubclassOptionalData();
303   I.setFastMathFlags(FMF);
304 }
305 
306 /// Combine constant operands of associative operations either before or after a
307 /// cast to eliminate one of the associative operations:
308 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
309 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
310 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
311                                    InstCombinerImpl &IC) {
312   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
313   if (!Cast || !Cast->hasOneUse())
314     return false;
315 
316   // TODO: Enhance logic for other casts and remove this check.
317   auto CastOpcode = Cast->getOpcode();
318   if (CastOpcode != Instruction::ZExt)
319     return false;
320 
321   // TODO: Enhance logic for other BinOps and remove this check.
322   if (!BinOp1->isBitwiseLogicOp())
323     return false;
324 
325   auto AssocOpcode = BinOp1->getOpcode();
326   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
327   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
328     return false;
329 
330   Constant *C1, *C2;
331   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
332       !match(BinOp2->getOperand(1), m_Constant(C2)))
333     return false;
334 
335   // TODO: This assumes a zext cast.
336   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
337   // to the destination type might lose bits.
338 
339   // Fold the constants together in the destination type:
340   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
341   Type *DestTy = C1->getType();
342   Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
343   Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
344   IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
345   IC.replaceOperand(*BinOp1, 1, FoldedC);
346   return true;
347 }
348 
349 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast.
350 // inttoptr ( ptrtoint (x) ) --> x
351 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
352   auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
353   if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) ==
354                       DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
355     auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
356     Type *CastTy = IntToPtr->getDestTy();
357     if (PtrToInt &&
358         CastTy->getPointerAddressSpace() ==
359             PtrToInt->getSrcTy()->getPointerAddressSpace() &&
360         DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) ==
361             DL.getTypeSizeInBits(PtrToInt->getDestTy())) {
362       return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy,
363                                               "", PtrToInt);
364     }
365   }
366   return nullptr;
367 }
368 
369 /// This performs a few simplifications for operators that are associative or
370 /// commutative:
371 ///
372 ///  Commutative operators:
373 ///
374 ///  1. Order operands such that they are listed from right (least complex) to
375 ///     left (most complex).  This puts constants before unary operators before
376 ///     binary operators.
377 ///
378 ///  Associative operators:
379 ///
380 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
381 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
382 ///
383 ///  Associative and commutative operators:
384 ///
385 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
386 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
387 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
388 ///     if C1 and C2 are constants.
389 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
390   Instruction::BinaryOps Opcode = I.getOpcode();
391   bool Changed = false;
392 
393   do {
394     // Order operands such that they are listed from right (least complex) to
395     // left (most complex).  This puts constants before unary operators before
396     // binary operators.
397     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
398         getComplexity(I.getOperand(1)))
399       Changed = !I.swapOperands();
400 
401     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
402     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
403 
404     if (I.isAssociative()) {
405       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
406       if (Op0 && Op0->getOpcode() == Opcode) {
407         Value *A = Op0->getOperand(0);
408         Value *B = Op0->getOperand(1);
409         Value *C = I.getOperand(1);
410 
411         // Does "B op C" simplify?
412         if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
413           // It simplifies to V.  Form "A op V".
414           replaceOperand(I, 0, A);
415           replaceOperand(I, 1, V);
416           bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
417           bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
418 
419           // Conservatively clear all optional flags since they may not be
420           // preserved by the reassociation. Reset nsw/nuw based on the above
421           // analysis.
422           ClearSubclassDataAfterReassociation(I);
423 
424           // Note: this is only valid because SimplifyBinOp doesn't look at
425           // the operands to Op0.
426           if (IsNUW)
427             I.setHasNoUnsignedWrap(true);
428 
429           if (IsNSW)
430             I.setHasNoSignedWrap(true);
431 
432           Changed = true;
433           ++NumReassoc;
434           continue;
435         }
436       }
437 
438       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
439       if (Op1 && Op1->getOpcode() == Opcode) {
440         Value *A = I.getOperand(0);
441         Value *B = Op1->getOperand(0);
442         Value *C = Op1->getOperand(1);
443 
444         // Does "A op B" simplify?
445         if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
446           // It simplifies to V.  Form "V op C".
447           replaceOperand(I, 0, V);
448           replaceOperand(I, 1, C);
449           // Conservatively clear the optional flags, since they may not be
450           // preserved by the reassociation.
451           ClearSubclassDataAfterReassociation(I);
452           Changed = true;
453           ++NumReassoc;
454           continue;
455         }
456       }
457     }
458 
459     if (I.isAssociative() && I.isCommutative()) {
460       if (simplifyAssocCastAssoc(&I, *this)) {
461         Changed = true;
462         ++NumReassoc;
463         continue;
464       }
465 
466       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
467       if (Op0 && Op0->getOpcode() == Opcode) {
468         Value *A = Op0->getOperand(0);
469         Value *B = Op0->getOperand(1);
470         Value *C = I.getOperand(1);
471 
472         // Does "C op A" simplify?
473         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
474           // It simplifies to V.  Form "V op B".
475           replaceOperand(I, 0, V);
476           replaceOperand(I, 1, B);
477           // Conservatively clear the optional flags, since they may not be
478           // preserved by the reassociation.
479           ClearSubclassDataAfterReassociation(I);
480           Changed = true;
481           ++NumReassoc;
482           continue;
483         }
484       }
485 
486       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
487       if (Op1 && Op1->getOpcode() == Opcode) {
488         Value *A = I.getOperand(0);
489         Value *B = Op1->getOperand(0);
490         Value *C = Op1->getOperand(1);
491 
492         // Does "C op A" simplify?
493         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
494           // It simplifies to V.  Form "B op V".
495           replaceOperand(I, 0, B);
496           replaceOperand(I, 1, V);
497           // Conservatively clear the optional flags, since they may not be
498           // preserved by the reassociation.
499           ClearSubclassDataAfterReassociation(I);
500           Changed = true;
501           ++NumReassoc;
502           continue;
503         }
504       }
505 
506       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
507       // if C1 and C2 are constants.
508       Value *A, *B;
509       Constant *C1, *C2;
510       if (Op0 && Op1 &&
511           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
512           match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
513           match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
514         bool IsNUW = hasNoUnsignedWrap(I) &&
515            hasNoUnsignedWrap(*Op0) &&
516            hasNoUnsignedWrap(*Op1);
517          BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
518            BinaryOperator::CreateNUW(Opcode, A, B) :
519            BinaryOperator::Create(Opcode, A, B);
520 
521          if (isa<FPMathOperator>(NewBO)) {
522           FastMathFlags Flags = I.getFastMathFlags();
523           Flags &= Op0->getFastMathFlags();
524           Flags &= Op1->getFastMathFlags();
525           NewBO->setFastMathFlags(Flags);
526         }
527         InsertNewInstWith(NewBO, I);
528         NewBO->takeName(Op1);
529         replaceOperand(I, 0, NewBO);
530         replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
531         // Conservatively clear the optional flags, since they may not be
532         // preserved by the reassociation.
533         ClearSubclassDataAfterReassociation(I);
534         if (IsNUW)
535           I.setHasNoUnsignedWrap(true);
536 
537         Changed = true;
538         continue;
539       }
540     }
541 
542     // No further simplifications.
543     return Changed;
544   } while (true);
545 }
546 
547 /// Return whether "X LOp (Y ROp Z)" is always equal to
548 /// "(X LOp Y) ROp (X LOp Z)".
549 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
550                                      Instruction::BinaryOps ROp) {
551   // X & (Y | Z) <--> (X & Y) | (X & Z)
552   // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
553   if (LOp == Instruction::And)
554     return ROp == Instruction::Or || ROp == Instruction::Xor;
555 
556   // X | (Y & Z) <--> (X | Y) & (X | Z)
557   if (LOp == Instruction::Or)
558     return ROp == Instruction::And;
559 
560   // X * (Y + Z) <--> (X * Y) + (X * Z)
561   // X * (Y - Z) <--> (X * Y) - (X * Z)
562   if (LOp == Instruction::Mul)
563     return ROp == Instruction::Add || ROp == Instruction::Sub;
564 
565   return false;
566 }
567 
568 /// Return whether "(X LOp Y) ROp Z" is always equal to
569 /// "(X ROp Z) LOp (Y ROp Z)".
570 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
571                                      Instruction::BinaryOps ROp) {
572   if (Instruction::isCommutative(ROp))
573     return leftDistributesOverRight(ROp, LOp);
574 
575   // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
576   return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
577 
578   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
579   // but this requires knowing that the addition does not overflow and other
580   // such subtleties.
581 }
582 
583 /// This function returns identity value for given opcode, which can be used to
584 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
585 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
586   if (isa<Constant>(V))
587     return nullptr;
588 
589   return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
590 }
591 
592 /// This function predicates factorization using distributive laws. By default,
593 /// it just returns the 'Op' inputs. But for special-cases like
594 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
595 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
596 /// allow more factorization opportunities.
597 static Instruction::BinaryOps
598 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
599                           Value *&LHS, Value *&RHS) {
600   assert(Op && "Expected a binary operator");
601   LHS = Op->getOperand(0);
602   RHS = Op->getOperand(1);
603   if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
604     Constant *C;
605     if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
606       // X << C --> X * (1 << C)
607       RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
608       return Instruction::Mul;
609     }
610     // TODO: We can add other conversions e.g. shr => div etc.
611   }
612   return Op->getOpcode();
613 }
614 
615 /// This tries to simplify binary operations by factorizing out common terms
616 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
617 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I,
618                                           Instruction::BinaryOps InnerOpcode,
619                                           Value *A, Value *B, Value *C,
620                                           Value *D) {
621   assert(A && B && C && D && "All values must be provided");
622 
623   Value *V = nullptr;
624   Value *SimplifiedInst = nullptr;
625   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
626   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
627 
628   // Does "X op' Y" always equal "Y op' X"?
629   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
630 
631   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
632   if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
633     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
634     // commutative case, "(A op' B) op (C op' A)"?
635     if (A == C || (InnerCommutative && A == D)) {
636       if (A != C)
637         std::swap(C, D);
638       // Consider forming "A op' (B op D)".
639       // If "B op D" simplifies then it can be formed with no cost.
640       V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
641       // If "B op D" doesn't simplify then only go on if both of the existing
642       // operations "A op' B" and "C op' D" will be zapped as no longer used.
643       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
644         V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
645       if (V) {
646         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
647       }
648     }
649 
650   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
651   if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
652     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
653     // commutative case, "(A op' B) op (B op' D)"?
654     if (B == D || (InnerCommutative && B == C)) {
655       if (B != D)
656         std::swap(C, D);
657       // Consider forming "(A op C) op' B".
658       // If "A op C" simplifies then it can be formed with no cost.
659       V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
660 
661       // If "A op C" doesn't simplify then only go on if both of the existing
662       // operations "A op' B" and "C op' D" will be zapped as no longer used.
663       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
664         V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
665       if (V) {
666         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
667       }
668     }
669 
670   if (SimplifiedInst) {
671     ++NumFactor;
672     SimplifiedInst->takeName(&I);
673 
674     // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
675     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
676       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
677         bool HasNSW = false;
678         bool HasNUW = false;
679         if (isa<OverflowingBinaryOperator>(&I)) {
680           HasNSW = I.hasNoSignedWrap();
681           HasNUW = I.hasNoUnsignedWrap();
682         }
683 
684         if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
685           HasNSW &= LOBO->hasNoSignedWrap();
686           HasNUW &= LOBO->hasNoUnsignedWrap();
687         }
688 
689         if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
690           HasNSW &= ROBO->hasNoSignedWrap();
691           HasNUW &= ROBO->hasNoUnsignedWrap();
692         }
693 
694         if (TopLevelOpcode == Instruction::Add &&
695             InnerOpcode == Instruction::Mul) {
696           // We can propagate 'nsw' if we know that
697           //  %Y = mul nsw i16 %X, C
698           //  %Z = add nsw i16 %Y, %X
699           // =>
700           //  %Z = mul nsw i16 %X, C+1
701           //
702           // iff C+1 isn't INT_MIN
703           const APInt *CInt;
704           if (match(V, m_APInt(CInt))) {
705             if (!CInt->isMinSignedValue())
706               BO->setHasNoSignedWrap(HasNSW);
707           }
708 
709           // nuw can be propagated with any constant or nuw value.
710           BO->setHasNoUnsignedWrap(HasNUW);
711         }
712       }
713     }
714   }
715   return SimplifiedInst;
716 }
717 
718 /// This tries to simplify binary operations which some other binary operation
719 /// distributes over either by factorizing out common terms
720 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
721 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
722 /// Returns the simplified value, or null if it didn't simplify.
723 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
724   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
725   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
726   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
727   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
728 
729   {
730     // Factorization.
731     Value *A, *B, *C, *D;
732     Instruction::BinaryOps LHSOpcode, RHSOpcode;
733     if (Op0)
734       LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
735     if (Op1)
736       RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
737 
738     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
739     // a common term.
740     if (Op0 && Op1 && LHSOpcode == RHSOpcode)
741       if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
742         return V;
743 
744     // The instruction has the form "(A op' B) op (C)".  Try to factorize common
745     // term.
746     if (Op0)
747       if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
748         if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
749           return V;
750 
751     // The instruction has the form "(B) op (C op' D)".  Try to factorize common
752     // term.
753     if (Op1)
754       if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
755         if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
756           return V;
757   }
758 
759   // Expansion.
760   if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
761     // The instruction has the form "(A op' B) op C".  See if expanding it out
762     // to "(A op C) op' (B op C)" results in simplifications.
763     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
764     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
765 
766     // Disable the use of undef because it's not safe to distribute undef.
767     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
768     Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
769     Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
770 
771     // Do "A op C" and "B op C" both simplify?
772     if (L && R) {
773       // They do! Return "L op' R".
774       ++NumExpand;
775       C = Builder.CreateBinOp(InnerOpcode, L, R);
776       C->takeName(&I);
777       return C;
778     }
779 
780     // Does "A op C" simplify to the identity value for the inner opcode?
781     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
782       // They do! Return "B op C".
783       ++NumExpand;
784       C = Builder.CreateBinOp(TopLevelOpcode, B, C);
785       C->takeName(&I);
786       return C;
787     }
788 
789     // Does "B op C" simplify to the identity value for the inner opcode?
790     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
791       // They do! Return "A op C".
792       ++NumExpand;
793       C = Builder.CreateBinOp(TopLevelOpcode, A, C);
794       C->takeName(&I);
795       return C;
796     }
797   }
798 
799   if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
800     // The instruction has the form "A op (B op' C)".  See if expanding it out
801     // to "(A op B) op' (A op C)" results in simplifications.
802     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
803     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
804 
805     // Disable the use of undef because it's not safe to distribute undef.
806     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
807     Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
808     Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
809 
810     // Do "A op B" and "A op C" both simplify?
811     if (L && R) {
812       // They do! Return "L op' R".
813       ++NumExpand;
814       A = Builder.CreateBinOp(InnerOpcode, L, R);
815       A->takeName(&I);
816       return A;
817     }
818 
819     // Does "A op B" simplify to the identity value for the inner opcode?
820     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
821       // They do! Return "A op C".
822       ++NumExpand;
823       A = Builder.CreateBinOp(TopLevelOpcode, A, C);
824       A->takeName(&I);
825       return A;
826     }
827 
828     // Does "A op C" simplify to the identity value for the inner opcode?
829     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
830       // They do! Return "A op B".
831       ++NumExpand;
832       A = Builder.CreateBinOp(TopLevelOpcode, A, B);
833       A->takeName(&I);
834       return A;
835     }
836   }
837 
838   return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
839 }
840 
841 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
842                                                         Value *LHS,
843                                                         Value *RHS) {
844   Value *A, *B, *C, *D, *E, *F;
845   bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
846   bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
847   if (!LHSIsSelect && !RHSIsSelect)
848     return nullptr;
849 
850   FastMathFlags FMF;
851   BuilderTy::FastMathFlagGuard Guard(Builder);
852   if (isa<FPMathOperator>(&I)) {
853     FMF = I.getFastMathFlags();
854     Builder.setFastMathFlags(FMF);
855   }
856 
857   Instruction::BinaryOps Opcode = I.getOpcode();
858   SimplifyQuery Q = SQ.getWithInstruction(&I);
859 
860   Value *Cond, *True = nullptr, *False = nullptr;
861   if (LHSIsSelect && RHSIsSelect && A == D) {
862     // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
863     Cond = A;
864     True = SimplifyBinOp(Opcode, B, E, FMF, Q);
865     False = SimplifyBinOp(Opcode, C, F, FMF, Q);
866 
867     if (LHS->hasOneUse() && RHS->hasOneUse()) {
868       if (False && !True)
869         True = Builder.CreateBinOp(Opcode, B, E);
870       else if (True && !False)
871         False = Builder.CreateBinOp(Opcode, C, F);
872     }
873   } else if (LHSIsSelect && LHS->hasOneUse()) {
874     // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
875     Cond = A;
876     True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
877     False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
878   } else if (RHSIsSelect && RHS->hasOneUse()) {
879     // X op (D ? E : F) -> D ? (X op E) : (X op F)
880     Cond = D;
881     True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
882     False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
883   }
884 
885   if (!True || !False)
886     return nullptr;
887 
888   Value *SI = Builder.CreateSelect(Cond, True, False);
889   SI->takeName(&I);
890   return SI;
891 }
892 
893 /// Freely adapt every user of V as-if V was changed to !V.
894 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
895 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) {
896   for (User *U : I->users()) {
897     switch (cast<Instruction>(U)->getOpcode()) {
898     case Instruction::Select: {
899       auto *SI = cast<SelectInst>(U);
900       SI->swapValues();
901       SI->swapProfMetadata();
902       break;
903     }
904     case Instruction::Br:
905       cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
906       break;
907     case Instruction::Xor:
908       replaceInstUsesWith(cast<Instruction>(*U), I);
909       break;
910     default:
911       llvm_unreachable("Got unexpected user - out of sync with "
912                        "canFreelyInvertAllUsersOf() ?");
913     }
914   }
915 }
916 
917 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
918 /// constant zero (which is the 'negate' form).
919 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
920   Value *NegV;
921   if (match(V, m_Neg(m_Value(NegV))))
922     return NegV;
923 
924   // Constants can be considered to be negated values if they can be folded.
925   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
926     return ConstantExpr::getNeg(C);
927 
928   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
929     if (C->getType()->getElementType()->isIntegerTy())
930       return ConstantExpr::getNeg(C);
931 
932   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
933     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
934       Constant *Elt = CV->getAggregateElement(i);
935       if (!Elt)
936         return nullptr;
937 
938       if (isa<UndefValue>(Elt))
939         continue;
940 
941       if (!isa<ConstantInt>(Elt))
942         return nullptr;
943     }
944     return ConstantExpr::getNeg(CV);
945   }
946 
947   // Negate integer vector splats.
948   if (auto *CV = dyn_cast<Constant>(V))
949     if (CV->getType()->isVectorTy() &&
950         CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
951       return ConstantExpr::getNeg(CV);
952 
953   return nullptr;
954 }
955 
956 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
957                                              InstCombiner::BuilderTy &Builder) {
958   if (auto *Cast = dyn_cast<CastInst>(&I))
959     return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
960 
961   if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
962     assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) &&
963            "Expected constant-foldable intrinsic");
964     Intrinsic::ID IID = II->getIntrinsicID();
965     if (II->getNumArgOperands() == 1)
966       return Builder.CreateUnaryIntrinsic(IID, SO);
967 
968     // This works for real binary ops like min/max (where we always expect the
969     // constant operand to be canonicalized as op1) and unary ops with a bonus
970     // constant argument like ctlz/cttz.
971     // TODO: Handle non-commutative binary intrinsics as below for binops.
972     assert(II->getNumArgOperands() == 2 && "Expected binary intrinsic");
973     assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand");
974     return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1));
975   }
976 
977   assert(I.isBinaryOp() && "Unexpected opcode for select folding");
978 
979   // Figure out if the constant is the left or the right argument.
980   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
981   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
982 
983   if (auto *SOC = dyn_cast<Constant>(SO)) {
984     if (ConstIsRHS)
985       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
986     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
987   }
988 
989   Value *Op0 = SO, *Op1 = ConstOperand;
990   if (!ConstIsRHS)
991     std::swap(Op0, Op1);
992 
993   auto *BO = cast<BinaryOperator>(&I);
994   Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
995                                   SO->getName() + ".op");
996   auto *FPInst = dyn_cast<Instruction>(RI);
997   if (FPInst && isa<FPMathOperator>(FPInst))
998     FPInst->copyFastMathFlags(BO);
999   return RI;
1000 }
1001 
1002 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op,
1003                                                 SelectInst *SI) {
1004   // Don't modify shared select instructions.
1005   if (!SI->hasOneUse())
1006     return nullptr;
1007 
1008   Value *TV = SI->getTrueValue();
1009   Value *FV = SI->getFalseValue();
1010   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
1011     return nullptr;
1012 
1013   // Bool selects with constant operands can be folded to logical ops.
1014   if (SI->getType()->isIntOrIntVectorTy(1))
1015     return nullptr;
1016 
1017   // If it's a bitcast involving vectors, make sure it has the same number of
1018   // elements on both sides.
1019   if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
1020     VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
1021     VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
1022 
1023     // Verify that either both or neither are vectors.
1024     if ((SrcTy == nullptr) != (DestTy == nullptr))
1025       return nullptr;
1026 
1027     // If vectors, verify that they have the same number of elements.
1028     if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount())
1029       return nullptr;
1030   }
1031 
1032   // Test if a CmpInst instruction is used exclusively by a select as
1033   // part of a minimum or maximum operation. If so, refrain from doing
1034   // any other folding. This helps out other analyses which understand
1035   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
1036   // and CodeGen. And in this case, at least one of the comparison
1037   // operands has at least one user besides the compare (the select),
1038   // which would often largely negate the benefit of folding anyway.
1039   if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
1040     if (CI->hasOneUse()) {
1041       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1042 
1043       // FIXME: This is a hack to avoid infinite looping with min/max patterns.
1044       //        We have to ensure that vector constants that only differ with
1045       //        undef elements are treated as equivalent.
1046       auto areLooselyEqual = [](Value *A, Value *B) {
1047         if (A == B)
1048           return true;
1049 
1050         // Test for vector constants.
1051         Constant *ConstA, *ConstB;
1052         if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
1053           return false;
1054 
1055         // TODO: Deal with FP constants?
1056         if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
1057           return false;
1058 
1059         // Compare for equality including undefs as equal.
1060         auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
1061         const APInt *C;
1062         return match(Cmp, m_APIntAllowUndef(C)) && C->isOneValue();
1063       };
1064 
1065       if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
1066           (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
1067         return nullptr;
1068     }
1069   }
1070 
1071   Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
1072   Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
1073   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1074 }
1075 
1076 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
1077                                         InstCombiner::BuilderTy &Builder) {
1078   bool ConstIsRHS = isa<Constant>(I->getOperand(1));
1079   Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
1080 
1081   if (auto *InC = dyn_cast<Constant>(InV)) {
1082     if (ConstIsRHS)
1083       return ConstantExpr::get(I->getOpcode(), InC, C);
1084     return ConstantExpr::get(I->getOpcode(), C, InC);
1085   }
1086 
1087   Value *Op0 = InV, *Op1 = C;
1088   if (!ConstIsRHS)
1089     std::swap(Op0, Op1);
1090 
1091   Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo");
1092   auto *FPInst = dyn_cast<Instruction>(RI);
1093   if (FPInst && isa<FPMathOperator>(FPInst))
1094     FPInst->copyFastMathFlags(I);
1095   return RI;
1096 }
1097 
1098 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1099   unsigned NumPHIValues = PN->getNumIncomingValues();
1100   if (NumPHIValues == 0)
1101     return nullptr;
1102 
1103   // We normally only transform phis with a single use.  However, if a PHI has
1104   // multiple uses and they are all the same operation, we can fold *all* of the
1105   // uses into the PHI.
1106   if (!PN->hasOneUse()) {
1107     // Walk the use list for the instruction, comparing them to I.
1108     for (User *U : PN->users()) {
1109       Instruction *UI = cast<Instruction>(U);
1110       if (UI != &I && !I.isIdenticalTo(UI))
1111         return nullptr;
1112     }
1113     // Otherwise, we can replace *all* users with the new PHI we form.
1114   }
1115 
1116   // Check to see if all of the operands of the PHI are simple constants
1117   // (constantint/constantfp/undef).  If there is one non-constant value,
1118   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
1119   // bail out.  We don't do arbitrary constant expressions here because moving
1120   // their computation can be expensive without a cost model.
1121   BasicBlock *NonConstBB = nullptr;
1122   for (unsigned i = 0; i != NumPHIValues; ++i) {
1123     Value *InVal = PN->getIncomingValue(i);
1124     // If I is a freeze instruction, count undef as a non-constant.
1125     if (match(InVal, m_ImmConstant()) &&
1126         (!isa<FreezeInst>(I) || isGuaranteedNotToBeUndefOrPoison(InVal)))
1127       continue;
1128 
1129     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
1130     if (NonConstBB) return nullptr;  // More than one non-const value.
1131 
1132     NonConstBB = PN->getIncomingBlock(i);
1133 
1134     // If the InVal is an invoke at the end of the pred block, then we can't
1135     // insert a computation after it without breaking the edge.
1136     if (isa<InvokeInst>(InVal))
1137       if (cast<Instruction>(InVal)->getParent() == NonConstBB)
1138         return nullptr;
1139 
1140     // If the incoming non-constant value is in I's block, we will remove one
1141     // instruction, but insert another equivalent one, leading to infinite
1142     // instcombine.
1143     if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI))
1144       return nullptr;
1145   }
1146 
1147   // If there is exactly one non-constant value, we can insert a copy of the
1148   // operation in that block.  However, if this is a critical edge, we would be
1149   // inserting the computation on some other paths (e.g. inside a loop).  Only
1150   // do this if the pred block is unconditionally branching into the phi block.
1151   // Also, make sure that the pred block is not dead code.
1152   if (NonConstBB != nullptr) {
1153     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1154     if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB))
1155       return nullptr;
1156   }
1157 
1158   // Okay, we can do the transformation: create the new PHI node.
1159   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1160   InsertNewInstBefore(NewPN, *PN);
1161   NewPN->takeName(PN);
1162 
1163   // If we are going to have to insert a new computation, do so right before the
1164   // predecessor's terminator.
1165   if (NonConstBB)
1166     Builder.SetInsertPoint(NonConstBB->getTerminator());
1167 
1168   // Next, add all of the operands to the PHI.
1169   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1170     // We only currently try to fold the condition of a select when it is a phi,
1171     // not the true/false values.
1172     Value *TrueV = SI->getTrueValue();
1173     Value *FalseV = SI->getFalseValue();
1174     BasicBlock *PhiTransBB = PN->getParent();
1175     for (unsigned i = 0; i != NumPHIValues; ++i) {
1176       BasicBlock *ThisBB = PN->getIncomingBlock(i);
1177       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1178       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1179       Value *InV = nullptr;
1180       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
1181       // even if currently isNullValue gives false.
1182       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1183       // For vector constants, we cannot use isNullValue to fold into
1184       // FalseVInPred versus TrueVInPred. When we have individual nonzero
1185       // elements in the vector, we will incorrectly fold InC to
1186       // `TrueVInPred`.
1187       if (InC && isa<ConstantInt>(InC))
1188         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1189       else {
1190         // Generate the select in the same block as PN's current incoming block.
1191         // Note: ThisBB need not be the NonConstBB because vector constants
1192         // which are constants by definition are handled here.
1193         // FIXME: This can lead to an increase in IR generation because we might
1194         // generate selects for vector constant phi operand, that could not be
1195         // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1196         // non-vector phis, this transformation was always profitable because
1197         // the select would be generated exactly once in the NonConstBB.
1198         Builder.SetInsertPoint(ThisBB->getTerminator());
1199         InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1200                                    FalseVInPred, "phi.sel");
1201       }
1202       NewPN->addIncoming(InV, ThisBB);
1203     }
1204   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1205     Constant *C = cast<Constant>(I.getOperand(1));
1206     for (unsigned i = 0; i != NumPHIValues; ++i) {
1207       Value *InV = nullptr;
1208       if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1209         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1210       else
1211         InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i),
1212                                 C, "phi.cmp");
1213       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1214     }
1215   } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1216     for (unsigned i = 0; i != NumPHIValues; ++i) {
1217       Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1218                                              Builder);
1219       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1220     }
1221   } else if (isa<FreezeInst>(&I)) {
1222     for (unsigned i = 0; i != NumPHIValues; ++i) {
1223       Value *InV;
1224       if (NonConstBB == PN->getIncomingBlock(i))
1225         InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr");
1226       else
1227         InV = PN->getIncomingValue(i);
1228       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1229     }
1230   } else {
1231     CastInst *CI = cast<CastInst>(&I);
1232     Type *RetTy = CI->getType();
1233     for (unsigned i = 0; i != NumPHIValues; ++i) {
1234       Value *InV;
1235       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1236         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1237       else
1238         InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1239                                  I.getType(), "phi.cast");
1240       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1241     }
1242   }
1243 
1244   for (User *U : make_early_inc_range(PN->users())) {
1245     Instruction *User = cast<Instruction>(U);
1246     if (User == &I) continue;
1247     replaceInstUsesWith(*User, NewPN);
1248     eraseInstFromFunction(*User);
1249   }
1250   return replaceInstUsesWith(I, NewPN);
1251 }
1252 
1253 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1254   if (!isa<Constant>(I.getOperand(1)))
1255     return nullptr;
1256 
1257   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1258     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1259       return NewSel;
1260   } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1261     if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1262       return NewPhi;
1263   }
1264   return nullptr;
1265 }
1266 
1267 /// Given a pointer type and a constant offset, determine whether or not there
1268 /// is a sequence of GEP indices into the pointed type that will land us at the
1269 /// specified offset. If so, fill them into NewIndices and return the resultant
1270 /// element type, otherwise return null.
1271 Type *
1272 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t IntOffset,
1273                                       SmallVectorImpl<Value *> &NewIndices) {
1274   Type *Ty = PtrTy->getElementType();
1275   if (!Ty->isSized())
1276     return nullptr;
1277 
1278   APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset);
1279   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset);
1280   if (!Offset.isZero())
1281     return nullptr;
1282 
1283   for (const APInt &Index : Indices)
1284     NewIndices.push_back(Builder.getInt(Index));
1285   return Ty;
1286 }
1287 
1288 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1289   // If this GEP has only 0 indices, it is the same pointer as
1290   // Src. If Src is not a trivial GEP too, don't combine
1291   // the indices.
1292   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1293       !Src.hasOneUse())
1294     return false;
1295   return true;
1296 }
1297 
1298 /// Return a value X such that Val = X * Scale, or null if none.
1299 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1300 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1301   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1302   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1303          Scale.getBitWidth() && "Scale not compatible with value!");
1304 
1305   // If Val is zero or Scale is one then Val = Val * Scale.
1306   if (match(Val, m_Zero()) || Scale == 1) {
1307     NoSignedWrap = true;
1308     return Val;
1309   }
1310 
1311   // If Scale is zero then it does not divide Val.
1312   if (Scale.isMinValue())
1313     return nullptr;
1314 
1315   // Look through chains of multiplications, searching for a constant that is
1316   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1317   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1318   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1319   // down from Val:
1320   //
1321   //     Val = M1 * X          ||   Analysis starts here and works down
1322   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1323   //      M2 =  Z * 4          \/   than one use
1324   //
1325   // Then to modify a term at the bottom:
1326   //
1327   //     Val = M1 * X
1328   //      M1 =  Z * Y          ||   Replaced M2 with Z
1329   //
1330   // Then to work back up correcting nsw flags.
1331 
1332   // Op - the term we are currently analyzing.  Starts at Val then drills down.
1333   // Replaced with its descaled value before exiting from the drill down loop.
1334   Value *Op = Val;
1335 
1336   // Parent - initially null, but after drilling down notes where Op came from.
1337   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1338   // 0'th operand of Val.
1339   std::pair<Instruction *, unsigned> Parent;
1340 
1341   // Set if the transform requires a descaling at deeper levels that doesn't
1342   // overflow.
1343   bool RequireNoSignedWrap = false;
1344 
1345   // Log base 2 of the scale. Negative if not a power of 2.
1346   int32_t logScale = Scale.exactLogBase2();
1347 
1348   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1349     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1350       // If Op is a constant divisible by Scale then descale to the quotient.
1351       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1352       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1353       if (!Remainder.isMinValue())
1354         // Not divisible by Scale.
1355         return nullptr;
1356       // Replace with the quotient in the parent.
1357       Op = ConstantInt::get(CI->getType(), Quotient);
1358       NoSignedWrap = true;
1359       break;
1360     }
1361 
1362     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1363       if (BO->getOpcode() == Instruction::Mul) {
1364         // Multiplication.
1365         NoSignedWrap = BO->hasNoSignedWrap();
1366         if (RequireNoSignedWrap && !NoSignedWrap)
1367           return nullptr;
1368 
1369         // There are three cases for multiplication: multiplication by exactly
1370         // the scale, multiplication by a constant different to the scale, and
1371         // multiplication by something else.
1372         Value *LHS = BO->getOperand(0);
1373         Value *RHS = BO->getOperand(1);
1374 
1375         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1376           // Multiplication by a constant.
1377           if (CI->getValue() == Scale) {
1378             // Multiplication by exactly the scale, replace the multiplication
1379             // by its left-hand side in the parent.
1380             Op = LHS;
1381             break;
1382           }
1383 
1384           // Otherwise drill down into the constant.
1385           if (!Op->hasOneUse())
1386             return nullptr;
1387 
1388           Parent = std::make_pair(BO, 1);
1389           continue;
1390         }
1391 
1392         // Multiplication by something else. Drill down into the left-hand side
1393         // since that's where the reassociate pass puts the good stuff.
1394         if (!Op->hasOneUse())
1395           return nullptr;
1396 
1397         Parent = std::make_pair(BO, 0);
1398         continue;
1399       }
1400 
1401       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1402           isa<ConstantInt>(BO->getOperand(1))) {
1403         // Multiplication by a power of 2.
1404         NoSignedWrap = BO->hasNoSignedWrap();
1405         if (RequireNoSignedWrap && !NoSignedWrap)
1406           return nullptr;
1407 
1408         Value *LHS = BO->getOperand(0);
1409         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1410           getLimitedValue(Scale.getBitWidth());
1411         // Op = LHS << Amt.
1412 
1413         if (Amt == logScale) {
1414           // Multiplication by exactly the scale, replace the multiplication
1415           // by its left-hand side in the parent.
1416           Op = LHS;
1417           break;
1418         }
1419         if (Amt < logScale || !Op->hasOneUse())
1420           return nullptr;
1421 
1422         // Multiplication by more than the scale.  Reduce the multiplying amount
1423         // by the scale in the parent.
1424         Parent = std::make_pair(BO, 1);
1425         Op = ConstantInt::get(BO->getType(), Amt - logScale);
1426         break;
1427       }
1428     }
1429 
1430     if (!Op->hasOneUse())
1431       return nullptr;
1432 
1433     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1434       if (Cast->getOpcode() == Instruction::SExt) {
1435         // Op is sign-extended from a smaller type, descale in the smaller type.
1436         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1437         APInt SmallScale = Scale.trunc(SmallSize);
1438         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1439         // descale Op as (sext Y) * Scale.  In order to have
1440         //   sext (Y * SmallScale) = (sext Y) * Scale
1441         // some conditions need to hold however: SmallScale must sign-extend to
1442         // Scale and the multiplication Y * SmallScale should not overflow.
1443         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1444           // SmallScale does not sign-extend to Scale.
1445           return nullptr;
1446         assert(SmallScale.exactLogBase2() == logScale);
1447         // Require that Y * SmallScale must not overflow.
1448         RequireNoSignedWrap = true;
1449 
1450         // Drill down through the cast.
1451         Parent = std::make_pair(Cast, 0);
1452         Scale = SmallScale;
1453         continue;
1454       }
1455 
1456       if (Cast->getOpcode() == Instruction::Trunc) {
1457         // Op is truncated from a larger type, descale in the larger type.
1458         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1459         //   trunc (Y * sext Scale) = (trunc Y) * Scale
1460         // always holds.  However (trunc Y) * Scale may overflow even if
1461         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1462         // from this point up in the expression (see later).
1463         if (RequireNoSignedWrap)
1464           return nullptr;
1465 
1466         // Drill down through the cast.
1467         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1468         Parent = std::make_pair(Cast, 0);
1469         Scale = Scale.sext(LargeSize);
1470         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1471           logScale = -1;
1472         assert(Scale.exactLogBase2() == logScale);
1473         continue;
1474       }
1475     }
1476 
1477     // Unsupported expression, bail out.
1478     return nullptr;
1479   }
1480 
1481   // If Op is zero then Val = Op * Scale.
1482   if (match(Op, m_Zero())) {
1483     NoSignedWrap = true;
1484     return Op;
1485   }
1486 
1487   // We know that we can successfully descale, so from here on we can safely
1488   // modify the IR.  Op holds the descaled version of the deepest term in the
1489   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1490   // not to overflow.
1491 
1492   if (!Parent.first)
1493     // The expression only had one term.
1494     return Op;
1495 
1496   // Rewrite the parent using the descaled version of its operand.
1497   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1498   assert(Op != Parent.first->getOperand(Parent.second) &&
1499          "Descaling was a no-op?");
1500   replaceOperand(*Parent.first, Parent.second, Op);
1501   Worklist.push(Parent.first);
1502 
1503   // Now work back up the expression correcting nsw flags.  The logic is based
1504   // on the following observation: if X * Y is known not to overflow as a signed
1505   // multiplication, and Y is replaced by a value Z with smaller absolute value,
1506   // then X * Z will not overflow as a signed multiplication either.  As we work
1507   // our way up, having NoSignedWrap 'true' means that the descaled value at the
1508   // current level has strictly smaller absolute value than the original.
1509   Instruction *Ancestor = Parent.first;
1510   do {
1511     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1512       // If the multiplication wasn't nsw then we can't say anything about the
1513       // value of the descaled multiplication, and we have to clear nsw flags
1514       // from this point on up.
1515       bool OpNoSignedWrap = BO->hasNoSignedWrap();
1516       NoSignedWrap &= OpNoSignedWrap;
1517       if (NoSignedWrap != OpNoSignedWrap) {
1518         BO->setHasNoSignedWrap(NoSignedWrap);
1519         Worklist.push(Ancestor);
1520       }
1521     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1522       // The fact that the descaled input to the trunc has smaller absolute
1523       // value than the original input doesn't tell us anything useful about
1524       // the absolute values of the truncations.
1525       NoSignedWrap = false;
1526     }
1527     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1528            "Failed to keep proper track of nsw flags while drilling down?");
1529 
1530     if (Ancestor == Val)
1531       // Got to the top, all done!
1532       return Val;
1533 
1534     // Move up one level in the expression.
1535     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1536     Ancestor = Ancestor->user_back();
1537   } while (true);
1538 }
1539 
1540 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
1541   if (!isa<VectorType>(Inst.getType()))
1542     return nullptr;
1543 
1544   BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1545   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1546   assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1547          cast<VectorType>(Inst.getType())->getElementCount());
1548   assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1549          cast<VectorType>(Inst.getType())->getElementCount());
1550 
1551   // If both operands of the binop are vector concatenations, then perform the
1552   // narrow binop on each pair of the source operands followed by concatenation
1553   // of the results.
1554   Value *L0, *L1, *R0, *R1;
1555   ArrayRef<int> Mask;
1556   if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1557       match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1558       LHS->hasOneUse() && RHS->hasOneUse() &&
1559       cast<ShuffleVectorInst>(LHS)->isConcat() &&
1560       cast<ShuffleVectorInst>(RHS)->isConcat()) {
1561     // This transform does not have the speculative execution constraint as
1562     // below because the shuffle is a concatenation. The new binops are
1563     // operating on exactly the same elements as the existing binop.
1564     // TODO: We could ease the mask requirement to allow different undef lanes,
1565     //       but that requires an analysis of the binop-with-undef output value.
1566     Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1567     if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1568       BO->copyIRFlags(&Inst);
1569     Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1570     if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1571       BO->copyIRFlags(&Inst);
1572     return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1573   }
1574 
1575   // It may not be safe to reorder shuffles and things like div, urem, etc.
1576   // because we may trap when executing those ops on unknown vector elements.
1577   // See PR20059.
1578   if (!isSafeToSpeculativelyExecute(&Inst))
1579     return nullptr;
1580 
1581   auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1582     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1583     if (auto *BO = dyn_cast<BinaryOperator>(XY))
1584       BO->copyIRFlags(&Inst);
1585     return new ShuffleVectorInst(XY, M);
1586   };
1587 
1588   // If both arguments of the binary operation are shuffles that use the same
1589   // mask and shuffle within a single vector, move the shuffle after the binop.
1590   Value *V1, *V2;
1591   if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
1592       match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
1593       V1->getType() == V2->getType() &&
1594       (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1595     // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1596     return createBinOpShuffle(V1, V2, Mask);
1597   }
1598 
1599   // If both arguments of a commutative binop are select-shuffles that use the
1600   // same mask with commuted operands, the shuffles are unnecessary.
1601   if (Inst.isCommutative() &&
1602       match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1603       match(RHS,
1604             m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1605     auto *LShuf = cast<ShuffleVectorInst>(LHS);
1606     auto *RShuf = cast<ShuffleVectorInst>(RHS);
1607     // TODO: Allow shuffles that contain undefs in the mask?
1608     //       That is legal, but it reduces undef knowledge.
1609     // TODO: Allow arbitrary shuffles by shuffling after binop?
1610     //       That might be legal, but we have to deal with poison.
1611     if (LShuf->isSelect() &&
1612         !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
1613         RShuf->isSelect() &&
1614         !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
1615       // Example:
1616       // LHS = shuffle V1, V2, <0, 5, 6, 3>
1617       // RHS = shuffle V2, V1, <0, 5, 6, 3>
1618       // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1619       Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1620       NewBO->copyIRFlags(&Inst);
1621       return NewBO;
1622     }
1623   }
1624 
1625   // If one argument is a shuffle within one vector and the other is a constant,
1626   // try moving the shuffle after the binary operation. This canonicalization
1627   // intends to move shuffles closer to other shuffles and binops closer to
1628   // other binops, so they can be folded. It may also enable demanded elements
1629   // transforms.
1630   Constant *C;
1631   auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
1632   if (InstVTy &&
1633       match(&Inst,
1634             m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
1635                       m_ImmConstant(C))) &&
1636       cast<FixedVectorType>(V1->getType())->getNumElements() <=
1637           InstVTy->getNumElements()) {
1638     assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
1639            "Shuffle should not change scalar type");
1640 
1641     // Find constant NewC that has property:
1642     //   shuffle(NewC, ShMask) = C
1643     // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1644     // reorder is not possible. A 1-to-1 mapping is not required. Example:
1645     // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1646     bool ConstOp1 = isa<Constant>(RHS);
1647     ArrayRef<int> ShMask = Mask;
1648     unsigned SrcVecNumElts =
1649         cast<FixedVectorType>(V1->getType())->getNumElements();
1650     UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1651     SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1652     bool MayChange = true;
1653     unsigned NumElts = InstVTy->getNumElements();
1654     for (unsigned I = 0; I < NumElts; ++I) {
1655       Constant *CElt = C->getAggregateElement(I);
1656       if (ShMask[I] >= 0) {
1657         assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1658         Constant *NewCElt = NewVecC[ShMask[I]];
1659         // Bail out if:
1660         // 1. The constant vector contains a constant expression.
1661         // 2. The shuffle needs an element of the constant vector that can't
1662         //    be mapped to a new constant vector.
1663         // 3. This is a widening shuffle that copies elements of V1 into the
1664         //    extended elements (extending with undef is allowed).
1665         if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1666             I >= SrcVecNumElts) {
1667           MayChange = false;
1668           break;
1669         }
1670         NewVecC[ShMask[I]] = CElt;
1671       }
1672       // If this is a widening shuffle, we must be able to extend with undef
1673       // elements. If the original binop does not produce an undef in the high
1674       // lanes, then this transform is not safe.
1675       // Similarly for undef lanes due to the shuffle mask, we can only
1676       // transform binops that preserve undef.
1677       // TODO: We could shuffle those non-undef constant values into the
1678       //       result by using a constant vector (rather than an undef vector)
1679       //       as operand 1 of the new binop, but that might be too aggressive
1680       //       for target-independent shuffle creation.
1681       if (I >= SrcVecNumElts || ShMask[I] < 0) {
1682         Constant *MaybeUndef =
1683             ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1684                      : ConstantExpr::get(Opcode, CElt, UndefScalar);
1685         if (!match(MaybeUndef, m_Undef())) {
1686           MayChange = false;
1687           break;
1688         }
1689       }
1690     }
1691     if (MayChange) {
1692       Constant *NewC = ConstantVector::get(NewVecC);
1693       // It may not be safe to execute a binop on a vector with undef elements
1694       // because the entire instruction can be folded to undef or create poison
1695       // that did not exist in the original code.
1696       if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1697         NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1698 
1699       // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1700       // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1701       Value *NewLHS = ConstOp1 ? V1 : NewC;
1702       Value *NewRHS = ConstOp1 ? NewC : V1;
1703       return createBinOpShuffle(NewLHS, NewRHS, Mask);
1704     }
1705   }
1706 
1707   // Try to reassociate to sink a splat shuffle after a binary operation.
1708   if (Inst.isAssociative() && Inst.isCommutative()) {
1709     // Canonicalize shuffle operand as LHS.
1710     if (isa<ShuffleVectorInst>(RHS))
1711       std::swap(LHS, RHS);
1712 
1713     Value *X;
1714     ArrayRef<int> MaskC;
1715     int SplatIndex;
1716     BinaryOperator *BO;
1717     if (!match(LHS,
1718                m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
1719         !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1720         X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) ||
1721         BO->getOpcode() != Opcode)
1722       return nullptr;
1723 
1724     // FIXME: This may not be safe if the analysis allows undef elements. By
1725     //        moving 'Y' before the splat shuffle, we are implicitly assuming
1726     //        that it is not undef/poison at the splat index.
1727     Value *Y, *OtherOp;
1728     if (isSplatValue(BO->getOperand(0), SplatIndex)) {
1729       Y = BO->getOperand(0);
1730       OtherOp = BO->getOperand(1);
1731     } else if (isSplatValue(BO->getOperand(1), SplatIndex)) {
1732       Y = BO->getOperand(1);
1733       OtherOp = BO->getOperand(0);
1734     } else {
1735       return nullptr;
1736     }
1737 
1738     // X and Y are splatted values, so perform the binary operation on those
1739     // values followed by a splat followed by the 2nd binary operation:
1740     // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1741     Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1742     SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1743     Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
1744     Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1745 
1746     // Intersect FMF on both new binops. Other (poison-generating) flags are
1747     // dropped to be safe.
1748     if (isa<FPMathOperator>(R)) {
1749       R->copyFastMathFlags(&Inst);
1750       R->andIRFlags(BO);
1751     }
1752     if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1753       NewInstBO->copyIRFlags(R);
1754     return R;
1755   }
1756 
1757   return nullptr;
1758 }
1759 
1760 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1761 /// of a value. This requires a potentially expensive known bits check to make
1762 /// sure the narrow op does not overflow.
1763 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
1764   // We need at least one extended operand.
1765   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1766 
1767   // If this is a sub, we swap the operands since we always want an extension
1768   // on the RHS. The LHS can be an extension or a constant.
1769   if (BO.getOpcode() == Instruction::Sub)
1770     std::swap(Op0, Op1);
1771 
1772   Value *X;
1773   bool IsSext = match(Op0, m_SExt(m_Value(X)));
1774   if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1775     return nullptr;
1776 
1777   // If both operands are the same extension from the same source type and we
1778   // can eliminate at least one (hasOneUse), this might work.
1779   CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1780   Value *Y;
1781   if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1782         cast<Operator>(Op1)->getOpcode() == CastOpc &&
1783         (Op0->hasOneUse() || Op1->hasOneUse()))) {
1784     // If that did not match, see if we have a suitable constant operand.
1785     // Truncating and extending must produce the same constant.
1786     Constant *WideC;
1787     if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1788       return nullptr;
1789     Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1790     if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1791       return nullptr;
1792     Y = NarrowC;
1793   }
1794 
1795   // Swap back now that we found our operands.
1796   if (BO.getOpcode() == Instruction::Sub)
1797     std::swap(X, Y);
1798 
1799   // Both operands have narrow versions. Last step: the math must not overflow
1800   // in the narrow width.
1801   if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1802     return nullptr;
1803 
1804   // bo (ext X), (ext Y) --> ext (bo X, Y)
1805   // bo (ext X), C       --> ext (bo X, C')
1806   Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1807   if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1808     if (IsSext)
1809       NewBinOp->setHasNoSignedWrap();
1810     else
1811       NewBinOp->setHasNoUnsignedWrap();
1812   }
1813   return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1814 }
1815 
1816 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1817   // At least one GEP must be inbounds.
1818   if (!GEP1.isInBounds() && !GEP2.isInBounds())
1819     return false;
1820 
1821   return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1822          (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1823 }
1824 
1825 /// Thread a GEP operation with constant indices through the constant true/false
1826 /// arms of a select.
1827 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1828                                   InstCombiner::BuilderTy &Builder) {
1829   if (!GEP.hasAllConstantIndices())
1830     return nullptr;
1831 
1832   Instruction *Sel;
1833   Value *Cond;
1834   Constant *TrueC, *FalseC;
1835   if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1836       !match(Sel,
1837              m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1838     return nullptr;
1839 
1840   // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1841   // Propagate 'inbounds' and metadata from existing instructions.
1842   // Note: using IRBuilder to create the constants for efficiency.
1843   SmallVector<Value *, 4> IndexC(GEP.indices());
1844   bool IsInBounds = GEP.isInBounds();
1845   Type *Ty = GEP.getSourceElementType();
1846   Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC)
1847                                : Builder.CreateGEP(Ty, TrueC, IndexC);
1848   Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC)
1849                                 : Builder.CreateGEP(Ty, FalseC, IndexC);
1850   return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1851 }
1852 
1853 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1854   SmallVector<Value *, 8> Ops(GEP.operands());
1855   Type *GEPType = GEP.getType();
1856   Type *GEPEltType = GEP.getSourceElementType();
1857   bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
1858   if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
1859     return replaceInstUsesWith(GEP, V);
1860 
1861   // For vector geps, use the generic demanded vector support.
1862   // Skip if GEP return type is scalable. The number of elements is unknown at
1863   // compile-time.
1864   if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
1865     auto VWidth = GEPFVTy->getNumElements();
1866     APInt UndefElts(VWidth, 0);
1867     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1868     if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
1869                                               UndefElts)) {
1870       if (V != &GEP)
1871         return replaceInstUsesWith(GEP, V);
1872       return &GEP;
1873     }
1874 
1875     // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
1876     // possible (decide on canonical form for pointer broadcast), 3) exploit
1877     // undef elements to decrease demanded bits
1878   }
1879 
1880   Value *PtrOp = GEP.getOperand(0);
1881 
1882   // Eliminate unneeded casts for indices, and replace indices which displace
1883   // by multiples of a zero size type with zero.
1884   bool MadeChange = false;
1885 
1886   // Index width may not be the same width as pointer width.
1887   // Data layout chooses the right type based on supported integer types.
1888   Type *NewScalarIndexTy =
1889       DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1890 
1891   gep_type_iterator GTI = gep_type_begin(GEP);
1892   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1893        ++I, ++GTI) {
1894     // Skip indices into struct types.
1895     if (GTI.isStruct())
1896       continue;
1897 
1898     Type *IndexTy = (*I)->getType();
1899     Type *NewIndexType =
1900         IndexTy->isVectorTy()
1901             ? VectorType::get(NewScalarIndexTy,
1902                               cast<VectorType>(IndexTy)->getElementCount())
1903             : NewScalarIndexTy;
1904 
1905     // If the element type has zero size then any index over it is equivalent
1906     // to an index of zero, so replace it with zero if it is not zero already.
1907     Type *EltTy = GTI.getIndexedType();
1908     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
1909       if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
1910         *I = Constant::getNullValue(NewIndexType);
1911         MadeChange = true;
1912       }
1913 
1914     if (IndexTy != NewIndexType) {
1915       // If we are using a wider index than needed for this platform, shrink
1916       // it to what we need.  If narrower, sign-extend it to what we need.
1917       // This explicit cast can make subsequent optimizations more obvious.
1918       *I = Builder.CreateIntCast(*I, NewIndexType, true);
1919       MadeChange = true;
1920     }
1921   }
1922   if (MadeChange)
1923     return &GEP;
1924 
1925   // Check to see if the inputs to the PHI node are getelementptr instructions.
1926   if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1927     auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1928     if (!Op1)
1929       return nullptr;
1930 
1931     // Don't fold a GEP into itself through a PHI node. This can only happen
1932     // through the back-edge of a loop. Folding a GEP into itself means that
1933     // the value of the previous iteration needs to be stored in the meantime,
1934     // thus requiring an additional register variable to be live, but not
1935     // actually achieving anything (the GEP still needs to be executed once per
1936     // loop iteration).
1937     if (Op1 == &GEP)
1938       return nullptr;
1939 
1940     int DI = -1;
1941 
1942     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1943       auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1944       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1945         return nullptr;
1946 
1947       // As for Op1 above, don't try to fold a GEP into itself.
1948       if (Op2 == &GEP)
1949         return nullptr;
1950 
1951       // Keep track of the type as we walk the GEP.
1952       Type *CurTy = nullptr;
1953 
1954       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1955         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1956           return nullptr;
1957 
1958         if (Op1->getOperand(J) != Op2->getOperand(J)) {
1959           if (DI == -1) {
1960             // We have not seen any differences yet in the GEPs feeding the
1961             // PHI yet, so we record this one if it is allowed to be a
1962             // variable.
1963 
1964             // The first two arguments can vary for any GEP, the rest have to be
1965             // static for struct slots
1966             if (J > 1) {
1967               assert(CurTy && "No current type?");
1968               if (CurTy->isStructTy())
1969                 return nullptr;
1970             }
1971 
1972             DI = J;
1973           } else {
1974             // The GEP is different by more than one input. While this could be
1975             // extended to support GEPs that vary by more than one variable it
1976             // doesn't make sense since it greatly increases the complexity and
1977             // would result in an R+R+R addressing mode which no backend
1978             // directly supports and would need to be broken into several
1979             // simpler instructions anyway.
1980             return nullptr;
1981           }
1982         }
1983 
1984         // Sink down a layer of the type for the next iteration.
1985         if (J > 0) {
1986           if (J == 1) {
1987             CurTy = Op1->getSourceElementType();
1988           } else {
1989             CurTy =
1990                 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
1991           }
1992         }
1993       }
1994     }
1995 
1996     // If not all GEPs are identical we'll have to create a new PHI node.
1997     // Check that the old PHI node has only one use so that it will get
1998     // removed.
1999     if (DI != -1 && !PN->hasOneUse())
2000       return nullptr;
2001 
2002     auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2003     if (DI == -1) {
2004       // All the GEPs feeding the PHI are identical. Clone one down into our
2005       // BB so that it can be merged with the current GEP.
2006     } else {
2007       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
2008       // into the current block so it can be merged, and create a new PHI to
2009       // set that index.
2010       PHINode *NewPN;
2011       {
2012         IRBuilderBase::InsertPointGuard Guard(Builder);
2013         Builder.SetInsertPoint(PN);
2014         NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
2015                                   PN->getNumOperands());
2016       }
2017 
2018       for (auto &I : PN->operands())
2019         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
2020                            PN->getIncomingBlock(I));
2021 
2022       NewGEP->setOperand(DI, NewPN);
2023     }
2024 
2025     GEP.getParent()->getInstList().insert(
2026         GEP.getParent()->getFirstInsertionPt(), NewGEP);
2027     replaceOperand(GEP, 0, NewGEP);
2028     PtrOp = NewGEP;
2029   }
2030 
2031   // Combine Indices - If the source pointer to this getelementptr instruction
2032   // is a getelementptr instruction, combine the indices of the two
2033   // getelementptr instructions into a single instruction.
2034   if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
2035     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2036       return nullptr;
2037 
2038     if (Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
2039         Src->hasOneUse()) {
2040       Value *GO1 = GEP.getOperand(1);
2041       Value *SO1 = Src->getOperand(1);
2042 
2043       if (LI) {
2044         // Try to reassociate loop invariant GEP chains to enable LICM.
2045         if (Loop *L = LI->getLoopFor(GEP.getParent())) {
2046           // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
2047           // invariant: this breaks the dependence between GEPs and allows LICM
2048           // to hoist the invariant part out of the loop.
2049           if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
2050             // We have to be careful here.
2051             // We have something like:
2052             //  %src = getelementptr <ty>, <ty>* %base, <ty> %idx
2053             //  %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
2054             // If we just swap idx & idx2 then we could inadvertantly
2055             // change %src from a vector to a scalar, or vice versa.
2056             // Cases:
2057             //  1) %base a scalar & idx a scalar & idx2 a vector
2058             //      => Swapping idx & idx2 turns %src into a vector type.
2059             //  2) %base a scalar & idx a vector & idx2 a scalar
2060             //      => Swapping idx & idx2 turns %src in a scalar type
2061             //  3) %base, %idx, and %idx2 are scalars
2062             //      => %src & %gep are scalars
2063             //      => swapping idx & idx2 is safe
2064             //  4) %base a vector
2065             //      => %src is a vector
2066             //      => swapping idx & idx2 is safe.
2067             auto *SO0 = Src->getOperand(0);
2068             auto *SO0Ty = SO0->getType();
2069             if (!isa<VectorType>(GEPType) || // case 3
2070                 isa<VectorType>(SO0Ty)) {    // case 4
2071               Src->setOperand(1, GO1);
2072               GEP.setOperand(1, SO1);
2073               return &GEP;
2074             } else {
2075               // Case 1 or 2
2076               // -- have to recreate %src & %gep
2077               // put NewSrc at same location as %src
2078               Builder.SetInsertPoint(cast<Instruction>(PtrOp));
2079               Value *NewSrc =
2080                   Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName());
2081               // Propagate 'inbounds' if the new source was not constant-folded.
2082               if (auto *NewSrcGEPI = dyn_cast<GetElementPtrInst>(NewSrc))
2083                 NewSrcGEPI->setIsInBounds(Src->isInBounds());
2084               GetElementPtrInst *NewGEP =
2085                   GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
2086               NewGEP->setIsInBounds(GEP.isInBounds());
2087               return NewGEP;
2088             }
2089           }
2090         }
2091       }
2092     }
2093 
2094     // Note that if our source is a gep chain itself then we wait for that
2095     // chain to be resolved before we perform this transformation.  This
2096     // avoids us creating a TON of code in some cases.
2097     if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
2098       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
2099         return nullptr;   // Wait until our source is folded to completion.
2100 
2101     SmallVector<Value*, 8> Indices;
2102 
2103     // Find out whether the last index in the source GEP is a sequential idx.
2104     bool EndsWithSequential = false;
2105     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2106          I != E; ++I)
2107       EndsWithSequential = I.isSequential();
2108 
2109     // Can we combine the two pointer arithmetics offsets?
2110     if (EndsWithSequential) {
2111       // Replace: gep (gep %P, long B), long A, ...
2112       // With:    T = long A+B; gep %P, T, ...
2113       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2114       Value *GO1 = GEP.getOperand(1);
2115 
2116       // If they aren't the same type, then the input hasn't been processed
2117       // by the loop above yet (which canonicalizes sequential index types to
2118       // intptr_t).  Just avoid transforming this until the input has been
2119       // normalized.
2120       if (SO1->getType() != GO1->getType())
2121         return nullptr;
2122 
2123       Value *Sum =
2124           SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2125       // Only do the combine when we are sure the cost after the
2126       // merge is never more than that before the merge.
2127       if (Sum == nullptr)
2128         return nullptr;
2129 
2130       // Update the GEP in place if possible.
2131       if (Src->getNumOperands() == 2) {
2132         GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2133         replaceOperand(GEP, 0, Src->getOperand(0));
2134         replaceOperand(GEP, 1, Sum);
2135         return &GEP;
2136       }
2137       Indices.append(Src->op_begin()+1, Src->op_end()-1);
2138       Indices.push_back(Sum);
2139       Indices.append(GEP.op_begin()+2, GEP.op_end());
2140     } else if (isa<Constant>(*GEP.idx_begin()) &&
2141                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2142                Src->getNumOperands() != 1) {
2143       // Otherwise we can do the fold if the first index of the GEP is a zero
2144       Indices.append(Src->op_begin()+1, Src->op_end());
2145       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2146     }
2147 
2148     if (!Indices.empty())
2149       return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2150                  ? GetElementPtrInst::CreateInBounds(
2151                        Src->getSourceElementType(), Src->getOperand(0), Indices,
2152                        GEP.getName())
2153                  : GetElementPtrInst::Create(Src->getSourceElementType(),
2154                                              Src->getOperand(0), Indices,
2155                                              GEP.getName());
2156   }
2157 
2158   // Skip if GEP source element type is scalable. The type alloc size is unknown
2159   // at compile-time.
2160   if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2161     unsigned AS = GEP.getPointerAddressSpace();
2162     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2163         DL.getIndexSizeInBits(AS)) {
2164       uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2165 
2166       bool Matched = false;
2167       uint64_t C;
2168       Value *V = nullptr;
2169       if (TyAllocSize == 1) {
2170         V = GEP.getOperand(1);
2171         Matched = true;
2172       } else if (match(GEP.getOperand(1),
2173                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
2174         if (TyAllocSize == 1ULL << C)
2175           Matched = true;
2176       } else if (match(GEP.getOperand(1),
2177                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2178         if (TyAllocSize == C)
2179           Matched = true;
2180       }
2181 
2182       // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but
2183       // only if both point to the same underlying object (otherwise provenance
2184       // is not necessarily retained).
2185       Value *Y;
2186       Value *X = GEP.getOperand(0);
2187       if (Matched &&
2188           match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) &&
2189           getUnderlyingObject(X) == getUnderlyingObject(Y))
2190         return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2191     }
2192   }
2193 
2194   // We do not handle pointer-vector geps here.
2195   if (GEPType->isVectorTy())
2196     return nullptr;
2197 
2198   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2199   Value *StrippedPtr = PtrOp->stripPointerCasts();
2200   PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2201 
2202   if (StrippedPtr != PtrOp) {
2203     bool HasZeroPointerIndex = false;
2204     Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
2205 
2206     if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2207       HasZeroPointerIndex = C->isZero();
2208 
2209     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2210     // into     : GEP [10 x i8]* X, i32 0, ...
2211     //
2212     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2213     //           into     : GEP i8* X, ...
2214     //
2215     // This occurs when the program declares an array extern like "int X[];"
2216     if (HasZeroPointerIndex) {
2217       if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2218         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2219         if (CATy->getElementType() == StrippedPtrEltTy) {
2220           // -> GEP i8* X, ...
2221           SmallVector<Value *, 8> Idx(drop_begin(GEP.indices()));
2222           GetElementPtrInst *Res = GetElementPtrInst::Create(
2223               StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2224           Res->setIsInBounds(GEP.isInBounds());
2225           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2226             return Res;
2227           // Insert Res, and create an addrspacecast.
2228           // e.g.,
2229           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2230           // ->
2231           // %0 = GEP i8 addrspace(1)* X, ...
2232           // addrspacecast i8 addrspace(1)* %0 to i8*
2233           return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2234         }
2235 
2236         if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2237           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2238           if (CATy->getElementType() == XATy->getElementType()) {
2239             // -> GEP [10 x i8]* X, i32 0, ...
2240             // At this point, we know that the cast source type is a pointer
2241             // to an array of the same type as the destination pointer
2242             // array.  Because the array type is never stepped over (there
2243             // is a leading zero) we can fold the cast into this GEP.
2244             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2245               GEP.setSourceElementType(XATy);
2246               return replaceOperand(GEP, 0, StrippedPtr);
2247             }
2248             // Cannot replace the base pointer directly because StrippedPtr's
2249             // address space is different. Instead, create a new GEP followed by
2250             // an addrspacecast.
2251             // e.g.,
2252             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2253             //   i32 0, ...
2254             // ->
2255             // %0 = GEP [10 x i8] addrspace(1)* X, ...
2256             // addrspacecast i8 addrspace(1)* %0 to i8*
2257             SmallVector<Value *, 8> Idx(GEP.indices());
2258             Value *NewGEP =
2259                 GEP.isInBounds()
2260                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2261                                                 Idx, GEP.getName())
2262                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2263                                         GEP.getName());
2264             return new AddrSpaceCastInst(NewGEP, GEPType);
2265           }
2266         }
2267       }
2268     } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
2269       // Skip if GEP source element type is scalable. The type alloc size is
2270       // unknown at compile-time.
2271       // Transform things like: %t = getelementptr i32*
2272       // bitcast ([2 x i32]* %str to i32*), i32 %V into:  %t1 = getelementptr [2
2273       // x i32]* %str, i32 0, i32 %V; bitcast
2274       if (StrippedPtrEltTy->isArrayTy() &&
2275           DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2276               DL.getTypeAllocSize(GEPEltType)) {
2277         Type *IdxType = DL.getIndexType(GEPType);
2278         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2279         Value *NewGEP =
2280             GEP.isInBounds()
2281                 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2282                                             GEP.getName())
2283                 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2284                                     GEP.getName());
2285 
2286         // V and GEP are both pointer types --> BitCast
2287         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2288       }
2289 
2290       // Transform things like:
2291       // %V = mul i64 %N, 4
2292       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2293       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
2294       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2295         // Check that changing the type amounts to dividing the index by a scale
2296         // factor.
2297         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2298         uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
2299         if (ResSize && SrcSize % ResSize == 0) {
2300           Value *Idx = GEP.getOperand(1);
2301           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2302           uint64_t Scale = SrcSize / ResSize;
2303 
2304           // Earlier transforms ensure that the index has the right type
2305           // according to Data Layout, which considerably simplifies the
2306           // logic by eliminating implicit casts.
2307           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2308                  "Index type does not match the Data Layout preferences");
2309 
2310           bool NSW;
2311           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2312             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2313             // If the multiplication NewIdx * Scale may overflow then the new
2314             // GEP may not be "inbounds".
2315             Value *NewGEP =
2316                 GEP.isInBounds() && NSW
2317                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2318                                                 NewIdx, GEP.getName())
2319                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2320                                         GEP.getName());
2321 
2322             // The NewGEP must be pointer typed, so must the old one -> BitCast
2323             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2324                                                                  GEPType);
2325           }
2326         }
2327       }
2328 
2329       // Similarly, transform things like:
2330       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2331       //   (where tmp = 8*tmp2) into:
2332       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2333       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2334           StrippedPtrEltTy->isArrayTy()) {
2335         // Check that changing to the array element type amounts to dividing the
2336         // index by a scale factor.
2337         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2338         uint64_t ArrayEltSize =
2339             DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
2340                 .getFixedSize();
2341         if (ResSize && ArrayEltSize % ResSize == 0) {
2342           Value *Idx = GEP.getOperand(1);
2343           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2344           uint64_t Scale = ArrayEltSize / ResSize;
2345 
2346           // Earlier transforms ensure that the index has the right type
2347           // according to the Data Layout, which considerably simplifies
2348           // the logic by eliminating implicit casts.
2349           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2350                  "Index type does not match the Data Layout preferences");
2351 
2352           bool NSW;
2353           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2354             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2355             // If the multiplication NewIdx * Scale may overflow then the new
2356             // GEP may not be "inbounds".
2357             Type *IndTy = DL.getIndexType(GEPType);
2358             Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2359 
2360             Value *NewGEP =
2361                 GEP.isInBounds() && NSW
2362                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2363                                                 Off, GEP.getName())
2364                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2365                                         GEP.getName());
2366             // The NewGEP must be pointer typed, so must the old one -> BitCast
2367             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2368                                                                  GEPType);
2369           }
2370         }
2371       }
2372     }
2373   }
2374 
2375   // addrspacecast between types is canonicalized as a bitcast, then an
2376   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2377   // through the addrspacecast.
2378   Value *ASCStrippedPtrOp = PtrOp;
2379   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2380     //   X = bitcast A addrspace(1)* to B addrspace(1)*
2381     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2382     //   Z = gep Y, <...constant indices...>
2383     // Into an addrspacecasted GEP of the struct.
2384     if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2385       ASCStrippedPtrOp = BC;
2386   }
2387 
2388   if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2389     Value *SrcOp = BCI->getOperand(0);
2390     PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2391     Type *SrcEltType = SrcType->getElementType();
2392 
2393     // GEP directly using the source operand if this GEP is accessing an element
2394     // of a bitcasted pointer to vector or array of the same dimensions:
2395     // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2396     // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2397     auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2398                                           const DataLayout &DL) {
2399       auto *VecVTy = cast<FixedVectorType>(VecTy);
2400       return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
2401              ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
2402              DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2403     };
2404     if (GEP.getNumOperands() == 3 &&
2405         ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) &&
2406           areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2407          (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() &&
2408           areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2409 
2410       // Create a new GEP here, as using `setOperand()` followed by
2411       // `setSourceElementType()` won't actually update the type of the
2412       // existing GEP Value. Causing issues if this Value is accessed when
2413       // constructing an AddrSpaceCastInst
2414       Value *NGEP =
2415           GEP.isInBounds()
2416               ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
2417               : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
2418       NGEP->takeName(&GEP);
2419 
2420       // Preserve GEP address space to satisfy users
2421       if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2422         return new AddrSpaceCastInst(NGEP, GEPType);
2423 
2424       return replaceInstUsesWith(GEP, NGEP);
2425     }
2426 
2427     // See if we can simplify:
2428     //   X = bitcast A* to B*
2429     //   Y = gep X, <...constant indices...>
2430     // into a gep of the original struct. This is important for SROA and alias
2431     // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2432     unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2433     APInt Offset(OffsetBits, 0);
2434 
2435     // If the bitcast argument is an allocation, The bitcast is for convertion
2436     // to actual type of allocation. Removing such bitcasts, results in having
2437     // GEPs with i8* base and pure byte offsets. That means GEP is not aware of
2438     // struct or array hierarchy.
2439     // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have
2440     // a better chance to succeed.
2441     if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) &&
2442         !isAllocationFn(SrcOp, &TLI)) {
2443       // If this GEP instruction doesn't move the pointer, just replace the GEP
2444       // with a bitcast of the real input to the dest type.
2445       if (!Offset) {
2446         // If the bitcast is of an allocation, and the allocation will be
2447         // converted to match the type of the cast, don't touch this.
2448         if (isa<AllocaInst>(SrcOp)) {
2449           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2450           if (Instruction *I = visitBitCast(*BCI)) {
2451             if (I != BCI) {
2452               I->takeName(BCI);
2453               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2454               replaceInstUsesWith(*BCI, I);
2455             }
2456             return &GEP;
2457           }
2458         }
2459 
2460         if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2461           return new AddrSpaceCastInst(SrcOp, GEPType);
2462         return new BitCastInst(SrcOp, GEPType);
2463       }
2464 
2465       // Otherwise, if the offset is non-zero, we need to find out if there is a
2466       // field at Offset in 'A's type.  If so, we can pull the cast through the
2467       // GEP.
2468       SmallVector<Value*, 8> NewIndices;
2469       if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2470         Value *NGEP =
2471             GEP.isInBounds()
2472                 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2473                 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2474 
2475         if (NGEP->getType() == GEPType)
2476           return replaceInstUsesWith(GEP, NGEP);
2477         NGEP->takeName(&GEP);
2478 
2479         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2480           return new AddrSpaceCastInst(NGEP, GEPType);
2481         return new BitCastInst(NGEP, GEPType);
2482       }
2483     }
2484   }
2485 
2486   if (!GEP.isInBounds()) {
2487     unsigned IdxWidth =
2488         DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2489     APInt BasePtrOffset(IdxWidth, 0);
2490     Value *UnderlyingPtrOp =
2491             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2492                                                              BasePtrOffset);
2493     if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2494       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2495           BasePtrOffset.isNonNegative()) {
2496         APInt AllocSize(
2497             IdxWidth,
2498             DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
2499         if (BasePtrOffset.ule(AllocSize)) {
2500           return GetElementPtrInst::CreateInBounds(
2501               GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
2502               GEP.getName());
2503         }
2504       }
2505     }
2506   }
2507 
2508   if (Instruction *R = foldSelectGEP(GEP, Builder))
2509     return R;
2510 
2511   return nullptr;
2512 }
2513 
2514 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
2515                                          Instruction *AI) {
2516   if (isa<ConstantPointerNull>(V))
2517     return true;
2518   if (auto *LI = dyn_cast<LoadInst>(V))
2519     return isa<GlobalVariable>(LI->getPointerOperand());
2520   // Two distinct allocations will never be equal.
2521   // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2522   // through bitcasts of V can cause
2523   // the result statement below to be true, even when AI and V (ex:
2524   // i8* ->i32* ->i8* of AI) are the same allocations.
2525   return isAllocLikeFn(V, TLI) && V != AI;
2526 }
2527 
2528 static bool isAllocSiteRemovable(Instruction *AI,
2529                                  SmallVectorImpl<WeakTrackingVH> &Users,
2530                                  const TargetLibraryInfo *TLI) {
2531   SmallVector<Instruction*, 4> Worklist;
2532   Worklist.push_back(AI);
2533 
2534   do {
2535     Instruction *PI = Worklist.pop_back_val();
2536     for (User *U : PI->users()) {
2537       Instruction *I = cast<Instruction>(U);
2538       switch (I->getOpcode()) {
2539       default:
2540         // Give up the moment we see something we can't handle.
2541         return false;
2542 
2543       case Instruction::AddrSpaceCast:
2544       case Instruction::BitCast:
2545       case Instruction::GetElementPtr:
2546         Users.emplace_back(I);
2547         Worklist.push_back(I);
2548         continue;
2549 
2550       case Instruction::ICmp: {
2551         ICmpInst *ICI = cast<ICmpInst>(I);
2552         // We can fold eq/ne comparisons with null to false/true, respectively.
2553         // We also fold comparisons in some conditions provided the alloc has
2554         // not escaped (see isNeverEqualToUnescapedAlloc).
2555         if (!ICI->isEquality())
2556           return false;
2557         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2558         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2559           return false;
2560         Users.emplace_back(I);
2561         continue;
2562       }
2563 
2564       case Instruction::Call:
2565         // Ignore no-op and store intrinsics.
2566         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2567           switch (II->getIntrinsicID()) {
2568           default:
2569             return false;
2570 
2571           case Intrinsic::memmove:
2572           case Intrinsic::memcpy:
2573           case Intrinsic::memset: {
2574             MemIntrinsic *MI = cast<MemIntrinsic>(II);
2575             if (MI->isVolatile() || MI->getRawDest() != PI)
2576               return false;
2577             LLVM_FALLTHROUGH;
2578           }
2579           case Intrinsic::assume:
2580           case Intrinsic::invariant_start:
2581           case Intrinsic::invariant_end:
2582           case Intrinsic::lifetime_start:
2583           case Intrinsic::lifetime_end:
2584           case Intrinsic::objectsize:
2585             Users.emplace_back(I);
2586             continue;
2587           case Intrinsic::launder_invariant_group:
2588           case Intrinsic::strip_invariant_group:
2589             Users.emplace_back(I);
2590             Worklist.push_back(I);
2591             continue;
2592           }
2593         }
2594 
2595         if (isFreeCall(I, TLI)) {
2596           Users.emplace_back(I);
2597           continue;
2598         }
2599 
2600         if (isReallocLikeFn(I, TLI, true)) {
2601           Users.emplace_back(I);
2602           Worklist.push_back(I);
2603           continue;
2604         }
2605 
2606         return false;
2607 
2608       case Instruction::Store: {
2609         StoreInst *SI = cast<StoreInst>(I);
2610         if (SI->isVolatile() || SI->getPointerOperand() != PI)
2611           return false;
2612         Users.emplace_back(I);
2613         continue;
2614       }
2615       }
2616       llvm_unreachable("missing a return?");
2617     }
2618   } while (!Worklist.empty());
2619   return true;
2620 }
2621 
2622 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
2623   // If we have a malloc call which is only used in any amount of comparisons to
2624   // null and free calls, delete the calls and replace the comparisons with true
2625   // or false as appropriate.
2626 
2627   // This is based on the principle that we can substitute our own allocation
2628   // function (which will never return null) rather than knowledge of the
2629   // specific function being called. In some sense this can change the permitted
2630   // outputs of a program (when we convert a malloc to an alloca, the fact that
2631   // the allocation is now on the stack is potentially visible, for example),
2632   // but we believe in a permissible manner.
2633   SmallVector<WeakTrackingVH, 64> Users;
2634 
2635   // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2636   // before each store.
2637   SmallVector<DbgVariableIntrinsic *, 8> DVIs;
2638   std::unique_ptr<DIBuilder> DIB;
2639   if (isa<AllocaInst>(MI)) {
2640     findDbgUsers(DVIs, &MI);
2641     DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2642   }
2643 
2644   if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2645     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2646       // Lowering all @llvm.objectsize calls first because they may
2647       // use a bitcast/GEP of the alloca we are removing.
2648       if (!Users[i])
2649        continue;
2650 
2651       Instruction *I = cast<Instruction>(&*Users[i]);
2652 
2653       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2654         if (II->getIntrinsicID() == Intrinsic::objectsize) {
2655           Value *Result =
2656               lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2657           replaceInstUsesWith(*I, Result);
2658           eraseInstFromFunction(*I);
2659           Users[i] = nullptr; // Skip examining in the next loop.
2660         }
2661       }
2662     }
2663     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2664       if (!Users[i])
2665         continue;
2666 
2667       Instruction *I = cast<Instruction>(&*Users[i]);
2668 
2669       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2670         replaceInstUsesWith(*C,
2671                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
2672                                              C->isFalseWhenEqual()));
2673       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2674         for (auto *DVI : DVIs)
2675           if (DVI->isAddressOfVariable())
2676             ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
2677       } else {
2678         // Casts, GEP, or anything else: we're about to delete this instruction,
2679         // so it can not have any valid uses.
2680         replaceInstUsesWith(*I, PoisonValue::get(I->getType()));
2681       }
2682       eraseInstFromFunction(*I);
2683     }
2684 
2685     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2686       // Replace invoke with a NOP intrinsic to maintain the original CFG
2687       Module *M = II->getModule();
2688       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2689       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2690                          None, "", II->getParent());
2691     }
2692 
2693     // Remove debug intrinsics which describe the value contained within the
2694     // alloca. In addition to removing dbg.{declare,addr} which simply point to
2695     // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
2696     //
2697     // ```
2698     //   define void @foo(i32 %0) {
2699     //     %a = alloca i32                              ; Deleted.
2700     //     store i32 %0, i32* %a
2701     //     dbg.value(i32 %0, "arg0")                    ; Not deleted.
2702     //     dbg.value(i32* %a, "arg0", DW_OP_deref)      ; Deleted.
2703     //     call void @trivially_inlinable_no_op(i32* %a)
2704     //     ret void
2705     //  }
2706     // ```
2707     //
2708     // This may not be required if we stop describing the contents of allocas
2709     // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
2710     // the LowerDbgDeclare utility.
2711     //
2712     // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
2713     // "arg0" dbg.value may be stale after the call. However, failing to remove
2714     // the DW_OP_deref dbg.value causes large gaps in location coverage.
2715     for (auto *DVI : DVIs)
2716       if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
2717         DVI->eraseFromParent();
2718 
2719     return eraseInstFromFunction(MI);
2720   }
2721   return nullptr;
2722 }
2723 
2724 /// Move the call to free before a NULL test.
2725 ///
2726 /// Check if this free is accessed after its argument has been test
2727 /// against NULL (property 0).
2728 /// If yes, it is legal to move this call in its predecessor block.
2729 ///
2730 /// The move is performed only if the block containing the call to free
2731 /// will be removed, i.e.:
2732 /// 1. it has only one predecessor P, and P has two successors
2733 /// 2. it contains the call, noops, and an unconditional branch
2734 /// 3. its successor is the same as its predecessor's successor
2735 ///
2736 /// The profitability is out-of concern here and this function should
2737 /// be called only if the caller knows this transformation would be
2738 /// profitable (e.g., for code size).
2739 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2740                                                 const DataLayout &DL) {
2741   Value *Op = FI.getArgOperand(0);
2742   BasicBlock *FreeInstrBB = FI.getParent();
2743   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2744 
2745   // Validate part of constraint #1: Only one predecessor
2746   // FIXME: We can extend the number of predecessor, but in that case, we
2747   //        would duplicate the call to free in each predecessor and it may
2748   //        not be profitable even for code size.
2749   if (!PredBB)
2750     return nullptr;
2751 
2752   // Validate constraint #2: Does this block contains only the call to
2753   //                         free, noops, and an unconditional branch?
2754   BasicBlock *SuccBB;
2755   Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2756   if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2757     return nullptr;
2758 
2759   // If there are only 2 instructions in the block, at this point,
2760   // this is the call to free and unconditional.
2761   // If there are more than 2 instructions, check that they are noops
2762   // i.e., they won't hurt the performance of the generated code.
2763   if (FreeInstrBB->size() != 2) {
2764     for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2765       if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2766         continue;
2767       auto *Cast = dyn_cast<CastInst>(&Inst);
2768       if (!Cast || !Cast->isNoopCast(DL))
2769         return nullptr;
2770     }
2771   }
2772   // Validate the rest of constraint #1 by matching on the pred branch.
2773   Instruction *TI = PredBB->getTerminator();
2774   BasicBlock *TrueBB, *FalseBB;
2775   ICmpInst::Predicate Pred;
2776   if (!match(TI, m_Br(m_ICmp(Pred,
2777                              m_CombineOr(m_Specific(Op),
2778                                          m_Specific(Op->stripPointerCasts())),
2779                              m_Zero()),
2780                       TrueBB, FalseBB)))
2781     return nullptr;
2782   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2783     return nullptr;
2784 
2785   // Validate constraint #3: Ensure the null case just falls through.
2786   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2787     return nullptr;
2788   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2789          "Broken CFG: missing edge from predecessor to successor");
2790 
2791   // At this point, we know that everything in FreeInstrBB can be moved
2792   // before TI.
2793   for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) {
2794     if (&Instr == FreeInstrBBTerminator)
2795       break;
2796     Instr.moveBefore(TI);
2797   }
2798   assert(FreeInstrBB->size() == 1 &&
2799          "Only the branch instruction should remain");
2800   return &FI;
2801 }
2802 
2803 Instruction *InstCombinerImpl::visitFree(CallInst &FI) {
2804   Value *Op = FI.getArgOperand(0);
2805 
2806   // free undef -> unreachable.
2807   if (isa<UndefValue>(Op)) {
2808     // Leave a marker since we can't modify the CFG here.
2809     CreateNonTerminatorUnreachable(&FI);
2810     return eraseInstFromFunction(FI);
2811   }
2812 
2813   // If we have 'free null' delete the instruction.  This can happen in stl code
2814   // when lots of inlining happens.
2815   if (isa<ConstantPointerNull>(Op))
2816     return eraseInstFromFunction(FI);
2817 
2818   // If we had free(realloc(...)) with no intervening uses, then eliminate the
2819   // realloc() entirely.
2820   if (CallInst *CI = dyn_cast<CallInst>(Op)) {
2821     if (CI->hasOneUse() && isReallocLikeFn(CI, &TLI, true)) {
2822       return eraseInstFromFunction(
2823           *replaceInstUsesWith(*CI, CI->getOperand(0)));
2824     }
2825   }
2826 
2827   // If we optimize for code size, try to move the call to free before the null
2828   // test so that simplify cfg can remove the empty block and dead code
2829   // elimination the branch. I.e., helps to turn something like:
2830   // if (foo) free(foo);
2831   // into
2832   // free(foo);
2833   //
2834   // Note that we can only do this for 'free' and not for any flavor of
2835   // 'operator delete'; there is no 'operator delete' symbol for which we are
2836   // permitted to invent a call, even if we're passing in a null pointer.
2837   if (MinimizeSize) {
2838     LibFunc Func;
2839     if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
2840       if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2841         return I;
2842   }
2843 
2844   return nullptr;
2845 }
2846 
2847 static bool isMustTailCall(Value *V) {
2848   if (auto *CI = dyn_cast<CallInst>(V))
2849     return CI->isMustTailCall();
2850   return false;
2851 }
2852 
2853 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
2854   if (RI.getNumOperands() == 0) // ret void
2855     return nullptr;
2856 
2857   Value *ResultOp = RI.getOperand(0);
2858   Type *VTy = ResultOp->getType();
2859   if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
2860     return nullptr;
2861 
2862   // Don't replace result of musttail calls.
2863   if (isMustTailCall(ResultOp))
2864     return nullptr;
2865 
2866   // There might be assume intrinsics dominating this return that completely
2867   // determine the value. If so, constant fold it.
2868   KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2869   if (Known.isConstant())
2870     return replaceOperand(RI, 0,
2871         Constant::getIntegerValue(VTy, Known.getConstant()));
2872 
2873   return nullptr;
2874 }
2875 
2876 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
2877 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
2878   // Try to remove the previous instruction if it must lead to unreachable.
2879   // This includes instructions like stores and "llvm.assume" that may not get
2880   // removed by simple dead code elimination.
2881   while (Instruction *Prev = I.getPrevNonDebugInstruction()) {
2882     // While we theoretically can erase EH, that would result in a block that
2883     // used to start with an EH no longer starting with EH, which is invalid.
2884     // To make it valid, we'd need to fixup predecessors to no longer refer to
2885     // this block, but that changes CFG, which is not allowed in InstCombine.
2886     if (Prev->isEHPad())
2887       return nullptr; // Can not drop any more instructions. We're done here.
2888 
2889     if (!isGuaranteedToTransferExecutionToSuccessor(Prev))
2890       return nullptr; // Can not drop any more instructions. We're done here.
2891     // Otherwise, this instruction can be freely erased,
2892     // even if it is not side-effect free.
2893 
2894     // A value may still have uses before we process it here (for example, in
2895     // another unreachable block), so convert those to poison.
2896     replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
2897     eraseInstFromFunction(*Prev);
2898   }
2899   assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty.");
2900   // FIXME: recurse into unconditional predecessors?
2901   return nullptr;
2902 }
2903 
2904 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
2905   assert(BI.isUnconditional() && "Only for unconditional branches.");
2906 
2907   // If this store is the second-to-last instruction in the basic block
2908   // (excluding debug info and bitcasts of pointers) and if the block ends with
2909   // an unconditional branch, try to move the store to the successor block.
2910 
2911   auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
2912     auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
2913       return isa<DbgInfoIntrinsic>(BBI) ||
2914              (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
2915     };
2916 
2917     BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
2918     do {
2919       if (BBI != FirstInstr)
2920         --BBI;
2921     } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
2922 
2923     return dyn_cast<StoreInst>(BBI);
2924   };
2925 
2926   if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
2927     if (mergeStoreIntoSuccessor(*SI))
2928       return &BI;
2929 
2930   return nullptr;
2931 }
2932 
2933 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
2934   if (BI.isUnconditional())
2935     return visitUnconditionalBranchInst(BI);
2936 
2937   // Change br (not X), label True, label False to: br X, label False, True
2938   Value *X = nullptr;
2939   if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
2940       !isa<Constant>(X)) {
2941     // Swap Destinations and condition...
2942     BI.swapSuccessors();
2943     return replaceOperand(BI, 0, X);
2944   }
2945 
2946   // If the condition is irrelevant, remove the use so that other
2947   // transforms on the condition become more effective.
2948   if (!isa<ConstantInt>(BI.getCondition()) &&
2949       BI.getSuccessor(0) == BI.getSuccessor(1))
2950     return replaceOperand(
2951         BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
2952 
2953   // Canonicalize, for example, fcmp_one -> fcmp_oeq.
2954   CmpInst::Predicate Pred;
2955   if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())),
2956                       m_BasicBlock(), m_BasicBlock())) &&
2957       !isCanonicalPredicate(Pred)) {
2958     // Swap destinations and condition.
2959     CmpInst *Cond = cast<CmpInst>(BI.getCondition());
2960     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2961     BI.swapSuccessors();
2962     Worklist.push(Cond);
2963     return &BI;
2964   }
2965 
2966   return nullptr;
2967 }
2968 
2969 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
2970   Value *Cond = SI.getCondition();
2971   Value *Op0;
2972   ConstantInt *AddRHS;
2973   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
2974     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2975     for (auto Case : SI.cases()) {
2976       Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
2977       assert(isa<ConstantInt>(NewCase) &&
2978              "Result of expression should be constant");
2979       Case.setValue(cast<ConstantInt>(NewCase));
2980     }
2981     return replaceOperand(SI, 0, Op0);
2982   }
2983 
2984   KnownBits Known = computeKnownBits(Cond, 0, &SI);
2985   unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
2986   unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
2987 
2988   // Compute the number of leading bits we can ignore.
2989   // TODO: A better way to determine this would use ComputeNumSignBits().
2990   for (auto &C : SI.cases()) {
2991     LeadingKnownZeros = std::min(
2992         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2993     LeadingKnownOnes = std::min(
2994         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2995   }
2996 
2997   unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
2998 
2999   // Shrink the condition operand if the new type is smaller than the old type.
3000   // But do not shrink to a non-standard type, because backend can't generate
3001   // good code for that yet.
3002   // TODO: We can make it aggressive again after fixing PR39569.
3003   if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
3004       shouldChangeType(Known.getBitWidth(), NewWidth)) {
3005     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
3006     Builder.SetInsertPoint(&SI);
3007     Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
3008 
3009     for (auto Case : SI.cases()) {
3010       APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3011       Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3012     }
3013     return replaceOperand(SI, 0, NewCond);
3014   }
3015 
3016   return nullptr;
3017 }
3018 
3019 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
3020   Value *Agg = EV.getAggregateOperand();
3021 
3022   if (!EV.hasIndices())
3023     return replaceInstUsesWith(EV, Agg);
3024 
3025   if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
3026                                           SQ.getWithInstruction(&EV)))
3027     return replaceInstUsesWith(EV, V);
3028 
3029   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
3030     // We're extracting from an insertvalue instruction, compare the indices
3031     const unsigned *exti, *exte, *insi, *inse;
3032     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
3033          exte = EV.idx_end(), inse = IV->idx_end();
3034          exti != exte && insi != inse;
3035          ++exti, ++insi) {
3036       if (*insi != *exti)
3037         // The insert and extract both reference distinctly different elements.
3038         // This means the extract is not influenced by the insert, and we can
3039         // replace the aggregate operand of the extract with the aggregate
3040         // operand of the insert. i.e., replace
3041         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3042         // %E = extractvalue { i32, { i32 } } %I, 0
3043         // with
3044         // %E = extractvalue { i32, { i32 } } %A, 0
3045         return ExtractValueInst::Create(IV->getAggregateOperand(),
3046                                         EV.getIndices());
3047     }
3048     if (exti == exte && insi == inse)
3049       // Both iterators are at the end: Index lists are identical. Replace
3050       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3051       // %C = extractvalue { i32, { i32 } } %B, 1, 0
3052       // with "i32 42"
3053       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3054     if (exti == exte) {
3055       // The extract list is a prefix of the insert list. i.e. replace
3056       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3057       // %E = extractvalue { i32, { i32 } } %I, 1
3058       // with
3059       // %X = extractvalue { i32, { i32 } } %A, 1
3060       // %E = insertvalue { i32 } %X, i32 42, 0
3061       // by switching the order of the insert and extract (though the
3062       // insertvalue should be left in, since it may have other uses).
3063       Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
3064                                                 EV.getIndices());
3065       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
3066                                      makeArrayRef(insi, inse));
3067     }
3068     if (insi == inse)
3069       // The insert list is a prefix of the extract list
3070       // We can simply remove the common indices from the extract and make it
3071       // operate on the inserted value instead of the insertvalue result.
3072       // i.e., replace
3073       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3074       // %E = extractvalue { i32, { i32 } } %I, 1, 0
3075       // with
3076       // %E extractvalue { i32 } { i32 42 }, 0
3077       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
3078                                       makeArrayRef(exti, exte));
3079   }
3080   if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
3081     // We're extracting from an overflow intrinsic, see if we're the only user,
3082     // which allows us to simplify multiple result intrinsics to simpler
3083     // things that just get one value.
3084     if (WO->hasOneUse()) {
3085       // Check if we're grabbing only the result of a 'with overflow' intrinsic
3086       // and replace it with a traditional binary instruction.
3087       if (*EV.idx_begin() == 0) {
3088         Instruction::BinaryOps BinOp = WO->getBinaryOp();
3089         Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3090         // Replace the old instruction's uses with poison.
3091         replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
3092         eraseInstFromFunction(*WO);
3093         return BinaryOperator::Create(BinOp, LHS, RHS);
3094       }
3095 
3096       assert(*EV.idx_begin() == 1 &&
3097              "unexpected extract index for overflow inst");
3098 
3099       // If only the overflow result is used, and the right hand side is a
3100       // constant (or constant splat), we can remove the intrinsic by directly
3101       // checking for overflow.
3102       const APInt *C;
3103       if (match(WO->getRHS(), m_APInt(C))) {
3104         // Compute the no-wrap range [X,Y) for LHS given RHS=C, then
3105         // check for the inverted range using range offset trick (i.e.
3106         // use a subtract to shift the range to bottom of either the
3107         // signed or unsigned domain and then use a single compare to
3108         // check range membership).
3109         ConstantRange NWR =
3110           ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
3111                                                WO->getNoWrapKind());
3112         APInt Min = WO->isSigned() ? NWR.getSignedMin() : NWR.getUnsignedMin();
3113         NWR = NWR.subtract(Min);
3114 
3115         CmpInst::Predicate Pred;
3116         APInt NewRHSC;
3117         if (NWR.getEquivalentICmp(Pred, NewRHSC)) {
3118           auto *OpTy = WO->getRHS()->getType();
3119           auto *NewLHS = Builder.CreateSub(WO->getLHS(),
3120                                            ConstantInt::get(OpTy, Min));
3121           return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
3122                               ConstantInt::get(OpTy, NewRHSC));
3123         }
3124       }
3125     }
3126   }
3127   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
3128     // If the (non-volatile) load only has one use, we can rewrite this to a
3129     // load from a GEP. This reduces the size of the load. If a load is used
3130     // only by extractvalue instructions then this either must have been
3131     // optimized before, or it is a struct with padding, in which case we
3132     // don't want to do the transformation as it loses padding knowledge.
3133     if (L->isSimple() && L->hasOneUse()) {
3134       // extractvalue has integer indices, getelementptr has Value*s. Convert.
3135       SmallVector<Value*, 4> Indices;
3136       // Prefix an i32 0 since we need the first element.
3137       Indices.push_back(Builder.getInt32(0));
3138       for (unsigned Idx : EV.indices())
3139         Indices.push_back(Builder.getInt32(Idx));
3140 
3141       // We need to insert these at the location of the old load, not at that of
3142       // the extractvalue.
3143       Builder.SetInsertPoint(L);
3144       Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
3145                                              L->getPointerOperand(), Indices);
3146       Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
3147       // Whatever aliasing information we had for the orignal load must also
3148       // hold for the smaller load, so propagate the annotations.
3149       NL->setAAMetadata(L->getAAMetadata());
3150       // Returning the load directly will cause the main loop to insert it in
3151       // the wrong spot, so use replaceInstUsesWith().
3152       return replaceInstUsesWith(EV, NL);
3153     }
3154   // We could simplify extracts from other values. Note that nested extracts may
3155   // already be simplified implicitly by the above: extract (extract (insert) )
3156   // will be translated into extract ( insert ( extract ) ) first and then just
3157   // the value inserted, if appropriate. Similarly for extracts from single-use
3158   // loads: extract (extract (load)) will be translated to extract (load (gep))
3159   // and if again single-use then via load (gep (gep)) to load (gep).
3160   // However, double extracts from e.g. function arguments or return values
3161   // aren't handled yet.
3162   return nullptr;
3163 }
3164 
3165 /// Return 'true' if the given typeinfo will match anything.
3166 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3167   switch (Personality) {
3168   case EHPersonality::GNU_C:
3169   case EHPersonality::GNU_C_SjLj:
3170   case EHPersonality::Rust:
3171     // The GCC C EH and Rust personality only exists to support cleanups, so
3172     // it's not clear what the semantics of catch clauses are.
3173     return false;
3174   case EHPersonality::Unknown:
3175     return false;
3176   case EHPersonality::GNU_Ada:
3177     // While __gnat_all_others_value will match any Ada exception, it doesn't
3178     // match foreign exceptions (or didn't, before gcc-4.7).
3179     return false;
3180   case EHPersonality::GNU_CXX:
3181   case EHPersonality::GNU_CXX_SjLj:
3182   case EHPersonality::GNU_ObjC:
3183   case EHPersonality::MSVC_X86SEH:
3184   case EHPersonality::MSVC_TableSEH:
3185   case EHPersonality::MSVC_CXX:
3186   case EHPersonality::CoreCLR:
3187   case EHPersonality::Wasm_CXX:
3188   case EHPersonality::XL_CXX:
3189     return TypeInfo->isNullValue();
3190   }
3191   llvm_unreachable("invalid enum");
3192 }
3193 
3194 static bool shorter_filter(const Value *LHS, const Value *RHS) {
3195   return
3196     cast<ArrayType>(LHS->getType())->getNumElements()
3197   <
3198     cast<ArrayType>(RHS->getType())->getNumElements();
3199 }
3200 
3201 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
3202   // The logic here should be correct for any real-world personality function.
3203   // However if that turns out not to be true, the offending logic can always
3204   // be conditioned on the personality function, like the catch-all logic is.
3205   EHPersonality Personality =
3206       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3207 
3208   // Simplify the list of clauses, eg by removing repeated catch clauses
3209   // (these are often created by inlining).
3210   bool MakeNewInstruction = false; // If true, recreate using the following:
3211   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3212   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
3213 
3214   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3215   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3216     bool isLastClause = i + 1 == e;
3217     if (LI.isCatch(i)) {
3218       // A catch clause.
3219       Constant *CatchClause = LI.getClause(i);
3220       Constant *TypeInfo = CatchClause->stripPointerCasts();
3221 
3222       // If we already saw this clause, there is no point in having a second
3223       // copy of it.
3224       if (AlreadyCaught.insert(TypeInfo).second) {
3225         // This catch clause was not already seen.
3226         NewClauses.push_back(CatchClause);
3227       } else {
3228         // Repeated catch clause - drop the redundant copy.
3229         MakeNewInstruction = true;
3230       }
3231 
3232       // If this is a catch-all then there is no point in keeping any following
3233       // clauses or marking the landingpad as having a cleanup.
3234       if (isCatchAll(Personality, TypeInfo)) {
3235         if (!isLastClause)
3236           MakeNewInstruction = true;
3237         CleanupFlag = false;
3238         break;
3239       }
3240     } else {
3241       // A filter clause.  If any of the filter elements were already caught
3242       // then they can be dropped from the filter.  It is tempting to try to
3243       // exploit the filter further by saying that any typeinfo that does not
3244       // occur in the filter can't be caught later (and thus can be dropped).
3245       // However this would be wrong, since typeinfos can match without being
3246       // equal (for example if one represents a C++ class, and the other some
3247       // class derived from it).
3248       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3249       Constant *FilterClause = LI.getClause(i);
3250       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3251       unsigned NumTypeInfos = FilterType->getNumElements();
3252 
3253       // An empty filter catches everything, so there is no point in keeping any
3254       // following clauses or marking the landingpad as having a cleanup.  By
3255       // dealing with this case here the following code is made a bit simpler.
3256       if (!NumTypeInfos) {
3257         NewClauses.push_back(FilterClause);
3258         if (!isLastClause)
3259           MakeNewInstruction = true;
3260         CleanupFlag = false;
3261         break;
3262       }
3263 
3264       bool MakeNewFilter = false; // If true, make a new filter.
3265       SmallVector<Constant *, 16> NewFilterElts; // New elements.
3266       if (isa<ConstantAggregateZero>(FilterClause)) {
3267         // Not an empty filter - it contains at least one null typeinfo.
3268         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3269         Constant *TypeInfo =
3270           Constant::getNullValue(FilterType->getElementType());
3271         // If this typeinfo is a catch-all then the filter can never match.
3272         if (isCatchAll(Personality, TypeInfo)) {
3273           // Throw the filter away.
3274           MakeNewInstruction = true;
3275           continue;
3276         }
3277 
3278         // There is no point in having multiple copies of this typeinfo, so
3279         // discard all but the first copy if there is more than one.
3280         NewFilterElts.push_back(TypeInfo);
3281         if (NumTypeInfos > 1)
3282           MakeNewFilter = true;
3283       } else {
3284         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3285         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3286         NewFilterElts.reserve(NumTypeInfos);
3287 
3288         // Remove any filter elements that were already caught or that already
3289         // occurred in the filter.  While there, see if any of the elements are
3290         // catch-alls.  If so, the filter can be discarded.
3291         bool SawCatchAll = false;
3292         for (unsigned j = 0; j != NumTypeInfos; ++j) {
3293           Constant *Elt = Filter->getOperand(j);
3294           Constant *TypeInfo = Elt->stripPointerCasts();
3295           if (isCatchAll(Personality, TypeInfo)) {
3296             // This element is a catch-all.  Bail out, noting this fact.
3297             SawCatchAll = true;
3298             break;
3299           }
3300 
3301           // Even if we've seen a type in a catch clause, we don't want to
3302           // remove it from the filter.  An unexpected type handler may be
3303           // set up for a call site which throws an exception of the same
3304           // type caught.  In order for the exception thrown by the unexpected
3305           // handler to propagate correctly, the filter must be correctly
3306           // described for the call site.
3307           //
3308           // Example:
3309           //
3310           // void unexpected() { throw 1;}
3311           // void foo() throw (int) {
3312           //   std::set_unexpected(unexpected);
3313           //   try {
3314           //     throw 2.0;
3315           //   } catch (int i) {}
3316           // }
3317 
3318           // There is no point in having multiple copies of the same typeinfo in
3319           // a filter, so only add it if we didn't already.
3320           if (SeenInFilter.insert(TypeInfo).second)
3321             NewFilterElts.push_back(cast<Constant>(Elt));
3322         }
3323         // A filter containing a catch-all cannot match anything by definition.
3324         if (SawCatchAll) {
3325           // Throw the filter away.
3326           MakeNewInstruction = true;
3327           continue;
3328         }
3329 
3330         // If we dropped something from the filter, make a new one.
3331         if (NewFilterElts.size() < NumTypeInfos)
3332           MakeNewFilter = true;
3333       }
3334       if (MakeNewFilter) {
3335         FilterType = ArrayType::get(FilterType->getElementType(),
3336                                     NewFilterElts.size());
3337         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3338         MakeNewInstruction = true;
3339       }
3340 
3341       NewClauses.push_back(FilterClause);
3342 
3343       // If the new filter is empty then it will catch everything so there is
3344       // no point in keeping any following clauses or marking the landingpad
3345       // as having a cleanup.  The case of the original filter being empty was
3346       // already handled above.
3347       if (MakeNewFilter && !NewFilterElts.size()) {
3348         assert(MakeNewInstruction && "New filter but not a new instruction!");
3349         CleanupFlag = false;
3350         break;
3351       }
3352     }
3353   }
3354 
3355   // If several filters occur in a row then reorder them so that the shortest
3356   // filters come first (those with the smallest number of elements).  This is
3357   // advantageous because shorter filters are more likely to match, speeding up
3358   // unwinding, but mostly because it increases the effectiveness of the other
3359   // filter optimizations below.
3360   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3361     unsigned j;
3362     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3363     for (j = i; j != e; ++j)
3364       if (!isa<ArrayType>(NewClauses[j]->getType()))
3365         break;
3366 
3367     // Check whether the filters are already sorted by length.  We need to know
3368     // if sorting them is actually going to do anything so that we only make a
3369     // new landingpad instruction if it does.
3370     for (unsigned k = i; k + 1 < j; ++k)
3371       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3372         // Not sorted, so sort the filters now.  Doing an unstable sort would be
3373         // correct too but reordering filters pointlessly might confuse users.
3374         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3375                          shorter_filter);
3376         MakeNewInstruction = true;
3377         break;
3378       }
3379 
3380     // Look for the next batch of filters.
3381     i = j + 1;
3382   }
3383 
3384   // If typeinfos matched if and only if equal, then the elements of a filter L
3385   // that occurs later than a filter F could be replaced by the intersection of
3386   // the elements of F and L.  In reality two typeinfos can match without being
3387   // equal (for example if one represents a C++ class, and the other some class
3388   // derived from it) so it would be wrong to perform this transform in general.
3389   // However the transform is correct and useful if F is a subset of L.  In that
3390   // case L can be replaced by F, and thus removed altogether since repeating a
3391   // filter is pointless.  So here we look at all pairs of filters F and L where
3392   // L follows F in the list of clauses, and remove L if every element of F is
3393   // an element of L.  This can occur when inlining C++ functions with exception
3394   // specifications.
3395   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3396     // Examine each filter in turn.
3397     Value *Filter = NewClauses[i];
3398     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3399     if (!FTy)
3400       // Not a filter - skip it.
3401       continue;
3402     unsigned FElts = FTy->getNumElements();
3403     // Examine each filter following this one.  Doing this backwards means that
3404     // we don't have to worry about filters disappearing under us when removed.
3405     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3406       Value *LFilter = NewClauses[j];
3407       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3408       if (!LTy)
3409         // Not a filter - skip it.
3410         continue;
3411       // If Filter is a subset of LFilter, i.e. every element of Filter is also
3412       // an element of LFilter, then discard LFilter.
3413       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3414       // If Filter is empty then it is a subset of LFilter.
3415       if (!FElts) {
3416         // Discard LFilter.
3417         NewClauses.erase(J);
3418         MakeNewInstruction = true;
3419         // Move on to the next filter.
3420         continue;
3421       }
3422       unsigned LElts = LTy->getNumElements();
3423       // If Filter is longer than LFilter then it cannot be a subset of it.
3424       if (FElts > LElts)
3425         // Move on to the next filter.
3426         continue;
3427       // At this point we know that LFilter has at least one element.
3428       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3429         // Filter is a subset of LFilter iff Filter contains only zeros (as we
3430         // already know that Filter is not longer than LFilter).
3431         if (isa<ConstantAggregateZero>(Filter)) {
3432           assert(FElts <= LElts && "Should have handled this case earlier!");
3433           // Discard LFilter.
3434           NewClauses.erase(J);
3435           MakeNewInstruction = true;
3436         }
3437         // Move on to the next filter.
3438         continue;
3439       }
3440       ConstantArray *LArray = cast<ConstantArray>(LFilter);
3441       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3442         // Since Filter is non-empty and contains only zeros, it is a subset of
3443         // LFilter iff LFilter contains a zero.
3444         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3445         for (unsigned l = 0; l != LElts; ++l)
3446           if (LArray->getOperand(l)->isNullValue()) {
3447             // LFilter contains a zero - discard it.
3448             NewClauses.erase(J);
3449             MakeNewInstruction = true;
3450             break;
3451           }
3452         // Move on to the next filter.
3453         continue;
3454       }
3455       // At this point we know that both filters are ConstantArrays.  Loop over
3456       // operands to see whether every element of Filter is also an element of
3457       // LFilter.  Since filters tend to be short this is probably faster than
3458       // using a method that scales nicely.
3459       ConstantArray *FArray = cast<ConstantArray>(Filter);
3460       bool AllFound = true;
3461       for (unsigned f = 0; f != FElts; ++f) {
3462         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3463         AllFound = false;
3464         for (unsigned l = 0; l != LElts; ++l) {
3465           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3466           if (LTypeInfo == FTypeInfo) {
3467             AllFound = true;
3468             break;
3469           }
3470         }
3471         if (!AllFound)
3472           break;
3473       }
3474       if (AllFound) {
3475         // Discard LFilter.
3476         NewClauses.erase(J);
3477         MakeNewInstruction = true;
3478       }
3479       // Move on to the next filter.
3480     }
3481   }
3482 
3483   // If we changed any of the clauses, replace the old landingpad instruction
3484   // with a new one.
3485   if (MakeNewInstruction) {
3486     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3487                                                  NewClauses.size());
3488     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3489       NLI->addClause(NewClauses[i]);
3490     // A landing pad with no clauses must have the cleanup flag set.  It is
3491     // theoretically possible, though highly unlikely, that we eliminated all
3492     // clauses.  If so, force the cleanup flag to true.
3493     if (NewClauses.empty())
3494       CleanupFlag = true;
3495     NLI->setCleanup(CleanupFlag);
3496     return NLI;
3497   }
3498 
3499   // Even if none of the clauses changed, we may nonetheless have understood
3500   // that the cleanup flag is pointless.  Clear it if so.
3501   if (LI.isCleanup() != CleanupFlag) {
3502     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3503     LI.setCleanup(CleanupFlag);
3504     return &LI;
3505   }
3506 
3507   return nullptr;
3508 }
3509 
3510 Value *
3511 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) {
3512   // Try to push freeze through instructions that propagate but don't produce
3513   // poison as far as possible.  If an operand of freeze follows three
3514   // conditions 1) one-use, 2) does not produce poison, and 3) has all but one
3515   // guaranteed-non-poison operands then push the freeze through to the one
3516   // operand that is not guaranteed non-poison.  The actual transform is as
3517   // follows.
3518   //   Op1 = ...                        ; Op1 can be posion
3519   //   Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have
3520   //                                    ; single guaranteed-non-poison operands
3521   //   ... = Freeze(Op0)
3522   // =>
3523   //   Op1 = ...
3524   //   Op1.fr = Freeze(Op1)
3525   //   ... = Inst(Op1.fr, NonPoisonOps...)
3526   auto *OrigOp = OrigFI.getOperand(0);
3527   auto *OrigOpInst = dyn_cast<Instruction>(OrigOp);
3528 
3529   // While we could change the other users of OrigOp to use freeze(OrigOp), that
3530   // potentially reduces their optimization potential, so let's only do this iff
3531   // the OrigOp is only used by the freeze.
3532   if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp) ||
3533       canCreateUndefOrPoison(dyn_cast<Operator>(OrigOp)))
3534     return nullptr;
3535 
3536   // If operand is guaranteed not to be poison, there is no need to add freeze
3537   // to the operand. So we first find the operand that is not guaranteed to be
3538   // poison.
3539   Use *MaybePoisonOperand = nullptr;
3540   for (Use &U : OrigOpInst->operands()) {
3541     if (isGuaranteedNotToBeUndefOrPoison(U.get()))
3542       continue;
3543     if (!MaybePoisonOperand)
3544       MaybePoisonOperand = &U;
3545     else
3546       return nullptr;
3547   }
3548 
3549   // If all operands are guaranteed to be non-poison, we can drop freeze.
3550   if (!MaybePoisonOperand)
3551     return OrigOp;
3552 
3553   auto *FrozenMaybePoisonOperand = new FreezeInst(
3554       MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr");
3555 
3556   replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand);
3557   FrozenMaybePoisonOperand->insertBefore(OrigOpInst);
3558   return OrigOp;
3559 }
3560 
3561 bool InstCombinerImpl::freezeDominatedUses(FreezeInst &FI) {
3562   Value *Op = FI.getOperand(0);
3563 
3564   if (isa<Constant>(Op))
3565     return false;
3566 
3567   bool Changed = false;
3568   Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
3569     bool Dominates = DT.dominates(&FI, U);
3570     Changed |= Dominates;
3571     return Dominates;
3572   });
3573 
3574   return Changed;
3575 }
3576 
3577 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
3578   Value *Op0 = I.getOperand(0);
3579 
3580   if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3581     return replaceInstUsesWith(I, V);
3582 
3583   // freeze (phi const, x) --> phi const, (freeze x)
3584   if (auto *PN = dyn_cast<PHINode>(Op0)) {
3585     if (Instruction *NV = foldOpIntoPhi(I, PN))
3586       return NV;
3587   }
3588 
3589   if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I))
3590     return replaceInstUsesWith(I, NI);
3591 
3592   if (match(Op0, m_Undef())) {
3593     // If I is freeze(undef), see its uses and fold it to the best constant.
3594     // - or: pick -1
3595     // - select's condition: pick the value that leads to choosing a constant
3596     // - other ops: pick 0
3597     Constant *BestValue = nullptr;
3598     Constant *NullValue = Constant::getNullValue(I.getType());
3599     for (const auto *U : I.users()) {
3600       Constant *C = NullValue;
3601 
3602       if (match(U, m_Or(m_Value(), m_Value())))
3603         C = Constant::getAllOnesValue(I.getType());
3604       else if (const auto *SI = dyn_cast<SelectInst>(U)) {
3605         if (SI->getCondition() == &I) {
3606           APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1);
3607           C = Constant::getIntegerValue(I.getType(), CondVal);
3608         }
3609       }
3610 
3611       if (!BestValue)
3612         BestValue = C;
3613       else if (BestValue != C)
3614         BestValue = NullValue;
3615     }
3616 
3617     return replaceInstUsesWith(I, BestValue);
3618   }
3619 
3620   // Replace all dominated uses of Op to freeze(Op).
3621   if (freezeDominatedUses(I))
3622     return &I;
3623 
3624   return nullptr;
3625 }
3626 
3627 /// Try to move the specified instruction from its current block into the
3628 /// beginning of DestBlock, which can only happen if it's safe to move the
3629 /// instruction past all of the instructions between it and the end of its
3630 /// block.
3631 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3632   assert(I->getUniqueUndroppableUser() && "Invariants didn't hold!");
3633   BasicBlock *SrcBlock = I->getParent();
3634 
3635   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3636   if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3637       I->isTerminator())
3638     return false;
3639 
3640   // Do not sink static or dynamic alloca instructions. Static allocas must
3641   // remain in the entry block, and dynamic allocas must not be sunk in between
3642   // a stacksave / stackrestore pair, which would incorrectly shorten its
3643   // lifetime.
3644   if (isa<AllocaInst>(I))
3645     return false;
3646 
3647   // Do not sink into catchswitch blocks.
3648   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3649     return false;
3650 
3651   // Do not sink convergent call instructions.
3652   if (auto *CI = dyn_cast<CallInst>(I)) {
3653     if (CI->isConvergent())
3654       return false;
3655   }
3656   // We can only sink load instructions if there is nothing between the load and
3657   // the end of block that could change the value.
3658   if (I->mayReadFromMemory()) {
3659     // We don't want to do any sophisticated alias analysis, so we only check
3660     // the instructions after I in I's parent block if we try to sink to its
3661     // successor block.
3662     if (DestBlock->getUniquePredecessor() != I->getParent())
3663       return false;
3664     for (BasicBlock::iterator Scan = I->getIterator(),
3665                               E = I->getParent()->end();
3666          Scan != E; ++Scan)
3667       if (Scan->mayWriteToMemory())
3668         return false;
3669   }
3670 
3671   I->dropDroppableUses([DestBlock](const Use *U) {
3672     if (auto *I = dyn_cast<Instruction>(U->getUser()))
3673       return I->getParent() != DestBlock;
3674     return true;
3675   });
3676   /// FIXME: We could remove droppable uses that are not dominated by
3677   /// the new position.
3678 
3679   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3680   I->moveBefore(&*InsertPos);
3681   ++NumSunkInst;
3682 
3683   // Also sink all related debug uses from the source basic block. Otherwise we
3684   // get debug use before the def. Attempt to salvage debug uses first, to
3685   // maximise the range variables have location for. If we cannot salvage, then
3686   // mark the location undef: we know it was supposed to receive a new location
3687   // here, but that computation has been sunk.
3688   SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3689   findDbgUsers(DbgUsers, I);
3690   // Process the sinking DbgUsers in reverse order, as we only want to clone the
3691   // last appearing debug intrinsic for each given variable.
3692   SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink;
3693   for (DbgVariableIntrinsic *DVI : DbgUsers)
3694     if (DVI->getParent() == SrcBlock)
3695       DbgUsersToSink.push_back(DVI);
3696   llvm::sort(DbgUsersToSink,
3697              [](auto *A, auto *B) { return B->comesBefore(A); });
3698 
3699   SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
3700   SmallSet<DebugVariable, 4> SunkVariables;
3701   for (auto User : DbgUsersToSink) {
3702     // A dbg.declare instruction should not be cloned, since there can only be
3703     // one per variable fragment. It should be left in the original place
3704     // because the sunk instruction is not an alloca (otherwise we could not be
3705     // here).
3706     if (isa<DbgDeclareInst>(User))
3707       continue;
3708 
3709     DebugVariable DbgUserVariable =
3710         DebugVariable(User->getVariable(), User->getExpression(),
3711                       User->getDebugLoc()->getInlinedAt());
3712 
3713     if (!SunkVariables.insert(DbgUserVariable).second)
3714       continue;
3715 
3716     DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
3717     if (isa<DbgDeclareInst>(User) && isa<CastInst>(I))
3718       DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0));
3719     LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
3720   }
3721 
3722   // Perform salvaging without the clones, then sink the clones.
3723   if (!DIIClones.empty()) {
3724     salvageDebugInfoForDbgValues(*I, DbgUsers);
3725     // The clones are in reverse order of original appearance, reverse again to
3726     // maintain the original order.
3727     for (auto &DIIClone : llvm::reverse(DIIClones)) {
3728       DIIClone->insertBefore(&*InsertPos);
3729       LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
3730     }
3731   }
3732 
3733   return true;
3734 }
3735 
3736 bool InstCombinerImpl::run() {
3737   while (!Worklist.isEmpty()) {
3738     // Walk deferred instructions in reverse order, and push them to the
3739     // worklist, which means they'll end up popped from the worklist in-order.
3740     while (Instruction *I = Worklist.popDeferred()) {
3741       // Check to see if we can DCE the instruction. We do this already here to
3742       // reduce the number of uses and thus allow other folds to trigger.
3743       // Note that eraseInstFromFunction() may push additional instructions on
3744       // the deferred worklist, so this will DCE whole instruction chains.
3745       if (isInstructionTriviallyDead(I, &TLI)) {
3746         eraseInstFromFunction(*I);
3747         ++NumDeadInst;
3748         continue;
3749       }
3750 
3751       Worklist.push(I);
3752     }
3753 
3754     Instruction *I = Worklist.removeOne();
3755     if (I == nullptr) continue;  // skip null values.
3756 
3757     // Check to see if we can DCE the instruction.
3758     if (isInstructionTriviallyDead(I, &TLI)) {
3759       eraseInstFromFunction(*I);
3760       ++NumDeadInst;
3761       continue;
3762     }
3763 
3764     if (!DebugCounter::shouldExecute(VisitCounter))
3765       continue;
3766 
3767     // Instruction isn't dead, see if we can constant propagate it.
3768     if (!I->use_empty() &&
3769         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3770       if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3771         LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3772                           << '\n');
3773 
3774         // Add operands to the worklist.
3775         replaceInstUsesWith(*I, C);
3776         ++NumConstProp;
3777         if (isInstructionTriviallyDead(I, &TLI))
3778           eraseInstFromFunction(*I);
3779         MadeIRChange = true;
3780         continue;
3781       }
3782     }
3783 
3784     // See if we can trivially sink this instruction to its user if we can
3785     // prove that the successor is not executed more frequently than our block.
3786     // Return the UserBlock if successful.
3787     auto getOptionalSinkBlockForInst =
3788         [this](Instruction *I) -> Optional<BasicBlock *> {
3789       if (!EnableCodeSinking)
3790         return None;
3791       auto *UserInst = cast_or_null<Instruction>(I->getUniqueUndroppableUser());
3792       if (!UserInst)
3793         return None;
3794 
3795       BasicBlock *BB = I->getParent();
3796       BasicBlock *UserParent = nullptr;
3797 
3798       // Special handling for Phi nodes - get the block the use occurs in.
3799       if (PHINode *PN = dyn_cast<PHINode>(UserInst)) {
3800         for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
3801           if (PN->getIncomingValue(i) == I) {
3802             // Bail out if we have uses in different blocks. We don't do any
3803             // sophisticated analysis (i.e finding NearestCommonDominator of these
3804             // use blocks).
3805             if (UserParent && UserParent != PN->getIncomingBlock(i))
3806               return None;
3807             UserParent = PN->getIncomingBlock(i);
3808           }
3809         }
3810         assert(UserParent && "expected to find user block!");
3811       } else
3812         UserParent = UserInst->getParent();
3813 
3814       // Try sinking to another block. If that block is unreachable, then do
3815       // not bother. SimplifyCFG should handle it.
3816       if (UserParent == BB || !DT.isReachableFromEntry(UserParent))
3817         return None;
3818 
3819       auto *Term = UserParent->getTerminator();
3820       // See if the user is one of our successors that has only one
3821       // predecessor, so that we don't have to split the critical edge.
3822       // Another option where we can sink is a block that ends with a
3823       // terminator that does not pass control to other block (such as
3824       // return or unreachable). In this case:
3825       //   - I dominates the User (by SSA form);
3826       //   - the User will be executed at most once.
3827       // So sinking I down to User is always profitable or neutral.
3828       if (UserParent->getUniquePredecessor() == BB ||
3829           (isa<ReturnInst>(Term) || isa<UnreachableInst>(Term))) {
3830         assert(DT.dominates(BB, UserParent) && "Dominance relation broken?");
3831         return UserParent;
3832       }
3833       return None;
3834     };
3835 
3836     auto OptBB = getOptionalSinkBlockForInst(I);
3837     if (OptBB) {
3838       auto *UserParent = *OptBB;
3839       // Okay, the CFG is simple enough, try to sink this instruction.
3840       if (TryToSinkInstruction(I, UserParent)) {
3841         LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3842         MadeIRChange = true;
3843         // We'll add uses of the sunk instruction below, but since
3844         // sinking can expose opportunities for it's *operands* add
3845         // them to the worklist
3846         for (Use &U : I->operands())
3847           if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3848             Worklist.push(OpI);
3849       }
3850     }
3851 
3852     // Now that we have an instruction, try combining it to simplify it.
3853     Builder.SetInsertPoint(I);
3854     Builder.CollectMetadataToCopy(
3855         I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
3856 
3857 #ifndef NDEBUG
3858     std::string OrigI;
3859 #endif
3860     LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3861     LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3862 
3863     if (Instruction *Result = visit(*I)) {
3864       ++NumCombined;
3865       // Should we replace the old instruction with a new one?
3866       if (Result != I) {
3867         LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3868                           << "    New = " << *Result << '\n');
3869 
3870         Result->copyMetadata(*I,
3871                              {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
3872         // Everything uses the new instruction now.
3873         I->replaceAllUsesWith(Result);
3874 
3875         // Move the name to the new instruction first.
3876         Result->takeName(I);
3877 
3878         // Insert the new instruction into the basic block...
3879         BasicBlock *InstParent = I->getParent();
3880         BasicBlock::iterator InsertPos = I->getIterator();
3881 
3882         // Are we replace a PHI with something that isn't a PHI, or vice versa?
3883         if (isa<PHINode>(Result) != isa<PHINode>(I)) {
3884           // We need to fix up the insertion point.
3885           if (isa<PHINode>(I)) // PHI -> Non-PHI
3886             InsertPos = InstParent->getFirstInsertionPt();
3887           else // Non-PHI -> PHI
3888             InsertPos = InstParent->getFirstNonPHI()->getIterator();
3889         }
3890 
3891         InstParent->getInstList().insert(InsertPos, Result);
3892 
3893         // Push the new instruction and any users onto the worklist.
3894         Worklist.pushUsersToWorkList(*Result);
3895         Worklist.push(Result);
3896 
3897         eraseInstFromFunction(*I);
3898       } else {
3899         LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3900                           << "    New = " << *I << '\n');
3901 
3902         // If the instruction was modified, it's possible that it is now dead.
3903         // if so, remove it.
3904         if (isInstructionTriviallyDead(I, &TLI)) {
3905           eraseInstFromFunction(*I);
3906         } else {
3907           Worklist.pushUsersToWorkList(*I);
3908           Worklist.push(I);
3909         }
3910       }
3911       MadeIRChange = true;
3912     }
3913   }
3914 
3915   Worklist.zap();
3916   return MadeIRChange;
3917 }
3918 
3919 // Track the scopes used by !alias.scope and !noalias. In a function, a
3920 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used
3921 // by both sets. If not, the declaration of the scope can be safely omitted.
3922 // The MDNode of the scope can be omitted as well for the instructions that are
3923 // part of this function. We do not do that at this point, as this might become
3924 // too time consuming to do.
3925 class AliasScopeTracker {
3926   SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
3927   SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
3928 
3929 public:
3930   void analyse(Instruction *I) {
3931     // This seems to be faster than checking 'mayReadOrWriteMemory()'.
3932     if (!I->hasMetadataOtherThanDebugLoc())
3933       return;
3934 
3935     auto Track = [](Metadata *ScopeList, auto &Container) {
3936       const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
3937       if (!MDScopeList || !Container.insert(MDScopeList).second)
3938         return;
3939       for (auto &MDOperand : MDScopeList->operands())
3940         if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
3941           Container.insert(MDScope);
3942     };
3943 
3944     Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
3945     Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
3946   }
3947 
3948   bool isNoAliasScopeDeclDead(Instruction *Inst) {
3949     NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
3950     if (!Decl)
3951       return false;
3952 
3953     assert(Decl->use_empty() &&
3954            "llvm.experimental.noalias.scope.decl in use ?");
3955     const MDNode *MDSL = Decl->getScopeList();
3956     assert(MDSL->getNumOperands() == 1 &&
3957            "llvm.experimental.noalias.scope should refer to a single scope");
3958     auto &MDOperand = MDSL->getOperand(0);
3959     if (auto *MD = dyn_cast<MDNode>(MDOperand))
3960       return !UsedAliasScopesAndLists.contains(MD) ||
3961              !UsedNoAliasScopesAndLists.contains(MD);
3962 
3963     // Not an MDNode ? throw away.
3964     return true;
3965   }
3966 };
3967 
3968 /// Populate the IC worklist from a function, by walking it in depth-first
3969 /// order and adding all reachable code to the worklist.
3970 ///
3971 /// This has a couple of tricks to make the code faster and more powerful.  In
3972 /// particular, we constant fold and DCE instructions as we go, to avoid adding
3973 /// them to the worklist (this significantly speeds up instcombine on code where
3974 /// many instructions are dead or constant).  Additionally, if we find a branch
3975 /// whose condition is a known constant, we only visit the reachable successors.
3976 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3977                                           const TargetLibraryInfo *TLI,
3978                                           InstructionWorklist &ICWorklist) {
3979   bool MadeIRChange = false;
3980   SmallPtrSet<BasicBlock *, 32> Visited;
3981   SmallVector<BasicBlock*, 256> Worklist;
3982   Worklist.push_back(&F.front());
3983 
3984   SmallVector<Instruction *, 128> InstrsForInstructionWorklist;
3985   DenseMap<Constant *, Constant *> FoldedConstants;
3986   AliasScopeTracker SeenAliasScopes;
3987 
3988   do {
3989     BasicBlock *BB = Worklist.pop_back_val();
3990 
3991     // We have now visited this block!  If we've already been here, ignore it.
3992     if (!Visited.insert(BB).second)
3993       continue;
3994 
3995     for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
3996       // ConstantProp instruction if trivially constant.
3997       if (!Inst.use_empty() &&
3998           (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
3999         if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) {
4000           LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst
4001                             << '\n');
4002           Inst.replaceAllUsesWith(C);
4003           ++NumConstProp;
4004           if (isInstructionTriviallyDead(&Inst, TLI))
4005             Inst.eraseFromParent();
4006           MadeIRChange = true;
4007           continue;
4008         }
4009 
4010       // See if we can constant fold its operands.
4011       for (Use &U : Inst.operands()) {
4012         if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
4013           continue;
4014 
4015         auto *C = cast<Constant>(U);
4016         Constant *&FoldRes = FoldedConstants[C];
4017         if (!FoldRes)
4018           FoldRes = ConstantFoldConstant(C, DL, TLI);
4019 
4020         if (FoldRes != C) {
4021           LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst
4022                             << "\n    Old = " << *C
4023                             << "\n    New = " << *FoldRes << '\n');
4024           U = FoldRes;
4025           MadeIRChange = true;
4026         }
4027       }
4028 
4029       // Skip processing debug and pseudo intrinsics in InstCombine. Processing
4030       // these call instructions consumes non-trivial amount of time and
4031       // provides no value for the optimization.
4032       if (!Inst.isDebugOrPseudoInst()) {
4033         InstrsForInstructionWorklist.push_back(&Inst);
4034         SeenAliasScopes.analyse(&Inst);
4035       }
4036     }
4037 
4038     // Recursively visit successors.  If this is a branch or switch on a
4039     // constant, only visit the reachable successor.
4040     Instruction *TI = BB->getTerminator();
4041     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
4042       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
4043         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
4044         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
4045         Worklist.push_back(ReachableBB);
4046         continue;
4047       }
4048     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
4049       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
4050         Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
4051         continue;
4052       }
4053     }
4054 
4055     append_range(Worklist, successors(TI));
4056   } while (!Worklist.empty());
4057 
4058   // Remove instructions inside unreachable blocks. This prevents the
4059   // instcombine code from having to deal with some bad special cases, and
4060   // reduces use counts of instructions.
4061   for (BasicBlock &BB : F) {
4062     if (Visited.count(&BB))
4063       continue;
4064 
4065     unsigned NumDeadInstInBB;
4066     unsigned NumDeadDbgInstInBB;
4067     std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
4068         removeAllNonTerminatorAndEHPadInstructions(&BB);
4069 
4070     MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
4071     NumDeadInst += NumDeadInstInBB;
4072   }
4073 
4074   // Once we've found all of the instructions to add to instcombine's worklist,
4075   // add them in reverse order.  This way instcombine will visit from the top
4076   // of the function down.  This jives well with the way that it adds all uses
4077   // of instructions to the worklist after doing a transformation, thus avoiding
4078   // some N^2 behavior in pathological cases.
4079   ICWorklist.reserve(InstrsForInstructionWorklist.size());
4080   for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) {
4081     // DCE instruction if trivially dead. As we iterate in reverse program
4082     // order here, we will clean up whole chains of dead instructions.
4083     if (isInstructionTriviallyDead(Inst, TLI) ||
4084         SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
4085       ++NumDeadInst;
4086       LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
4087       salvageDebugInfo(*Inst);
4088       Inst->eraseFromParent();
4089       MadeIRChange = true;
4090       continue;
4091     }
4092 
4093     ICWorklist.push(Inst);
4094   }
4095 
4096   return MadeIRChange;
4097 }
4098 
4099 static bool combineInstructionsOverFunction(
4100     Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA,
4101     AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
4102     DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
4103     ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
4104   auto &DL = F.getParent()->getDataLayout();
4105   MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
4106 
4107   /// Builder - This is an IRBuilder that automatically inserts new
4108   /// instructions into the worklist when they are created.
4109   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
4110       F.getContext(), TargetFolder(DL),
4111       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
4112         Worklist.add(I);
4113         if (auto *Assume = dyn_cast<AssumeInst>(I))
4114           AC.registerAssumption(Assume);
4115       }));
4116 
4117   // Lower dbg.declare intrinsics otherwise their value may be clobbered
4118   // by instcombiner.
4119   bool MadeIRChange = false;
4120   if (ShouldLowerDbgDeclare)
4121     MadeIRChange = LowerDbgDeclare(F);
4122 
4123   // Iterate while there is work to do.
4124   unsigned Iteration = 0;
4125   while (true) {
4126     ++NumWorklistIterations;
4127     ++Iteration;
4128 
4129     if (Iteration > InfiniteLoopDetectionThreshold) {
4130       report_fatal_error(
4131           "Instruction Combining seems stuck in an infinite loop after " +
4132           Twine(InfiniteLoopDetectionThreshold) + " iterations.");
4133     }
4134 
4135     if (Iteration > MaxIterations) {
4136       LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
4137                         << " on " << F.getName()
4138                         << " reached; stopping before reaching a fixpoint\n");
4139       break;
4140     }
4141 
4142     LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
4143                       << F.getName() << "\n");
4144 
4145     MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
4146 
4147     InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
4148                         ORE, BFI, PSI, DL, LI);
4149     IC.MaxArraySizeForCombine = MaxArraySize;
4150 
4151     if (!IC.run())
4152       break;
4153 
4154     MadeIRChange = true;
4155   }
4156 
4157   return MadeIRChange;
4158 }
4159 
4160 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
4161 
4162 InstCombinePass::InstCombinePass(unsigned MaxIterations)
4163     : MaxIterations(MaxIterations) {}
4164 
4165 PreservedAnalyses InstCombinePass::run(Function &F,
4166                                        FunctionAnalysisManager &AM) {
4167   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4168   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4169   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4170   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4171   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
4172 
4173   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
4174 
4175   auto *AA = &AM.getResult<AAManager>(F);
4176   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
4177   ProfileSummaryInfo *PSI =
4178       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
4179   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
4180       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
4181 
4182   if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4183                                        BFI, PSI, MaxIterations, LI))
4184     // No changes, all analyses are preserved.
4185     return PreservedAnalyses::all();
4186 
4187   // Mark all the analyses that instcombine updates as preserved.
4188   PreservedAnalyses PA;
4189   PA.preserveSet<CFGAnalyses>();
4190   return PA;
4191 }
4192 
4193 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
4194   AU.setPreservesCFG();
4195   AU.addRequired<AAResultsWrapperPass>();
4196   AU.addRequired<AssumptionCacheTracker>();
4197   AU.addRequired<TargetLibraryInfoWrapperPass>();
4198   AU.addRequired<TargetTransformInfoWrapperPass>();
4199   AU.addRequired<DominatorTreeWrapperPass>();
4200   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4201   AU.addPreserved<DominatorTreeWrapperPass>();
4202   AU.addPreserved<AAResultsWrapperPass>();
4203   AU.addPreserved<BasicAAWrapperPass>();
4204   AU.addPreserved<GlobalsAAWrapperPass>();
4205   AU.addRequired<ProfileSummaryInfoWrapperPass>();
4206   LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
4207 }
4208 
4209 bool InstructionCombiningPass::runOnFunction(Function &F) {
4210   if (skipFunction(F))
4211     return false;
4212 
4213   // Required analyses.
4214   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4215   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4216   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
4217   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4218   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4219   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4220 
4221   // Optional analyses.
4222   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
4223   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
4224   ProfileSummaryInfo *PSI =
4225       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
4226   BlockFrequencyInfo *BFI =
4227       (PSI && PSI->hasProfileSummary()) ?
4228       &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
4229       nullptr;
4230 
4231   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4232                                          BFI, PSI, MaxIterations, LI);
4233 }
4234 
4235 char InstructionCombiningPass::ID = 0;
4236 
4237 InstructionCombiningPass::InstructionCombiningPass()
4238     : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
4239   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4240 }
4241 
4242 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
4243     : FunctionPass(ID), MaxIterations(MaxIterations) {
4244   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4245 }
4246 
4247 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
4248                       "Combine redundant instructions", false, false)
4249 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4250 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4251 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4252 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4253 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4254 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4255 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
4256 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
4257 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
4258 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
4259                     "Combine redundant instructions", false, false)
4260 
4261 // Initialization Routines
4262 void llvm::initializeInstCombine(PassRegistry &Registry) {
4263   initializeInstructionCombiningPassPass(Registry);
4264 }
4265 
4266 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
4267   initializeInstructionCombiningPassPass(*unwrap(R));
4268 }
4269 
4270 FunctionPass *llvm::createInstructionCombiningPass() {
4271   return new InstructionCombiningPass();
4272 }
4273 
4274 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
4275   return new InstructionCombiningPass(MaxIterations);
4276 }
4277 
4278 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
4279   unwrap(PM)->add(createInstructionCombiningPass());
4280 }
4281