1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/TinyPtrVector.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/BlockFrequencyInfo.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/MemoryBuiltins.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ProfileSummaryInfo.h" 60 #include "llvm/Analysis/TargetFolder.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/Analysis/VectorUtils.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Dominators.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GetElementPtrTypeIterator.h" 75 #include "llvm/IR/IRBuilder.h" 76 #include "llvm/IR/InstrTypes.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/Intrinsics.h" 81 #include "llvm/IR/LegacyPassManager.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/PassManager.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/Use.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/IR/ValueHandle.h" 91 #include "llvm/InitializePasses.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/CBindingWrapping.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/DebugCounter.h" 99 #include "llvm/Support/ErrorHandling.h" 100 #include "llvm/Support/KnownBits.h" 101 #include "llvm/Support/raw_ostream.h" 102 #include "llvm/Transforms/InstCombine/InstCombine.h" 103 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 104 #include "llvm/Transforms/Utils/Local.h" 105 #include <algorithm> 106 #include <cassert> 107 #include <cstdint> 108 #include <memory> 109 #include <string> 110 #include <utility> 111 112 using namespace llvm; 113 using namespace llvm::PatternMatch; 114 115 #define DEBUG_TYPE "instcombine" 116 117 STATISTIC(NumWorklistIterations, 118 "Number of instruction combining iterations performed"); 119 120 STATISTIC(NumCombined , "Number of insts combined"); 121 STATISTIC(NumConstProp, "Number of constant folds"); 122 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 123 STATISTIC(NumSunkInst , "Number of instructions sunk"); 124 STATISTIC(NumExpand, "Number of expansions"); 125 STATISTIC(NumFactor , "Number of factorizations"); 126 STATISTIC(NumReassoc , "Number of reassociations"); 127 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 128 "Controls which instructions are visited"); 129 130 // FIXME: these limits eventually should be as low as 2. 131 static constexpr unsigned InstCombineDefaultMaxIterations = 1000; 132 #ifndef NDEBUG 133 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100; 134 #else 135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; 136 #endif 137 138 static cl::opt<bool> 139 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 140 cl::init(true)); 141 142 static cl::opt<unsigned> LimitMaxIterations( 143 "instcombine-max-iterations", 144 cl::desc("Limit the maximum number of instruction combining iterations"), 145 cl::init(InstCombineDefaultMaxIterations)); 146 147 static cl::opt<unsigned> InfiniteLoopDetectionThreshold( 148 "instcombine-infinite-loop-threshold", 149 cl::desc("Number of instruction combining iterations considered an " 150 "infinite loop"), 151 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); 152 153 static cl::opt<unsigned> 154 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 155 cl::desc("Maximum array size considered when doing a combine")); 156 157 // FIXME: Remove this flag when it is no longer necessary to convert 158 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 159 // increases variable availability at the cost of accuracy. Variables that 160 // cannot be promoted by mem2reg or SROA will be described as living in memory 161 // for their entire lifetime. However, passes like DSE and instcombine can 162 // delete stores to the alloca, leading to misleading and inaccurate debug 163 // information. This flag can be removed when those passes are fixed. 164 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 165 cl::Hidden, cl::init(true)); 166 167 Optional<Instruction *> 168 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 169 // Handle target specific intrinsics 170 if (II.getCalledFunction()->isTargetIntrinsic()) { 171 return TTI.instCombineIntrinsic(*this, II); 172 } 173 return None; 174 } 175 176 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 177 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 178 bool &KnownBitsComputed) { 179 // Handle target specific intrinsics 180 if (II.getCalledFunction()->isTargetIntrinsic()) { 181 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, 182 KnownBitsComputed); 183 } 184 return None; 185 } 186 187 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 188 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, 189 APInt &UndefElts3, 190 std::function<void(Instruction *, unsigned, APInt, APInt &)> 191 SimplifyAndSetOp) { 192 // Handle target specific intrinsics 193 if (II.getCalledFunction()->isTargetIntrinsic()) { 194 return TTI.simplifyDemandedVectorEltsIntrinsic( 195 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 196 SimplifyAndSetOp); 197 } 198 return None; 199 } 200 201 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { 202 return llvm::EmitGEPOffset(&Builder, DL, GEP); 203 } 204 205 /// Return true if it is desirable to convert an integer computation from a 206 /// given bit width to a new bit width. 207 /// We don't want to convert from a legal to an illegal type or from a smaller 208 /// to a larger illegal type. A width of '1' is always treated as a legal type 209 /// because i1 is a fundamental type in IR, and there are many specialized 210 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as 211 /// legal to convert to, in order to open up more combining opportunities. 212 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common 213 /// from frontend languages. 214 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 215 unsigned ToWidth) const { 216 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 217 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 218 219 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only 220 // shrink types, to prevent infinite loops. 221 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32)) 222 return true; 223 224 // If this is a legal integer from type, and the result would be an illegal 225 // type, don't do the transformation. 226 if (FromLegal && !ToLegal) 227 return false; 228 229 // Otherwise, if both are illegal, do not increase the size of the result. We 230 // do allow things like i160 -> i64, but not i64 -> i160. 231 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 232 return false; 233 234 return true; 235 } 236 237 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 238 /// We don't want to convert from a legal to an illegal type or from a smaller 239 /// to a larger illegal type. i1 is always treated as a legal type because it is 240 /// a fundamental type in IR, and there are many specialized optimizations for 241 /// i1 types. 242 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 243 // TODO: This could be extended to allow vectors. Datalayout changes might be 244 // needed to properly support that. 245 if (!From->isIntegerTy() || !To->isIntegerTy()) 246 return false; 247 248 unsigned FromWidth = From->getPrimitiveSizeInBits(); 249 unsigned ToWidth = To->getPrimitiveSizeInBits(); 250 return shouldChangeType(FromWidth, ToWidth); 251 } 252 253 // Return true, if No Signed Wrap should be maintained for I. 254 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 255 // where both B and C should be ConstantInts, results in a constant that does 256 // not overflow. This function only handles the Add and Sub opcodes. For 257 // all other opcodes, the function conservatively returns false. 258 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 259 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 260 if (!OBO || !OBO->hasNoSignedWrap()) 261 return false; 262 263 // We reason about Add and Sub Only. 264 Instruction::BinaryOps Opcode = I.getOpcode(); 265 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 266 return false; 267 268 const APInt *BVal, *CVal; 269 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 270 return false; 271 272 bool Overflow = false; 273 if (Opcode == Instruction::Add) 274 (void)BVal->sadd_ov(*CVal, Overflow); 275 else 276 (void)BVal->ssub_ov(*CVal, Overflow); 277 278 return !Overflow; 279 } 280 281 static bool hasNoUnsignedWrap(BinaryOperator &I) { 282 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 283 return OBO && OBO->hasNoUnsignedWrap(); 284 } 285 286 static bool hasNoSignedWrap(BinaryOperator &I) { 287 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 288 return OBO && OBO->hasNoSignedWrap(); 289 } 290 291 /// Conservatively clears subclassOptionalData after a reassociation or 292 /// commutation. We preserve fast-math flags when applicable as they can be 293 /// preserved. 294 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 295 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 296 if (!FPMO) { 297 I.clearSubclassOptionalData(); 298 return; 299 } 300 301 FastMathFlags FMF = I.getFastMathFlags(); 302 I.clearSubclassOptionalData(); 303 I.setFastMathFlags(FMF); 304 } 305 306 /// Combine constant operands of associative operations either before or after a 307 /// cast to eliminate one of the associative operations: 308 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 309 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 310 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 311 InstCombinerImpl &IC) { 312 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 313 if (!Cast || !Cast->hasOneUse()) 314 return false; 315 316 // TODO: Enhance logic for other casts and remove this check. 317 auto CastOpcode = Cast->getOpcode(); 318 if (CastOpcode != Instruction::ZExt) 319 return false; 320 321 // TODO: Enhance logic for other BinOps and remove this check. 322 if (!BinOp1->isBitwiseLogicOp()) 323 return false; 324 325 auto AssocOpcode = BinOp1->getOpcode(); 326 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 327 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 328 return false; 329 330 Constant *C1, *C2; 331 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 332 !match(BinOp2->getOperand(1), m_Constant(C2))) 333 return false; 334 335 // TODO: This assumes a zext cast. 336 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 337 // to the destination type might lose bits. 338 339 // Fold the constants together in the destination type: 340 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 341 Type *DestTy = C1->getType(); 342 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 343 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 344 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 345 IC.replaceOperand(*BinOp1, 1, FoldedC); 346 return true; 347 } 348 349 /// This performs a few simplifications for operators that are associative or 350 /// commutative: 351 /// 352 /// Commutative operators: 353 /// 354 /// 1. Order operands such that they are listed from right (least complex) to 355 /// left (most complex). This puts constants before unary operators before 356 /// binary operators. 357 /// 358 /// Associative operators: 359 /// 360 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 361 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 362 /// 363 /// Associative and commutative operators: 364 /// 365 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 366 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 367 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 368 /// if C1 and C2 are constants. 369 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 370 Instruction::BinaryOps Opcode = I.getOpcode(); 371 bool Changed = false; 372 373 do { 374 // Order operands such that they are listed from right (least complex) to 375 // left (most complex). This puts constants before unary operators before 376 // binary operators. 377 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 378 getComplexity(I.getOperand(1))) 379 Changed = !I.swapOperands(); 380 381 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 382 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 383 384 if (I.isAssociative()) { 385 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 386 if (Op0 && Op0->getOpcode() == Opcode) { 387 Value *A = Op0->getOperand(0); 388 Value *B = Op0->getOperand(1); 389 Value *C = I.getOperand(1); 390 391 // Does "B op C" simplify? 392 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 393 // It simplifies to V. Form "A op V". 394 replaceOperand(I, 0, A); 395 replaceOperand(I, 1, V); 396 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 397 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 398 399 // Conservatively clear all optional flags since they may not be 400 // preserved by the reassociation. Reset nsw/nuw based on the above 401 // analysis. 402 ClearSubclassDataAfterReassociation(I); 403 404 // Note: this is only valid because SimplifyBinOp doesn't look at 405 // the operands to Op0. 406 if (IsNUW) 407 I.setHasNoUnsignedWrap(true); 408 409 if (IsNSW) 410 I.setHasNoSignedWrap(true); 411 412 Changed = true; 413 ++NumReassoc; 414 continue; 415 } 416 } 417 418 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 419 if (Op1 && Op1->getOpcode() == Opcode) { 420 Value *A = I.getOperand(0); 421 Value *B = Op1->getOperand(0); 422 Value *C = Op1->getOperand(1); 423 424 // Does "A op B" simplify? 425 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 426 // It simplifies to V. Form "V op C". 427 replaceOperand(I, 0, V); 428 replaceOperand(I, 1, C); 429 // Conservatively clear the optional flags, since they may not be 430 // preserved by the reassociation. 431 ClearSubclassDataAfterReassociation(I); 432 Changed = true; 433 ++NumReassoc; 434 continue; 435 } 436 } 437 } 438 439 if (I.isAssociative() && I.isCommutative()) { 440 if (simplifyAssocCastAssoc(&I, *this)) { 441 Changed = true; 442 ++NumReassoc; 443 continue; 444 } 445 446 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 447 if (Op0 && Op0->getOpcode() == Opcode) { 448 Value *A = Op0->getOperand(0); 449 Value *B = Op0->getOperand(1); 450 Value *C = I.getOperand(1); 451 452 // Does "C op A" simplify? 453 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 454 // It simplifies to V. Form "V op B". 455 replaceOperand(I, 0, V); 456 replaceOperand(I, 1, B); 457 // Conservatively clear the optional flags, since they may not be 458 // preserved by the reassociation. 459 ClearSubclassDataAfterReassociation(I); 460 Changed = true; 461 ++NumReassoc; 462 continue; 463 } 464 } 465 466 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 467 if (Op1 && Op1->getOpcode() == Opcode) { 468 Value *A = I.getOperand(0); 469 Value *B = Op1->getOperand(0); 470 Value *C = Op1->getOperand(1); 471 472 // Does "C op A" simplify? 473 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 474 // It simplifies to V. Form "B op V". 475 replaceOperand(I, 0, B); 476 replaceOperand(I, 1, V); 477 // Conservatively clear the optional flags, since they may not be 478 // preserved by the reassociation. 479 ClearSubclassDataAfterReassociation(I); 480 Changed = true; 481 ++NumReassoc; 482 continue; 483 } 484 } 485 486 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 487 // if C1 and C2 are constants. 488 Value *A, *B; 489 Constant *C1, *C2; 490 if (Op0 && Op1 && 491 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 492 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 493 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 494 bool IsNUW = hasNoUnsignedWrap(I) && 495 hasNoUnsignedWrap(*Op0) && 496 hasNoUnsignedWrap(*Op1); 497 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 498 BinaryOperator::CreateNUW(Opcode, A, B) : 499 BinaryOperator::Create(Opcode, A, B); 500 501 if (isa<FPMathOperator>(NewBO)) { 502 FastMathFlags Flags = I.getFastMathFlags(); 503 Flags &= Op0->getFastMathFlags(); 504 Flags &= Op1->getFastMathFlags(); 505 NewBO->setFastMathFlags(Flags); 506 } 507 InsertNewInstWith(NewBO, I); 508 NewBO->takeName(Op1); 509 replaceOperand(I, 0, NewBO); 510 replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2)); 511 // Conservatively clear the optional flags, since they may not be 512 // preserved by the reassociation. 513 ClearSubclassDataAfterReassociation(I); 514 if (IsNUW) 515 I.setHasNoUnsignedWrap(true); 516 517 Changed = true; 518 continue; 519 } 520 } 521 522 // No further simplifications. 523 return Changed; 524 } while (true); 525 } 526 527 /// Return whether "X LOp (Y ROp Z)" is always equal to 528 /// "(X LOp Y) ROp (X LOp Z)". 529 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 530 Instruction::BinaryOps ROp) { 531 // X & (Y | Z) <--> (X & Y) | (X & Z) 532 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 533 if (LOp == Instruction::And) 534 return ROp == Instruction::Or || ROp == Instruction::Xor; 535 536 // X | (Y & Z) <--> (X | Y) & (X | Z) 537 if (LOp == Instruction::Or) 538 return ROp == Instruction::And; 539 540 // X * (Y + Z) <--> (X * Y) + (X * Z) 541 // X * (Y - Z) <--> (X * Y) - (X * Z) 542 if (LOp == Instruction::Mul) 543 return ROp == Instruction::Add || ROp == Instruction::Sub; 544 545 return false; 546 } 547 548 /// Return whether "(X LOp Y) ROp Z" is always equal to 549 /// "(X ROp Z) LOp (Y ROp Z)". 550 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 551 Instruction::BinaryOps ROp) { 552 if (Instruction::isCommutative(ROp)) 553 return leftDistributesOverRight(ROp, LOp); 554 555 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 556 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 557 558 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 559 // but this requires knowing that the addition does not overflow and other 560 // such subtleties. 561 } 562 563 /// This function returns identity value for given opcode, which can be used to 564 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 565 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 566 if (isa<Constant>(V)) 567 return nullptr; 568 569 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 570 } 571 572 /// This function predicates factorization using distributive laws. By default, 573 /// it just returns the 'Op' inputs. But for special-cases like 574 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 575 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 576 /// allow more factorization opportunities. 577 static Instruction::BinaryOps 578 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 579 Value *&LHS, Value *&RHS) { 580 assert(Op && "Expected a binary operator"); 581 LHS = Op->getOperand(0); 582 RHS = Op->getOperand(1); 583 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 584 Constant *C; 585 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 586 // X << C --> X * (1 << C) 587 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 588 return Instruction::Mul; 589 } 590 // TODO: We can add other conversions e.g. shr => div etc. 591 } 592 return Op->getOpcode(); 593 } 594 595 /// This tries to simplify binary operations by factorizing out common terms 596 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 597 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I, 598 Instruction::BinaryOps InnerOpcode, 599 Value *A, Value *B, Value *C, 600 Value *D) { 601 assert(A && B && C && D && "All values must be provided"); 602 603 Value *V = nullptr; 604 Value *SimplifiedInst = nullptr; 605 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 606 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 607 608 // Does "X op' Y" always equal "Y op' X"? 609 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 610 611 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 612 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 613 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 614 // commutative case, "(A op' B) op (C op' A)"? 615 if (A == C || (InnerCommutative && A == D)) { 616 if (A != C) 617 std::swap(C, D); 618 // Consider forming "A op' (B op D)". 619 // If "B op D" simplifies then it can be formed with no cost. 620 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 621 // If "B op D" doesn't simplify then only go on if both of the existing 622 // operations "A op' B" and "C op' D" will be zapped as no longer used. 623 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 624 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 625 if (V) { 626 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 627 } 628 } 629 630 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 631 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 632 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 633 // commutative case, "(A op' B) op (B op' D)"? 634 if (B == D || (InnerCommutative && B == C)) { 635 if (B != D) 636 std::swap(C, D); 637 // Consider forming "(A op C) op' B". 638 // If "A op C" simplifies then it can be formed with no cost. 639 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 640 641 // If "A op C" doesn't simplify then only go on if both of the existing 642 // operations "A op' B" and "C op' D" will be zapped as no longer used. 643 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 644 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 645 if (V) { 646 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 647 } 648 } 649 650 if (SimplifiedInst) { 651 ++NumFactor; 652 SimplifiedInst->takeName(&I); 653 654 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 655 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 656 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 657 bool HasNSW = false; 658 bool HasNUW = false; 659 if (isa<OverflowingBinaryOperator>(&I)) { 660 HasNSW = I.hasNoSignedWrap(); 661 HasNUW = I.hasNoUnsignedWrap(); 662 } 663 664 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 665 HasNSW &= LOBO->hasNoSignedWrap(); 666 HasNUW &= LOBO->hasNoUnsignedWrap(); 667 } 668 669 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 670 HasNSW &= ROBO->hasNoSignedWrap(); 671 HasNUW &= ROBO->hasNoUnsignedWrap(); 672 } 673 674 if (TopLevelOpcode == Instruction::Add && 675 InnerOpcode == Instruction::Mul) { 676 // We can propagate 'nsw' if we know that 677 // %Y = mul nsw i16 %X, C 678 // %Z = add nsw i16 %Y, %X 679 // => 680 // %Z = mul nsw i16 %X, C+1 681 // 682 // iff C+1 isn't INT_MIN 683 const APInt *CInt; 684 if (match(V, m_APInt(CInt))) { 685 if (!CInt->isMinSignedValue()) 686 BO->setHasNoSignedWrap(HasNSW); 687 } 688 689 // nuw can be propagated with any constant or nuw value. 690 BO->setHasNoUnsignedWrap(HasNUW); 691 } 692 } 693 } 694 } 695 return SimplifiedInst; 696 } 697 698 /// This tries to simplify binary operations which some other binary operation 699 /// distributes over either by factorizing out common terms 700 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 701 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 702 /// Returns the simplified value, or null if it didn't simplify. 703 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 704 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 705 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 706 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 707 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 708 709 { 710 // Factorization. 711 Value *A, *B, *C, *D; 712 Instruction::BinaryOps LHSOpcode, RHSOpcode; 713 if (Op0) 714 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 715 if (Op1) 716 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 717 718 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 719 // a common term. 720 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 721 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 722 return V; 723 724 // The instruction has the form "(A op' B) op (C)". Try to factorize common 725 // term. 726 if (Op0) 727 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 728 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 729 return V; 730 731 // The instruction has the form "(B) op (C op' D)". Try to factorize common 732 // term. 733 if (Op1) 734 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 735 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 736 return V; 737 } 738 739 // Expansion. 740 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 741 // The instruction has the form "(A op' B) op C". See if expanding it out 742 // to "(A op C) op' (B op C)" results in simplifications. 743 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 744 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 745 746 // Disable the use of undef because it's not safe to distribute undef. 747 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 748 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 749 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 750 751 // Do "A op C" and "B op C" both simplify? 752 if (L && R) { 753 // They do! Return "L op' R". 754 ++NumExpand; 755 C = Builder.CreateBinOp(InnerOpcode, L, R); 756 C->takeName(&I); 757 return C; 758 } 759 760 // Does "A op C" simplify to the identity value for the inner opcode? 761 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 762 // They do! Return "B op C". 763 ++NumExpand; 764 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 765 C->takeName(&I); 766 return C; 767 } 768 769 // Does "B op C" simplify to the identity value for the inner opcode? 770 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 771 // They do! Return "A op C". 772 ++NumExpand; 773 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 774 C->takeName(&I); 775 return C; 776 } 777 } 778 779 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 780 // The instruction has the form "A op (B op' C)". See if expanding it out 781 // to "(A op B) op' (A op C)" results in simplifications. 782 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 783 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 784 785 // Disable the use of undef because it's not safe to distribute undef. 786 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 787 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 788 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 789 790 // Do "A op B" and "A op C" both simplify? 791 if (L && R) { 792 // They do! Return "L op' R". 793 ++NumExpand; 794 A = Builder.CreateBinOp(InnerOpcode, L, R); 795 A->takeName(&I); 796 return A; 797 } 798 799 // Does "A op B" simplify to the identity value for the inner opcode? 800 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 801 // They do! Return "A op C". 802 ++NumExpand; 803 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 804 A->takeName(&I); 805 return A; 806 } 807 808 // Does "A op C" simplify to the identity value for the inner opcode? 809 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 810 // They do! Return "A op B". 811 ++NumExpand; 812 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 813 A->takeName(&I); 814 return A; 815 } 816 } 817 818 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 819 } 820 821 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 822 Value *LHS, 823 Value *RHS) { 824 Value *A, *B, *C, *D, *E, *F; 825 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 826 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 827 if (!LHSIsSelect && !RHSIsSelect) 828 return nullptr; 829 830 FastMathFlags FMF; 831 BuilderTy::FastMathFlagGuard Guard(Builder); 832 if (isa<FPMathOperator>(&I)) { 833 FMF = I.getFastMathFlags(); 834 Builder.setFastMathFlags(FMF); 835 } 836 837 Instruction::BinaryOps Opcode = I.getOpcode(); 838 SimplifyQuery Q = SQ.getWithInstruction(&I); 839 840 Value *Cond, *True = nullptr, *False = nullptr; 841 if (LHSIsSelect && RHSIsSelect && A == D) { 842 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 843 Cond = A; 844 True = SimplifyBinOp(Opcode, B, E, FMF, Q); 845 False = SimplifyBinOp(Opcode, C, F, FMF, Q); 846 847 if (LHS->hasOneUse() && RHS->hasOneUse()) { 848 if (False && !True) 849 True = Builder.CreateBinOp(Opcode, B, E); 850 else if (True && !False) 851 False = Builder.CreateBinOp(Opcode, C, F); 852 } 853 } else if (LHSIsSelect && LHS->hasOneUse()) { 854 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 855 Cond = A; 856 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q); 857 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q); 858 } else if (RHSIsSelect && RHS->hasOneUse()) { 859 // X op (D ? E : F) -> D ? (X op E) : (X op F) 860 Cond = D; 861 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q); 862 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q); 863 } 864 865 if (!True || !False) 866 return nullptr; 867 868 Value *SI = Builder.CreateSelect(Cond, True, False); 869 SI->takeName(&I); 870 return SI; 871 } 872 873 /// Freely adapt every user of V as-if V was changed to !V. 874 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 875 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) { 876 for (User *U : I->users()) { 877 switch (cast<Instruction>(U)->getOpcode()) { 878 case Instruction::Select: { 879 auto *SI = cast<SelectInst>(U); 880 SI->swapValues(); 881 SI->swapProfMetadata(); 882 break; 883 } 884 case Instruction::Br: 885 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 886 break; 887 case Instruction::Xor: 888 replaceInstUsesWith(cast<Instruction>(*U), I); 889 break; 890 default: 891 llvm_unreachable("Got unexpected user - out of sync with " 892 "canFreelyInvertAllUsersOf() ?"); 893 } 894 } 895 } 896 897 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 898 /// constant zero (which is the 'negate' form). 899 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 900 Value *NegV; 901 if (match(V, m_Neg(m_Value(NegV)))) 902 return NegV; 903 904 // Constants can be considered to be negated values if they can be folded. 905 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 906 return ConstantExpr::getNeg(C); 907 908 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 909 if (C->getType()->getElementType()->isIntegerTy()) 910 return ConstantExpr::getNeg(C); 911 912 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 913 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 914 Constant *Elt = CV->getAggregateElement(i); 915 if (!Elt) 916 return nullptr; 917 918 if (isa<UndefValue>(Elt)) 919 continue; 920 921 if (!isa<ConstantInt>(Elt)) 922 return nullptr; 923 } 924 return ConstantExpr::getNeg(CV); 925 } 926 927 // Negate integer vector splats. 928 if (auto *CV = dyn_cast<Constant>(V)) 929 if (CV->getType()->isVectorTy() && 930 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 931 return ConstantExpr::getNeg(CV); 932 933 return nullptr; 934 } 935 936 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 937 InstCombiner::BuilderTy &Builder) { 938 if (auto *Cast = dyn_cast<CastInst>(&I)) 939 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 940 941 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 942 assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) && 943 "Expected constant-foldable intrinsic"); 944 Intrinsic::ID IID = II->getIntrinsicID(); 945 if (II->getNumArgOperands() == 1) 946 return Builder.CreateUnaryIntrinsic(IID, SO); 947 948 // This works for real binary ops like min/max (where we always expect the 949 // constant operand to be canonicalized as op1) and unary ops with a bonus 950 // constant argument like ctlz/cttz. 951 // TODO: Handle non-commutative binary intrinsics as below for binops. 952 assert(II->getNumArgOperands() == 2 && "Expected binary intrinsic"); 953 assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand"); 954 return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1)); 955 } 956 957 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 958 959 // Figure out if the constant is the left or the right argument. 960 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 961 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 962 963 if (auto *SOC = dyn_cast<Constant>(SO)) { 964 if (ConstIsRHS) 965 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 966 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 967 } 968 969 Value *Op0 = SO, *Op1 = ConstOperand; 970 if (!ConstIsRHS) 971 std::swap(Op0, Op1); 972 973 auto *BO = cast<BinaryOperator>(&I); 974 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 975 SO->getName() + ".op"); 976 auto *FPInst = dyn_cast<Instruction>(RI); 977 if (FPInst && isa<FPMathOperator>(FPInst)) 978 FPInst->copyFastMathFlags(BO); 979 return RI; 980 } 981 982 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, 983 SelectInst *SI) { 984 // Don't modify shared select instructions. 985 if (!SI->hasOneUse()) 986 return nullptr; 987 988 Value *TV = SI->getTrueValue(); 989 Value *FV = SI->getFalseValue(); 990 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 991 return nullptr; 992 993 // Bool selects with constant operands can be folded to logical ops. 994 if (SI->getType()->isIntOrIntVectorTy(1)) 995 return nullptr; 996 997 // If it's a bitcast involving vectors, make sure it has the same number of 998 // elements on both sides. 999 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 1000 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 1001 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 1002 1003 // Verify that either both or neither are vectors. 1004 if ((SrcTy == nullptr) != (DestTy == nullptr)) 1005 return nullptr; 1006 1007 // If vectors, verify that they have the same number of elements. 1008 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) 1009 return nullptr; 1010 } 1011 1012 // Test if a CmpInst instruction is used exclusively by a select as 1013 // part of a minimum or maximum operation. If so, refrain from doing 1014 // any other folding. This helps out other analyses which understand 1015 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 1016 // and CodeGen. And in this case, at least one of the comparison 1017 // operands has at least one user besides the compare (the select), 1018 // which would often largely negate the benefit of folding anyway. 1019 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 1020 if (CI->hasOneUse()) { 1021 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 1022 1023 // FIXME: This is a hack to avoid infinite looping with min/max patterns. 1024 // We have to ensure that vector constants that only differ with 1025 // undef elements are treated as equivalent. 1026 auto areLooselyEqual = [](Value *A, Value *B) { 1027 if (A == B) 1028 return true; 1029 1030 // Test for vector constants. 1031 Constant *ConstA, *ConstB; 1032 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB))) 1033 return false; 1034 1035 // TODO: Deal with FP constants? 1036 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType()) 1037 return false; 1038 1039 // Compare for equality including undefs as equal. 1040 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB); 1041 const APInt *C; 1042 return match(Cmp, m_APIntAllowUndef(C)) && C->isOneValue(); 1043 }; 1044 1045 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) || 1046 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1))) 1047 return nullptr; 1048 } 1049 } 1050 1051 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 1052 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 1053 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 1054 } 1055 1056 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 1057 InstCombiner::BuilderTy &Builder) { 1058 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 1059 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 1060 1061 if (auto *InC = dyn_cast<Constant>(InV)) { 1062 if (ConstIsRHS) 1063 return ConstantExpr::get(I->getOpcode(), InC, C); 1064 return ConstantExpr::get(I->getOpcode(), C, InC); 1065 } 1066 1067 Value *Op0 = InV, *Op1 = C; 1068 if (!ConstIsRHS) 1069 std::swap(Op0, Op1); 1070 1071 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo"); 1072 auto *FPInst = dyn_cast<Instruction>(RI); 1073 if (FPInst && isa<FPMathOperator>(FPInst)) 1074 FPInst->copyFastMathFlags(I); 1075 return RI; 1076 } 1077 1078 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { 1079 unsigned NumPHIValues = PN->getNumIncomingValues(); 1080 if (NumPHIValues == 0) 1081 return nullptr; 1082 1083 // We normally only transform phis with a single use. However, if a PHI has 1084 // multiple uses and they are all the same operation, we can fold *all* of the 1085 // uses into the PHI. 1086 if (!PN->hasOneUse()) { 1087 // Walk the use list for the instruction, comparing them to I. 1088 for (User *U : PN->users()) { 1089 Instruction *UI = cast<Instruction>(U); 1090 if (UI != &I && !I.isIdenticalTo(UI)) 1091 return nullptr; 1092 } 1093 // Otherwise, we can replace *all* users with the new PHI we form. 1094 } 1095 1096 // Check to see if all of the operands of the PHI are simple constants 1097 // (constantint/constantfp/undef). If there is one non-constant value, 1098 // remember the BB it is in. If there is more than one or if *it* is a PHI, 1099 // bail out. We don't do arbitrary constant expressions here because moving 1100 // their computation can be expensive without a cost model. 1101 BasicBlock *NonConstBB = nullptr; 1102 for (unsigned i = 0; i != NumPHIValues; ++i) { 1103 Value *InVal = PN->getIncomingValue(i); 1104 // If I is a freeze instruction, count undef as a non-constant. 1105 if (match(InVal, m_ImmConstant()) && 1106 (!isa<FreezeInst>(I) || isGuaranteedNotToBeUndefOrPoison(InVal))) 1107 continue; 1108 1109 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 1110 if (NonConstBB) return nullptr; // More than one non-const value. 1111 1112 NonConstBB = PN->getIncomingBlock(i); 1113 1114 // If the InVal is an invoke at the end of the pred block, then we can't 1115 // insert a computation after it without breaking the edge. 1116 if (isa<InvokeInst>(InVal)) 1117 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 1118 return nullptr; 1119 1120 // If the incoming non-constant value is in I's block, we will remove one 1121 // instruction, but insert another equivalent one, leading to infinite 1122 // instcombine. 1123 if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI)) 1124 return nullptr; 1125 } 1126 1127 // If there is exactly one non-constant value, we can insert a copy of the 1128 // operation in that block. However, if this is a critical edge, we would be 1129 // inserting the computation on some other paths (e.g. inside a loop). Only 1130 // do this if the pred block is unconditionally branching into the phi block. 1131 // Also, make sure that the pred block is not dead code. 1132 if (NonConstBB != nullptr) { 1133 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1134 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB)) 1135 return nullptr; 1136 } 1137 1138 // Okay, we can do the transformation: create the new PHI node. 1139 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1140 InsertNewInstBefore(NewPN, *PN); 1141 NewPN->takeName(PN); 1142 1143 // If we are going to have to insert a new computation, do so right before the 1144 // predecessor's terminator. 1145 if (NonConstBB) 1146 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1147 1148 // Next, add all of the operands to the PHI. 1149 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1150 // We only currently try to fold the condition of a select when it is a phi, 1151 // not the true/false values. 1152 Value *TrueV = SI->getTrueValue(); 1153 Value *FalseV = SI->getFalseValue(); 1154 BasicBlock *PhiTransBB = PN->getParent(); 1155 for (unsigned i = 0; i != NumPHIValues; ++i) { 1156 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1157 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1158 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1159 Value *InV = nullptr; 1160 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1161 // even if currently isNullValue gives false. 1162 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1163 // For vector constants, we cannot use isNullValue to fold into 1164 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1165 // elements in the vector, we will incorrectly fold InC to 1166 // `TrueVInPred`. 1167 if (InC && isa<ConstantInt>(InC)) 1168 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1169 else { 1170 // Generate the select in the same block as PN's current incoming block. 1171 // Note: ThisBB need not be the NonConstBB because vector constants 1172 // which are constants by definition are handled here. 1173 // FIXME: This can lead to an increase in IR generation because we might 1174 // generate selects for vector constant phi operand, that could not be 1175 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1176 // non-vector phis, this transformation was always profitable because 1177 // the select would be generated exactly once in the NonConstBB. 1178 Builder.SetInsertPoint(ThisBB->getTerminator()); 1179 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1180 FalseVInPred, "phi.sel"); 1181 } 1182 NewPN->addIncoming(InV, ThisBB); 1183 } 1184 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1185 Constant *C = cast<Constant>(I.getOperand(1)); 1186 for (unsigned i = 0; i != NumPHIValues; ++i) { 1187 Value *InV = nullptr; 1188 if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1189 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1190 else 1191 InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i), 1192 C, "phi.cmp"); 1193 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1194 } 1195 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1196 for (unsigned i = 0; i != NumPHIValues; ++i) { 1197 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1198 Builder); 1199 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1200 } 1201 } else if (isa<FreezeInst>(&I)) { 1202 for (unsigned i = 0; i != NumPHIValues; ++i) { 1203 Value *InV; 1204 if (NonConstBB == PN->getIncomingBlock(i)) 1205 InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr"); 1206 else 1207 InV = PN->getIncomingValue(i); 1208 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1209 } 1210 } else { 1211 CastInst *CI = cast<CastInst>(&I); 1212 Type *RetTy = CI->getType(); 1213 for (unsigned i = 0; i != NumPHIValues; ++i) { 1214 Value *InV; 1215 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1216 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1217 else 1218 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1219 I.getType(), "phi.cast"); 1220 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1221 } 1222 } 1223 1224 for (User *U : make_early_inc_range(PN->users())) { 1225 Instruction *User = cast<Instruction>(U); 1226 if (User == &I) continue; 1227 replaceInstUsesWith(*User, NewPN); 1228 eraseInstFromFunction(*User); 1229 } 1230 return replaceInstUsesWith(I, NewPN); 1231 } 1232 1233 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1234 if (!isa<Constant>(I.getOperand(1))) 1235 return nullptr; 1236 1237 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1238 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1239 return NewSel; 1240 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1241 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1242 return NewPhi; 1243 } 1244 return nullptr; 1245 } 1246 1247 /// Given a pointer type and a constant offset, determine whether or not there 1248 /// is a sequence of GEP indices into the pointed type that will land us at the 1249 /// specified offset. If so, fill them into NewIndices and return the resultant 1250 /// element type, otherwise return null. 1251 Type * 1252 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 1253 SmallVectorImpl<Value *> &NewIndices) { 1254 Type *Ty = PtrTy->getElementType(); 1255 if (!Ty->isSized()) 1256 return nullptr; 1257 1258 // Start with the index over the outer type. Note that the type size 1259 // might be zero (even if the offset isn't zero) if the indexed type 1260 // is something like [0 x {int, int}] 1261 Type *IndexTy = DL.getIndexType(PtrTy); 1262 int64_t FirstIdx = 0; 1263 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 1264 FirstIdx = Offset/TySize; 1265 Offset -= FirstIdx*TySize; 1266 1267 // Handle hosts where % returns negative instead of values [0..TySize). 1268 if (Offset < 0) { 1269 --FirstIdx; 1270 Offset += TySize; 1271 assert(Offset >= 0); 1272 } 1273 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 1274 } 1275 1276 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx)); 1277 1278 // Index into the types. If we fail, set OrigBase to null. 1279 while (Offset) { 1280 // Indexing into tail padding between struct/array elements. 1281 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1282 return nullptr; 1283 1284 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1285 const StructLayout *SL = DL.getStructLayout(STy); 1286 assert(Offset < (int64_t)SL->getSizeInBytes() && 1287 "Offset must stay within the indexed type"); 1288 1289 unsigned Elt = SL->getElementContainingOffset(Offset); 1290 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1291 Elt)); 1292 1293 Offset -= SL->getElementOffset(Elt); 1294 Ty = STy->getElementType(Elt); 1295 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1296 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1297 assert(EltSize && "Cannot index into a zero-sized array"); 1298 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize)); 1299 Offset %= EltSize; 1300 Ty = AT->getElementType(); 1301 } else { 1302 // Otherwise, we can't index into the middle of this atomic type, bail. 1303 return nullptr; 1304 } 1305 } 1306 1307 return Ty; 1308 } 1309 1310 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1311 // If this GEP has only 0 indices, it is the same pointer as 1312 // Src. If Src is not a trivial GEP too, don't combine 1313 // the indices. 1314 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1315 !Src.hasOneUse()) 1316 return false; 1317 return true; 1318 } 1319 1320 /// Return a value X such that Val = X * Scale, or null if none. 1321 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1322 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1323 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1324 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1325 Scale.getBitWidth() && "Scale not compatible with value!"); 1326 1327 // If Val is zero or Scale is one then Val = Val * Scale. 1328 if (match(Val, m_Zero()) || Scale == 1) { 1329 NoSignedWrap = true; 1330 return Val; 1331 } 1332 1333 // If Scale is zero then it does not divide Val. 1334 if (Scale.isMinValue()) 1335 return nullptr; 1336 1337 // Look through chains of multiplications, searching for a constant that is 1338 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1339 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1340 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1341 // down from Val: 1342 // 1343 // Val = M1 * X || Analysis starts here and works down 1344 // M1 = M2 * Y || Doesn't descend into terms with more 1345 // M2 = Z * 4 \/ than one use 1346 // 1347 // Then to modify a term at the bottom: 1348 // 1349 // Val = M1 * X 1350 // M1 = Z * Y || Replaced M2 with Z 1351 // 1352 // Then to work back up correcting nsw flags. 1353 1354 // Op - the term we are currently analyzing. Starts at Val then drills down. 1355 // Replaced with its descaled value before exiting from the drill down loop. 1356 Value *Op = Val; 1357 1358 // Parent - initially null, but after drilling down notes where Op came from. 1359 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1360 // 0'th operand of Val. 1361 std::pair<Instruction *, unsigned> Parent; 1362 1363 // Set if the transform requires a descaling at deeper levels that doesn't 1364 // overflow. 1365 bool RequireNoSignedWrap = false; 1366 1367 // Log base 2 of the scale. Negative if not a power of 2. 1368 int32_t logScale = Scale.exactLogBase2(); 1369 1370 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1371 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1372 // If Op is a constant divisible by Scale then descale to the quotient. 1373 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1374 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1375 if (!Remainder.isMinValue()) 1376 // Not divisible by Scale. 1377 return nullptr; 1378 // Replace with the quotient in the parent. 1379 Op = ConstantInt::get(CI->getType(), Quotient); 1380 NoSignedWrap = true; 1381 break; 1382 } 1383 1384 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1385 if (BO->getOpcode() == Instruction::Mul) { 1386 // Multiplication. 1387 NoSignedWrap = BO->hasNoSignedWrap(); 1388 if (RequireNoSignedWrap && !NoSignedWrap) 1389 return nullptr; 1390 1391 // There are three cases for multiplication: multiplication by exactly 1392 // the scale, multiplication by a constant different to the scale, and 1393 // multiplication by something else. 1394 Value *LHS = BO->getOperand(0); 1395 Value *RHS = BO->getOperand(1); 1396 1397 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1398 // Multiplication by a constant. 1399 if (CI->getValue() == Scale) { 1400 // Multiplication by exactly the scale, replace the multiplication 1401 // by its left-hand side in the parent. 1402 Op = LHS; 1403 break; 1404 } 1405 1406 // Otherwise drill down into the constant. 1407 if (!Op->hasOneUse()) 1408 return nullptr; 1409 1410 Parent = std::make_pair(BO, 1); 1411 continue; 1412 } 1413 1414 // Multiplication by something else. Drill down into the left-hand side 1415 // since that's where the reassociate pass puts the good stuff. 1416 if (!Op->hasOneUse()) 1417 return nullptr; 1418 1419 Parent = std::make_pair(BO, 0); 1420 continue; 1421 } 1422 1423 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1424 isa<ConstantInt>(BO->getOperand(1))) { 1425 // Multiplication by a power of 2. 1426 NoSignedWrap = BO->hasNoSignedWrap(); 1427 if (RequireNoSignedWrap && !NoSignedWrap) 1428 return nullptr; 1429 1430 Value *LHS = BO->getOperand(0); 1431 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1432 getLimitedValue(Scale.getBitWidth()); 1433 // Op = LHS << Amt. 1434 1435 if (Amt == logScale) { 1436 // Multiplication by exactly the scale, replace the multiplication 1437 // by its left-hand side in the parent. 1438 Op = LHS; 1439 break; 1440 } 1441 if (Amt < logScale || !Op->hasOneUse()) 1442 return nullptr; 1443 1444 // Multiplication by more than the scale. Reduce the multiplying amount 1445 // by the scale in the parent. 1446 Parent = std::make_pair(BO, 1); 1447 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1448 break; 1449 } 1450 } 1451 1452 if (!Op->hasOneUse()) 1453 return nullptr; 1454 1455 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1456 if (Cast->getOpcode() == Instruction::SExt) { 1457 // Op is sign-extended from a smaller type, descale in the smaller type. 1458 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1459 APInt SmallScale = Scale.trunc(SmallSize); 1460 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1461 // descale Op as (sext Y) * Scale. In order to have 1462 // sext (Y * SmallScale) = (sext Y) * Scale 1463 // some conditions need to hold however: SmallScale must sign-extend to 1464 // Scale and the multiplication Y * SmallScale should not overflow. 1465 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1466 // SmallScale does not sign-extend to Scale. 1467 return nullptr; 1468 assert(SmallScale.exactLogBase2() == logScale); 1469 // Require that Y * SmallScale must not overflow. 1470 RequireNoSignedWrap = true; 1471 1472 // Drill down through the cast. 1473 Parent = std::make_pair(Cast, 0); 1474 Scale = SmallScale; 1475 continue; 1476 } 1477 1478 if (Cast->getOpcode() == Instruction::Trunc) { 1479 // Op is truncated from a larger type, descale in the larger type. 1480 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1481 // trunc (Y * sext Scale) = (trunc Y) * Scale 1482 // always holds. However (trunc Y) * Scale may overflow even if 1483 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1484 // from this point up in the expression (see later). 1485 if (RequireNoSignedWrap) 1486 return nullptr; 1487 1488 // Drill down through the cast. 1489 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1490 Parent = std::make_pair(Cast, 0); 1491 Scale = Scale.sext(LargeSize); 1492 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1493 logScale = -1; 1494 assert(Scale.exactLogBase2() == logScale); 1495 continue; 1496 } 1497 } 1498 1499 // Unsupported expression, bail out. 1500 return nullptr; 1501 } 1502 1503 // If Op is zero then Val = Op * Scale. 1504 if (match(Op, m_Zero())) { 1505 NoSignedWrap = true; 1506 return Op; 1507 } 1508 1509 // We know that we can successfully descale, so from here on we can safely 1510 // modify the IR. Op holds the descaled version of the deepest term in the 1511 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1512 // not to overflow. 1513 1514 if (!Parent.first) 1515 // The expression only had one term. 1516 return Op; 1517 1518 // Rewrite the parent using the descaled version of its operand. 1519 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1520 assert(Op != Parent.first->getOperand(Parent.second) && 1521 "Descaling was a no-op?"); 1522 replaceOperand(*Parent.first, Parent.second, Op); 1523 Worklist.push(Parent.first); 1524 1525 // Now work back up the expression correcting nsw flags. The logic is based 1526 // on the following observation: if X * Y is known not to overflow as a signed 1527 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1528 // then X * Z will not overflow as a signed multiplication either. As we work 1529 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1530 // current level has strictly smaller absolute value than the original. 1531 Instruction *Ancestor = Parent.first; 1532 do { 1533 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1534 // If the multiplication wasn't nsw then we can't say anything about the 1535 // value of the descaled multiplication, and we have to clear nsw flags 1536 // from this point on up. 1537 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1538 NoSignedWrap &= OpNoSignedWrap; 1539 if (NoSignedWrap != OpNoSignedWrap) { 1540 BO->setHasNoSignedWrap(NoSignedWrap); 1541 Worklist.push(Ancestor); 1542 } 1543 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1544 // The fact that the descaled input to the trunc has smaller absolute 1545 // value than the original input doesn't tell us anything useful about 1546 // the absolute values of the truncations. 1547 NoSignedWrap = false; 1548 } 1549 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1550 "Failed to keep proper track of nsw flags while drilling down?"); 1551 1552 if (Ancestor == Val) 1553 // Got to the top, all done! 1554 return Val; 1555 1556 // Move up one level in the expression. 1557 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1558 Ancestor = Ancestor->user_back(); 1559 } while (true); 1560 } 1561 1562 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 1563 if (!isa<VectorType>(Inst.getType())) 1564 return nullptr; 1565 1566 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1567 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1568 assert(cast<VectorType>(LHS->getType())->getElementCount() == 1569 cast<VectorType>(Inst.getType())->getElementCount()); 1570 assert(cast<VectorType>(RHS->getType())->getElementCount() == 1571 cast<VectorType>(Inst.getType())->getElementCount()); 1572 1573 // If both operands of the binop are vector concatenations, then perform the 1574 // narrow binop on each pair of the source operands followed by concatenation 1575 // of the results. 1576 Value *L0, *L1, *R0, *R1; 1577 ArrayRef<int> Mask; 1578 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 1579 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 1580 LHS->hasOneUse() && RHS->hasOneUse() && 1581 cast<ShuffleVectorInst>(LHS)->isConcat() && 1582 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1583 // This transform does not have the speculative execution constraint as 1584 // below because the shuffle is a concatenation. The new binops are 1585 // operating on exactly the same elements as the existing binop. 1586 // TODO: We could ease the mask requirement to allow different undef lanes, 1587 // but that requires an analysis of the binop-with-undef output value. 1588 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1589 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1590 BO->copyIRFlags(&Inst); 1591 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1592 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1593 BO->copyIRFlags(&Inst); 1594 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1595 } 1596 1597 // It may not be safe to reorder shuffles and things like div, urem, etc. 1598 // because we may trap when executing those ops on unknown vector elements. 1599 // See PR20059. 1600 if (!isSafeToSpeculativelyExecute(&Inst)) 1601 return nullptr; 1602 1603 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 1604 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1605 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1606 BO->copyIRFlags(&Inst); 1607 return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M); 1608 }; 1609 1610 // If both arguments of the binary operation are shuffles that use the same 1611 // mask and shuffle within a single vector, move the shuffle after the binop. 1612 Value *V1, *V2; 1613 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) && 1614 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) && 1615 V1->getType() == V2->getType() && 1616 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1617 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1618 return createBinOpShuffle(V1, V2, Mask); 1619 } 1620 1621 // If both arguments of a commutative binop are select-shuffles that use the 1622 // same mask with commuted operands, the shuffles are unnecessary. 1623 if (Inst.isCommutative() && 1624 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 1625 match(RHS, 1626 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 1627 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1628 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1629 // TODO: Allow shuffles that contain undefs in the mask? 1630 // That is legal, but it reduces undef knowledge. 1631 // TODO: Allow arbitrary shuffles by shuffling after binop? 1632 // That might be legal, but we have to deal with poison. 1633 if (LShuf->isSelect() && 1634 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) && 1635 RShuf->isSelect() && 1636 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) { 1637 // Example: 1638 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1639 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1640 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1641 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1642 NewBO->copyIRFlags(&Inst); 1643 return NewBO; 1644 } 1645 } 1646 1647 // If one argument is a shuffle within one vector and the other is a constant, 1648 // try moving the shuffle after the binary operation. This canonicalization 1649 // intends to move shuffles closer to other shuffles and binops closer to 1650 // other binops, so they can be folded. It may also enable demanded elements 1651 // transforms. 1652 Constant *C; 1653 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 1654 if (InstVTy && 1655 match(&Inst, 1656 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))), 1657 m_ImmConstant(C))) && 1658 cast<FixedVectorType>(V1->getType())->getNumElements() <= 1659 InstVTy->getNumElements()) { 1660 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 1661 "Shuffle should not change scalar type"); 1662 1663 // Find constant NewC that has property: 1664 // shuffle(NewC, ShMask) = C 1665 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1666 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1667 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1668 bool ConstOp1 = isa<Constant>(RHS); 1669 ArrayRef<int> ShMask = Mask; 1670 unsigned SrcVecNumElts = 1671 cast<FixedVectorType>(V1->getType())->getNumElements(); 1672 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1673 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1674 bool MayChange = true; 1675 unsigned NumElts = InstVTy->getNumElements(); 1676 for (unsigned I = 0; I < NumElts; ++I) { 1677 Constant *CElt = C->getAggregateElement(I); 1678 if (ShMask[I] >= 0) { 1679 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1680 Constant *NewCElt = NewVecC[ShMask[I]]; 1681 // Bail out if: 1682 // 1. The constant vector contains a constant expression. 1683 // 2. The shuffle needs an element of the constant vector that can't 1684 // be mapped to a new constant vector. 1685 // 3. This is a widening shuffle that copies elements of V1 into the 1686 // extended elements (extending with undef is allowed). 1687 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1688 I >= SrcVecNumElts) { 1689 MayChange = false; 1690 break; 1691 } 1692 NewVecC[ShMask[I]] = CElt; 1693 } 1694 // If this is a widening shuffle, we must be able to extend with undef 1695 // elements. If the original binop does not produce an undef in the high 1696 // lanes, then this transform is not safe. 1697 // Similarly for undef lanes due to the shuffle mask, we can only 1698 // transform binops that preserve undef. 1699 // TODO: We could shuffle those non-undef constant values into the 1700 // result by using a constant vector (rather than an undef vector) 1701 // as operand 1 of the new binop, but that might be too aggressive 1702 // for target-independent shuffle creation. 1703 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1704 Constant *MaybeUndef = 1705 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1706 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1707 if (!match(MaybeUndef, m_Undef())) { 1708 MayChange = false; 1709 break; 1710 } 1711 } 1712 } 1713 if (MayChange) { 1714 Constant *NewC = ConstantVector::get(NewVecC); 1715 // It may not be safe to execute a binop on a vector with undef elements 1716 // because the entire instruction can be folded to undef or create poison 1717 // that did not exist in the original code. 1718 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1719 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1720 1721 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1722 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1723 Value *NewLHS = ConstOp1 ? V1 : NewC; 1724 Value *NewRHS = ConstOp1 ? NewC : V1; 1725 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1726 } 1727 } 1728 1729 // Try to reassociate to sink a splat shuffle after a binary operation. 1730 if (Inst.isAssociative() && Inst.isCommutative()) { 1731 // Canonicalize shuffle operand as LHS. 1732 if (isa<ShuffleVectorInst>(RHS)) 1733 std::swap(LHS, RHS); 1734 1735 Value *X; 1736 ArrayRef<int> MaskC; 1737 int SplatIndex; 1738 BinaryOperator *BO; 1739 if (!match(LHS, 1740 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 1741 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || 1742 X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) || 1743 BO->getOpcode() != Opcode) 1744 return nullptr; 1745 1746 // FIXME: This may not be safe if the analysis allows undef elements. By 1747 // moving 'Y' before the splat shuffle, we are implicitly assuming 1748 // that it is not undef/poison at the splat index. 1749 Value *Y, *OtherOp; 1750 if (isSplatValue(BO->getOperand(0), SplatIndex)) { 1751 Y = BO->getOperand(0); 1752 OtherOp = BO->getOperand(1); 1753 } else if (isSplatValue(BO->getOperand(1), SplatIndex)) { 1754 Y = BO->getOperand(1); 1755 OtherOp = BO->getOperand(0); 1756 } else { 1757 return nullptr; 1758 } 1759 1760 // X and Y are splatted values, so perform the binary operation on those 1761 // values followed by a splat followed by the 2nd binary operation: 1762 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 1763 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 1764 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 1765 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 1766 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 1767 1768 // Intersect FMF on both new binops. Other (poison-generating) flags are 1769 // dropped to be safe. 1770 if (isa<FPMathOperator>(R)) { 1771 R->copyFastMathFlags(&Inst); 1772 R->andIRFlags(BO); 1773 } 1774 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 1775 NewInstBO->copyIRFlags(R); 1776 return R; 1777 } 1778 1779 return nullptr; 1780 } 1781 1782 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1783 /// of a value. This requires a potentially expensive known bits check to make 1784 /// sure the narrow op does not overflow. 1785 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 1786 // We need at least one extended operand. 1787 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1788 1789 // If this is a sub, we swap the operands since we always want an extension 1790 // on the RHS. The LHS can be an extension or a constant. 1791 if (BO.getOpcode() == Instruction::Sub) 1792 std::swap(Op0, Op1); 1793 1794 Value *X; 1795 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1796 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1797 return nullptr; 1798 1799 // If both operands are the same extension from the same source type and we 1800 // can eliminate at least one (hasOneUse), this might work. 1801 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1802 Value *Y; 1803 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1804 cast<Operator>(Op1)->getOpcode() == CastOpc && 1805 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1806 // If that did not match, see if we have a suitable constant operand. 1807 // Truncating and extending must produce the same constant. 1808 Constant *WideC; 1809 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1810 return nullptr; 1811 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1812 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1813 return nullptr; 1814 Y = NarrowC; 1815 } 1816 1817 // Swap back now that we found our operands. 1818 if (BO.getOpcode() == Instruction::Sub) 1819 std::swap(X, Y); 1820 1821 // Both operands have narrow versions. Last step: the math must not overflow 1822 // in the narrow width. 1823 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1824 return nullptr; 1825 1826 // bo (ext X), (ext Y) --> ext (bo X, Y) 1827 // bo (ext X), C --> ext (bo X, C') 1828 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1829 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1830 if (IsSext) 1831 NewBinOp->setHasNoSignedWrap(); 1832 else 1833 NewBinOp->setHasNoUnsignedWrap(); 1834 } 1835 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1836 } 1837 1838 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 1839 // At least one GEP must be inbounds. 1840 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 1841 return false; 1842 1843 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 1844 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 1845 } 1846 1847 /// Thread a GEP operation with constant indices through the constant true/false 1848 /// arms of a select. 1849 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 1850 InstCombiner::BuilderTy &Builder) { 1851 if (!GEP.hasAllConstantIndices()) 1852 return nullptr; 1853 1854 Instruction *Sel; 1855 Value *Cond; 1856 Constant *TrueC, *FalseC; 1857 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 1858 !match(Sel, 1859 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 1860 return nullptr; 1861 1862 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 1863 // Propagate 'inbounds' and metadata from existing instructions. 1864 // Note: using IRBuilder to create the constants for efficiency. 1865 SmallVector<Value *, 4> IndexC(GEP.indices()); 1866 bool IsInBounds = GEP.isInBounds(); 1867 Type *Ty = GEP.getSourceElementType(); 1868 Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC) 1869 : Builder.CreateGEP(Ty, TrueC, IndexC); 1870 Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC) 1871 : Builder.CreateGEP(Ty, FalseC, IndexC); 1872 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 1873 } 1874 1875 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1876 SmallVector<Value *, 8> Ops(GEP.operands()); 1877 Type *GEPType = GEP.getType(); 1878 Type *GEPEltType = GEP.getSourceElementType(); 1879 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType); 1880 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP))) 1881 return replaceInstUsesWith(GEP, V); 1882 1883 // For vector geps, use the generic demanded vector support. 1884 // Skip if GEP return type is scalable. The number of elements is unknown at 1885 // compile-time. 1886 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 1887 auto VWidth = GEPFVTy->getNumElements(); 1888 APInt UndefElts(VWidth, 0); 1889 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1890 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 1891 UndefElts)) { 1892 if (V != &GEP) 1893 return replaceInstUsesWith(GEP, V); 1894 return &GEP; 1895 } 1896 1897 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 1898 // possible (decide on canonical form for pointer broadcast), 3) exploit 1899 // undef elements to decrease demanded bits 1900 } 1901 1902 Value *PtrOp = GEP.getOperand(0); 1903 1904 // Eliminate unneeded casts for indices, and replace indices which displace 1905 // by multiples of a zero size type with zero. 1906 bool MadeChange = false; 1907 1908 // Index width may not be the same width as pointer width. 1909 // Data layout chooses the right type based on supported integer types. 1910 Type *NewScalarIndexTy = 1911 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 1912 1913 gep_type_iterator GTI = gep_type_begin(GEP); 1914 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1915 ++I, ++GTI) { 1916 // Skip indices into struct types. 1917 if (GTI.isStruct()) 1918 continue; 1919 1920 Type *IndexTy = (*I)->getType(); 1921 Type *NewIndexType = 1922 IndexTy->isVectorTy() 1923 ? VectorType::get(NewScalarIndexTy, 1924 cast<VectorType>(IndexTy)->getElementCount()) 1925 : NewScalarIndexTy; 1926 1927 // If the element type has zero size then any index over it is equivalent 1928 // to an index of zero, so replace it with zero if it is not zero already. 1929 Type *EltTy = GTI.getIndexedType(); 1930 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 1931 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 1932 *I = Constant::getNullValue(NewIndexType); 1933 MadeChange = true; 1934 } 1935 1936 if (IndexTy != NewIndexType) { 1937 // If we are using a wider index than needed for this platform, shrink 1938 // it to what we need. If narrower, sign-extend it to what we need. 1939 // This explicit cast can make subsequent optimizations more obvious. 1940 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1941 MadeChange = true; 1942 } 1943 } 1944 if (MadeChange) 1945 return &GEP; 1946 1947 // Check to see if the inputs to the PHI node are getelementptr instructions. 1948 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 1949 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1950 if (!Op1) 1951 return nullptr; 1952 1953 // Don't fold a GEP into itself through a PHI node. This can only happen 1954 // through the back-edge of a loop. Folding a GEP into itself means that 1955 // the value of the previous iteration needs to be stored in the meantime, 1956 // thus requiring an additional register variable to be live, but not 1957 // actually achieving anything (the GEP still needs to be executed once per 1958 // loop iteration). 1959 if (Op1 == &GEP) 1960 return nullptr; 1961 1962 int DI = -1; 1963 1964 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1965 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 1966 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1967 return nullptr; 1968 1969 // As for Op1 above, don't try to fold a GEP into itself. 1970 if (Op2 == &GEP) 1971 return nullptr; 1972 1973 // Keep track of the type as we walk the GEP. 1974 Type *CurTy = nullptr; 1975 1976 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1977 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1978 return nullptr; 1979 1980 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1981 if (DI == -1) { 1982 // We have not seen any differences yet in the GEPs feeding the 1983 // PHI yet, so we record this one if it is allowed to be a 1984 // variable. 1985 1986 // The first two arguments can vary for any GEP, the rest have to be 1987 // static for struct slots 1988 if (J > 1) { 1989 assert(CurTy && "No current type?"); 1990 if (CurTy->isStructTy()) 1991 return nullptr; 1992 } 1993 1994 DI = J; 1995 } else { 1996 // The GEP is different by more than one input. While this could be 1997 // extended to support GEPs that vary by more than one variable it 1998 // doesn't make sense since it greatly increases the complexity and 1999 // would result in an R+R+R addressing mode which no backend 2000 // directly supports and would need to be broken into several 2001 // simpler instructions anyway. 2002 return nullptr; 2003 } 2004 } 2005 2006 // Sink down a layer of the type for the next iteration. 2007 if (J > 0) { 2008 if (J == 1) { 2009 CurTy = Op1->getSourceElementType(); 2010 } else { 2011 CurTy = 2012 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 2013 } 2014 } 2015 } 2016 } 2017 2018 // If not all GEPs are identical we'll have to create a new PHI node. 2019 // Check that the old PHI node has only one use so that it will get 2020 // removed. 2021 if (DI != -1 && !PN->hasOneUse()) 2022 return nullptr; 2023 2024 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 2025 if (DI == -1) { 2026 // All the GEPs feeding the PHI are identical. Clone one down into our 2027 // BB so that it can be merged with the current GEP. 2028 } else { 2029 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 2030 // into the current block so it can be merged, and create a new PHI to 2031 // set that index. 2032 PHINode *NewPN; 2033 { 2034 IRBuilderBase::InsertPointGuard Guard(Builder); 2035 Builder.SetInsertPoint(PN); 2036 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 2037 PN->getNumOperands()); 2038 } 2039 2040 for (auto &I : PN->operands()) 2041 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 2042 PN->getIncomingBlock(I)); 2043 2044 NewGEP->setOperand(DI, NewPN); 2045 } 2046 2047 GEP.getParent()->getInstList().insert( 2048 GEP.getParent()->getFirstInsertionPt(), NewGEP); 2049 replaceOperand(GEP, 0, NewGEP); 2050 PtrOp = NewGEP; 2051 } 2052 2053 // Combine Indices - If the source pointer to this getelementptr instruction 2054 // is a getelementptr instruction, combine the indices of the two 2055 // getelementptr instructions into a single instruction. 2056 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { 2057 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 2058 return nullptr; 2059 2060 // Try to reassociate loop invariant GEP chains to enable LICM. 2061 if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 2062 Src->hasOneUse()) { 2063 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 2064 Value *GO1 = GEP.getOperand(1); 2065 Value *SO1 = Src->getOperand(1); 2066 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 2067 // invariant: this breaks the dependence between GEPs and allows LICM 2068 // to hoist the invariant part out of the loop. 2069 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 2070 // We have to be careful here. 2071 // We have something like: 2072 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 2073 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 2074 // If we just swap idx & idx2 then we could inadvertantly 2075 // change %src from a vector to a scalar, or vice versa. 2076 // Cases: 2077 // 1) %base a scalar & idx a scalar & idx2 a vector 2078 // => Swapping idx & idx2 turns %src into a vector type. 2079 // 2) %base a scalar & idx a vector & idx2 a scalar 2080 // => Swapping idx & idx2 turns %src in a scalar type 2081 // 3) %base, %idx, and %idx2 are scalars 2082 // => %src & %gep are scalars 2083 // => swapping idx & idx2 is safe 2084 // 4) %base a vector 2085 // => %src is a vector 2086 // => swapping idx & idx2 is safe. 2087 auto *SO0 = Src->getOperand(0); 2088 auto *SO0Ty = SO0->getType(); 2089 if (!isa<VectorType>(GEPType) || // case 3 2090 isa<VectorType>(SO0Ty)) { // case 4 2091 Src->setOperand(1, GO1); 2092 GEP.setOperand(1, SO1); 2093 return &GEP; 2094 } else { 2095 // Case 1 or 2 2096 // -- have to recreate %src & %gep 2097 // put NewSrc at same location as %src 2098 Builder.SetInsertPoint(cast<Instruction>(PtrOp)); 2099 auto *NewSrc = cast<GetElementPtrInst>( 2100 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName())); 2101 NewSrc->setIsInBounds(Src->isInBounds()); 2102 auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1}); 2103 NewGEP->setIsInBounds(GEP.isInBounds()); 2104 return NewGEP; 2105 } 2106 } 2107 } 2108 } 2109 2110 // Note that if our source is a gep chain itself then we wait for that 2111 // chain to be resolved before we perform this transformation. This 2112 // avoids us creating a TON of code in some cases. 2113 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 2114 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 2115 return nullptr; // Wait until our source is folded to completion. 2116 2117 SmallVector<Value*, 8> Indices; 2118 2119 // Find out whether the last index in the source GEP is a sequential idx. 2120 bool EndsWithSequential = false; 2121 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 2122 I != E; ++I) 2123 EndsWithSequential = I.isSequential(); 2124 2125 // Can we combine the two pointer arithmetics offsets? 2126 if (EndsWithSequential) { 2127 // Replace: gep (gep %P, long B), long A, ... 2128 // With: T = long A+B; gep %P, T, ... 2129 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 2130 Value *GO1 = GEP.getOperand(1); 2131 2132 // If they aren't the same type, then the input hasn't been processed 2133 // by the loop above yet (which canonicalizes sequential index types to 2134 // intptr_t). Just avoid transforming this until the input has been 2135 // normalized. 2136 if (SO1->getType() != GO1->getType()) 2137 return nullptr; 2138 2139 Value *Sum = 2140 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 2141 // Only do the combine when we are sure the cost after the 2142 // merge is never more than that before the merge. 2143 if (Sum == nullptr) 2144 return nullptr; 2145 2146 // Update the GEP in place if possible. 2147 if (Src->getNumOperands() == 2) { 2148 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 2149 replaceOperand(GEP, 0, Src->getOperand(0)); 2150 replaceOperand(GEP, 1, Sum); 2151 return &GEP; 2152 } 2153 Indices.append(Src->op_begin()+1, Src->op_end()-1); 2154 Indices.push_back(Sum); 2155 Indices.append(GEP.op_begin()+2, GEP.op_end()); 2156 } else if (isa<Constant>(*GEP.idx_begin()) && 2157 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2158 Src->getNumOperands() != 1) { 2159 // Otherwise we can do the fold if the first index of the GEP is a zero 2160 Indices.append(Src->op_begin()+1, Src->op_end()); 2161 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2162 } 2163 2164 if (!Indices.empty()) 2165 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2166 ? GetElementPtrInst::CreateInBounds( 2167 Src->getSourceElementType(), Src->getOperand(0), Indices, 2168 GEP.getName()) 2169 : GetElementPtrInst::Create(Src->getSourceElementType(), 2170 Src->getOperand(0), Indices, 2171 GEP.getName()); 2172 } 2173 2174 // Skip if GEP source element type is scalable. The type alloc size is unknown 2175 // at compile-time. 2176 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { 2177 unsigned AS = GEP.getPointerAddressSpace(); 2178 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 2179 DL.getIndexSizeInBits(AS)) { 2180 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2181 2182 bool Matched = false; 2183 uint64_t C; 2184 Value *V = nullptr; 2185 if (TyAllocSize == 1) { 2186 V = GEP.getOperand(1); 2187 Matched = true; 2188 } else if (match(GEP.getOperand(1), 2189 m_AShr(m_Value(V), m_ConstantInt(C)))) { 2190 if (TyAllocSize == 1ULL << C) 2191 Matched = true; 2192 } else if (match(GEP.getOperand(1), 2193 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 2194 if (TyAllocSize == C) 2195 Matched = true; 2196 } 2197 2198 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but 2199 // only if both point to the same underlying object (otherwise provenance 2200 // is not necessarily retained). 2201 Value *Y; 2202 Value *X = GEP.getOperand(0); 2203 if (Matched && 2204 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 2205 getUnderlyingObject(X) == getUnderlyingObject(Y)) 2206 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 2207 } 2208 } 2209 2210 // We do not handle pointer-vector geps here. 2211 if (GEPType->isVectorTy()) 2212 return nullptr; 2213 2214 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 2215 Value *StrippedPtr = PtrOp->stripPointerCasts(); 2216 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 2217 2218 if (StrippedPtr != PtrOp) { 2219 bool HasZeroPointerIndex = false; 2220 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType(); 2221 2222 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 2223 HasZeroPointerIndex = C->isZero(); 2224 2225 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2226 // into : GEP [10 x i8]* X, i32 0, ... 2227 // 2228 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2229 // into : GEP i8* X, ... 2230 // 2231 // This occurs when the program declares an array extern like "int X[];" 2232 if (HasZeroPointerIndex) { 2233 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2234 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2235 if (CATy->getElementType() == StrippedPtrEltTy) { 2236 // -> GEP i8* X, ... 2237 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices())); 2238 GetElementPtrInst *Res = GetElementPtrInst::Create( 2239 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2240 Res->setIsInBounds(GEP.isInBounds()); 2241 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2242 return Res; 2243 // Insert Res, and create an addrspacecast. 2244 // e.g., 2245 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2246 // -> 2247 // %0 = GEP i8 addrspace(1)* X, ... 2248 // addrspacecast i8 addrspace(1)* %0 to i8* 2249 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2250 } 2251 2252 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2253 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2254 if (CATy->getElementType() == XATy->getElementType()) { 2255 // -> GEP [10 x i8]* X, i32 0, ... 2256 // At this point, we know that the cast source type is a pointer 2257 // to an array of the same type as the destination pointer 2258 // array. Because the array type is never stepped over (there 2259 // is a leading zero) we can fold the cast into this GEP. 2260 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2261 GEP.setSourceElementType(XATy); 2262 return replaceOperand(GEP, 0, StrippedPtr); 2263 } 2264 // Cannot replace the base pointer directly because StrippedPtr's 2265 // address space is different. Instead, create a new GEP followed by 2266 // an addrspacecast. 2267 // e.g., 2268 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2269 // i32 0, ... 2270 // -> 2271 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2272 // addrspacecast i8 addrspace(1)* %0 to i8* 2273 SmallVector<Value *, 8> Idx(GEP.indices()); 2274 Value *NewGEP = 2275 GEP.isInBounds() 2276 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2277 Idx, GEP.getName()) 2278 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2279 GEP.getName()); 2280 return new AddrSpaceCastInst(NewGEP, GEPType); 2281 } 2282 } 2283 } 2284 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) { 2285 // Skip if GEP source element type is scalable. The type alloc size is 2286 // unknown at compile-time. 2287 // Transform things like: %t = getelementptr i32* 2288 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2 2289 // x i32]* %str, i32 0, i32 %V; bitcast 2290 if (StrippedPtrEltTy->isArrayTy() && 2291 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2292 DL.getTypeAllocSize(GEPEltType)) { 2293 Type *IdxType = DL.getIndexType(GEPType); 2294 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 2295 Value *NewGEP = 2296 GEP.isInBounds() 2297 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2298 GEP.getName()) 2299 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2300 GEP.getName()); 2301 2302 // V and GEP are both pointer types --> BitCast 2303 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2304 } 2305 2306 // Transform things like: 2307 // %V = mul i64 %N, 4 2308 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2309 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2310 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2311 // Check that changing the type amounts to dividing the index by a scale 2312 // factor. 2313 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2314 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize(); 2315 if (ResSize && SrcSize % ResSize == 0) { 2316 Value *Idx = GEP.getOperand(1); 2317 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2318 uint64_t Scale = SrcSize / ResSize; 2319 2320 // Earlier transforms ensure that the index has the right type 2321 // according to Data Layout, which considerably simplifies the 2322 // logic by eliminating implicit casts. 2323 assert(Idx->getType() == DL.getIndexType(GEPType) && 2324 "Index type does not match the Data Layout preferences"); 2325 2326 bool NSW; 2327 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2328 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2329 // If the multiplication NewIdx * Scale may overflow then the new 2330 // GEP may not be "inbounds". 2331 Value *NewGEP = 2332 GEP.isInBounds() && NSW 2333 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2334 NewIdx, GEP.getName()) 2335 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2336 GEP.getName()); 2337 2338 // The NewGEP must be pointer typed, so must the old one -> BitCast 2339 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2340 GEPType); 2341 } 2342 } 2343 } 2344 2345 // Similarly, transform things like: 2346 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2347 // (where tmp = 8*tmp2) into: 2348 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2349 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2350 StrippedPtrEltTy->isArrayTy()) { 2351 // Check that changing to the array element type amounts to dividing the 2352 // index by a scale factor. 2353 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2354 uint64_t ArrayEltSize = 2355 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) 2356 .getFixedSize(); 2357 if (ResSize && ArrayEltSize % ResSize == 0) { 2358 Value *Idx = GEP.getOperand(1); 2359 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2360 uint64_t Scale = ArrayEltSize / ResSize; 2361 2362 // Earlier transforms ensure that the index has the right type 2363 // according to the Data Layout, which considerably simplifies 2364 // the logic by eliminating implicit casts. 2365 assert(Idx->getType() == DL.getIndexType(GEPType) && 2366 "Index type does not match the Data Layout preferences"); 2367 2368 bool NSW; 2369 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2370 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2371 // If the multiplication NewIdx * Scale may overflow then the new 2372 // GEP may not be "inbounds". 2373 Type *IndTy = DL.getIndexType(GEPType); 2374 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2375 2376 Value *NewGEP = 2377 GEP.isInBounds() && NSW 2378 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2379 Off, GEP.getName()) 2380 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2381 GEP.getName()); 2382 // The NewGEP must be pointer typed, so must the old one -> BitCast 2383 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2384 GEPType); 2385 } 2386 } 2387 } 2388 } 2389 } 2390 2391 // addrspacecast between types is canonicalized as a bitcast, then an 2392 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2393 // through the addrspacecast. 2394 Value *ASCStrippedPtrOp = PtrOp; 2395 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2396 // X = bitcast A addrspace(1)* to B addrspace(1)* 2397 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2398 // Z = gep Y, <...constant indices...> 2399 // Into an addrspacecasted GEP of the struct. 2400 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2401 ASCStrippedPtrOp = BC; 2402 } 2403 2404 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 2405 Value *SrcOp = BCI->getOperand(0); 2406 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2407 Type *SrcEltType = SrcType->getElementType(); 2408 2409 // GEP directly using the source operand if this GEP is accessing an element 2410 // of a bitcasted pointer to vector or array of the same dimensions: 2411 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2412 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2413 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, 2414 const DataLayout &DL) { 2415 auto *VecVTy = cast<FixedVectorType>(VecTy); 2416 return ArrTy->getArrayElementType() == VecVTy->getElementType() && 2417 ArrTy->getArrayNumElements() == VecVTy->getNumElements() && 2418 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); 2419 }; 2420 if (GEP.getNumOperands() == 3 && 2421 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) && 2422 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || 2423 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() && 2424 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { 2425 2426 // Create a new GEP here, as using `setOperand()` followed by 2427 // `setSourceElementType()` won't actually update the type of the 2428 // existing GEP Value. Causing issues if this Value is accessed when 2429 // constructing an AddrSpaceCastInst 2430 Value *NGEP = 2431 GEP.isInBounds() 2432 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}) 2433 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}); 2434 NGEP->takeName(&GEP); 2435 2436 // Preserve GEP address space to satisfy users 2437 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2438 return new AddrSpaceCastInst(NGEP, GEPType); 2439 2440 return replaceInstUsesWith(GEP, NGEP); 2441 } 2442 2443 // See if we can simplify: 2444 // X = bitcast A* to B* 2445 // Y = gep X, <...constant indices...> 2446 // into a gep of the original struct. This is important for SROA and alias 2447 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2448 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 2449 APInt Offset(OffsetBits, 0); 2450 2451 // If the bitcast argument is an allocation, The bitcast is for convertion 2452 // to actual type of allocation. Removing such bitcasts, results in having 2453 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of 2454 // struct or array hierarchy. 2455 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have 2456 // a better chance to succeed. 2457 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) && 2458 !isAllocationFn(SrcOp, &TLI)) { 2459 // If this GEP instruction doesn't move the pointer, just replace the GEP 2460 // with a bitcast of the real input to the dest type. 2461 if (!Offset) { 2462 // If the bitcast is of an allocation, and the allocation will be 2463 // converted to match the type of the cast, don't touch this. 2464 if (isa<AllocaInst>(SrcOp)) { 2465 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2466 if (Instruction *I = visitBitCast(*BCI)) { 2467 if (I != BCI) { 2468 I->takeName(BCI); 2469 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2470 replaceInstUsesWith(*BCI, I); 2471 } 2472 return &GEP; 2473 } 2474 } 2475 2476 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2477 return new AddrSpaceCastInst(SrcOp, GEPType); 2478 return new BitCastInst(SrcOp, GEPType); 2479 } 2480 2481 // Otherwise, if the offset is non-zero, we need to find out if there is a 2482 // field at Offset in 'A's type. If so, we can pull the cast through the 2483 // GEP. 2484 SmallVector<Value*, 8> NewIndices; 2485 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2486 Value *NGEP = 2487 GEP.isInBounds() 2488 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) 2489 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); 2490 2491 if (NGEP->getType() == GEPType) 2492 return replaceInstUsesWith(GEP, NGEP); 2493 NGEP->takeName(&GEP); 2494 2495 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2496 return new AddrSpaceCastInst(NGEP, GEPType); 2497 return new BitCastInst(NGEP, GEPType); 2498 } 2499 } 2500 } 2501 2502 if (!GEP.isInBounds()) { 2503 unsigned IdxWidth = 2504 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2505 APInt BasePtrOffset(IdxWidth, 0); 2506 Value *UnderlyingPtrOp = 2507 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2508 BasePtrOffset); 2509 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2510 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2511 BasePtrOffset.isNonNegative()) { 2512 APInt AllocSize( 2513 IdxWidth, 2514 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize()); 2515 if (BasePtrOffset.ule(AllocSize)) { 2516 return GetElementPtrInst::CreateInBounds( 2517 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1), 2518 GEP.getName()); 2519 } 2520 } 2521 } 2522 } 2523 2524 if (Instruction *R = foldSelectGEP(GEP, Builder)) 2525 return R; 2526 2527 return nullptr; 2528 } 2529 2530 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 2531 Instruction *AI) { 2532 if (isa<ConstantPointerNull>(V)) 2533 return true; 2534 if (auto *LI = dyn_cast<LoadInst>(V)) 2535 return isa<GlobalVariable>(LI->getPointerOperand()); 2536 // Two distinct allocations will never be equal. 2537 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2538 // through bitcasts of V can cause 2539 // the result statement below to be true, even when AI and V (ex: 2540 // i8* ->i32* ->i8* of AI) are the same allocations. 2541 return isAllocLikeFn(V, TLI) && V != AI; 2542 } 2543 2544 static bool isAllocSiteRemovable(Instruction *AI, 2545 SmallVectorImpl<WeakTrackingVH> &Users, 2546 const TargetLibraryInfo *TLI) { 2547 SmallVector<Instruction*, 4> Worklist; 2548 Worklist.push_back(AI); 2549 2550 do { 2551 Instruction *PI = Worklist.pop_back_val(); 2552 for (User *U : PI->users()) { 2553 Instruction *I = cast<Instruction>(U); 2554 switch (I->getOpcode()) { 2555 default: 2556 // Give up the moment we see something we can't handle. 2557 return false; 2558 2559 case Instruction::AddrSpaceCast: 2560 case Instruction::BitCast: 2561 case Instruction::GetElementPtr: 2562 Users.emplace_back(I); 2563 Worklist.push_back(I); 2564 continue; 2565 2566 case Instruction::ICmp: { 2567 ICmpInst *ICI = cast<ICmpInst>(I); 2568 // We can fold eq/ne comparisons with null to false/true, respectively. 2569 // We also fold comparisons in some conditions provided the alloc has 2570 // not escaped (see isNeverEqualToUnescapedAlloc). 2571 if (!ICI->isEquality()) 2572 return false; 2573 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2574 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2575 return false; 2576 Users.emplace_back(I); 2577 continue; 2578 } 2579 2580 case Instruction::Call: 2581 // Ignore no-op and store intrinsics. 2582 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2583 switch (II->getIntrinsicID()) { 2584 default: 2585 return false; 2586 2587 case Intrinsic::memmove: 2588 case Intrinsic::memcpy: 2589 case Intrinsic::memset: { 2590 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2591 if (MI->isVolatile() || MI->getRawDest() != PI) 2592 return false; 2593 LLVM_FALLTHROUGH; 2594 } 2595 case Intrinsic::assume: 2596 case Intrinsic::invariant_start: 2597 case Intrinsic::invariant_end: 2598 case Intrinsic::lifetime_start: 2599 case Intrinsic::lifetime_end: 2600 case Intrinsic::objectsize: 2601 Users.emplace_back(I); 2602 continue; 2603 } 2604 } 2605 2606 if (isFreeCall(I, TLI)) { 2607 Users.emplace_back(I); 2608 continue; 2609 } 2610 return false; 2611 2612 case Instruction::Store: { 2613 StoreInst *SI = cast<StoreInst>(I); 2614 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2615 return false; 2616 Users.emplace_back(I); 2617 continue; 2618 } 2619 } 2620 llvm_unreachable("missing a return?"); 2621 } 2622 } while (!Worklist.empty()); 2623 return true; 2624 } 2625 2626 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 2627 // If we have a malloc call which is only used in any amount of comparisons to 2628 // null and free calls, delete the calls and replace the comparisons with true 2629 // or false as appropriate. 2630 2631 // This is based on the principle that we can substitute our own allocation 2632 // function (which will never return null) rather than knowledge of the 2633 // specific function being called. In some sense this can change the permitted 2634 // outputs of a program (when we convert a malloc to an alloca, the fact that 2635 // the allocation is now on the stack is potentially visible, for example), 2636 // but we believe in a permissible manner. 2637 SmallVector<WeakTrackingVH, 64> Users; 2638 2639 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2640 // before each store. 2641 SmallVector<DbgVariableIntrinsic *, 8> DVIs; 2642 std::unique_ptr<DIBuilder> DIB; 2643 if (isa<AllocaInst>(MI)) { 2644 findDbgUsers(DVIs, &MI); 2645 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2646 } 2647 2648 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2649 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2650 // Lowering all @llvm.objectsize calls first because they may 2651 // use a bitcast/GEP of the alloca we are removing. 2652 if (!Users[i]) 2653 continue; 2654 2655 Instruction *I = cast<Instruction>(&*Users[i]); 2656 2657 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2658 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2659 Value *Result = 2660 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); 2661 replaceInstUsesWith(*I, Result); 2662 eraseInstFromFunction(*I); 2663 Users[i] = nullptr; // Skip examining in the next loop. 2664 } 2665 } 2666 } 2667 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2668 if (!Users[i]) 2669 continue; 2670 2671 Instruction *I = cast<Instruction>(&*Users[i]); 2672 2673 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2674 replaceInstUsesWith(*C, 2675 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2676 C->isFalseWhenEqual())); 2677 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2678 for (auto *DVI : DVIs) 2679 if (DVI->isAddressOfVariable()) 2680 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 2681 } else { 2682 // Casts, GEP, or anything else: we're about to delete this instruction, 2683 // so it can not have any valid uses. 2684 replaceInstUsesWith(*I, PoisonValue::get(I->getType())); 2685 } 2686 eraseInstFromFunction(*I); 2687 } 2688 2689 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2690 // Replace invoke with a NOP intrinsic to maintain the original CFG 2691 Module *M = II->getModule(); 2692 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2693 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2694 None, "", II->getParent()); 2695 } 2696 2697 // Remove debug intrinsics which describe the value contained within the 2698 // alloca. In addition to removing dbg.{declare,addr} which simply point to 2699 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 2700 // 2701 // ``` 2702 // define void @foo(i32 %0) { 2703 // %a = alloca i32 ; Deleted. 2704 // store i32 %0, i32* %a 2705 // dbg.value(i32 %0, "arg0") ; Not deleted. 2706 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 2707 // call void @trivially_inlinable_no_op(i32* %a) 2708 // ret void 2709 // } 2710 // ``` 2711 // 2712 // This may not be required if we stop describing the contents of allocas 2713 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 2714 // the LowerDbgDeclare utility. 2715 // 2716 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 2717 // "arg0" dbg.value may be stale after the call. However, failing to remove 2718 // the DW_OP_deref dbg.value causes large gaps in location coverage. 2719 for (auto *DVI : DVIs) 2720 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 2721 DVI->eraseFromParent(); 2722 2723 return eraseInstFromFunction(MI); 2724 } 2725 return nullptr; 2726 } 2727 2728 /// Move the call to free before a NULL test. 2729 /// 2730 /// Check if this free is accessed after its argument has been test 2731 /// against NULL (property 0). 2732 /// If yes, it is legal to move this call in its predecessor block. 2733 /// 2734 /// The move is performed only if the block containing the call to free 2735 /// will be removed, i.e.: 2736 /// 1. it has only one predecessor P, and P has two successors 2737 /// 2. it contains the call, noops, and an unconditional branch 2738 /// 3. its successor is the same as its predecessor's successor 2739 /// 2740 /// The profitability is out-of concern here and this function should 2741 /// be called only if the caller knows this transformation would be 2742 /// profitable (e.g., for code size). 2743 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2744 const DataLayout &DL) { 2745 Value *Op = FI.getArgOperand(0); 2746 BasicBlock *FreeInstrBB = FI.getParent(); 2747 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2748 2749 // Validate part of constraint #1: Only one predecessor 2750 // FIXME: We can extend the number of predecessor, but in that case, we 2751 // would duplicate the call to free in each predecessor and it may 2752 // not be profitable even for code size. 2753 if (!PredBB) 2754 return nullptr; 2755 2756 // Validate constraint #2: Does this block contains only the call to 2757 // free, noops, and an unconditional branch? 2758 BasicBlock *SuccBB; 2759 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2760 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2761 return nullptr; 2762 2763 // If there are only 2 instructions in the block, at this point, 2764 // this is the call to free and unconditional. 2765 // If there are more than 2 instructions, check that they are noops 2766 // i.e., they won't hurt the performance of the generated code. 2767 if (FreeInstrBB->size() != 2) { 2768 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 2769 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2770 continue; 2771 auto *Cast = dyn_cast<CastInst>(&Inst); 2772 if (!Cast || !Cast->isNoopCast(DL)) 2773 return nullptr; 2774 } 2775 } 2776 // Validate the rest of constraint #1 by matching on the pred branch. 2777 Instruction *TI = PredBB->getTerminator(); 2778 BasicBlock *TrueBB, *FalseBB; 2779 ICmpInst::Predicate Pred; 2780 if (!match(TI, m_Br(m_ICmp(Pred, 2781 m_CombineOr(m_Specific(Op), 2782 m_Specific(Op->stripPointerCasts())), 2783 m_Zero()), 2784 TrueBB, FalseBB))) 2785 return nullptr; 2786 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2787 return nullptr; 2788 2789 // Validate constraint #3: Ensure the null case just falls through. 2790 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2791 return nullptr; 2792 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2793 "Broken CFG: missing edge from predecessor to successor"); 2794 2795 // At this point, we know that everything in FreeInstrBB can be moved 2796 // before TI. 2797 for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end(); 2798 It != End;) { 2799 Instruction &Instr = *It++; 2800 if (&Instr == FreeInstrBBTerminator) 2801 break; 2802 Instr.moveBefore(TI); 2803 } 2804 assert(FreeInstrBB->size() == 1 && 2805 "Only the branch instruction should remain"); 2806 return &FI; 2807 } 2808 2809 Instruction *InstCombinerImpl::visitFree(CallInst &FI) { 2810 Value *Op = FI.getArgOperand(0); 2811 2812 // free undef -> unreachable. 2813 if (isa<UndefValue>(Op)) { 2814 // Leave a marker since we can't modify the CFG here. 2815 CreateNonTerminatorUnreachable(&FI); 2816 return eraseInstFromFunction(FI); 2817 } 2818 2819 // If we have 'free null' delete the instruction. This can happen in stl code 2820 // when lots of inlining happens. 2821 if (isa<ConstantPointerNull>(Op)) 2822 return eraseInstFromFunction(FI); 2823 2824 // If we optimize for code size, try to move the call to free before the null 2825 // test so that simplify cfg can remove the empty block and dead code 2826 // elimination the branch. I.e., helps to turn something like: 2827 // if (foo) free(foo); 2828 // into 2829 // free(foo); 2830 // 2831 // Note that we can only do this for 'free' and not for any flavor of 2832 // 'operator delete'; there is no 'operator delete' symbol for which we are 2833 // permitted to invent a call, even if we're passing in a null pointer. 2834 if (MinimizeSize) { 2835 LibFunc Func; 2836 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 2837 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 2838 return I; 2839 } 2840 2841 return nullptr; 2842 } 2843 2844 static bool isMustTailCall(Value *V) { 2845 if (auto *CI = dyn_cast<CallInst>(V)) 2846 return CI->isMustTailCall(); 2847 return false; 2848 } 2849 2850 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 2851 if (RI.getNumOperands() == 0) // ret void 2852 return nullptr; 2853 2854 Value *ResultOp = RI.getOperand(0); 2855 Type *VTy = ResultOp->getType(); 2856 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp)) 2857 return nullptr; 2858 2859 // Don't replace result of musttail calls. 2860 if (isMustTailCall(ResultOp)) 2861 return nullptr; 2862 2863 // There might be assume intrinsics dominating this return that completely 2864 // determine the value. If so, constant fold it. 2865 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2866 if (Known.isConstant()) 2867 return replaceOperand(RI, 0, 2868 Constant::getIntegerValue(VTy, Known.getConstant())); 2869 2870 return nullptr; 2871 } 2872 2873 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 2874 // Try to remove the previous instruction if it must lead to unreachable. 2875 // This includes instructions like stores and "llvm.assume" that may not get 2876 // removed by simple dead code elimination. 2877 Instruction *Prev = I.getPrevNonDebugInstruction(); 2878 if (Prev && !Prev->isEHPad() && 2879 isGuaranteedToTransferExecutionToSuccessor(Prev)) { 2880 // Temporarily disable removal of volatile stores preceding unreachable, 2881 // pending a potential LangRef change permitting volatile stores to trap. 2882 // TODO: Either remove this code, or properly integrate the check into 2883 // isGuaranteedToTransferExecutionToSuccessor(). 2884 if (auto *SI = dyn_cast<StoreInst>(Prev)) 2885 if (SI->isVolatile()) 2886 return nullptr; 2887 2888 // A value may still have uses before we process it here (for example, in 2889 // another unreachable block), so convert those to poison. 2890 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); 2891 eraseInstFromFunction(*Prev); 2892 return &I; 2893 } 2894 return nullptr; 2895 } 2896 2897 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 2898 assert(BI.isUnconditional() && "Only for unconditional branches."); 2899 2900 // If this store is the second-to-last instruction in the basic block 2901 // (excluding debug info and bitcasts of pointers) and if the block ends with 2902 // an unconditional branch, try to move the store to the successor block. 2903 2904 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 2905 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 2906 return isa<DbgInfoIntrinsic>(BBI) || 2907 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 2908 }; 2909 2910 BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 2911 do { 2912 if (BBI != FirstInstr) 2913 --BBI; 2914 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 2915 2916 return dyn_cast<StoreInst>(BBI); 2917 }; 2918 2919 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 2920 if (mergeStoreIntoSuccessor(*SI)) 2921 return &BI; 2922 2923 return nullptr; 2924 } 2925 2926 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 2927 if (BI.isUnconditional()) 2928 return visitUnconditionalBranchInst(BI); 2929 2930 // Change br (not X), label True, label False to: br X, label False, True 2931 Value *X = nullptr; 2932 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 2933 !isa<Constant>(X)) { 2934 // Swap Destinations and condition... 2935 BI.swapSuccessors(); 2936 return replaceOperand(BI, 0, X); 2937 } 2938 2939 // If the condition is irrelevant, remove the use so that other 2940 // transforms on the condition become more effective. 2941 if (!isa<ConstantInt>(BI.getCondition()) && 2942 BI.getSuccessor(0) == BI.getSuccessor(1)) 2943 return replaceOperand( 2944 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType())); 2945 2946 // Canonicalize, for example, fcmp_one -> fcmp_oeq. 2947 CmpInst::Predicate Pred; 2948 if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())), 2949 m_BasicBlock(), m_BasicBlock())) && 2950 !isCanonicalPredicate(Pred)) { 2951 // Swap destinations and condition. 2952 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 2953 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2954 BI.swapSuccessors(); 2955 Worklist.push(Cond); 2956 return &BI; 2957 } 2958 2959 return nullptr; 2960 } 2961 2962 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 2963 Value *Cond = SI.getCondition(); 2964 Value *Op0; 2965 ConstantInt *AddRHS; 2966 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 2967 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2968 for (auto Case : SI.cases()) { 2969 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 2970 assert(isa<ConstantInt>(NewCase) && 2971 "Result of expression should be constant"); 2972 Case.setValue(cast<ConstantInt>(NewCase)); 2973 } 2974 return replaceOperand(SI, 0, Op0); 2975 } 2976 2977 KnownBits Known = computeKnownBits(Cond, 0, &SI); 2978 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 2979 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 2980 2981 // Compute the number of leading bits we can ignore. 2982 // TODO: A better way to determine this would use ComputeNumSignBits(). 2983 for (auto &C : SI.cases()) { 2984 LeadingKnownZeros = std::min( 2985 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2986 LeadingKnownOnes = std::min( 2987 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2988 } 2989 2990 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 2991 2992 // Shrink the condition operand if the new type is smaller than the old type. 2993 // But do not shrink to a non-standard type, because backend can't generate 2994 // good code for that yet. 2995 // TODO: We can make it aggressive again after fixing PR39569. 2996 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 2997 shouldChangeType(Known.getBitWidth(), NewWidth)) { 2998 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2999 Builder.SetInsertPoint(&SI); 3000 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 3001 3002 for (auto Case : SI.cases()) { 3003 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3004 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3005 } 3006 return replaceOperand(SI, 0, NewCond); 3007 } 3008 3009 return nullptr; 3010 } 3011 3012 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 3013 Value *Agg = EV.getAggregateOperand(); 3014 3015 if (!EV.hasIndices()) 3016 return replaceInstUsesWith(EV, Agg); 3017 3018 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 3019 SQ.getWithInstruction(&EV))) 3020 return replaceInstUsesWith(EV, V); 3021 3022 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 3023 // We're extracting from an insertvalue instruction, compare the indices 3024 const unsigned *exti, *exte, *insi, *inse; 3025 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 3026 exte = EV.idx_end(), inse = IV->idx_end(); 3027 exti != exte && insi != inse; 3028 ++exti, ++insi) { 3029 if (*insi != *exti) 3030 // The insert and extract both reference distinctly different elements. 3031 // This means the extract is not influenced by the insert, and we can 3032 // replace the aggregate operand of the extract with the aggregate 3033 // operand of the insert. i.e., replace 3034 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3035 // %E = extractvalue { i32, { i32 } } %I, 0 3036 // with 3037 // %E = extractvalue { i32, { i32 } } %A, 0 3038 return ExtractValueInst::Create(IV->getAggregateOperand(), 3039 EV.getIndices()); 3040 } 3041 if (exti == exte && insi == inse) 3042 // Both iterators are at the end: Index lists are identical. Replace 3043 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3044 // %C = extractvalue { i32, { i32 } } %B, 1, 0 3045 // with "i32 42" 3046 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 3047 if (exti == exte) { 3048 // The extract list is a prefix of the insert list. i.e. replace 3049 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3050 // %E = extractvalue { i32, { i32 } } %I, 1 3051 // with 3052 // %X = extractvalue { i32, { i32 } } %A, 1 3053 // %E = insertvalue { i32 } %X, i32 42, 0 3054 // by switching the order of the insert and extract (though the 3055 // insertvalue should be left in, since it may have other uses). 3056 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 3057 EV.getIndices()); 3058 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 3059 makeArrayRef(insi, inse)); 3060 } 3061 if (insi == inse) 3062 // The insert list is a prefix of the extract list 3063 // We can simply remove the common indices from the extract and make it 3064 // operate on the inserted value instead of the insertvalue result. 3065 // i.e., replace 3066 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3067 // %E = extractvalue { i32, { i32 } } %I, 1, 0 3068 // with 3069 // %E extractvalue { i32 } { i32 42 }, 0 3070 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 3071 makeArrayRef(exti, exte)); 3072 } 3073 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 3074 // We're extracting from an overflow intrinsic, see if we're the only user, 3075 // which allows us to simplify multiple result intrinsics to simpler 3076 // things that just get one value. 3077 if (WO->hasOneUse()) { 3078 // Check if we're grabbing only the result of a 'with overflow' intrinsic 3079 // and replace it with a traditional binary instruction. 3080 if (*EV.idx_begin() == 0) { 3081 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 3082 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 3083 // Replace the old instruction's uses with poison. 3084 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); 3085 eraseInstFromFunction(*WO); 3086 return BinaryOperator::Create(BinOp, LHS, RHS); 3087 } 3088 3089 assert(*EV.idx_begin() == 1 && 3090 "unexpected extract index for overflow inst"); 3091 3092 // If the normal result of the computation is dead, and the RHS is a 3093 // constant, we can transform this into a range comparison for many cases. 3094 // TODO: We can generalize these for non-constant rhs when the newly 3095 // formed expressions are known to simplify. Constants are merely one 3096 // such case. 3097 // TODO: Handle vector splats. 3098 switch (WO->getIntrinsicID()) { 3099 default: 3100 break; 3101 case Intrinsic::uadd_with_overflow: 3102 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 3103 if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS())) 3104 return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(), 3105 ConstantExpr::getNot(CI)); 3106 break; 3107 case Intrinsic::umul_with_overflow: 3108 // overflow for umul a, C --> a > UINT_MAX udiv C 3109 // (unless C == 0, in which case no overflow ever occurs) 3110 if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS())) { 3111 assert(!CI->isZero() && "handled by instruction simplify"); 3112 auto UMax = APInt::getMaxValue(CI->getType()->getBitWidth()); 3113 auto *Op = 3114 ConstantExpr::getUDiv(ConstantInt::get(CI->getType(), UMax), CI); 3115 return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(), Op); 3116 } 3117 break; 3118 }; 3119 } 3120 } 3121 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 3122 // If the (non-volatile) load only has one use, we can rewrite this to a 3123 // load from a GEP. This reduces the size of the load. If a load is used 3124 // only by extractvalue instructions then this either must have been 3125 // optimized before, or it is a struct with padding, in which case we 3126 // don't want to do the transformation as it loses padding knowledge. 3127 if (L->isSimple() && L->hasOneUse()) { 3128 // extractvalue has integer indices, getelementptr has Value*s. Convert. 3129 SmallVector<Value*, 4> Indices; 3130 // Prefix an i32 0 since we need the first element. 3131 Indices.push_back(Builder.getInt32(0)); 3132 for (unsigned Idx : EV.indices()) 3133 Indices.push_back(Builder.getInt32(Idx)); 3134 3135 // We need to insert these at the location of the old load, not at that of 3136 // the extractvalue. 3137 Builder.SetInsertPoint(L); 3138 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 3139 L->getPointerOperand(), Indices); 3140 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 3141 // Whatever aliasing information we had for the orignal load must also 3142 // hold for the smaller load, so propagate the annotations. 3143 AAMDNodes Nodes; 3144 L->getAAMetadata(Nodes); 3145 NL->setAAMetadata(Nodes); 3146 // Returning the load directly will cause the main loop to insert it in 3147 // the wrong spot, so use replaceInstUsesWith(). 3148 return replaceInstUsesWith(EV, NL); 3149 } 3150 // We could simplify extracts from other values. Note that nested extracts may 3151 // already be simplified implicitly by the above: extract (extract (insert) ) 3152 // will be translated into extract ( insert ( extract ) ) first and then just 3153 // the value inserted, if appropriate. Similarly for extracts from single-use 3154 // loads: extract (extract (load)) will be translated to extract (load (gep)) 3155 // and if again single-use then via load (gep (gep)) to load (gep). 3156 // However, double extracts from e.g. function arguments or return values 3157 // aren't handled yet. 3158 return nullptr; 3159 } 3160 3161 /// Return 'true' if the given typeinfo will match anything. 3162 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 3163 switch (Personality) { 3164 case EHPersonality::GNU_C: 3165 case EHPersonality::GNU_C_SjLj: 3166 case EHPersonality::Rust: 3167 // The GCC C EH and Rust personality only exists to support cleanups, so 3168 // it's not clear what the semantics of catch clauses are. 3169 return false; 3170 case EHPersonality::Unknown: 3171 return false; 3172 case EHPersonality::GNU_Ada: 3173 // While __gnat_all_others_value will match any Ada exception, it doesn't 3174 // match foreign exceptions (or didn't, before gcc-4.7). 3175 return false; 3176 case EHPersonality::GNU_CXX: 3177 case EHPersonality::GNU_CXX_SjLj: 3178 case EHPersonality::GNU_ObjC: 3179 case EHPersonality::MSVC_X86SEH: 3180 case EHPersonality::MSVC_TableSEH: 3181 case EHPersonality::MSVC_CXX: 3182 case EHPersonality::CoreCLR: 3183 case EHPersonality::Wasm_CXX: 3184 case EHPersonality::XL_CXX: 3185 return TypeInfo->isNullValue(); 3186 } 3187 llvm_unreachable("invalid enum"); 3188 } 3189 3190 static bool shorter_filter(const Value *LHS, const Value *RHS) { 3191 return 3192 cast<ArrayType>(LHS->getType())->getNumElements() 3193 < 3194 cast<ArrayType>(RHS->getType())->getNumElements(); 3195 } 3196 3197 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 3198 // The logic here should be correct for any real-world personality function. 3199 // However if that turns out not to be true, the offending logic can always 3200 // be conditioned on the personality function, like the catch-all logic is. 3201 EHPersonality Personality = 3202 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 3203 3204 // Simplify the list of clauses, eg by removing repeated catch clauses 3205 // (these are often created by inlining). 3206 bool MakeNewInstruction = false; // If true, recreate using the following: 3207 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 3208 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 3209 3210 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 3211 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 3212 bool isLastClause = i + 1 == e; 3213 if (LI.isCatch(i)) { 3214 // A catch clause. 3215 Constant *CatchClause = LI.getClause(i); 3216 Constant *TypeInfo = CatchClause->stripPointerCasts(); 3217 3218 // If we already saw this clause, there is no point in having a second 3219 // copy of it. 3220 if (AlreadyCaught.insert(TypeInfo).second) { 3221 // This catch clause was not already seen. 3222 NewClauses.push_back(CatchClause); 3223 } else { 3224 // Repeated catch clause - drop the redundant copy. 3225 MakeNewInstruction = true; 3226 } 3227 3228 // If this is a catch-all then there is no point in keeping any following 3229 // clauses or marking the landingpad as having a cleanup. 3230 if (isCatchAll(Personality, TypeInfo)) { 3231 if (!isLastClause) 3232 MakeNewInstruction = true; 3233 CleanupFlag = false; 3234 break; 3235 } 3236 } else { 3237 // A filter clause. If any of the filter elements were already caught 3238 // then they can be dropped from the filter. It is tempting to try to 3239 // exploit the filter further by saying that any typeinfo that does not 3240 // occur in the filter can't be caught later (and thus can be dropped). 3241 // However this would be wrong, since typeinfos can match without being 3242 // equal (for example if one represents a C++ class, and the other some 3243 // class derived from it). 3244 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 3245 Constant *FilterClause = LI.getClause(i); 3246 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 3247 unsigned NumTypeInfos = FilterType->getNumElements(); 3248 3249 // An empty filter catches everything, so there is no point in keeping any 3250 // following clauses or marking the landingpad as having a cleanup. By 3251 // dealing with this case here the following code is made a bit simpler. 3252 if (!NumTypeInfos) { 3253 NewClauses.push_back(FilterClause); 3254 if (!isLastClause) 3255 MakeNewInstruction = true; 3256 CleanupFlag = false; 3257 break; 3258 } 3259 3260 bool MakeNewFilter = false; // If true, make a new filter. 3261 SmallVector<Constant *, 16> NewFilterElts; // New elements. 3262 if (isa<ConstantAggregateZero>(FilterClause)) { 3263 // Not an empty filter - it contains at least one null typeinfo. 3264 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 3265 Constant *TypeInfo = 3266 Constant::getNullValue(FilterType->getElementType()); 3267 // If this typeinfo is a catch-all then the filter can never match. 3268 if (isCatchAll(Personality, TypeInfo)) { 3269 // Throw the filter away. 3270 MakeNewInstruction = true; 3271 continue; 3272 } 3273 3274 // There is no point in having multiple copies of this typeinfo, so 3275 // discard all but the first copy if there is more than one. 3276 NewFilterElts.push_back(TypeInfo); 3277 if (NumTypeInfos > 1) 3278 MakeNewFilter = true; 3279 } else { 3280 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 3281 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 3282 NewFilterElts.reserve(NumTypeInfos); 3283 3284 // Remove any filter elements that were already caught or that already 3285 // occurred in the filter. While there, see if any of the elements are 3286 // catch-alls. If so, the filter can be discarded. 3287 bool SawCatchAll = false; 3288 for (unsigned j = 0; j != NumTypeInfos; ++j) { 3289 Constant *Elt = Filter->getOperand(j); 3290 Constant *TypeInfo = Elt->stripPointerCasts(); 3291 if (isCatchAll(Personality, TypeInfo)) { 3292 // This element is a catch-all. Bail out, noting this fact. 3293 SawCatchAll = true; 3294 break; 3295 } 3296 3297 // Even if we've seen a type in a catch clause, we don't want to 3298 // remove it from the filter. An unexpected type handler may be 3299 // set up for a call site which throws an exception of the same 3300 // type caught. In order for the exception thrown by the unexpected 3301 // handler to propagate correctly, the filter must be correctly 3302 // described for the call site. 3303 // 3304 // Example: 3305 // 3306 // void unexpected() { throw 1;} 3307 // void foo() throw (int) { 3308 // std::set_unexpected(unexpected); 3309 // try { 3310 // throw 2.0; 3311 // } catch (int i) {} 3312 // } 3313 3314 // There is no point in having multiple copies of the same typeinfo in 3315 // a filter, so only add it if we didn't already. 3316 if (SeenInFilter.insert(TypeInfo).second) 3317 NewFilterElts.push_back(cast<Constant>(Elt)); 3318 } 3319 // A filter containing a catch-all cannot match anything by definition. 3320 if (SawCatchAll) { 3321 // Throw the filter away. 3322 MakeNewInstruction = true; 3323 continue; 3324 } 3325 3326 // If we dropped something from the filter, make a new one. 3327 if (NewFilterElts.size() < NumTypeInfos) 3328 MakeNewFilter = true; 3329 } 3330 if (MakeNewFilter) { 3331 FilterType = ArrayType::get(FilterType->getElementType(), 3332 NewFilterElts.size()); 3333 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 3334 MakeNewInstruction = true; 3335 } 3336 3337 NewClauses.push_back(FilterClause); 3338 3339 // If the new filter is empty then it will catch everything so there is 3340 // no point in keeping any following clauses or marking the landingpad 3341 // as having a cleanup. The case of the original filter being empty was 3342 // already handled above. 3343 if (MakeNewFilter && !NewFilterElts.size()) { 3344 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3345 CleanupFlag = false; 3346 break; 3347 } 3348 } 3349 } 3350 3351 // If several filters occur in a row then reorder them so that the shortest 3352 // filters come first (those with the smallest number of elements). This is 3353 // advantageous because shorter filters are more likely to match, speeding up 3354 // unwinding, but mostly because it increases the effectiveness of the other 3355 // filter optimizations below. 3356 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3357 unsigned j; 3358 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3359 for (j = i; j != e; ++j) 3360 if (!isa<ArrayType>(NewClauses[j]->getType())) 3361 break; 3362 3363 // Check whether the filters are already sorted by length. We need to know 3364 // if sorting them is actually going to do anything so that we only make a 3365 // new landingpad instruction if it does. 3366 for (unsigned k = i; k + 1 < j; ++k) 3367 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3368 // Not sorted, so sort the filters now. Doing an unstable sort would be 3369 // correct too but reordering filters pointlessly might confuse users. 3370 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3371 shorter_filter); 3372 MakeNewInstruction = true; 3373 break; 3374 } 3375 3376 // Look for the next batch of filters. 3377 i = j + 1; 3378 } 3379 3380 // If typeinfos matched if and only if equal, then the elements of a filter L 3381 // that occurs later than a filter F could be replaced by the intersection of 3382 // the elements of F and L. In reality two typeinfos can match without being 3383 // equal (for example if one represents a C++ class, and the other some class 3384 // derived from it) so it would be wrong to perform this transform in general. 3385 // However the transform is correct and useful if F is a subset of L. In that 3386 // case L can be replaced by F, and thus removed altogether since repeating a 3387 // filter is pointless. So here we look at all pairs of filters F and L where 3388 // L follows F in the list of clauses, and remove L if every element of F is 3389 // an element of L. This can occur when inlining C++ functions with exception 3390 // specifications. 3391 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3392 // Examine each filter in turn. 3393 Value *Filter = NewClauses[i]; 3394 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3395 if (!FTy) 3396 // Not a filter - skip it. 3397 continue; 3398 unsigned FElts = FTy->getNumElements(); 3399 // Examine each filter following this one. Doing this backwards means that 3400 // we don't have to worry about filters disappearing under us when removed. 3401 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3402 Value *LFilter = NewClauses[j]; 3403 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3404 if (!LTy) 3405 // Not a filter - skip it. 3406 continue; 3407 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3408 // an element of LFilter, then discard LFilter. 3409 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3410 // If Filter is empty then it is a subset of LFilter. 3411 if (!FElts) { 3412 // Discard LFilter. 3413 NewClauses.erase(J); 3414 MakeNewInstruction = true; 3415 // Move on to the next filter. 3416 continue; 3417 } 3418 unsigned LElts = LTy->getNumElements(); 3419 // If Filter is longer than LFilter then it cannot be a subset of it. 3420 if (FElts > LElts) 3421 // Move on to the next filter. 3422 continue; 3423 // At this point we know that LFilter has at least one element. 3424 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3425 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3426 // already know that Filter is not longer than LFilter). 3427 if (isa<ConstantAggregateZero>(Filter)) { 3428 assert(FElts <= LElts && "Should have handled this case earlier!"); 3429 // Discard LFilter. 3430 NewClauses.erase(J); 3431 MakeNewInstruction = true; 3432 } 3433 // Move on to the next filter. 3434 continue; 3435 } 3436 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3437 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3438 // Since Filter is non-empty and contains only zeros, it is a subset of 3439 // LFilter iff LFilter contains a zero. 3440 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3441 for (unsigned l = 0; l != LElts; ++l) 3442 if (LArray->getOperand(l)->isNullValue()) { 3443 // LFilter contains a zero - discard it. 3444 NewClauses.erase(J); 3445 MakeNewInstruction = true; 3446 break; 3447 } 3448 // Move on to the next filter. 3449 continue; 3450 } 3451 // At this point we know that both filters are ConstantArrays. Loop over 3452 // operands to see whether every element of Filter is also an element of 3453 // LFilter. Since filters tend to be short this is probably faster than 3454 // using a method that scales nicely. 3455 ConstantArray *FArray = cast<ConstantArray>(Filter); 3456 bool AllFound = true; 3457 for (unsigned f = 0; f != FElts; ++f) { 3458 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3459 AllFound = false; 3460 for (unsigned l = 0; l != LElts; ++l) { 3461 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3462 if (LTypeInfo == FTypeInfo) { 3463 AllFound = true; 3464 break; 3465 } 3466 } 3467 if (!AllFound) 3468 break; 3469 } 3470 if (AllFound) { 3471 // Discard LFilter. 3472 NewClauses.erase(J); 3473 MakeNewInstruction = true; 3474 } 3475 // Move on to the next filter. 3476 } 3477 } 3478 3479 // If we changed any of the clauses, replace the old landingpad instruction 3480 // with a new one. 3481 if (MakeNewInstruction) { 3482 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3483 NewClauses.size()); 3484 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3485 NLI->addClause(NewClauses[i]); 3486 // A landing pad with no clauses must have the cleanup flag set. It is 3487 // theoretically possible, though highly unlikely, that we eliminated all 3488 // clauses. If so, force the cleanup flag to true. 3489 if (NewClauses.empty()) 3490 CleanupFlag = true; 3491 NLI->setCleanup(CleanupFlag); 3492 return NLI; 3493 } 3494 3495 // Even if none of the clauses changed, we may nonetheless have understood 3496 // that the cleanup flag is pointless. Clear it if so. 3497 if (LI.isCleanup() != CleanupFlag) { 3498 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3499 LI.setCleanup(CleanupFlag); 3500 return &LI; 3501 } 3502 3503 return nullptr; 3504 } 3505 3506 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 3507 Value *Op0 = I.getOperand(0); 3508 3509 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3510 return replaceInstUsesWith(I, V); 3511 3512 // freeze (phi const, x) --> phi const, (freeze x) 3513 if (auto *PN = dyn_cast<PHINode>(Op0)) { 3514 if (Instruction *NV = foldOpIntoPhi(I, PN)) 3515 return NV; 3516 } 3517 3518 if (match(Op0, m_Undef())) { 3519 // If I is freeze(undef), see its uses and fold it to the best constant. 3520 // - or: pick -1 3521 // - select's condition: pick the value that leads to choosing a constant 3522 // - other ops: pick 0 3523 Constant *BestValue = nullptr; 3524 Constant *NullValue = Constant::getNullValue(I.getType()); 3525 for (const auto *U : I.users()) { 3526 Constant *C = NullValue; 3527 3528 if (match(U, m_Or(m_Value(), m_Value()))) 3529 C = Constant::getAllOnesValue(I.getType()); 3530 else if (const auto *SI = dyn_cast<SelectInst>(U)) { 3531 if (SI->getCondition() == &I) { 3532 APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1); 3533 C = Constant::getIntegerValue(I.getType(), CondVal); 3534 } 3535 } 3536 3537 if (!BestValue) 3538 BestValue = C; 3539 else if (BestValue != C) 3540 BestValue = NullValue; 3541 } 3542 3543 return replaceInstUsesWith(I, BestValue); 3544 } 3545 3546 return nullptr; 3547 } 3548 3549 /// Try to move the specified instruction from its current block into the 3550 /// beginning of DestBlock, which can only happen if it's safe to move the 3551 /// instruction past all of the instructions between it and the end of its 3552 /// block. 3553 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 3554 assert(I->getSingleUndroppableUse() && "Invariants didn't hold!"); 3555 BasicBlock *SrcBlock = I->getParent(); 3556 3557 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3558 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 3559 I->isTerminator()) 3560 return false; 3561 3562 // Do not sink static or dynamic alloca instructions. Static allocas must 3563 // remain in the entry block, and dynamic allocas must not be sunk in between 3564 // a stacksave / stackrestore pair, which would incorrectly shorten its 3565 // lifetime. 3566 if (isa<AllocaInst>(I)) 3567 return false; 3568 3569 // Do not sink into catchswitch blocks. 3570 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 3571 return false; 3572 3573 // Do not sink convergent call instructions. 3574 if (auto *CI = dyn_cast<CallInst>(I)) { 3575 if (CI->isConvergent()) 3576 return false; 3577 } 3578 // We can only sink load instructions if there is nothing between the load and 3579 // the end of block that could change the value. 3580 if (I->mayReadFromMemory()) { 3581 // We don't want to do any sophisticated alias analysis, so we only check 3582 // the instructions after I in I's parent block if we try to sink to its 3583 // successor block. 3584 if (DestBlock->getUniquePredecessor() != I->getParent()) 3585 return false; 3586 for (BasicBlock::iterator Scan = I->getIterator(), 3587 E = I->getParent()->end(); 3588 Scan != E; ++Scan) 3589 if (Scan->mayWriteToMemory()) 3590 return false; 3591 } 3592 3593 I->dropDroppableUses([DestBlock](const Use *U) { 3594 if (auto *I = dyn_cast<Instruction>(U->getUser())) 3595 return I->getParent() != DestBlock; 3596 return true; 3597 }); 3598 /// FIXME: We could remove droppable uses that are not dominated by 3599 /// the new position. 3600 3601 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 3602 I->moveBefore(&*InsertPos); 3603 ++NumSunkInst; 3604 3605 // Also sink all related debug uses from the source basic block. Otherwise we 3606 // get debug use before the def. Attempt to salvage debug uses first, to 3607 // maximise the range variables have location for. If we cannot salvage, then 3608 // mark the location undef: we know it was supposed to receive a new location 3609 // here, but that computation has been sunk. 3610 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 3611 findDbgUsers(DbgUsers, I); 3612 // Process the sinking DbgUsers in reverse order, as we only want to clone the 3613 // last appearing debug intrinsic for each given variable. 3614 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 3615 for (DbgVariableIntrinsic *DVI : DbgUsers) 3616 if (DVI->getParent() == SrcBlock) 3617 DbgUsersToSink.push_back(DVI); 3618 llvm::sort(DbgUsersToSink, 3619 [](auto *A, auto *B) { return B->comesBefore(A); }); 3620 3621 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 3622 SmallSet<DebugVariable, 4> SunkVariables; 3623 for (auto User : DbgUsersToSink) { 3624 // A dbg.declare instruction should not be cloned, since there can only be 3625 // one per variable fragment. It should be left in the original place 3626 // because the sunk instruction is not an alloca (otherwise we could not be 3627 // here). 3628 if (isa<DbgDeclareInst>(User)) 3629 continue; 3630 3631 DebugVariable DbgUserVariable = 3632 DebugVariable(User->getVariable(), User->getExpression(), 3633 User->getDebugLoc()->getInlinedAt()); 3634 3635 if (!SunkVariables.insert(DbgUserVariable).second) 3636 continue; 3637 3638 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 3639 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 3640 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 3641 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 3642 } 3643 3644 // Perform salvaging without the clones, then sink the clones. 3645 if (!DIIClones.empty()) { 3646 salvageDebugInfoForDbgValues(*I, DbgUsers); 3647 // The clones are in reverse order of original appearance, reverse again to 3648 // maintain the original order. 3649 for (auto &DIIClone : llvm::reverse(DIIClones)) { 3650 DIIClone->insertBefore(&*InsertPos); 3651 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 3652 } 3653 } 3654 3655 return true; 3656 } 3657 3658 bool InstCombinerImpl::run() { 3659 while (!Worklist.isEmpty()) { 3660 // Walk deferred instructions in reverse order, and push them to the 3661 // worklist, which means they'll end up popped from the worklist in-order. 3662 while (Instruction *I = Worklist.popDeferred()) { 3663 // Check to see if we can DCE the instruction. We do this already here to 3664 // reduce the number of uses and thus allow other folds to trigger. 3665 // Note that eraseInstFromFunction() may push additional instructions on 3666 // the deferred worklist, so this will DCE whole instruction chains. 3667 if (isInstructionTriviallyDead(I, &TLI)) { 3668 eraseInstFromFunction(*I); 3669 ++NumDeadInst; 3670 continue; 3671 } 3672 3673 Worklist.push(I); 3674 } 3675 3676 Instruction *I = Worklist.removeOne(); 3677 if (I == nullptr) continue; // skip null values. 3678 3679 // Check to see if we can DCE the instruction. 3680 if (isInstructionTriviallyDead(I, &TLI)) { 3681 eraseInstFromFunction(*I); 3682 ++NumDeadInst; 3683 continue; 3684 } 3685 3686 if (!DebugCounter::shouldExecute(VisitCounter)) 3687 continue; 3688 3689 // Instruction isn't dead, see if we can constant propagate it. 3690 if (!I->use_empty() && 3691 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 3692 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 3693 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 3694 << '\n'); 3695 3696 // Add operands to the worklist. 3697 replaceInstUsesWith(*I, C); 3698 ++NumConstProp; 3699 if (isInstructionTriviallyDead(I, &TLI)) 3700 eraseInstFromFunction(*I); 3701 MadeIRChange = true; 3702 continue; 3703 } 3704 } 3705 3706 // See if we can trivially sink this instruction to its user if we can 3707 // prove that the successor is not executed more frequently than our block. 3708 if (EnableCodeSinking) 3709 if (Use *SingleUse = I->getSingleUndroppableUse()) { 3710 BasicBlock *BB = I->getParent(); 3711 Instruction *UserInst = cast<Instruction>(SingleUse->getUser()); 3712 BasicBlock *UserParent; 3713 3714 // Get the block the use occurs in. 3715 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 3716 UserParent = PN->getIncomingBlock(*SingleUse); 3717 else 3718 UserParent = UserInst->getParent(); 3719 3720 // Try sinking to another block. If that block is unreachable, then do 3721 // not bother. SimplifyCFG should handle it. 3722 if (UserParent != BB && DT.isReachableFromEntry(UserParent)) { 3723 // See if the user is one of our successors that has only one 3724 // predecessor, so that we don't have to split the critical edge. 3725 bool ShouldSink = UserParent->getUniquePredecessor() == BB; 3726 // Another option where we can sink is a block that ends with a 3727 // terminator that does not pass control to other block (such as 3728 // return or unreachable). In this case: 3729 // - I dominates the User (by SSA form); 3730 // - the User will be executed at most once. 3731 // So sinking I down to User is always profitable or neutral. 3732 if (!ShouldSink) { 3733 auto *Term = UserParent->getTerminator(); 3734 ShouldSink = isa<ReturnInst>(Term) || isa<UnreachableInst>(Term); 3735 } 3736 if (ShouldSink) { 3737 assert(DT.dominates(BB, UserParent) && 3738 "Dominance relation broken?"); 3739 // Okay, the CFG is simple enough, try to sink this instruction. 3740 if (TryToSinkInstruction(I, UserParent)) { 3741 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3742 MadeIRChange = true; 3743 // We'll add uses of the sunk instruction below, but since sinking 3744 // can expose opportunities for it's *operands* add them to the 3745 // worklist 3746 for (Use &U : I->operands()) 3747 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3748 Worklist.push(OpI); 3749 } 3750 } 3751 } 3752 } 3753 3754 // Now that we have an instruction, try combining it to simplify it. 3755 Builder.SetInsertPoint(I); 3756 Builder.CollectMetadataToCopy( 3757 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 3758 3759 #ifndef NDEBUG 3760 std::string OrigI; 3761 #endif 3762 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 3763 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 3764 3765 if (Instruction *Result = visit(*I)) { 3766 ++NumCombined; 3767 // Should we replace the old instruction with a new one? 3768 if (Result != I) { 3769 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 3770 << " New = " << *Result << '\n'); 3771 3772 Result->copyMetadata(*I, 3773 {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 3774 // Everything uses the new instruction now. 3775 I->replaceAllUsesWith(Result); 3776 3777 // Move the name to the new instruction first. 3778 Result->takeName(I); 3779 3780 // Insert the new instruction into the basic block... 3781 BasicBlock *InstParent = I->getParent(); 3782 BasicBlock::iterator InsertPos = I->getIterator(); 3783 3784 // Are we replace a PHI with something that isn't a PHI, or vice versa? 3785 if (isa<PHINode>(Result) != isa<PHINode>(I)) { 3786 // We need to fix up the insertion point. 3787 if (isa<PHINode>(I)) // PHI -> Non-PHI 3788 InsertPos = InstParent->getFirstInsertionPt(); 3789 else // Non-PHI -> PHI 3790 InsertPos = InstParent->getFirstNonPHI()->getIterator(); 3791 } 3792 3793 InstParent->getInstList().insert(InsertPos, Result); 3794 3795 // Push the new instruction and any users onto the worklist. 3796 Worklist.pushUsersToWorkList(*Result); 3797 Worklist.push(Result); 3798 3799 eraseInstFromFunction(*I); 3800 } else { 3801 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3802 << " New = " << *I << '\n'); 3803 3804 // If the instruction was modified, it's possible that it is now dead. 3805 // if so, remove it. 3806 if (isInstructionTriviallyDead(I, &TLI)) { 3807 eraseInstFromFunction(*I); 3808 } else { 3809 Worklist.pushUsersToWorkList(*I); 3810 Worklist.push(I); 3811 } 3812 } 3813 MadeIRChange = true; 3814 } 3815 } 3816 3817 Worklist.zap(); 3818 return MadeIRChange; 3819 } 3820 3821 // Track the scopes used by !alias.scope and !noalias. In a function, a 3822 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 3823 // by both sets. If not, the declaration of the scope can be safely omitted. 3824 // The MDNode of the scope can be omitted as well for the instructions that are 3825 // part of this function. We do not do that at this point, as this might become 3826 // too time consuming to do. 3827 class AliasScopeTracker { 3828 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 3829 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 3830 3831 public: 3832 void analyse(Instruction *I) { 3833 // This seems to be faster than checking 'mayReadOrWriteMemory()'. 3834 if (!I->hasMetadataOtherThanDebugLoc()) 3835 return; 3836 3837 auto Track = [](Metadata *ScopeList, auto &Container) { 3838 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 3839 if (!MDScopeList || !Container.insert(MDScopeList).second) 3840 return; 3841 for (auto &MDOperand : MDScopeList->operands()) 3842 if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 3843 Container.insert(MDScope); 3844 }; 3845 3846 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 3847 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 3848 } 3849 3850 bool isNoAliasScopeDeclDead(Instruction *Inst) { 3851 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 3852 if (!Decl) 3853 return false; 3854 3855 assert(Decl->use_empty() && 3856 "llvm.experimental.noalias.scope.decl in use ?"); 3857 const MDNode *MDSL = Decl->getScopeList(); 3858 assert(MDSL->getNumOperands() == 1 && 3859 "llvm.experimental.noalias.scope should refer to a single scope"); 3860 auto &MDOperand = MDSL->getOperand(0); 3861 if (auto *MD = dyn_cast<MDNode>(MDOperand)) 3862 return !UsedAliasScopesAndLists.contains(MD) || 3863 !UsedNoAliasScopesAndLists.contains(MD); 3864 3865 // Not an MDNode ? throw away. 3866 return true; 3867 } 3868 }; 3869 3870 /// Populate the IC worklist from a function, by walking it in depth-first 3871 /// order and adding all reachable code to the worklist. 3872 /// 3873 /// This has a couple of tricks to make the code faster and more powerful. In 3874 /// particular, we constant fold and DCE instructions as we go, to avoid adding 3875 /// them to the worklist (this significantly speeds up instcombine on code where 3876 /// many instructions are dead or constant). Additionally, if we find a branch 3877 /// whose condition is a known constant, we only visit the reachable successors. 3878 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 3879 const TargetLibraryInfo *TLI, 3880 InstCombineWorklist &ICWorklist) { 3881 bool MadeIRChange = false; 3882 SmallPtrSet<BasicBlock *, 32> Visited; 3883 SmallVector<BasicBlock*, 256> Worklist; 3884 Worklist.push_back(&F.front()); 3885 3886 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 3887 DenseMap<Constant *, Constant *> FoldedConstants; 3888 AliasScopeTracker SeenAliasScopes; 3889 3890 do { 3891 BasicBlock *BB = Worklist.pop_back_val(); 3892 3893 // We have now visited this block! If we've already been here, ignore it. 3894 if (!Visited.insert(BB).second) 3895 continue; 3896 3897 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 3898 Instruction *Inst = &*BBI++; 3899 3900 // ConstantProp instruction if trivially constant. 3901 if (!Inst->use_empty() && 3902 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 3903 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 3904 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst 3905 << '\n'); 3906 Inst->replaceAllUsesWith(C); 3907 ++NumConstProp; 3908 if (isInstructionTriviallyDead(Inst, TLI)) 3909 Inst->eraseFromParent(); 3910 MadeIRChange = true; 3911 continue; 3912 } 3913 3914 // See if we can constant fold its operands. 3915 for (Use &U : Inst->operands()) { 3916 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 3917 continue; 3918 3919 auto *C = cast<Constant>(U); 3920 Constant *&FoldRes = FoldedConstants[C]; 3921 if (!FoldRes) 3922 FoldRes = ConstantFoldConstant(C, DL, TLI); 3923 3924 if (FoldRes != C) { 3925 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst 3926 << "\n Old = " << *C 3927 << "\n New = " << *FoldRes << '\n'); 3928 U = FoldRes; 3929 MadeIRChange = true; 3930 } 3931 } 3932 3933 // Skip processing debug and pseudo intrinsics in InstCombine. Processing 3934 // these call instructions consumes non-trivial amount of time and 3935 // provides no value for the optimization. 3936 if (!Inst->isDebugOrPseudoInst()) { 3937 InstrsForInstCombineWorklist.push_back(Inst); 3938 SeenAliasScopes.analyse(Inst); 3939 } 3940 } 3941 3942 // Recursively visit successors. If this is a branch or switch on a 3943 // constant, only visit the reachable successor. 3944 Instruction *TI = BB->getTerminator(); 3945 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3946 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 3947 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 3948 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 3949 Worklist.push_back(ReachableBB); 3950 continue; 3951 } 3952 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3953 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 3954 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 3955 continue; 3956 } 3957 } 3958 3959 append_range(Worklist, successors(TI)); 3960 } while (!Worklist.empty()); 3961 3962 // Remove instructions inside unreachable blocks. This prevents the 3963 // instcombine code from having to deal with some bad special cases, and 3964 // reduces use counts of instructions. 3965 for (BasicBlock &BB : F) { 3966 if (Visited.count(&BB)) 3967 continue; 3968 3969 unsigned NumDeadInstInBB; 3970 unsigned NumDeadDbgInstInBB; 3971 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 3972 removeAllNonTerminatorAndEHPadInstructions(&BB); 3973 3974 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 3975 NumDeadInst += NumDeadInstInBB; 3976 } 3977 3978 // Once we've found all of the instructions to add to instcombine's worklist, 3979 // add them in reverse order. This way instcombine will visit from the top 3980 // of the function down. This jives well with the way that it adds all uses 3981 // of instructions to the worklist after doing a transformation, thus avoiding 3982 // some N^2 behavior in pathological cases. 3983 ICWorklist.reserve(InstrsForInstCombineWorklist.size()); 3984 for (Instruction *Inst : reverse(InstrsForInstCombineWorklist)) { 3985 // DCE instruction if trivially dead. As we iterate in reverse program 3986 // order here, we will clean up whole chains of dead instructions. 3987 if (isInstructionTriviallyDead(Inst, TLI) || 3988 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 3989 ++NumDeadInst; 3990 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 3991 salvageDebugInfo(*Inst); 3992 Inst->eraseFromParent(); 3993 MadeIRChange = true; 3994 continue; 3995 } 3996 3997 ICWorklist.push(Inst); 3998 } 3999 4000 return MadeIRChange; 4001 } 4002 4003 static bool combineInstructionsOverFunction( 4004 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, 4005 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 4006 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 4007 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) { 4008 auto &DL = F.getParent()->getDataLayout(); 4009 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 4010 4011 /// Builder - This is an IRBuilder that automatically inserts new 4012 /// instructions into the worklist when they are created. 4013 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 4014 F.getContext(), TargetFolder(DL), 4015 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 4016 Worklist.add(I); 4017 if (auto *Assume = dyn_cast<AssumeInst>(I)) 4018 AC.registerAssumption(Assume); 4019 })); 4020 4021 // Lower dbg.declare intrinsics otherwise their value may be clobbered 4022 // by instcombiner. 4023 bool MadeIRChange = false; 4024 if (ShouldLowerDbgDeclare) 4025 MadeIRChange = LowerDbgDeclare(F); 4026 4027 // Iterate while there is work to do. 4028 unsigned Iteration = 0; 4029 while (true) { 4030 ++NumWorklistIterations; 4031 ++Iteration; 4032 4033 if (Iteration > InfiniteLoopDetectionThreshold) { 4034 report_fatal_error( 4035 "Instruction Combining seems stuck in an infinite loop after " + 4036 Twine(InfiniteLoopDetectionThreshold) + " iterations."); 4037 } 4038 4039 if (Iteration > MaxIterations) { 4040 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 4041 << " on " << F.getName() 4042 << " reached; stopping before reaching a fixpoint\n"); 4043 break; 4044 } 4045 4046 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 4047 << F.getName() << "\n"); 4048 4049 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 4050 4051 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 4052 ORE, BFI, PSI, DL, LI); 4053 IC.MaxArraySizeForCombine = MaxArraySize; 4054 4055 if (!IC.run()) 4056 break; 4057 4058 MadeIRChange = true; 4059 } 4060 4061 return MadeIRChange; 4062 } 4063 4064 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {} 4065 4066 InstCombinePass::InstCombinePass(unsigned MaxIterations) 4067 : MaxIterations(MaxIterations) {} 4068 4069 PreservedAnalyses InstCombinePass::run(Function &F, 4070 FunctionAnalysisManager &AM) { 4071 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4072 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4073 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4074 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4075 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 4076 4077 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 4078 4079 auto *AA = &AM.getResult<AAManager>(F); 4080 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 4081 ProfileSummaryInfo *PSI = 4082 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 4083 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 4084 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 4085 4086 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4087 BFI, PSI, MaxIterations, LI)) 4088 // No changes, all analyses are preserved. 4089 return PreservedAnalyses::all(); 4090 4091 // Mark all the analyses that instcombine updates as preserved. 4092 PreservedAnalyses PA; 4093 PA.preserveSet<CFGAnalyses>(); 4094 return PA; 4095 } 4096 4097 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 4098 AU.setPreservesCFG(); 4099 AU.addRequired<AAResultsWrapperPass>(); 4100 AU.addRequired<AssumptionCacheTracker>(); 4101 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4102 AU.addRequired<TargetTransformInfoWrapperPass>(); 4103 AU.addRequired<DominatorTreeWrapperPass>(); 4104 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4105 AU.addPreserved<DominatorTreeWrapperPass>(); 4106 AU.addPreserved<AAResultsWrapperPass>(); 4107 AU.addPreserved<BasicAAWrapperPass>(); 4108 AU.addPreserved<GlobalsAAWrapperPass>(); 4109 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 4110 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 4111 } 4112 4113 bool InstructionCombiningPass::runOnFunction(Function &F) { 4114 if (skipFunction(F)) 4115 return false; 4116 4117 // Required analyses. 4118 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4119 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4120 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 4121 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4122 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4123 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4124 4125 // Optional analyses. 4126 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 4127 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 4128 ProfileSummaryInfo *PSI = 4129 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 4130 BlockFrequencyInfo *BFI = 4131 (PSI && PSI->hasProfileSummary()) ? 4132 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 4133 nullptr; 4134 4135 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4136 BFI, PSI, MaxIterations, LI); 4137 } 4138 4139 char InstructionCombiningPass::ID = 0; 4140 4141 InstructionCombiningPass::InstructionCombiningPass() 4142 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) { 4143 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4144 } 4145 4146 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations) 4147 : FunctionPass(ID), MaxIterations(MaxIterations) { 4148 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4149 } 4150 4151 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 4152 "Combine redundant instructions", false, false) 4153 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4154 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4155 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4156 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4157 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4158 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4159 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 4160 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 4161 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 4162 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 4163 "Combine redundant instructions", false, false) 4164 4165 // Initialization Routines 4166 void llvm::initializeInstCombine(PassRegistry &Registry) { 4167 initializeInstructionCombiningPassPass(Registry); 4168 } 4169 4170 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 4171 initializeInstructionCombiningPassPass(*unwrap(R)); 4172 } 4173 4174 FunctionPass *llvm::createInstructionCombiningPass() { 4175 return new InstructionCombiningPass(); 4176 } 4177 4178 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) { 4179 return new InstructionCombiningPass(MaxIterations); 4180 } 4181 4182 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 4183 unwrap(PM)->add(createInstructionCombiningPass()); 4184 } 4185