1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions.  This pass does not modify the CFG.  This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 //    %Y = add i32 %X, 1
15 //    %Z = add i32 %Y, 1
16 // into:
17 //    %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 //    1. If a binary operator has a constant operand, it is moved to the RHS
24 //    2. Bitwise operators with constant operands are always grouped so that
25 //       shifts are performed first, then or's, then and's, then xor's.
26 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 //    4. All cmp instructions on boolean values are replaced with logical ops
28 //    5. add X, X is represented as (X*2) => (X << 1)
29 //    6. Multiplies with a power-of-two constant argument are transformed into
30 //       shifts.
31 //   ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BlockFrequencyInfo.h"
50 #include "llvm/Analysis/CFG.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/EHPersonalities.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/MemoryBuiltins.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ProfileSummaryInfo.h"
60 #include "llvm/Analysis/TargetFolder.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/Analysis/VectorUtils.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DIBuilder.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GetElementPtrTypeIterator.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LegacyPassManager.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PassManager.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/Use.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/IR/ValueHandle.h"
91 #include "llvm/InitializePasses.h"
92 #include "llvm/Pass.h"
93 #include "llvm/Support/CBindingWrapping.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/DebugCounter.h"
99 #include "llvm/Support/ErrorHandling.h"
100 #include "llvm/Support/KnownBits.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Transforms/InstCombine/InstCombine.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstdint>
107 #include <memory>
108 #include <string>
109 #include <utility>
110 
111 #define DEBUG_TYPE "instcombine"
112 #include "llvm/Transforms/Utils/InstructionWorklist.h"
113 
114 using namespace llvm;
115 using namespace llvm::PatternMatch;
116 
117 STATISTIC(NumWorklistIterations,
118           "Number of instruction combining iterations performed");
119 
120 STATISTIC(NumCombined , "Number of insts combined");
121 STATISTIC(NumConstProp, "Number of constant folds");
122 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
123 STATISTIC(NumSunkInst , "Number of instructions sunk");
124 STATISTIC(NumExpand,    "Number of expansions");
125 STATISTIC(NumFactor   , "Number of factorizations");
126 STATISTIC(NumReassoc  , "Number of reassociations");
127 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
128               "Controls which instructions are visited");
129 
130 // FIXME: these limits eventually should be as low as 2.
131 static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
132 #ifndef NDEBUG
133 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100;
134 #else
135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
136 #endif
137 
138 static cl::opt<bool>
139 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
140                                               cl::init(true));
141 
142 static cl::opt<unsigned> LimitMaxIterations(
143     "instcombine-max-iterations",
144     cl::desc("Limit the maximum number of instruction combining iterations"),
145     cl::init(InstCombineDefaultMaxIterations));
146 
147 static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
148     "instcombine-infinite-loop-threshold",
149     cl::desc("Number of instruction combining iterations considered an "
150              "infinite loop"),
151     cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
152 
153 static cl::opt<unsigned>
154 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
155              cl::desc("Maximum array size considered when doing a combine"));
156 
157 // FIXME: Remove this flag when it is no longer necessary to convert
158 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
159 // increases variable availability at the cost of accuracy. Variables that
160 // cannot be promoted by mem2reg or SROA will be described as living in memory
161 // for their entire lifetime. However, passes like DSE and instcombine can
162 // delete stores to the alloca, leading to misleading and inaccurate debug
163 // information. This flag can be removed when those passes are fixed.
164 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
165                                                cl::Hidden, cl::init(true));
166 
167 Optional<Instruction *>
168 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
169   // Handle target specific intrinsics
170   if (II.getCalledFunction()->isTargetIntrinsic()) {
171     return TTI.instCombineIntrinsic(*this, II);
172   }
173   return None;
174 }
175 
176 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
177     IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
178     bool &KnownBitsComputed) {
179   // Handle target specific intrinsics
180   if (II.getCalledFunction()->isTargetIntrinsic()) {
181     return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
182                                                 KnownBitsComputed);
183   }
184   return None;
185 }
186 
187 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
188     IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2,
189     APInt &UndefElts3,
190     std::function<void(Instruction *, unsigned, APInt, APInt &)>
191         SimplifyAndSetOp) {
192   // Handle target specific intrinsics
193   if (II.getCalledFunction()->isTargetIntrinsic()) {
194     return TTI.simplifyDemandedVectorEltsIntrinsic(
195         *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
196         SimplifyAndSetOp);
197   }
198   return None;
199 }
200 
201 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
202   return llvm::EmitGEPOffset(&Builder, DL, GEP);
203 }
204 
205 /// Legal integers and common types are considered desirable. This is used to
206 /// avoid creating instructions with types that may not be supported well by the
207 /// the backend.
208 /// NOTE: This treats i8, i16 and i32 specially because they are common
209 ///       types in frontend languages.
210 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const {
211   switch (BitWidth) {
212   case 8:
213   case 16:
214   case 32:
215     return true;
216   default:
217     return DL.isLegalInteger(BitWidth);
218   }
219 }
220 
221 /// Return true if it is desirable to convert an integer computation from a
222 /// given bit width to a new bit width.
223 /// We don't want to convert from a legal to an illegal type or from a smaller
224 /// to a larger illegal type. A width of '1' is always treated as a desirable
225 /// type because i1 is a fundamental type in IR, and there are many specialized
226 /// optimizations for i1 types. Common/desirable widths are equally treated as
227 /// legal to convert to, in order to open up more combining opportunities.
228 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
229                                         unsigned ToWidth) const {
230   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
231   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
232 
233   // Convert to desirable widths even if they are not legal types.
234   // Only shrink types, to prevent infinite loops.
235   if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
236     return true;
237 
238   // If this is a legal integer from type, and the result would be an illegal
239   // type, don't do the transformation.
240   if (FromLegal && !ToLegal)
241     return false;
242 
243   // Otherwise, if both are illegal, do not increase the size of the result. We
244   // do allow things like i160 -> i64, but not i64 -> i160.
245   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
246     return false;
247 
248   return true;
249 }
250 
251 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
252 /// We don't want to convert from a legal to an illegal type or from a smaller
253 /// to a larger illegal type. i1 is always treated as a legal type because it is
254 /// a fundamental type in IR, and there are many specialized optimizations for
255 /// i1 types.
256 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
257   // TODO: This could be extended to allow vectors. Datalayout changes might be
258   // needed to properly support that.
259   if (!From->isIntegerTy() || !To->isIntegerTy())
260     return false;
261 
262   unsigned FromWidth = From->getPrimitiveSizeInBits();
263   unsigned ToWidth = To->getPrimitiveSizeInBits();
264   return shouldChangeType(FromWidth, ToWidth);
265 }
266 
267 // Return true, if No Signed Wrap should be maintained for I.
268 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
269 // where both B and C should be ConstantInts, results in a constant that does
270 // not overflow. This function only handles the Add and Sub opcodes. For
271 // all other opcodes, the function conservatively returns false.
272 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
273   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
274   if (!OBO || !OBO->hasNoSignedWrap())
275     return false;
276 
277   // We reason about Add and Sub Only.
278   Instruction::BinaryOps Opcode = I.getOpcode();
279   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
280     return false;
281 
282   const APInt *BVal, *CVal;
283   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
284     return false;
285 
286   bool Overflow = false;
287   if (Opcode == Instruction::Add)
288     (void)BVal->sadd_ov(*CVal, Overflow);
289   else
290     (void)BVal->ssub_ov(*CVal, Overflow);
291 
292   return !Overflow;
293 }
294 
295 static bool hasNoUnsignedWrap(BinaryOperator &I) {
296   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
297   return OBO && OBO->hasNoUnsignedWrap();
298 }
299 
300 static bool hasNoSignedWrap(BinaryOperator &I) {
301   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
302   return OBO && OBO->hasNoSignedWrap();
303 }
304 
305 /// Conservatively clears subclassOptionalData after a reassociation or
306 /// commutation. We preserve fast-math flags when applicable as they can be
307 /// preserved.
308 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
309   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
310   if (!FPMO) {
311     I.clearSubclassOptionalData();
312     return;
313   }
314 
315   FastMathFlags FMF = I.getFastMathFlags();
316   I.clearSubclassOptionalData();
317   I.setFastMathFlags(FMF);
318 }
319 
320 /// Combine constant operands of associative operations either before or after a
321 /// cast to eliminate one of the associative operations:
322 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
323 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
324 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
325                                    InstCombinerImpl &IC) {
326   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
327   if (!Cast || !Cast->hasOneUse())
328     return false;
329 
330   // TODO: Enhance logic for other casts and remove this check.
331   auto CastOpcode = Cast->getOpcode();
332   if (CastOpcode != Instruction::ZExt)
333     return false;
334 
335   // TODO: Enhance logic for other BinOps and remove this check.
336   if (!BinOp1->isBitwiseLogicOp())
337     return false;
338 
339   auto AssocOpcode = BinOp1->getOpcode();
340   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
341   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
342     return false;
343 
344   Constant *C1, *C2;
345   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
346       !match(BinOp2->getOperand(1), m_Constant(C2)))
347     return false;
348 
349   // TODO: This assumes a zext cast.
350   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
351   // to the destination type might lose bits.
352 
353   // Fold the constants together in the destination type:
354   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
355   Type *DestTy = C1->getType();
356   Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
357   Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
358   IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
359   IC.replaceOperand(*BinOp1, 1, FoldedC);
360   return true;
361 }
362 
363 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast.
364 // inttoptr ( ptrtoint (x) ) --> x
365 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
366   auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
367   if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) ==
368                       DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
369     auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
370     Type *CastTy = IntToPtr->getDestTy();
371     if (PtrToInt &&
372         CastTy->getPointerAddressSpace() ==
373             PtrToInt->getSrcTy()->getPointerAddressSpace() &&
374         DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) ==
375             DL.getTypeSizeInBits(PtrToInt->getDestTy())) {
376       return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy,
377                                               "", PtrToInt);
378     }
379   }
380   return nullptr;
381 }
382 
383 /// This performs a few simplifications for operators that are associative or
384 /// commutative:
385 ///
386 ///  Commutative operators:
387 ///
388 ///  1. Order operands such that they are listed from right (least complex) to
389 ///     left (most complex).  This puts constants before unary operators before
390 ///     binary operators.
391 ///
392 ///  Associative operators:
393 ///
394 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
395 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
396 ///
397 ///  Associative and commutative operators:
398 ///
399 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
400 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
401 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
402 ///     if C1 and C2 are constants.
403 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
404   Instruction::BinaryOps Opcode = I.getOpcode();
405   bool Changed = false;
406 
407   do {
408     // Order operands such that they are listed from right (least complex) to
409     // left (most complex).  This puts constants before unary operators before
410     // binary operators.
411     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
412         getComplexity(I.getOperand(1)))
413       Changed = !I.swapOperands();
414 
415     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
416     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
417 
418     if (I.isAssociative()) {
419       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
420       if (Op0 && Op0->getOpcode() == Opcode) {
421         Value *A = Op0->getOperand(0);
422         Value *B = Op0->getOperand(1);
423         Value *C = I.getOperand(1);
424 
425         // Does "B op C" simplify?
426         if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
427           // It simplifies to V.  Form "A op V".
428           replaceOperand(I, 0, A);
429           replaceOperand(I, 1, V);
430           bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
431           bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
432 
433           // Conservatively clear all optional flags since they may not be
434           // preserved by the reassociation. Reset nsw/nuw based on the above
435           // analysis.
436           ClearSubclassDataAfterReassociation(I);
437 
438           // Note: this is only valid because SimplifyBinOp doesn't look at
439           // the operands to Op0.
440           if (IsNUW)
441             I.setHasNoUnsignedWrap(true);
442 
443           if (IsNSW)
444             I.setHasNoSignedWrap(true);
445 
446           Changed = true;
447           ++NumReassoc;
448           continue;
449         }
450       }
451 
452       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
453       if (Op1 && Op1->getOpcode() == Opcode) {
454         Value *A = I.getOperand(0);
455         Value *B = Op1->getOperand(0);
456         Value *C = Op1->getOperand(1);
457 
458         // Does "A op B" simplify?
459         if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
460           // It simplifies to V.  Form "V op C".
461           replaceOperand(I, 0, V);
462           replaceOperand(I, 1, C);
463           // Conservatively clear the optional flags, since they may not be
464           // preserved by the reassociation.
465           ClearSubclassDataAfterReassociation(I);
466           Changed = true;
467           ++NumReassoc;
468           continue;
469         }
470       }
471     }
472 
473     if (I.isAssociative() && I.isCommutative()) {
474       if (simplifyAssocCastAssoc(&I, *this)) {
475         Changed = true;
476         ++NumReassoc;
477         continue;
478       }
479 
480       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
481       if (Op0 && Op0->getOpcode() == Opcode) {
482         Value *A = Op0->getOperand(0);
483         Value *B = Op0->getOperand(1);
484         Value *C = I.getOperand(1);
485 
486         // Does "C op A" simplify?
487         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
488           // It simplifies to V.  Form "V op B".
489           replaceOperand(I, 0, V);
490           replaceOperand(I, 1, B);
491           // Conservatively clear the optional flags, since they may not be
492           // preserved by the reassociation.
493           ClearSubclassDataAfterReassociation(I);
494           Changed = true;
495           ++NumReassoc;
496           continue;
497         }
498       }
499 
500       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
501       if (Op1 && Op1->getOpcode() == Opcode) {
502         Value *A = I.getOperand(0);
503         Value *B = Op1->getOperand(0);
504         Value *C = Op1->getOperand(1);
505 
506         // Does "C op A" simplify?
507         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
508           // It simplifies to V.  Form "B op V".
509           replaceOperand(I, 0, B);
510           replaceOperand(I, 1, V);
511           // Conservatively clear the optional flags, since they may not be
512           // preserved by the reassociation.
513           ClearSubclassDataAfterReassociation(I);
514           Changed = true;
515           ++NumReassoc;
516           continue;
517         }
518       }
519 
520       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
521       // if C1 and C2 are constants.
522       Value *A, *B;
523       Constant *C1, *C2;
524       if (Op0 && Op1 &&
525           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
526           match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
527           match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
528         bool IsNUW = hasNoUnsignedWrap(I) &&
529            hasNoUnsignedWrap(*Op0) &&
530            hasNoUnsignedWrap(*Op1);
531          BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
532            BinaryOperator::CreateNUW(Opcode, A, B) :
533            BinaryOperator::Create(Opcode, A, B);
534 
535          if (isa<FPMathOperator>(NewBO)) {
536           FastMathFlags Flags = I.getFastMathFlags();
537           Flags &= Op0->getFastMathFlags();
538           Flags &= Op1->getFastMathFlags();
539           NewBO->setFastMathFlags(Flags);
540         }
541         InsertNewInstWith(NewBO, I);
542         NewBO->takeName(Op1);
543         replaceOperand(I, 0, NewBO);
544         replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
545         // Conservatively clear the optional flags, since they may not be
546         // preserved by the reassociation.
547         ClearSubclassDataAfterReassociation(I);
548         if (IsNUW)
549           I.setHasNoUnsignedWrap(true);
550 
551         Changed = true;
552         continue;
553       }
554     }
555 
556     // No further simplifications.
557     return Changed;
558   } while (true);
559 }
560 
561 /// Return whether "X LOp (Y ROp Z)" is always equal to
562 /// "(X LOp Y) ROp (X LOp Z)".
563 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
564                                      Instruction::BinaryOps ROp) {
565   // X & (Y | Z) <--> (X & Y) | (X & Z)
566   // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
567   if (LOp == Instruction::And)
568     return ROp == Instruction::Or || ROp == Instruction::Xor;
569 
570   // X | (Y & Z) <--> (X | Y) & (X | Z)
571   if (LOp == Instruction::Or)
572     return ROp == Instruction::And;
573 
574   // X * (Y + Z) <--> (X * Y) + (X * Z)
575   // X * (Y - Z) <--> (X * Y) - (X * Z)
576   if (LOp == Instruction::Mul)
577     return ROp == Instruction::Add || ROp == Instruction::Sub;
578 
579   return false;
580 }
581 
582 /// Return whether "(X LOp Y) ROp Z" is always equal to
583 /// "(X ROp Z) LOp (Y ROp Z)".
584 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
585                                      Instruction::BinaryOps ROp) {
586   if (Instruction::isCommutative(ROp))
587     return leftDistributesOverRight(ROp, LOp);
588 
589   // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
590   return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
591 
592   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
593   // but this requires knowing that the addition does not overflow and other
594   // such subtleties.
595 }
596 
597 /// This function returns identity value for given opcode, which can be used to
598 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
599 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
600   if (isa<Constant>(V))
601     return nullptr;
602 
603   return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
604 }
605 
606 /// This function predicates factorization using distributive laws. By default,
607 /// it just returns the 'Op' inputs. But for special-cases like
608 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
609 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
610 /// allow more factorization opportunities.
611 static Instruction::BinaryOps
612 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
613                           Value *&LHS, Value *&RHS) {
614   assert(Op && "Expected a binary operator");
615   LHS = Op->getOperand(0);
616   RHS = Op->getOperand(1);
617   if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
618     Constant *C;
619     if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
620       // X << C --> X * (1 << C)
621       RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
622       return Instruction::Mul;
623     }
624     // TODO: We can add other conversions e.g. shr => div etc.
625   }
626   return Op->getOpcode();
627 }
628 
629 /// This tries to simplify binary operations by factorizing out common terms
630 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
631 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I,
632                                           Instruction::BinaryOps InnerOpcode,
633                                           Value *A, Value *B, Value *C,
634                                           Value *D) {
635   assert(A && B && C && D && "All values must be provided");
636 
637   Value *V = nullptr;
638   Value *SimplifiedInst = nullptr;
639   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
640   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
641 
642   // Does "X op' Y" always equal "Y op' X"?
643   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
644 
645   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
646   if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
647     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
648     // commutative case, "(A op' B) op (C op' A)"?
649     if (A == C || (InnerCommutative && A == D)) {
650       if (A != C)
651         std::swap(C, D);
652       // Consider forming "A op' (B op D)".
653       // If "B op D" simplifies then it can be formed with no cost.
654       V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
655       // If "B op D" doesn't simplify then only go on if both of the existing
656       // operations "A op' B" and "C op' D" will be zapped as no longer used.
657       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
658         V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
659       if (V) {
660         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
661       }
662     }
663 
664   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
665   if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
666     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
667     // commutative case, "(A op' B) op (B op' D)"?
668     if (B == D || (InnerCommutative && B == C)) {
669       if (B != D)
670         std::swap(C, D);
671       // Consider forming "(A op C) op' B".
672       // If "A op C" simplifies then it can be formed with no cost.
673       V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
674 
675       // If "A op C" doesn't simplify then only go on if both of the existing
676       // operations "A op' B" and "C op' D" will be zapped as no longer used.
677       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
678         V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
679       if (V) {
680         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
681       }
682     }
683 
684   if (SimplifiedInst) {
685     ++NumFactor;
686     SimplifiedInst->takeName(&I);
687 
688     // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
689     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
690       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
691         bool HasNSW = false;
692         bool HasNUW = false;
693         if (isa<OverflowingBinaryOperator>(&I)) {
694           HasNSW = I.hasNoSignedWrap();
695           HasNUW = I.hasNoUnsignedWrap();
696         }
697 
698         if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
699           HasNSW &= LOBO->hasNoSignedWrap();
700           HasNUW &= LOBO->hasNoUnsignedWrap();
701         }
702 
703         if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
704           HasNSW &= ROBO->hasNoSignedWrap();
705           HasNUW &= ROBO->hasNoUnsignedWrap();
706         }
707 
708         if (TopLevelOpcode == Instruction::Add &&
709             InnerOpcode == Instruction::Mul) {
710           // We can propagate 'nsw' if we know that
711           //  %Y = mul nsw i16 %X, C
712           //  %Z = add nsw i16 %Y, %X
713           // =>
714           //  %Z = mul nsw i16 %X, C+1
715           //
716           // iff C+1 isn't INT_MIN
717           const APInt *CInt;
718           if (match(V, m_APInt(CInt))) {
719             if (!CInt->isMinSignedValue())
720               BO->setHasNoSignedWrap(HasNSW);
721           }
722 
723           // nuw can be propagated with any constant or nuw value.
724           BO->setHasNoUnsignedWrap(HasNUW);
725         }
726       }
727     }
728   }
729   return SimplifiedInst;
730 }
731 
732 /// This tries to simplify binary operations which some other binary operation
733 /// distributes over either by factorizing out common terms
734 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
735 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
736 /// Returns the simplified value, or null if it didn't simplify.
737 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
738   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
739   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
740   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
741   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
742 
743   {
744     // Factorization.
745     Value *A, *B, *C, *D;
746     Instruction::BinaryOps LHSOpcode, RHSOpcode;
747     if (Op0)
748       LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
749     if (Op1)
750       RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
751 
752     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
753     // a common term.
754     if (Op0 && Op1 && LHSOpcode == RHSOpcode)
755       if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
756         return V;
757 
758     // The instruction has the form "(A op' B) op (C)".  Try to factorize common
759     // term.
760     if (Op0)
761       if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
762         if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
763           return V;
764 
765     // The instruction has the form "(B) op (C op' D)".  Try to factorize common
766     // term.
767     if (Op1)
768       if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
769         if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
770           return V;
771   }
772 
773   // Expansion.
774   if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
775     // The instruction has the form "(A op' B) op C".  See if expanding it out
776     // to "(A op C) op' (B op C)" results in simplifications.
777     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
778     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
779 
780     // Disable the use of undef because it's not safe to distribute undef.
781     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
782     Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
783     Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
784 
785     // Do "A op C" and "B op C" both simplify?
786     if (L && R) {
787       // They do! Return "L op' R".
788       ++NumExpand;
789       C = Builder.CreateBinOp(InnerOpcode, L, R);
790       C->takeName(&I);
791       return C;
792     }
793 
794     // Does "A op C" simplify to the identity value for the inner opcode?
795     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
796       // They do! Return "B op C".
797       ++NumExpand;
798       C = Builder.CreateBinOp(TopLevelOpcode, B, C);
799       C->takeName(&I);
800       return C;
801     }
802 
803     // Does "B op C" simplify to the identity value for the inner opcode?
804     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
805       // They do! Return "A op C".
806       ++NumExpand;
807       C = Builder.CreateBinOp(TopLevelOpcode, A, C);
808       C->takeName(&I);
809       return C;
810     }
811   }
812 
813   if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
814     // The instruction has the form "A op (B op' C)".  See if expanding it out
815     // to "(A op B) op' (A op C)" results in simplifications.
816     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
817     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
818 
819     // Disable the use of undef because it's not safe to distribute undef.
820     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
821     Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
822     Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
823 
824     // Do "A op B" and "A op C" both simplify?
825     if (L && R) {
826       // They do! Return "L op' R".
827       ++NumExpand;
828       A = Builder.CreateBinOp(InnerOpcode, L, R);
829       A->takeName(&I);
830       return A;
831     }
832 
833     // Does "A op B" simplify to the identity value for the inner opcode?
834     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
835       // They do! Return "A op C".
836       ++NumExpand;
837       A = Builder.CreateBinOp(TopLevelOpcode, A, C);
838       A->takeName(&I);
839       return A;
840     }
841 
842     // Does "A op C" simplify to the identity value for the inner opcode?
843     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
844       // They do! Return "A op B".
845       ++NumExpand;
846       A = Builder.CreateBinOp(TopLevelOpcode, A, B);
847       A->takeName(&I);
848       return A;
849     }
850   }
851 
852   return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
853 }
854 
855 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
856                                                         Value *LHS,
857                                                         Value *RHS) {
858   Value *A, *B, *C, *D, *E, *F;
859   bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
860   bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
861   if (!LHSIsSelect && !RHSIsSelect)
862     return nullptr;
863 
864   FastMathFlags FMF;
865   BuilderTy::FastMathFlagGuard Guard(Builder);
866   if (isa<FPMathOperator>(&I)) {
867     FMF = I.getFastMathFlags();
868     Builder.setFastMathFlags(FMF);
869   }
870 
871   Instruction::BinaryOps Opcode = I.getOpcode();
872   SimplifyQuery Q = SQ.getWithInstruction(&I);
873 
874   Value *Cond, *True = nullptr, *False = nullptr;
875   if (LHSIsSelect && RHSIsSelect && A == D) {
876     // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
877     Cond = A;
878     True = SimplifyBinOp(Opcode, B, E, FMF, Q);
879     False = SimplifyBinOp(Opcode, C, F, FMF, Q);
880 
881     if (LHS->hasOneUse() && RHS->hasOneUse()) {
882       if (False && !True)
883         True = Builder.CreateBinOp(Opcode, B, E);
884       else if (True && !False)
885         False = Builder.CreateBinOp(Opcode, C, F);
886     }
887   } else if (LHSIsSelect && LHS->hasOneUse()) {
888     // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
889     Cond = A;
890     True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
891     False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
892   } else if (RHSIsSelect && RHS->hasOneUse()) {
893     // X op (D ? E : F) -> D ? (X op E) : (X op F)
894     Cond = D;
895     True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
896     False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
897   }
898 
899   if (!True || !False)
900     return nullptr;
901 
902   Value *SI = Builder.CreateSelect(Cond, True, False);
903   SI->takeName(&I);
904   return SI;
905 }
906 
907 /// Freely adapt every user of V as-if V was changed to !V.
908 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
909 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) {
910   for (User *U : I->users()) {
911     switch (cast<Instruction>(U)->getOpcode()) {
912     case Instruction::Select: {
913       auto *SI = cast<SelectInst>(U);
914       SI->swapValues();
915       SI->swapProfMetadata();
916       break;
917     }
918     case Instruction::Br:
919       cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
920       break;
921     case Instruction::Xor:
922       replaceInstUsesWith(cast<Instruction>(*U), I);
923       break;
924     default:
925       llvm_unreachable("Got unexpected user - out of sync with "
926                        "canFreelyInvertAllUsersOf() ?");
927     }
928   }
929 }
930 
931 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
932 /// constant zero (which is the 'negate' form).
933 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
934   Value *NegV;
935   if (match(V, m_Neg(m_Value(NegV))))
936     return NegV;
937 
938   // Constants can be considered to be negated values if they can be folded.
939   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
940     return ConstantExpr::getNeg(C);
941 
942   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
943     if (C->getType()->getElementType()->isIntegerTy())
944       return ConstantExpr::getNeg(C);
945 
946   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
947     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
948       Constant *Elt = CV->getAggregateElement(i);
949       if (!Elt)
950         return nullptr;
951 
952       if (isa<UndefValue>(Elt))
953         continue;
954 
955       if (!isa<ConstantInt>(Elt))
956         return nullptr;
957     }
958     return ConstantExpr::getNeg(CV);
959   }
960 
961   // Negate integer vector splats.
962   if (auto *CV = dyn_cast<Constant>(V))
963     if (CV->getType()->isVectorTy() &&
964         CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
965       return ConstantExpr::getNeg(CV);
966 
967   return nullptr;
968 }
969 
970 /// A binop with a constant operand and a sign-extended boolean operand may be
971 /// converted into a select of constants by applying the binary operation to
972 /// the constant with the two possible values of the extended boolean (0 or -1).
973 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) {
974   // TODO: Handle non-commutative binop (constant is operand 0).
975   // TODO: Handle zext.
976   // TODO: Peek through 'not' of cast.
977   Value *BO0 = BO.getOperand(0);
978   Value *BO1 = BO.getOperand(1);
979   Value *X;
980   Constant *C;
981   if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) ||
982       !X->getType()->isIntOrIntVectorTy(1))
983     return nullptr;
984 
985   // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C)
986   Constant *Ones = ConstantInt::getAllOnesValue(BO.getType());
987   Constant *Zero = ConstantInt::getNullValue(BO.getType());
988   Constant *TVal = ConstantExpr::get(BO.getOpcode(), Ones, C);
989   Constant *FVal = ConstantExpr::get(BO.getOpcode(), Zero, C);
990   return SelectInst::Create(X, TVal, FVal);
991 }
992 
993 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
994                                              InstCombiner::BuilderTy &Builder) {
995   if (auto *Cast = dyn_cast<CastInst>(&I))
996     return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
997 
998   if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
999     assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) &&
1000            "Expected constant-foldable intrinsic");
1001     Intrinsic::ID IID = II->getIntrinsicID();
1002     if (II->arg_size() == 1)
1003       return Builder.CreateUnaryIntrinsic(IID, SO);
1004 
1005     // This works for real binary ops like min/max (where we always expect the
1006     // constant operand to be canonicalized as op1) and unary ops with a bonus
1007     // constant argument like ctlz/cttz.
1008     // TODO: Handle non-commutative binary intrinsics as below for binops.
1009     assert(II->arg_size() == 2 && "Expected binary intrinsic");
1010     assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand");
1011     return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1));
1012   }
1013 
1014   assert(I.isBinaryOp() && "Unexpected opcode for select folding");
1015 
1016   // Figure out if the constant is the left or the right argument.
1017   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1018   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1019 
1020   if (auto *SOC = dyn_cast<Constant>(SO)) {
1021     if (ConstIsRHS)
1022       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1023     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1024   }
1025 
1026   Value *Op0 = SO, *Op1 = ConstOperand;
1027   if (!ConstIsRHS)
1028     std::swap(Op0, Op1);
1029 
1030   Value *NewBO = Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), Op0,
1031                                      Op1, SO->getName() + ".op");
1032   if (auto *NewBOI = dyn_cast<Instruction>(NewBO))
1033     NewBOI->copyIRFlags(&I);
1034   return NewBO;
1035 }
1036 
1037 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op,
1038                                                 SelectInst *SI) {
1039   // Don't modify shared select instructions.
1040   if (!SI->hasOneUse())
1041     return nullptr;
1042 
1043   Value *TV = SI->getTrueValue();
1044   Value *FV = SI->getFalseValue();
1045   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
1046     return nullptr;
1047 
1048   // Bool selects with constant operands can be folded to logical ops.
1049   if (SI->getType()->isIntOrIntVectorTy(1))
1050     return nullptr;
1051 
1052   // If it's a bitcast involving vectors, make sure it has the same number of
1053   // elements on both sides.
1054   if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
1055     VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
1056     VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
1057 
1058     // Verify that either both or neither are vectors.
1059     if ((SrcTy == nullptr) != (DestTy == nullptr))
1060       return nullptr;
1061 
1062     // If vectors, verify that they have the same number of elements.
1063     if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount())
1064       return nullptr;
1065   }
1066 
1067   // Test if a CmpInst instruction is used exclusively by a select as
1068   // part of a minimum or maximum operation. If so, refrain from doing
1069   // any other folding. This helps out other analyses which understand
1070   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
1071   // and CodeGen. And in this case, at least one of the comparison
1072   // operands has at least one user besides the compare (the select),
1073   // which would often largely negate the benefit of folding anyway.
1074   if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
1075     if (CI->hasOneUse()) {
1076       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1077 
1078       // FIXME: This is a hack to avoid infinite looping with min/max patterns.
1079       //        We have to ensure that vector constants that only differ with
1080       //        undef elements are treated as equivalent.
1081       auto areLooselyEqual = [](Value *A, Value *B) {
1082         if (A == B)
1083           return true;
1084 
1085         // Test for vector constants.
1086         Constant *ConstA, *ConstB;
1087         if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
1088           return false;
1089 
1090         // TODO: Deal with FP constants?
1091         if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
1092           return false;
1093 
1094         // Compare for equality including undefs as equal.
1095         auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
1096         const APInt *C;
1097         return match(Cmp, m_APIntAllowUndef(C)) && C->isOne();
1098       };
1099 
1100       if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
1101           (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
1102         return nullptr;
1103     }
1104   }
1105 
1106   Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
1107   Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
1108   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1109 }
1110 
1111 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
1112                                         InstCombiner::BuilderTy &Builder) {
1113   bool ConstIsRHS = isa<Constant>(I->getOperand(1));
1114   Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
1115 
1116   if (auto *InC = dyn_cast<Constant>(InV)) {
1117     if (ConstIsRHS)
1118       return ConstantExpr::get(I->getOpcode(), InC, C);
1119     return ConstantExpr::get(I->getOpcode(), C, InC);
1120   }
1121 
1122   Value *Op0 = InV, *Op1 = C;
1123   if (!ConstIsRHS)
1124     std::swap(Op0, Op1);
1125 
1126   Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo");
1127   auto *FPInst = dyn_cast<Instruction>(RI);
1128   if (FPInst && isa<FPMathOperator>(FPInst))
1129     FPInst->copyFastMathFlags(I);
1130   return RI;
1131 }
1132 
1133 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1134   unsigned NumPHIValues = PN->getNumIncomingValues();
1135   if (NumPHIValues == 0)
1136     return nullptr;
1137 
1138   // We normally only transform phis with a single use.  However, if a PHI has
1139   // multiple uses and they are all the same operation, we can fold *all* of the
1140   // uses into the PHI.
1141   if (!PN->hasOneUse()) {
1142     // Walk the use list for the instruction, comparing them to I.
1143     for (User *U : PN->users()) {
1144       Instruction *UI = cast<Instruction>(U);
1145       if (UI != &I && !I.isIdenticalTo(UI))
1146         return nullptr;
1147     }
1148     // Otherwise, we can replace *all* users with the new PHI we form.
1149   }
1150 
1151   // Check to see if all of the operands of the PHI are simple constants
1152   // (constantint/constantfp/undef).  If there is one non-constant value,
1153   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
1154   // bail out.  We don't do arbitrary constant expressions here because moving
1155   // their computation can be expensive without a cost model.
1156   BasicBlock *NonConstBB = nullptr;
1157   for (unsigned i = 0; i != NumPHIValues; ++i) {
1158     Value *InVal = PN->getIncomingValue(i);
1159     // For non-freeze, require constant operand
1160     // For freeze, require non-undef, non-poison operand
1161     if (!isa<FreezeInst>(I) && match(InVal, m_ImmConstant()))
1162       continue;
1163     if (isa<FreezeInst>(I) && isGuaranteedNotToBeUndefOrPoison(InVal))
1164       continue;
1165 
1166     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
1167     if (NonConstBB) return nullptr;  // More than one non-const value.
1168 
1169     NonConstBB = PN->getIncomingBlock(i);
1170 
1171     // If the InVal is an invoke at the end of the pred block, then we can't
1172     // insert a computation after it without breaking the edge.
1173     if (isa<InvokeInst>(InVal))
1174       if (cast<Instruction>(InVal)->getParent() == NonConstBB)
1175         return nullptr;
1176 
1177     // If the incoming non-constant value is in I's block, we will remove one
1178     // instruction, but insert another equivalent one, leading to infinite
1179     // instcombine.
1180     if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI))
1181       return nullptr;
1182   }
1183 
1184   // If there is exactly one non-constant value, we can insert a copy of the
1185   // operation in that block.  However, if this is a critical edge, we would be
1186   // inserting the computation on some other paths (e.g. inside a loop).  Only
1187   // do this if the pred block is unconditionally branching into the phi block.
1188   // Also, make sure that the pred block is not dead code.
1189   if (NonConstBB != nullptr) {
1190     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1191     if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB))
1192       return nullptr;
1193   }
1194 
1195   // Okay, we can do the transformation: create the new PHI node.
1196   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1197   InsertNewInstBefore(NewPN, *PN);
1198   NewPN->takeName(PN);
1199 
1200   // If we are going to have to insert a new computation, do so right before the
1201   // predecessor's terminator.
1202   if (NonConstBB)
1203     Builder.SetInsertPoint(NonConstBB->getTerminator());
1204 
1205   // Next, add all of the operands to the PHI.
1206   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1207     // We only currently try to fold the condition of a select when it is a phi,
1208     // not the true/false values.
1209     Value *TrueV = SI->getTrueValue();
1210     Value *FalseV = SI->getFalseValue();
1211     BasicBlock *PhiTransBB = PN->getParent();
1212     for (unsigned i = 0; i != NumPHIValues; ++i) {
1213       BasicBlock *ThisBB = PN->getIncomingBlock(i);
1214       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1215       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1216       Value *InV = nullptr;
1217       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
1218       // even if currently isNullValue gives false.
1219       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1220       // For vector constants, we cannot use isNullValue to fold into
1221       // FalseVInPred versus TrueVInPred. When we have individual nonzero
1222       // elements in the vector, we will incorrectly fold InC to
1223       // `TrueVInPred`.
1224       if (InC && isa<ConstantInt>(InC))
1225         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1226       else {
1227         // Generate the select in the same block as PN's current incoming block.
1228         // Note: ThisBB need not be the NonConstBB because vector constants
1229         // which are constants by definition are handled here.
1230         // FIXME: This can lead to an increase in IR generation because we might
1231         // generate selects for vector constant phi operand, that could not be
1232         // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1233         // non-vector phis, this transformation was always profitable because
1234         // the select would be generated exactly once in the NonConstBB.
1235         Builder.SetInsertPoint(ThisBB->getTerminator());
1236         InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1237                                    FalseVInPred, "phi.sel");
1238       }
1239       NewPN->addIncoming(InV, ThisBB);
1240     }
1241   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1242     Constant *C = cast<Constant>(I.getOperand(1));
1243     for (unsigned i = 0; i != NumPHIValues; ++i) {
1244       Value *InV = nullptr;
1245       if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1246         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1247       else
1248         InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i),
1249                                 C, "phi.cmp");
1250       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1251     }
1252   } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1253     for (unsigned i = 0; i != NumPHIValues; ++i) {
1254       Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1255                                              Builder);
1256       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1257     }
1258   } else if (isa<FreezeInst>(&I)) {
1259     for (unsigned i = 0; i != NumPHIValues; ++i) {
1260       Value *InV;
1261       if (NonConstBB == PN->getIncomingBlock(i))
1262         InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr");
1263       else
1264         InV = PN->getIncomingValue(i);
1265       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1266     }
1267   } else {
1268     CastInst *CI = cast<CastInst>(&I);
1269     Type *RetTy = CI->getType();
1270     for (unsigned i = 0; i != NumPHIValues; ++i) {
1271       Value *InV;
1272       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1273         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1274       else
1275         InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1276                                  I.getType(), "phi.cast");
1277       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1278     }
1279   }
1280 
1281   for (User *U : make_early_inc_range(PN->users())) {
1282     Instruction *User = cast<Instruction>(U);
1283     if (User == &I) continue;
1284     replaceInstUsesWith(*User, NewPN);
1285     eraseInstFromFunction(*User);
1286   }
1287   return replaceInstUsesWith(I, NewPN);
1288 }
1289 
1290 Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) {
1291   // TODO: This should be similar to the incoming values check in foldOpIntoPhi:
1292   //       we are guarding against replicating the binop in >1 predecessor.
1293   //       This could miss matching a phi with 2 constant incoming values.
1294   auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0));
1295   auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1));
1296   if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() ||
1297       Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2)
1298     return nullptr;
1299 
1300   // TODO: Remove the restriction for binop being in the same block as the phis.
1301   if (BO.getParent() != Phi0->getParent() ||
1302       BO.getParent() != Phi1->getParent())
1303     return nullptr;
1304 
1305   // Match a pair of incoming constants for one of the predecessor blocks.
1306   BasicBlock *ConstBB, *OtherBB;
1307   Constant *C0, *C1;
1308   if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) {
1309     ConstBB = Phi0->getIncomingBlock(0);
1310     OtherBB = Phi0->getIncomingBlock(1);
1311   } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) {
1312     ConstBB = Phi0->getIncomingBlock(1);
1313     OtherBB = Phi0->getIncomingBlock(0);
1314   } else {
1315     return nullptr;
1316   }
1317   if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1)))
1318     return nullptr;
1319 
1320   // The block that we are hoisting to must reach here unconditionally.
1321   // Otherwise, we could be speculatively executing an expensive or
1322   // non-speculative op.
1323   auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator());
1324   if (!PredBlockBranch || PredBlockBranch->isConditional() ||
1325       !DT.isReachableFromEntry(OtherBB))
1326     return nullptr;
1327 
1328   // TODO: This check could be tightened to only apply to binops (div/rem) that
1329   //       are not safe to speculatively execute. But that could allow hoisting
1330   //       potentially expensive instructions (fdiv for example).
1331   for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter)
1332     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter))
1333       return nullptr;
1334 
1335   // Make a new binop in the predecessor block with the non-constant incoming
1336   // values.
1337   Builder.SetInsertPoint(PredBlockBranch);
1338   Value *NewBO = Builder.CreateBinOp(BO.getOpcode(),
1339                                      Phi0->getIncomingValueForBlock(OtherBB),
1340                                      Phi1->getIncomingValueForBlock(OtherBB));
1341   if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO))
1342     NotFoldedNewBO->copyIRFlags(&BO);
1343 
1344   // Fold constants for the predecessor block with constant incoming values.
1345   Constant *NewC = ConstantExpr::get(BO.getOpcode(), C0, C1);
1346 
1347   // Replace the binop with a phi of the new values. The old phis are dead.
1348   PHINode *NewPhi = PHINode::Create(BO.getType(), 2);
1349   NewPhi->addIncoming(NewBO, OtherBB);
1350   NewPhi->addIncoming(NewC, ConstBB);
1351   return NewPhi;
1352 }
1353 
1354 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1355   if (!isa<Constant>(I.getOperand(1)))
1356     return nullptr;
1357 
1358   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1359     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1360       return NewSel;
1361   } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1362     if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1363       return NewPhi;
1364   }
1365   return nullptr;
1366 }
1367 
1368 /// Given a pointer type and a constant offset, determine whether or not there
1369 /// is a sequence of GEP indices into the pointed type that will land us at the
1370 /// specified offset. If so, fill them into NewIndices and return the resultant
1371 /// element type, otherwise return null.
1372 Type *
1373 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t IntOffset,
1374                                       SmallVectorImpl<Value *> &NewIndices) {
1375   Type *Ty = PtrTy->getElementType();
1376   if (!Ty->isSized())
1377     return nullptr;
1378 
1379   APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset);
1380   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset);
1381   if (!Offset.isZero())
1382     return nullptr;
1383 
1384   for (const APInt &Index : Indices)
1385     NewIndices.push_back(Builder.getInt(Index));
1386   return Ty;
1387 }
1388 
1389 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1390   // If this GEP has only 0 indices, it is the same pointer as
1391   // Src. If Src is not a trivial GEP too, don't combine
1392   // the indices.
1393   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1394       !Src.hasOneUse())
1395     return false;
1396   return true;
1397 }
1398 
1399 /// Return a value X such that Val = X * Scale, or null if none.
1400 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1401 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1402   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1403   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1404          Scale.getBitWidth() && "Scale not compatible with value!");
1405 
1406   // If Val is zero or Scale is one then Val = Val * Scale.
1407   if (match(Val, m_Zero()) || Scale == 1) {
1408     NoSignedWrap = true;
1409     return Val;
1410   }
1411 
1412   // If Scale is zero then it does not divide Val.
1413   if (Scale.isMinValue())
1414     return nullptr;
1415 
1416   // Look through chains of multiplications, searching for a constant that is
1417   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1418   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1419   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1420   // down from Val:
1421   //
1422   //     Val = M1 * X          ||   Analysis starts here and works down
1423   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1424   //      M2 =  Z * 4          \/   than one use
1425   //
1426   // Then to modify a term at the bottom:
1427   //
1428   //     Val = M1 * X
1429   //      M1 =  Z * Y          ||   Replaced M2 with Z
1430   //
1431   // Then to work back up correcting nsw flags.
1432 
1433   // Op - the term we are currently analyzing.  Starts at Val then drills down.
1434   // Replaced with its descaled value before exiting from the drill down loop.
1435   Value *Op = Val;
1436 
1437   // Parent - initially null, but after drilling down notes where Op came from.
1438   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1439   // 0'th operand of Val.
1440   std::pair<Instruction *, unsigned> Parent;
1441 
1442   // Set if the transform requires a descaling at deeper levels that doesn't
1443   // overflow.
1444   bool RequireNoSignedWrap = false;
1445 
1446   // Log base 2 of the scale. Negative if not a power of 2.
1447   int32_t logScale = Scale.exactLogBase2();
1448 
1449   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1450     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1451       // If Op is a constant divisible by Scale then descale to the quotient.
1452       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1453       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1454       if (!Remainder.isMinValue())
1455         // Not divisible by Scale.
1456         return nullptr;
1457       // Replace with the quotient in the parent.
1458       Op = ConstantInt::get(CI->getType(), Quotient);
1459       NoSignedWrap = true;
1460       break;
1461     }
1462 
1463     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1464       if (BO->getOpcode() == Instruction::Mul) {
1465         // Multiplication.
1466         NoSignedWrap = BO->hasNoSignedWrap();
1467         if (RequireNoSignedWrap && !NoSignedWrap)
1468           return nullptr;
1469 
1470         // There are three cases for multiplication: multiplication by exactly
1471         // the scale, multiplication by a constant different to the scale, and
1472         // multiplication by something else.
1473         Value *LHS = BO->getOperand(0);
1474         Value *RHS = BO->getOperand(1);
1475 
1476         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1477           // Multiplication by a constant.
1478           if (CI->getValue() == Scale) {
1479             // Multiplication by exactly the scale, replace the multiplication
1480             // by its left-hand side in the parent.
1481             Op = LHS;
1482             break;
1483           }
1484 
1485           // Otherwise drill down into the constant.
1486           if (!Op->hasOneUse())
1487             return nullptr;
1488 
1489           Parent = std::make_pair(BO, 1);
1490           continue;
1491         }
1492 
1493         // Multiplication by something else. Drill down into the left-hand side
1494         // since that's where the reassociate pass puts the good stuff.
1495         if (!Op->hasOneUse())
1496           return nullptr;
1497 
1498         Parent = std::make_pair(BO, 0);
1499         continue;
1500       }
1501 
1502       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1503           isa<ConstantInt>(BO->getOperand(1))) {
1504         // Multiplication by a power of 2.
1505         NoSignedWrap = BO->hasNoSignedWrap();
1506         if (RequireNoSignedWrap && !NoSignedWrap)
1507           return nullptr;
1508 
1509         Value *LHS = BO->getOperand(0);
1510         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1511           getLimitedValue(Scale.getBitWidth());
1512         // Op = LHS << Amt.
1513 
1514         if (Amt == logScale) {
1515           // Multiplication by exactly the scale, replace the multiplication
1516           // by its left-hand side in the parent.
1517           Op = LHS;
1518           break;
1519         }
1520         if (Amt < logScale || !Op->hasOneUse())
1521           return nullptr;
1522 
1523         // Multiplication by more than the scale.  Reduce the multiplying amount
1524         // by the scale in the parent.
1525         Parent = std::make_pair(BO, 1);
1526         Op = ConstantInt::get(BO->getType(), Amt - logScale);
1527         break;
1528       }
1529     }
1530 
1531     if (!Op->hasOneUse())
1532       return nullptr;
1533 
1534     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1535       if (Cast->getOpcode() == Instruction::SExt) {
1536         // Op is sign-extended from a smaller type, descale in the smaller type.
1537         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1538         APInt SmallScale = Scale.trunc(SmallSize);
1539         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1540         // descale Op as (sext Y) * Scale.  In order to have
1541         //   sext (Y * SmallScale) = (sext Y) * Scale
1542         // some conditions need to hold however: SmallScale must sign-extend to
1543         // Scale and the multiplication Y * SmallScale should not overflow.
1544         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1545           // SmallScale does not sign-extend to Scale.
1546           return nullptr;
1547         assert(SmallScale.exactLogBase2() == logScale);
1548         // Require that Y * SmallScale must not overflow.
1549         RequireNoSignedWrap = true;
1550 
1551         // Drill down through the cast.
1552         Parent = std::make_pair(Cast, 0);
1553         Scale = SmallScale;
1554         continue;
1555       }
1556 
1557       if (Cast->getOpcode() == Instruction::Trunc) {
1558         // Op is truncated from a larger type, descale in the larger type.
1559         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1560         //   trunc (Y * sext Scale) = (trunc Y) * Scale
1561         // always holds.  However (trunc Y) * Scale may overflow even if
1562         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1563         // from this point up in the expression (see later).
1564         if (RequireNoSignedWrap)
1565           return nullptr;
1566 
1567         // Drill down through the cast.
1568         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1569         Parent = std::make_pair(Cast, 0);
1570         Scale = Scale.sext(LargeSize);
1571         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1572           logScale = -1;
1573         assert(Scale.exactLogBase2() == logScale);
1574         continue;
1575       }
1576     }
1577 
1578     // Unsupported expression, bail out.
1579     return nullptr;
1580   }
1581 
1582   // If Op is zero then Val = Op * Scale.
1583   if (match(Op, m_Zero())) {
1584     NoSignedWrap = true;
1585     return Op;
1586   }
1587 
1588   // We know that we can successfully descale, so from here on we can safely
1589   // modify the IR.  Op holds the descaled version of the deepest term in the
1590   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1591   // not to overflow.
1592 
1593   if (!Parent.first)
1594     // The expression only had one term.
1595     return Op;
1596 
1597   // Rewrite the parent using the descaled version of its operand.
1598   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1599   assert(Op != Parent.first->getOperand(Parent.second) &&
1600          "Descaling was a no-op?");
1601   replaceOperand(*Parent.first, Parent.second, Op);
1602   Worklist.push(Parent.first);
1603 
1604   // Now work back up the expression correcting nsw flags.  The logic is based
1605   // on the following observation: if X * Y is known not to overflow as a signed
1606   // multiplication, and Y is replaced by a value Z with smaller absolute value,
1607   // then X * Z will not overflow as a signed multiplication either.  As we work
1608   // our way up, having NoSignedWrap 'true' means that the descaled value at the
1609   // current level has strictly smaller absolute value than the original.
1610   Instruction *Ancestor = Parent.first;
1611   do {
1612     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1613       // If the multiplication wasn't nsw then we can't say anything about the
1614       // value of the descaled multiplication, and we have to clear nsw flags
1615       // from this point on up.
1616       bool OpNoSignedWrap = BO->hasNoSignedWrap();
1617       NoSignedWrap &= OpNoSignedWrap;
1618       if (NoSignedWrap != OpNoSignedWrap) {
1619         BO->setHasNoSignedWrap(NoSignedWrap);
1620         Worklist.push(Ancestor);
1621       }
1622     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1623       // The fact that the descaled input to the trunc has smaller absolute
1624       // value than the original input doesn't tell us anything useful about
1625       // the absolute values of the truncations.
1626       NoSignedWrap = false;
1627     }
1628     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1629            "Failed to keep proper track of nsw flags while drilling down?");
1630 
1631     if (Ancestor == Val)
1632       // Got to the top, all done!
1633       return Val;
1634 
1635     // Move up one level in the expression.
1636     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1637     Ancestor = Ancestor->user_back();
1638   } while (true);
1639 }
1640 
1641 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
1642   if (!isa<VectorType>(Inst.getType()))
1643     return nullptr;
1644 
1645   BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1646   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1647   assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1648          cast<VectorType>(Inst.getType())->getElementCount());
1649   assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1650          cast<VectorType>(Inst.getType())->getElementCount());
1651 
1652   // If both operands of the binop are vector concatenations, then perform the
1653   // narrow binop on each pair of the source operands followed by concatenation
1654   // of the results.
1655   Value *L0, *L1, *R0, *R1;
1656   ArrayRef<int> Mask;
1657   if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1658       match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1659       LHS->hasOneUse() && RHS->hasOneUse() &&
1660       cast<ShuffleVectorInst>(LHS)->isConcat() &&
1661       cast<ShuffleVectorInst>(RHS)->isConcat()) {
1662     // This transform does not have the speculative execution constraint as
1663     // below because the shuffle is a concatenation. The new binops are
1664     // operating on exactly the same elements as the existing binop.
1665     // TODO: We could ease the mask requirement to allow different undef lanes,
1666     //       but that requires an analysis of the binop-with-undef output value.
1667     Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1668     if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1669       BO->copyIRFlags(&Inst);
1670     Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1671     if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1672       BO->copyIRFlags(&Inst);
1673     return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1674   }
1675 
1676   // It may not be safe to reorder shuffles and things like div, urem, etc.
1677   // because we may trap when executing those ops on unknown vector elements.
1678   // See PR20059.
1679   if (!isSafeToSpeculativelyExecute(&Inst))
1680     return nullptr;
1681 
1682   auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1683     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1684     if (auto *BO = dyn_cast<BinaryOperator>(XY))
1685       BO->copyIRFlags(&Inst);
1686     return new ShuffleVectorInst(XY, M);
1687   };
1688 
1689   // If both arguments of the binary operation are shuffles that use the same
1690   // mask and shuffle within a single vector, move the shuffle after the binop.
1691   Value *V1, *V2;
1692   if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
1693       match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
1694       V1->getType() == V2->getType() &&
1695       (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1696     // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1697     return createBinOpShuffle(V1, V2, Mask);
1698   }
1699 
1700   // If both arguments of a commutative binop are select-shuffles that use the
1701   // same mask with commuted operands, the shuffles are unnecessary.
1702   if (Inst.isCommutative() &&
1703       match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1704       match(RHS,
1705             m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1706     auto *LShuf = cast<ShuffleVectorInst>(LHS);
1707     auto *RShuf = cast<ShuffleVectorInst>(RHS);
1708     // TODO: Allow shuffles that contain undefs in the mask?
1709     //       That is legal, but it reduces undef knowledge.
1710     // TODO: Allow arbitrary shuffles by shuffling after binop?
1711     //       That might be legal, but we have to deal with poison.
1712     if (LShuf->isSelect() &&
1713         !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
1714         RShuf->isSelect() &&
1715         !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
1716       // Example:
1717       // LHS = shuffle V1, V2, <0, 5, 6, 3>
1718       // RHS = shuffle V2, V1, <0, 5, 6, 3>
1719       // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1720       Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1721       NewBO->copyIRFlags(&Inst);
1722       return NewBO;
1723     }
1724   }
1725 
1726   // If one argument is a shuffle within one vector and the other is a constant,
1727   // try moving the shuffle after the binary operation. This canonicalization
1728   // intends to move shuffles closer to other shuffles and binops closer to
1729   // other binops, so they can be folded. It may also enable demanded elements
1730   // transforms.
1731   Constant *C;
1732   auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
1733   if (InstVTy &&
1734       match(&Inst,
1735             m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
1736                       m_ImmConstant(C))) &&
1737       cast<FixedVectorType>(V1->getType())->getNumElements() <=
1738           InstVTy->getNumElements()) {
1739     assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
1740            "Shuffle should not change scalar type");
1741 
1742     // Find constant NewC that has property:
1743     //   shuffle(NewC, ShMask) = C
1744     // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1745     // reorder is not possible. A 1-to-1 mapping is not required. Example:
1746     // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1747     bool ConstOp1 = isa<Constant>(RHS);
1748     ArrayRef<int> ShMask = Mask;
1749     unsigned SrcVecNumElts =
1750         cast<FixedVectorType>(V1->getType())->getNumElements();
1751     UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1752     SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1753     bool MayChange = true;
1754     unsigned NumElts = InstVTy->getNumElements();
1755     for (unsigned I = 0; I < NumElts; ++I) {
1756       Constant *CElt = C->getAggregateElement(I);
1757       if (ShMask[I] >= 0) {
1758         assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1759         Constant *NewCElt = NewVecC[ShMask[I]];
1760         // Bail out if:
1761         // 1. The constant vector contains a constant expression.
1762         // 2. The shuffle needs an element of the constant vector that can't
1763         //    be mapped to a new constant vector.
1764         // 3. This is a widening shuffle that copies elements of V1 into the
1765         //    extended elements (extending with undef is allowed).
1766         if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1767             I >= SrcVecNumElts) {
1768           MayChange = false;
1769           break;
1770         }
1771         NewVecC[ShMask[I]] = CElt;
1772       }
1773       // If this is a widening shuffle, we must be able to extend with undef
1774       // elements. If the original binop does not produce an undef in the high
1775       // lanes, then this transform is not safe.
1776       // Similarly for undef lanes due to the shuffle mask, we can only
1777       // transform binops that preserve undef.
1778       // TODO: We could shuffle those non-undef constant values into the
1779       //       result by using a constant vector (rather than an undef vector)
1780       //       as operand 1 of the new binop, but that might be too aggressive
1781       //       for target-independent shuffle creation.
1782       if (I >= SrcVecNumElts || ShMask[I] < 0) {
1783         Constant *MaybeUndef =
1784             ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1785                      : ConstantExpr::get(Opcode, CElt, UndefScalar);
1786         if (!match(MaybeUndef, m_Undef())) {
1787           MayChange = false;
1788           break;
1789         }
1790       }
1791     }
1792     if (MayChange) {
1793       Constant *NewC = ConstantVector::get(NewVecC);
1794       // It may not be safe to execute a binop on a vector with undef elements
1795       // because the entire instruction can be folded to undef or create poison
1796       // that did not exist in the original code.
1797       if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1798         NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1799 
1800       // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1801       // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1802       Value *NewLHS = ConstOp1 ? V1 : NewC;
1803       Value *NewRHS = ConstOp1 ? NewC : V1;
1804       return createBinOpShuffle(NewLHS, NewRHS, Mask);
1805     }
1806   }
1807 
1808   // Try to reassociate to sink a splat shuffle after a binary operation.
1809   if (Inst.isAssociative() && Inst.isCommutative()) {
1810     // Canonicalize shuffle operand as LHS.
1811     if (isa<ShuffleVectorInst>(RHS))
1812       std::swap(LHS, RHS);
1813 
1814     Value *X;
1815     ArrayRef<int> MaskC;
1816     int SplatIndex;
1817     Value *Y, *OtherOp;
1818     if (!match(LHS,
1819                m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
1820         !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1821         X->getType() != Inst.getType() ||
1822         !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp)))))
1823       return nullptr;
1824 
1825     // FIXME: This may not be safe if the analysis allows undef elements. By
1826     //        moving 'Y' before the splat shuffle, we are implicitly assuming
1827     //        that it is not undef/poison at the splat index.
1828     if (isSplatValue(OtherOp, SplatIndex)) {
1829       std::swap(Y, OtherOp);
1830     } else if (!isSplatValue(Y, SplatIndex)) {
1831       return nullptr;
1832     }
1833 
1834     // X and Y are splatted values, so perform the binary operation on those
1835     // values followed by a splat followed by the 2nd binary operation:
1836     // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1837     Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1838     SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1839     Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
1840     Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1841 
1842     // Intersect FMF on both new binops. Other (poison-generating) flags are
1843     // dropped to be safe.
1844     if (isa<FPMathOperator>(R)) {
1845       R->copyFastMathFlags(&Inst);
1846       R->andIRFlags(RHS);
1847     }
1848     if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1849       NewInstBO->copyIRFlags(R);
1850     return R;
1851   }
1852 
1853   return nullptr;
1854 }
1855 
1856 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1857 /// of a value. This requires a potentially expensive known bits check to make
1858 /// sure the narrow op does not overflow.
1859 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
1860   // We need at least one extended operand.
1861   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1862 
1863   // If this is a sub, we swap the operands since we always want an extension
1864   // on the RHS. The LHS can be an extension or a constant.
1865   if (BO.getOpcode() == Instruction::Sub)
1866     std::swap(Op0, Op1);
1867 
1868   Value *X;
1869   bool IsSext = match(Op0, m_SExt(m_Value(X)));
1870   if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1871     return nullptr;
1872 
1873   // If both operands are the same extension from the same source type and we
1874   // can eliminate at least one (hasOneUse), this might work.
1875   CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1876   Value *Y;
1877   if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1878         cast<Operator>(Op1)->getOpcode() == CastOpc &&
1879         (Op0->hasOneUse() || Op1->hasOneUse()))) {
1880     // If that did not match, see if we have a suitable constant operand.
1881     // Truncating and extending must produce the same constant.
1882     Constant *WideC;
1883     if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1884       return nullptr;
1885     Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1886     if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1887       return nullptr;
1888     Y = NarrowC;
1889   }
1890 
1891   // Swap back now that we found our operands.
1892   if (BO.getOpcode() == Instruction::Sub)
1893     std::swap(X, Y);
1894 
1895   // Both operands have narrow versions. Last step: the math must not overflow
1896   // in the narrow width.
1897   if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1898     return nullptr;
1899 
1900   // bo (ext X), (ext Y) --> ext (bo X, Y)
1901   // bo (ext X), C       --> ext (bo X, C')
1902   Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1903   if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1904     if (IsSext)
1905       NewBinOp->setHasNoSignedWrap();
1906     else
1907       NewBinOp->setHasNoUnsignedWrap();
1908   }
1909   return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1910 }
1911 
1912 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1913   // At least one GEP must be inbounds.
1914   if (!GEP1.isInBounds() && !GEP2.isInBounds())
1915     return false;
1916 
1917   return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1918          (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1919 }
1920 
1921 /// Thread a GEP operation with constant indices through the constant true/false
1922 /// arms of a select.
1923 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1924                                   InstCombiner::BuilderTy &Builder) {
1925   if (!GEP.hasAllConstantIndices())
1926     return nullptr;
1927 
1928   Instruction *Sel;
1929   Value *Cond;
1930   Constant *TrueC, *FalseC;
1931   if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1932       !match(Sel,
1933              m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1934     return nullptr;
1935 
1936   // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1937   // Propagate 'inbounds' and metadata from existing instructions.
1938   // Note: using IRBuilder to create the constants for efficiency.
1939   SmallVector<Value *, 4> IndexC(GEP.indices());
1940   bool IsInBounds = GEP.isInBounds();
1941   Type *Ty = GEP.getSourceElementType();
1942   Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC)
1943                                : Builder.CreateGEP(Ty, TrueC, IndexC);
1944   Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC)
1945                                 : Builder.CreateGEP(Ty, FalseC, IndexC);
1946   return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1947 }
1948 
1949 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP,
1950                                              GEPOperator *Src) {
1951   // Combine Indices - If the source pointer to this getelementptr instruction
1952   // is a getelementptr instruction with matching element type, combine the
1953   // indices of the two getelementptr instructions into a single instruction.
1954   if (Src->getResultElementType() != GEP.getSourceElementType())
1955     return nullptr;
1956 
1957   if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1958     return nullptr;
1959 
1960   if (Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
1961       Src->hasOneUse()) {
1962     Value *GO1 = GEP.getOperand(1);
1963     Value *SO1 = Src->getOperand(1);
1964 
1965     if (LI) {
1966       // Try to reassociate loop invariant GEP chains to enable LICM.
1967       if (Loop *L = LI->getLoopFor(GEP.getParent())) {
1968         // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
1969         // invariant: this breaks the dependence between GEPs and allows LICM
1970         // to hoist the invariant part out of the loop.
1971         if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
1972           // We have to be careful here.
1973           // We have something like:
1974           //  %src = getelementptr <ty>, <ty>* %base, <ty> %idx
1975           //  %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
1976           // If we just swap idx & idx2 then we could inadvertantly
1977           // change %src from a vector to a scalar, or vice versa.
1978           // Cases:
1979           //  1) %base a scalar & idx a scalar & idx2 a vector
1980           //      => Swapping idx & idx2 turns %src into a vector type.
1981           //  2) %base a scalar & idx a vector & idx2 a scalar
1982           //      => Swapping idx & idx2 turns %src in a scalar type
1983           //  3) %base, %idx, and %idx2 are scalars
1984           //      => %src & %gep are scalars
1985           //      => swapping idx & idx2 is safe
1986           //  4) %base a vector
1987           //      => %src is a vector
1988           //      => swapping idx & idx2 is safe.
1989           auto *SO0 = Src->getOperand(0);
1990           auto *SO0Ty = SO0->getType();
1991           if (!isa<VectorType>(GEP.getType()) || // case 3
1992               isa<VectorType>(SO0Ty)) { // case 4
1993             Src->setOperand(1, GO1);
1994             GEP.setOperand(1, SO1);
1995             return &GEP;
1996           } else {
1997             // Case 1 or 2
1998             // -- have to recreate %src & %gep
1999             // put NewSrc at same location as %src
2000             Builder.SetInsertPoint(cast<Instruction>(Src));
2001             Value *NewSrc = Builder.CreateGEP(
2002                 GEP.getSourceElementType(), SO0, GO1, Src->getName());
2003             // Propagate 'inbounds' if the new source was not constant-folded.
2004             if (auto *NewSrcGEPI = dyn_cast<GetElementPtrInst>(NewSrc))
2005               NewSrcGEPI->setIsInBounds(Src->isInBounds());
2006             GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
2007                 GEP.getSourceElementType(), NewSrc, {SO1});
2008             NewGEP->setIsInBounds(GEP.isInBounds());
2009             return NewGEP;
2010           }
2011         }
2012       }
2013     }
2014   }
2015 
2016   // Note that if our source is a gep chain itself then we wait for that
2017   // chain to be resolved before we perform this transformation.  This
2018   // avoids us creating a TON of code in some cases.
2019   if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
2020     if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
2021       return nullptr;   // Wait until our source is folded to completion.
2022 
2023   SmallVector<Value*, 8> Indices;
2024 
2025   // Find out whether the last index in the source GEP is a sequential idx.
2026   bool EndsWithSequential = false;
2027   for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2028        I != E; ++I)
2029     EndsWithSequential = I.isSequential();
2030 
2031   // Can we combine the two pointer arithmetics offsets?
2032   if (EndsWithSequential) {
2033     // Replace: gep (gep %P, long B), long A, ...
2034     // With:    T = long A+B; gep %P, T, ...
2035     Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2036     Value *GO1 = GEP.getOperand(1);
2037 
2038     // If they aren't the same type, then the input hasn't been processed
2039     // by the loop above yet (which canonicalizes sequential index types to
2040     // intptr_t).  Just avoid transforming this until the input has been
2041     // normalized.
2042     if (SO1->getType() != GO1->getType())
2043       return nullptr;
2044 
2045     Value *Sum =
2046         SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2047     // Only do the combine when we are sure the cost after the
2048     // merge is never more than that before the merge.
2049     if (Sum == nullptr)
2050       return nullptr;
2051 
2052     // Update the GEP in place if possible.
2053     if (Src->getNumOperands() == 2) {
2054       GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2055       replaceOperand(GEP, 0, Src->getOperand(0));
2056       replaceOperand(GEP, 1, Sum);
2057       return &GEP;
2058     }
2059     Indices.append(Src->op_begin()+1, Src->op_end()-1);
2060     Indices.push_back(Sum);
2061     Indices.append(GEP.op_begin()+2, GEP.op_end());
2062   } else if (isa<Constant>(*GEP.idx_begin()) &&
2063              cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2064              Src->getNumOperands() != 1) {
2065     // Otherwise we can do the fold if the first index of the GEP is a zero
2066     Indices.append(Src->op_begin()+1, Src->op_end());
2067     Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2068   }
2069 
2070   if (!Indices.empty())
2071     return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2072                ? GetElementPtrInst::CreateInBounds(
2073                      Src->getSourceElementType(), Src->getOperand(0), Indices,
2074                      GEP.getName())
2075                : GetElementPtrInst::Create(Src->getSourceElementType(),
2076                                            Src->getOperand(0), Indices,
2077                                            GEP.getName());
2078 
2079   return nullptr;
2080 }
2081 
2082 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2083   Value *PtrOp = GEP.getOperand(0);
2084   SmallVector<Value *, 8> Indices(GEP.indices());
2085   Type *GEPType = GEP.getType();
2086   Type *GEPEltType = GEP.getSourceElementType();
2087   bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
2088   if (Value *V = SimplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(),
2089                                  SQ.getWithInstruction(&GEP)))
2090     return replaceInstUsesWith(GEP, V);
2091 
2092   // For vector geps, use the generic demanded vector support.
2093   // Skip if GEP return type is scalable. The number of elements is unknown at
2094   // compile-time.
2095   if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
2096     auto VWidth = GEPFVTy->getNumElements();
2097     APInt UndefElts(VWidth, 0);
2098     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
2099     if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
2100                                               UndefElts)) {
2101       if (V != &GEP)
2102         return replaceInstUsesWith(GEP, V);
2103       return &GEP;
2104     }
2105 
2106     // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
2107     // possible (decide on canonical form for pointer broadcast), 3) exploit
2108     // undef elements to decrease demanded bits
2109   }
2110 
2111   // Eliminate unneeded casts for indices, and replace indices which displace
2112   // by multiples of a zero size type with zero.
2113   bool MadeChange = false;
2114 
2115   // Index width may not be the same width as pointer width.
2116   // Data layout chooses the right type based on supported integer types.
2117   Type *NewScalarIndexTy =
2118       DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
2119 
2120   gep_type_iterator GTI = gep_type_begin(GEP);
2121   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
2122        ++I, ++GTI) {
2123     // Skip indices into struct types.
2124     if (GTI.isStruct())
2125       continue;
2126 
2127     Type *IndexTy = (*I)->getType();
2128     Type *NewIndexType =
2129         IndexTy->isVectorTy()
2130             ? VectorType::get(NewScalarIndexTy,
2131                               cast<VectorType>(IndexTy)->getElementCount())
2132             : NewScalarIndexTy;
2133 
2134     // If the element type has zero size then any index over it is equivalent
2135     // to an index of zero, so replace it with zero if it is not zero already.
2136     Type *EltTy = GTI.getIndexedType();
2137     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
2138       if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
2139         *I = Constant::getNullValue(NewIndexType);
2140         MadeChange = true;
2141       }
2142 
2143     if (IndexTy != NewIndexType) {
2144       // If we are using a wider index than needed for this platform, shrink
2145       // it to what we need.  If narrower, sign-extend it to what we need.
2146       // This explicit cast can make subsequent optimizations more obvious.
2147       *I = Builder.CreateIntCast(*I, NewIndexType, true);
2148       MadeChange = true;
2149     }
2150   }
2151   if (MadeChange)
2152     return &GEP;
2153 
2154   // Check to see if the inputs to the PHI node are getelementptr instructions.
2155   if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
2156     auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
2157     if (!Op1)
2158       return nullptr;
2159 
2160     // Don't fold a GEP into itself through a PHI node. This can only happen
2161     // through the back-edge of a loop. Folding a GEP into itself means that
2162     // the value of the previous iteration needs to be stored in the meantime,
2163     // thus requiring an additional register variable to be live, but not
2164     // actually achieving anything (the GEP still needs to be executed once per
2165     // loop iteration).
2166     if (Op1 == &GEP)
2167       return nullptr;
2168 
2169     int DI = -1;
2170 
2171     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
2172       auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
2173       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
2174         return nullptr;
2175 
2176       // As for Op1 above, don't try to fold a GEP into itself.
2177       if (Op2 == &GEP)
2178         return nullptr;
2179 
2180       // Keep track of the type as we walk the GEP.
2181       Type *CurTy = nullptr;
2182 
2183       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
2184         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
2185           return nullptr;
2186 
2187         if (Op1->getOperand(J) != Op2->getOperand(J)) {
2188           if (DI == -1) {
2189             // We have not seen any differences yet in the GEPs feeding the
2190             // PHI yet, so we record this one if it is allowed to be a
2191             // variable.
2192 
2193             // The first two arguments can vary for any GEP, the rest have to be
2194             // static for struct slots
2195             if (J > 1) {
2196               assert(CurTy && "No current type?");
2197               if (CurTy->isStructTy())
2198                 return nullptr;
2199             }
2200 
2201             DI = J;
2202           } else {
2203             // The GEP is different by more than one input. While this could be
2204             // extended to support GEPs that vary by more than one variable it
2205             // doesn't make sense since it greatly increases the complexity and
2206             // would result in an R+R+R addressing mode which no backend
2207             // directly supports and would need to be broken into several
2208             // simpler instructions anyway.
2209             return nullptr;
2210           }
2211         }
2212 
2213         // Sink down a layer of the type for the next iteration.
2214         if (J > 0) {
2215           if (J == 1) {
2216             CurTy = Op1->getSourceElementType();
2217           } else {
2218             CurTy =
2219                 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
2220           }
2221         }
2222       }
2223     }
2224 
2225     // If not all GEPs are identical we'll have to create a new PHI node.
2226     // Check that the old PHI node has only one use so that it will get
2227     // removed.
2228     if (DI != -1 && !PN->hasOneUse())
2229       return nullptr;
2230 
2231     auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2232     if (DI == -1) {
2233       // All the GEPs feeding the PHI are identical. Clone one down into our
2234       // BB so that it can be merged with the current GEP.
2235     } else {
2236       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
2237       // into the current block so it can be merged, and create a new PHI to
2238       // set that index.
2239       PHINode *NewPN;
2240       {
2241         IRBuilderBase::InsertPointGuard Guard(Builder);
2242         Builder.SetInsertPoint(PN);
2243         NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
2244                                   PN->getNumOperands());
2245       }
2246 
2247       for (auto &I : PN->operands())
2248         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
2249                            PN->getIncomingBlock(I));
2250 
2251       NewGEP->setOperand(DI, NewPN);
2252     }
2253 
2254     GEP.getParent()->getInstList().insert(
2255         GEP.getParent()->getFirstInsertionPt(), NewGEP);
2256     replaceOperand(GEP, 0, NewGEP);
2257     PtrOp = NewGEP;
2258   }
2259 
2260   if (auto *Src = dyn_cast<GEPOperator>(PtrOp))
2261     if (Instruction *I = visitGEPOfGEP(GEP, Src))
2262       return I;
2263 
2264   // Skip if GEP source element type is scalable. The type alloc size is unknown
2265   // at compile-time.
2266   if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2267     unsigned AS = GEP.getPointerAddressSpace();
2268     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2269         DL.getIndexSizeInBits(AS)) {
2270       uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2271 
2272       bool Matched = false;
2273       uint64_t C;
2274       Value *V = nullptr;
2275       if (TyAllocSize == 1) {
2276         V = GEP.getOperand(1);
2277         Matched = true;
2278       } else if (match(GEP.getOperand(1),
2279                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
2280         if (TyAllocSize == 1ULL << C)
2281           Matched = true;
2282       } else if (match(GEP.getOperand(1),
2283                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2284         if (TyAllocSize == C)
2285           Matched = true;
2286       }
2287 
2288       // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but
2289       // only if both point to the same underlying object (otherwise provenance
2290       // is not necessarily retained).
2291       Value *Y;
2292       Value *X = GEP.getOperand(0);
2293       if (Matched &&
2294           match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) &&
2295           getUnderlyingObject(X) == getUnderlyingObject(Y))
2296         return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2297     }
2298   }
2299 
2300   // We do not handle pointer-vector geps here.
2301   if (GEPType->isVectorTy())
2302     return nullptr;
2303 
2304   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2305   Value *StrippedPtr = PtrOp->stripPointerCasts();
2306   PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2307 
2308   // TODO: The basic approach of these folds is not compatible with opaque
2309   // pointers, because we can't use bitcasts as a hint for a desirable GEP
2310   // type. Instead, we should perform canonicalization directly on the GEP
2311   // type. For now, skip these.
2312   if (StrippedPtr != PtrOp && !StrippedPtrTy->isOpaque()) {
2313     bool HasZeroPointerIndex = false;
2314     Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
2315 
2316     if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2317       HasZeroPointerIndex = C->isZero();
2318 
2319     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2320     // into     : GEP [10 x i8]* X, i32 0, ...
2321     //
2322     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2323     //           into     : GEP i8* X, ...
2324     //
2325     // This occurs when the program declares an array extern like "int X[];"
2326     if (HasZeroPointerIndex) {
2327       if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2328         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2329         if (CATy->getElementType() == StrippedPtrEltTy) {
2330           // -> GEP i8* X, ...
2331           SmallVector<Value *, 8> Idx(drop_begin(GEP.indices()));
2332           GetElementPtrInst *Res = GetElementPtrInst::Create(
2333               StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2334           Res->setIsInBounds(GEP.isInBounds());
2335           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2336             return Res;
2337           // Insert Res, and create an addrspacecast.
2338           // e.g.,
2339           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2340           // ->
2341           // %0 = GEP i8 addrspace(1)* X, ...
2342           // addrspacecast i8 addrspace(1)* %0 to i8*
2343           return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2344         }
2345 
2346         if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2347           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2348           if (CATy->getElementType() == XATy->getElementType()) {
2349             // -> GEP [10 x i8]* X, i32 0, ...
2350             // At this point, we know that the cast source type is a pointer
2351             // to an array of the same type as the destination pointer
2352             // array.  Because the array type is never stepped over (there
2353             // is a leading zero) we can fold the cast into this GEP.
2354             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2355               GEP.setSourceElementType(XATy);
2356               return replaceOperand(GEP, 0, StrippedPtr);
2357             }
2358             // Cannot replace the base pointer directly because StrippedPtr's
2359             // address space is different. Instead, create a new GEP followed by
2360             // an addrspacecast.
2361             // e.g.,
2362             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2363             //   i32 0, ...
2364             // ->
2365             // %0 = GEP [10 x i8] addrspace(1)* X, ...
2366             // addrspacecast i8 addrspace(1)* %0 to i8*
2367             SmallVector<Value *, 8> Idx(GEP.indices());
2368             Value *NewGEP =
2369                 GEP.isInBounds()
2370                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2371                                                 Idx, GEP.getName())
2372                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2373                                         GEP.getName());
2374             return new AddrSpaceCastInst(NewGEP, GEPType);
2375           }
2376         }
2377       }
2378     } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
2379       // Skip if GEP source element type is scalable. The type alloc size is
2380       // unknown at compile-time.
2381       // Transform things like: %t = getelementptr i32*
2382       // bitcast ([2 x i32]* %str to i32*), i32 %V into:  %t1 = getelementptr [2
2383       // x i32]* %str, i32 0, i32 %V; bitcast
2384       if (StrippedPtrEltTy->isArrayTy() &&
2385           DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2386               DL.getTypeAllocSize(GEPEltType)) {
2387         Type *IdxType = DL.getIndexType(GEPType);
2388         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2389         Value *NewGEP =
2390             GEP.isInBounds()
2391                 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2392                                             GEP.getName())
2393                 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2394                                     GEP.getName());
2395 
2396         // V and GEP are both pointer types --> BitCast
2397         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2398       }
2399 
2400       // Transform things like:
2401       // %V = mul i64 %N, 4
2402       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2403       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
2404       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2405         // Check that changing the type amounts to dividing the index by a scale
2406         // factor.
2407         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2408         uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
2409         if (ResSize && SrcSize % ResSize == 0) {
2410           Value *Idx = GEP.getOperand(1);
2411           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2412           uint64_t Scale = SrcSize / ResSize;
2413 
2414           // Earlier transforms ensure that the index has the right type
2415           // according to Data Layout, which considerably simplifies the
2416           // logic by eliminating implicit casts.
2417           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2418                  "Index type does not match the Data Layout preferences");
2419 
2420           bool NSW;
2421           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2422             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2423             // If the multiplication NewIdx * Scale may overflow then the new
2424             // GEP may not be "inbounds".
2425             Value *NewGEP =
2426                 GEP.isInBounds() && NSW
2427                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2428                                                 NewIdx, GEP.getName())
2429                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2430                                         GEP.getName());
2431 
2432             // The NewGEP must be pointer typed, so must the old one -> BitCast
2433             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2434                                                                  GEPType);
2435           }
2436         }
2437       }
2438 
2439       // Similarly, transform things like:
2440       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2441       //   (where tmp = 8*tmp2) into:
2442       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2443       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2444           StrippedPtrEltTy->isArrayTy()) {
2445         // Check that changing to the array element type amounts to dividing the
2446         // index by a scale factor.
2447         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2448         uint64_t ArrayEltSize =
2449             DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
2450                 .getFixedSize();
2451         if (ResSize && ArrayEltSize % ResSize == 0) {
2452           Value *Idx = GEP.getOperand(1);
2453           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2454           uint64_t Scale = ArrayEltSize / ResSize;
2455 
2456           // Earlier transforms ensure that the index has the right type
2457           // according to the Data Layout, which considerably simplifies
2458           // the logic by eliminating implicit casts.
2459           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2460                  "Index type does not match the Data Layout preferences");
2461 
2462           bool NSW;
2463           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2464             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2465             // If the multiplication NewIdx * Scale may overflow then the new
2466             // GEP may not be "inbounds".
2467             Type *IndTy = DL.getIndexType(GEPType);
2468             Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2469 
2470             Value *NewGEP =
2471                 GEP.isInBounds() && NSW
2472                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2473                                                 Off, GEP.getName())
2474                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2475                                         GEP.getName());
2476             // The NewGEP must be pointer typed, so must the old one -> BitCast
2477             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2478                                                                  GEPType);
2479           }
2480         }
2481       }
2482     }
2483   }
2484 
2485   // addrspacecast between types is canonicalized as a bitcast, then an
2486   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2487   // through the addrspacecast.
2488   Value *ASCStrippedPtrOp = PtrOp;
2489   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2490     //   X = bitcast A addrspace(1)* to B addrspace(1)*
2491     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2492     //   Z = gep Y, <...constant indices...>
2493     // Into an addrspacecasted GEP of the struct.
2494     if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2495       ASCStrippedPtrOp = BC;
2496   }
2497 
2498   if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2499     Value *SrcOp = BCI->getOperand(0);
2500     PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2501     Type *SrcEltType = SrcType->getElementType();
2502 
2503     // GEP directly using the source operand if this GEP is accessing an element
2504     // of a bitcasted pointer to vector or array of the same dimensions:
2505     // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2506     // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2507     auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2508                                           const DataLayout &DL) {
2509       auto *VecVTy = cast<FixedVectorType>(VecTy);
2510       return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
2511              ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
2512              DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2513     };
2514     if (GEP.getNumOperands() == 3 &&
2515         ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) &&
2516           areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2517          (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() &&
2518           areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2519 
2520       // Create a new GEP here, as using `setOperand()` followed by
2521       // `setSourceElementType()` won't actually update the type of the
2522       // existing GEP Value. Causing issues if this Value is accessed when
2523       // constructing an AddrSpaceCastInst
2524       Value *NGEP = GEP.isInBounds()
2525                         ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, Indices)
2526                         : Builder.CreateGEP(SrcEltType, SrcOp, Indices);
2527       NGEP->takeName(&GEP);
2528 
2529       // Preserve GEP address space to satisfy users
2530       if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2531         return new AddrSpaceCastInst(NGEP, GEPType);
2532 
2533       return replaceInstUsesWith(GEP, NGEP);
2534     }
2535 
2536     // See if we can simplify:
2537     //   X = bitcast A* to B*
2538     //   Y = gep X, <...constant indices...>
2539     // into a gep of the original struct. This is important for SROA and alias
2540     // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2541     unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2542     APInt Offset(OffsetBits, 0);
2543 
2544     // If the bitcast argument is an allocation, The bitcast is for convertion
2545     // to actual type of allocation. Removing such bitcasts, results in having
2546     // GEPs with i8* base and pure byte offsets. That means GEP is not aware of
2547     // struct or array hierarchy.
2548     // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have
2549     // a better chance to succeed.
2550     if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) &&
2551         !isAllocationFn(SrcOp, &TLI)) {
2552       // If this GEP instruction doesn't move the pointer, just replace the GEP
2553       // with a bitcast of the real input to the dest type.
2554       if (!Offset) {
2555         // If the bitcast is of an allocation, and the allocation will be
2556         // converted to match the type of the cast, don't touch this.
2557         if (isa<AllocaInst>(SrcOp)) {
2558           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2559           if (Instruction *I = visitBitCast(*BCI)) {
2560             if (I != BCI) {
2561               I->takeName(BCI);
2562               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2563               replaceInstUsesWith(*BCI, I);
2564             }
2565             return &GEP;
2566           }
2567         }
2568 
2569         if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2570           return new AddrSpaceCastInst(SrcOp, GEPType);
2571         return new BitCastInst(SrcOp, GEPType);
2572       }
2573 
2574       // Otherwise, if the offset is non-zero, we need to find out if there is a
2575       // field at Offset in 'A's type.  If so, we can pull the cast through the
2576       // GEP.
2577       SmallVector<Value*, 8> NewIndices;
2578       if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2579         Value *NGEP =
2580             GEP.isInBounds()
2581                 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2582                 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2583 
2584         if (NGEP->getType() == GEPType)
2585           return replaceInstUsesWith(GEP, NGEP);
2586         NGEP->takeName(&GEP);
2587 
2588         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2589           return new AddrSpaceCastInst(NGEP, GEPType);
2590         return new BitCastInst(NGEP, GEPType);
2591       }
2592     }
2593   }
2594 
2595   if (!GEP.isInBounds()) {
2596     unsigned IdxWidth =
2597         DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2598     APInt BasePtrOffset(IdxWidth, 0);
2599     Value *UnderlyingPtrOp =
2600             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2601                                                              BasePtrOffset);
2602     if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2603       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2604           BasePtrOffset.isNonNegative()) {
2605         APInt AllocSize(
2606             IdxWidth,
2607             DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
2608         if (BasePtrOffset.ule(AllocSize)) {
2609           return GetElementPtrInst::CreateInBounds(
2610               GEP.getSourceElementType(), PtrOp, Indices, GEP.getName());
2611         }
2612       }
2613     }
2614   }
2615 
2616   if (Instruction *R = foldSelectGEP(GEP, Builder))
2617     return R;
2618 
2619   return nullptr;
2620 }
2621 
2622 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI,
2623                                          Instruction *AI) {
2624   if (isa<ConstantPointerNull>(V))
2625     return true;
2626   if (auto *LI = dyn_cast<LoadInst>(V))
2627     return isa<GlobalVariable>(LI->getPointerOperand());
2628   // Two distinct allocations will never be equal.
2629   return isAllocLikeFn(V, &TLI) && V != AI;
2630 }
2631 
2632 /// Given a call CB which uses an address UsedV, return true if we can prove the
2633 /// call's only possible effect is storing to V.
2634 static bool isRemovableWrite(CallBase &CB, Value *UsedV,
2635                              const TargetLibraryInfo &TLI) {
2636   if (!CB.use_empty())
2637     // TODO: add recursion if returned attribute is present
2638     return false;
2639 
2640   if (CB.isTerminator())
2641     // TODO: remove implementation restriction
2642     return false;
2643 
2644   if (!CB.willReturn() || !CB.doesNotThrow())
2645     return false;
2646 
2647   // If the only possible side effect of the call is writing to the alloca,
2648   // and the result isn't used, we can safely remove any reads implied by the
2649   // call including those which might read the alloca itself.
2650   Optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI);
2651   return Dest && Dest->Ptr == UsedV;
2652 }
2653 
2654 static bool isAllocSiteRemovable(Instruction *AI,
2655                                  SmallVectorImpl<WeakTrackingVH> &Users,
2656                                  const TargetLibraryInfo &TLI) {
2657   SmallVector<Instruction*, 4> Worklist;
2658   Worklist.push_back(AI);
2659 
2660   do {
2661     Instruction *PI = Worklist.pop_back_val();
2662     for (User *U : PI->users()) {
2663       Instruction *I = cast<Instruction>(U);
2664       switch (I->getOpcode()) {
2665       default:
2666         // Give up the moment we see something we can't handle.
2667         return false;
2668 
2669       case Instruction::AddrSpaceCast:
2670       case Instruction::BitCast:
2671       case Instruction::GetElementPtr:
2672         Users.emplace_back(I);
2673         Worklist.push_back(I);
2674         continue;
2675 
2676       case Instruction::ICmp: {
2677         ICmpInst *ICI = cast<ICmpInst>(I);
2678         // We can fold eq/ne comparisons with null to false/true, respectively.
2679         // We also fold comparisons in some conditions provided the alloc has
2680         // not escaped (see isNeverEqualToUnescapedAlloc).
2681         if (!ICI->isEquality())
2682           return false;
2683         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2684         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2685           return false;
2686         Users.emplace_back(I);
2687         continue;
2688       }
2689 
2690       case Instruction::Call:
2691         // Ignore no-op and store intrinsics.
2692         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2693           switch (II->getIntrinsicID()) {
2694           default:
2695             return false;
2696 
2697           case Intrinsic::memmove:
2698           case Intrinsic::memcpy:
2699           case Intrinsic::memset: {
2700             MemIntrinsic *MI = cast<MemIntrinsic>(II);
2701             if (MI->isVolatile() || MI->getRawDest() != PI)
2702               return false;
2703             LLVM_FALLTHROUGH;
2704           }
2705           case Intrinsic::assume:
2706           case Intrinsic::invariant_start:
2707           case Intrinsic::invariant_end:
2708           case Intrinsic::lifetime_start:
2709           case Intrinsic::lifetime_end:
2710           case Intrinsic::objectsize:
2711             Users.emplace_back(I);
2712             continue;
2713           case Intrinsic::launder_invariant_group:
2714           case Intrinsic::strip_invariant_group:
2715             Users.emplace_back(I);
2716             Worklist.push_back(I);
2717             continue;
2718           }
2719         }
2720 
2721         if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) {
2722           Users.emplace_back(I);
2723           continue;
2724         }
2725 
2726         if (isFreeCall(I, &TLI)) {
2727           Users.emplace_back(I);
2728           continue;
2729         }
2730 
2731         if (isReallocLikeFn(I, &TLI)) {
2732           Users.emplace_back(I);
2733           Worklist.push_back(I);
2734           continue;
2735         }
2736 
2737         return false;
2738 
2739       case Instruction::Store: {
2740         StoreInst *SI = cast<StoreInst>(I);
2741         if (SI->isVolatile() || SI->getPointerOperand() != PI)
2742           return false;
2743         Users.emplace_back(I);
2744         continue;
2745       }
2746       }
2747       llvm_unreachable("missing a return?");
2748     }
2749   } while (!Worklist.empty());
2750   return true;
2751 }
2752 
2753 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
2754   assert(isa<AllocaInst>(MI) || isAllocRemovable(&cast<CallBase>(MI), &TLI));
2755 
2756   // If we have a malloc call which is only used in any amount of comparisons to
2757   // null and free calls, delete the calls and replace the comparisons with true
2758   // or false as appropriate.
2759 
2760   // This is based on the principle that we can substitute our own allocation
2761   // function (which will never return null) rather than knowledge of the
2762   // specific function being called. In some sense this can change the permitted
2763   // outputs of a program (when we convert a malloc to an alloca, the fact that
2764   // the allocation is now on the stack is potentially visible, for example),
2765   // but we believe in a permissible manner.
2766   SmallVector<WeakTrackingVH, 64> Users;
2767 
2768   // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2769   // before each store.
2770   SmallVector<DbgVariableIntrinsic *, 8> DVIs;
2771   std::unique_ptr<DIBuilder> DIB;
2772   if (isa<AllocaInst>(MI)) {
2773     findDbgUsers(DVIs, &MI);
2774     DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2775   }
2776 
2777   if (isAllocSiteRemovable(&MI, Users, TLI)) {
2778     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2779       // Lowering all @llvm.objectsize calls first because they may
2780       // use a bitcast/GEP of the alloca we are removing.
2781       if (!Users[i])
2782        continue;
2783 
2784       Instruction *I = cast<Instruction>(&*Users[i]);
2785 
2786       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2787         if (II->getIntrinsicID() == Intrinsic::objectsize) {
2788           Value *Result =
2789               lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2790           replaceInstUsesWith(*I, Result);
2791           eraseInstFromFunction(*I);
2792           Users[i] = nullptr; // Skip examining in the next loop.
2793         }
2794       }
2795     }
2796     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2797       if (!Users[i])
2798         continue;
2799 
2800       Instruction *I = cast<Instruction>(&*Users[i]);
2801 
2802       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2803         replaceInstUsesWith(*C,
2804                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
2805                                              C->isFalseWhenEqual()));
2806       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2807         for (auto *DVI : DVIs)
2808           if (DVI->isAddressOfVariable())
2809             ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
2810       } else {
2811         // Casts, GEP, or anything else: we're about to delete this instruction,
2812         // so it can not have any valid uses.
2813         replaceInstUsesWith(*I, PoisonValue::get(I->getType()));
2814       }
2815       eraseInstFromFunction(*I);
2816     }
2817 
2818     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2819       // Replace invoke with a NOP intrinsic to maintain the original CFG
2820       Module *M = II->getModule();
2821       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2822       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2823                          None, "", II->getParent());
2824     }
2825 
2826     // Remove debug intrinsics which describe the value contained within the
2827     // alloca. In addition to removing dbg.{declare,addr} which simply point to
2828     // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
2829     //
2830     // ```
2831     //   define void @foo(i32 %0) {
2832     //     %a = alloca i32                              ; Deleted.
2833     //     store i32 %0, i32* %a
2834     //     dbg.value(i32 %0, "arg0")                    ; Not deleted.
2835     //     dbg.value(i32* %a, "arg0", DW_OP_deref)      ; Deleted.
2836     //     call void @trivially_inlinable_no_op(i32* %a)
2837     //     ret void
2838     //  }
2839     // ```
2840     //
2841     // This may not be required if we stop describing the contents of allocas
2842     // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
2843     // the LowerDbgDeclare utility.
2844     //
2845     // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
2846     // "arg0" dbg.value may be stale after the call. However, failing to remove
2847     // the DW_OP_deref dbg.value causes large gaps in location coverage.
2848     for (auto *DVI : DVIs)
2849       if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
2850         DVI->eraseFromParent();
2851 
2852     return eraseInstFromFunction(MI);
2853   }
2854   return nullptr;
2855 }
2856 
2857 /// Move the call to free before a NULL test.
2858 ///
2859 /// Check if this free is accessed after its argument has been test
2860 /// against NULL (property 0).
2861 /// If yes, it is legal to move this call in its predecessor block.
2862 ///
2863 /// The move is performed only if the block containing the call to free
2864 /// will be removed, i.e.:
2865 /// 1. it has only one predecessor P, and P has two successors
2866 /// 2. it contains the call, noops, and an unconditional branch
2867 /// 3. its successor is the same as its predecessor's successor
2868 ///
2869 /// The profitability is out-of concern here and this function should
2870 /// be called only if the caller knows this transformation would be
2871 /// profitable (e.g., for code size).
2872 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2873                                                 const DataLayout &DL) {
2874   Value *Op = FI.getArgOperand(0);
2875   BasicBlock *FreeInstrBB = FI.getParent();
2876   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2877 
2878   // Validate part of constraint #1: Only one predecessor
2879   // FIXME: We can extend the number of predecessor, but in that case, we
2880   //        would duplicate the call to free in each predecessor and it may
2881   //        not be profitable even for code size.
2882   if (!PredBB)
2883     return nullptr;
2884 
2885   // Validate constraint #2: Does this block contains only the call to
2886   //                         free, noops, and an unconditional branch?
2887   BasicBlock *SuccBB;
2888   Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2889   if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2890     return nullptr;
2891 
2892   // If there are only 2 instructions in the block, at this point,
2893   // this is the call to free and unconditional.
2894   // If there are more than 2 instructions, check that they are noops
2895   // i.e., they won't hurt the performance of the generated code.
2896   if (FreeInstrBB->size() != 2) {
2897     for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2898       if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2899         continue;
2900       auto *Cast = dyn_cast<CastInst>(&Inst);
2901       if (!Cast || !Cast->isNoopCast(DL))
2902         return nullptr;
2903     }
2904   }
2905   // Validate the rest of constraint #1 by matching on the pred branch.
2906   Instruction *TI = PredBB->getTerminator();
2907   BasicBlock *TrueBB, *FalseBB;
2908   ICmpInst::Predicate Pred;
2909   if (!match(TI, m_Br(m_ICmp(Pred,
2910                              m_CombineOr(m_Specific(Op),
2911                                          m_Specific(Op->stripPointerCasts())),
2912                              m_Zero()),
2913                       TrueBB, FalseBB)))
2914     return nullptr;
2915   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2916     return nullptr;
2917 
2918   // Validate constraint #3: Ensure the null case just falls through.
2919   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2920     return nullptr;
2921   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2922          "Broken CFG: missing edge from predecessor to successor");
2923 
2924   // At this point, we know that everything in FreeInstrBB can be moved
2925   // before TI.
2926   for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) {
2927     if (&Instr == FreeInstrBBTerminator)
2928       break;
2929     Instr.moveBefore(TI);
2930   }
2931   assert(FreeInstrBB->size() == 1 &&
2932          "Only the branch instruction should remain");
2933 
2934   // Now that we've moved the call to free before the NULL check, we have to
2935   // remove any attributes on its parameter that imply it's non-null, because
2936   // those attributes might have only been valid because of the NULL check, and
2937   // we can get miscompiles if we keep them. This is conservative if non-null is
2938   // also implied by something other than the NULL check, but it's guaranteed to
2939   // be correct, and the conservativeness won't matter in practice, since the
2940   // attributes are irrelevant for the call to free itself and the pointer
2941   // shouldn't be used after the call.
2942   AttributeList Attrs = FI.getAttributes();
2943   Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull);
2944   Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
2945   if (Dereferenceable.isValid()) {
2946     uint64_t Bytes = Dereferenceable.getDereferenceableBytes();
2947     Attrs = Attrs.removeParamAttribute(FI.getContext(), 0,
2948                                        Attribute::Dereferenceable);
2949     Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes);
2950   }
2951   FI.setAttributes(Attrs);
2952 
2953   return &FI;
2954 }
2955 
2956 Instruction *InstCombinerImpl::visitFree(CallInst &FI) {
2957   Value *Op = FI.getArgOperand(0);
2958 
2959   // free undef -> unreachable.
2960   if (isa<UndefValue>(Op)) {
2961     // Leave a marker since we can't modify the CFG here.
2962     CreateNonTerminatorUnreachable(&FI);
2963     return eraseInstFromFunction(FI);
2964   }
2965 
2966   // If we have 'free null' delete the instruction.  This can happen in stl code
2967   // when lots of inlining happens.
2968   if (isa<ConstantPointerNull>(Op))
2969     return eraseInstFromFunction(FI);
2970 
2971   // If we had free(realloc(...)) with no intervening uses, then eliminate the
2972   // realloc() entirely.
2973   if (CallInst *CI = dyn_cast<CallInst>(Op)) {
2974     if (CI->hasOneUse() && isReallocLikeFn(CI, &TLI)) {
2975       return eraseInstFromFunction(
2976           *replaceInstUsesWith(*CI, CI->getOperand(0)));
2977     }
2978   }
2979 
2980   // If we optimize for code size, try to move the call to free before the null
2981   // test so that simplify cfg can remove the empty block and dead code
2982   // elimination the branch. I.e., helps to turn something like:
2983   // if (foo) free(foo);
2984   // into
2985   // free(foo);
2986   //
2987   // Note that we can only do this for 'free' and not for any flavor of
2988   // 'operator delete'; there is no 'operator delete' symbol for which we are
2989   // permitted to invent a call, even if we're passing in a null pointer.
2990   if (MinimizeSize) {
2991     LibFunc Func;
2992     if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
2993       if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2994         return I;
2995   }
2996 
2997   return nullptr;
2998 }
2999 
3000 static bool isMustTailCall(Value *V) {
3001   if (auto *CI = dyn_cast<CallInst>(V))
3002     return CI->isMustTailCall();
3003   return false;
3004 }
3005 
3006 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
3007   if (RI.getNumOperands() == 0) // ret void
3008     return nullptr;
3009 
3010   Value *ResultOp = RI.getOperand(0);
3011   Type *VTy = ResultOp->getType();
3012   if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
3013     return nullptr;
3014 
3015   // Don't replace result of musttail calls.
3016   if (isMustTailCall(ResultOp))
3017     return nullptr;
3018 
3019   // There might be assume intrinsics dominating this return that completely
3020   // determine the value. If so, constant fold it.
3021   KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
3022   if (Known.isConstant())
3023     return replaceOperand(RI, 0,
3024         Constant::getIntegerValue(VTy, Known.getConstant()));
3025 
3026   return nullptr;
3027 }
3028 
3029 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
3030 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
3031   // Try to remove the previous instruction if it must lead to unreachable.
3032   // This includes instructions like stores and "llvm.assume" that may not get
3033   // removed by simple dead code elimination.
3034   while (Instruction *Prev = I.getPrevNonDebugInstruction()) {
3035     // While we theoretically can erase EH, that would result in a block that
3036     // used to start with an EH no longer starting with EH, which is invalid.
3037     // To make it valid, we'd need to fixup predecessors to no longer refer to
3038     // this block, but that changes CFG, which is not allowed in InstCombine.
3039     if (Prev->isEHPad())
3040       return nullptr; // Can not drop any more instructions. We're done here.
3041 
3042     if (!isGuaranteedToTransferExecutionToSuccessor(Prev))
3043       return nullptr; // Can not drop any more instructions. We're done here.
3044     // Otherwise, this instruction can be freely erased,
3045     // even if it is not side-effect free.
3046 
3047     // A value may still have uses before we process it here (for example, in
3048     // another unreachable block), so convert those to poison.
3049     replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
3050     eraseInstFromFunction(*Prev);
3051   }
3052   assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty.");
3053   // FIXME: recurse into unconditional predecessors?
3054   return nullptr;
3055 }
3056 
3057 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
3058   assert(BI.isUnconditional() && "Only for unconditional branches.");
3059 
3060   // If this store is the second-to-last instruction in the basic block
3061   // (excluding debug info and bitcasts of pointers) and if the block ends with
3062   // an unconditional branch, try to move the store to the successor block.
3063 
3064   auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
3065     auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
3066       return BBI->isDebugOrPseudoInst() ||
3067              (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
3068     };
3069 
3070     BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
3071     do {
3072       if (BBI != FirstInstr)
3073         --BBI;
3074     } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
3075 
3076     return dyn_cast<StoreInst>(BBI);
3077   };
3078 
3079   if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
3080     if (mergeStoreIntoSuccessor(*SI))
3081       return &BI;
3082 
3083   return nullptr;
3084 }
3085 
3086 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
3087   if (BI.isUnconditional())
3088     return visitUnconditionalBranchInst(BI);
3089 
3090   // Change br (not X), label True, label False to: br X, label False, True
3091   Value *X = nullptr;
3092   if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
3093       !isa<Constant>(X)) {
3094     // Swap Destinations and condition...
3095     BI.swapSuccessors();
3096     return replaceOperand(BI, 0, X);
3097   }
3098 
3099   // If the condition is irrelevant, remove the use so that other
3100   // transforms on the condition become more effective.
3101   if (!isa<ConstantInt>(BI.getCondition()) &&
3102       BI.getSuccessor(0) == BI.getSuccessor(1))
3103     return replaceOperand(
3104         BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
3105 
3106   // Canonicalize, for example, fcmp_one -> fcmp_oeq.
3107   CmpInst::Predicate Pred;
3108   if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())),
3109                       m_BasicBlock(), m_BasicBlock())) &&
3110       !isCanonicalPredicate(Pred)) {
3111     // Swap destinations and condition.
3112     CmpInst *Cond = cast<CmpInst>(BI.getCondition());
3113     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
3114     BI.swapSuccessors();
3115     Worklist.push(Cond);
3116     return &BI;
3117   }
3118 
3119   return nullptr;
3120 }
3121 
3122 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
3123   Value *Cond = SI.getCondition();
3124   Value *Op0;
3125   ConstantInt *AddRHS;
3126   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
3127     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
3128     for (auto Case : SI.cases()) {
3129       Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
3130       assert(isa<ConstantInt>(NewCase) &&
3131              "Result of expression should be constant");
3132       Case.setValue(cast<ConstantInt>(NewCase));
3133     }
3134     return replaceOperand(SI, 0, Op0);
3135   }
3136 
3137   KnownBits Known = computeKnownBits(Cond, 0, &SI);
3138   unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
3139   unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
3140 
3141   // Compute the number of leading bits we can ignore.
3142   // TODO: A better way to determine this would use ComputeNumSignBits().
3143   for (auto &C : SI.cases()) {
3144     LeadingKnownZeros = std::min(
3145         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
3146     LeadingKnownOnes = std::min(
3147         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
3148   }
3149 
3150   unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
3151 
3152   // Shrink the condition operand if the new type is smaller than the old type.
3153   // But do not shrink to a non-standard type, because backend can't generate
3154   // good code for that yet.
3155   // TODO: We can make it aggressive again after fixing PR39569.
3156   if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
3157       shouldChangeType(Known.getBitWidth(), NewWidth)) {
3158     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
3159     Builder.SetInsertPoint(&SI);
3160     Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
3161 
3162     for (auto Case : SI.cases()) {
3163       APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3164       Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3165     }
3166     return replaceOperand(SI, 0, NewCond);
3167   }
3168 
3169   return nullptr;
3170 }
3171 
3172 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
3173   Value *Agg = EV.getAggregateOperand();
3174 
3175   if (!EV.hasIndices())
3176     return replaceInstUsesWith(EV, Agg);
3177 
3178   if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
3179                                           SQ.getWithInstruction(&EV)))
3180     return replaceInstUsesWith(EV, V);
3181 
3182   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
3183     // We're extracting from an insertvalue instruction, compare the indices
3184     const unsigned *exti, *exte, *insi, *inse;
3185     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
3186          exte = EV.idx_end(), inse = IV->idx_end();
3187          exti != exte && insi != inse;
3188          ++exti, ++insi) {
3189       if (*insi != *exti)
3190         // The insert and extract both reference distinctly different elements.
3191         // This means the extract is not influenced by the insert, and we can
3192         // replace the aggregate operand of the extract with the aggregate
3193         // operand of the insert. i.e., replace
3194         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3195         // %E = extractvalue { i32, { i32 } } %I, 0
3196         // with
3197         // %E = extractvalue { i32, { i32 } } %A, 0
3198         return ExtractValueInst::Create(IV->getAggregateOperand(),
3199                                         EV.getIndices());
3200     }
3201     if (exti == exte && insi == inse)
3202       // Both iterators are at the end: Index lists are identical. Replace
3203       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3204       // %C = extractvalue { i32, { i32 } } %B, 1, 0
3205       // with "i32 42"
3206       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3207     if (exti == exte) {
3208       // The extract list is a prefix of the insert list. i.e. replace
3209       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3210       // %E = extractvalue { i32, { i32 } } %I, 1
3211       // with
3212       // %X = extractvalue { i32, { i32 } } %A, 1
3213       // %E = insertvalue { i32 } %X, i32 42, 0
3214       // by switching the order of the insert and extract (though the
3215       // insertvalue should be left in, since it may have other uses).
3216       Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
3217                                                 EV.getIndices());
3218       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
3219                                      makeArrayRef(insi, inse));
3220     }
3221     if (insi == inse)
3222       // The insert list is a prefix of the extract list
3223       // We can simply remove the common indices from the extract and make it
3224       // operate on the inserted value instead of the insertvalue result.
3225       // i.e., replace
3226       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3227       // %E = extractvalue { i32, { i32 } } %I, 1, 0
3228       // with
3229       // %E extractvalue { i32 } { i32 42 }, 0
3230       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
3231                                       makeArrayRef(exti, exte));
3232   }
3233   if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
3234     // We're extracting from an overflow intrinsic, see if we're the only user,
3235     // which allows us to simplify multiple result intrinsics to simpler
3236     // things that just get one value.
3237     if (WO->hasOneUse()) {
3238       // Check if we're grabbing only the result of a 'with overflow' intrinsic
3239       // and replace it with a traditional binary instruction.
3240       if (*EV.idx_begin() == 0) {
3241         Instruction::BinaryOps BinOp = WO->getBinaryOp();
3242         Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3243         // Replace the old instruction's uses with poison.
3244         replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
3245         eraseInstFromFunction(*WO);
3246         return BinaryOperator::Create(BinOp, LHS, RHS);
3247       }
3248 
3249       assert(*EV.idx_begin() == 1 &&
3250              "unexpected extract index for overflow inst");
3251 
3252       // If only the overflow result is used, and the right hand side is a
3253       // constant (or constant splat), we can remove the intrinsic by directly
3254       // checking for overflow.
3255       const APInt *C;
3256       if (match(WO->getRHS(), m_APInt(C))) {
3257         // Compute the no-wrap range for LHS given RHS=C, then construct an
3258         // equivalent icmp, potentially using an offset.
3259         ConstantRange NWR =
3260           ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
3261                                                WO->getNoWrapKind());
3262 
3263         CmpInst::Predicate Pred;
3264         APInt NewRHSC, Offset;
3265         NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
3266         auto *OpTy = WO->getRHS()->getType();
3267         auto *NewLHS = WO->getLHS();
3268         if (Offset != 0)
3269           NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset));
3270         return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
3271                             ConstantInt::get(OpTy, NewRHSC));
3272       }
3273     }
3274   }
3275   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
3276     // If the (non-volatile) load only has one use, we can rewrite this to a
3277     // load from a GEP. This reduces the size of the load. If a load is used
3278     // only by extractvalue instructions then this either must have been
3279     // optimized before, or it is a struct with padding, in which case we
3280     // don't want to do the transformation as it loses padding knowledge.
3281     if (L->isSimple() && L->hasOneUse()) {
3282       // extractvalue has integer indices, getelementptr has Value*s. Convert.
3283       SmallVector<Value*, 4> Indices;
3284       // Prefix an i32 0 since we need the first element.
3285       Indices.push_back(Builder.getInt32(0));
3286       for (unsigned Idx : EV.indices())
3287         Indices.push_back(Builder.getInt32(Idx));
3288 
3289       // We need to insert these at the location of the old load, not at that of
3290       // the extractvalue.
3291       Builder.SetInsertPoint(L);
3292       Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
3293                                              L->getPointerOperand(), Indices);
3294       Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
3295       // Whatever aliasing information we had for the orignal load must also
3296       // hold for the smaller load, so propagate the annotations.
3297       NL->setAAMetadata(L->getAAMetadata());
3298       // Returning the load directly will cause the main loop to insert it in
3299       // the wrong spot, so use replaceInstUsesWith().
3300       return replaceInstUsesWith(EV, NL);
3301     }
3302   // We could simplify extracts from other values. Note that nested extracts may
3303   // already be simplified implicitly by the above: extract (extract (insert) )
3304   // will be translated into extract ( insert ( extract ) ) first and then just
3305   // the value inserted, if appropriate. Similarly for extracts from single-use
3306   // loads: extract (extract (load)) will be translated to extract (load (gep))
3307   // and if again single-use then via load (gep (gep)) to load (gep).
3308   // However, double extracts from e.g. function arguments or return values
3309   // aren't handled yet.
3310   return nullptr;
3311 }
3312 
3313 /// Return 'true' if the given typeinfo will match anything.
3314 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3315   switch (Personality) {
3316   case EHPersonality::GNU_C:
3317   case EHPersonality::GNU_C_SjLj:
3318   case EHPersonality::Rust:
3319     // The GCC C EH and Rust personality only exists to support cleanups, so
3320     // it's not clear what the semantics of catch clauses are.
3321     return false;
3322   case EHPersonality::Unknown:
3323     return false;
3324   case EHPersonality::GNU_Ada:
3325     // While __gnat_all_others_value will match any Ada exception, it doesn't
3326     // match foreign exceptions (or didn't, before gcc-4.7).
3327     return false;
3328   case EHPersonality::GNU_CXX:
3329   case EHPersonality::GNU_CXX_SjLj:
3330   case EHPersonality::GNU_ObjC:
3331   case EHPersonality::MSVC_X86SEH:
3332   case EHPersonality::MSVC_TableSEH:
3333   case EHPersonality::MSVC_CXX:
3334   case EHPersonality::CoreCLR:
3335   case EHPersonality::Wasm_CXX:
3336   case EHPersonality::XL_CXX:
3337     return TypeInfo->isNullValue();
3338   }
3339   llvm_unreachable("invalid enum");
3340 }
3341 
3342 static bool shorter_filter(const Value *LHS, const Value *RHS) {
3343   return
3344     cast<ArrayType>(LHS->getType())->getNumElements()
3345   <
3346     cast<ArrayType>(RHS->getType())->getNumElements();
3347 }
3348 
3349 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
3350   // The logic here should be correct for any real-world personality function.
3351   // However if that turns out not to be true, the offending logic can always
3352   // be conditioned on the personality function, like the catch-all logic is.
3353   EHPersonality Personality =
3354       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3355 
3356   // Simplify the list of clauses, eg by removing repeated catch clauses
3357   // (these are often created by inlining).
3358   bool MakeNewInstruction = false; // If true, recreate using the following:
3359   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3360   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
3361 
3362   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3363   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3364     bool isLastClause = i + 1 == e;
3365     if (LI.isCatch(i)) {
3366       // A catch clause.
3367       Constant *CatchClause = LI.getClause(i);
3368       Constant *TypeInfo = CatchClause->stripPointerCasts();
3369 
3370       // If we already saw this clause, there is no point in having a second
3371       // copy of it.
3372       if (AlreadyCaught.insert(TypeInfo).second) {
3373         // This catch clause was not already seen.
3374         NewClauses.push_back(CatchClause);
3375       } else {
3376         // Repeated catch clause - drop the redundant copy.
3377         MakeNewInstruction = true;
3378       }
3379 
3380       // If this is a catch-all then there is no point in keeping any following
3381       // clauses or marking the landingpad as having a cleanup.
3382       if (isCatchAll(Personality, TypeInfo)) {
3383         if (!isLastClause)
3384           MakeNewInstruction = true;
3385         CleanupFlag = false;
3386         break;
3387       }
3388     } else {
3389       // A filter clause.  If any of the filter elements were already caught
3390       // then they can be dropped from the filter.  It is tempting to try to
3391       // exploit the filter further by saying that any typeinfo that does not
3392       // occur in the filter can't be caught later (and thus can be dropped).
3393       // However this would be wrong, since typeinfos can match without being
3394       // equal (for example if one represents a C++ class, and the other some
3395       // class derived from it).
3396       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3397       Constant *FilterClause = LI.getClause(i);
3398       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3399       unsigned NumTypeInfos = FilterType->getNumElements();
3400 
3401       // An empty filter catches everything, so there is no point in keeping any
3402       // following clauses or marking the landingpad as having a cleanup.  By
3403       // dealing with this case here the following code is made a bit simpler.
3404       if (!NumTypeInfos) {
3405         NewClauses.push_back(FilterClause);
3406         if (!isLastClause)
3407           MakeNewInstruction = true;
3408         CleanupFlag = false;
3409         break;
3410       }
3411 
3412       bool MakeNewFilter = false; // If true, make a new filter.
3413       SmallVector<Constant *, 16> NewFilterElts; // New elements.
3414       if (isa<ConstantAggregateZero>(FilterClause)) {
3415         // Not an empty filter - it contains at least one null typeinfo.
3416         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3417         Constant *TypeInfo =
3418           Constant::getNullValue(FilterType->getElementType());
3419         // If this typeinfo is a catch-all then the filter can never match.
3420         if (isCatchAll(Personality, TypeInfo)) {
3421           // Throw the filter away.
3422           MakeNewInstruction = true;
3423           continue;
3424         }
3425 
3426         // There is no point in having multiple copies of this typeinfo, so
3427         // discard all but the first copy if there is more than one.
3428         NewFilterElts.push_back(TypeInfo);
3429         if (NumTypeInfos > 1)
3430           MakeNewFilter = true;
3431       } else {
3432         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3433         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3434         NewFilterElts.reserve(NumTypeInfos);
3435 
3436         // Remove any filter elements that were already caught or that already
3437         // occurred in the filter.  While there, see if any of the elements are
3438         // catch-alls.  If so, the filter can be discarded.
3439         bool SawCatchAll = false;
3440         for (unsigned j = 0; j != NumTypeInfos; ++j) {
3441           Constant *Elt = Filter->getOperand(j);
3442           Constant *TypeInfo = Elt->stripPointerCasts();
3443           if (isCatchAll(Personality, TypeInfo)) {
3444             // This element is a catch-all.  Bail out, noting this fact.
3445             SawCatchAll = true;
3446             break;
3447           }
3448 
3449           // Even if we've seen a type in a catch clause, we don't want to
3450           // remove it from the filter.  An unexpected type handler may be
3451           // set up for a call site which throws an exception of the same
3452           // type caught.  In order for the exception thrown by the unexpected
3453           // handler to propagate correctly, the filter must be correctly
3454           // described for the call site.
3455           //
3456           // Example:
3457           //
3458           // void unexpected() { throw 1;}
3459           // void foo() throw (int) {
3460           //   std::set_unexpected(unexpected);
3461           //   try {
3462           //     throw 2.0;
3463           //   } catch (int i) {}
3464           // }
3465 
3466           // There is no point in having multiple copies of the same typeinfo in
3467           // a filter, so only add it if we didn't already.
3468           if (SeenInFilter.insert(TypeInfo).second)
3469             NewFilterElts.push_back(cast<Constant>(Elt));
3470         }
3471         // A filter containing a catch-all cannot match anything by definition.
3472         if (SawCatchAll) {
3473           // Throw the filter away.
3474           MakeNewInstruction = true;
3475           continue;
3476         }
3477 
3478         // If we dropped something from the filter, make a new one.
3479         if (NewFilterElts.size() < NumTypeInfos)
3480           MakeNewFilter = true;
3481       }
3482       if (MakeNewFilter) {
3483         FilterType = ArrayType::get(FilterType->getElementType(),
3484                                     NewFilterElts.size());
3485         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3486         MakeNewInstruction = true;
3487       }
3488 
3489       NewClauses.push_back(FilterClause);
3490 
3491       // If the new filter is empty then it will catch everything so there is
3492       // no point in keeping any following clauses or marking the landingpad
3493       // as having a cleanup.  The case of the original filter being empty was
3494       // already handled above.
3495       if (MakeNewFilter && !NewFilterElts.size()) {
3496         assert(MakeNewInstruction && "New filter but not a new instruction!");
3497         CleanupFlag = false;
3498         break;
3499       }
3500     }
3501   }
3502 
3503   // If several filters occur in a row then reorder them so that the shortest
3504   // filters come first (those with the smallest number of elements).  This is
3505   // advantageous because shorter filters are more likely to match, speeding up
3506   // unwinding, but mostly because it increases the effectiveness of the other
3507   // filter optimizations below.
3508   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3509     unsigned j;
3510     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3511     for (j = i; j != e; ++j)
3512       if (!isa<ArrayType>(NewClauses[j]->getType()))
3513         break;
3514 
3515     // Check whether the filters are already sorted by length.  We need to know
3516     // if sorting them is actually going to do anything so that we only make a
3517     // new landingpad instruction if it does.
3518     for (unsigned k = i; k + 1 < j; ++k)
3519       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3520         // Not sorted, so sort the filters now.  Doing an unstable sort would be
3521         // correct too but reordering filters pointlessly might confuse users.
3522         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3523                          shorter_filter);
3524         MakeNewInstruction = true;
3525         break;
3526       }
3527 
3528     // Look for the next batch of filters.
3529     i = j + 1;
3530   }
3531 
3532   // If typeinfos matched if and only if equal, then the elements of a filter L
3533   // that occurs later than a filter F could be replaced by the intersection of
3534   // the elements of F and L.  In reality two typeinfos can match without being
3535   // equal (for example if one represents a C++ class, and the other some class
3536   // derived from it) so it would be wrong to perform this transform in general.
3537   // However the transform is correct and useful if F is a subset of L.  In that
3538   // case L can be replaced by F, and thus removed altogether since repeating a
3539   // filter is pointless.  So here we look at all pairs of filters F and L where
3540   // L follows F in the list of clauses, and remove L if every element of F is
3541   // an element of L.  This can occur when inlining C++ functions with exception
3542   // specifications.
3543   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3544     // Examine each filter in turn.
3545     Value *Filter = NewClauses[i];
3546     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3547     if (!FTy)
3548       // Not a filter - skip it.
3549       continue;
3550     unsigned FElts = FTy->getNumElements();
3551     // Examine each filter following this one.  Doing this backwards means that
3552     // we don't have to worry about filters disappearing under us when removed.
3553     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3554       Value *LFilter = NewClauses[j];
3555       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3556       if (!LTy)
3557         // Not a filter - skip it.
3558         continue;
3559       // If Filter is a subset of LFilter, i.e. every element of Filter is also
3560       // an element of LFilter, then discard LFilter.
3561       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3562       // If Filter is empty then it is a subset of LFilter.
3563       if (!FElts) {
3564         // Discard LFilter.
3565         NewClauses.erase(J);
3566         MakeNewInstruction = true;
3567         // Move on to the next filter.
3568         continue;
3569       }
3570       unsigned LElts = LTy->getNumElements();
3571       // If Filter is longer than LFilter then it cannot be a subset of it.
3572       if (FElts > LElts)
3573         // Move on to the next filter.
3574         continue;
3575       // At this point we know that LFilter has at least one element.
3576       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3577         // Filter is a subset of LFilter iff Filter contains only zeros (as we
3578         // already know that Filter is not longer than LFilter).
3579         if (isa<ConstantAggregateZero>(Filter)) {
3580           assert(FElts <= LElts && "Should have handled this case earlier!");
3581           // Discard LFilter.
3582           NewClauses.erase(J);
3583           MakeNewInstruction = true;
3584         }
3585         // Move on to the next filter.
3586         continue;
3587       }
3588       ConstantArray *LArray = cast<ConstantArray>(LFilter);
3589       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3590         // Since Filter is non-empty and contains only zeros, it is a subset of
3591         // LFilter iff LFilter contains a zero.
3592         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3593         for (unsigned l = 0; l != LElts; ++l)
3594           if (LArray->getOperand(l)->isNullValue()) {
3595             // LFilter contains a zero - discard it.
3596             NewClauses.erase(J);
3597             MakeNewInstruction = true;
3598             break;
3599           }
3600         // Move on to the next filter.
3601         continue;
3602       }
3603       // At this point we know that both filters are ConstantArrays.  Loop over
3604       // operands to see whether every element of Filter is also an element of
3605       // LFilter.  Since filters tend to be short this is probably faster than
3606       // using a method that scales nicely.
3607       ConstantArray *FArray = cast<ConstantArray>(Filter);
3608       bool AllFound = true;
3609       for (unsigned f = 0; f != FElts; ++f) {
3610         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3611         AllFound = false;
3612         for (unsigned l = 0; l != LElts; ++l) {
3613           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3614           if (LTypeInfo == FTypeInfo) {
3615             AllFound = true;
3616             break;
3617           }
3618         }
3619         if (!AllFound)
3620           break;
3621       }
3622       if (AllFound) {
3623         // Discard LFilter.
3624         NewClauses.erase(J);
3625         MakeNewInstruction = true;
3626       }
3627       // Move on to the next filter.
3628     }
3629   }
3630 
3631   // If we changed any of the clauses, replace the old landingpad instruction
3632   // with a new one.
3633   if (MakeNewInstruction) {
3634     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3635                                                  NewClauses.size());
3636     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3637       NLI->addClause(NewClauses[i]);
3638     // A landing pad with no clauses must have the cleanup flag set.  It is
3639     // theoretically possible, though highly unlikely, that we eliminated all
3640     // clauses.  If so, force the cleanup flag to true.
3641     if (NewClauses.empty())
3642       CleanupFlag = true;
3643     NLI->setCleanup(CleanupFlag);
3644     return NLI;
3645   }
3646 
3647   // Even if none of the clauses changed, we may nonetheless have understood
3648   // that the cleanup flag is pointless.  Clear it if so.
3649   if (LI.isCleanup() != CleanupFlag) {
3650     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3651     LI.setCleanup(CleanupFlag);
3652     return &LI;
3653   }
3654 
3655   return nullptr;
3656 }
3657 
3658 Value *
3659 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) {
3660   // Try to push freeze through instructions that propagate but don't produce
3661   // poison as far as possible.  If an operand of freeze follows three
3662   // conditions 1) one-use, 2) does not produce poison, and 3) has all but one
3663   // guaranteed-non-poison operands then push the freeze through to the one
3664   // operand that is not guaranteed non-poison.  The actual transform is as
3665   // follows.
3666   //   Op1 = ...                        ; Op1 can be posion
3667   //   Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have
3668   //                                    ; single guaranteed-non-poison operands
3669   //   ... = Freeze(Op0)
3670   // =>
3671   //   Op1 = ...
3672   //   Op1.fr = Freeze(Op1)
3673   //   ... = Inst(Op1.fr, NonPoisonOps...)
3674   auto *OrigOp = OrigFI.getOperand(0);
3675   auto *OrigOpInst = dyn_cast<Instruction>(OrigOp);
3676 
3677   // While we could change the other users of OrigOp to use freeze(OrigOp), that
3678   // potentially reduces their optimization potential, so let's only do this iff
3679   // the OrigOp is only used by the freeze.
3680   if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp))
3681     return nullptr;
3682 
3683   // We can't push the freeze through an instruction which can itself create
3684   // poison.  If the only source of new poison is flags, we can simply
3685   // strip them (since we know the only use is the freeze and nothing can
3686   // benefit from them.)
3687   if (canCreateUndefOrPoison(cast<Operator>(OrigOp), /*ConsiderFlags*/ false))
3688     return nullptr;
3689 
3690   // If operand is guaranteed not to be poison, there is no need to add freeze
3691   // to the operand. So we first find the operand that is not guaranteed to be
3692   // poison.
3693   Use *MaybePoisonOperand = nullptr;
3694   for (Use &U : OrigOpInst->operands()) {
3695     if (isGuaranteedNotToBeUndefOrPoison(U.get()))
3696       continue;
3697     if (!MaybePoisonOperand)
3698       MaybePoisonOperand = &U;
3699     else
3700       return nullptr;
3701   }
3702 
3703   OrigOpInst->dropPoisonGeneratingFlags();
3704 
3705   // If all operands are guaranteed to be non-poison, we can drop freeze.
3706   if (!MaybePoisonOperand)
3707     return OrigOp;
3708 
3709   auto *FrozenMaybePoisonOperand = new FreezeInst(
3710       MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr");
3711 
3712   replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand);
3713   FrozenMaybePoisonOperand->insertBefore(OrigOpInst);
3714   return OrigOp;
3715 }
3716 
3717 bool InstCombinerImpl::freezeDominatedUses(FreezeInst &FI) {
3718   Value *Op = FI.getOperand(0);
3719 
3720   if (isa<Constant>(Op))
3721     return false;
3722 
3723   bool Changed = false;
3724   Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
3725     bool Dominates = DT.dominates(&FI, U);
3726     Changed |= Dominates;
3727     return Dominates;
3728   });
3729 
3730   return Changed;
3731 }
3732 
3733 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
3734   Value *Op0 = I.getOperand(0);
3735 
3736   if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3737     return replaceInstUsesWith(I, V);
3738 
3739   // freeze (phi const, x) --> phi const, (freeze x)
3740   if (auto *PN = dyn_cast<PHINode>(Op0)) {
3741     if (Instruction *NV = foldOpIntoPhi(I, PN))
3742       return NV;
3743   }
3744 
3745   if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I))
3746     return replaceInstUsesWith(I, NI);
3747 
3748   if (match(Op0, m_Undef())) {
3749     // If I is freeze(undef), see its uses and fold it to the best constant.
3750     // - or: pick -1
3751     // - select's condition: pick the value that leads to choosing a constant
3752     // - other ops: pick 0
3753     Constant *BestValue = nullptr;
3754     Constant *NullValue = Constant::getNullValue(I.getType());
3755     for (const auto *U : I.users()) {
3756       Constant *C = NullValue;
3757 
3758       if (match(U, m_Or(m_Value(), m_Value())))
3759         C = Constant::getAllOnesValue(I.getType());
3760       else if (const auto *SI = dyn_cast<SelectInst>(U)) {
3761         if (SI->getCondition() == &I) {
3762           APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1);
3763           C = Constant::getIntegerValue(I.getType(), CondVal);
3764         }
3765       }
3766 
3767       if (!BestValue)
3768         BestValue = C;
3769       else if (BestValue != C)
3770         BestValue = NullValue;
3771     }
3772 
3773     return replaceInstUsesWith(I, BestValue);
3774   }
3775 
3776   // Replace all dominated uses of Op to freeze(Op).
3777   if (freezeDominatedUses(I))
3778     return &I;
3779 
3780   return nullptr;
3781 }
3782 
3783 /// Check for case where the call writes to an otherwise dead alloca.  This
3784 /// shows up for unused out-params in idiomatic C/C++ code.   Note that this
3785 /// helper *only* analyzes the write; doesn't check any other legality aspect.
3786 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) {
3787   auto *CB = dyn_cast<CallBase>(I);
3788   if (!CB)
3789     // TODO: handle e.g. store to alloca here - only worth doing if we extend
3790     // to allow reload along used path as described below.  Otherwise, this
3791     // is simply a store to a dead allocation which will be removed.
3792     return false;
3793   Optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI);
3794   if (!Dest)
3795     return false;
3796   auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr));
3797   if (!AI)
3798     // TODO: allow malloc?
3799     return false;
3800   // TODO: allow memory access dominated by move point?  Note that since AI
3801   // could have a reference to itself captured by the call, we would need to
3802   // account for cycles in doing so.
3803   SmallVector<const User *> AllocaUsers;
3804   SmallPtrSet<const User *, 4> Visited;
3805   auto pushUsers = [&](const Instruction &I) {
3806     for (const User *U : I.users()) {
3807       if (Visited.insert(U).second)
3808         AllocaUsers.push_back(U);
3809     }
3810   };
3811   pushUsers(*AI);
3812   while (!AllocaUsers.empty()) {
3813     auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val());
3814     if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) ||
3815         isa<AddrSpaceCastInst>(UserI)) {
3816       pushUsers(*UserI);
3817       continue;
3818     }
3819     if (UserI == CB)
3820       continue;
3821     // TODO: support lifetime.start/end here
3822     return false;
3823   }
3824   return true;
3825 }
3826 
3827 /// Try to move the specified instruction from its current block into the
3828 /// beginning of DestBlock, which can only happen if it's safe to move the
3829 /// instruction past all of the instructions between it and the end of its
3830 /// block.
3831 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock,
3832                                  TargetLibraryInfo &TLI) {
3833   assert(I->getUniqueUndroppableUser() && "Invariants didn't hold!");
3834   BasicBlock *SrcBlock = I->getParent();
3835 
3836   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3837   if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
3838       I->isTerminator())
3839     return false;
3840 
3841   // Do not sink static or dynamic alloca instructions. Static allocas must
3842   // remain in the entry block, and dynamic allocas must not be sunk in between
3843   // a stacksave / stackrestore pair, which would incorrectly shorten its
3844   // lifetime.
3845   if (isa<AllocaInst>(I))
3846     return false;
3847 
3848   // Do not sink into catchswitch blocks.
3849   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3850     return false;
3851 
3852   // Do not sink convergent call instructions.
3853   if (auto *CI = dyn_cast<CallInst>(I)) {
3854     if (CI->isConvergent())
3855       return false;
3856   }
3857 
3858   // Unless we can prove that the memory write isn't visibile except on the
3859   // path we're sinking to, we must bail.
3860   if (I->mayWriteToMemory()) {
3861     if (!SoleWriteToDeadLocal(I, TLI))
3862       return false;
3863   }
3864 
3865   // We can only sink load instructions if there is nothing between the load and
3866   // the end of block that could change the value.
3867   if (I->mayReadFromMemory()) {
3868     // We don't want to do any sophisticated alias analysis, so we only check
3869     // the instructions after I in I's parent block if we try to sink to its
3870     // successor block.
3871     if (DestBlock->getUniquePredecessor() != I->getParent())
3872       return false;
3873     for (BasicBlock::iterator Scan = std::next(I->getIterator()),
3874                               E = I->getParent()->end();
3875          Scan != E; ++Scan)
3876       if (Scan->mayWriteToMemory())
3877         return false;
3878   }
3879 
3880   I->dropDroppableUses([DestBlock](const Use *U) {
3881     if (auto *I = dyn_cast<Instruction>(U->getUser()))
3882       return I->getParent() != DestBlock;
3883     return true;
3884   });
3885   /// FIXME: We could remove droppable uses that are not dominated by
3886   /// the new position.
3887 
3888   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3889   I->moveBefore(&*InsertPos);
3890   ++NumSunkInst;
3891 
3892   // Also sink all related debug uses from the source basic block. Otherwise we
3893   // get debug use before the def. Attempt to salvage debug uses first, to
3894   // maximise the range variables have location for. If we cannot salvage, then
3895   // mark the location undef: we know it was supposed to receive a new location
3896   // here, but that computation has been sunk.
3897   SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3898   findDbgUsers(DbgUsers, I);
3899   // Process the sinking DbgUsers in reverse order, as we only want to clone the
3900   // last appearing debug intrinsic for each given variable.
3901   SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink;
3902   for (DbgVariableIntrinsic *DVI : DbgUsers)
3903     if (DVI->getParent() == SrcBlock)
3904       DbgUsersToSink.push_back(DVI);
3905   llvm::sort(DbgUsersToSink,
3906              [](auto *A, auto *B) { return B->comesBefore(A); });
3907 
3908   SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
3909   SmallSet<DebugVariable, 4> SunkVariables;
3910   for (auto User : DbgUsersToSink) {
3911     // A dbg.declare instruction should not be cloned, since there can only be
3912     // one per variable fragment. It should be left in the original place
3913     // because the sunk instruction is not an alloca (otherwise we could not be
3914     // here).
3915     if (isa<DbgDeclareInst>(User))
3916       continue;
3917 
3918     DebugVariable DbgUserVariable =
3919         DebugVariable(User->getVariable(), User->getExpression(),
3920                       User->getDebugLoc()->getInlinedAt());
3921 
3922     if (!SunkVariables.insert(DbgUserVariable).second)
3923       continue;
3924 
3925     DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
3926     if (isa<DbgDeclareInst>(User) && isa<CastInst>(I))
3927       DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0));
3928     LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
3929   }
3930 
3931   // Perform salvaging without the clones, then sink the clones.
3932   if (!DIIClones.empty()) {
3933     salvageDebugInfoForDbgValues(*I, DbgUsers);
3934     // The clones are in reverse order of original appearance, reverse again to
3935     // maintain the original order.
3936     for (auto &DIIClone : llvm::reverse(DIIClones)) {
3937       DIIClone->insertBefore(&*InsertPos);
3938       LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
3939     }
3940   }
3941 
3942   return true;
3943 }
3944 
3945 bool InstCombinerImpl::run() {
3946   while (!Worklist.isEmpty()) {
3947     // Walk deferred instructions in reverse order, and push them to the
3948     // worklist, which means they'll end up popped from the worklist in-order.
3949     while (Instruction *I = Worklist.popDeferred()) {
3950       // Check to see if we can DCE the instruction. We do this already here to
3951       // reduce the number of uses and thus allow other folds to trigger.
3952       // Note that eraseInstFromFunction() may push additional instructions on
3953       // the deferred worklist, so this will DCE whole instruction chains.
3954       if (isInstructionTriviallyDead(I, &TLI)) {
3955         eraseInstFromFunction(*I);
3956         ++NumDeadInst;
3957         continue;
3958       }
3959 
3960       Worklist.push(I);
3961     }
3962 
3963     Instruction *I = Worklist.removeOne();
3964     if (I == nullptr) continue;  // skip null values.
3965 
3966     // Check to see if we can DCE the instruction.
3967     if (isInstructionTriviallyDead(I, &TLI)) {
3968       eraseInstFromFunction(*I);
3969       ++NumDeadInst;
3970       continue;
3971     }
3972 
3973     if (!DebugCounter::shouldExecute(VisitCounter))
3974       continue;
3975 
3976     // Instruction isn't dead, see if we can constant propagate it.
3977     if (!I->use_empty() &&
3978         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3979       if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3980         LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3981                           << '\n');
3982 
3983         // Add operands to the worklist.
3984         replaceInstUsesWith(*I, C);
3985         ++NumConstProp;
3986         if (isInstructionTriviallyDead(I, &TLI))
3987           eraseInstFromFunction(*I);
3988         MadeIRChange = true;
3989         continue;
3990       }
3991     }
3992 
3993     // See if we can trivially sink this instruction to its user if we can
3994     // prove that the successor is not executed more frequently than our block.
3995     // Return the UserBlock if successful.
3996     auto getOptionalSinkBlockForInst =
3997         [this](Instruction *I) -> Optional<BasicBlock *> {
3998       if (!EnableCodeSinking)
3999         return None;
4000       auto *UserInst = cast_or_null<Instruction>(I->getUniqueUndroppableUser());
4001       if (!UserInst)
4002         return None;
4003 
4004       BasicBlock *BB = I->getParent();
4005       BasicBlock *UserParent = nullptr;
4006 
4007       // Special handling for Phi nodes - get the block the use occurs in.
4008       if (PHINode *PN = dyn_cast<PHINode>(UserInst)) {
4009         for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
4010           if (PN->getIncomingValue(i) == I) {
4011             // Bail out if we have uses in different blocks. We don't do any
4012             // sophisticated analysis (i.e finding NearestCommonDominator of these
4013             // use blocks).
4014             if (UserParent && UserParent != PN->getIncomingBlock(i))
4015               return None;
4016             UserParent = PN->getIncomingBlock(i);
4017           }
4018         }
4019         assert(UserParent && "expected to find user block!");
4020       } else
4021         UserParent = UserInst->getParent();
4022 
4023       // Try sinking to another block. If that block is unreachable, then do
4024       // not bother. SimplifyCFG should handle it.
4025       if (UserParent == BB || !DT.isReachableFromEntry(UserParent))
4026         return None;
4027 
4028       auto *Term = UserParent->getTerminator();
4029       // See if the user is one of our successors that has only one
4030       // predecessor, so that we don't have to split the critical edge.
4031       // Another option where we can sink is a block that ends with a
4032       // terminator that does not pass control to other block (such as
4033       // return or unreachable or resume). In this case:
4034       //   - I dominates the User (by SSA form);
4035       //   - the User will be executed at most once.
4036       // So sinking I down to User is always profitable or neutral.
4037       if (UserParent->getUniquePredecessor() == BB || succ_empty(Term)) {
4038         assert(DT.dominates(BB, UserParent) && "Dominance relation broken?");
4039         return UserParent;
4040       }
4041       return None;
4042     };
4043 
4044     auto OptBB = getOptionalSinkBlockForInst(I);
4045     if (OptBB) {
4046       auto *UserParent = *OptBB;
4047       // Okay, the CFG is simple enough, try to sink this instruction.
4048       if (TryToSinkInstruction(I, UserParent, TLI)) {
4049         LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
4050         MadeIRChange = true;
4051         // We'll add uses of the sunk instruction below, but since
4052         // sinking can expose opportunities for it's *operands* add
4053         // them to the worklist
4054         for (Use &U : I->operands())
4055           if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
4056             Worklist.push(OpI);
4057       }
4058     }
4059 
4060     // Now that we have an instruction, try combining it to simplify it.
4061     Builder.SetInsertPoint(I);
4062     Builder.CollectMetadataToCopy(
4063         I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
4064 
4065 #ifndef NDEBUG
4066     std::string OrigI;
4067 #endif
4068     LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
4069     LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
4070 
4071     if (Instruction *Result = visit(*I)) {
4072       ++NumCombined;
4073       // Should we replace the old instruction with a new one?
4074       if (Result != I) {
4075         LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
4076                           << "    New = " << *Result << '\n');
4077 
4078         Result->copyMetadata(*I,
4079                              {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
4080         // Everything uses the new instruction now.
4081         I->replaceAllUsesWith(Result);
4082 
4083         // Move the name to the new instruction first.
4084         Result->takeName(I);
4085 
4086         // Insert the new instruction into the basic block...
4087         BasicBlock *InstParent = I->getParent();
4088         BasicBlock::iterator InsertPos = I->getIterator();
4089 
4090         // Are we replace a PHI with something that isn't a PHI, or vice versa?
4091         if (isa<PHINode>(Result) != isa<PHINode>(I)) {
4092           // We need to fix up the insertion point.
4093           if (isa<PHINode>(I)) // PHI -> Non-PHI
4094             InsertPos = InstParent->getFirstInsertionPt();
4095           else // Non-PHI -> PHI
4096             InsertPos = InstParent->getFirstNonPHI()->getIterator();
4097         }
4098 
4099         InstParent->getInstList().insert(InsertPos, Result);
4100 
4101         // Push the new instruction and any users onto the worklist.
4102         Worklist.pushUsersToWorkList(*Result);
4103         Worklist.push(Result);
4104 
4105         eraseInstFromFunction(*I);
4106       } else {
4107         LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
4108                           << "    New = " << *I << '\n');
4109 
4110         // If the instruction was modified, it's possible that it is now dead.
4111         // if so, remove it.
4112         if (isInstructionTriviallyDead(I, &TLI)) {
4113           eraseInstFromFunction(*I);
4114         } else {
4115           Worklist.pushUsersToWorkList(*I);
4116           Worklist.push(I);
4117         }
4118       }
4119       MadeIRChange = true;
4120     }
4121   }
4122 
4123   Worklist.zap();
4124   return MadeIRChange;
4125 }
4126 
4127 // Track the scopes used by !alias.scope and !noalias. In a function, a
4128 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used
4129 // by both sets. If not, the declaration of the scope can be safely omitted.
4130 // The MDNode of the scope can be omitted as well for the instructions that are
4131 // part of this function. We do not do that at this point, as this might become
4132 // too time consuming to do.
4133 class AliasScopeTracker {
4134   SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
4135   SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
4136 
4137 public:
4138   void analyse(Instruction *I) {
4139     // This seems to be faster than checking 'mayReadOrWriteMemory()'.
4140     if (!I->hasMetadataOtherThanDebugLoc())
4141       return;
4142 
4143     auto Track = [](Metadata *ScopeList, auto &Container) {
4144       const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
4145       if (!MDScopeList || !Container.insert(MDScopeList).second)
4146         return;
4147       for (auto &MDOperand : MDScopeList->operands())
4148         if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
4149           Container.insert(MDScope);
4150     };
4151 
4152     Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
4153     Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
4154   }
4155 
4156   bool isNoAliasScopeDeclDead(Instruction *Inst) {
4157     NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
4158     if (!Decl)
4159       return false;
4160 
4161     assert(Decl->use_empty() &&
4162            "llvm.experimental.noalias.scope.decl in use ?");
4163     const MDNode *MDSL = Decl->getScopeList();
4164     assert(MDSL->getNumOperands() == 1 &&
4165            "llvm.experimental.noalias.scope should refer to a single scope");
4166     auto &MDOperand = MDSL->getOperand(0);
4167     if (auto *MD = dyn_cast<MDNode>(MDOperand))
4168       return !UsedAliasScopesAndLists.contains(MD) ||
4169              !UsedNoAliasScopesAndLists.contains(MD);
4170 
4171     // Not an MDNode ? throw away.
4172     return true;
4173   }
4174 };
4175 
4176 /// Populate the IC worklist from a function, by walking it in depth-first
4177 /// order and adding all reachable code to the worklist.
4178 ///
4179 /// This has a couple of tricks to make the code faster and more powerful.  In
4180 /// particular, we constant fold and DCE instructions as we go, to avoid adding
4181 /// them to the worklist (this significantly speeds up instcombine on code where
4182 /// many instructions are dead or constant).  Additionally, if we find a branch
4183 /// whose condition is a known constant, we only visit the reachable successors.
4184 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
4185                                           const TargetLibraryInfo *TLI,
4186                                           InstructionWorklist &ICWorklist) {
4187   bool MadeIRChange = false;
4188   SmallPtrSet<BasicBlock *, 32> Visited;
4189   SmallVector<BasicBlock*, 256> Worklist;
4190   Worklist.push_back(&F.front());
4191 
4192   SmallVector<Instruction *, 128> InstrsForInstructionWorklist;
4193   DenseMap<Constant *, Constant *> FoldedConstants;
4194   AliasScopeTracker SeenAliasScopes;
4195 
4196   do {
4197     BasicBlock *BB = Worklist.pop_back_val();
4198 
4199     // We have now visited this block!  If we've already been here, ignore it.
4200     if (!Visited.insert(BB).second)
4201       continue;
4202 
4203     for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
4204       // ConstantProp instruction if trivially constant.
4205       if (!Inst.use_empty() &&
4206           (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
4207         if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) {
4208           LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst
4209                             << '\n');
4210           Inst.replaceAllUsesWith(C);
4211           ++NumConstProp;
4212           if (isInstructionTriviallyDead(&Inst, TLI))
4213             Inst.eraseFromParent();
4214           MadeIRChange = true;
4215           continue;
4216         }
4217 
4218       // See if we can constant fold its operands.
4219       for (Use &U : Inst.operands()) {
4220         if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
4221           continue;
4222 
4223         auto *C = cast<Constant>(U);
4224         Constant *&FoldRes = FoldedConstants[C];
4225         if (!FoldRes)
4226           FoldRes = ConstantFoldConstant(C, DL, TLI);
4227 
4228         if (FoldRes != C) {
4229           LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst
4230                             << "\n    Old = " << *C
4231                             << "\n    New = " << *FoldRes << '\n');
4232           U = FoldRes;
4233           MadeIRChange = true;
4234         }
4235       }
4236 
4237       // Skip processing debug and pseudo intrinsics in InstCombine. Processing
4238       // these call instructions consumes non-trivial amount of time and
4239       // provides no value for the optimization.
4240       if (!Inst.isDebugOrPseudoInst()) {
4241         InstrsForInstructionWorklist.push_back(&Inst);
4242         SeenAliasScopes.analyse(&Inst);
4243       }
4244     }
4245 
4246     // Recursively visit successors.  If this is a branch or switch on a
4247     // constant, only visit the reachable successor.
4248     Instruction *TI = BB->getTerminator();
4249     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
4250       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
4251         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
4252         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
4253         Worklist.push_back(ReachableBB);
4254         continue;
4255       }
4256     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
4257       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
4258         Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
4259         continue;
4260       }
4261     }
4262 
4263     append_range(Worklist, successors(TI));
4264   } while (!Worklist.empty());
4265 
4266   // Remove instructions inside unreachable blocks. This prevents the
4267   // instcombine code from having to deal with some bad special cases, and
4268   // reduces use counts of instructions.
4269   for (BasicBlock &BB : F) {
4270     if (Visited.count(&BB))
4271       continue;
4272 
4273     unsigned NumDeadInstInBB;
4274     unsigned NumDeadDbgInstInBB;
4275     std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
4276         removeAllNonTerminatorAndEHPadInstructions(&BB);
4277 
4278     MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
4279     NumDeadInst += NumDeadInstInBB;
4280   }
4281 
4282   // Once we've found all of the instructions to add to instcombine's worklist,
4283   // add them in reverse order.  This way instcombine will visit from the top
4284   // of the function down.  This jives well with the way that it adds all uses
4285   // of instructions to the worklist after doing a transformation, thus avoiding
4286   // some N^2 behavior in pathological cases.
4287   ICWorklist.reserve(InstrsForInstructionWorklist.size());
4288   for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) {
4289     // DCE instruction if trivially dead. As we iterate in reverse program
4290     // order here, we will clean up whole chains of dead instructions.
4291     if (isInstructionTriviallyDead(Inst, TLI) ||
4292         SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
4293       ++NumDeadInst;
4294       LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
4295       salvageDebugInfo(*Inst);
4296       Inst->eraseFromParent();
4297       MadeIRChange = true;
4298       continue;
4299     }
4300 
4301     ICWorklist.push(Inst);
4302   }
4303 
4304   return MadeIRChange;
4305 }
4306 
4307 static bool combineInstructionsOverFunction(
4308     Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA,
4309     AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
4310     DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
4311     ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
4312   auto &DL = F.getParent()->getDataLayout();
4313   MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
4314 
4315   /// Builder - This is an IRBuilder that automatically inserts new
4316   /// instructions into the worklist when they are created.
4317   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
4318       F.getContext(), TargetFolder(DL),
4319       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
4320         Worklist.add(I);
4321         if (auto *Assume = dyn_cast<AssumeInst>(I))
4322           AC.registerAssumption(Assume);
4323       }));
4324 
4325   // Lower dbg.declare intrinsics otherwise their value may be clobbered
4326   // by instcombiner.
4327   bool MadeIRChange = false;
4328   if (ShouldLowerDbgDeclare)
4329     MadeIRChange = LowerDbgDeclare(F);
4330 
4331   // Iterate while there is work to do.
4332   unsigned Iteration = 0;
4333   while (true) {
4334     ++NumWorklistIterations;
4335     ++Iteration;
4336 
4337     if (Iteration > InfiniteLoopDetectionThreshold) {
4338       report_fatal_error(
4339           "Instruction Combining seems stuck in an infinite loop after " +
4340           Twine(InfiniteLoopDetectionThreshold) + " iterations.");
4341     }
4342 
4343     if (Iteration > MaxIterations) {
4344       LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
4345                         << " on " << F.getName()
4346                         << " reached; stopping before reaching a fixpoint\n");
4347       break;
4348     }
4349 
4350     LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
4351                       << F.getName() << "\n");
4352 
4353     MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
4354 
4355     InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
4356                         ORE, BFI, PSI, DL, LI);
4357     IC.MaxArraySizeForCombine = MaxArraySize;
4358 
4359     if (!IC.run())
4360       break;
4361 
4362     MadeIRChange = true;
4363   }
4364 
4365   return MadeIRChange;
4366 }
4367 
4368 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
4369 
4370 InstCombinePass::InstCombinePass(unsigned MaxIterations)
4371     : MaxIterations(MaxIterations) {}
4372 
4373 PreservedAnalyses InstCombinePass::run(Function &F,
4374                                        FunctionAnalysisManager &AM) {
4375   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4376   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4377   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4378   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4379   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
4380 
4381   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
4382 
4383   auto *AA = &AM.getResult<AAManager>(F);
4384   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
4385   ProfileSummaryInfo *PSI =
4386       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
4387   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
4388       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
4389 
4390   if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4391                                        BFI, PSI, MaxIterations, LI))
4392     // No changes, all analyses are preserved.
4393     return PreservedAnalyses::all();
4394 
4395   // Mark all the analyses that instcombine updates as preserved.
4396   PreservedAnalyses PA;
4397   PA.preserveSet<CFGAnalyses>();
4398   return PA;
4399 }
4400 
4401 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
4402   AU.setPreservesCFG();
4403   AU.addRequired<AAResultsWrapperPass>();
4404   AU.addRequired<AssumptionCacheTracker>();
4405   AU.addRequired<TargetLibraryInfoWrapperPass>();
4406   AU.addRequired<TargetTransformInfoWrapperPass>();
4407   AU.addRequired<DominatorTreeWrapperPass>();
4408   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4409   AU.addPreserved<DominatorTreeWrapperPass>();
4410   AU.addPreserved<AAResultsWrapperPass>();
4411   AU.addPreserved<BasicAAWrapperPass>();
4412   AU.addPreserved<GlobalsAAWrapperPass>();
4413   AU.addRequired<ProfileSummaryInfoWrapperPass>();
4414   LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
4415 }
4416 
4417 bool InstructionCombiningPass::runOnFunction(Function &F) {
4418   if (skipFunction(F))
4419     return false;
4420 
4421   // Required analyses.
4422   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4423   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4424   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
4425   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4426   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4427   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4428 
4429   // Optional analyses.
4430   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
4431   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
4432   ProfileSummaryInfo *PSI =
4433       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
4434   BlockFrequencyInfo *BFI =
4435       (PSI && PSI->hasProfileSummary()) ?
4436       &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
4437       nullptr;
4438 
4439   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4440                                          BFI, PSI, MaxIterations, LI);
4441 }
4442 
4443 char InstructionCombiningPass::ID = 0;
4444 
4445 InstructionCombiningPass::InstructionCombiningPass()
4446     : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
4447   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4448 }
4449 
4450 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
4451     : FunctionPass(ID), MaxIterations(MaxIterations) {
4452   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4453 }
4454 
4455 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
4456                       "Combine redundant instructions", false, false)
4457 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4458 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4459 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4460 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4461 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4462 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4463 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
4464 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
4465 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
4466 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
4467                     "Combine redundant instructions", false, false)
4468 
4469 // Initialization Routines
4470 void llvm::initializeInstCombine(PassRegistry &Registry) {
4471   initializeInstructionCombiningPassPass(Registry);
4472 }
4473 
4474 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
4475   initializeInstructionCombiningPassPass(*unwrap(R));
4476 }
4477 
4478 FunctionPass *llvm::createInstructionCombiningPass() {
4479   return new InstructionCombiningPass();
4480 }
4481 
4482 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
4483   return new InstructionCombiningPass(MaxIterations);
4484 }
4485 
4486 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
4487   unwrap(PM)->add(createInstructionCombiningPass());
4488 }
4489