1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/TinyPtrVector.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/BlockFrequencyInfo.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/MemoryBuiltins.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ProfileSummaryInfo.h" 60 #include "llvm/Analysis/TargetFolder.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/Analysis/VectorUtils.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Dominators.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GetElementPtrTypeIterator.h" 75 #include "llvm/IR/IRBuilder.h" 76 #include "llvm/IR/InstrTypes.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/Intrinsics.h" 81 #include "llvm/IR/LegacyPassManager.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/PassManager.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/Use.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/IR/ValueHandle.h" 91 #include "llvm/InitializePasses.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/CBindingWrapping.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/DebugCounter.h" 99 #include "llvm/Support/ErrorHandling.h" 100 #include "llvm/Support/KnownBits.h" 101 #include "llvm/Support/raw_ostream.h" 102 #include "llvm/Transforms/InstCombine/InstCombine.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <algorithm> 105 #include <cassert> 106 #include <cstdint> 107 #include <memory> 108 #include <string> 109 #include <utility> 110 111 #define DEBUG_TYPE "instcombine" 112 #include "llvm/Transforms/Utils/InstructionWorklist.h" 113 114 using namespace llvm; 115 using namespace llvm::PatternMatch; 116 117 STATISTIC(NumWorklistIterations, 118 "Number of instruction combining iterations performed"); 119 120 STATISTIC(NumCombined , "Number of insts combined"); 121 STATISTIC(NumConstProp, "Number of constant folds"); 122 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 123 STATISTIC(NumSunkInst , "Number of instructions sunk"); 124 STATISTIC(NumExpand, "Number of expansions"); 125 STATISTIC(NumFactor , "Number of factorizations"); 126 STATISTIC(NumReassoc , "Number of reassociations"); 127 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 128 "Controls which instructions are visited"); 129 130 // FIXME: these limits eventually should be as low as 2. 131 static constexpr unsigned InstCombineDefaultMaxIterations = 1000; 132 #ifndef NDEBUG 133 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100; 134 #else 135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; 136 #endif 137 138 static cl::opt<bool> 139 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 140 cl::init(true)); 141 142 static cl::opt<unsigned> LimitMaxIterations( 143 "instcombine-max-iterations", 144 cl::desc("Limit the maximum number of instruction combining iterations"), 145 cl::init(InstCombineDefaultMaxIterations)); 146 147 static cl::opt<unsigned> InfiniteLoopDetectionThreshold( 148 "instcombine-infinite-loop-threshold", 149 cl::desc("Number of instruction combining iterations considered an " 150 "infinite loop"), 151 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); 152 153 static cl::opt<unsigned> 154 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 155 cl::desc("Maximum array size considered when doing a combine")); 156 157 // FIXME: Remove this flag when it is no longer necessary to convert 158 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 159 // increases variable availability at the cost of accuracy. Variables that 160 // cannot be promoted by mem2reg or SROA will be described as living in memory 161 // for their entire lifetime. However, passes like DSE and instcombine can 162 // delete stores to the alloca, leading to misleading and inaccurate debug 163 // information. This flag can be removed when those passes are fixed. 164 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 165 cl::Hidden, cl::init(true)); 166 167 Optional<Instruction *> 168 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 169 // Handle target specific intrinsics 170 if (II.getCalledFunction()->isTargetIntrinsic()) { 171 return TTI.instCombineIntrinsic(*this, II); 172 } 173 return None; 174 } 175 176 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 177 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 178 bool &KnownBitsComputed) { 179 // Handle target specific intrinsics 180 if (II.getCalledFunction()->isTargetIntrinsic()) { 181 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, 182 KnownBitsComputed); 183 } 184 return None; 185 } 186 187 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 188 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, 189 APInt &UndefElts3, 190 std::function<void(Instruction *, unsigned, APInt, APInt &)> 191 SimplifyAndSetOp) { 192 // Handle target specific intrinsics 193 if (II.getCalledFunction()->isTargetIntrinsic()) { 194 return TTI.simplifyDemandedVectorEltsIntrinsic( 195 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 196 SimplifyAndSetOp); 197 } 198 return None; 199 } 200 201 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { 202 return llvm::EmitGEPOffset(&Builder, DL, GEP); 203 } 204 205 /// Legal integers and common types are considered desirable. This is used to 206 /// avoid creating instructions with types that may not be supported well by the 207 /// the backend. 208 /// NOTE: This treats i8, i16 and i32 specially because they are common 209 /// types in frontend languages. 210 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { 211 switch (BitWidth) { 212 case 8: 213 case 16: 214 case 32: 215 return true; 216 default: 217 return DL.isLegalInteger(BitWidth); 218 } 219 } 220 221 /// Return true if it is desirable to convert an integer computation from a 222 /// given bit width to a new bit width. 223 /// We don't want to convert from a legal to an illegal type or from a smaller 224 /// to a larger illegal type. A width of '1' is always treated as a desirable 225 /// type because i1 is a fundamental type in IR, and there are many specialized 226 /// optimizations for i1 types. Common/desirable widths are equally treated as 227 /// legal to convert to, in order to open up more combining opportunities. 228 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 229 unsigned ToWidth) const { 230 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 231 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 232 233 // Convert to desirable widths even if they are not legal types. 234 // Only shrink types, to prevent infinite loops. 235 if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) 236 return true; 237 238 // If this is a legal integer from type, and the result would be an illegal 239 // type, don't do the transformation. 240 if (FromLegal && !ToLegal) 241 return false; 242 243 // Otherwise, if both are illegal, do not increase the size of the result. We 244 // do allow things like i160 -> i64, but not i64 -> i160. 245 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 246 return false; 247 248 return true; 249 } 250 251 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 252 /// We don't want to convert from a legal to an illegal type or from a smaller 253 /// to a larger illegal type. i1 is always treated as a legal type because it is 254 /// a fundamental type in IR, and there are many specialized optimizations for 255 /// i1 types. 256 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 257 // TODO: This could be extended to allow vectors. Datalayout changes might be 258 // needed to properly support that. 259 if (!From->isIntegerTy() || !To->isIntegerTy()) 260 return false; 261 262 unsigned FromWidth = From->getPrimitiveSizeInBits(); 263 unsigned ToWidth = To->getPrimitiveSizeInBits(); 264 return shouldChangeType(FromWidth, ToWidth); 265 } 266 267 // Return true, if No Signed Wrap should be maintained for I. 268 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 269 // where both B and C should be ConstantInts, results in a constant that does 270 // not overflow. This function only handles the Add and Sub opcodes. For 271 // all other opcodes, the function conservatively returns false. 272 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 273 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 274 if (!OBO || !OBO->hasNoSignedWrap()) 275 return false; 276 277 // We reason about Add and Sub Only. 278 Instruction::BinaryOps Opcode = I.getOpcode(); 279 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 280 return false; 281 282 const APInt *BVal, *CVal; 283 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 284 return false; 285 286 bool Overflow = false; 287 if (Opcode == Instruction::Add) 288 (void)BVal->sadd_ov(*CVal, Overflow); 289 else 290 (void)BVal->ssub_ov(*CVal, Overflow); 291 292 return !Overflow; 293 } 294 295 static bool hasNoUnsignedWrap(BinaryOperator &I) { 296 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 297 return OBO && OBO->hasNoUnsignedWrap(); 298 } 299 300 static bool hasNoSignedWrap(BinaryOperator &I) { 301 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 302 return OBO && OBO->hasNoSignedWrap(); 303 } 304 305 /// Conservatively clears subclassOptionalData after a reassociation or 306 /// commutation. We preserve fast-math flags when applicable as they can be 307 /// preserved. 308 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 309 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 310 if (!FPMO) { 311 I.clearSubclassOptionalData(); 312 return; 313 } 314 315 FastMathFlags FMF = I.getFastMathFlags(); 316 I.clearSubclassOptionalData(); 317 I.setFastMathFlags(FMF); 318 } 319 320 /// Combine constant operands of associative operations either before or after a 321 /// cast to eliminate one of the associative operations: 322 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 323 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 324 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 325 InstCombinerImpl &IC) { 326 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 327 if (!Cast || !Cast->hasOneUse()) 328 return false; 329 330 // TODO: Enhance logic for other casts and remove this check. 331 auto CastOpcode = Cast->getOpcode(); 332 if (CastOpcode != Instruction::ZExt) 333 return false; 334 335 // TODO: Enhance logic for other BinOps and remove this check. 336 if (!BinOp1->isBitwiseLogicOp()) 337 return false; 338 339 auto AssocOpcode = BinOp1->getOpcode(); 340 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 341 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 342 return false; 343 344 Constant *C1, *C2; 345 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 346 !match(BinOp2->getOperand(1), m_Constant(C2))) 347 return false; 348 349 // TODO: This assumes a zext cast. 350 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 351 // to the destination type might lose bits. 352 353 // Fold the constants together in the destination type: 354 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 355 Type *DestTy = C1->getType(); 356 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 357 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 358 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 359 IC.replaceOperand(*BinOp1, 1, FoldedC); 360 return true; 361 } 362 363 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast. 364 // inttoptr ( ptrtoint (x) ) --> x 365 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { 366 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); 367 if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) == 368 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { 369 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); 370 Type *CastTy = IntToPtr->getDestTy(); 371 if (PtrToInt && 372 CastTy->getPointerAddressSpace() == 373 PtrToInt->getSrcTy()->getPointerAddressSpace() && 374 DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) == 375 DL.getTypeSizeInBits(PtrToInt->getDestTy())) { 376 return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy, 377 "", PtrToInt); 378 } 379 } 380 return nullptr; 381 } 382 383 /// This performs a few simplifications for operators that are associative or 384 /// commutative: 385 /// 386 /// Commutative operators: 387 /// 388 /// 1. Order operands such that they are listed from right (least complex) to 389 /// left (most complex). This puts constants before unary operators before 390 /// binary operators. 391 /// 392 /// Associative operators: 393 /// 394 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 395 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 396 /// 397 /// Associative and commutative operators: 398 /// 399 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 400 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 401 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 402 /// if C1 and C2 are constants. 403 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 404 Instruction::BinaryOps Opcode = I.getOpcode(); 405 bool Changed = false; 406 407 do { 408 // Order operands such that they are listed from right (least complex) to 409 // left (most complex). This puts constants before unary operators before 410 // binary operators. 411 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 412 getComplexity(I.getOperand(1))) 413 Changed = !I.swapOperands(); 414 415 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 416 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 417 418 if (I.isAssociative()) { 419 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 420 if (Op0 && Op0->getOpcode() == Opcode) { 421 Value *A = Op0->getOperand(0); 422 Value *B = Op0->getOperand(1); 423 Value *C = I.getOperand(1); 424 425 // Does "B op C" simplify? 426 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 427 // It simplifies to V. Form "A op V". 428 replaceOperand(I, 0, A); 429 replaceOperand(I, 1, V); 430 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 431 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 432 433 // Conservatively clear all optional flags since they may not be 434 // preserved by the reassociation. Reset nsw/nuw based on the above 435 // analysis. 436 ClearSubclassDataAfterReassociation(I); 437 438 // Note: this is only valid because SimplifyBinOp doesn't look at 439 // the operands to Op0. 440 if (IsNUW) 441 I.setHasNoUnsignedWrap(true); 442 443 if (IsNSW) 444 I.setHasNoSignedWrap(true); 445 446 Changed = true; 447 ++NumReassoc; 448 continue; 449 } 450 } 451 452 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 453 if (Op1 && Op1->getOpcode() == Opcode) { 454 Value *A = I.getOperand(0); 455 Value *B = Op1->getOperand(0); 456 Value *C = Op1->getOperand(1); 457 458 // Does "A op B" simplify? 459 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 460 // It simplifies to V. Form "V op C". 461 replaceOperand(I, 0, V); 462 replaceOperand(I, 1, C); 463 // Conservatively clear the optional flags, since they may not be 464 // preserved by the reassociation. 465 ClearSubclassDataAfterReassociation(I); 466 Changed = true; 467 ++NumReassoc; 468 continue; 469 } 470 } 471 } 472 473 if (I.isAssociative() && I.isCommutative()) { 474 if (simplifyAssocCastAssoc(&I, *this)) { 475 Changed = true; 476 ++NumReassoc; 477 continue; 478 } 479 480 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 481 if (Op0 && Op0->getOpcode() == Opcode) { 482 Value *A = Op0->getOperand(0); 483 Value *B = Op0->getOperand(1); 484 Value *C = I.getOperand(1); 485 486 // Does "C op A" simplify? 487 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 488 // It simplifies to V. Form "V op B". 489 replaceOperand(I, 0, V); 490 replaceOperand(I, 1, B); 491 // Conservatively clear the optional flags, since they may not be 492 // preserved by the reassociation. 493 ClearSubclassDataAfterReassociation(I); 494 Changed = true; 495 ++NumReassoc; 496 continue; 497 } 498 } 499 500 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 501 if (Op1 && Op1->getOpcode() == Opcode) { 502 Value *A = I.getOperand(0); 503 Value *B = Op1->getOperand(0); 504 Value *C = Op1->getOperand(1); 505 506 // Does "C op A" simplify? 507 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 508 // It simplifies to V. Form "B op V". 509 replaceOperand(I, 0, B); 510 replaceOperand(I, 1, V); 511 // Conservatively clear the optional flags, since they may not be 512 // preserved by the reassociation. 513 ClearSubclassDataAfterReassociation(I); 514 Changed = true; 515 ++NumReassoc; 516 continue; 517 } 518 } 519 520 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 521 // if C1 and C2 are constants. 522 Value *A, *B; 523 Constant *C1, *C2; 524 if (Op0 && Op1 && 525 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 526 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 527 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 528 bool IsNUW = hasNoUnsignedWrap(I) && 529 hasNoUnsignedWrap(*Op0) && 530 hasNoUnsignedWrap(*Op1); 531 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 532 BinaryOperator::CreateNUW(Opcode, A, B) : 533 BinaryOperator::Create(Opcode, A, B); 534 535 if (isa<FPMathOperator>(NewBO)) { 536 FastMathFlags Flags = I.getFastMathFlags(); 537 Flags &= Op0->getFastMathFlags(); 538 Flags &= Op1->getFastMathFlags(); 539 NewBO->setFastMathFlags(Flags); 540 } 541 InsertNewInstWith(NewBO, I); 542 NewBO->takeName(Op1); 543 replaceOperand(I, 0, NewBO); 544 replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2)); 545 // Conservatively clear the optional flags, since they may not be 546 // preserved by the reassociation. 547 ClearSubclassDataAfterReassociation(I); 548 if (IsNUW) 549 I.setHasNoUnsignedWrap(true); 550 551 Changed = true; 552 continue; 553 } 554 } 555 556 // No further simplifications. 557 return Changed; 558 } while (true); 559 } 560 561 /// Return whether "X LOp (Y ROp Z)" is always equal to 562 /// "(X LOp Y) ROp (X LOp Z)". 563 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 564 Instruction::BinaryOps ROp) { 565 // X & (Y | Z) <--> (X & Y) | (X & Z) 566 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 567 if (LOp == Instruction::And) 568 return ROp == Instruction::Or || ROp == Instruction::Xor; 569 570 // X | (Y & Z) <--> (X | Y) & (X | Z) 571 if (LOp == Instruction::Or) 572 return ROp == Instruction::And; 573 574 // X * (Y + Z) <--> (X * Y) + (X * Z) 575 // X * (Y - Z) <--> (X * Y) - (X * Z) 576 if (LOp == Instruction::Mul) 577 return ROp == Instruction::Add || ROp == Instruction::Sub; 578 579 return false; 580 } 581 582 /// Return whether "(X LOp Y) ROp Z" is always equal to 583 /// "(X ROp Z) LOp (Y ROp Z)". 584 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 585 Instruction::BinaryOps ROp) { 586 if (Instruction::isCommutative(ROp)) 587 return leftDistributesOverRight(ROp, LOp); 588 589 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 590 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 591 592 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 593 // but this requires knowing that the addition does not overflow and other 594 // such subtleties. 595 } 596 597 /// This function returns identity value for given opcode, which can be used to 598 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 599 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 600 if (isa<Constant>(V)) 601 return nullptr; 602 603 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 604 } 605 606 /// This function predicates factorization using distributive laws. By default, 607 /// it just returns the 'Op' inputs. But for special-cases like 608 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 609 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 610 /// allow more factorization opportunities. 611 static Instruction::BinaryOps 612 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 613 Value *&LHS, Value *&RHS) { 614 assert(Op && "Expected a binary operator"); 615 LHS = Op->getOperand(0); 616 RHS = Op->getOperand(1); 617 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 618 Constant *C; 619 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 620 // X << C --> X * (1 << C) 621 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 622 return Instruction::Mul; 623 } 624 // TODO: We can add other conversions e.g. shr => div etc. 625 } 626 return Op->getOpcode(); 627 } 628 629 /// This tries to simplify binary operations by factorizing out common terms 630 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 631 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I, 632 Instruction::BinaryOps InnerOpcode, 633 Value *A, Value *B, Value *C, 634 Value *D) { 635 assert(A && B && C && D && "All values must be provided"); 636 637 Value *V = nullptr; 638 Value *SimplifiedInst = nullptr; 639 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 640 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 641 642 // Does "X op' Y" always equal "Y op' X"? 643 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 644 645 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 646 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 647 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 648 // commutative case, "(A op' B) op (C op' A)"? 649 if (A == C || (InnerCommutative && A == D)) { 650 if (A != C) 651 std::swap(C, D); 652 // Consider forming "A op' (B op D)". 653 // If "B op D" simplifies then it can be formed with no cost. 654 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 655 // If "B op D" doesn't simplify then only go on if both of the existing 656 // operations "A op' B" and "C op' D" will be zapped as no longer used. 657 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 658 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 659 if (V) { 660 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 661 } 662 } 663 664 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 665 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 666 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 667 // commutative case, "(A op' B) op (B op' D)"? 668 if (B == D || (InnerCommutative && B == C)) { 669 if (B != D) 670 std::swap(C, D); 671 // Consider forming "(A op C) op' B". 672 // If "A op C" simplifies then it can be formed with no cost. 673 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 674 675 // If "A op C" doesn't simplify then only go on if both of the existing 676 // operations "A op' B" and "C op' D" will be zapped as no longer used. 677 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 678 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 679 if (V) { 680 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 681 } 682 } 683 684 if (SimplifiedInst) { 685 ++NumFactor; 686 SimplifiedInst->takeName(&I); 687 688 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 689 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 690 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 691 bool HasNSW = false; 692 bool HasNUW = false; 693 if (isa<OverflowingBinaryOperator>(&I)) { 694 HasNSW = I.hasNoSignedWrap(); 695 HasNUW = I.hasNoUnsignedWrap(); 696 } 697 698 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 699 HasNSW &= LOBO->hasNoSignedWrap(); 700 HasNUW &= LOBO->hasNoUnsignedWrap(); 701 } 702 703 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 704 HasNSW &= ROBO->hasNoSignedWrap(); 705 HasNUW &= ROBO->hasNoUnsignedWrap(); 706 } 707 708 if (TopLevelOpcode == Instruction::Add && 709 InnerOpcode == Instruction::Mul) { 710 // We can propagate 'nsw' if we know that 711 // %Y = mul nsw i16 %X, C 712 // %Z = add nsw i16 %Y, %X 713 // => 714 // %Z = mul nsw i16 %X, C+1 715 // 716 // iff C+1 isn't INT_MIN 717 const APInt *CInt; 718 if (match(V, m_APInt(CInt))) { 719 if (!CInt->isMinSignedValue()) 720 BO->setHasNoSignedWrap(HasNSW); 721 } 722 723 // nuw can be propagated with any constant or nuw value. 724 BO->setHasNoUnsignedWrap(HasNUW); 725 } 726 } 727 } 728 } 729 return SimplifiedInst; 730 } 731 732 /// This tries to simplify binary operations which some other binary operation 733 /// distributes over either by factorizing out common terms 734 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 735 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 736 /// Returns the simplified value, or null if it didn't simplify. 737 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 738 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 739 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 740 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 741 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 742 743 { 744 // Factorization. 745 Value *A, *B, *C, *D; 746 Instruction::BinaryOps LHSOpcode, RHSOpcode; 747 if (Op0) 748 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 749 if (Op1) 750 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 751 752 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 753 // a common term. 754 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 755 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 756 return V; 757 758 // The instruction has the form "(A op' B) op (C)". Try to factorize common 759 // term. 760 if (Op0) 761 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 762 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 763 return V; 764 765 // The instruction has the form "(B) op (C op' D)". Try to factorize common 766 // term. 767 if (Op1) 768 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 769 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 770 return V; 771 } 772 773 // Expansion. 774 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 775 // The instruction has the form "(A op' B) op C". See if expanding it out 776 // to "(A op C) op' (B op C)" results in simplifications. 777 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 778 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 779 780 // Disable the use of undef because it's not safe to distribute undef. 781 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 782 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 783 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 784 785 // Do "A op C" and "B op C" both simplify? 786 if (L && R) { 787 // They do! Return "L op' R". 788 ++NumExpand; 789 C = Builder.CreateBinOp(InnerOpcode, L, R); 790 C->takeName(&I); 791 return C; 792 } 793 794 // Does "A op C" simplify to the identity value for the inner opcode? 795 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 796 // They do! Return "B op C". 797 ++NumExpand; 798 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 799 C->takeName(&I); 800 return C; 801 } 802 803 // Does "B op C" simplify to the identity value for the inner opcode? 804 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 805 // They do! Return "A op C". 806 ++NumExpand; 807 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 808 C->takeName(&I); 809 return C; 810 } 811 } 812 813 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 814 // The instruction has the form "A op (B op' C)". See if expanding it out 815 // to "(A op B) op' (A op C)" results in simplifications. 816 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 817 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 818 819 // Disable the use of undef because it's not safe to distribute undef. 820 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 821 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 822 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 823 824 // Do "A op B" and "A op C" both simplify? 825 if (L && R) { 826 // They do! Return "L op' R". 827 ++NumExpand; 828 A = Builder.CreateBinOp(InnerOpcode, L, R); 829 A->takeName(&I); 830 return A; 831 } 832 833 // Does "A op B" simplify to the identity value for the inner opcode? 834 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 835 // They do! Return "A op C". 836 ++NumExpand; 837 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 838 A->takeName(&I); 839 return A; 840 } 841 842 // Does "A op C" simplify to the identity value for the inner opcode? 843 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 844 // They do! Return "A op B". 845 ++NumExpand; 846 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 847 A->takeName(&I); 848 return A; 849 } 850 } 851 852 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 853 } 854 855 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 856 Value *LHS, 857 Value *RHS) { 858 Value *A, *B, *C, *D, *E, *F; 859 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 860 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 861 if (!LHSIsSelect && !RHSIsSelect) 862 return nullptr; 863 864 FastMathFlags FMF; 865 BuilderTy::FastMathFlagGuard Guard(Builder); 866 if (isa<FPMathOperator>(&I)) { 867 FMF = I.getFastMathFlags(); 868 Builder.setFastMathFlags(FMF); 869 } 870 871 Instruction::BinaryOps Opcode = I.getOpcode(); 872 SimplifyQuery Q = SQ.getWithInstruction(&I); 873 874 Value *Cond, *True = nullptr, *False = nullptr; 875 if (LHSIsSelect && RHSIsSelect && A == D) { 876 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 877 Cond = A; 878 True = SimplifyBinOp(Opcode, B, E, FMF, Q); 879 False = SimplifyBinOp(Opcode, C, F, FMF, Q); 880 881 if (LHS->hasOneUse() && RHS->hasOneUse()) { 882 if (False && !True) 883 True = Builder.CreateBinOp(Opcode, B, E); 884 else if (True && !False) 885 False = Builder.CreateBinOp(Opcode, C, F); 886 } 887 } else if (LHSIsSelect && LHS->hasOneUse()) { 888 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 889 Cond = A; 890 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q); 891 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q); 892 } else if (RHSIsSelect && RHS->hasOneUse()) { 893 // X op (D ? E : F) -> D ? (X op E) : (X op F) 894 Cond = D; 895 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q); 896 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q); 897 } 898 899 if (!True || !False) 900 return nullptr; 901 902 Value *SI = Builder.CreateSelect(Cond, True, False); 903 SI->takeName(&I); 904 return SI; 905 } 906 907 /// Freely adapt every user of V as-if V was changed to !V. 908 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 909 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) { 910 for (User *U : I->users()) { 911 switch (cast<Instruction>(U)->getOpcode()) { 912 case Instruction::Select: { 913 auto *SI = cast<SelectInst>(U); 914 SI->swapValues(); 915 SI->swapProfMetadata(); 916 break; 917 } 918 case Instruction::Br: 919 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 920 break; 921 case Instruction::Xor: 922 replaceInstUsesWith(cast<Instruction>(*U), I); 923 break; 924 default: 925 llvm_unreachable("Got unexpected user - out of sync with " 926 "canFreelyInvertAllUsersOf() ?"); 927 } 928 } 929 } 930 931 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 932 /// constant zero (which is the 'negate' form). 933 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 934 Value *NegV; 935 if (match(V, m_Neg(m_Value(NegV)))) 936 return NegV; 937 938 // Constants can be considered to be negated values if they can be folded. 939 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 940 return ConstantExpr::getNeg(C); 941 942 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 943 if (C->getType()->getElementType()->isIntegerTy()) 944 return ConstantExpr::getNeg(C); 945 946 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 947 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 948 Constant *Elt = CV->getAggregateElement(i); 949 if (!Elt) 950 return nullptr; 951 952 if (isa<UndefValue>(Elt)) 953 continue; 954 955 if (!isa<ConstantInt>(Elt)) 956 return nullptr; 957 } 958 return ConstantExpr::getNeg(CV); 959 } 960 961 // Negate integer vector splats. 962 if (auto *CV = dyn_cast<Constant>(V)) 963 if (CV->getType()->isVectorTy() && 964 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 965 return ConstantExpr::getNeg(CV); 966 967 return nullptr; 968 } 969 970 /// A binop with a constant operand and a sign-extended boolean operand may be 971 /// converted into a select of constants by applying the binary operation to 972 /// the constant with the two possible values of the extended boolean (0 or -1). 973 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) { 974 // TODO: Handle non-commutative binop (constant is operand 0). 975 // TODO: Handle zext. 976 // TODO: Peek through 'not' of cast. 977 Value *BO0 = BO.getOperand(0); 978 Value *BO1 = BO.getOperand(1); 979 Value *X; 980 Constant *C; 981 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) || 982 !X->getType()->isIntOrIntVectorTy(1)) 983 return nullptr; 984 985 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C) 986 Constant *Ones = ConstantInt::getAllOnesValue(BO.getType()); 987 Constant *Zero = ConstantInt::getNullValue(BO.getType()); 988 Constant *TVal = ConstantExpr::get(BO.getOpcode(), Ones, C); 989 Constant *FVal = ConstantExpr::get(BO.getOpcode(), Zero, C); 990 return SelectInst::Create(X, TVal, FVal); 991 } 992 993 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 994 InstCombiner::BuilderTy &Builder) { 995 if (auto *Cast = dyn_cast<CastInst>(&I)) 996 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 997 998 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 999 assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) && 1000 "Expected constant-foldable intrinsic"); 1001 Intrinsic::ID IID = II->getIntrinsicID(); 1002 if (II->arg_size() == 1) 1003 return Builder.CreateUnaryIntrinsic(IID, SO); 1004 1005 // This works for real binary ops like min/max (where we always expect the 1006 // constant operand to be canonicalized as op1) and unary ops with a bonus 1007 // constant argument like ctlz/cttz. 1008 // TODO: Handle non-commutative binary intrinsics as below for binops. 1009 assert(II->arg_size() == 2 && "Expected binary intrinsic"); 1010 assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand"); 1011 return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1)); 1012 } 1013 1014 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 1015 1016 // Figure out if the constant is the left or the right argument. 1017 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 1018 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 1019 1020 if (auto *SOC = dyn_cast<Constant>(SO)) { 1021 if (ConstIsRHS) 1022 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 1023 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 1024 } 1025 1026 Value *Op0 = SO, *Op1 = ConstOperand; 1027 if (!ConstIsRHS) 1028 std::swap(Op0, Op1); 1029 1030 Value *NewBO = Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), Op0, 1031 Op1, SO->getName() + ".op"); 1032 if (auto *NewBOI = dyn_cast<Instruction>(NewBO)) 1033 NewBOI->copyIRFlags(&I); 1034 return NewBO; 1035 } 1036 1037 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, 1038 SelectInst *SI) { 1039 // Don't modify shared select instructions. 1040 if (!SI->hasOneUse()) 1041 return nullptr; 1042 1043 Value *TV = SI->getTrueValue(); 1044 Value *FV = SI->getFalseValue(); 1045 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 1046 return nullptr; 1047 1048 // Bool selects with constant operands can be folded to logical ops. 1049 if (SI->getType()->isIntOrIntVectorTy(1)) 1050 return nullptr; 1051 1052 // If it's a bitcast involving vectors, make sure it has the same number of 1053 // elements on both sides. 1054 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 1055 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 1056 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 1057 1058 // Verify that either both or neither are vectors. 1059 if ((SrcTy == nullptr) != (DestTy == nullptr)) 1060 return nullptr; 1061 1062 // If vectors, verify that they have the same number of elements. 1063 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) 1064 return nullptr; 1065 } 1066 1067 // Test if a CmpInst instruction is used exclusively by a select as 1068 // part of a minimum or maximum operation. If so, refrain from doing 1069 // any other folding. This helps out other analyses which understand 1070 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 1071 // and CodeGen. And in this case, at least one of the comparison 1072 // operands has at least one user besides the compare (the select), 1073 // which would often largely negate the benefit of folding anyway. 1074 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 1075 if (CI->hasOneUse()) { 1076 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 1077 1078 // FIXME: This is a hack to avoid infinite looping with min/max patterns. 1079 // We have to ensure that vector constants that only differ with 1080 // undef elements are treated as equivalent. 1081 auto areLooselyEqual = [](Value *A, Value *B) { 1082 if (A == B) 1083 return true; 1084 1085 // Test for vector constants. 1086 Constant *ConstA, *ConstB; 1087 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB))) 1088 return false; 1089 1090 // TODO: Deal with FP constants? 1091 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType()) 1092 return false; 1093 1094 // Compare for equality including undefs as equal. 1095 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB); 1096 const APInt *C; 1097 return match(Cmp, m_APIntAllowUndef(C)) && C->isOne(); 1098 }; 1099 1100 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) || 1101 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1))) 1102 return nullptr; 1103 } 1104 } 1105 1106 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 1107 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 1108 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 1109 } 1110 1111 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 1112 InstCombiner::BuilderTy &Builder) { 1113 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 1114 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 1115 1116 if (auto *InC = dyn_cast<Constant>(InV)) { 1117 if (ConstIsRHS) 1118 return ConstantExpr::get(I->getOpcode(), InC, C); 1119 return ConstantExpr::get(I->getOpcode(), C, InC); 1120 } 1121 1122 Value *Op0 = InV, *Op1 = C; 1123 if (!ConstIsRHS) 1124 std::swap(Op0, Op1); 1125 1126 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo"); 1127 auto *FPInst = dyn_cast<Instruction>(RI); 1128 if (FPInst && isa<FPMathOperator>(FPInst)) 1129 FPInst->copyFastMathFlags(I); 1130 return RI; 1131 } 1132 1133 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { 1134 unsigned NumPHIValues = PN->getNumIncomingValues(); 1135 if (NumPHIValues == 0) 1136 return nullptr; 1137 1138 // We normally only transform phis with a single use. However, if a PHI has 1139 // multiple uses and they are all the same operation, we can fold *all* of the 1140 // uses into the PHI. 1141 if (!PN->hasOneUse()) { 1142 // Walk the use list for the instruction, comparing them to I. 1143 for (User *U : PN->users()) { 1144 Instruction *UI = cast<Instruction>(U); 1145 if (UI != &I && !I.isIdenticalTo(UI)) 1146 return nullptr; 1147 } 1148 // Otherwise, we can replace *all* users with the new PHI we form. 1149 } 1150 1151 // Check to see if all of the operands of the PHI are simple constants 1152 // (constantint/constantfp/undef). If there is one non-constant value, 1153 // remember the BB it is in. If there is more than one or if *it* is a PHI, 1154 // bail out. We don't do arbitrary constant expressions here because moving 1155 // their computation can be expensive without a cost model. 1156 BasicBlock *NonConstBB = nullptr; 1157 for (unsigned i = 0; i != NumPHIValues; ++i) { 1158 Value *InVal = PN->getIncomingValue(i); 1159 // For non-freeze, require constant operand 1160 // For freeze, require non-undef, non-poison operand 1161 if (!isa<FreezeInst>(I) && match(InVal, m_ImmConstant())) 1162 continue; 1163 if (isa<FreezeInst>(I) && isGuaranteedNotToBeUndefOrPoison(InVal)) 1164 continue; 1165 1166 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 1167 if (NonConstBB) return nullptr; // More than one non-const value. 1168 1169 NonConstBB = PN->getIncomingBlock(i); 1170 1171 // If the InVal is an invoke at the end of the pred block, then we can't 1172 // insert a computation after it without breaking the edge. 1173 if (isa<InvokeInst>(InVal)) 1174 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 1175 return nullptr; 1176 1177 // If the incoming non-constant value is in I's block, we will remove one 1178 // instruction, but insert another equivalent one, leading to infinite 1179 // instcombine. 1180 if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI)) 1181 return nullptr; 1182 } 1183 1184 // If there is exactly one non-constant value, we can insert a copy of the 1185 // operation in that block. However, if this is a critical edge, we would be 1186 // inserting the computation on some other paths (e.g. inside a loop). Only 1187 // do this if the pred block is unconditionally branching into the phi block. 1188 // Also, make sure that the pred block is not dead code. 1189 if (NonConstBB != nullptr) { 1190 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1191 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB)) 1192 return nullptr; 1193 } 1194 1195 // Okay, we can do the transformation: create the new PHI node. 1196 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1197 InsertNewInstBefore(NewPN, *PN); 1198 NewPN->takeName(PN); 1199 1200 // If we are going to have to insert a new computation, do so right before the 1201 // predecessor's terminator. 1202 if (NonConstBB) 1203 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1204 1205 // Next, add all of the operands to the PHI. 1206 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1207 // We only currently try to fold the condition of a select when it is a phi, 1208 // not the true/false values. 1209 Value *TrueV = SI->getTrueValue(); 1210 Value *FalseV = SI->getFalseValue(); 1211 BasicBlock *PhiTransBB = PN->getParent(); 1212 for (unsigned i = 0; i != NumPHIValues; ++i) { 1213 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1214 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1215 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1216 Value *InV = nullptr; 1217 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1218 // even if currently isNullValue gives false. 1219 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1220 // For vector constants, we cannot use isNullValue to fold into 1221 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1222 // elements in the vector, we will incorrectly fold InC to 1223 // `TrueVInPred`. 1224 if (InC && isa<ConstantInt>(InC)) 1225 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1226 else { 1227 // Generate the select in the same block as PN's current incoming block. 1228 // Note: ThisBB need not be the NonConstBB because vector constants 1229 // which are constants by definition are handled here. 1230 // FIXME: This can lead to an increase in IR generation because we might 1231 // generate selects for vector constant phi operand, that could not be 1232 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1233 // non-vector phis, this transformation was always profitable because 1234 // the select would be generated exactly once in the NonConstBB. 1235 Builder.SetInsertPoint(ThisBB->getTerminator()); 1236 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1237 FalseVInPred, "phi.sel"); 1238 } 1239 NewPN->addIncoming(InV, ThisBB); 1240 } 1241 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1242 Constant *C = cast<Constant>(I.getOperand(1)); 1243 for (unsigned i = 0; i != NumPHIValues; ++i) { 1244 Value *InV = nullptr; 1245 if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1246 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1247 else 1248 InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i), 1249 C, "phi.cmp"); 1250 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1251 } 1252 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1253 for (unsigned i = 0; i != NumPHIValues; ++i) { 1254 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1255 Builder); 1256 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1257 } 1258 } else if (isa<FreezeInst>(&I)) { 1259 for (unsigned i = 0; i != NumPHIValues; ++i) { 1260 Value *InV; 1261 if (NonConstBB == PN->getIncomingBlock(i)) 1262 InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr"); 1263 else 1264 InV = PN->getIncomingValue(i); 1265 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1266 } 1267 } else { 1268 CastInst *CI = cast<CastInst>(&I); 1269 Type *RetTy = CI->getType(); 1270 for (unsigned i = 0; i != NumPHIValues; ++i) { 1271 Value *InV; 1272 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1273 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1274 else 1275 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1276 I.getType(), "phi.cast"); 1277 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1278 } 1279 } 1280 1281 for (User *U : make_early_inc_range(PN->users())) { 1282 Instruction *User = cast<Instruction>(U); 1283 if (User == &I) continue; 1284 replaceInstUsesWith(*User, NewPN); 1285 eraseInstFromFunction(*User); 1286 } 1287 return replaceInstUsesWith(I, NewPN); 1288 } 1289 1290 Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) { 1291 // TODO: This should be similar to the incoming values check in foldOpIntoPhi: 1292 // we are guarding against replicating the binop in >1 predecessor. 1293 // This could miss matching a phi with 2 constant incoming values. 1294 auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0)); 1295 auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1)); 1296 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() || 1297 Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2) 1298 return nullptr; 1299 1300 // TODO: Remove the restriction for binop being in the same block as the phis. 1301 if (BO.getParent() != Phi0->getParent() || 1302 BO.getParent() != Phi1->getParent()) 1303 return nullptr; 1304 1305 // Match a pair of incoming constants for one of the predecessor blocks. 1306 BasicBlock *ConstBB, *OtherBB; 1307 Constant *C0, *C1; 1308 if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) { 1309 ConstBB = Phi0->getIncomingBlock(0); 1310 OtherBB = Phi0->getIncomingBlock(1); 1311 } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) { 1312 ConstBB = Phi0->getIncomingBlock(1); 1313 OtherBB = Phi0->getIncomingBlock(0); 1314 } else { 1315 return nullptr; 1316 } 1317 if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1))) 1318 return nullptr; 1319 1320 // The block that we are hoisting to must reach here unconditionally. 1321 // Otherwise, we could be speculatively executing an expensive or 1322 // non-speculative op. 1323 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator()); 1324 if (!PredBlockBranch || PredBlockBranch->isConditional() || 1325 !DT.isReachableFromEntry(OtherBB)) 1326 return nullptr; 1327 1328 // TODO: This check could be tightened to only apply to binops (div/rem) that 1329 // are not safe to speculatively execute. But that could allow hoisting 1330 // potentially expensive instructions (fdiv for example). 1331 for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter) 1332 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter)) 1333 return nullptr; 1334 1335 // Make a new binop in the predecessor block with the non-constant incoming 1336 // values. 1337 Builder.SetInsertPoint(PredBlockBranch); 1338 Value *NewBO = Builder.CreateBinOp(BO.getOpcode(), 1339 Phi0->getIncomingValueForBlock(OtherBB), 1340 Phi1->getIncomingValueForBlock(OtherBB)); 1341 if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO)) 1342 NotFoldedNewBO->copyIRFlags(&BO); 1343 1344 // Fold constants for the predecessor block with constant incoming values. 1345 Constant *NewC = ConstantExpr::get(BO.getOpcode(), C0, C1); 1346 1347 // Replace the binop with a phi of the new values. The old phis are dead. 1348 PHINode *NewPhi = PHINode::Create(BO.getType(), 2); 1349 NewPhi->addIncoming(NewBO, OtherBB); 1350 NewPhi->addIncoming(NewC, ConstBB); 1351 return NewPhi; 1352 } 1353 1354 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1355 if (!isa<Constant>(I.getOperand(1))) 1356 return nullptr; 1357 1358 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1359 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1360 return NewSel; 1361 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1362 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1363 return NewPhi; 1364 } 1365 return nullptr; 1366 } 1367 1368 /// Given a pointer type and a constant offset, determine whether or not there 1369 /// is a sequence of GEP indices into the pointed type that will land us at the 1370 /// specified offset. If so, fill them into NewIndices and return the resultant 1371 /// element type, otherwise return null. 1372 Type * 1373 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t IntOffset, 1374 SmallVectorImpl<Value *> &NewIndices) { 1375 Type *Ty = PtrTy->getElementType(); 1376 if (!Ty->isSized()) 1377 return nullptr; 1378 1379 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset); 1380 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset); 1381 if (!Offset.isZero()) 1382 return nullptr; 1383 1384 for (const APInt &Index : Indices) 1385 NewIndices.push_back(Builder.getInt(Index)); 1386 return Ty; 1387 } 1388 1389 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1390 // If this GEP has only 0 indices, it is the same pointer as 1391 // Src. If Src is not a trivial GEP too, don't combine 1392 // the indices. 1393 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1394 !Src.hasOneUse()) 1395 return false; 1396 return true; 1397 } 1398 1399 /// Return a value X such that Val = X * Scale, or null if none. 1400 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1401 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1402 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1403 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1404 Scale.getBitWidth() && "Scale not compatible with value!"); 1405 1406 // If Val is zero or Scale is one then Val = Val * Scale. 1407 if (match(Val, m_Zero()) || Scale == 1) { 1408 NoSignedWrap = true; 1409 return Val; 1410 } 1411 1412 // If Scale is zero then it does not divide Val. 1413 if (Scale.isMinValue()) 1414 return nullptr; 1415 1416 // Look through chains of multiplications, searching for a constant that is 1417 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1418 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1419 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1420 // down from Val: 1421 // 1422 // Val = M1 * X || Analysis starts here and works down 1423 // M1 = M2 * Y || Doesn't descend into terms with more 1424 // M2 = Z * 4 \/ than one use 1425 // 1426 // Then to modify a term at the bottom: 1427 // 1428 // Val = M1 * X 1429 // M1 = Z * Y || Replaced M2 with Z 1430 // 1431 // Then to work back up correcting nsw flags. 1432 1433 // Op - the term we are currently analyzing. Starts at Val then drills down. 1434 // Replaced with its descaled value before exiting from the drill down loop. 1435 Value *Op = Val; 1436 1437 // Parent - initially null, but after drilling down notes where Op came from. 1438 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1439 // 0'th operand of Val. 1440 std::pair<Instruction *, unsigned> Parent; 1441 1442 // Set if the transform requires a descaling at deeper levels that doesn't 1443 // overflow. 1444 bool RequireNoSignedWrap = false; 1445 1446 // Log base 2 of the scale. Negative if not a power of 2. 1447 int32_t logScale = Scale.exactLogBase2(); 1448 1449 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1450 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1451 // If Op is a constant divisible by Scale then descale to the quotient. 1452 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1453 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1454 if (!Remainder.isMinValue()) 1455 // Not divisible by Scale. 1456 return nullptr; 1457 // Replace with the quotient in the parent. 1458 Op = ConstantInt::get(CI->getType(), Quotient); 1459 NoSignedWrap = true; 1460 break; 1461 } 1462 1463 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1464 if (BO->getOpcode() == Instruction::Mul) { 1465 // Multiplication. 1466 NoSignedWrap = BO->hasNoSignedWrap(); 1467 if (RequireNoSignedWrap && !NoSignedWrap) 1468 return nullptr; 1469 1470 // There are three cases for multiplication: multiplication by exactly 1471 // the scale, multiplication by a constant different to the scale, and 1472 // multiplication by something else. 1473 Value *LHS = BO->getOperand(0); 1474 Value *RHS = BO->getOperand(1); 1475 1476 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1477 // Multiplication by a constant. 1478 if (CI->getValue() == Scale) { 1479 // Multiplication by exactly the scale, replace the multiplication 1480 // by its left-hand side in the parent. 1481 Op = LHS; 1482 break; 1483 } 1484 1485 // Otherwise drill down into the constant. 1486 if (!Op->hasOneUse()) 1487 return nullptr; 1488 1489 Parent = std::make_pair(BO, 1); 1490 continue; 1491 } 1492 1493 // Multiplication by something else. Drill down into the left-hand side 1494 // since that's where the reassociate pass puts the good stuff. 1495 if (!Op->hasOneUse()) 1496 return nullptr; 1497 1498 Parent = std::make_pair(BO, 0); 1499 continue; 1500 } 1501 1502 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1503 isa<ConstantInt>(BO->getOperand(1))) { 1504 // Multiplication by a power of 2. 1505 NoSignedWrap = BO->hasNoSignedWrap(); 1506 if (RequireNoSignedWrap && !NoSignedWrap) 1507 return nullptr; 1508 1509 Value *LHS = BO->getOperand(0); 1510 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1511 getLimitedValue(Scale.getBitWidth()); 1512 // Op = LHS << Amt. 1513 1514 if (Amt == logScale) { 1515 // Multiplication by exactly the scale, replace the multiplication 1516 // by its left-hand side in the parent. 1517 Op = LHS; 1518 break; 1519 } 1520 if (Amt < logScale || !Op->hasOneUse()) 1521 return nullptr; 1522 1523 // Multiplication by more than the scale. Reduce the multiplying amount 1524 // by the scale in the parent. 1525 Parent = std::make_pair(BO, 1); 1526 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1527 break; 1528 } 1529 } 1530 1531 if (!Op->hasOneUse()) 1532 return nullptr; 1533 1534 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1535 if (Cast->getOpcode() == Instruction::SExt) { 1536 // Op is sign-extended from a smaller type, descale in the smaller type. 1537 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1538 APInt SmallScale = Scale.trunc(SmallSize); 1539 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1540 // descale Op as (sext Y) * Scale. In order to have 1541 // sext (Y * SmallScale) = (sext Y) * Scale 1542 // some conditions need to hold however: SmallScale must sign-extend to 1543 // Scale and the multiplication Y * SmallScale should not overflow. 1544 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1545 // SmallScale does not sign-extend to Scale. 1546 return nullptr; 1547 assert(SmallScale.exactLogBase2() == logScale); 1548 // Require that Y * SmallScale must not overflow. 1549 RequireNoSignedWrap = true; 1550 1551 // Drill down through the cast. 1552 Parent = std::make_pair(Cast, 0); 1553 Scale = SmallScale; 1554 continue; 1555 } 1556 1557 if (Cast->getOpcode() == Instruction::Trunc) { 1558 // Op is truncated from a larger type, descale in the larger type. 1559 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1560 // trunc (Y * sext Scale) = (trunc Y) * Scale 1561 // always holds. However (trunc Y) * Scale may overflow even if 1562 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1563 // from this point up in the expression (see later). 1564 if (RequireNoSignedWrap) 1565 return nullptr; 1566 1567 // Drill down through the cast. 1568 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1569 Parent = std::make_pair(Cast, 0); 1570 Scale = Scale.sext(LargeSize); 1571 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1572 logScale = -1; 1573 assert(Scale.exactLogBase2() == logScale); 1574 continue; 1575 } 1576 } 1577 1578 // Unsupported expression, bail out. 1579 return nullptr; 1580 } 1581 1582 // If Op is zero then Val = Op * Scale. 1583 if (match(Op, m_Zero())) { 1584 NoSignedWrap = true; 1585 return Op; 1586 } 1587 1588 // We know that we can successfully descale, so from here on we can safely 1589 // modify the IR. Op holds the descaled version of the deepest term in the 1590 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1591 // not to overflow. 1592 1593 if (!Parent.first) 1594 // The expression only had one term. 1595 return Op; 1596 1597 // Rewrite the parent using the descaled version of its operand. 1598 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1599 assert(Op != Parent.first->getOperand(Parent.second) && 1600 "Descaling was a no-op?"); 1601 replaceOperand(*Parent.first, Parent.second, Op); 1602 Worklist.push(Parent.first); 1603 1604 // Now work back up the expression correcting nsw flags. The logic is based 1605 // on the following observation: if X * Y is known not to overflow as a signed 1606 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1607 // then X * Z will not overflow as a signed multiplication either. As we work 1608 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1609 // current level has strictly smaller absolute value than the original. 1610 Instruction *Ancestor = Parent.first; 1611 do { 1612 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1613 // If the multiplication wasn't nsw then we can't say anything about the 1614 // value of the descaled multiplication, and we have to clear nsw flags 1615 // from this point on up. 1616 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1617 NoSignedWrap &= OpNoSignedWrap; 1618 if (NoSignedWrap != OpNoSignedWrap) { 1619 BO->setHasNoSignedWrap(NoSignedWrap); 1620 Worklist.push(Ancestor); 1621 } 1622 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1623 // The fact that the descaled input to the trunc has smaller absolute 1624 // value than the original input doesn't tell us anything useful about 1625 // the absolute values of the truncations. 1626 NoSignedWrap = false; 1627 } 1628 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1629 "Failed to keep proper track of nsw flags while drilling down?"); 1630 1631 if (Ancestor == Val) 1632 // Got to the top, all done! 1633 return Val; 1634 1635 // Move up one level in the expression. 1636 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1637 Ancestor = Ancestor->user_back(); 1638 } while (true); 1639 } 1640 1641 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 1642 if (!isa<VectorType>(Inst.getType())) 1643 return nullptr; 1644 1645 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1646 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1647 assert(cast<VectorType>(LHS->getType())->getElementCount() == 1648 cast<VectorType>(Inst.getType())->getElementCount()); 1649 assert(cast<VectorType>(RHS->getType())->getElementCount() == 1650 cast<VectorType>(Inst.getType())->getElementCount()); 1651 1652 // If both operands of the binop are vector concatenations, then perform the 1653 // narrow binop on each pair of the source operands followed by concatenation 1654 // of the results. 1655 Value *L0, *L1, *R0, *R1; 1656 ArrayRef<int> Mask; 1657 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 1658 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 1659 LHS->hasOneUse() && RHS->hasOneUse() && 1660 cast<ShuffleVectorInst>(LHS)->isConcat() && 1661 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1662 // This transform does not have the speculative execution constraint as 1663 // below because the shuffle is a concatenation. The new binops are 1664 // operating on exactly the same elements as the existing binop. 1665 // TODO: We could ease the mask requirement to allow different undef lanes, 1666 // but that requires an analysis of the binop-with-undef output value. 1667 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1668 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1669 BO->copyIRFlags(&Inst); 1670 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1671 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1672 BO->copyIRFlags(&Inst); 1673 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1674 } 1675 1676 // It may not be safe to reorder shuffles and things like div, urem, etc. 1677 // because we may trap when executing those ops on unknown vector elements. 1678 // See PR20059. 1679 if (!isSafeToSpeculativelyExecute(&Inst)) 1680 return nullptr; 1681 1682 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 1683 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1684 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1685 BO->copyIRFlags(&Inst); 1686 return new ShuffleVectorInst(XY, M); 1687 }; 1688 1689 // If both arguments of the binary operation are shuffles that use the same 1690 // mask and shuffle within a single vector, move the shuffle after the binop. 1691 Value *V1, *V2; 1692 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) && 1693 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) && 1694 V1->getType() == V2->getType() && 1695 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1696 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1697 return createBinOpShuffle(V1, V2, Mask); 1698 } 1699 1700 // If both arguments of a commutative binop are select-shuffles that use the 1701 // same mask with commuted operands, the shuffles are unnecessary. 1702 if (Inst.isCommutative() && 1703 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 1704 match(RHS, 1705 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 1706 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1707 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1708 // TODO: Allow shuffles that contain undefs in the mask? 1709 // That is legal, but it reduces undef knowledge. 1710 // TODO: Allow arbitrary shuffles by shuffling after binop? 1711 // That might be legal, but we have to deal with poison. 1712 if (LShuf->isSelect() && 1713 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) && 1714 RShuf->isSelect() && 1715 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) { 1716 // Example: 1717 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1718 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1719 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1720 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1721 NewBO->copyIRFlags(&Inst); 1722 return NewBO; 1723 } 1724 } 1725 1726 // If one argument is a shuffle within one vector and the other is a constant, 1727 // try moving the shuffle after the binary operation. This canonicalization 1728 // intends to move shuffles closer to other shuffles and binops closer to 1729 // other binops, so they can be folded. It may also enable demanded elements 1730 // transforms. 1731 Constant *C; 1732 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 1733 if (InstVTy && 1734 match(&Inst, 1735 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))), 1736 m_ImmConstant(C))) && 1737 cast<FixedVectorType>(V1->getType())->getNumElements() <= 1738 InstVTy->getNumElements()) { 1739 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 1740 "Shuffle should not change scalar type"); 1741 1742 // Find constant NewC that has property: 1743 // shuffle(NewC, ShMask) = C 1744 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1745 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1746 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1747 bool ConstOp1 = isa<Constant>(RHS); 1748 ArrayRef<int> ShMask = Mask; 1749 unsigned SrcVecNumElts = 1750 cast<FixedVectorType>(V1->getType())->getNumElements(); 1751 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1752 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1753 bool MayChange = true; 1754 unsigned NumElts = InstVTy->getNumElements(); 1755 for (unsigned I = 0; I < NumElts; ++I) { 1756 Constant *CElt = C->getAggregateElement(I); 1757 if (ShMask[I] >= 0) { 1758 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1759 Constant *NewCElt = NewVecC[ShMask[I]]; 1760 // Bail out if: 1761 // 1. The constant vector contains a constant expression. 1762 // 2. The shuffle needs an element of the constant vector that can't 1763 // be mapped to a new constant vector. 1764 // 3. This is a widening shuffle that copies elements of V1 into the 1765 // extended elements (extending with undef is allowed). 1766 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1767 I >= SrcVecNumElts) { 1768 MayChange = false; 1769 break; 1770 } 1771 NewVecC[ShMask[I]] = CElt; 1772 } 1773 // If this is a widening shuffle, we must be able to extend with undef 1774 // elements. If the original binop does not produce an undef in the high 1775 // lanes, then this transform is not safe. 1776 // Similarly for undef lanes due to the shuffle mask, we can only 1777 // transform binops that preserve undef. 1778 // TODO: We could shuffle those non-undef constant values into the 1779 // result by using a constant vector (rather than an undef vector) 1780 // as operand 1 of the new binop, but that might be too aggressive 1781 // for target-independent shuffle creation. 1782 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1783 Constant *MaybeUndef = 1784 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1785 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1786 if (!match(MaybeUndef, m_Undef())) { 1787 MayChange = false; 1788 break; 1789 } 1790 } 1791 } 1792 if (MayChange) { 1793 Constant *NewC = ConstantVector::get(NewVecC); 1794 // It may not be safe to execute a binop on a vector with undef elements 1795 // because the entire instruction can be folded to undef or create poison 1796 // that did not exist in the original code. 1797 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1798 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1799 1800 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1801 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1802 Value *NewLHS = ConstOp1 ? V1 : NewC; 1803 Value *NewRHS = ConstOp1 ? NewC : V1; 1804 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1805 } 1806 } 1807 1808 // Try to reassociate to sink a splat shuffle after a binary operation. 1809 if (Inst.isAssociative() && Inst.isCommutative()) { 1810 // Canonicalize shuffle operand as LHS. 1811 if (isa<ShuffleVectorInst>(RHS)) 1812 std::swap(LHS, RHS); 1813 1814 Value *X; 1815 ArrayRef<int> MaskC; 1816 int SplatIndex; 1817 Value *Y, *OtherOp; 1818 if (!match(LHS, 1819 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 1820 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || 1821 X->getType() != Inst.getType() || 1822 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp))))) 1823 return nullptr; 1824 1825 // FIXME: This may not be safe if the analysis allows undef elements. By 1826 // moving 'Y' before the splat shuffle, we are implicitly assuming 1827 // that it is not undef/poison at the splat index. 1828 if (isSplatValue(OtherOp, SplatIndex)) { 1829 std::swap(Y, OtherOp); 1830 } else if (!isSplatValue(Y, SplatIndex)) { 1831 return nullptr; 1832 } 1833 1834 // X and Y are splatted values, so perform the binary operation on those 1835 // values followed by a splat followed by the 2nd binary operation: 1836 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 1837 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 1838 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 1839 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 1840 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 1841 1842 // Intersect FMF on both new binops. Other (poison-generating) flags are 1843 // dropped to be safe. 1844 if (isa<FPMathOperator>(R)) { 1845 R->copyFastMathFlags(&Inst); 1846 R->andIRFlags(RHS); 1847 } 1848 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 1849 NewInstBO->copyIRFlags(R); 1850 return R; 1851 } 1852 1853 return nullptr; 1854 } 1855 1856 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1857 /// of a value. This requires a potentially expensive known bits check to make 1858 /// sure the narrow op does not overflow. 1859 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 1860 // We need at least one extended operand. 1861 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1862 1863 // If this is a sub, we swap the operands since we always want an extension 1864 // on the RHS. The LHS can be an extension or a constant. 1865 if (BO.getOpcode() == Instruction::Sub) 1866 std::swap(Op0, Op1); 1867 1868 Value *X; 1869 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1870 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1871 return nullptr; 1872 1873 // If both operands are the same extension from the same source type and we 1874 // can eliminate at least one (hasOneUse), this might work. 1875 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1876 Value *Y; 1877 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1878 cast<Operator>(Op1)->getOpcode() == CastOpc && 1879 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1880 // If that did not match, see if we have a suitable constant operand. 1881 // Truncating and extending must produce the same constant. 1882 Constant *WideC; 1883 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1884 return nullptr; 1885 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1886 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1887 return nullptr; 1888 Y = NarrowC; 1889 } 1890 1891 // Swap back now that we found our operands. 1892 if (BO.getOpcode() == Instruction::Sub) 1893 std::swap(X, Y); 1894 1895 // Both operands have narrow versions. Last step: the math must not overflow 1896 // in the narrow width. 1897 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1898 return nullptr; 1899 1900 // bo (ext X), (ext Y) --> ext (bo X, Y) 1901 // bo (ext X), C --> ext (bo X, C') 1902 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1903 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1904 if (IsSext) 1905 NewBinOp->setHasNoSignedWrap(); 1906 else 1907 NewBinOp->setHasNoUnsignedWrap(); 1908 } 1909 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1910 } 1911 1912 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 1913 // At least one GEP must be inbounds. 1914 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 1915 return false; 1916 1917 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 1918 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 1919 } 1920 1921 /// Thread a GEP operation with constant indices through the constant true/false 1922 /// arms of a select. 1923 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 1924 InstCombiner::BuilderTy &Builder) { 1925 if (!GEP.hasAllConstantIndices()) 1926 return nullptr; 1927 1928 Instruction *Sel; 1929 Value *Cond; 1930 Constant *TrueC, *FalseC; 1931 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 1932 !match(Sel, 1933 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 1934 return nullptr; 1935 1936 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 1937 // Propagate 'inbounds' and metadata from existing instructions. 1938 // Note: using IRBuilder to create the constants for efficiency. 1939 SmallVector<Value *, 4> IndexC(GEP.indices()); 1940 bool IsInBounds = GEP.isInBounds(); 1941 Type *Ty = GEP.getSourceElementType(); 1942 Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC) 1943 : Builder.CreateGEP(Ty, TrueC, IndexC); 1944 Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC) 1945 : Builder.CreateGEP(Ty, FalseC, IndexC); 1946 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 1947 } 1948 1949 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP, 1950 GEPOperator *Src) { 1951 // Combine Indices - If the source pointer to this getelementptr instruction 1952 // is a getelementptr instruction with matching element type, combine the 1953 // indices of the two getelementptr instructions into a single instruction. 1954 if (Src->getResultElementType() != GEP.getSourceElementType()) 1955 return nullptr; 1956 1957 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1958 return nullptr; 1959 1960 if (Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1961 Src->hasOneUse()) { 1962 Value *GO1 = GEP.getOperand(1); 1963 Value *SO1 = Src->getOperand(1); 1964 1965 if (LI) { 1966 // Try to reassociate loop invariant GEP chains to enable LICM. 1967 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1968 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1969 // invariant: this breaks the dependence between GEPs and allows LICM 1970 // to hoist the invariant part out of the loop. 1971 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1972 // We have to be careful here. 1973 // We have something like: 1974 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 1975 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 1976 // If we just swap idx & idx2 then we could inadvertantly 1977 // change %src from a vector to a scalar, or vice versa. 1978 // Cases: 1979 // 1) %base a scalar & idx a scalar & idx2 a vector 1980 // => Swapping idx & idx2 turns %src into a vector type. 1981 // 2) %base a scalar & idx a vector & idx2 a scalar 1982 // => Swapping idx & idx2 turns %src in a scalar type 1983 // 3) %base, %idx, and %idx2 are scalars 1984 // => %src & %gep are scalars 1985 // => swapping idx & idx2 is safe 1986 // 4) %base a vector 1987 // => %src is a vector 1988 // => swapping idx & idx2 is safe. 1989 auto *SO0 = Src->getOperand(0); 1990 auto *SO0Ty = SO0->getType(); 1991 if (!isa<VectorType>(GEP.getType()) || // case 3 1992 isa<VectorType>(SO0Ty)) { // case 4 1993 Src->setOperand(1, GO1); 1994 GEP.setOperand(1, SO1); 1995 return &GEP; 1996 } else { 1997 // Case 1 or 2 1998 // -- have to recreate %src & %gep 1999 // put NewSrc at same location as %src 2000 Builder.SetInsertPoint(cast<Instruction>(Src)); 2001 Value *NewSrc = Builder.CreateGEP( 2002 GEP.getSourceElementType(), SO0, GO1, Src->getName()); 2003 // Propagate 'inbounds' if the new source was not constant-folded. 2004 if (auto *NewSrcGEPI = dyn_cast<GetElementPtrInst>(NewSrc)) 2005 NewSrcGEPI->setIsInBounds(Src->isInBounds()); 2006 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 2007 GEP.getSourceElementType(), NewSrc, {SO1}); 2008 NewGEP->setIsInBounds(GEP.isInBounds()); 2009 return NewGEP; 2010 } 2011 } 2012 } 2013 } 2014 } 2015 2016 // Note that if our source is a gep chain itself then we wait for that 2017 // chain to be resolved before we perform this transformation. This 2018 // avoids us creating a TON of code in some cases. 2019 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 2020 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 2021 return nullptr; // Wait until our source is folded to completion. 2022 2023 SmallVector<Value*, 8> Indices; 2024 2025 // Find out whether the last index in the source GEP is a sequential idx. 2026 bool EndsWithSequential = false; 2027 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 2028 I != E; ++I) 2029 EndsWithSequential = I.isSequential(); 2030 2031 // Can we combine the two pointer arithmetics offsets? 2032 if (EndsWithSequential) { 2033 // Replace: gep (gep %P, long B), long A, ... 2034 // With: T = long A+B; gep %P, T, ... 2035 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 2036 Value *GO1 = GEP.getOperand(1); 2037 2038 // If they aren't the same type, then the input hasn't been processed 2039 // by the loop above yet (which canonicalizes sequential index types to 2040 // intptr_t). Just avoid transforming this until the input has been 2041 // normalized. 2042 if (SO1->getType() != GO1->getType()) 2043 return nullptr; 2044 2045 Value *Sum = 2046 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 2047 // Only do the combine when we are sure the cost after the 2048 // merge is never more than that before the merge. 2049 if (Sum == nullptr) 2050 return nullptr; 2051 2052 // Update the GEP in place if possible. 2053 if (Src->getNumOperands() == 2) { 2054 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 2055 replaceOperand(GEP, 0, Src->getOperand(0)); 2056 replaceOperand(GEP, 1, Sum); 2057 return &GEP; 2058 } 2059 Indices.append(Src->op_begin()+1, Src->op_end()-1); 2060 Indices.push_back(Sum); 2061 Indices.append(GEP.op_begin()+2, GEP.op_end()); 2062 } else if (isa<Constant>(*GEP.idx_begin()) && 2063 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2064 Src->getNumOperands() != 1) { 2065 // Otherwise we can do the fold if the first index of the GEP is a zero 2066 Indices.append(Src->op_begin()+1, Src->op_end()); 2067 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2068 } 2069 2070 if (!Indices.empty()) 2071 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2072 ? GetElementPtrInst::CreateInBounds( 2073 Src->getSourceElementType(), Src->getOperand(0), Indices, 2074 GEP.getName()) 2075 : GetElementPtrInst::Create(Src->getSourceElementType(), 2076 Src->getOperand(0), Indices, 2077 GEP.getName()); 2078 2079 return nullptr; 2080 } 2081 2082 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 2083 Value *PtrOp = GEP.getOperand(0); 2084 SmallVector<Value *, 8> Indices(GEP.indices()); 2085 Type *GEPType = GEP.getType(); 2086 Type *GEPEltType = GEP.getSourceElementType(); 2087 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType); 2088 if (Value *V = SimplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(), 2089 SQ.getWithInstruction(&GEP))) 2090 return replaceInstUsesWith(GEP, V); 2091 2092 // For vector geps, use the generic demanded vector support. 2093 // Skip if GEP return type is scalable. The number of elements is unknown at 2094 // compile-time. 2095 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 2096 auto VWidth = GEPFVTy->getNumElements(); 2097 APInt UndefElts(VWidth, 0); 2098 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2099 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 2100 UndefElts)) { 2101 if (V != &GEP) 2102 return replaceInstUsesWith(GEP, V); 2103 return &GEP; 2104 } 2105 2106 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 2107 // possible (decide on canonical form for pointer broadcast), 3) exploit 2108 // undef elements to decrease demanded bits 2109 } 2110 2111 // Eliminate unneeded casts for indices, and replace indices which displace 2112 // by multiples of a zero size type with zero. 2113 bool MadeChange = false; 2114 2115 // Index width may not be the same width as pointer width. 2116 // Data layout chooses the right type based on supported integer types. 2117 Type *NewScalarIndexTy = 2118 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 2119 2120 gep_type_iterator GTI = gep_type_begin(GEP); 2121 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 2122 ++I, ++GTI) { 2123 // Skip indices into struct types. 2124 if (GTI.isStruct()) 2125 continue; 2126 2127 Type *IndexTy = (*I)->getType(); 2128 Type *NewIndexType = 2129 IndexTy->isVectorTy() 2130 ? VectorType::get(NewScalarIndexTy, 2131 cast<VectorType>(IndexTy)->getElementCount()) 2132 : NewScalarIndexTy; 2133 2134 // If the element type has zero size then any index over it is equivalent 2135 // to an index of zero, so replace it with zero if it is not zero already. 2136 Type *EltTy = GTI.getIndexedType(); 2137 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 2138 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 2139 *I = Constant::getNullValue(NewIndexType); 2140 MadeChange = true; 2141 } 2142 2143 if (IndexTy != NewIndexType) { 2144 // If we are using a wider index than needed for this platform, shrink 2145 // it to what we need. If narrower, sign-extend it to what we need. 2146 // This explicit cast can make subsequent optimizations more obvious. 2147 *I = Builder.CreateIntCast(*I, NewIndexType, true); 2148 MadeChange = true; 2149 } 2150 } 2151 if (MadeChange) 2152 return &GEP; 2153 2154 // Check to see if the inputs to the PHI node are getelementptr instructions. 2155 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 2156 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 2157 if (!Op1) 2158 return nullptr; 2159 2160 // Don't fold a GEP into itself through a PHI node. This can only happen 2161 // through the back-edge of a loop. Folding a GEP into itself means that 2162 // the value of the previous iteration needs to be stored in the meantime, 2163 // thus requiring an additional register variable to be live, but not 2164 // actually achieving anything (the GEP still needs to be executed once per 2165 // loop iteration). 2166 if (Op1 == &GEP) 2167 return nullptr; 2168 2169 int DI = -1; 2170 2171 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 2172 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 2173 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 2174 return nullptr; 2175 2176 // As for Op1 above, don't try to fold a GEP into itself. 2177 if (Op2 == &GEP) 2178 return nullptr; 2179 2180 // Keep track of the type as we walk the GEP. 2181 Type *CurTy = nullptr; 2182 2183 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 2184 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 2185 return nullptr; 2186 2187 if (Op1->getOperand(J) != Op2->getOperand(J)) { 2188 if (DI == -1) { 2189 // We have not seen any differences yet in the GEPs feeding the 2190 // PHI yet, so we record this one if it is allowed to be a 2191 // variable. 2192 2193 // The first two arguments can vary for any GEP, the rest have to be 2194 // static for struct slots 2195 if (J > 1) { 2196 assert(CurTy && "No current type?"); 2197 if (CurTy->isStructTy()) 2198 return nullptr; 2199 } 2200 2201 DI = J; 2202 } else { 2203 // The GEP is different by more than one input. While this could be 2204 // extended to support GEPs that vary by more than one variable it 2205 // doesn't make sense since it greatly increases the complexity and 2206 // would result in an R+R+R addressing mode which no backend 2207 // directly supports and would need to be broken into several 2208 // simpler instructions anyway. 2209 return nullptr; 2210 } 2211 } 2212 2213 // Sink down a layer of the type for the next iteration. 2214 if (J > 0) { 2215 if (J == 1) { 2216 CurTy = Op1->getSourceElementType(); 2217 } else { 2218 CurTy = 2219 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 2220 } 2221 } 2222 } 2223 } 2224 2225 // If not all GEPs are identical we'll have to create a new PHI node. 2226 // Check that the old PHI node has only one use so that it will get 2227 // removed. 2228 if (DI != -1 && !PN->hasOneUse()) 2229 return nullptr; 2230 2231 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 2232 if (DI == -1) { 2233 // All the GEPs feeding the PHI are identical. Clone one down into our 2234 // BB so that it can be merged with the current GEP. 2235 } else { 2236 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 2237 // into the current block so it can be merged, and create a new PHI to 2238 // set that index. 2239 PHINode *NewPN; 2240 { 2241 IRBuilderBase::InsertPointGuard Guard(Builder); 2242 Builder.SetInsertPoint(PN); 2243 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 2244 PN->getNumOperands()); 2245 } 2246 2247 for (auto &I : PN->operands()) 2248 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 2249 PN->getIncomingBlock(I)); 2250 2251 NewGEP->setOperand(DI, NewPN); 2252 } 2253 2254 GEP.getParent()->getInstList().insert( 2255 GEP.getParent()->getFirstInsertionPt(), NewGEP); 2256 replaceOperand(GEP, 0, NewGEP); 2257 PtrOp = NewGEP; 2258 } 2259 2260 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) 2261 if (Instruction *I = visitGEPOfGEP(GEP, Src)) 2262 return I; 2263 2264 // Skip if GEP source element type is scalable. The type alloc size is unknown 2265 // at compile-time. 2266 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { 2267 unsigned AS = GEP.getPointerAddressSpace(); 2268 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 2269 DL.getIndexSizeInBits(AS)) { 2270 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2271 2272 bool Matched = false; 2273 uint64_t C; 2274 Value *V = nullptr; 2275 if (TyAllocSize == 1) { 2276 V = GEP.getOperand(1); 2277 Matched = true; 2278 } else if (match(GEP.getOperand(1), 2279 m_AShr(m_Value(V), m_ConstantInt(C)))) { 2280 if (TyAllocSize == 1ULL << C) 2281 Matched = true; 2282 } else if (match(GEP.getOperand(1), 2283 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 2284 if (TyAllocSize == C) 2285 Matched = true; 2286 } 2287 2288 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but 2289 // only if both point to the same underlying object (otherwise provenance 2290 // is not necessarily retained). 2291 Value *Y; 2292 Value *X = GEP.getOperand(0); 2293 if (Matched && 2294 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 2295 getUnderlyingObject(X) == getUnderlyingObject(Y)) 2296 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 2297 } 2298 } 2299 2300 // We do not handle pointer-vector geps here. 2301 if (GEPType->isVectorTy()) 2302 return nullptr; 2303 2304 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 2305 Value *StrippedPtr = PtrOp->stripPointerCasts(); 2306 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 2307 2308 // TODO: The basic approach of these folds is not compatible with opaque 2309 // pointers, because we can't use bitcasts as a hint for a desirable GEP 2310 // type. Instead, we should perform canonicalization directly on the GEP 2311 // type. For now, skip these. 2312 if (StrippedPtr != PtrOp && !StrippedPtrTy->isOpaque()) { 2313 bool HasZeroPointerIndex = false; 2314 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType(); 2315 2316 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 2317 HasZeroPointerIndex = C->isZero(); 2318 2319 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2320 // into : GEP [10 x i8]* X, i32 0, ... 2321 // 2322 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2323 // into : GEP i8* X, ... 2324 // 2325 // This occurs when the program declares an array extern like "int X[];" 2326 if (HasZeroPointerIndex) { 2327 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2328 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2329 if (CATy->getElementType() == StrippedPtrEltTy) { 2330 // -> GEP i8* X, ... 2331 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices())); 2332 GetElementPtrInst *Res = GetElementPtrInst::Create( 2333 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2334 Res->setIsInBounds(GEP.isInBounds()); 2335 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2336 return Res; 2337 // Insert Res, and create an addrspacecast. 2338 // e.g., 2339 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2340 // -> 2341 // %0 = GEP i8 addrspace(1)* X, ... 2342 // addrspacecast i8 addrspace(1)* %0 to i8* 2343 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2344 } 2345 2346 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2347 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2348 if (CATy->getElementType() == XATy->getElementType()) { 2349 // -> GEP [10 x i8]* X, i32 0, ... 2350 // At this point, we know that the cast source type is a pointer 2351 // to an array of the same type as the destination pointer 2352 // array. Because the array type is never stepped over (there 2353 // is a leading zero) we can fold the cast into this GEP. 2354 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2355 GEP.setSourceElementType(XATy); 2356 return replaceOperand(GEP, 0, StrippedPtr); 2357 } 2358 // Cannot replace the base pointer directly because StrippedPtr's 2359 // address space is different. Instead, create a new GEP followed by 2360 // an addrspacecast. 2361 // e.g., 2362 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2363 // i32 0, ... 2364 // -> 2365 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2366 // addrspacecast i8 addrspace(1)* %0 to i8* 2367 SmallVector<Value *, 8> Idx(GEP.indices()); 2368 Value *NewGEP = 2369 GEP.isInBounds() 2370 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2371 Idx, GEP.getName()) 2372 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2373 GEP.getName()); 2374 return new AddrSpaceCastInst(NewGEP, GEPType); 2375 } 2376 } 2377 } 2378 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) { 2379 // Skip if GEP source element type is scalable. The type alloc size is 2380 // unknown at compile-time. 2381 // Transform things like: %t = getelementptr i32* 2382 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2 2383 // x i32]* %str, i32 0, i32 %V; bitcast 2384 if (StrippedPtrEltTy->isArrayTy() && 2385 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2386 DL.getTypeAllocSize(GEPEltType)) { 2387 Type *IdxType = DL.getIndexType(GEPType); 2388 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 2389 Value *NewGEP = 2390 GEP.isInBounds() 2391 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2392 GEP.getName()) 2393 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2394 GEP.getName()); 2395 2396 // V and GEP are both pointer types --> BitCast 2397 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2398 } 2399 2400 // Transform things like: 2401 // %V = mul i64 %N, 4 2402 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2403 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2404 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2405 // Check that changing the type amounts to dividing the index by a scale 2406 // factor. 2407 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2408 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize(); 2409 if (ResSize && SrcSize % ResSize == 0) { 2410 Value *Idx = GEP.getOperand(1); 2411 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2412 uint64_t Scale = SrcSize / ResSize; 2413 2414 // Earlier transforms ensure that the index has the right type 2415 // according to Data Layout, which considerably simplifies the 2416 // logic by eliminating implicit casts. 2417 assert(Idx->getType() == DL.getIndexType(GEPType) && 2418 "Index type does not match the Data Layout preferences"); 2419 2420 bool NSW; 2421 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2422 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2423 // If the multiplication NewIdx * Scale may overflow then the new 2424 // GEP may not be "inbounds". 2425 Value *NewGEP = 2426 GEP.isInBounds() && NSW 2427 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2428 NewIdx, GEP.getName()) 2429 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2430 GEP.getName()); 2431 2432 // The NewGEP must be pointer typed, so must the old one -> BitCast 2433 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2434 GEPType); 2435 } 2436 } 2437 } 2438 2439 // Similarly, transform things like: 2440 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2441 // (where tmp = 8*tmp2) into: 2442 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2443 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2444 StrippedPtrEltTy->isArrayTy()) { 2445 // Check that changing to the array element type amounts to dividing the 2446 // index by a scale factor. 2447 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2448 uint64_t ArrayEltSize = 2449 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) 2450 .getFixedSize(); 2451 if (ResSize && ArrayEltSize % ResSize == 0) { 2452 Value *Idx = GEP.getOperand(1); 2453 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2454 uint64_t Scale = ArrayEltSize / ResSize; 2455 2456 // Earlier transforms ensure that the index has the right type 2457 // according to the Data Layout, which considerably simplifies 2458 // the logic by eliminating implicit casts. 2459 assert(Idx->getType() == DL.getIndexType(GEPType) && 2460 "Index type does not match the Data Layout preferences"); 2461 2462 bool NSW; 2463 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2464 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2465 // If the multiplication NewIdx * Scale may overflow then the new 2466 // GEP may not be "inbounds". 2467 Type *IndTy = DL.getIndexType(GEPType); 2468 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2469 2470 Value *NewGEP = 2471 GEP.isInBounds() && NSW 2472 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2473 Off, GEP.getName()) 2474 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2475 GEP.getName()); 2476 // The NewGEP must be pointer typed, so must the old one -> BitCast 2477 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2478 GEPType); 2479 } 2480 } 2481 } 2482 } 2483 } 2484 2485 // addrspacecast between types is canonicalized as a bitcast, then an 2486 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2487 // through the addrspacecast. 2488 Value *ASCStrippedPtrOp = PtrOp; 2489 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2490 // X = bitcast A addrspace(1)* to B addrspace(1)* 2491 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2492 // Z = gep Y, <...constant indices...> 2493 // Into an addrspacecasted GEP of the struct. 2494 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2495 ASCStrippedPtrOp = BC; 2496 } 2497 2498 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 2499 Value *SrcOp = BCI->getOperand(0); 2500 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2501 Type *SrcEltType = SrcType->getElementType(); 2502 2503 // GEP directly using the source operand if this GEP is accessing an element 2504 // of a bitcasted pointer to vector or array of the same dimensions: 2505 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2506 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2507 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, 2508 const DataLayout &DL) { 2509 auto *VecVTy = cast<FixedVectorType>(VecTy); 2510 return ArrTy->getArrayElementType() == VecVTy->getElementType() && 2511 ArrTy->getArrayNumElements() == VecVTy->getNumElements() && 2512 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); 2513 }; 2514 if (GEP.getNumOperands() == 3 && 2515 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) && 2516 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || 2517 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() && 2518 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { 2519 2520 // Create a new GEP here, as using `setOperand()` followed by 2521 // `setSourceElementType()` won't actually update the type of the 2522 // existing GEP Value. Causing issues if this Value is accessed when 2523 // constructing an AddrSpaceCastInst 2524 Value *NGEP = GEP.isInBounds() 2525 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, Indices) 2526 : Builder.CreateGEP(SrcEltType, SrcOp, Indices); 2527 NGEP->takeName(&GEP); 2528 2529 // Preserve GEP address space to satisfy users 2530 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2531 return new AddrSpaceCastInst(NGEP, GEPType); 2532 2533 return replaceInstUsesWith(GEP, NGEP); 2534 } 2535 2536 // See if we can simplify: 2537 // X = bitcast A* to B* 2538 // Y = gep X, <...constant indices...> 2539 // into a gep of the original struct. This is important for SROA and alias 2540 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2541 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 2542 APInt Offset(OffsetBits, 0); 2543 2544 // If the bitcast argument is an allocation, The bitcast is for convertion 2545 // to actual type of allocation. Removing such bitcasts, results in having 2546 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of 2547 // struct or array hierarchy. 2548 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have 2549 // a better chance to succeed. 2550 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) && 2551 !isAllocationFn(SrcOp, &TLI)) { 2552 // If this GEP instruction doesn't move the pointer, just replace the GEP 2553 // with a bitcast of the real input to the dest type. 2554 if (!Offset) { 2555 // If the bitcast is of an allocation, and the allocation will be 2556 // converted to match the type of the cast, don't touch this. 2557 if (isa<AllocaInst>(SrcOp)) { 2558 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2559 if (Instruction *I = visitBitCast(*BCI)) { 2560 if (I != BCI) { 2561 I->takeName(BCI); 2562 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2563 replaceInstUsesWith(*BCI, I); 2564 } 2565 return &GEP; 2566 } 2567 } 2568 2569 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2570 return new AddrSpaceCastInst(SrcOp, GEPType); 2571 return new BitCastInst(SrcOp, GEPType); 2572 } 2573 2574 // Otherwise, if the offset is non-zero, we need to find out if there is a 2575 // field at Offset in 'A's type. If so, we can pull the cast through the 2576 // GEP. 2577 SmallVector<Value*, 8> NewIndices; 2578 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2579 Value *NGEP = 2580 GEP.isInBounds() 2581 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) 2582 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); 2583 2584 if (NGEP->getType() == GEPType) 2585 return replaceInstUsesWith(GEP, NGEP); 2586 NGEP->takeName(&GEP); 2587 2588 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2589 return new AddrSpaceCastInst(NGEP, GEPType); 2590 return new BitCastInst(NGEP, GEPType); 2591 } 2592 } 2593 } 2594 2595 if (!GEP.isInBounds()) { 2596 unsigned IdxWidth = 2597 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2598 APInt BasePtrOffset(IdxWidth, 0); 2599 Value *UnderlyingPtrOp = 2600 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2601 BasePtrOffset); 2602 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2603 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2604 BasePtrOffset.isNonNegative()) { 2605 APInt AllocSize( 2606 IdxWidth, 2607 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize()); 2608 if (BasePtrOffset.ule(AllocSize)) { 2609 return GetElementPtrInst::CreateInBounds( 2610 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName()); 2611 } 2612 } 2613 } 2614 } 2615 2616 if (Instruction *R = foldSelectGEP(GEP, Builder)) 2617 return R; 2618 2619 return nullptr; 2620 } 2621 2622 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, 2623 Instruction *AI) { 2624 if (isa<ConstantPointerNull>(V)) 2625 return true; 2626 if (auto *LI = dyn_cast<LoadInst>(V)) 2627 return isa<GlobalVariable>(LI->getPointerOperand()); 2628 // Two distinct allocations will never be equal. 2629 return isAllocLikeFn(V, &TLI) && V != AI; 2630 } 2631 2632 /// Given a call CB which uses an address UsedV, return true if we can prove the 2633 /// call's only possible effect is storing to V. 2634 static bool isRemovableWrite(CallBase &CB, Value *UsedV, 2635 const TargetLibraryInfo &TLI) { 2636 if (!CB.use_empty()) 2637 // TODO: add recursion if returned attribute is present 2638 return false; 2639 2640 if (CB.isTerminator()) 2641 // TODO: remove implementation restriction 2642 return false; 2643 2644 if (!CB.willReturn() || !CB.doesNotThrow()) 2645 return false; 2646 2647 // If the only possible side effect of the call is writing to the alloca, 2648 // and the result isn't used, we can safely remove any reads implied by the 2649 // call including those which might read the alloca itself. 2650 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI); 2651 return Dest && Dest->Ptr == UsedV; 2652 } 2653 2654 static bool isAllocSiteRemovable(Instruction *AI, 2655 SmallVectorImpl<WeakTrackingVH> &Users, 2656 const TargetLibraryInfo &TLI) { 2657 SmallVector<Instruction*, 4> Worklist; 2658 Worklist.push_back(AI); 2659 2660 do { 2661 Instruction *PI = Worklist.pop_back_val(); 2662 for (User *U : PI->users()) { 2663 Instruction *I = cast<Instruction>(U); 2664 switch (I->getOpcode()) { 2665 default: 2666 // Give up the moment we see something we can't handle. 2667 return false; 2668 2669 case Instruction::AddrSpaceCast: 2670 case Instruction::BitCast: 2671 case Instruction::GetElementPtr: 2672 Users.emplace_back(I); 2673 Worklist.push_back(I); 2674 continue; 2675 2676 case Instruction::ICmp: { 2677 ICmpInst *ICI = cast<ICmpInst>(I); 2678 // We can fold eq/ne comparisons with null to false/true, respectively. 2679 // We also fold comparisons in some conditions provided the alloc has 2680 // not escaped (see isNeverEqualToUnescapedAlloc). 2681 if (!ICI->isEquality()) 2682 return false; 2683 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2684 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2685 return false; 2686 Users.emplace_back(I); 2687 continue; 2688 } 2689 2690 case Instruction::Call: 2691 // Ignore no-op and store intrinsics. 2692 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2693 switch (II->getIntrinsicID()) { 2694 default: 2695 return false; 2696 2697 case Intrinsic::memmove: 2698 case Intrinsic::memcpy: 2699 case Intrinsic::memset: { 2700 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2701 if (MI->isVolatile() || MI->getRawDest() != PI) 2702 return false; 2703 LLVM_FALLTHROUGH; 2704 } 2705 case Intrinsic::assume: 2706 case Intrinsic::invariant_start: 2707 case Intrinsic::invariant_end: 2708 case Intrinsic::lifetime_start: 2709 case Intrinsic::lifetime_end: 2710 case Intrinsic::objectsize: 2711 Users.emplace_back(I); 2712 continue; 2713 case Intrinsic::launder_invariant_group: 2714 case Intrinsic::strip_invariant_group: 2715 Users.emplace_back(I); 2716 Worklist.push_back(I); 2717 continue; 2718 } 2719 } 2720 2721 if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) { 2722 Users.emplace_back(I); 2723 continue; 2724 } 2725 2726 if (isFreeCall(I, &TLI)) { 2727 Users.emplace_back(I); 2728 continue; 2729 } 2730 2731 if (isReallocLikeFn(I, &TLI)) { 2732 Users.emplace_back(I); 2733 Worklist.push_back(I); 2734 continue; 2735 } 2736 2737 return false; 2738 2739 case Instruction::Store: { 2740 StoreInst *SI = cast<StoreInst>(I); 2741 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2742 return false; 2743 Users.emplace_back(I); 2744 continue; 2745 } 2746 } 2747 llvm_unreachable("missing a return?"); 2748 } 2749 } while (!Worklist.empty()); 2750 return true; 2751 } 2752 2753 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 2754 assert(isa<AllocaInst>(MI) || isAllocRemovable(&cast<CallBase>(MI), &TLI)); 2755 2756 // If we have a malloc call which is only used in any amount of comparisons to 2757 // null and free calls, delete the calls and replace the comparisons with true 2758 // or false as appropriate. 2759 2760 // This is based on the principle that we can substitute our own allocation 2761 // function (which will never return null) rather than knowledge of the 2762 // specific function being called. In some sense this can change the permitted 2763 // outputs of a program (when we convert a malloc to an alloca, the fact that 2764 // the allocation is now on the stack is potentially visible, for example), 2765 // but we believe in a permissible manner. 2766 SmallVector<WeakTrackingVH, 64> Users; 2767 2768 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2769 // before each store. 2770 SmallVector<DbgVariableIntrinsic *, 8> DVIs; 2771 std::unique_ptr<DIBuilder> DIB; 2772 if (isa<AllocaInst>(MI)) { 2773 findDbgUsers(DVIs, &MI); 2774 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2775 } 2776 2777 if (isAllocSiteRemovable(&MI, Users, TLI)) { 2778 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2779 // Lowering all @llvm.objectsize calls first because they may 2780 // use a bitcast/GEP of the alloca we are removing. 2781 if (!Users[i]) 2782 continue; 2783 2784 Instruction *I = cast<Instruction>(&*Users[i]); 2785 2786 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2787 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2788 Value *Result = 2789 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); 2790 replaceInstUsesWith(*I, Result); 2791 eraseInstFromFunction(*I); 2792 Users[i] = nullptr; // Skip examining in the next loop. 2793 } 2794 } 2795 } 2796 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2797 if (!Users[i]) 2798 continue; 2799 2800 Instruction *I = cast<Instruction>(&*Users[i]); 2801 2802 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2803 replaceInstUsesWith(*C, 2804 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2805 C->isFalseWhenEqual())); 2806 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2807 for (auto *DVI : DVIs) 2808 if (DVI->isAddressOfVariable()) 2809 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 2810 } else { 2811 // Casts, GEP, or anything else: we're about to delete this instruction, 2812 // so it can not have any valid uses. 2813 replaceInstUsesWith(*I, PoisonValue::get(I->getType())); 2814 } 2815 eraseInstFromFunction(*I); 2816 } 2817 2818 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2819 // Replace invoke with a NOP intrinsic to maintain the original CFG 2820 Module *M = II->getModule(); 2821 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2822 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2823 None, "", II->getParent()); 2824 } 2825 2826 // Remove debug intrinsics which describe the value contained within the 2827 // alloca. In addition to removing dbg.{declare,addr} which simply point to 2828 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 2829 // 2830 // ``` 2831 // define void @foo(i32 %0) { 2832 // %a = alloca i32 ; Deleted. 2833 // store i32 %0, i32* %a 2834 // dbg.value(i32 %0, "arg0") ; Not deleted. 2835 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 2836 // call void @trivially_inlinable_no_op(i32* %a) 2837 // ret void 2838 // } 2839 // ``` 2840 // 2841 // This may not be required if we stop describing the contents of allocas 2842 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 2843 // the LowerDbgDeclare utility. 2844 // 2845 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 2846 // "arg0" dbg.value may be stale after the call. However, failing to remove 2847 // the DW_OP_deref dbg.value causes large gaps in location coverage. 2848 for (auto *DVI : DVIs) 2849 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 2850 DVI->eraseFromParent(); 2851 2852 return eraseInstFromFunction(MI); 2853 } 2854 return nullptr; 2855 } 2856 2857 /// Move the call to free before a NULL test. 2858 /// 2859 /// Check if this free is accessed after its argument has been test 2860 /// against NULL (property 0). 2861 /// If yes, it is legal to move this call in its predecessor block. 2862 /// 2863 /// The move is performed only if the block containing the call to free 2864 /// will be removed, i.e.: 2865 /// 1. it has only one predecessor P, and P has two successors 2866 /// 2. it contains the call, noops, and an unconditional branch 2867 /// 3. its successor is the same as its predecessor's successor 2868 /// 2869 /// The profitability is out-of concern here and this function should 2870 /// be called only if the caller knows this transformation would be 2871 /// profitable (e.g., for code size). 2872 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2873 const DataLayout &DL) { 2874 Value *Op = FI.getArgOperand(0); 2875 BasicBlock *FreeInstrBB = FI.getParent(); 2876 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2877 2878 // Validate part of constraint #1: Only one predecessor 2879 // FIXME: We can extend the number of predecessor, but in that case, we 2880 // would duplicate the call to free in each predecessor and it may 2881 // not be profitable even for code size. 2882 if (!PredBB) 2883 return nullptr; 2884 2885 // Validate constraint #2: Does this block contains only the call to 2886 // free, noops, and an unconditional branch? 2887 BasicBlock *SuccBB; 2888 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2889 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2890 return nullptr; 2891 2892 // If there are only 2 instructions in the block, at this point, 2893 // this is the call to free and unconditional. 2894 // If there are more than 2 instructions, check that they are noops 2895 // i.e., they won't hurt the performance of the generated code. 2896 if (FreeInstrBB->size() != 2) { 2897 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 2898 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2899 continue; 2900 auto *Cast = dyn_cast<CastInst>(&Inst); 2901 if (!Cast || !Cast->isNoopCast(DL)) 2902 return nullptr; 2903 } 2904 } 2905 // Validate the rest of constraint #1 by matching on the pred branch. 2906 Instruction *TI = PredBB->getTerminator(); 2907 BasicBlock *TrueBB, *FalseBB; 2908 ICmpInst::Predicate Pred; 2909 if (!match(TI, m_Br(m_ICmp(Pred, 2910 m_CombineOr(m_Specific(Op), 2911 m_Specific(Op->stripPointerCasts())), 2912 m_Zero()), 2913 TrueBB, FalseBB))) 2914 return nullptr; 2915 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2916 return nullptr; 2917 2918 // Validate constraint #3: Ensure the null case just falls through. 2919 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2920 return nullptr; 2921 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2922 "Broken CFG: missing edge from predecessor to successor"); 2923 2924 // At this point, we know that everything in FreeInstrBB can be moved 2925 // before TI. 2926 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) { 2927 if (&Instr == FreeInstrBBTerminator) 2928 break; 2929 Instr.moveBefore(TI); 2930 } 2931 assert(FreeInstrBB->size() == 1 && 2932 "Only the branch instruction should remain"); 2933 2934 // Now that we've moved the call to free before the NULL check, we have to 2935 // remove any attributes on its parameter that imply it's non-null, because 2936 // those attributes might have only been valid because of the NULL check, and 2937 // we can get miscompiles if we keep them. This is conservative if non-null is 2938 // also implied by something other than the NULL check, but it's guaranteed to 2939 // be correct, and the conservativeness won't matter in practice, since the 2940 // attributes are irrelevant for the call to free itself and the pointer 2941 // shouldn't be used after the call. 2942 AttributeList Attrs = FI.getAttributes(); 2943 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull); 2944 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable); 2945 if (Dereferenceable.isValid()) { 2946 uint64_t Bytes = Dereferenceable.getDereferenceableBytes(); 2947 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, 2948 Attribute::Dereferenceable); 2949 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes); 2950 } 2951 FI.setAttributes(Attrs); 2952 2953 return &FI; 2954 } 2955 2956 Instruction *InstCombinerImpl::visitFree(CallInst &FI) { 2957 Value *Op = FI.getArgOperand(0); 2958 2959 // free undef -> unreachable. 2960 if (isa<UndefValue>(Op)) { 2961 // Leave a marker since we can't modify the CFG here. 2962 CreateNonTerminatorUnreachable(&FI); 2963 return eraseInstFromFunction(FI); 2964 } 2965 2966 // If we have 'free null' delete the instruction. This can happen in stl code 2967 // when lots of inlining happens. 2968 if (isa<ConstantPointerNull>(Op)) 2969 return eraseInstFromFunction(FI); 2970 2971 // If we had free(realloc(...)) with no intervening uses, then eliminate the 2972 // realloc() entirely. 2973 if (CallInst *CI = dyn_cast<CallInst>(Op)) { 2974 if (CI->hasOneUse() && isReallocLikeFn(CI, &TLI)) { 2975 return eraseInstFromFunction( 2976 *replaceInstUsesWith(*CI, CI->getOperand(0))); 2977 } 2978 } 2979 2980 // If we optimize for code size, try to move the call to free before the null 2981 // test so that simplify cfg can remove the empty block and dead code 2982 // elimination the branch. I.e., helps to turn something like: 2983 // if (foo) free(foo); 2984 // into 2985 // free(foo); 2986 // 2987 // Note that we can only do this for 'free' and not for any flavor of 2988 // 'operator delete'; there is no 'operator delete' symbol for which we are 2989 // permitted to invent a call, even if we're passing in a null pointer. 2990 if (MinimizeSize) { 2991 LibFunc Func; 2992 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 2993 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 2994 return I; 2995 } 2996 2997 return nullptr; 2998 } 2999 3000 static bool isMustTailCall(Value *V) { 3001 if (auto *CI = dyn_cast<CallInst>(V)) 3002 return CI->isMustTailCall(); 3003 return false; 3004 } 3005 3006 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 3007 if (RI.getNumOperands() == 0) // ret void 3008 return nullptr; 3009 3010 Value *ResultOp = RI.getOperand(0); 3011 Type *VTy = ResultOp->getType(); 3012 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp)) 3013 return nullptr; 3014 3015 // Don't replace result of musttail calls. 3016 if (isMustTailCall(ResultOp)) 3017 return nullptr; 3018 3019 // There might be assume intrinsics dominating this return that completely 3020 // determine the value. If so, constant fold it. 3021 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 3022 if (Known.isConstant()) 3023 return replaceOperand(RI, 0, 3024 Constant::getIntegerValue(VTy, Known.getConstant())); 3025 3026 return nullptr; 3027 } 3028 3029 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! 3030 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 3031 // Try to remove the previous instruction if it must lead to unreachable. 3032 // This includes instructions like stores and "llvm.assume" that may not get 3033 // removed by simple dead code elimination. 3034 while (Instruction *Prev = I.getPrevNonDebugInstruction()) { 3035 // While we theoretically can erase EH, that would result in a block that 3036 // used to start with an EH no longer starting with EH, which is invalid. 3037 // To make it valid, we'd need to fixup predecessors to no longer refer to 3038 // this block, but that changes CFG, which is not allowed in InstCombine. 3039 if (Prev->isEHPad()) 3040 return nullptr; // Can not drop any more instructions. We're done here. 3041 3042 if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) 3043 return nullptr; // Can not drop any more instructions. We're done here. 3044 // Otherwise, this instruction can be freely erased, 3045 // even if it is not side-effect free. 3046 3047 // A value may still have uses before we process it here (for example, in 3048 // another unreachable block), so convert those to poison. 3049 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); 3050 eraseInstFromFunction(*Prev); 3051 } 3052 assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty."); 3053 // FIXME: recurse into unconditional predecessors? 3054 return nullptr; 3055 } 3056 3057 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 3058 assert(BI.isUnconditional() && "Only for unconditional branches."); 3059 3060 // If this store is the second-to-last instruction in the basic block 3061 // (excluding debug info and bitcasts of pointers) and if the block ends with 3062 // an unconditional branch, try to move the store to the successor block. 3063 3064 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 3065 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 3066 return BBI->isDebugOrPseudoInst() || 3067 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 3068 }; 3069 3070 BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 3071 do { 3072 if (BBI != FirstInstr) 3073 --BBI; 3074 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 3075 3076 return dyn_cast<StoreInst>(BBI); 3077 }; 3078 3079 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 3080 if (mergeStoreIntoSuccessor(*SI)) 3081 return &BI; 3082 3083 return nullptr; 3084 } 3085 3086 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 3087 if (BI.isUnconditional()) 3088 return visitUnconditionalBranchInst(BI); 3089 3090 // Change br (not X), label True, label False to: br X, label False, True 3091 Value *X = nullptr; 3092 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 3093 !isa<Constant>(X)) { 3094 // Swap Destinations and condition... 3095 BI.swapSuccessors(); 3096 return replaceOperand(BI, 0, X); 3097 } 3098 3099 // If the condition is irrelevant, remove the use so that other 3100 // transforms on the condition become more effective. 3101 if (!isa<ConstantInt>(BI.getCondition()) && 3102 BI.getSuccessor(0) == BI.getSuccessor(1)) 3103 return replaceOperand( 3104 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType())); 3105 3106 // Canonicalize, for example, fcmp_one -> fcmp_oeq. 3107 CmpInst::Predicate Pred; 3108 if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())), 3109 m_BasicBlock(), m_BasicBlock())) && 3110 !isCanonicalPredicate(Pred)) { 3111 // Swap destinations and condition. 3112 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 3113 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 3114 BI.swapSuccessors(); 3115 Worklist.push(Cond); 3116 return &BI; 3117 } 3118 3119 return nullptr; 3120 } 3121 3122 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 3123 Value *Cond = SI.getCondition(); 3124 Value *Op0; 3125 ConstantInt *AddRHS; 3126 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 3127 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 3128 for (auto Case : SI.cases()) { 3129 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 3130 assert(isa<ConstantInt>(NewCase) && 3131 "Result of expression should be constant"); 3132 Case.setValue(cast<ConstantInt>(NewCase)); 3133 } 3134 return replaceOperand(SI, 0, Op0); 3135 } 3136 3137 KnownBits Known = computeKnownBits(Cond, 0, &SI); 3138 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 3139 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 3140 3141 // Compute the number of leading bits we can ignore. 3142 // TODO: A better way to determine this would use ComputeNumSignBits(). 3143 for (auto &C : SI.cases()) { 3144 LeadingKnownZeros = std::min( 3145 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 3146 LeadingKnownOnes = std::min( 3147 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 3148 } 3149 3150 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 3151 3152 // Shrink the condition operand if the new type is smaller than the old type. 3153 // But do not shrink to a non-standard type, because backend can't generate 3154 // good code for that yet. 3155 // TODO: We can make it aggressive again after fixing PR39569. 3156 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 3157 shouldChangeType(Known.getBitWidth(), NewWidth)) { 3158 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 3159 Builder.SetInsertPoint(&SI); 3160 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 3161 3162 for (auto Case : SI.cases()) { 3163 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3164 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3165 } 3166 return replaceOperand(SI, 0, NewCond); 3167 } 3168 3169 return nullptr; 3170 } 3171 3172 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 3173 Value *Agg = EV.getAggregateOperand(); 3174 3175 if (!EV.hasIndices()) 3176 return replaceInstUsesWith(EV, Agg); 3177 3178 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 3179 SQ.getWithInstruction(&EV))) 3180 return replaceInstUsesWith(EV, V); 3181 3182 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 3183 // We're extracting from an insertvalue instruction, compare the indices 3184 const unsigned *exti, *exte, *insi, *inse; 3185 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 3186 exte = EV.idx_end(), inse = IV->idx_end(); 3187 exti != exte && insi != inse; 3188 ++exti, ++insi) { 3189 if (*insi != *exti) 3190 // The insert and extract both reference distinctly different elements. 3191 // This means the extract is not influenced by the insert, and we can 3192 // replace the aggregate operand of the extract with the aggregate 3193 // operand of the insert. i.e., replace 3194 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3195 // %E = extractvalue { i32, { i32 } } %I, 0 3196 // with 3197 // %E = extractvalue { i32, { i32 } } %A, 0 3198 return ExtractValueInst::Create(IV->getAggregateOperand(), 3199 EV.getIndices()); 3200 } 3201 if (exti == exte && insi == inse) 3202 // Both iterators are at the end: Index lists are identical. Replace 3203 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3204 // %C = extractvalue { i32, { i32 } } %B, 1, 0 3205 // with "i32 42" 3206 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 3207 if (exti == exte) { 3208 // The extract list is a prefix of the insert list. i.e. replace 3209 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3210 // %E = extractvalue { i32, { i32 } } %I, 1 3211 // with 3212 // %X = extractvalue { i32, { i32 } } %A, 1 3213 // %E = insertvalue { i32 } %X, i32 42, 0 3214 // by switching the order of the insert and extract (though the 3215 // insertvalue should be left in, since it may have other uses). 3216 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 3217 EV.getIndices()); 3218 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 3219 makeArrayRef(insi, inse)); 3220 } 3221 if (insi == inse) 3222 // The insert list is a prefix of the extract list 3223 // We can simply remove the common indices from the extract and make it 3224 // operate on the inserted value instead of the insertvalue result. 3225 // i.e., replace 3226 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3227 // %E = extractvalue { i32, { i32 } } %I, 1, 0 3228 // with 3229 // %E extractvalue { i32 } { i32 42 }, 0 3230 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 3231 makeArrayRef(exti, exte)); 3232 } 3233 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 3234 // We're extracting from an overflow intrinsic, see if we're the only user, 3235 // which allows us to simplify multiple result intrinsics to simpler 3236 // things that just get one value. 3237 if (WO->hasOneUse()) { 3238 // Check if we're grabbing only the result of a 'with overflow' intrinsic 3239 // and replace it with a traditional binary instruction. 3240 if (*EV.idx_begin() == 0) { 3241 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 3242 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 3243 // Replace the old instruction's uses with poison. 3244 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); 3245 eraseInstFromFunction(*WO); 3246 return BinaryOperator::Create(BinOp, LHS, RHS); 3247 } 3248 3249 assert(*EV.idx_begin() == 1 && 3250 "unexpected extract index for overflow inst"); 3251 3252 // If only the overflow result is used, and the right hand side is a 3253 // constant (or constant splat), we can remove the intrinsic by directly 3254 // checking for overflow. 3255 const APInt *C; 3256 if (match(WO->getRHS(), m_APInt(C))) { 3257 // Compute the no-wrap range for LHS given RHS=C, then construct an 3258 // equivalent icmp, potentially using an offset. 3259 ConstantRange NWR = 3260 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 3261 WO->getNoWrapKind()); 3262 3263 CmpInst::Predicate Pred; 3264 APInt NewRHSC, Offset; 3265 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 3266 auto *OpTy = WO->getRHS()->getType(); 3267 auto *NewLHS = WO->getLHS(); 3268 if (Offset != 0) 3269 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset)); 3270 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, 3271 ConstantInt::get(OpTy, NewRHSC)); 3272 } 3273 } 3274 } 3275 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 3276 // If the (non-volatile) load only has one use, we can rewrite this to a 3277 // load from a GEP. This reduces the size of the load. If a load is used 3278 // only by extractvalue instructions then this either must have been 3279 // optimized before, or it is a struct with padding, in which case we 3280 // don't want to do the transformation as it loses padding knowledge. 3281 if (L->isSimple() && L->hasOneUse()) { 3282 // extractvalue has integer indices, getelementptr has Value*s. Convert. 3283 SmallVector<Value*, 4> Indices; 3284 // Prefix an i32 0 since we need the first element. 3285 Indices.push_back(Builder.getInt32(0)); 3286 for (unsigned Idx : EV.indices()) 3287 Indices.push_back(Builder.getInt32(Idx)); 3288 3289 // We need to insert these at the location of the old load, not at that of 3290 // the extractvalue. 3291 Builder.SetInsertPoint(L); 3292 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 3293 L->getPointerOperand(), Indices); 3294 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 3295 // Whatever aliasing information we had for the orignal load must also 3296 // hold for the smaller load, so propagate the annotations. 3297 NL->setAAMetadata(L->getAAMetadata()); 3298 // Returning the load directly will cause the main loop to insert it in 3299 // the wrong spot, so use replaceInstUsesWith(). 3300 return replaceInstUsesWith(EV, NL); 3301 } 3302 // We could simplify extracts from other values. Note that nested extracts may 3303 // already be simplified implicitly by the above: extract (extract (insert) ) 3304 // will be translated into extract ( insert ( extract ) ) first and then just 3305 // the value inserted, if appropriate. Similarly for extracts from single-use 3306 // loads: extract (extract (load)) will be translated to extract (load (gep)) 3307 // and if again single-use then via load (gep (gep)) to load (gep). 3308 // However, double extracts from e.g. function arguments or return values 3309 // aren't handled yet. 3310 return nullptr; 3311 } 3312 3313 /// Return 'true' if the given typeinfo will match anything. 3314 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 3315 switch (Personality) { 3316 case EHPersonality::GNU_C: 3317 case EHPersonality::GNU_C_SjLj: 3318 case EHPersonality::Rust: 3319 // The GCC C EH and Rust personality only exists to support cleanups, so 3320 // it's not clear what the semantics of catch clauses are. 3321 return false; 3322 case EHPersonality::Unknown: 3323 return false; 3324 case EHPersonality::GNU_Ada: 3325 // While __gnat_all_others_value will match any Ada exception, it doesn't 3326 // match foreign exceptions (or didn't, before gcc-4.7). 3327 return false; 3328 case EHPersonality::GNU_CXX: 3329 case EHPersonality::GNU_CXX_SjLj: 3330 case EHPersonality::GNU_ObjC: 3331 case EHPersonality::MSVC_X86SEH: 3332 case EHPersonality::MSVC_TableSEH: 3333 case EHPersonality::MSVC_CXX: 3334 case EHPersonality::CoreCLR: 3335 case EHPersonality::Wasm_CXX: 3336 case EHPersonality::XL_CXX: 3337 return TypeInfo->isNullValue(); 3338 } 3339 llvm_unreachable("invalid enum"); 3340 } 3341 3342 static bool shorter_filter(const Value *LHS, const Value *RHS) { 3343 return 3344 cast<ArrayType>(LHS->getType())->getNumElements() 3345 < 3346 cast<ArrayType>(RHS->getType())->getNumElements(); 3347 } 3348 3349 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 3350 // The logic here should be correct for any real-world personality function. 3351 // However if that turns out not to be true, the offending logic can always 3352 // be conditioned on the personality function, like the catch-all logic is. 3353 EHPersonality Personality = 3354 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 3355 3356 // Simplify the list of clauses, eg by removing repeated catch clauses 3357 // (these are often created by inlining). 3358 bool MakeNewInstruction = false; // If true, recreate using the following: 3359 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 3360 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 3361 3362 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 3363 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 3364 bool isLastClause = i + 1 == e; 3365 if (LI.isCatch(i)) { 3366 // A catch clause. 3367 Constant *CatchClause = LI.getClause(i); 3368 Constant *TypeInfo = CatchClause->stripPointerCasts(); 3369 3370 // If we already saw this clause, there is no point in having a second 3371 // copy of it. 3372 if (AlreadyCaught.insert(TypeInfo).second) { 3373 // This catch clause was not already seen. 3374 NewClauses.push_back(CatchClause); 3375 } else { 3376 // Repeated catch clause - drop the redundant copy. 3377 MakeNewInstruction = true; 3378 } 3379 3380 // If this is a catch-all then there is no point in keeping any following 3381 // clauses or marking the landingpad as having a cleanup. 3382 if (isCatchAll(Personality, TypeInfo)) { 3383 if (!isLastClause) 3384 MakeNewInstruction = true; 3385 CleanupFlag = false; 3386 break; 3387 } 3388 } else { 3389 // A filter clause. If any of the filter elements were already caught 3390 // then they can be dropped from the filter. It is tempting to try to 3391 // exploit the filter further by saying that any typeinfo that does not 3392 // occur in the filter can't be caught later (and thus can be dropped). 3393 // However this would be wrong, since typeinfos can match without being 3394 // equal (for example if one represents a C++ class, and the other some 3395 // class derived from it). 3396 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 3397 Constant *FilterClause = LI.getClause(i); 3398 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 3399 unsigned NumTypeInfos = FilterType->getNumElements(); 3400 3401 // An empty filter catches everything, so there is no point in keeping any 3402 // following clauses or marking the landingpad as having a cleanup. By 3403 // dealing with this case here the following code is made a bit simpler. 3404 if (!NumTypeInfos) { 3405 NewClauses.push_back(FilterClause); 3406 if (!isLastClause) 3407 MakeNewInstruction = true; 3408 CleanupFlag = false; 3409 break; 3410 } 3411 3412 bool MakeNewFilter = false; // If true, make a new filter. 3413 SmallVector<Constant *, 16> NewFilterElts; // New elements. 3414 if (isa<ConstantAggregateZero>(FilterClause)) { 3415 // Not an empty filter - it contains at least one null typeinfo. 3416 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 3417 Constant *TypeInfo = 3418 Constant::getNullValue(FilterType->getElementType()); 3419 // If this typeinfo is a catch-all then the filter can never match. 3420 if (isCatchAll(Personality, TypeInfo)) { 3421 // Throw the filter away. 3422 MakeNewInstruction = true; 3423 continue; 3424 } 3425 3426 // There is no point in having multiple copies of this typeinfo, so 3427 // discard all but the first copy if there is more than one. 3428 NewFilterElts.push_back(TypeInfo); 3429 if (NumTypeInfos > 1) 3430 MakeNewFilter = true; 3431 } else { 3432 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 3433 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 3434 NewFilterElts.reserve(NumTypeInfos); 3435 3436 // Remove any filter elements that were already caught or that already 3437 // occurred in the filter. While there, see if any of the elements are 3438 // catch-alls. If so, the filter can be discarded. 3439 bool SawCatchAll = false; 3440 for (unsigned j = 0; j != NumTypeInfos; ++j) { 3441 Constant *Elt = Filter->getOperand(j); 3442 Constant *TypeInfo = Elt->stripPointerCasts(); 3443 if (isCatchAll(Personality, TypeInfo)) { 3444 // This element is a catch-all. Bail out, noting this fact. 3445 SawCatchAll = true; 3446 break; 3447 } 3448 3449 // Even if we've seen a type in a catch clause, we don't want to 3450 // remove it from the filter. An unexpected type handler may be 3451 // set up for a call site which throws an exception of the same 3452 // type caught. In order for the exception thrown by the unexpected 3453 // handler to propagate correctly, the filter must be correctly 3454 // described for the call site. 3455 // 3456 // Example: 3457 // 3458 // void unexpected() { throw 1;} 3459 // void foo() throw (int) { 3460 // std::set_unexpected(unexpected); 3461 // try { 3462 // throw 2.0; 3463 // } catch (int i) {} 3464 // } 3465 3466 // There is no point in having multiple copies of the same typeinfo in 3467 // a filter, so only add it if we didn't already. 3468 if (SeenInFilter.insert(TypeInfo).second) 3469 NewFilterElts.push_back(cast<Constant>(Elt)); 3470 } 3471 // A filter containing a catch-all cannot match anything by definition. 3472 if (SawCatchAll) { 3473 // Throw the filter away. 3474 MakeNewInstruction = true; 3475 continue; 3476 } 3477 3478 // If we dropped something from the filter, make a new one. 3479 if (NewFilterElts.size() < NumTypeInfos) 3480 MakeNewFilter = true; 3481 } 3482 if (MakeNewFilter) { 3483 FilterType = ArrayType::get(FilterType->getElementType(), 3484 NewFilterElts.size()); 3485 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 3486 MakeNewInstruction = true; 3487 } 3488 3489 NewClauses.push_back(FilterClause); 3490 3491 // If the new filter is empty then it will catch everything so there is 3492 // no point in keeping any following clauses or marking the landingpad 3493 // as having a cleanup. The case of the original filter being empty was 3494 // already handled above. 3495 if (MakeNewFilter && !NewFilterElts.size()) { 3496 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3497 CleanupFlag = false; 3498 break; 3499 } 3500 } 3501 } 3502 3503 // If several filters occur in a row then reorder them so that the shortest 3504 // filters come first (those with the smallest number of elements). This is 3505 // advantageous because shorter filters are more likely to match, speeding up 3506 // unwinding, but mostly because it increases the effectiveness of the other 3507 // filter optimizations below. 3508 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3509 unsigned j; 3510 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3511 for (j = i; j != e; ++j) 3512 if (!isa<ArrayType>(NewClauses[j]->getType())) 3513 break; 3514 3515 // Check whether the filters are already sorted by length. We need to know 3516 // if sorting them is actually going to do anything so that we only make a 3517 // new landingpad instruction if it does. 3518 for (unsigned k = i; k + 1 < j; ++k) 3519 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3520 // Not sorted, so sort the filters now. Doing an unstable sort would be 3521 // correct too but reordering filters pointlessly might confuse users. 3522 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3523 shorter_filter); 3524 MakeNewInstruction = true; 3525 break; 3526 } 3527 3528 // Look for the next batch of filters. 3529 i = j + 1; 3530 } 3531 3532 // If typeinfos matched if and only if equal, then the elements of a filter L 3533 // that occurs later than a filter F could be replaced by the intersection of 3534 // the elements of F and L. In reality two typeinfos can match without being 3535 // equal (for example if one represents a C++ class, and the other some class 3536 // derived from it) so it would be wrong to perform this transform in general. 3537 // However the transform is correct and useful if F is a subset of L. In that 3538 // case L can be replaced by F, and thus removed altogether since repeating a 3539 // filter is pointless. So here we look at all pairs of filters F and L where 3540 // L follows F in the list of clauses, and remove L if every element of F is 3541 // an element of L. This can occur when inlining C++ functions with exception 3542 // specifications. 3543 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3544 // Examine each filter in turn. 3545 Value *Filter = NewClauses[i]; 3546 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3547 if (!FTy) 3548 // Not a filter - skip it. 3549 continue; 3550 unsigned FElts = FTy->getNumElements(); 3551 // Examine each filter following this one. Doing this backwards means that 3552 // we don't have to worry about filters disappearing under us when removed. 3553 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3554 Value *LFilter = NewClauses[j]; 3555 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3556 if (!LTy) 3557 // Not a filter - skip it. 3558 continue; 3559 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3560 // an element of LFilter, then discard LFilter. 3561 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3562 // If Filter is empty then it is a subset of LFilter. 3563 if (!FElts) { 3564 // Discard LFilter. 3565 NewClauses.erase(J); 3566 MakeNewInstruction = true; 3567 // Move on to the next filter. 3568 continue; 3569 } 3570 unsigned LElts = LTy->getNumElements(); 3571 // If Filter is longer than LFilter then it cannot be a subset of it. 3572 if (FElts > LElts) 3573 // Move on to the next filter. 3574 continue; 3575 // At this point we know that LFilter has at least one element. 3576 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3577 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3578 // already know that Filter is not longer than LFilter). 3579 if (isa<ConstantAggregateZero>(Filter)) { 3580 assert(FElts <= LElts && "Should have handled this case earlier!"); 3581 // Discard LFilter. 3582 NewClauses.erase(J); 3583 MakeNewInstruction = true; 3584 } 3585 // Move on to the next filter. 3586 continue; 3587 } 3588 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3589 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3590 // Since Filter is non-empty and contains only zeros, it is a subset of 3591 // LFilter iff LFilter contains a zero. 3592 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3593 for (unsigned l = 0; l != LElts; ++l) 3594 if (LArray->getOperand(l)->isNullValue()) { 3595 // LFilter contains a zero - discard it. 3596 NewClauses.erase(J); 3597 MakeNewInstruction = true; 3598 break; 3599 } 3600 // Move on to the next filter. 3601 continue; 3602 } 3603 // At this point we know that both filters are ConstantArrays. Loop over 3604 // operands to see whether every element of Filter is also an element of 3605 // LFilter. Since filters tend to be short this is probably faster than 3606 // using a method that scales nicely. 3607 ConstantArray *FArray = cast<ConstantArray>(Filter); 3608 bool AllFound = true; 3609 for (unsigned f = 0; f != FElts; ++f) { 3610 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3611 AllFound = false; 3612 for (unsigned l = 0; l != LElts; ++l) { 3613 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3614 if (LTypeInfo == FTypeInfo) { 3615 AllFound = true; 3616 break; 3617 } 3618 } 3619 if (!AllFound) 3620 break; 3621 } 3622 if (AllFound) { 3623 // Discard LFilter. 3624 NewClauses.erase(J); 3625 MakeNewInstruction = true; 3626 } 3627 // Move on to the next filter. 3628 } 3629 } 3630 3631 // If we changed any of the clauses, replace the old landingpad instruction 3632 // with a new one. 3633 if (MakeNewInstruction) { 3634 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3635 NewClauses.size()); 3636 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3637 NLI->addClause(NewClauses[i]); 3638 // A landing pad with no clauses must have the cleanup flag set. It is 3639 // theoretically possible, though highly unlikely, that we eliminated all 3640 // clauses. If so, force the cleanup flag to true. 3641 if (NewClauses.empty()) 3642 CleanupFlag = true; 3643 NLI->setCleanup(CleanupFlag); 3644 return NLI; 3645 } 3646 3647 // Even if none of the clauses changed, we may nonetheless have understood 3648 // that the cleanup flag is pointless. Clear it if so. 3649 if (LI.isCleanup() != CleanupFlag) { 3650 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3651 LI.setCleanup(CleanupFlag); 3652 return &LI; 3653 } 3654 3655 return nullptr; 3656 } 3657 3658 Value * 3659 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { 3660 // Try to push freeze through instructions that propagate but don't produce 3661 // poison as far as possible. If an operand of freeze follows three 3662 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one 3663 // guaranteed-non-poison operands then push the freeze through to the one 3664 // operand that is not guaranteed non-poison. The actual transform is as 3665 // follows. 3666 // Op1 = ... ; Op1 can be posion 3667 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have 3668 // ; single guaranteed-non-poison operands 3669 // ... = Freeze(Op0) 3670 // => 3671 // Op1 = ... 3672 // Op1.fr = Freeze(Op1) 3673 // ... = Inst(Op1.fr, NonPoisonOps...) 3674 auto *OrigOp = OrigFI.getOperand(0); 3675 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp); 3676 3677 // While we could change the other users of OrigOp to use freeze(OrigOp), that 3678 // potentially reduces their optimization potential, so let's only do this iff 3679 // the OrigOp is only used by the freeze. 3680 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp)) 3681 return nullptr; 3682 3683 // We can't push the freeze through an instruction which can itself create 3684 // poison. If the only source of new poison is flags, we can simply 3685 // strip them (since we know the only use is the freeze and nothing can 3686 // benefit from them.) 3687 if (canCreateUndefOrPoison(cast<Operator>(OrigOp), /*ConsiderFlags*/ false)) 3688 return nullptr; 3689 3690 // If operand is guaranteed not to be poison, there is no need to add freeze 3691 // to the operand. So we first find the operand that is not guaranteed to be 3692 // poison. 3693 Use *MaybePoisonOperand = nullptr; 3694 for (Use &U : OrigOpInst->operands()) { 3695 if (isGuaranteedNotToBeUndefOrPoison(U.get())) 3696 continue; 3697 if (!MaybePoisonOperand) 3698 MaybePoisonOperand = &U; 3699 else 3700 return nullptr; 3701 } 3702 3703 OrigOpInst->dropPoisonGeneratingFlags(); 3704 3705 // If all operands are guaranteed to be non-poison, we can drop freeze. 3706 if (!MaybePoisonOperand) 3707 return OrigOp; 3708 3709 auto *FrozenMaybePoisonOperand = new FreezeInst( 3710 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); 3711 3712 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); 3713 FrozenMaybePoisonOperand->insertBefore(OrigOpInst); 3714 return OrigOp; 3715 } 3716 3717 bool InstCombinerImpl::freezeDominatedUses(FreezeInst &FI) { 3718 Value *Op = FI.getOperand(0); 3719 3720 if (isa<Constant>(Op)) 3721 return false; 3722 3723 bool Changed = false; 3724 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { 3725 bool Dominates = DT.dominates(&FI, U); 3726 Changed |= Dominates; 3727 return Dominates; 3728 }); 3729 3730 return Changed; 3731 } 3732 3733 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 3734 Value *Op0 = I.getOperand(0); 3735 3736 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3737 return replaceInstUsesWith(I, V); 3738 3739 // freeze (phi const, x) --> phi const, (freeze x) 3740 if (auto *PN = dyn_cast<PHINode>(Op0)) { 3741 if (Instruction *NV = foldOpIntoPhi(I, PN)) 3742 return NV; 3743 } 3744 3745 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) 3746 return replaceInstUsesWith(I, NI); 3747 3748 if (match(Op0, m_Undef())) { 3749 // If I is freeze(undef), see its uses and fold it to the best constant. 3750 // - or: pick -1 3751 // - select's condition: pick the value that leads to choosing a constant 3752 // - other ops: pick 0 3753 Constant *BestValue = nullptr; 3754 Constant *NullValue = Constant::getNullValue(I.getType()); 3755 for (const auto *U : I.users()) { 3756 Constant *C = NullValue; 3757 3758 if (match(U, m_Or(m_Value(), m_Value()))) 3759 C = Constant::getAllOnesValue(I.getType()); 3760 else if (const auto *SI = dyn_cast<SelectInst>(U)) { 3761 if (SI->getCondition() == &I) { 3762 APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1); 3763 C = Constant::getIntegerValue(I.getType(), CondVal); 3764 } 3765 } 3766 3767 if (!BestValue) 3768 BestValue = C; 3769 else if (BestValue != C) 3770 BestValue = NullValue; 3771 } 3772 3773 return replaceInstUsesWith(I, BestValue); 3774 } 3775 3776 // Replace all dominated uses of Op to freeze(Op). 3777 if (freezeDominatedUses(I)) 3778 return &I; 3779 3780 return nullptr; 3781 } 3782 3783 /// Check for case where the call writes to an otherwise dead alloca. This 3784 /// shows up for unused out-params in idiomatic C/C++ code. Note that this 3785 /// helper *only* analyzes the write; doesn't check any other legality aspect. 3786 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) { 3787 auto *CB = dyn_cast<CallBase>(I); 3788 if (!CB) 3789 // TODO: handle e.g. store to alloca here - only worth doing if we extend 3790 // to allow reload along used path as described below. Otherwise, this 3791 // is simply a store to a dead allocation which will be removed. 3792 return false; 3793 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI); 3794 if (!Dest) 3795 return false; 3796 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr)); 3797 if (!AI) 3798 // TODO: allow malloc? 3799 return false; 3800 // TODO: allow memory access dominated by move point? Note that since AI 3801 // could have a reference to itself captured by the call, we would need to 3802 // account for cycles in doing so. 3803 SmallVector<const User *> AllocaUsers; 3804 SmallPtrSet<const User *, 4> Visited; 3805 auto pushUsers = [&](const Instruction &I) { 3806 for (const User *U : I.users()) { 3807 if (Visited.insert(U).second) 3808 AllocaUsers.push_back(U); 3809 } 3810 }; 3811 pushUsers(*AI); 3812 while (!AllocaUsers.empty()) { 3813 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val()); 3814 if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) || 3815 isa<AddrSpaceCastInst>(UserI)) { 3816 pushUsers(*UserI); 3817 continue; 3818 } 3819 if (UserI == CB) 3820 continue; 3821 // TODO: support lifetime.start/end here 3822 return false; 3823 } 3824 return true; 3825 } 3826 3827 /// Try to move the specified instruction from its current block into the 3828 /// beginning of DestBlock, which can only happen if it's safe to move the 3829 /// instruction past all of the instructions between it and the end of its 3830 /// block. 3831 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock, 3832 TargetLibraryInfo &TLI) { 3833 assert(I->getUniqueUndroppableUser() && "Invariants didn't hold!"); 3834 BasicBlock *SrcBlock = I->getParent(); 3835 3836 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3837 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || 3838 I->isTerminator()) 3839 return false; 3840 3841 // Do not sink static or dynamic alloca instructions. Static allocas must 3842 // remain in the entry block, and dynamic allocas must not be sunk in between 3843 // a stacksave / stackrestore pair, which would incorrectly shorten its 3844 // lifetime. 3845 if (isa<AllocaInst>(I)) 3846 return false; 3847 3848 // Do not sink into catchswitch blocks. 3849 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 3850 return false; 3851 3852 // Do not sink convergent call instructions. 3853 if (auto *CI = dyn_cast<CallInst>(I)) { 3854 if (CI->isConvergent()) 3855 return false; 3856 } 3857 3858 // Unless we can prove that the memory write isn't visibile except on the 3859 // path we're sinking to, we must bail. 3860 if (I->mayWriteToMemory()) { 3861 if (!SoleWriteToDeadLocal(I, TLI)) 3862 return false; 3863 } 3864 3865 // We can only sink load instructions if there is nothing between the load and 3866 // the end of block that could change the value. 3867 if (I->mayReadFromMemory()) { 3868 // We don't want to do any sophisticated alias analysis, so we only check 3869 // the instructions after I in I's parent block if we try to sink to its 3870 // successor block. 3871 if (DestBlock->getUniquePredecessor() != I->getParent()) 3872 return false; 3873 for (BasicBlock::iterator Scan = std::next(I->getIterator()), 3874 E = I->getParent()->end(); 3875 Scan != E; ++Scan) 3876 if (Scan->mayWriteToMemory()) 3877 return false; 3878 } 3879 3880 I->dropDroppableUses([DestBlock](const Use *U) { 3881 if (auto *I = dyn_cast<Instruction>(U->getUser())) 3882 return I->getParent() != DestBlock; 3883 return true; 3884 }); 3885 /// FIXME: We could remove droppable uses that are not dominated by 3886 /// the new position. 3887 3888 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 3889 I->moveBefore(&*InsertPos); 3890 ++NumSunkInst; 3891 3892 // Also sink all related debug uses from the source basic block. Otherwise we 3893 // get debug use before the def. Attempt to salvage debug uses first, to 3894 // maximise the range variables have location for. If we cannot salvage, then 3895 // mark the location undef: we know it was supposed to receive a new location 3896 // here, but that computation has been sunk. 3897 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 3898 findDbgUsers(DbgUsers, I); 3899 // Process the sinking DbgUsers in reverse order, as we only want to clone the 3900 // last appearing debug intrinsic for each given variable. 3901 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 3902 for (DbgVariableIntrinsic *DVI : DbgUsers) 3903 if (DVI->getParent() == SrcBlock) 3904 DbgUsersToSink.push_back(DVI); 3905 llvm::sort(DbgUsersToSink, 3906 [](auto *A, auto *B) { return B->comesBefore(A); }); 3907 3908 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 3909 SmallSet<DebugVariable, 4> SunkVariables; 3910 for (auto User : DbgUsersToSink) { 3911 // A dbg.declare instruction should not be cloned, since there can only be 3912 // one per variable fragment. It should be left in the original place 3913 // because the sunk instruction is not an alloca (otherwise we could not be 3914 // here). 3915 if (isa<DbgDeclareInst>(User)) 3916 continue; 3917 3918 DebugVariable DbgUserVariable = 3919 DebugVariable(User->getVariable(), User->getExpression(), 3920 User->getDebugLoc()->getInlinedAt()); 3921 3922 if (!SunkVariables.insert(DbgUserVariable).second) 3923 continue; 3924 3925 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 3926 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 3927 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 3928 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 3929 } 3930 3931 // Perform salvaging without the clones, then sink the clones. 3932 if (!DIIClones.empty()) { 3933 salvageDebugInfoForDbgValues(*I, DbgUsers); 3934 // The clones are in reverse order of original appearance, reverse again to 3935 // maintain the original order. 3936 for (auto &DIIClone : llvm::reverse(DIIClones)) { 3937 DIIClone->insertBefore(&*InsertPos); 3938 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 3939 } 3940 } 3941 3942 return true; 3943 } 3944 3945 bool InstCombinerImpl::run() { 3946 while (!Worklist.isEmpty()) { 3947 // Walk deferred instructions in reverse order, and push them to the 3948 // worklist, which means they'll end up popped from the worklist in-order. 3949 while (Instruction *I = Worklist.popDeferred()) { 3950 // Check to see if we can DCE the instruction. We do this already here to 3951 // reduce the number of uses and thus allow other folds to trigger. 3952 // Note that eraseInstFromFunction() may push additional instructions on 3953 // the deferred worklist, so this will DCE whole instruction chains. 3954 if (isInstructionTriviallyDead(I, &TLI)) { 3955 eraseInstFromFunction(*I); 3956 ++NumDeadInst; 3957 continue; 3958 } 3959 3960 Worklist.push(I); 3961 } 3962 3963 Instruction *I = Worklist.removeOne(); 3964 if (I == nullptr) continue; // skip null values. 3965 3966 // Check to see if we can DCE the instruction. 3967 if (isInstructionTriviallyDead(I, &TLI)) { 3968 eraseInstFromFunction(*I); 3969 ++NumDeadInst; 3970 continue; 3971 } 3972 3973 if (!DebugCounter::shouldExecute(VisitCounter)) 3974 continue; 3975 3976 // Instruction isn't dead, see if we can constant propagate it. 3977 if (!I->use_empty() && 3978 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 3979 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 3980 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 3981 << '\n'); 3982 3983 // Add operands to the worklist. 3984 replaceInstUsesWith(*I, C); 3985 ++NumConstProp; 3986 if (isInstructionTriviallyDead(I, &TLI)) 3987 eraseInstFromFunction(*I); 3988 MadeIRChange = true; 3989 continue; 3990 } 3991 } 3992 3993 // See if we can trivially sink this instruction to its user if we can 3994 // prove that the successor is not executed more frequently than our block. 3995 // Return the UserBlock if successful. 3996 auto getOptionalSinkBlockForInst = 3997 [this](Instruction *I) -> Optional<BasicBlock *> { 3998 if (!EnableCodeSinking) 3999 return None; 4000 auto *UserInst = cast_or_null<Instruction>(I->getUniqueUndroppableUser()); 4001 if (!UserInst) 4002 return None; 4003 4004 BasicBlock *BB = I->getParent(); 4005 BasicBlock *UserParent = nullptr; 4006 4007 // Special handling for Phi nodes - get the block the use occurs in. 4008 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) { 4009 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 4010 if (PN->getIncomingValue(i) == I) { 4011 // Bail out if we have uses in different blocks. We don't do any 4012 // sophisticated analysis (i.e finding NearestCommonDominator of these 4013 // use blocks). 4014 if (UserParent && UserParent != PN->getIncomingBlock(i)) 4015 return None; 4016 UserParent = PN->getIncomingBlock(i); 4017 } 4018 } 4019 assert(UserParent && "expected to find user block!"); 4020 } else 4021 UserParent = UserInst->getParent(); 4022 4023 // Try sinking to another block. If that block is unreachable, then do 4024 // not bother. SimplifyCFG should handle it. 4025 if (UserParent == BB || !DT.isReachableFromEntry(UserParent)) 4026 return None; 4027 4028 auto *Term = UserParent->getTerminator(); 4029 // See if the user is one of our successors that has only one 4030 // predecessor, so that we don't have to split the critical edge. 4031 // Another option where we can sink is a block that ends with a 4032 // terminator that does not pass control to other block (such as 4033 // return or unreachable or resume). In this case: 4034 // - I dominates the User (by SSA form); 4035 // - the User will be executed at most once. 4036 // So sinking I down to User is always profitable or neutral. 4037 if (UserParent->getUniquePredecessor() == BB || succ_empty(Term)) { 4038 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?"); 4039 return UserParent; 4040 } 4041 return None; 4042 }; 4043 4044 auto OptBB = getOptionalSinkBlockForInst(I); 4045 if (OptBB) { 4046 auto *UserParent = *OptBB; 4047 // Okay, the CFG is simple enough, try to sink this instruction. 4048 if (TryToSinkInstruction(I, UserParent, TLI)) { 4049 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 4050 MadeIRChange = true; 4051 // We'll add uses of the sunk instruction below, but since 4052 // sinking can expose opportunities for it's *operands* add 4053 // them to the worklist 4054 for (Use &U : I->operands()) 4055 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 4056 Worklist.push(OpI); 4057 } 4058 } 4059 4060 // Now that we have an instruction, try combining it to simplify it. 4061 Builder.SetInsertPoint(I); 4062 Builder.CollectMetadataToCopy( 4063 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4064 4065 #ifndef NDEBUG 4066 std::string OrigI; 4067 #endif 4068 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 4069 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 4070 4071 if (Instruction *Result = visit(*I)) { 4072 ++NumCombined; 4073 // Should we replace the old instruction with a new one? 4074 if (Result != I) { 4075 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 4076 << " New = " << *Result << '\n'); 4077 4078 Result->copyMetadata(*I, 4079 {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4080 // Everything uses the new instruction now. 4081 I->replaceAllUsesWith(Result); 4082 4083 // Move the name to the new instruction first. 4084 Result->takeName(I); 4085 4086 // Insert the new instruction into the basic block... 4087 BasicBlock *InstParent = I->getParent(); 4088 BasicBlock::iterator InsertPos = I->getIterator(); 4089 4090 // Are we replace a PHI with something that isn't a PHI, or vice versa? 4091 if (isa<PHINode>(Result) != isa<PHINode>(I)) { 4092 // We need to fix up the insertion point. 4093 if (isa<PHINode>(I)) // PHI -> Non-PHI 4094 InsertPos = InstParent->getFirstInsertionPt(); 4095 else // Non-PHI -> PHI 4096 InsertPos = InstParent->getFirstNonPHI()->getIterator(); 4097 } 4098 4099 InstParent->getInstList().insert(InsertPos, Result); 4100 4101 // Push the new instruction and any users onto the worklist. 4102 Worklist.pushUsersToWorkList(*Result); 4103 Worklist.push(Result); 4104 4105 eraseInstFromFunction(*I); 4106 } else { 4107 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 4108 << " New = " << *I << '\n'); 4109 4110 // If the instruction was modified, it's possible that it is now dead. 4111 // if so, remove it. 4112 if (isInstructionTriviallyDead(I, &TLI)) { 4113 eraseInstFromFunction(*I); 4114 } else { 4115 Worklist.pushUsersToWorkList(*I); 4116 Worklist.push(I); 4117 } 4118 } 4119 MadeIRChange = true; 4120 } 4121 } 4122 4123 Worklist.zap(); 4124 return MadeIRChange; 4125 } 4126 4127 // Track the scopes used by !alias.scope and !noalias. In a function, a 4128 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 4129 // by both sets. If not, the declaration of the scope can be safely omitted. 4130 // The MDNode of the scope can be omitted as well for the instructions that are 4131 // part of this function. We do not do that at this point, as this might become 4132 // too time consuming to do. 4133 class AliasScopeTracker { 4134 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 4135 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 4136 4137 public: 4138 void analyse(Instruction *I) { 4139 // This seems to be faster than checking 'mayReadOrWriteMemory()'. 4140 if (!I->hasMetadataOtherThanDebugLoc()) 4141 return; 4142 4143 auto Track = [](Metadata *ScopeList, auto &Container) { 4144 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 4145 if (!MDScopeList || !Container.insert(MDScopeList).second) 4146 return; 4147 for (auto &MDOperand : MDScopeList->operands()) 4148 if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 4149 Container.insert(MDScope); 4150 }; 4151 4152 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 4153 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 4154 } 4155 4156 bool isNoAliasScopeDeclDead(Instruction *Inst) { 4157 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 4158 if (!Decl) 4159 return false; 4160 4161 assert(Decl->use_empty() && 4162 "llvm.experimental.noalias.scope.decl in use ?"); 4163 const MDNode *MDSL = Decl->getScopeList(); 4164 assert(MDSL->getNumOperands() == 1 && 4165 "llvm.experimental.noalias.scope should refer to a single scope"); 4166 auto &MDOperand = MDSL->getOperand(0); 4167 if (auto *MD = dyn_cast<MDNode>(MDOperand)) 4168 return !UsedAliasScopesAndLists.contains(MD) || 4169 !UsedNoAliasScopesAndLists.contains(MD); 4170 4171 // Not an MDNode ? throw away. 4172 return true; 4173 } 4174 }; 4175 4176 /// Populate the IC worklist from a function, by walking it in depth-first 4177 /// order and adding all reachable code to the worklist. 4178 /// 4179 /// This has a couple of tricks to make the code faster and more powerful. In 4180 /// particular, we constant fold and DCE instructions as we go, to avoid adding 4181 /// them to the worklist (this significantly speeds up instcombine on code where 4182 /// many instructions are dead or constant). Additionally, if we find a branch 4183 /// whose condition is a known constant, we only visit the reachable successors. 4184 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 4185 const TargetLibraryInfo *TLI, 4186 InstructionWorklist &ICWorklist) { 4187 bool MadeIRChange = false; 4188 SmallPtrSet<BasicBlock *, 32> Visited; 4189 SmallVector<BasicBlock*, 256> Worklist; 4190 Worklist.push_back(&F.front()); 4191 4192 SmallVector<Instruction *, 128> InstrsForInstructionWorklist; 4193 DenseMap<Constant *, Constant *> FoldedConstants; 4194 AliasScopeTracker SeenAliasScopes; 4195 4196 do { 4197 BasicBlock *BB = Worklist.pop_back_val(); 4198 4199 // We have now visited this block! If we've already been here, ignore it. 4200 if (!Visited.insert(BB).second) 4201 continue; 4202 4203 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 4204 // ConstantProp instruction if trivially constant. 4205 if (!Inst.use_empty() && 4206 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0)))) 4207 if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) { 4208 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst 4209 << '\n'); 4210 Inst.replaceAllUsesWith(C); 4211 ++NumConstProp; 4212 if (isInstructionTriviallyDead(&Inst, TLI)) 4213 Inst.eraseFromParent(); 4214 MadeIRChange = true; 4215 continue; 4216 } 4217 4218 // See if we can constant fold its operands. 4219 for (Use &U : Inst.operands()) { 4220 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 4221 continue; 4222 4223 auto *C = cast<Constant>(U); 4224 Constant *&FoldRes = FoldedConstants[C]; 4225 if (!FoldRes) 4226 FoldRes = ConstantFoldConstant(C, DL, TLI); 4227 4228 if (FoldRes != C) { 4229 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst 4230 << "\n Old = " << *C 4231 << "\n New = " << *FoldRes << '\n'); 4232 U = FoldRes; 4233 MadeIRChange = true; 4234 } 4235 } 4236 4237 // Skip processing debug and pseudo intrinsics in InstCombine. Processing 4238 // these call instructions consumes non-trivial amount of time and 4239 // provides no value for the optimization. 4240 if (!Inst.isDebugOrPseudoInst()) { 4241 InstrsForInstructionWorklist.push_back(&Inst); 4242 SeenAliasScopes.analyse(&Inst); 4243 } 4244 } 4245 4246 // Recursively visit successors. If this is a branch or switch on a 4247 // constant, only visit the reachable successor. 4248 Instruction *TI = BB->getTerminator(); 4249 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 4250 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 4251 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 4252 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 4253 Worklist.push_back(ReachableBB); 4254 continue; 4255 } 4256 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 4257 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 4258 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 4259 continue; 4260 } 4261 } 4262 4263 append_range(Worklist, successors(TI)); 4264 } while (!Worklist.empty()); 4265 4266 // Remove instructions inside unreachable blocks. This prevents the 4267 // instcombine code from having to deal with some bad special cases, and 4268 // reduces use counts of instructions. 4269 for (BasicBlock &BB : F) { 4270 if (Visited.count(&BB)) 4271 continue; 4272 4273 unsigned NumDeadInstInBB; 4274 unsigned NumDeadDbgInstInBB; 4275 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 4276 removeAllNonTerminatorAndEHPadInstructions(&BB); 4277 4278 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 4279 NumDeadInst += NumDeadInstInBB; 4280 } 4281 4282 // Once we've found all of the instructions to add to instcombine's worklist, 4283 // add them in reverse order. This way instcombine will visit from the top 4284 // of the function down. This jives well with the way that it adds all uses 4285 // of instructions to the worklist after doing a transformation, thus avoiding 4286 // some N^2 behavior in pathological cases. 4287 ICWorklist.reserve(InstrsForInstructionWorklist.size()); 4288 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) { 4289 // DCE instruction if trivially dead. As we iterate in reverse program 4290 // order here, we will clean up whole chains of dead instructions. 4291 if (isInstructionTriviallyDead(Inst, TLI) || 4292 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 4293 ++NumDeadInst; 4294 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 4295 salvageDebugInfo(*Inst); 4296 Inst->eraseFromParent(); 4297 MadeIRChange = true; 4298 continue; 4299 } 4300 4301 ICWorklist.push(Inst); 4302 } 4303 4304 return MadeIRChange; 4305 } 4306 4307 static bool combineInstructionsOverFunction( 4308 Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, 4309 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 4310 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 4311 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) { 4312 auto &DL = F.getParent()->getDataLayout(); 4313 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 4314 4315 /// Builder - This is an IRBuilder that automatically inserts new 4316 /// instructions into the worklist when they are created. 4317 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 4318 F.getContext(), TargetFolder(DL), 4319 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 4320 Worklist.add(I); 4321 if (auto *Assume = dyn_cast<AssumeInst>(I)) 4322 AC.registerAssumption(Assume); 4323 })); 4324 4325 // Lower dbg.declare intrinsics otherwise their value may be clobbered 4326 // by instcombiner. 4327 bool MadeIRChange = false; 4328 if (ShouldLowerDbgDeclare) 4329 MadeIRChange = LowerDbgDeclare(F); 4330 4331 // Iterate while there is work to do. 4332 unsigned Iteration = 0; 4333 while (true) { 4334 ++NumWorklistIterations; 4335 ++Iteration; 4336 4337 if (Iteration > InfiniteLoopDetectionThreshold) { 4338 report_fatal_error( 4339 "Instruction Combining seems stuck in an infinite loop after " + 4340 Twine(InfiniteLoopDetectionThreshold) + " iterations."); 4341 } 4342 4343 if (Iteration > MaxIterations) { 4344 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 4345 << " on " << F.getName() 4346 << " reached; stopping before reaching a fixpoint\n"); 4347 break; 4348 } 4349 4350 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 4351 << F.getName() << "\n"); 4352 4353 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 4354 4355 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 4356 ORE, BFI, PSI, DL, LI); 4357 IC.MaxArraySizeForCombine = MaxArraySize; 4358 4359 if (!IC.run()) 4360 break; 4361 4362 MadeIRChange = true; 4363 } 4364 4365 return MadeIRChange; 4366 } 4367 4368 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {} 4369 4370 InstCombinePass::InstCombinePass(unsigned MaxIterations) 4371 : MaxIterations(MaxIterations) {} 4372 4373 PreservedAnalyses InstCombinePass::run(Function &F, 4374 FunctionAnalysisManager &AM) { 4375 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4376 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4377 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4378 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4379 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 4380 4381 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 4382 4383 auto *AA = &AM.getResult<AAManager>(F); 4384 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 4385 ProfileSummaryInfo *PSI = 4386 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 4387 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 4388 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 4389 4390 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4391 BFI, PSI, MaxIterations, LI)) 4392 // No changes, all analyses are preserved. 4393 return PreservedAnalyses::all(); 4394 4395 // Mark all the analyses that instcombine updates as preserved. 4396 PreservedAnalyses PA; 4397 PA.preserveSet<CFGAnalyses>(); 4398 return PA; 4399 } 4400 4401 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 4402 AU.setPreservesCFG(); 4403 AU.addRequired<AAResultsWrapperPass>(); 4404 AU.addRequired<AssumptionCacheTracker>(); 4405 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4406 AU.addRequired<TargetTransformInfoWrapperPass>(); 4407 AU.addRequired<DominatorTreeWrapperPass>(); 4408 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4409 AU.addPreserved<DominatorTreeWrapperPass>(); 4410 AU.addPreserved<AAResultsWrapperPass>(); 4411 AU.addPreserved<BasicAAWrapperPass>(); 4412 AU.addPreserved<GlobalsAAWrapperPass>(); 4413 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 4414 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 4415 } 4416 4417 bool InstructionCombiningPass::runOnFunction(Function &F) { 4418 if (skipFunction(F)) 4419 return false; 4420 4421 // Required analyses. 4422 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4423 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4424 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 4425 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4426 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4427 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4428 4429 // Optional analyses. 4430 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 4431 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 4432 ProfileSummaryInfo *PSI = 4433 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 4434 BlockFrequencyInfo *BFI = 4435 (PSI && PSI->hasProfileSummary()) ? 4436 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 4437 nullptr; 4438 4439 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4440 BFI, PSI, MaxIterations, LI); 4441 } 4442 4443 char InstructionCombiningPass::ID = 0; 4444 4445 InstructionCombiningPass::InstructionCombiningPass() 4446 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) { 4447 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4448 } 4449 4450 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations) 4451 : FunctionPass(ID), MaxIterations(MaxIterations) { 4452 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4453 } 4454 4455 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 4456 "Combine redundant instructions", false, false) 4457 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4458 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4459 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4460 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4461 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4462 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4463 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 4464 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 4465 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 4466 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 4467 "Combine redundant instructions", false, false) 4468 4469 // Initialization Routines 4470 void llvm::initializeInstCombine(PassRegistry &Registry) { 4471 initializeInstructionCombiningPassPass(Registry); 4472 } 4473 4474 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 4475 initializeInstructionCombiningPassPass(*unwrap(R)); 4476 } 4477 4478 FunctionPass *llvm::createInstructionCombiningPass() { 4479 return new InstructionCombiningPass(); 4480 } 4481 4482 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) { 4483 return new InstructionCombiningPass(MaxIterations); 4484 } 4485 4486 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 4487 unwrap(PM)->add(createInstructionCombiningPass()); 4488 } 4489