1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions.  This pass does not modify the CFG.  This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 //    %Y = add i32 %X, 1
15 //    %Z = add i32 %Y, 1
16 // into:
17 //    %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 //    1. If a binary operator has a constant operand, it is moved to the RHS
24 //    2. Bitwise operators with constant operands are always grouped so that
25 //       shifts are performed first, then or's, then and's, then xor's.
26 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 //    4. All cmp instructions on boolean values are replaced with logical ops
28 //    5. add X, X is represented as (X*2) => (X << 1)
29 //    6. Multiplies with a power-of-two constant argument are transformed into
30 //       shifts.
31 //   ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/Analysis/AliasAnalysis.h"
46 #include "llvm/Analysis/AssumptionCache.h"
47 #include "llvm/Analysis/BasicAliasAnalysis.h"
48 #include "llvm/Analysis/BlockFrequencyInfo.h"
49 #include "llvm/Analysis/CFG.h"
50 #include "llvm/Analysis/ConstantFolding.h"
51 #include "llvm/Analysis/EHPersonalities.h"
52 #include "llvm/Analysis/GlobalsModRef.h"
53 #include "llvm/Analysis/InstructionSimplify.h"
54 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
55 #include "llvm/Analysis/LoopInfo.h"
56 #include "llvm/Analysis/MemoryBuiltins.h"
57 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
58 #include "llvm/Analysis/ProfileSummaryInfo.h"
59 #include "llvm/Analysis/TargetFolder.h"
60 #include "llvm/Analysis/TargetLibraryInfo.h"
61 #include "llvm/Analysis/TargetTransformInfo.h"
62 #include "llvm/Analysis/Utils/Local.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/Analysis/VectorUtils.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DIBuilder.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DebugInfo.h"
72 #include "llvm/IR/DerivedTypes.h"
73 #include "llvm/IR/Dominators.h"
74 #include "llvm/IR/Function.h"
75 #include "llvm/IR/GetElementPtrTypeIterator.h"
76 #include "llvm/IR/IRBuilder.h"
77 #include "llvm/IR/InstrTypes.h"
78 #include "llvm/IR/Instruction.h"
79 #include "llvm/IR/Instructions.h"
80 #include "llvm/IR/IntrinsicInst.h"
81 #include "llvm/IR/Intrinsics.h"
82 #include "llvm/IR/LegacyPassManager.h"
83 #include "llvm/IR/Metadata.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PassManager.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/Use.h"
89 #include "llvm/IR/User.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/IR/ValueHandle.h"
92 #include "llvm/InitializePasses.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/DebugCounter.h"
98 #include "llvm/Support/ErrorHandling.h"
99 #include "llvm/Support/KnownBits.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Transforms/InstCombine/InstCombine.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <algorithm>
104 #include <cassert>
105 #include <cstdint>
106 #include <memory>
107 #include <string>
108 #include <utility>
109 
110 #define DEBUG_TYPE "instcombine"
111 #include "llvm/Transforms/Utils/InstructionWorklist.h"
112 
113 using namespace llvm;
114 using namespace llvm::PatternMatch;
115 
116 STATISTIC(NumWorklistIterations,
117           "Number of instruction combining iterations performed");
118 
119 STATISTIC(NumCombined , "Number of insts combined");
120 STATISTIC(NumConstProp, "Number of constant folds");
121 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
122 STATISTIC(NumSunkInst , "Number of instructions sunk");
123 STATISTIC(NumExpand,    "Number of expansions");
124 STATISTIC(NumFactor   , "Number of factorizations");
125 STATISTIC(NumReassoc  , "Number of reassociations");
126 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
127               "Controls which instructions are visited");
128 
129 // FIXME: these limits eventually should be as low as 2.
130 static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
131 #ifndef NDEBUG
132 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100;
133 #else
134 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
135 #endif
136 
137 static cl::opt<bool>
138 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
139                                               cl::init(true));
140 
141 static cl::opt<unsigned> LimitMaxIterations(
142     "instcombine-max-iterations",
143     cl::desc("Limit the maximum number of instruction combining iterations"),
144     cl::init(InstCombineDefaultMaxIterations));
145 
146 static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
147     "instcombine-infinite-loop-threshold",
148     cl::desc("Number of instruction combining iterations considered an "
149              "infinite loop"),
150     cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
151 
152 static cl::opt<unsigned>
153 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
154              cl::desc("Maximum array size considered when doing a combine"));
155 
156 // FIXME: Remove this flag when it is no longer necessary to convert
157 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
158 // increases variable availability at the cost of accuracy. Variables that
159 // cannot be promoted by mem2reg or SROA will be described as living in memory
160 // for their entire lifetime. However, passes like DSE and instcombine can
161 // delete stores to the alloca, leading to misleading and inaccurate debug
162 // information. This flag can be removed when those passes are fixed.
163 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
164                                                cl::Hidden, cl::init(true));
165 
166 Optional<Instruction *>
167 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
168   // Handle target specific intrinsics
169   if (II.getCalledFunction()->isTargetIntrinsic()) {
170     return TTI.instCombineIntrinsic(*this, II);
171   }
172   return None;
173 }
174 
175 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
176     IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
177     bool &KnownBitsComputed) {
178   // Handle target specific intrinsics
179   if (II.getCalledFunction()->isTargetIntrinsic()) {
180     return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
181                                                 KnownBitsComputed);
182   }
183   return None;
184 }
185 
186 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
187     IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2,
188     APInt &UndefElts3,
189     std::function<void(Instruction *, unsigned, APInt, APInt &)>
190         SimplifyAndSetOp) {
191   // Handle target specific intrinsics
192   if (II.getCalledFunction()->isTargetIntrinsic()) {
193     return TTI.simplifyDemandedVectorEltsIntrinsic(
194         *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
195         SimplifyAndSetOp);
196   }
197   return None;
198 }
199 
200 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
201   return llvm::EmitGEPOffset(&Builder, DL, GEP);
202 }
203 
204 /// Legal integers and common types are considered desirable. This is used to
205 /// avoid creating instructions with types that may not be supported well by the
206 /// the backend.
207 /// NOTE: This treats i8, i16 and i32 specially because they are common
208 ///       types in frontend languages.
209 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const {
210   switch (BitWidth) {
211   case 8:
212   case 16:
213   case 32:
214     return true;
215   default:
216     return DL.isLegalInteger(BitWidth);
217   }
218 }
219 
220 /// Return true if it is desirable to convert an integer computation from a
221 /// given bit width to a new bit width.
222 /// We don't want to convert from a legal to an illegal type or from a smaller
223 /// to a larger illegal type. A width of '1' is always treated as a desirable
224 /// type because i1 is a fundamental type in IR, and there are many specialized
225 /// optimizations for i1 types. Common/desirable widths are equally treated as
226 /// legal to convert to, in order to open up more combining opportunities.
227 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
228                                         unsigned ToWidth) const {
229   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
230   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
231 
232   // Convert to desirable widths even if they are not legal types.
233   // Only shrink types, to prevent infinite loops.
234   if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
235     return true;
236 
237   // If this is a legal integer from type, and the result would be an illegal
238   // type, don't do the transformation.
239   if (FromLegal && !ToLegal)
240     return false;
241 
242   // Otherwise, if both are illegal, do not increase the size of the result. We
243   // do allow things like i160 -> i64, but not i64 -> i160.
244   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
245     return false;
246 
247   return true;
248 }
249 
250 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
251 /// We don't want to convert from a legal to an illegal type or from a smaller
252 /// to a larger illegal type. i1 is always treated as a legal type because it is
253 /// a fundamental type in IR, and there are many specialized optimizations for
254 /// i1 types.
255 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
256   // TODO: This could be extended to allow vectors. Datalayout changes might be
257   // needed to properly support that.
258   if (!From->isIntegerTy() || !To->isIntegerTy())
259     return false;
260 
261   unsigned FromWidth = From->getPrimitiveSizeInBits();
262   unsigned ToWidth = To->getPrimitiveSizeInBits();
263   return shouldChangeType(FromWidth, ToWidth);
264 }
265 
266 // Return true, if No Signed Wrap should be maintained for I.
267 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
268 // where both B and C should be ConstantInts, results in a constant that does
269 // not overflow. This function only handles the Add and Sub opcodes. For
270 // all other opcodes, the function conservatively returns false.
271 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
272   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
273   if (!OBO || !OBO->hasNoSignedWrap())
274     return false;
275 
276   // We reason about Add and Sub Only.
277   Instruction::BinaryOps Opcode = I.getOpcode();
278   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
279     return false;
280 
281   const APInt *BVal, *CVal;
282   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
283     return false;
284 
285   bool Overflow = false;
286   if (Opcode == Instruction::Add)
287     (void)BVal->sadd_ov(*CVal, Overflow);
288   else
289     (void)BVal->ssub_ov(*CVal, Overflow);
290 
291   return !Overflow;
292 }
293 
294 static bool hasNoUnsignedWrap(BinaryOperator &I) {
295   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
296   return OBO && OBO->hasNoUnsignedWrap();
297 }
298 
299 static bool hasNoSignedWrap(BinaryOperator &I) {
300   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
301   return OBO && OBO->hasNoSignedWrap();
302 }
303 
304 /// Conservatively clears subclassOptionalData after a reassociation or
305 /// commutation. We preserve fast-math flags when applicable as they can be
306 /// preserved.
307 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
308   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
309   if (!FPMO) {
310     I.clearSubclassOptionalData();
311     return;
312   }
313 
314   FastMathFlags FMF = I.getFastMathFlags();
315   I.clearSubclassOptionalData();
316   I.setFastMathFlags(FMF);
317 }
318 
319 /// Combine constant operands of associative operations either before or after a
320 /// cast to eliminate one of the associative operations:
321 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
322 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
323 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
324                                    InstCombinerImpl &IC) {
325   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
326   if (!Cast || !Cast->hasOneUse())
327     return false;
328 
329   // TODO: Enhance logic for other casts and remove this check.
330   auto CastOpcode = Cast->getOpcode();
331   if (CastOpcode != Instruction::ZExt)
332     return false;
333 
334   // TODO: Enhance logic for other BinOps and remove this check.
335   if (!BinOp1->isBitwiseLogicOp())
336     return false;
337 
338   auto AssocOpcode = BinOp1->getOpcode();
339   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
340   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
341     return false;
342 
343   Constant *C1, *C2;
344   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
345       !match(BinOp2->getOperand(1), m_Constant(C2)))
346     return false;
347 
348   // TODO: This assumes a zext cast.
349   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
350   // to the destination type might lose bits.
351 
352   // Fold the constants together in the destination type:
353   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
354   Type *DestTy = C1->getType();
355   Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
356   Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
357   IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
358   IC.replaceOperand(*BinOp1, 1, FoldedC);
359   return true;
360 }
361 
362 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast.
363 // inttoptr ( ptrtoint (x) ) --> x
364 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
365   auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
366   if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) ==
367                       DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
368     auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
369     Type *CastTy = IntToPtr->getDestTy();
370     if (PtrToInt &&
371         CastTy->getPointerAddressSpace() ==
372             PtrToInt->getSrcTy()->getPointerAddressSpace() &&
373         DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) ==
374             DL.getTypeSizeInBits(PtrToInt->getDestTy())) {
375       return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy,
376                                               "", PtrToInt);
377     }
378   }
379   return nullptr;
380 }
381 
382 /// This performs a few simplifications for operators that are associative or
383 /// commutative:
384 ///
385 ///  Commutative operators:
386 ///
387 ///  1. Order operands such that they are listed from right (least complex) to
388 ///     left (most complex).  This puts constants before unary operators before
389 ///     binary operators.
390 ///
391 ///  Associative operators:
392 ///
393 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
394 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
395 ///
396 ///  Associative and commutative operators:
397 ///
398 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
399 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
400 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
401 ///     if C1 and C2 are constants.
402 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
403   Instruction::BinaryOps Opcode = I.getOpcode();
404   bool Changed = false;
405 
406   do {
407     // Order operands such that they are listed from right (least complex) to
408     // left (most complex).  This puts constants before unary operators before
409     // binary operators.
410     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
411         getComplexity(I.getOperand(1)))
412       Changed = !I.swapOperands();
413 
414     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
415     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
416 
417     if (I.isAssociative()) {
418       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
419       if (Op0 && Op0->getOpcode() == Opcode) {
420         Value *A = Op0->getOperand(0);
421         Value *B = Op0->getOperand(1);
422         Value *C = I.getOperand(1);
423 
424         // Does "B op C" simplify?
425         if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
426           // It simplifies to V.  Form "A op V".
427           replaceOperand(I, 0, A);
428           replaceOperand(I, 1, V);
429           bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
430           bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
431 
432           // Conservatively clear all optional flags since they may not be
433           // preserved by the reassociation. Reset nsw/nuw based on the above
434           // analysis.
435           ClearSubclassDataAfterReassociation(I);
436 
437           // Note: this is only valid because SimplifyBinOp doesn't look at
438           // the operands to Op0.
439           if (IsNUW)
440             I.setHasNoUnsignedWrap(true);
441 
442           if (IsNSW)
443             I.setHasNoSignedWrap(true);
444 
445           Changed = true;
446           ++NumReassoc;
447           continue;
448         }
449       }
450 
451       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
452       if (Op1 && Op1->getOpcode() == Opcode) {
453         Value *A = I.getOperand(0);
454         Value *B = Op1->getOperand(0);
455         Value *C = Op1->getOperand(1);
456 
457         // Does "A op B" simplify?
458         if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
459           // It simplifies to V.  Form "V op C".
460           replaceOperand(I, 0, V);
461           replaceOperand(I, 1, C);
462           // Conservatively clear the optional flags, since they may not be
463           // preserved by the reassociation.
464           ClearSubclassDataAfterReassociation(I);
465           Changed = true;
466           ++NumReassoc;
467           continue;
468         }
469       }
470     }
471 
472     if (I.isAssociative() && I.isCommutative()) {
473       if (simplifyAssocCastAssoc(&I, *this)) {
474         Changed = true;
475         ++NumReassoc;
476         continue;
477       }
478 
479       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
480       if (Op0 && Op0->getOpcode() == Opcode) {
481         Value *A = Op0->getOperand(0);
482         Value *B = Op0->getOperand(1);
483         Value *C = I.getOperand(1);
484 
485         // Does "C op A" simplify?
486         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
487           // It simplifies to V.  Form "V op B".
488           replaceOperand(I, 0, V);
489           replaceOperand(I, 1, B);
490           // Conservatively clear the optional flags, since they may not be
491           // preserved by the reassociation.
492           ClearSubclassDataAfterReassociation(I);
493           Changed = true;
494           ++NumReassoc;
495           continue;
496         }
497       }
498 
499       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
500       if (Op1 && Op1->getOpcode() == Opcode) {
501         Value *A = I.getOperand(0);
502         Value *B = Op1->getOperand(0);
503         Value *C = Op1->getOperand(1);
504 
505         // Does "C op A" simplify?
506         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
507           // It simplifies to V.  Form "B op V".
508           replaceOperand(I, 0, B);
509           replaceOperand(I, 1, V);
510           // Conservatively clear the optional flags, since they may not be
511           // preserved by the reassociation.
512           ClearSubclassDataAfterReassociation(I);
513           Changed = true;
514           ++NumReassoc;
515           continue;
516         }
517       }
518 
519       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
520       // if C1 and C2 are constants.
521       Value *A, *B;
522       Constant *C1, *C2;
523       if (Op0 && Op1 &&
524           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
525           match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
526           match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
527         bool IsNUW = hasNoUnsignedWrap(I) &&
528            hasNoUnsignedWrap(*Op0) &&
529            hasNoUnsignedWrap(*Op1);
530          BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
531            BinaryOperator::CreateNUW(Opcode, A, B) :
532            BinaryOperator::Create(Opcode, A, B);
533 
534          if (isa<FPMathOperator>(NewBO)) {
535           FastMathFlags Flags = I.getFastMathFlags();
536           Flags &= Op0->getFastMathFlags();
537           Flags &= Op1->getFastMathFlags();
538           NewBO->setFastMathFlags(Flags);
539         }
540         InsertNewInstWith(NewBO, I);
541         NewBO->takeName(Op1);
542         replaceOperand(I, 0, NewBO);
543         replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
544         // Conservatively clear the optional flags, since they may not be
545         // preserved by the reassociation.
546         ClearSubclassDataAfterReassociation(I);
547         if (IsNUW)
548           I.setHasNoUnsignedWrap(true);
549 
550         Changed = true;
551         continue;
552       }
553     }
554 
555     // No further simplifications.
556     return Changed;
557   } while (true);
558 }
559 
560 /// Return whether "X LOp (Y ROp Z)" is always equal to
561 /// "(X LOp Y) ROp (X LOp Z)".
562 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
563                                      Instruction::BinaryOps ROp) {
564   // X & (Y | Z) <--> (X & Y) | (X & Z)
565   // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
566   if (LOp == Instruction::And)
567     return ROp == Instruction::Or || ROp == Instruction::Xor;
568 
569   // X | (Y & Z) <--> (X | Y) & (X | Z)
570   if (LOp == Instruction::Or)
571     return ROp == Instruction::And;
572 
573   // X * (Y + Z) <--> (X * Y) + (X * Z)
574   // X * (Y - Z) <--> (X * Y) - (X * Z)
575   if (LOp == Instruction::Mul)
576     return ROp == Instruction::Add || ROp == Instruction::Sub;
577 
578   return false;
579 }
580 
581 /// Return whether "(X LOp Y) ROp Z" is always equal to
582 /// "(X ROp Z) LOp (Y ROp Z)".
583 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
584                                      Instruction::BinaryOps ROp) {
585   if (Instruction::isCommutative(ROp))
586     return leftDistributesOverRight(ROp, LOp);
587 
588   // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
589   return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
590 
591   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
592   // but this requires knowing that the addition does not overflow and other
593   // such subtleties.
594 }
595 
596 /// This function returns identity value for given opcode, which can be used to
597 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
598 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
599   if (isa<Constant>(V))
600     return nullptr;
601 
602   return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
603 }
604 
605 /// This function predicates factorization using distributive laws. By default,
606 /// it just returns the 'Op' inputs. But for special-cases like
607 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
608 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
609 /// allow more factorization opportunities.
610 static Instruction::BinaryOps
611 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
612                           Value *&LHS, Value *&RHS) {
613   assert(Op && "Expected a binary operator");
614   LHS = Op->getOperand(0);
615   RHS = Op->getOperand(1);
616   if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
617     Constant *C;
618     if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
619       // X << C --> X * (1 << C)
620       RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
621       return Instruction::Mul;
622     }
623     // TODO: We can add other conversions e.g. shr => div etc.
624   }
625   return Op->getOpcode();
626 }
627 
628 /// This tries to simplify binary operations by factorizing out common terms
629 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
630 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I,
631                                           Instruction::BinaryOps InnerOpcode,
632                                           Value *A, Value *B, Value *C,
633                                           Value *D) {
634   assert(A && B && C && D && "All values must be provided");
635 
636   Value *V = nullptr;
637   Value *SimplifiedInst = nullptr;
638   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
639   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
640 
641   // Does "X op' Y" always equal "Y op' X"?
642   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
643 
644   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
645   if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
646     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
647     // commutative case, "(A op' B) op (C op' A)"?
648     if (A == C || (InnerCommutative && A == D)) {
649       if (A != C)
650         std::swap(C, D);
651       // Consider forming "A op' (B op D)".
652       // If "B op D" simplifies then it can be formed with no cost.
653       V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
654       // If "B op D" doesn't simplify then only go on if both of the existing
655       // operations "A op' B" and "C op' D" will be zapped as no longer used.
656       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
657         V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
658       if (V) {
659         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
660       }
661     }
662 
663   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
664   if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
665     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
666     // commutative case, "(A op' B) op (B op' D)"?
667     if (B == D || (InnerCommutative && B == C)) {
668       if (B != D)
669         std::swap(C, D);
670       // Consider forming "(A op C) op' B".
671       // If "A op C" simplifies then it can be formed with no cost.
672       V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
673 
674       // If "A op C" doesn't simplify then only go on if both of the existing
675       // operations "A op' B" and "C op' D" will be zapped as no longer used.
676       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
677         V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
678       if (V) {
679         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
680       }
681     }
682 
683   if (SimplifiedInst) {
684     ++NumFactor;
685     SimplifiedInst->takeName(&I);
686 
687     // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
688     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
689       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
690         bool HasNSW = false;
691         bool HasNUW = false;
692         if (isa<OverflowingBinaryOperator>(&I)) {
693           HasNSW = I.hasNoSignedWrap();
694           HasNUW = I.hasNoUnsignedWrap();
695         }
696 
697         if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
698           HasNSW &= LOBO->hasNoSignedWrap();
699           HasNUW &= LOBO->hasNoUnsignedWrap();
700         }
701 
702         if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
703           HasNSW &= ROBO->hasNoSignedWrap();
704           HasNUW &= ROBO->hasNoUnsignedWrap();
705         }
706 
707         if (TopLevelOpcode == Instruction::Add &&
708             InnerOpcode == Instruction::Mul) {
709           // We can propagate 'nsw' if we know that
710           //  %Y = mul nsw i16 %X, C
711           //  %Z = add nsw i16 %Y, %X
712           // =>
713           //  %Z = mul nsw i16 %X, C+1
714           //
715           // iff C+1 isn't INT_MIN
716           const APInt *CInt;
717           if (match(V, m_APInt(CInt))) {
718             if (!CInt->isMinSignedValue())
719               BO->setHasNoSignedWrap(HasNSW);
720           }
721 
722           // nuw can be propagated with any constant or nuw value.
723           BO->setHasNoUnsignedWrap(HasNUW);
724         }
725       }
726     }
727   }
728   return SimplifiedInst;
729 }
730 
731 /// This tries to simplify binary operations which some other binary operation
732 /// distributes over either by factorizing out common terms
733 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
734 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
735 /// Returns the simplified value, or null if it didn't simplify.
736 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
737   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
738   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
739   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
740   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
741 
742   {
743     // Factorization.
744     Value *A, *B, *C, *D;
745     Instruction::BinaryOps LHSOpcode, RHSOpcode;
746     if (Op0)
747       LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
748     if (Op1)
749       RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
750 
751     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
752     // a common term.
753     if (Op0 && Op1 && LHSOpcode == RHSOpcode)
754       if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
755         return V;
756 
757     // The instruction has the form "(A op' B) op (C)".  Try to factorize common
758     // term.
759     if (Op0)
760       if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
761         if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
762           return V;
763 
764     // The instruction has the form "(B) op (C op' D)".  Try to factorize common
765     // term.
766     if (Op1)
767       if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
768         if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
769           return V;
770   }
771 
772   // Expansion.
773   if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
774     // The instruction has the form "(A op' B) op C".  See if expanding it out
775     // to "(A op C) op' (B op C)" results in simplifications.
776     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
777     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
778 
779     // Disable the use of undef because it's not safe to distribute undef.
780     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
781     Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
782     Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
783 
784     // Do "A op C" and "B op C" both simplify?
785     if (L && R) {
786       // They do! Return "L op' R".
787       ++NumExpand;
788       C = Builder.CreateBinOp(InnerOpcode, L, R);
789       C->takeName(&I);
790       return C;
791     }
792 
793     // Does "A op C" simplify to the identity value for the inner opcode?
794     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
795       // They do! Return "B op C".
796       ++NumExpand;
797       C = Builder.CreateBinOp(TopLevelOpcode, B, C);
798       C->takeName(&I);
799       return C;
800     }
801 
802     // Does "B op C" simplify to the identity value for the inner opcode?
803     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
804       // They do! Return "A op C".
805       ++NumExpand;
806       C = Builder.CreateBinOp(TopLevelOpcode, A, C);
807       C->takeName(&I);
808       return C;
809     }
810   }
811 
812   if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
813     // The instruction has the form "A op (B op' C)".  See if expanding it out
814     // to "(A op B) op' (A op C)" results in simplifications.
815     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
816     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
817 
818     // Disable the use of undef because it's not safe to distribute undef.
819     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
820     Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
821     Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
822 
823     // Do "A op B" and "A op C" both simplify?
824     if (L && R) {
825       // They do! Return "L op' R".
826       ++NumExpand;
827       A = Builder.CreateBinOp(InnerOpcode, L, R);
828       A->takeName(&I);
829       return A;
830     }
831 
832     // Does "A op B" simplify to the identity value for the inner opcode?
833     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
834       // They do! Return "A op C".
835       ++NumExpand;
836       A = Builder.CreateBinOp(TopLevelOpcode, A, C);
837       A->takeName(&I);
838       return A;
839     }
840 
841     // Does "A op C" simplify to the identity value for the inner opcode?
842     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
843       // They do! Return "A op B".
844       ++NumExpand;
845       A = Builder.CreateBinOp(TopLevelOpcode, A, B);
846       A->takeName(&I);
847       return A;
848     }
849   }
850 
851   return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
852 }
853 
854 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
855                                                         Value *LHS,
856                                                         Value *RHS) {
857   Value *A, *B, *C, *D, *E, *F;
858   bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
859   bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
860   if (!LHSIsSelect && !RHSIsSelect)
861     return nullptr;
862 
863   FastMathFlags FMF;
864   BuilderTy::FastMathFlagGuard Guard(Builder);
865   if (isa<FPMathOperator>(&I)) {
866     FMF = I.getFastMathFlags();
867     Builder.setFastMathFlags(FMF);
868   }
869 
870   Instruction::BinaryOps Opcode = I.getOpcode();
871   SimplifyQuery Q = SQ.getWithInstruction(&I);
872 
873   Value *Cond, *True = nullptr, *False = nullptr;
874   if (LHSIsSelect && RHSIsSelect && A == D) {
875     // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
876     Cond = A;
877     True = SimplifyBinOp(Opcode, B, E, FMF, Q);
878     False = SimplifyBinOp(Opcode, C, F, FMF, Q);
879 
880     if (LHS->hasOneUse() && RHS->hasOneUse()) {
881       if (False && !True)
882         True = Builder.CreateBinOp(Opcode, B, E);
883       else if (True && !False)
884         False = Builder.CreateBinOp(Opcode, C, F);
885     }
886   } else if (LHSIsSelect && LHS->hasOneUse()) {
887     // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
888     Cond = A;
889     True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
890     False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
891   } else if (RHSIsSelect && RHS->hasOneUse()) {
892     // X op (D ? E : F) -> D ? (X op E) : (X op F)
893     Cond = D;
894     True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
895     False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
896   }
897 
898   if (!True || !False)
899     return nullptr;
900 
901   Value *SI = Builder.CreateSelect(Cond, True, False);
902   SI->takeName(&I);
903   return SI;
904 }
905 
906 /// Freely adapt every user of V as-if V was changed to !V.
907 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
908 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) {
909   for (User *U : I->users()) {
910     switch (cast<Instruction>(U)->getOpcode()) {
911     case Instruction::Select: {
912       auto *SI = cast<SelectInst>(U);
913       SI->swapValues();
914       SI->swapProfMetadata();
915       break;
916     }
917     case Instruction::Br:
918       cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
919       break;
920     case Instruction::Xor:
921       replaceInstUsesWith(cast<Instruction>(*U), I);
922       break;
923     default:
924       llvm_unreachable("Got unexpected user - out of sync with "
925                        "canFreelyInvertAllUsersOf() ?");
926     }
927   }
928 }
929 
930 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
931 /// constant zero (which is the 'negate' form).
932 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
933   Value *NegV;
934   if (match(V, m_Neg(m_Value(NegV))))
935     return NegV;
936 
937   // Constants can be considered to be negated values if they can be folded.
938   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
939     return ConstantExpr::getNeg(C);
940 
941   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
942     if (C->getType()->getElementType()->isIntegerTy())
943       return ConstantExpr::getNeg(C);
944 
945   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
946     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
947       Constant *Elt = CV->getAggregateElement(i);
948       if (!Elt)
949         return nullptr;
950 
951       if (isa<UndefValue>(Elt))
952         continue;
953 
954       if (!isa<ConstantInt>(Elt))
955         return nullptr;
956     }
957     return ConstantExpr::getNeg(CV);
958   }
959 
960   // Negate integer vector splats.
961   if (auto *CV = dyn_cast<Constant>(V))
962     if (CV->getType()->isVectorTy() &&
963         CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
964       return ConstantExpr::getNeg(CV);
965 
966   return nullptr;
967 }
968 
969 /// A binop with a constant operand and a sign-extended boolean operand may be
970 /// converted into a select of constants by applying the binary operation to
971 /// the constant with the two possible values of the extended boolean (0 or -1).
972 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) {
973   // TODO: Handle non-commutative binop (constant is operand 0).
974   // TODO: Handle zext.
975   // TODO: Peek through 'not' of cast.
976   Value *BO0 = BO.getOperand(0);
977   Value *BO1 = BO.getOperand(1);
978   Value *X;
979   Constant *C;
980   if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) ||
981       !X->getType()->isIntOrIntVectorTy(1))
982     return nullptr;
983 
984   // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C)
985   Constant *Ones = ConstantInt::getAllOnesValue(BO.getType());
986   Constant *Zero = ConstantInt::getNullValue(BO.getType());
987   Constant *TVal = ConstantExpr::get(BO.getOpcode(), Ones, C);
988   Constant *FVal = ConstantExpr::get(BO.getOpcode(), Zero, C);
989   return SelectInst::Create(X, TVal, FVal);
990 }
991 
992 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
993                                              InstCombiner::BuilderTy &Builder) {
994   if (auto *Cast = dyn_cast<CastInst>(&I))
995     return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
996 
997   if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
998     assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) &&
999            "Expected constant-foldable intrinsic");
1000     Intrinsic::ID IID = II->getIntrinsicID();
1001     if (II->arg_size() == 1)
1002       return Builder.CreateUnaryIntrinsic(IID, SO);
1003 
1004     // This works for real binary ops like min/max (where we always expect the
1005     // constant operand to be canonicalized as op1) and unary ops with a bonus
1006     // constant argument like ctlz/cttz.
1007     // TODO: Handle non-commutative binary intrinsics as below for binops.
1008     assert(II->arg_size() == 2 && "Expected binary intrinsic");
1009     assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand");
1010     return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1));
1011   }
1012 
1013   assert(I.isBinaryOp() && "Unexpected opcode for select folding");
1014 
1015   // Figure out if the constant is the left or the right argument.
1016   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1017   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1018 
1019   if (auto *SOC = dyn_cast<Constant>(SO)) {
1020     if (ConstIsRHS)
1021       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1022     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1023   }
1024 
1025   Value *Op0 = SO, *Op1 = ConstOperand;
1026   if (!ConstIsRHS)
1027     std::swap(Op0, Op1);
1028 
1029   Value *NewBO = Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), Op0,
1030                                      Op1, SO->getName() + ".op");
1031   if (auto *NewBOI = dyn_cast<Instruction>(NewBO))
1032     NewBOI->copyIRFlags(&I);
1033   return NewBO;
1034 }
1035 
1036 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op,
1037                                                 SelectInst *SI) {
1038   // Don't modify shared select instructions.
1039   if (!SI->hasOneUse())
1040     return nullptr;
1041 
1042   Value *TV = SI->getTrueValue();
1043   Value *FV = SI->getFalseValue();
1044   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
1045     return nullptr;
1046 
1047   // Bool selects with constant operands can be folded to logical ops.
1048   if (SI->getType()->isIntOrIntVectorTy(1))
1049     return nullptr;
1050 
1051   // If it's a bitcast involving vectors, make sure it has the same number of
1052   // elements on both sides.
1053   if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
1054     VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
1055     VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
1056 
1057     // Verify that either both or neither are vectors.
1058     if ((SrcTy == nullptr) != (DestTy == nullptr))
1059       return nullptr;
1060 
1061     // If vectors, verify that they have the same number of elements.
1062     if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount())
1063       return nullptr;
1064   }
1065 
1066   // Test if a CmpInst instruction is used exclusively by a select as
1067   // part of a minimum or maximum operation. If so, refrain from doing
1068   // any other folding. This helps out other analyses which understand
1069   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
1070   // and CodeGen. And in this case, at least one of the comparison
1071   // operands has at least one user besides the compare (the select),
1072   // which would often largely negate the benefit of folding anyway.
1073   if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
1074     if (CI->hasOneUse()) {
1075       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1076 
1077       // FIXME: This is a hack to avoid infinite looping with min/max patterns.
1078       //        We have to ensure that vector constants that only differ with
1079       //        undef elements are treated as equivalent.
1080       auto areLooselyEqual = [](Value *A, Value *B) {
1081         if (A == B)
1082           return true;
1083 
1084         // Test for vector constants.
1085         Constant *ConstA, *ConstB;
1086         if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
1087           return false;
1088 
1089         // TODO: Deal with FP constants?
1090         if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
1091           return false;
1092 
1093         // Compare for equality including undefs as equal.
1094         auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
1095         const APInt *C;
1096         return match(Cmp, m_APIntAllowUndef(C)) && C->isOne();
1097       };
1098 
1099       if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
1100           (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
1101         return nullptr;
1102     }
1103   }
1104 
1105   Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
1106   Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
1107   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1108 }
1109 
1110 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
1111                                         InstCombiner::BuilderTy &Builder) {
1112   bool ConstIsRHS = isa<Constant>(I->getOperand(1));
1113   Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
1114 
1115   if (auto *InC = dyn_cast<Constant>(InV)) {
1116     if (ConstIsRHS)
1117       return ConstantExpr::get(I->getOpcode(), InC, C);
1118     return ConstantExpr::get(I->getOpcode(), C, InC);
1119   }
1120 
1121   Value *Op0 = InV, *Op1 = C;
1122   if (!ConstIsRHS)
1123     std::swap(Op0, Op1);
1124 
1125   Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo");
1126   auto *FPInst = dyn_cast<Instruction>(RI);
1127   if (FPInst && isa<FPMathOperator>(FPInst))
1128     FPInst->copyFastMathFlags(I);
1129   return RI;
1130 }
1131 
1132 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1133   unsigned NumPHIValues = PN->getNumIncomingValues();
1134   if (NumPHIValues == 0)
1135     return nullptr;
1136 
1137   // We normally only transform phis with a single use.  However, if a PHI has
1138   // multiple uses and they are all the same operation, we can fold *all* of the
1139   // uses into the PHI.
1140   if (!PN->hasOneUse()) {
1141     // Walk the use list for the instruction, comparing them to I.
1142     for (User *U : PN->users()) {
1143       Instruction *UI = cast<Instruction>(U);
1144       if (UI != &I && !I.isIdenticalTo(UI))
1145         return nullptr;
1146     }
1147     // Otherwise, we can replace *all* users with the new PHI we form.
1148   }
1149 
1150   // Check to see if all of the operands of the PHI are simple constants
1151   // (constantint/constantfp/undef).  If there is one non-constant value,
1152   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
1153   // bail out.  We don't do arbitrary constant expressions here because moving
1154   // their computation can be expensive without a cost model.
1155   BasicBlock *NonConstBB = nullptr;
1156   for (unsigned i = 0; i != NumPHIValues; ++i) {
1157     Value *InVal = PN->getIncomingValue(i);
1158     // For non-freeze, require constant operand
1159     // For freeze, require non-undef, non-poison operand
1160     if (!isa<FreezeInst>(I) && match(InVal, m_ImmConstant()))
1161       continue;
1162     if (isa<FreezeInst>(I) && isGuaranteedNotToBeUndefOrPoison(InVal))
1163       continue;
1164 
1165     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
1166     if (NonConstBB) return nullptr;  // More than one non-const value.
1167 
1168     NonConstBB = PN->getIncomingBlock(i);
1169 
1170     // If the InVal is an invoke at the end of the pred block, then we can't
1171     // insert a computation after it without breaking the edge.
1172     if (isa<InvokeInst>(InVal))
1173       if (cast<Instruction>(InVal)->getParent() == NonConstBB)
1174         return nullptr;
1175 
1176     // If the incoming non-constant value is in I's block, we will remove one
1177     // instruction, but insert another equivalent one, leading to infinite
1178     // instcombine.
1179     if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI))
1180       return nullptr;
1181   }
1182 
1183   // If there is exactly one non-constant value, we can insert a copy of the
1184   // operation in that block.  However, if this is a critical edge, we would be
1185   // inserting the computation on some other paths (e.g. inside a loop).  Only
1186   // do this if the pred block is unconditionally branching into the phi block.
1187   // Also, make sure that the pred block is not dead code.
1188   if (NonConstBB != nullptr) {
1189     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1190     if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB))
1191       return nullptr;
1192   }
1193 
1194   // Okay, we can do the transformation: create the new PHI node.
1195   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1196   InsertNewInstBefore(NewPN, *PN);
1197   NewPN->takeName(PN);
1198 
1199   // If we are going to have to insert a new computation, do so right before the
1200   // predecessor's terminator.
1201   if (NonConstBB)
1202     Builder.SetInsertPoint(NonConstBB->getTerminator());
1203 
1204   // Next, add all of the operands to the PHI.
1205   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1206     // We only currently try to fold the condition of a select when it is a phi,
1207     // not the true/false values.
1208     Value *TrueV = SI->getTrueValue();
1209     Value *FalseV = SI->getFalseValue();
1210     BasicBlock *PhiTransBB = PN->getParent();
1211     for (unsigned i = 0; i != NumPHIValues; ++i) {
1212       BasicBlock *ThisBB = PN->getIncomingBlock(i);
1213       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1214       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1215       Value *InV = nullptr;
1216       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
1217       // even if currently isNullValue gives false.
1218       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1219       // For vector constants, we cannot use isNullValue to fold into
1220       // FalseVInPred versus TrueVInPred. When we have individual nonzero
1221       // elements in the vector, we will incorrectly fold InC to
1222       // `TrueVInPred`.
1223       if (InC && isa<ConstantInt>(InC))
1224         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1225       else {
1226         // Generate the select in the same block as PN's current incoming block.
1227         // Note: ThisBB need not be the NonConstBB because vector constants
1228         // which are constants by definition are handled here.
1229         // FIXME: This can lead to an increase in IR generation because we might
1230         // generate selects for vector constant phi operand, that could not be
1231         // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1232         // non-vector phis, this transformation was always profitable because
1233         // the select would be generated exactly once in the NonConstBB.
1234         Builder.SetInsertPoint(ThisBB->getTerminator());
1235         InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1236                                    FalseVInPred, "phi.sel");
1237       }
1238       NewPN->addIncoming(InV, ThisBB);
1239     }
1240   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1241     Constant *C = cast<Constant>(I.getOperand(1));
1242     for (unsigned i = 0; i != NumPHIValues; ++i) {
1243       Value *InV = nullptr;
1244       if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1245         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1246       else
1247         InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i),
1248                                 C, "phi.cmp");
1249       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1250     }
1251   } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1252     for (unsigned i = 0; i != NumPHIValues; ++i) {
1253       Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1254                                              Builder);
1255       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1256     }
1257   } else if (isa<FreezeInst>(&I)) {
1258     for (unsigned i = 0; i != NumPHIValues; ++i) {
1259       Value *InV;
1260       if (NonConstBB == PN->getIncomingBlock(i))
1261         InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr");
1262       else
1263         InV = PN->getIncomingValue(i);
1264       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1265     }
1266   } else {
1267     CastInst *CI = cast<CastInst>(&I);
1268     Type *RetTy = CI->getType();
1269     for (unsigned i = 0; i != NumPHIValues; ++i) {
1270       Value *InV;
1271       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1272         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1273       else
1274         InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1275                                  I.getType(), "phi.cast");
1276       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1277     }
1278   }
1279 
1280   for (User *U : make_early_inc_range(PN->users())) {
1281     Instruction *User = cast<Instruction>(U);
1282     if (User == &I) continue;
1283     replaceInstUsesWith(*User, NewPN);
1284     eraseInstFromFunction(*User);
1285   }
1286   return replaceInstUsesWith(I, NewPN);
1287 }
1288 
1289 Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) {
1290   // TODO: This should be similar to the incoming values check in foldOpIntoPhi:
1291   //       we are guarding against replicating the binop in >1 predecessor.
1292   //       This could miss matching a phi with 2 constant incoming values.
1293   auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0));
1294   auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1));
1295   if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() ||
1296       Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2)
1297     return nullptr;
1298 
1299   // TODO: Remove the restriction for binop being in the same block as the phis.
1300   if (BO.getParent() != Phi0->getParent() ||
1301       BO.getParent() != Phi1->getParent())
1302     return nullptr;
1303 
1304   // Match a pair of incoming constants for one of the predecessor blocks.
1305   BasicBlock *ConstBB, *OtherBB;
1306   Constant *C0, *C1;
1307   if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) {
1308     ConstBB = Phi0->getIncomingBlock(0);
1309     OtherBB = Phi0->getIncomingBlock(1);
1310   } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) {
1311     ConstBB = Phi0->getIncomingBlock(1);
1312     OtherBB = Phi0->getIncomingBlock(0);
1313   } else {
1314     return nullptr;
1315   }
1316   if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1)))
1317     return nullptr;
1318 
1319   // The block that we are hoisting to must reach here unconditionally.
1320   // Otherwise, we could be speculatively executing an expensive or
1321   // non-speculative op.
1322   auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator());
1323   if (!PredBlockBranch || PredBlockBranch->isConditional() ||
1324       !DT.isReachableFromEntry(OtherBB))
1325     return nullptr;
1326 
1327   // TODO: This check could be tightened to only apply to binops (div/rem) that
1328   //       are not safe to speculatively execute. But that could allow hoisting
1329   //       potentially expensive instructions (fdiv for example).
1330   for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter)
1331     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter))
1332       return nullptr;
1333 
1334   // Make a new binop in the predecessor block with the non-constant incoming
1335   // values.
1336   Builder.SetInsertPoint(PredBlockBranch);
1337   Value *NewBO = Builder.CreateBinOp(BO.getOpcode(),
1338                                      Phi0->getIncomingValueForBlock(OtherBB),
1339                                      Phi1->getIncomingValueForBlock(OtherBB));
1340   if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO))
1341     NotFoldedNewBO->copyIRFlags(&BO);
1342 
1343   // Fold constants for the predecessor block with constant incoming values.
1344   Constant *NewC = ConstantExpr::get(BO.getOpcode(), C0, C1);
1345 
1346   // Replace the binop with a phi of the new values. The old phis are dead.
1347   PHINode *NewPhi = PHINode::Create(BO.getType(), 2);
1348   NewPhi->addIncoming(NewBO, OtherBB);
1349   NewPhi->addIncoming(NewC, ConstBB);
1350   return NewPhi;
1351 }
1352 
1353 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1354   if (!isa<Constant>(I.getOperand(1)))
1355     return nullptr;
1356 
1357   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1358     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1359       return NewSel;
1360   } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1361     if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1362       return NewPhi;
1363   }
1364   return nullptr;
1365 }
1366 
1367 /// Given a pointer type and a constant offset, determine whether or not there
1368 /// is a sequence of GEP indices into the pointed type that will land us at the
1369 /// specified offset. If so, fill them into NewIndices and return the resultant
1370 /// element type, otherwise return null.
1371 static Type *findElementAtOffset(PointerType *PtrTy, int64_t IntOffset,
1372                                  SmallVectorImpl<Value *> &NewIndices,
1373                                  const DataLayout &DL) {
1374   // Only used by visitGEPOfBitcast(), which is skipped for opaque pointers.
1375   Type *Ty = PtrTy->getNonOpaquePointerElementType();
1376   if (!Ty->isSized())
1377     return nullptr;
1378 
1379   APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset);
1380   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset);
1381   if (!Offset.isZero())
1382     return nullptr;
1383 
1384   for (const APInt &Index : Indices)
1385     NewIndices.push_back(ConstantInt::get(PtrTy->getContext(), Index));
1386   return Ty;
1387 }
1388 
1389 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1390   // If this GEP has only 0 indices, it is the same pointer as
1391   // Src. If Src is not a trivial GEP too, don't combine
1392   // the indices.
1393   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1394       !Src.hasOneUse())
1395     return false;
1396   return true;
1397 }
1398 
1399 /// Return a value X such that Val = X * Scale, or null if none.
1400 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1401 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1402   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1403   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1404          Scale.getBitWidth() && "Scale not compatible with value!");
1405 
1406   // If Val is zero or Scale is one then Val = Val * Scale.
1407   if (match(Val, m_Zero()) || Scale == 1) {
1408     NoSignedWrap = true;
1409     return Val;
1410   }
1411 
1412   // If Scale is zero then it does not divide Val.
1413   if (Scale.isMinValue())
1414     return nullptr;
1415 
1416   // Look through chains of multiplications, searching for a constant that is
1417   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1418   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1419   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1420   // down from Val:
1421   //
1422   //     Val = M1 * X          ||   Analysis starts here and works down
1423   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1424   //      M2 =  Z * 4          \/   than one use
1425   //
1426   // Then to modify a term at the bottom:
1427   //
1428   //     Val = M1 * X
1429   //      M1 =  Z * Y          ||   Replaced M2 with Z
1430   //
1431   // Then to work back up correcting nsw flags.
1432 
1433   // Op - the term we are currently analyzing.  Starts at Val then drills down.
1434   // Replaced with its descaled value before exiting from the drill down loop.
1435   Value *Op = Val;
1436 
1437   // Parent - initially null, but after drilling down notes where Op came from.
1438   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1439   // 0'th operand of Val.
1440   std::pair<Instruction *, unsigned> Parent;
1441 
1442   // Set if the transform requires a descaling at deeper levels that doesn't
1443   // overflow.
1444   bool RequireNoSignedWrap = false;
1445 
1446   // Log base 2 of the scale. Negative if not a power of 2.
1447   int32_t logScale = Scale.exactLogBase2();
1448 
1449   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1450     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1451       // If Op is a constant divisible by Scale then descale to the quotient.
1452       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1453       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1454       if (!Remainder.isMinValue())
1455         // Not divisible by Scale.
1456         return nullptr;
1457       // Replace with the quotient in the parent.
1458       Op = ConstantInt::get(CI->getType(), Quotient);
1459       NoSignedWrap = true;
1460       break;
1461     }
1462 
1463     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1464       if (BO->getOpcode() == Instruction::Mul) {
1465         // Multiplication.
1466         NoSignedWrap = BO->hasNoSignedWrap();
1467         if (RequireNoSignedWrap && !NoSignedWrap)
1468           return nullptr;
1469 
1470         // There are three cases for multiplication: multiplication by exactly
1471         // the scale, multiplication by a constant different to the scale, and
1472         // multiplication by something else.
1473         Value *LHS = BO->getOperand(0);
1474         Value *RHS = BO->getOperand(1);
1475 
1476         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1477           // Multiplication by a constant.
1478           if (CI->getValue() == Scale) {
1479             // Multiplication by exactly the scale, replace the multiplication
1480             // by its left-hand side in the parent.
1481             Op = LHS;
1482             break;
1483           }
1484 
1485           // Otherwise drill down into the constant.
1486           if (!Op->hasOneUse())
1487             return nullptr;
1488 
1489           Parent = std::make_pair(BO, 1);
1490           continue;
1491         }
1492 
1493         // Multiplication by something else. Drill down into the left-hand side
1494         // since that's where the reassociate pass puts the good stuff.
1495         if (!Op->hasOneUse())
1496           return nullptr;
1497 
1498         Parent = std::make_pair(BO, 0);
1499         continue;
1500       }
1501 
1502       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1503           isa<ConstantInt>(BO->getOperand(1))) {
1504         // Multiplication by a power of 2.
1505         NoSignedWrap = BO->hasNoSignedWrap();
1506         if (RequireNoSignedWrap && !NoSignedWrap)
1507           return nullptr;
1508 
1509         Value *LHS = BO->getOperand(0);
1510         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1511           getLimitedValue(Scale.getBitWidth());
1512         // Op = LHS << Amt.
1513 
1514         if (Amt == logScale) {
1515           // Multiplication by exactly the scale, replace the multiplication
1516           // by its left-hand side in the parent.
1517           Op = LHS;
1518           break;
1519         }
1520         if (Amt < logScale || !Op->hasOneUse())
1521           return nullptr;
1522 
1523         // Multiplication by more than the scale.  Reduce the multiplying amount
1524         // by the scale in the parent.
1525         Parent = std::make_pair(BO, 1);
1526         Op = ConstantInt::get(BO->getType(), Amt - logScale);
1527         break;
1528       }
1529     }
1530 
1531     if (!Op->hasOneUse())
1532       return nullptr;
1533 
1534     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1535       if (Cast->getOpcode() == Instruction::SExt) {
1536         // Op is sign-extended from a smaller type, descale in the smaller type.
1537         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1538         APInt SmallScale = Scale.trunc(SmallSize);
1539         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1540         // descale Op as (sext Y) * Scale.  In order to have
1541         //   sext (Y * SmallScale) = (sext Y) * Scale
1542         // some conditions need to hold however: SmallScale must sign-extend to
1543         // Scale and the multiplication Y * SmallScale should not overflow.
1544         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1545           // SmallScale does not sign-extend to Scale.
1546           return nullptr;
1547         assert(SmallScale.exactLogBase2() == logScale);
1548         // Require that Y * SmallScale must not overflow.
1549         RequireNoSignedWrap = true;
1550 
1551         // Drill down through the cast.
1552         Parent = std::make_pair(Cast, 0);
1553         Scale = SmallScale;
1554         continue;
1555       }
1556 
1557       if (Cast->getOpcode() == Instruction::Trunc) {
1558         // Op is truncated from a larger type, descale in the larger type.
1559         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1560         //   trunc (Y * sext Scale) = (trunc Y) * Scale
1561         // always holds.  However (trunc Y) * Scale may overflow even if
1562         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1563         // from this point up in the expression (see later).
1564         if (RequireNoSignedWrap)
1565           return nullptr;
1566 
1567         // Drill down through the cast.
1568         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1569         Parent = std::make_pair(Cast, 0);
1570         Scale = Scale.sext(LargeSize);
1571         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1572           logScale = -1;
1573         assert(Scale.exactLogBase2() == logScale);
1574         continue;
1575       }
1576     }
1577 
1578     // Unsupported expression, bail out.
1579     return nullptr;
1580   }
1581 
1582   // If Op is zero then Val = Op * Scale.
1583   if (match(Op, m_Zero())) {
1584     NoSignedWrap = true;
1585     return Op;
1586   }
1587 
1588   // We know that we can successfully descale, so from here on we can safely
1589   // modify the IR.  Op holds the descaled version of the deepest term in the
1590   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1591   // not to overflow.
1592 
1593   if (!Parent.first)
1594     // The expression only had one term.
1595     return Op;
1596 
1597   // Rewrite the parent using the descaled version of its operand.
1598   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1599   assert(Op != Parent.first->getOperand(Parent.second) &&
1600          "Descaling was a no-op?");
1601   replaceOperand(*Parent.first, Parent.second, Op);
1602   Worklist.push(Parent.first);
1603 
1604   // Now work back up the expression correcting nsw flags.  The logic is based
1605   // on the following observation: if X * Y is known not to overflow as a signed
1606   // multiplication, and Y is replaced by a value Z with smaller absolute value,
1607   // then X * Z will not overflow as a signed multiplication either.  As we work
1608   // our way up, having NoSignedWrap 'true' means that the descaled value at the
1609   // current level has strictly smaller absolute value than the original.
1610   Instruction *Ancestor = Parent.first;
1611   do {
1612     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1613       // If the multiplication wasn't nsw then we can't say anything about the
1614       // value of the descaled multiplication, and we have to clear nsw flags
1615       // from this point on up.
1616       bool OpNoSignedWrap = BO->hasNoSignedWrap();
1617       NoSignedWrap &= OpNoSignedWrap;
1618       if (NoSignedWrap != OpNoSignedWrap) {
1619         BO->setHasNoSignedWrap(NoSignedWrap);
1620         Worklist.push(Ancestor);
1621       }
1622     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1623       // The fact that the descaled input to the trunc has smaller absolute
1624       // value than the original input doesn't tell us anything useful about
1625       // the absolute values of the truncations.
1626       NoSignedWrap = false;
1627     }
1628     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1629            "Failed to keep proper track of nsw flags while drilling down?");
1630 
1631     if (Ancestor == Val)
1632       // Got to the top, all done!
1633       return Val;
1634 
1635     // Move up one level in the expression.
1636     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1637     Ancestor = Ancestor->user_back();
1638   } while (true);
1639 }
1640 
1641 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
1642   if (!isa<VectorType>(Inst.getType()))
1643     return nullptr;
1644 
1645   BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1646   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1647   assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1648          cast<VectorType>(Inst.getType())->getElementCount());
1649   assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1650          cast<VectorType>(Inst.getType())->getElementCount());
1651 
1652   // If both operands of the binop are vector concatenations, then perform the
1653   // narrow binop on each pair of the source operands followed by concatenation
1654   // of the results.
1655   Value *L0, *L1, *R0, *R1;
1656   ArrayRef<int> Mask;
1657   if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1658       match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1659       LHS->hasOneUse() && RHS->hasOneUse() &&
1660       cast<ShuffleVectorInst>(LHS)->isConcat() &&
1661       cast<ShuffleVectorInst>(RHS)->isConcat()) {
1662     // This transform does not have the speculative execution constraint as
1663     // below because the shuffle is a concatenation. The new binops are
1664     // operating on exactly the same elements as the existing binop.
1665     // TODO: We could ease the mask requirement to allow different undef lanes,
1666     //       but that requires an analysis of the binop-with-undef output value.
1667     Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1668     if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1669       BO->copyIRFlags(&Inst);
1670     Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1671     if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1672       BO->copyIRFlags(&Inst);
1673     return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1674   }
1675 
1676   // It may not be safe to reorder shuffles and things like div, urem, etc.
1677   // because we may trap when executing those ops on unknown vector elements.
1678   // See PR20059.
1679   if (!isSafeToSpeculativelyExecute(&Inst))
1680     return nullptr;
1681 
1682   auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1683     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1684     if (auto *BO = dyn_cast<BinaryOperator>(XY))
1685       BO->copyIRFlags(&Inst);
1686     return new ShuffleVectorInst(XY, M);
1687   };
1688 
1689   // If both arguments of the binary operation are shuffles that use the same
1690   // mask and shuffle within a single vector, move the shuffle after the binop.
1691   Value *V1, *V2;
1692   if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
1693       match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
1694       V1->getType() == V2->getType() &&
1695       (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1696     // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1697     return createBinOpShuffle(V1, V2, Mask);
1698   }
1699 
1700   // If both arguments of a commutative binop are select-shuffles that use the
1701   // same mask with commuted operands, the shuffles are unnecessary.
1702   if (Inst.isCommutative() &&
1703       match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1704       match(RHS,
1705             m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1706     auto *LShuf = cast<ShuffleVectorInst>(LHS);
1707     auto *RShuf = cast<ShuffleVectorInst>(RHS);
1708     // TODO: Allow shuffles that contain undefs in the mask?
1709     //       That is legal, but it reduces undef knowledge.
1710     // TODO: Allow arbitrary shuffles by shuffling after binop?
1711     //       That might be legal, but we have to deal with poison.
1712     if (LShuf->isSelect() &&
1713         !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
1714         RShuf->isSelect() &&
1715         !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
1716       // Example:
1717       // LHS = shuffle V1, V2, <0, 5, 6, 3>
1718       // RHS = shuffle V2, V1, <0, 5, 6, 3>
1719       // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1720       Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1721       NewBO->copyIRFlags(&Inst);
1722       return NewBO;
1723     }
1724   }
1725 
1726   // If one argument is a shuffle within one vector and the other is a constant,
1727   // try moving the shuffle after the binary operation. This canonicalization
1728   // intends to move shuffles closer to other shuffles and binops closer to
1729   // other binops, so they can be folded. It may also enable demanded elements
1730   // transforms.
1731   Constant *C;
1732   auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
1733   if (InstVTy &&
1734       match(&Inst,
1735             m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
1736                       m_ImmConstant(C))) &&
1737       cast<FixedVectorType>(V1->getType())->getNumElements() <=
1738           InstVTy->getNumElements()) {
1739     assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
1740            "Shuffle should not change scalar type");
1741 
1742     // Find constant NewC that has property:
1743     //   shuffle(NewC, ShMask) = C
1744     // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1745     // reorder is not possible. A 1-to-1 mapping is not required. Example:
1746     // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1747     bool ConstOp1 = isa<Constant>(RHS);
1748     ArrayRef<int> ShMask = Mask;
1749     unsigned SrcVecNumElts =
1750         cast<FixedVectorType>(V1->getType())->getNumElements();
1751     UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1752     SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1753     bool MayChange = true;
1754     unsigned NumElts = InstVTy->getNumElements();
1755     for (unsigned I = 0; I < NumElts; ++I) {
1756       Constant *CElt = C->getAggregateElement(I);
1757       if (ShMask[I] >= 0) {
1758         assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1759         Constant *NewCElt = NewVecC[ShMask[I]];
1760         // Bail out if:
1761         // 1. The constant vector contains a constant expression.
1762         // 2. The shuffle needs an element of the constant vector that can't
1763         //    be mapped to a new constant vector.
1764         // 3. This is a widening shuffle that copies elements of V1 into the
1765         //    extended elements (extending with undef is allowed).
1766         if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1767             I >= SrcVecNumElts) {
1768           MayChange = false;
1769           break;
1770         }
1771         NewVecC[ShMask[I]] = CElt;
1772       }
1773       // If this is a widening shuffle, we must be able to extend with undef
1774       // elements. If the original binop does not produce an undef in the high
1775       // lanes, then this transform is not safe.
1776       // Similarly for undef lanes due to the shuffle mask, we can only
1777       // transform binops that preserve undef.
1778       // TODO: We could shuffle those non-undef constant values into the
1779       //       result by using a constant vector (rather than an undef vector)
1780       //       as operand 1 of the new binop, but that might be too aggressive
1781       //       for target-independent shuffle creation.
1782       if (I >= SrcVecNumElts || ShMask[I] < 0) {
1783         Constant *MaybeUndef =
1784             ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1785                      : ConstantExpr::get(Opcode, CElt, UndefScalar);
1786         if (!match(MaybeUndef, m_Undef())) {
1787           MayChange = false;
1788           break;
1789         }
1790       }
1791     }
1792     if (MayChange) {
1793       Constant *NewC = ConstantVector::get(NewVecC);
1794       // It may not be safe to execute a binop on a vector with undef elements
1795       // because the entire instruction can be folded to undef or create poison
1796       // that did not exist in the original code.
1797       if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1798         NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1799 
1800       // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1801       // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1802       Value *NewLHS = ConstOp1 ? V1 : NewC;
1803       Value *NewRHS = ConstOp1 ? NewC : V1;
1804       return createBinOpShuffle(NewLHS, NewRHS, Mask);
1805     }
1806   }
1807 
1808   // Try to reassociate to sink a splat shuffle after a binary operation.
1809   if (Inst.isAssociative() && Inst.isCommutative()) {
1810     // Canonicalize shuffle operand as LHS.
1811     if (isa<ShuffleVectorInst>(RHS))
1812       std::swap(LHS, RHS);
1813 
1814     Value *X;
1815     ArrayRef<int> MaskC;
1816     int SplatIndex;
1817     Value *Y, *OtherOp;
1818     if (!match(LHS,
1819                m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
1820         !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1821         X->getType() != Inst.getType() ||
1822         !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp)))))
1823       return nullptr;
1824 
1825     // FIXME: This may not be safe if the analysis allows undef elements. By
1826     //        moving 'Y' before the splat shuffle, we are implicitly assuming
1827     //        that it is not undef/poison at the splat index.
1828     if (isSplatValue(OtherOp, SplatIndex)) {
1829       std::swap(Y, OtherOp);
1830     } else if (!isSplatValue(Y, SplatIndex)) {
1831       return nullptr;
1832     }
1833 
1834     // X and Y are splatted values, so perform the binary operation on those
1835     // values followed by a splat followed by the 2nd binary operation:
1836     // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1837     Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1838     SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1839     Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
1840     Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1841 
1842     // Intersect FMF on both new binops. Other (poison-generating) flags are
1843     // dropped to be safe.
1844     if (isa<FPMathOperator>(R)) {
1845       R->copyFastMathFlags(&Inst);
1846       R->andIRFlags(RHS);
1847     }
1848     if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1849       NewInstBO->copyIRFlags(R);
1850     return R;
1851   }
1852 
1853   return nullptr;
1854 }
1855 
1856 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1857 /// of a value. This requires a potentially expensive known bits check to make
1858 /// sure the narrow op does not overflow.
1859 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
1860   // We need at least one extended operand.
1861   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1862 
1863   // If this is a sub, we swap the operands since we always want an extension
1864   // on the RHS. The LHS can be an extension or a constant.
1865   if (BO.getOpcode() == Instruction::Sub)
1866     std::swap(Op0, Op1);
1867 
1868   Value *X;
1869   bool IsSext = match(Op0, m_SExt(m_Value(X)));
1870   if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1871     return nullptr;
1872 
1873   // If both operands are the same extension from the same source type and we
1874   // can eliminate at least one (hasOneUse), this might work.
1875   CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1876   Value *Y;
1877   if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1878         cast<Operator>(Op1)->getOpcode() == CastOpc &&
1879         (Op0->hasOneUse() || Op1->hasOneUse()))) {
1880     // If that did not match, see if we have a suitable constant operand.
1881     // Truncating and extending must produce the same constant.
1882     Constant *WideC;
1883     if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1884       return nullptr;
1885     Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1886     if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1887       return nullptr;
1888     Y = NarrowC;
1889   }
1890 
1891   // Swap back now that we found our operands.
1892   if (BO.getOpcode() == Instruction::Sub)
1893     std::swap(X, Y);
1894 
1895   // Both operands have narrow versions. Last step: the math must not overflow
1896   // in the narrow width.
1897   if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1898     return nullptr;
1899 
1900   // bo (ext X), (ext Y) --> ext (bo X, Y)
1901   // bo (ext X), C       --> ext (bo X, C')
1902   Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1903   if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1904     if (IsSext)
1905       NewBinOp->setHasNoSignedWrap();
1906     else
1907       NewBinOp->setHasNoUnsignedWrap();
1908   }
1909   return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1910 }
1911 
1912 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1913   // At least one GEP must be inbounds.
1914   if (!GEP1.isInBounds() && !GEP2.isInBounds())
1915     return false;
1916 
1917   return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1918          (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1919 }
1920 
1921 /// Thread a GEP operation with constant indices through the constant true/false
1922 /// arms of a select.
1923 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1924                                   InstCombiner::BuilderTy &Builder) {
1925   if (!GEP.hasAllConstantIndices())
1926     return nullptr;
1927 
1928   Instruction *Sel;
1929   Value *Cond;
1930   Constant *TrueC, *FalseC;
1931   if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1932       !match(Sel,
1933              m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1934     return nullptr;
1935 
1936   // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1937   // Propagate 'inbounds' and metadata from existing instructions.
1938   // Note: using IRBuilder to create the constants for efficiency.
1939   SmallVector<Value *, 4> IndexC(GEP.indices());
1940   bool IsInBounds = GEP.isInBounds();
1941   Type *Ty = GEP.getSourceElementType();
1942   Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC)
1943                                : Builder.CreateGEP(Ty, TrueC, IndexC);
1944   Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC)
1945                                 : Builder.CreateGEP(Ty, FalseC, IndexC);
1946   return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1947 }
1948 
1949 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP,
1950                                              GEPOperator *Src) {
1951   // Combine Indices - If the source pointer to this getelementptr instruction
1952   // is a getelementptr instruction with matching element type, combine the
1953   // indices of the two getelementptr instructions into a single instruction.
1954   if (Src->getResultElementType() != GEP.getSourceElementType())
1955     return nullptr;
1956 
1957   if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1958     return nullptr;
1959 
1960   if (Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
1961       Src->hasOneUse()) {
1962     Value *GO1 = GEP.getOperand(1);
1963     Value *SO1 = Src->getOperand(1);
1964 
1965     if (LI) {
1966       // Try to reassociate loop invariant GEP chains to enable LICM.
1967       if (Loop *L = LI->getLoopFor(GEP.getParent())) {
1968         // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
1969         // invariant: this breaks the dependence between GEPs and allows LICM
1970         // to hoist the invariant part out of the loop.
1971         if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
1972           // We have to be careful here.
1973           // We have something like:
1974           //  %src = getelementptr <ty>, <ty>* %base, <ty> %idx
1975           //  %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
1976           // If we just swap idx & idx2 then we could inadvertantly
1977           // change %src from a vector to a scalar, or vice versa.
1978           // Cases:
1979           //  1) %base a scalar & idx a scalar & idx2 a vector
1980           //      => Swapping idx & idx2 turns %src into a vector type.
1981           //  2) %base a scalar & idx a vector & idx2 a scalar
1982           //      => Swapping idx & idx2 turns %src in a scalar type
1983           //  3) %base, %idx, and %idx2 are scalars
1984           //      => %src & %gep are scalars
1985           //      => swapping idx & idx2 is safe
1986           //  4) %base a vector
1987           //      => %src is a vector
1988           //      => swapping idx & idx2 is safe.
1989           auto *SO0 = Src->getOperand(0);
1990           auto *SO0Ty = SO0->getType();
1991           if (!isa<VectorType>(GEP.getType()) || // case 3
1992               isa<VectorType>(SO0Ty)) { // case 4
1993             Src->setOperand(1, GO1);
1994             GEP.setOperand(1, SO1);
1995             return &GEP;
1996           } else {
1997             // Case 1 or 2
1998             // -- have to recreate %src & %gep
1999             // put NewSrc at same location as %src
2000             Builder.SetInsertPoint(cast<Instruction>(Src));
2001             Value *NewSrc = Builder.CreateGEP(
2002                 GEP.getSourceElementType(), SO0, GO1, Src->getName());
2003             // Propagate 'inbounds' if the new source was not constant-folded.
2004             if (auto *NewSrcGEPI = dyn_cast<GetElementPtrInst>(NewSrc))
2005               NewSrcGEPI->setIsInBounds(Src->isInBounds());
2006             GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
2007                 GEP.getSourceElementType(), NewSrc, {SO1});
2008             NewGEP->setIsInBounds(GEP.isInBounds());
2009             return NewGEP;
2010           }
2011         }
2012       }
2013     }
2014   }
2015 
2016   // Note that if our source is a gep chain itself then we wait for that
2017   // chain to be resolved before we perform this transformation.  This
2018   // avoids us creating a TON of code in some cases.
2019   if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
2020     if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
2021       return nullptr;   // Wait until our source is folded to completion.
2022 
2023   SmallVector<Value*, 8> Indices;
2024 
2025   // Find out whether the last index in the source GEP is a sequential idx.
2026   bool EndsWithSequential = false;
2027   for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2028        I != E; ++I)
2029     EndsWithSequential = I.isSequential();
2030 
2031   // Can we combine the two pointer arithmetics offsets?
2032   if (EndsWithSequential) {
2033     // Replace: gep (gep %P, long B), long A, ...
2034     // With:    T = long A+B; gep %P, T, ...
2035     Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2036     Value *GO1 = GEP.getOperand(1);
2037 
2038     // If they aren't the same type, then the input hasn't been processed
2039     // by the loop above yet (which canonicalizes sequential index types to
2040     // intptr_t).  Just avoid transforming this until the input has been
2041     // normalized.
2042     if (SO1->getType() != GO1->getType())
2043       return nullptr;
2044 
2045     Value *Sum =
2046         SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2047     // Only do the combine when we are sure the cost after the
2048     // merge is never more than that before the merge.
2049     if (Sum == nullptr)
2050       return nullptr;
2051 
2052     // Update the GEP in place if possible.
2053     if (Src->getNumOperands() == 2) {
2054       GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2055       replaceOperand(GEP, 0, Src->getOperand(0));
2056       replaceOperand(GEP, 1, Sum);
2057       return &GEP;
2058     }
2059     Indices.append(Src->op_begin()+1, Src->op_end()-1);
2060     Indices.push_back(Sum);
2061     Indices.append(GEP.op_begin()+2, GEP.op_end());
2062   } else if (isa<Constant>(*GEP.idx_begin()) &&
2063              cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2064              Src->getNumOperands() != 1) {
2065     // Otherwise we can do the fold if the first index of the GEP is a zero
2066     Indices.append(Src->op_begin()+1, Src->op_end());
2067     Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2068   }
2069 
2070   if (!Indices.empty())
2071     return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2072                ? GetElementPtrInst::CreateInBounds(
2073                      Src->getSourceElementType(), Src->getOperand(0), Indices,
2074                      GEP.getName())
2075                : GetElementPtrInst::Create(Src->getSourceElementType(),
2076                                            Src->getOperand(0), Indices,
2077                                            GEP.getName());
2078 
2079   return nullptr;
2080 }
2081 
2082 // Note that we may have also stripped an address space cast in between.
2083 Instruction *InstCombinerImpl::visitGEPOfBitcast(BitCastInst *BCI,
2084                                                  GetElementPtrInst &GEP) {
2085   // With opaque pointers, there is no pointer element type we can use to
2086   // adjust the GEP type.
2087   PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2088   if (SrcType->isOpaque())
2089     return nullptr;
2090 
2091   Type *GEPEltType = GEP.getSourceElementType();
2092   Type *SrcEltType = SrcType->getNonOpaquePointerElementType();
2093   Value *SrcOp = BCI->getOperand(0);
2094 
2095   // GEP directly using the source operand if this GEP is accessing an element
2096   // of a bitcasted pointer to vector or array of the same dimensions:
2097   // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2098   // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2099   auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2100                                         const DataLayout &DL) {
2101     auto *VecVTy = cast<FixedVectorType>(VecTy);
2102     return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
2103            ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
2104            DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2105   };
2106   if (GEP.getNumOperands() == 3 &&
2107       ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) &&
2108         areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2109        (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() &&
2110         areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2111 
2112     // Create a new GEP here, as using `setOperand()` followed by
2113     // `setSourceElementType()` won't actually update the type of the
2114     // existing GEP Value. Causing issues if this Value is accessed when
2115     // constructing an AddrSpaceCastInst
2116     SmallVector<Value *, 8> Indices(GEP.indices());
2117     Value *NGEP = GEP.isInBounds()
2118                       ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, Indices)
2119                       : Builder.CreateGEP(SrcEltType, SrcOp, Indices);
2120     NGEP->takeName(&GEP);
2121 
2122     // Preserve GEP address space to satisfy users
2123     if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2124       return new AddrSpaceCastInst(NGEP, GEP.getType());
2125 
2126     return replaceInstUsesWith(GEP, NGEP);
2127   }
2128 
2129   // See if we can simplify:
2130   //   X = bitcast A* to B*
2131   //   Y = gep X, <...constant indices...>
2132   // into a gep of the original struct. This is important for SROA and alias
2133   // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2134   unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEP.getType());
2135   APInt Offset(OffsetBits, 0);
2136 
2137   // If the bitcast argument is an allocation, The bitcast is for convertion
2138   // to actual type of allocation. Removing such bitcasts, results in having
2139   // GEPs with i8* base and pure byte offsets. That means GEP is not aware of
2140   // struct or array hierarchy.
2141   // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have
2142   // a better chance to succeed.
2143   if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) &&
2144       !isAllocationFn(SrcOp, &TLI)) {
2145     // If this GEP instruction doesn't move the pointer, just replace the GEP
2146     // with a bitcast of the real input to the dest type.
2147     if (!Offset) {
2148       // If the bitcast is of an allocation, and the allocation will be
2149       // converted to match the type of the cast, don't touch this.
2150       if (isa<AllocaInst>(SrcOp)) {
2151         // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2152         if (Instruction *I = visitBitCast(*BCI)) {
2153           if (I != BCI) {
2154             I->takeName(BCI);
2155             BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2156             replaceInstUsesWith(*BCI, I);
2157           }
2158           return &GEP;
2159         }
2160       }
2161 
2162       if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2163         return new AddrSpaceCastInst(SrcOp, GEP.getType());
2164       return new BitCastInst(SrcOp, GEP.getType());
2165     }
2166 
2167     // Otherwise, if the offset is non-zero, we need to find out if there is a
2168     // field at Offset in 'A's type.  If so, we can pull the cast through the
2169     // GEP.
2170     SmallVector<Value*, 8> NewIndices;
2171     if (findElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices, DL)) {
2172       Value *NGEP =
2173           GEP.isInBounds()
2174               ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2175               : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2176 
2177       if (NGEP->getType() == GEP.getType())
2178         return replaceInstUsesWith(GEP, NGEP);
2179       NGEP->takeName(&GEP);
2180 
2181       if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2182         return new AddrSpaceCastInst(NGEP, GEP.getType());
2183       return new BitCastInst(NGEP, GEP.getType());
2184     }
2185   }
2186 
2187   return nullptr;
2188 }
2189 
2190 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2191   Value *PtrOp = GEP.getOperand(0);
2192   SmallVector<Value *, 8> Indices(GEP.indices());
2193   Type *GEPType = GEP.getType();
2194   Type *GEPEltType = GEP.getSourceElementType();
2195   bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
2196   if (Value *V = SimplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(),
2197                                  SQ.getWithInstruction(&GEP)))
2198     return replaceInstUsesWith(GEP, V);
2199 
2200   // For vector geps, use the generic demanded vector support.
2201   // Skip if GEP return type is scalable. The number of elements is unknown at
2202   // compile-time.
2203   if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
2204     auto VWidth = GEPFVTy->getNumElements();
2205     APInt UndefElts(VWidth, 0);
2206     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
2207     if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
2208                                               UndefElts)) {
2209       if (V != &GEP)
2210         return replaceInstUsesWith(GEP, V);
2211       return &GEP;
2212     }
2213 
2214     // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
2215     // possible (decide on canonical form for pointer broadcast), 3) exploit
2216     // undef elements to decrease demanded bits
2217   }
2218 
2219   // Eliminate unneeded casts for indices, and replace indices which displace
2220   // by multiples of a zero size type with zero.
2221   bool MadeChange = false;
2222 
2223   // Index width may not be the same width as pointer width.
2224   // Data layout chooses the right type based on supported integer types.
2225   Type *NewScalarIndexTy =
2226       DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
2227 
2228   gep_type_iterator GTI = gep_type_begin(GEP);
2229   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
2230        ++I, ++GTI) {
2231     // Skip indices into struct types.
2232     if (GTI.isStruct())
2233       continue;
2234 
2235     Type *IndexTy = (*I)->getType();
2236     Type *NewIndexType =
2237         IndexTy->isVectorTy()
2238             ? VectorType::get(NewScalarIndexTy,
2239                               cast<VectorType>(IndexTy)->getElementCount())
2240             : NewScalarIndexTy;
2241 
2242     // If the element type has zero size then any index over it is equivalent
2243     // to an index of zero, so replace it with zero if it is not zero already.
2244     Type *EltTy = GTI.getIndexedType();
2245     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
2246       if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
2247         *I = Constant::getNullValue(NewIndexType);
2248         MadeChange = true;
2249       }
2250 
2251     if (IndexTy != NewIndexType) {
2252       // If we are using a wider index than needed for this platform, shrink
2253       // it to what we need.  If narrower, sign-extend it to what we need.
2254       // This explicit cast can make subsequent optimizations more obvious.
2255       *I = Builder.CreateIntCast(*I, NewIndexType, true);
2256       MadeChange = true;
2257     }
2258   }
2259   if (MadeChange)
2260     return &GEP;
2261 
2262   // Check to see if the inputs to the PHI node are getelementptr instructions.
2263   if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
2264     auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
2265     if (!Op1)
2266       return nullptr;
2267 
2268     // Don't fold a GEP into itself through a PHI node. This can only happen
2269     // through the back-edge of a loop. Folding a GEP into itself means that
2270     // the value of the previous iteration needs to be stored in the meantime,
2271     // thus requiring an additional register variable to be live, but not
2272     // actually achieving anything (the GEP still needs to be executed once per
2273     // loop iteration).
2274     if (Op1 == &GEP)
2275       return nullptr;
2276 
2277     int DI = -1;
2278 
2279     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
2280       auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
2281       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() ||
2282           Op1->getSourceElementType() != Op2->getSourceElementType())
2283         return nullptr;
2284 
2285       // As for Op1 above, don't try to fold a GEP into itself.
2286       if (Op2 == &GEP)
2287         return nullptr;
2288 
2289       // Keep track of the type as we walk the GEP.
2290       Type *CurTy = nullptr;
2291 
2292       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
2293         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
2294           return nullptr;
2295 
2296         if (Op1->getOperand(J) != Op2->getOperand(J)) {
2297           if (DI == -1) {
2298             // We have not seen any differences yet in the GEPs feeding the
2299             // PHI yet, so we record this one if it is allowed to be a
2300             // variable.
2301 
2302             // The first two arguments can vary for any GEP, the rest have to be
2303             // static for struct slots
2304             if (J > 1) {
2305               assert(CurTy && "No current type?");
2306               if (CurTy->isStructTy())
2307                 return nullptr;
2308             }
2309 
2310             DI = J;
2311           } else {
2312             // The GEP is different by more than one input. While this could be
2313             // extended to support GEPs that vary by more than one variable it
2314             // doesn't make sense since it greatly increases the complexity and
2315             // would result in an R+R+R addressing mode which no backend
2316             // directly supports and would need to be broken into several
2317             // simpler instructions anyway.
2318             return nullptr;
2319           }
2320         }
2321 
2322         // Sink down a layer of the type for the next iteration.
2323         if (J > 0) {
2324           if (J == 1) {
2325             CurTy = Op1->getSourceElementType();
2326           } else {
2327             CurTy =
2328                 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
2329           }
2330         }
2331       }
2332     }
2333 
2334     // If not all GEPs are identical we'll have to create a new PHI node.
2335     // Check that the old PHI node has only one use so that it will get
2336     // removed.
2337     if (DI != -1 && !PN->hasOneUse())
2338       return nullptr;
2339 
2340     auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2341     if (DI == -1) {
2342       // All the GEPs feeding the PHI are identical. Clone one down into our
2343       // BB so that it can be merged with the current GEP.
2344     } else {
2345       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
2346       // into the current block so it can be merged, and create a new PHI to
2347       // set that index.
2348       PHINode *NewPN;
2349       {
2350         IRBuilderBase::InsertPointGuard Guard(Builder);
2351         Builder.SetInsertPoint(PN);
2352         NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
2353                                   PN->getNumOperands());
2354       }
2355 
2356       for (auto &I : PN->operands())
2357         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
2358                            PN->getIncomingBlock(I));
2359 
2360       NewGEP->setOperand(DI, NewPN);
2361     }
2362 
2363     GEP.getParent()->getInstList().insert(
2364         GEP.getParent()->getFirstInsertionPt(), NewGEP);
2365     replaceOperand(GEP, 0, NewGEP);
2366     PtrOp = NewGEP;
2367   }
2368 
2369   if (auto *Src = dyn_cast<GEPOperator>(PtrOp))
2370     if (Instruction *I = visitGEPOfGEP(GEP, Src))
2371       return I;
2372 
2373   // Skip if GEP source element type is scalable. The type alloc size is unknown
2374   // at compile-time.
2375   if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2376     unsigned AS = GEP.getPointerAddressSpace();
2377     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2378         DL.getIndexSizeInBits(AS)) {
2379       uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2380 
2381       bool Matched = false;
2382       uint64_t C;
2383       Value *V = nullptr;
2384       if (TyAllocSize == 1) {
2385         V = GEP.getOperand(1);
2386         Matched = true;
2387       } else if (match(GEP.getOperand(1),
2388                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
2389         if (TyAllocSize == 1ULL << C)
2390           Matched = true;
2391       } else if (match(GEP.getOperand(1),
2392                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2393         if (TyAllocSize == C)
2394           Matched = true;
2395       }
2396 
2397       // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but
2398       // only if both point to the same underlying object (otherwise provenance
2399       // is not necessarily retained).
2400       Value *Y;
2401       Value *X = GEP.getOperand(0);
2402       if (Matched &&
2403           match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) &&
2404           getUnderlyingObject(X) == getUnderlyingObject(Y))
2405         return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2406     }
2407   }
2408 
2409   // We do not handle pointer-vector geps here.
2410   if (GEPType->isVectorTy())
2411     return nullptr;
2412 
2413   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2414   Value *StrippedPtr = PtrOp->stripPointerCasts();
2415   PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2416 
2417   // TODO: The basic approach of these folds is not compatible with opaque
2418   // pointers, because we can't use bitcasts as a hint for a desirable GEP
2419   // type. Instead, we should perform canonicalization directly on the GEP
2420   // type. For now, skip these.
2421   if (StrippedPtr != PtrOp && !StrippedPtrTy->isOpaque()) {
2422     bool HasZeroPointerIndex = false;
2423     Type *StrippedPtrEltTy = StrippedPtrTy->getNonOpaquePointerElementType();
2424 
2425     if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2426       HasZeroPointerIndex = C->isZero();
2427 
2428     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2429     // into     : GEP [10 x i8]* X, i32 0, ...
2430     //
2431     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2432     //           into     : GEP i8* X, ...
2433     //
2434     // This occurs when the program declares an array extern like "int X[];"
2435     if (HasZeroPointerIndex) {
2436       if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2437         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2438         if (CATy->getElementType() == StrippedPtrEltTy) {
2439           // -> GEP i8* X, ...
2440           SmallVector<Value *, 8> Idx(drop_begin(GEP.indices()));
2441           GetElementPtrInst *Res = GetElementPtrInst::Create(
2442               StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2443           Res->setIsInBounds(GEP.isInBounds());
2444           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2445             return Res;
2446           // Insert Res, and create an addrspacecast.
2447           // e.g.,
2448           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2449           // ->
2450           // %0 = GEP i8 addrspace(1)* X, ...
2451           // addrspacecast i8 addrspace(1)* %0 to i8*
2452           return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2453         }
2454 
2455         if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2456           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2457           if (CATy->getElementType() == XATy->getElementType()) {
2458             // -> GEP [10 x i8]* X, i32 0, ...
2459             // At this point, we know that the cast source type is a pointer
2460             // to an array of the same type as the destination pointer
2461             // array.  Because the array type is never stepped over (there
2462             // is a leading zero) we can fold the cast into this GEP.
2463             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2464               GEP.setSourceElementType(XATy);
2465               return replaceOperand(GEP, 0, StrippedPtr);
2466             }
2467             // Cannot replace the base pointer directly because StrippedPtr's
2468             // address space is different. Instead, create a new GEP followed by
2469             // an addrspacecast.
2470             // e.g.,
2471             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2472             //   i32 0, ...
2473             // ->
2474             // %0 = GEP [10 x i8] addrspace(1)* X, ...
2475             // addrspacecast i8 addrspace(1)* %0 to i8*
2476             SmallVector<Value *, 8> Idx(GEP.indices());
2477             Value *NewGEP =
2478                 GEP.isInBounds()
2479                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2480                                                 Idx, GEP.getName())
2481                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2482                                         GEP.getName());
2483             return new AddrSpaceCastInst(NewGEP, GEPType);
2484           }
2485         }
2486       }
2487     } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
2488       // Skip if GEP source element type is scalable. The type alloc size is
2489       // unknown at compile-time.
2490       // Transform things like: %t = getelementptr i32*
2491       // bitcast ([2 x i32]* %str to i32*), i32 %V into:  %t1 = getelementptr [2
2492       // x i32]* %str, i32 0, i32 %V; bitcast
2493       if (StrippedPtrEltTy->isArrayTy() &&
2494           DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2495               DL.getTypeAllocSize(GEPEltType)) {
2496         Type *IdxType = DL.getIndexType(GEPType);
2497         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2498         Value *NewGEP =
2499             GEP.isInBounds()
2500                 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2501                                             GEP.getName())
2502                 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2503                                     GEP.getName());
2504 
2505         // V and GEP are both pointer types --> BitCast
2506         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2507       }
2508 
2509       // Transform things like:
2510       // %V = mul i64 %N, 4
2511       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2512       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
2513       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2514         // Check that changing the type amounts to dividing the index by a scale
2515         // factor.
2516         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2517         uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
2518         if (ResSize && SrcSize % ResSize == 0) {
2519           Value *Idx = GEP.getOperand(1);
2520           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2521           uint64_t Scale = SrcSize / ResSize;
2522 
2523           // Earlier transforms ensure that the index has the right type
2524           // according to Data Layout, which considerably simplifies the
2525           // logic by eliminating implicit casts.
2526           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2527                  "Index type does not match the Data Layout preferences");
2528 
2529           bool NSW;
2530           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2531             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2532             // If the multiplication NewIdx * Scale may overflow then the new
2533             // GEP may not be "inbounds".
2534             Value *NewGEP =
2535                 GEP.isInBounds() && NSW
2536                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2537                                                 NewIdx, GEP.getName())
2538                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2539                                         GEP.getName());
2540 
2541             // The NewGEP must be pointer typed, so must the old one -> BitCast
2542             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2543                                                                  GEPType);
2544           }
2545         }
2546       }
2547 
2548       // Similarly, transform things like:
2549       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2550       //   (where tmp = 8*tmp2) into:
2551       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2552       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2553           StrippedPtrEltTy->isArrayTy()) {
2554         // Check that changing to the array element type amounts to dividing the
2555         // index by a scale factor.
2556         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2557         uint64_t ArrayEltSize =
2558             DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
2559                 .getFixedSize();
2560         if (ResSize && ArrayEltSize % ResSize == 0) {
2561           Value *Idx = GEP.getOperand(1);
2562           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2563           uint64_t Scale = ArrayEltSize / ResSize;
2564 
2565           // Earlier transforms ensure that the index has the right type
2566           // according to the Data Layout, which considerably simplifies
2567           // the logic by eliminating implicit casts.
2568           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2569                  "Index type does not match the Data Layout preferences");
2570 
2571           bool NSW;
2572           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2573             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2574             // If the multiplication NewIdx * Scale may overflow then the new
2575             // GEP may not be "inbounds".
2576             Type *IndTy = DL.getIndexType(GEPType);
2577             Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2578 
2579             Value *NewGEP =
2580                 GEP.isInBounds() && NSW
2581                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2582                                                 Off, GEP.getName())
2583                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2584                                         GEP.getName());
2585             // The NewGEP must be pointer typed, so must the old one -> BitCast
2586             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2587                                                                  GEPType);
2588           }
2589         }
2590       }
2591     }
2592   }
2593 
2594   // addrspacecast between types is canonicalized as a bitcast, then an
2595   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2596   // through the addrspacecast.
2597   Value *ASCStrippedPtrOp = PtrOp;
2598   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2599     //   X = bitcast A addrspace(1)* to B addrspace(1)*
2600     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2601     //   Z = gep Y, <...constant indices...>
2602     // Into an addrspacecasted GEP of the struct.
2603     if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2604       ASCStrippedPtrOp = BC;
2605   }
2606 
2607   if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp))
2608     if (Instruction *I = visitGEPOfBitcast(BCI, GEP))
2609       return I;
2610 
2611   if (!GEP.isInBounds()) {
2612     unsigned IdxWidth =
2613         DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2614     APInt BasePtrOffset(IdxWidth, 0);
2615     Value *UnderlyingPtrOp =
2616             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2617                                                              BasePtrOffset);
2618     if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2619       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2620           BasePtrOffset.isNonNegative()) {
2621         APInt AllocSize(
2622             IdxWidth,
2623             DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
2624         if (BasePtrOffset.ule(AllocSize)) {
2625           return GetElementPtrInst::CreateInBounds(
2626               GEP.getSourceElementType(), PtrOp, Indices, GEP.getName());
2627         }
2628       }
2629     }
2630   }
2631 
2632   if (Instruction *R = foldSelectGEP(GEP, Builder))
2633     return R;
2634 
2635   return nullptr;
2636 }
2637 
2638 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI,
2639                                          Instruction *AI) {
2640   if (isa<ConstantPointerNull>(V))
2641     return true;
2642   if (auto *LI = dyn_cast<LoadInst>(V))
2643     return isa<GlobalVariable>(LI->getPointerOperand());
2644   // Two distinct allocations will never be equal.
2645   return isAllocLikeFn(V, &TLI) && V != AI;
2646 }
2647 
2648 /// Given a call CB which uses an address UsedV, return true if we can prove the
2649 /// call's only possible effect is storing to V.
2650 static bool isRemovableWrite(CallBase &CB, Value *UsedV,
2651                              const TargetLibraryInfo &TLI) {
2652   if (!CB.use_empty())
2653     // TODO: add recursion if returned attribute is present
2654     return false;
2655 
2656   if (CB.isTerminator())
2657     // TODO: remove implementation restriction
2658     return false;
2659 
2660   if (!CB.willReturn() || !CB.doesNotThrow())
2661     return false;
2662 
2663   // If the only possible side effect of the call is writing to the alloca,
2664   // and the result isn't used, we can safely remove any reads implied by the
2665   // call including those which might read the alloca itself.
2666   Optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI);
2667   return Dest && Dest->Ptr == UsedV;
2668 }
2669 
2670 static bool isAllocSiteRemovable(Instruction *AI,
2671                                  SmallVectorImpl<WeakTrackingVH> &Users,
2672                                  const TargetLibraryInfo &TLI) {
2673   SmallVector<Instruction*, 4> Worklist;
2674   const Optional<StringRef> Family = getAllocationFamily(AI, &TLI);
2675   Worklist.push_back(AI);
2676 
2677   do {
2678     Instruction *PI = Worklist.pop_back_val();
2679     for (User *U : PI->users()) {
2680       Instruction *I = cast<Instruction>(U);
2681       switch (I->getOpcode()) {
2682       default:
2683         // Give up the moment we see something we can't handle.
2684         return false;
2685 
2686       case Instruction::AddrSpaceCast:
2687       case Instruction::BitCast:
2688       case Instruction::GetElementPtr:
2689         Users.emplace_back(I);
2690         Worklist.push_back(I);
2691         continue;
2692 
2693       case Instruction::ICmp: {
2694         ICmpInst *ICI = cast<ICmpInst>(I);
2695         // We can fold eq/ne comparisons with null to false/true, respectively.
2696         // We also fold comparisons in some conditions provided the alloc has
2697         // not escaped (see isNeverEqualToUnescapedAlloc).
2698         if (!ICI->isEquality())
2699           return false;
2700         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2701         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2702           return false;
2703         Users.emplace_back(I);
2704         continue;
2705       }
2706 
2707       case Instruction::Call:
2708         // Ignore no-op and store intrinsics.
2709         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2710           switch (II->getIntrinsicID()) {
2711           default:
2712             return false;
2713 
2714           case Intrinsic::memmove:
2715           case Intrinsic::memcpy:
2716           case Intrinsic::memset: {
2717             MemIntrinsic *MI = cast<MemIntrinsic>(II);
2718             if (MI->isVolatile() || MI->getRawDest() != PI)
2719               return false;
2720             LLVM_FALLTHROUGH;
2721           }
2722           case Intrinsic::assume:
2723           case Intrinsic::invariant_start:
2724           case Intrinsic::invariant_end:
2725           case Intrinsic::lifetime_start:
2726           case Intrinsic::lifetime_end:
2727           case Intrinsic::objectsize:
2728             Users.emplace_back(I);
2729             continue;
2730           case Intrinsic::launder_invariant_group:
2731           case Intrinsic::strip_invariant_group:
2732             Users.emplace_back(I);
2733             Worklist.push_back(I);
2734             continue;
2735           }
2736         }
2737 
2738         if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) {
2739           Users.emplace_back(I);
2740           continue;
2741         }
2742 
2743         if (isFreeCall(I, &TLI) && getAllocationFamily(I, &TLI) == Family) {
2744           assert(Family);
2745           Users.emplace_back(I);
2746           continue;
2747         }
2748 
2749         if (isReallocLikeFn(I, &TLI) &&
2750             getAllocationFamily(I, &TLI) == Family) {
2751           assert(Family);
2752           Users.emplace_back(I);
2753           Worklist.push_back(I);
2754           continue;
2755         }
2756 
2757         return false;
2758 
2759       case Instruction::Store: {
2760         StoreInst *SI = cast<StoreInst>(I);
2761         if (SI->isVolatile() || SI->getPointerOperand() != PI)
2762           return false;
2763         Users.emplace_back(I);
2764         continue;
2765       }
2766       }
2767       llvm_unreachable("missing a return?");
2768     }
2769   } while (!Worklist.empty());
2770   return true;
2771 }
2772 
2773 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
2774   assert(isa<AllocaInst>(MI) || isAllocRemovable(&cast<CallBase>(MI), &TLI));
2775 
2776   // If we have a malloc call which is only used in any amount of comparisons to
2777   // null and free calls, delete the calls and replace the comparisons with true
2778   // or false as appropriate.
2779 
2780   // This is based on the principle that we can substitute our own allocation
2781   // function (which will never return null) rather than knowledge of the
2782   // specific function being called. In some sense this can change the permitted
2783   // outputs of a program (when we convert a malloc to an alloca, the fact that
2784   // the allocation is now on the stack is potentially visible, for example),
2785   // but we believe in a permissible manner.
2786   SmallVector<WeakTrackingVH, 64> Users;
2787 
2788   // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2789   // before each store.
2790   SmallVector<DbgVariableIntrinsic *, 8> DVIs;
2791   std::unique_ptr<DIBuilder> DIB;
2792   if (isa<AllocaInst>(MI)) {
2793     findDbgUsers(DVIs, &MI);
2794     DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2795   }
2796 
2797   if (isAllocSiteRemovable(&MI, Users, TLI)) {
2798     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2799       // Lowering all @llvm.objectsize calls first because they may
2800       // use a bitcast/GEP of the alloca we are removing.
2801       if (!Users[i])
2802        continue;
2803 
2804       Instruction *I = cast<Instruction>(&*Users[i]);
2805 
2806       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2807         if (II->getIntrinsicID() == Intrinsic::objectsize) {
2808           Value *Result =
2809               lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2810           replaceInstUsesWith(*I, Result);
2811           eraseInstFromFunction(*I);
2812           Users[i] = nullptr; // Skip examining in the next loop.
2813         }
2814       }
2815     }
2816     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2817       if (!Users[i])
2818         continue;
2819 
2820       Instruction *I = cast<Instruction>(&*Users[i]);
2821 
2822       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2823         replaceInstUsesWith(*C,
2824                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
2825                                              C->isFalseWhenEqual()));
2826       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2827         for (auto *DVI : DVIs)
2828           if (DVI->isAddressOfVariable())
2829             ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
2830       } else {
2831         // Casts, GEP, or anything else: we're about to delete this instruction,
2832         // so it can not have any valid uses.
2833         replaceInstUsesWith(*I, PoisonValue::get(I->getType()));
2834       }
2835       eraseInstFromFunction(*I);
2836     }
2837 
2838     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2839       // Replace invoke with a NOP intrinsic to maintain the original CFG
2840       Module *M = II->getModule();
2841       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2842       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2843                          None, "", II->getParent());
2844     }
2845 
2846     // Remove debug intrinsics which describe the value contained within the
2847     // alloca. In addition to removing dbg.{declare,addr} which simply point to
2848     // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
2849     //
2850     // ```
2851     //   define void @foo(i32 %0) {
2852     //     %a = alloca i32                              ; Deleted.
2853     //     store i32 %0, i32* %a
2854     //     dbg.value(i32 %0, "arg0")                    ; Not deleted.
2855     //     dbg.value(i32* %a, "arg0", DW_OP_deref)      ; Deleted.
2856     //     call void @trivially_inlinable_no_op(i32* %a)
2857     //     ret void
2858     //  }
2859     // ```
2860     //
2861     // This may not be required if we stop describing the contents of allocas
2862     // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
2863     // the LowerDbgDeclare utility.
2864     //
2865     // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
2866     // "arg0" dbg.value may be stale after the call. However, failing to remove
2867     // the DW_OP_deref dbg.value causes large gaps in location coverage.
2868     for (auto *DVI : DVIs)
2869       if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
2870         DVI->eraseFromParent();
2871 
2872     return eraseInstFromFunction(MI);
2873   }
2874   return nullptr;
2875 }
2876 
2877 /// Move the call to free before a NULL test.
2878 ///
2879 /// Check if this free is accessed after its argument has been test
2880 /// against NULL (property 0).
2881 /// If yes, it is legal to move this call in its predecessor block.
2882 ///
2883 /// The move is performed only if the block containing the call to free
2884 /// will be removed, i.e.:
2885 /// 1. it has only one predecessor P, and P has two successors
2886 /// 2. it contains the call, noops, and an unconditional branch
2887 /// 3. its successor is the same as its predecessor's successor
2888 ///
2889 /// The profitability is out-of concern here and this function should
2890 /// be called only if the caller knows this transformation would be
2891 /// profitable (e.g., for code size).
2892 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2893                                                 const DataLayout &DL) {
2894   Value *Op = FI.getArgOperand(0);
2895   BasicBlock *FreeInstrBB = FI.getParent();
2896   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2897 
2898   // Validate part of constraint #1: Only one predecessor
2899   // FIXME: We can extend the number of predecessor, but in that case, we
2900   //        would duplicate the call to free in each predecessor and it may
2901   //        not be profitable even for code size.
2902   if (!PredBB)
2903     return nullptr;
2904 
2905   // Validate constraint #2: Does this block contains only the call to
2906   //                         free, noops, and an unconditional branch?
2907   BasicBlock *SuccBB;
2908   Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2909   if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2910     return nullptr;
2911 
2912   // If there are only 2 instructions in the block, at this point,
2913   // this is the call to free and unconditional.
2914   // If there are more than 2 instructions, check that they are noops
2915   // i.e., they won't hurt the performance of the generated code.
2916   if (FreeInstrBB->size() != 2) {
2917     for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2918       if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2919         continue;
2920       auto *Cast = dyn_cast<CastInst>(&Inst);
2921       if (!Cast || !Cast->isNoopCast(DL))
2922         return nullptr;
2923     }
2924   }
2925   // Validate the rest of constraint #1 by matching on the pred branch.
2926   Instruction *TI = PredBB->getTerminator();
2927   BasicBlock *TrueBB, *FalseBB;
2928   ICmpInst::Predicate Pred;
2929   if (!match(TI, m_Br(m_ICmp(Pred,
2930                              m_CombineOr(m_Specific(Op),
2931                                          m_Specific(Op->stripPointerCasts())),
2932                              m_Zero()),
2933                       TrueBB, FalseBB)))
2934     return nullptr;
2935   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2936     return nullptr;
2937 
2938   // Validate constraint #3: Ensure the null case just falls through.
2939   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2940     return nullptr;
2941   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2942          "Broken CFG: missing edge from predecessor to successor");
2943 
2944   // At this point, we know that everything in FreeInstrBB can be moved
2945   // before TI.
2946   for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) {
2947     if (&Instr == FreeInstrBBTerminator)
2948       break;
2949     Instr.moveBefore(TI);
2950   }
2951   assert(FreeInstrBB->size() == 1 &&
2952          "Only the branch instruction should remain");
2953 
2954   // Now that we've moved the call to free before the NULL check, we have to
2955   // remove any attributes on its parameter that imply it's non-null, because
2956   // those attributes might have only been valid because of the NULL check, and
2957   // we can get miscompiles if we keep them. This is conservative if non-null is
2958   // also implied by something other than the NULL check, but it's guaranteed to
2959   // be correct, and the conservativeness won't matter in practice, since the
2960   // attributes are irrelevant for the call to free itself and the pointer
2961   // shouldn't be used after the call.
2962   AttributeList Attrs = FI.getAttributes();
2963   Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull);
2964   Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
2965   if (Dereferenceable.isValid()) {
2966     uint64_t Bytes = Dereferenceable.getDereferenceableBytes();
2967     Attrs = Attrs.removeParamAttribute(FI.getContext(), 0,
2968                                        Attribute::Dereferenceable);
2969     Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes);
2970   }
2971   FI.setAttributes(Attrs);
2972 
2973   return &FI;
2974 }
2975 
2976 Instruction *InstCombinerImpl::visitFree(CallInst &FI) {
2977   Value *Op = FI.getArgOperand(0);
2978 
2979   // free undef -> unreachable.
2980   if (isa<UndefValue>(Op)) {
2981     // Leave a marker since we can't modify the CFG here.
2982     CreateNonTerminatorUnreachable(&FI);
2983     return eraseInstFromFunction(FI);
2984   }
2985 
2986   // If we have 'free null' delete the instruction.  This can happen in stl code
2987   // when lots of inlining happens.
2988   if (isa<ConstantPointerNull>(Op))
2989     return eraseInstFromFunction(FI);
2990 
2991   // If we had free(realloc(...)) with no intervening uses, then eliminate the
2992   // realloc() entirely.
2993   if (CallInst *CI = dyn_cast<CallInst>(Op)) {
2994     if (CI->hasOneUse() && isReallocLikeFn(CI, &TLI)) {
2995       return eraseInstFromFunction(
2996           *replaceInstUsesWith(*CI, CI->getOperand(0)));
2997     }
2998   }
2999 
3000   // If we optimize for code size, try to move the call to free before the null
3001   // test so that simplify cfg can remove the empty block and dead code
3002   // elimination the branch. I.e., helps to turn something like:
3003   // if (foo) free(foo);
3004   // into
3005   // free(foo);
3006   //
3007   // Note that we can only do this for 'free' and not for any flavor of
3008   // 'operator delete'; there is no 'operator delete' symbol for which we are
3009   // permitted to invent a call, even if we're passing in a null pointer.
3010   if (MinimizeSize) {
3011     LibFunc Func;
3012     if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
3013       if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
3014         return I;
3015   }
3016 
3017   return nullptr;
3018 }
3019 
3020 static bool isMustTailCall(Value *V) {
3021   if (auto *CI = dyn_cast<CallInst>(V))
3022     return CI->isMustTailCall();
3023   return false;
3024 }
3025 
3026 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
3027   if (RI.getNumOperands() == 0) // ret void
3028     return nullptr;
3029 
3030   Value *ResultOp = RI.getOperand(0);
3031   Type *VTy = ResultOp->getType();
3032   if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
3033     return nullptr;
3034 
3035   // Don't replace result of musttail calls.
3036   if (isMustTailCall(ResultOp))
3037     return nullptr;
3038 
3039   // There might be assume intrinsics dominating this return that completely
3040   // determine the value. If so, constant fold it.
3041   KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
3042   if (Known.isConstant())
3043     return replaceOperand(RI, 0,
3044         Constant::getIntegerValue(VTy, Known.getConstant()));
3045 
3046   return nullptr;
3047 }
3048 
3049 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
3050 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
3051   // Try to remove the previous instruction if it must lead to unreachable.
3052   // This includes instructions like stores and "llvm.assume" that may not get
3053   // removed by simple dead code elimination.
3054   while (Instruction *Prev = I.getPrevNonDebugInstruction()) {
3055     // While we theoretically can erase EH, that would result in a block that
3056     // used to start with an EH no longer starting with EH, which is invalid.
3057     // To make it valid, we'd need to fixup predecessors to no longer refer to
3058     // this block, but that changes CFG, which is not allowed in InstCombine.
3059     if (Prev->isEHPad())
3060       return nullptr; // Can not drop any more instructions. We're done here.
3061 
3062     if (!isGuaranteedToTransferExecutionToSuccessor(Prev))
3063       return nullptr; // Can not drop any more instructions. We're done here.
3064     // Otherwise, this instruction can be freely erased,
3065     // even if it is not side-effect free.
3066 
3067     // A value may still have uses before we process it here (for example, in
3068     // another unreachable block), so convert those to poison.
3069     replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
3070     eraseInstFromFunction(*Prev);
3071   }
3072   assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty.");
3073   // FIXME: recurse into unconditional predecessors?
3074   return nullptr;
3075 }
3076 
3077 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
3078   assert(BI.isUnconditional() && "Only for unconditional branches.");
3079 
3080   // If this store is the second-to-last instruction in the basic block
3081   // (excluding debug info and bitcasts of pointers) and if the block ends with
3082   // an unconditional branch, try to move the store to the successor block.
3083 
3084   auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
3085     auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
3086       return BBI->isDebugOrPseudoInst() ||
3087              (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
3088     };
3089 
3090     BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
3091     do {
3092       if (BBI != FirstInstr)
3093         --BBI;
3094     } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
3095 
3096     return dyn_cast<StoreInst>(BBI);
3097   };
3098 
3099   if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
3100     if (mergeStoreIntoSuccessor(*SI))
3101       return &BI;
3102 
3103   return nullptr;
3104 }
3105 
3106 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
3107   if (BI.isUnconditional())
3108     return visitUnconditionalBranchInst(BI);
3109 
3110   // Change br (not X), label True, label False to: br X, label False, True
3111   Value *X = nullptr;
3112   if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
3113       !isa<Constant>(X)) {
3114     // Swap Destinations and condition...
3115     BI.swapSuccessors();
3116     return replaceOperand(BI, 0, X);
3117   }
3118 
3119   // If the condition is irrelevant, remove the use so that other
3120   // transforms on the condition become more effective.
3121   if (!isa<ConstantInt>(BI.getCondition()) &&
3122       BI.getSuccessor(0) == BI.getSuccessor(1))
3123     return replaceOperand(
3124         BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
3125 
3126   // Canonicalize, for example, fcmp_one -> fcmp_oeq.
3127   CmpInst::Predicate Pred;
3128   if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())),
3129                       m_BasicBlock(), m_BasicBlock())) &&
3130       !isCanonicalPredicate(Pred)) {
3131     // Swap destinations and condition.
3132     CmpInst *Cond = cast<CmpInst>(BI.getCondition());
3133     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
3134     BI.swapSuccessors();
3135     Worklist.push(Cond);
3136     return &BI;
3137   }
3138 
3139   return nullptr;
3140 }
3141 
3142 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
3143   Value *Cond = SI.getCondition();
3144   Value *Op0;
3145   ConstantInt *AddRHS;
3146   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
3147     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
3148     for (auto Case : SI.cases()) {
3149       Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
3150       assert(isa<ConstantInt>(NewCase) &&
3151              "Result of expression should be constant");
3152       Case.setValue(cast<ConstantInt>(NewCase));
3153     }
3154     return replaceOperand(SI, 0, Op0);
3155   }
3156 
3157   KnownBits Known = computeKnownBits(Cond, 0, &SI);
3158   unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
3159   unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
3160 
3161   // Compute the number of leading bits we can ignore.
3162   // TODO: A better way to determine this would use ComputeNumSignBits().
3163   for (auto &C : SI.cases()) {
3164     LeadingKnownZeros = std::min(
3165         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
3166     LeadingKnownOnes = std::min(
3167         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
3168   }
3169 
3170   unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
3171 
3172   // Shrink the condition operand if the new type is smaller than the old type.
3173   // But do not shrink to a non-standard type, because backend can't generate
3174   // good code for that yet.
3175   // TODO: We can make it aggressive again after fixing PR39569.
3176   if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
3177       shouldChangeType(Known.getBitWidth(), NewWidth)) {
3178     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
3179     Builder.SetInsertPoint(&SI);
3180     Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
3181 
3182     for (auto Case : SI.cases()) {
3183       APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3184       Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3185     }
3186     return replaceOperand(SI, 0, NewCond);
3187   }
3188 
3189   return nullptr;
3190 }
3191 
3192 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
3193   Value *Agg = EV.getAggregateOperand();
3194 
3195   if (!EV.hasIndices())
3196     return replaceInstUsesWith(EV, Agg);
3197 
3198   if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
3199                                           SQ.getWithInstruction(&EV)))
3200     return replaceInstUsesWith(EV, V);
3201 
3202   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
3203     // We're extracting from an insertvalue instruction, compare the indices
3204     const unsigned *exti, *exte, *insi, *inse;
3205     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
3206          exte = EV.idx_end(), inse = IV->idx_end();
3207          exti != exte && insi != inse;
3208          ++exti, ++insi) {
3209       if (*insi != *exti)
3210         // The insert and extract both reference distinctly different elements.
3211         // This means the extract is not influenced by the insert, and we can
3212         // replace the aggregate operand of the extract with the aggregate
3213         // operand of the insert. i.e., replace
3214         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3215         // %E = extractvalue { i32, { i32 } } %I, 0
3216         // with
3217         // %E = extractvalue { i32, { i32 } } %A, 0
3218         return ExtractValueInst::Create(IV->getAggregateOperand(),
3219                                         EV.getIndices());
3220     }
3221     if (exti == exte && insi == inse)
3222       // Both iterators are at the end: Index lists are identical. Replace
3223       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3224       // %C = extractvalue { i32, { i32 } } %B, 1, 0
3225       // with "i32 42"
3226       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3227     if (exti == exte) {
3228       // The extract list is a prefix of the insert list. i.e. replace
3229       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3230       // %E = extractvalue { i32, { i32 } } %I, 1
3231       // with
3232       // %X = extractvalue { i32, { i32 } } %A, 1
3233       // %E = insertvalue { i32 } %X, i32 42, 0
3234       // by switching the order of the insert and extract (though the
3235       // insertvalue should be left in, since it may have other uses).
3236       Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
3237                                                 EV.getIndices());
3238       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
3239                                      makeArrayRef(insi, inse));
3240     }
3241     if (insi == inse)
3242       // The insert list is a prefix of the extract list
3243       // We can simply remove the common indices from the extract and make it
3244       // operate on the inserted value instead of the insertvalue result.
3245       // i.e., replace
3246       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3247       // %E = extractvalue { i32, { i32 } } %I, 1, 0
3248       // with
3249       // %E extractvalue { i32 } { i32 42 }, 0
3250       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
3251                                       makeArrayRef(exti, exte));
3252   }
3253   if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
3254     // extractvalue (any_mul_with_overflow X, -1), 0 --> -X
3255     Intrinsic::ID OvID = WO->getIntrinsicID();
3256     if (*EV.idx_begin() == 0 &&
3257         (OvID == Intrinsic::smul_with_overflow ||
3258          OvID == Intrinsic::umul_with_overflow) &&
3259         match(WO->getArgOperand(1), m_AllOnes())) {
3260       return BinaryOperator::CreateNeg(WO->getArgOperand(0));
3261     }
3262 
3263     // We're extracting from an overflow intrinsic, see if we're the only user,
3264     // which allows us to simplify multiple result intrinsics to simpler
3265     // things that just get one value.
3266     if (WO->hasOneUse()) {
3267       // Check if we're grabbing only the result of a 'with overflow' intrinsic
3268       // and replace it with a traditional binary instruction.
3269       if (*EV.idx_begin() == 0) {
3270         Instruction::BinaryOps BinOp = WO->getBinaryOp();
3271         Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3272         // Replace the old instruction's uses with poison.
3273         replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
3274         eraseInstFromFunction(*WO);
3275         return BinaryOperator::Create(BinOp, LHS, RHS);
3276       }
3277 
3278       assert(*EV.idx_begin() == 1 &&
3279              "unexpected extract index for overflow inst");
3280 
3281       // If only the overflow result is used, and the right hand side is a
3282       // constant (or constant splat), we can remove the intrinsic by directly
3283       // checking for overflow.
3284       const APInt *C;
3285       if (match(WO->getRHS(), m_APInt(C))) {
3286         // Compute the no-wrap range for LHS given RHS=C, then construct an
3287         // equivalent icmp, potentially using an offset.
3288         ConstantRange NWR =
3289           ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
3290                                                WO->getNoWrapKind());
3291 
3292         CmpInst::Predicate Pred;
3293         APInt NewRHSC, Offset;
3294         NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
3295         auto *OpTy = WO->getRHS()->getType();
3296         auto *NewLHS = WO->getLHS();
3297         if (Offset != 0)
3298           NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset));
3299         return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
3300                             ConstantInt::get(OpTy, NewRHSC));
3301       }
3302     }
3303   }
3304   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
3305     // If the (non-volatile) load only has one use, we can rewrite this to a
3306     // load from a GEP. This reduces the size of the load. If a load is used
3307     // only by extractvalue instructions then this either must have been
3308     // optimized before, or it is a struct with padding, in which case we
3309     // don't want to do the transformation as it loses padding knowledge.
3310     if (L->isSimple() && L->hasOneUse()) {
3311       // extractvalue has integer indices, getelementptr has Value*s. Convert.
3312       SmallVector<Value*, 4> Indices;
3313       // Prefix an i32 0 since we need the first element.
3314       Indices.push_back(Builder.getInt32(0));
3315       for (unsigned Idx : EV.indices())
3316         Indices.push_back(Builder.getInt32(Idx));
3317 
3318       // We need to insert these at the location of the old load, not at that of
3319       // the extractvalue.
3320       Builder.SetInsertPoint(L);
3321       Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
3322                                              L->getPointerOperand(), Indices);
3323       Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
3324       // Whatever aliasing information we had for the orignal load must also
3325       // hold for the smaller load, so propagate the annotations.
3326       NL->setAAMetadata(L->getAAMetadata());
3327       // Returning the load directly will cause the main loop to insert it in
3328       // the wrong spot, so use replaceInstUsesWith().
3329       return replaceInstUsesWith(EV, NL);
3330     }
3331   // We could simplify extracts from other values. Note that nested extracts may
3332   // already be simplified implicitly by the above: extract (extract (insert) )
3333   // will be translated into extract ( insert ( extract ) ) first and then just
3334   // the value inserted, if appropriate. Similarly for extracts from single-use
3335   // loads: extract (extract (load)) will be translated to extract (load (gep))
3336   // and if again single-use then via load (gep (gep)) to load (gep).
3337   // However, double extracts from e.g. function arguments or return values
3338   // aren't handled yet.
3339   return nullptr;
3340 }
3341 
3342 /// Return 'true' if the given typeinfo will match anything.
3343 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3344   switch (Personality) {
3345   case EHPersonality::GNU_C:
3346   case EHPersonality::GNU_C_SjLj:
3347   case EHPersonality::Rust:
3348     // The GCC C EH and Rust personality only exists to support cleanups, so
3349     // it's not clear what the semantics of catch clauses are.
3350     return false;
3351   case EHPersonality::Unknown:
3352     return false;
3353   case EHPersonality::GNU_Ada:
3354     // While __gnat_all_others_value will match any Ada exception, it doesn't
3355     // match foreign exceptions (or didn't, before gcc-4.7).
3356     return false;
3357   case EHPersonality::GNU_CXX:
3358   case EHPersonality::GNU_CXX_SjLj:
3359   case EHPersonality::GNU_ObjC:
3360   case EHPersonality::MSVC_X86SEH:
3361   case EHPersonality::MSVC_TableSEH:
3362   case EHPersonality::MSVC_CXX:
3363   case EHPersonality::CoreCLR:
3364   case EHPersonality::Wasm_CXX:
3365   case EHPersonality::XL_CXX:
3366     return TypeInfo->isNullValue();
3367   }
3368   llvm_unreachable("invalid enum");
3369 }
3370 
3371 static bool shorter_filter(const Value *LHS, const Value *RHS) {
3372   return
3373     cast<ArrayType>(LHS->getType())->getNumElements()
3374   <
3375     cast<ArrayType>(RHS->getType())->getNumElements();
3376 }
3377 
3378 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
3379   // The logic here should be correct for any real-world personality function.
3380   // However if that turns out not to be true, the offending logic can always
3381   // be conditioned on the personality function, like the catch-all logic is.
3382   EHPersonality Personality =
3383       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3384 
3385   // Simplify the list of clauses, eg by removing repeated catch clauses
3386   // (these are often created by inlining).
3387   bool MakeNewInstruction = false; // If true, recreate using the following:
3388   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3389   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
3390 
3391   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3392   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3393     bool isLastClause = i + 1 == e;
3394     if (LI.isCatch(i)) {
3395       // A catch clause.
3396       Constant *CatchClause = LI.getClause(i);
3397       Constant *TypeInfo = CatchClause->stripPointerCasts();
3398 
3399       // If we already saw this clause, there is no point in having a second
3400       // copy of it.
3401       if (AlreadyCaught.insert(TypeInfo).second) {
3402         // This catch clause was not already seen.
3403         NewClauses.push_back(CatchClause);
3404       } else {
3405         // Repeated catch clause - drop the redundant copy.
3406         MakeNewInstruction = true;
3407       }
3408 
3409       // If this is a catch-all then there is no point in keeping any following
3410       // clauses or marking the landingpad as having a cleanup.
3411       if (isCatchAll(Personality, TypeInfo)) {
3412         if (!isLastClause)
3413           MakeNewInstruction = true;
3414         CleanupFlag = false;
3415         break;
3416       }
3417     } else {
3418       // A filter clause.  If any of the filter elements were already caught
3419       // then they can be dropped from the filter.  It is tempting to try to
3420       // exploit the filter further by saying that any typeinfo that does not
3421       // occur in the filter can't be caught later (and thus can be dropped).
3422       // However this would be wrong, since typeinfos can match without being
3423       // equal (for example if one represents a C++ class, and the other some
3424       // class derived from it).
3425       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3426       Constant *FilterClause = LI.getClause(i);
3427       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3428       unsigned NumTypeInfos = FilterType->getNumElements();
3429 
3430       // An empty filter catches everything, so there is no point in keeping any
3431       // following clauses or marking the landingpad as having a cleanup.  By
3432       // dealing with this case here the following code is made a bit simpler.
3433       if (!NumTypeInfos) {
3434         NewClauses.push_back(FilterClause);
3435         if (!isLastClause)
3436           MakeNewInstruction = true;
3437         CleanupFlag = false;
3438         break;
3439       }
3440 
3441       bool MakeNewFilter = false; // If true, make a new filter.
3442       SmallVector<Constant *, 16> NewFilterElts; // New elements.
3443       if (isa<ConstantAggregateZero>(FilterClause)) {
3444         // Not an empty filter - it contains at least one null typeinfo.
3445         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3446         Constant *TypeInfo =
3447           Constant::getNullValue(FilterType->getElementType());
3448         // If this typeinfo is a catch-all then the filter can never match.
3449         if (isCatchAll(Personality, TypeInfo)) {
3450           // Throw the filter away.
3451           MakeNewInstruction = true;
3452           continue;
3453         }
3454 
3455         // There is no point in having multiple copies of this typeinfo, so
3456         // discard all but the first copy if there is more than one.
3457         NewFilterElts.push_back(TypeInfo);
3458         if (NumTypeInfos > 1)
3459           MakeNewFilter = true;
3460       } else {
3461         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3462         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3463         NewFilterElts.reserve(NumTypeInfos);
3464 
3465         // Remove any filter elements that were already caught or that already
3466         // occurred in the filter.  While there, see if any of the elements are
3467         // catch-alls.  If so, the filter can be discarded.
3468         bool SawCatchAll = false;
3469         for (unsigned j = 0; j != NumTypeInfos; ++j) {
3470           Constant *Elt = Filter->getOperand(j);
3471           Constant *TypeInfo = Elt->stripPointerCasts();
3472           if (isCatchAll(Personality, TypeInfo)) {
3473             // This element is a catch-all.  Bail out, noting this fact.
3474             SawCatchAll = true;
3475             break;
3476           }
3477 
3478           // Even if we've seen a type in a catch clause, we don't want to
3479           // remove it from the filter.  An unexpected type handler may be
3480           // set up for a call site which throws an exception of the same
3481           // type caught.  In order for the exception thrown by the unexpected
3482           // handler to propagate correctly, the filter must be correctly
3483           // described for the call site.
3484           //
3485           // Example:
3486           //
3487           // void unexpected() { throw 1;}
3488           // void foo() throw (int) {
3489           //   std::set_unexpected(unexpected);
3490           //   try {
3491           //     throw 2.0;
3492           //   } catch (int i) {}
3493           // }
3494 
3495           // There is no point in having multiple copies of the same typeinfo in
3496           // a filter, so only add it if we didn't already.
3497           if (SeenInFilter.insert(TypeInfo).second)
3498             NewFilterElts.push_back(cast<Constant>(Elt));
3499         }
3500         // A filter containing a catch-all cannot match anything by definition.
3501         if (SawCatchAll) {
3502           // Throw the filter away.
3503           MakeNewInstruction = true;
3504           continue;
3505         }
3506 
3507         // If we dropped something from the filter, make a new one.
3508         if (NewFilterElts.size() < NumTypeInfos)
3509           MakeNewFilter = true;
3510       }
3511       if (MakeNewFilter) {
3512         FilterType = ArrayType::get(FilterType->getElementType(),
3513                                     NewFilterElts.size());
3514         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3515         MakeNewInstruction = true;
3516       }
3517 
3518       NewClauses.push_back(FilterClause);
3519 
3520       // If the new filter is empty then it will catch everything so there is
3521       // no point in keeping any following clauses or marking the landingpad
3522       // as having a cleanup.  The case of the original filter being empty was
3523       // already handled above.
3524       if (MakeNewFilter && !NewFilterElts.size()) {
3525         assert(MakeNewInstruction && "New filter but not a new instruction!");
3526         CleanupFlag = false;
3527         break;
3528       }
3529     }
3530   }
3531 
3532   // If several filters occur in a row then reorder them so that the shortest
3533   // filters come first (those with the smallest number of elements).  This is
3534   // advantageous because shorter filters are more likely to match, speeding up
3535   // unwinding, but mostly because it increases the effectiveness of the other
3536   // filter optimizations below.
3537   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3538     unsigned j;
3539     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3540     for (j = i; j != e; ++j)
3541       if (!isa<ArrayType>(NewClauses[j]->getType()))
3542         break;
3543 
3544     // Check whether the filters are already sorted by length.  We need to know
3545     // if sorting them is actually going to do anything so that we only make a
3546     // new landingpad instruction if it does.
3547     for (unsigned k = i; k + 1 < j; ++k)
3548       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3549         // Not sorted, so sort the filters now.  Doing an unstable sort would be
3550         // correct too but reordering filters pointlessly might confuse users.
3551         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3552                          shorter_filter);
3553         MakeNewInstruction = true;
3554         break;
3555       }
3556 
3557     // Look for the next batch of filters.
3558     i = j + 1;
3559   }
3560 
3561   // If typeinfos matched if and only if equal, then the elements of a filter L
3562   // that occurs later than a filter F could be replaced by the intersection of
3563   // the elements of F and L.  In reality two typeinfos can match without being
3564   // equal (for example if one represents a C++ class, and the other some class
3565   // derived from it) so it would be wrong to perform this transform in general.
3566   // However the transform is correct and useful if F is a subset of L.  In that
3567   // case L can be replaced by F, and thus removed altogether since repeating a
3568   // filter is pointless.  So here we look at all pairs of filters F and L where
3569   // L follows F in the list of clauses, and remove L if every element of F is
3570   // an element of L.  This can occur when inlining C++ functions with exception
3571   // specifications.
3572   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3573     // Examine each filter in turn.
3574     Value *Filter = NewClauses[i];
3575     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3576     if (!FTy)
3577       // Not a filter - skip it.
3578       continue;
3579     unsigned FElts = FTy->getNumElements();
3580     // Examine each filter following this one.  Doing this backwards means that
3581     // we don't have to worry about filters disappearing under us when removed.
3582     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3583       Value *LFilter = NewClauses[j];
3584       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3585       if (!LTy)
3586         // Not a filter - skip it.
3587         continue;
3588       // If Filter is a subset of LFilter, i.e. every element of Filter is also
3589       // an element of LFilter, then discard LFilter.
3590       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3591       // If Filter is empty then it is a subset of LFilter.
3592       if (!FElts) {
3593         // Discard LFilter.
3594         NewClauses.erase(J);
3595         MakeNewInstruction = true;
3596         // Move on to the next filter.
3597         continue;
3598       }
3599       unsigned LElts = LTy->getNumElements();
3600       // If Filter is longer than LFilter then it cannot be a subset of it.
3601       if (FElts > LElts)
3602         // Move on to the next filter.
3603         continue;
3604       // At this point we know that LFilter has at least one element.
3605       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3606         // Filter is a subset of LFilter iff Filter contains only zeros (as we
3607         // already know that Filter is not longer than LFilter).
3608         if (isa<ConstantAggregateZero>(Filter)) {
3609           assert(FElts <= LElts && "Should have handled this case earlier!");
3610           // Discard LFilter.
3611           NewClauses.erase(J);
3612           MakeNewInstruction = true;
3613         }
3614         // Move on to the next filter.
3615         continue;
3616       }
3617       ConstantArray *LArray = cast<ConstantArray>(LFilter);
3618       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3619         // Since Filter is non-empty and contains only zeros, it is a subset of
3620         // LFilter iff LFilter contains a zero.
3621         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3622         for (unsigned l = 0; l != LElts; ++l)
3623           if (LArray->getOperand(l)->isNullValue()) {
3624             // LFilter contains a zero - discard it.
3625             NewClauses.erase(J);
3626             MakeNewInstruction = true;
3627             break;
3628           }
3629         // Move on to the next filter.
3630         continue;
3631       }
3632       // At this point we know that both filters are ConstantArrays.  Loop over
3633       // operands to see whether every element of Filter is also an element of
3634       // LFilter.  Since filters tend to be short this is probably faster than
3635       // using a method that scales nicely.
3636       ConstantArray *FArray = cast<ConstantArray>(Filter);
3637       bool AllFound = true;
3638       for (unsigned f = 0; f != FElts; ++f) {
3639         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3640         AllFound = false;
3641         for (unsigned l = 0; l != LElts; ++l) {
3642           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3643           if (LTypeInfo == FTypeInfo) {
3644             AllFound = true;
3645             break;
3646           }
3647         }
3648         if (!AllFound)
3649           break;
3650       }
3651       if (AllFound) {
3652         // Discard LFilter.
3653         NewClauses.erase(J);
3654         MakeNewInstruction = true;
3655       }
3656       // Move on to the next filter.
3657     }
3658   }
3659 
3660   // If we changed any of the clauses, replace the old landingpad instruction
3661   // with a new one.
3662   if (MakeNewInstruction) {
3663     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3664                                                  NewClauses.size());
3665     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3666       NLI->addClause(NewClauses[i]);
3667     // A landing pad with no clauses must have the cleanup flag set.  It is
3668     // theoretically possible, though highly unlikely, that we eliminated all
3669     // clauses.  If so, force the cleanup flag to true.
3670     if (NewClauses.empty())
3671       CleanupFlag = true;
3672     NLI->setCleanup(CleanupFlag);
3673     return NLI;
3674   }
3675 
3676   // Even if none of the clauses changed, we may nonetheless have understood
3677   // that the cleanup flag is pointless.  Clear it if so.
3678   if (LI.isCleanup() != CleanupFlag) {
3679     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3680     LI.setCleanup(CleanupFlag);
3681     return &LI;
3682   }
3683 
3684   return nullptr;
3685 }
3686 
3687 Value *
3688 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) {
3689   // Try to push freeze through instructions that propagate but don't produce
3690   // poison as far as possible.  If an operand of freeze follows three
3691   // conditions 1) one-use, 2) does not produce poison, and 3) has all but one
3692   // guaranteed-non-poison operands then push the freeze through to the one
3693   // operand that is not guaranteed non-poison.  The actual transform is as
3694   // follows.
3695   //   Op1 = ...                        ; Op1 can be posion
3696   //   Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have
3697   //                                    ; single guaranteed-non-poison operands
3698   //   ... = Freeze(Op0)
3699   // =>
3700   //   Op1 = ...
3701   //   Op1.fr = Freeze(Op1)
3702   //   ... = Inst(Op1.fr, NonPoisonOps...)
3703   auto *OrigOp = OrigFI.getOperand(0);
3704   auto *OrigOpInst = dyn_cast<Instruction>(OrigOp);
3705 
3706   // While we could change the other users of OrigOp to use freeze(OrigOp), that
3707   // potentially reduces their optimization potential, so let's only do this iff
3708   // the OrigOp is only used by the freeze.
3709   if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp))
3710     return nullptr;
3711 
3712   // We can't push the freeze through an instruction which can itself create
3713   // poison.  If the only source of new poison is flags, we can simply
3714   // strip them (since we know the only use is the freeze and nothing can
3715   // benefit from them.)
3716   if (canCreateUndefOrPoison(cast<Operator>(OrigOp), /*ConsiderFlags*/ false))
3717     return nullptr;
3718 
3719   // If operand is guaranteed not to be poison, there is no need to add freeze
3720   // to the operand. So we first find the operand that is not guaranteed to be
3721   // poison.
3722   Use *MaybePoisonOperand = nullptr;
3723   for (Use &U : OrigOpInst->operands()) {
3724     if (isGuaranteedNotToBeUndefOrPoison(U.get()))
3725       continue;
3726     if (!MaybePoisonOperand)
3727       MaybePoisonOperand = &U;
3728     else
3729       return nullptr;
3730   }
3731 
3732   OrigOpInst->dropPoisonGeneratingFlags();
3733 
3734   // If all operands are guaranteed to be non-poison, we can drop freeze.
3735   if (!MaybePoisonOperand)
3736     return OrigOp;
3737 
3738   auto *FrozenMaybePoisonOperand = new FreezeInst(
3739       MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr");
3740 
3741   replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand);
3742   FrozenMaybePoisonOperand->insertBefore(OrigOpInst);
3743   return OrigOp;
3744 }
3745 
3746 bool InstCombinerImpl::freezeDominatedUses(FreezeInst &FI) {
3747   Value *Op = FI.getOperand(0);
3748 
3749   if (isa<Constant>(Op))
3750     return false;
3751 
3752   bool Changed = false;
3753   Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
3754     bool Dominates = DT.dominates(&FI, U);
3755     Changed |= Dominates;
3756     return Dominates;
3757   });
3758 
3759   return Changed;
3760 }
3761 
3762 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
3763   Value *Op0 = I.getOperand(0);
3764 
3765   if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3766     return replaceInstUsesWith(I, V);
3767 
3768   // freeze (phi const, x) --> phi const, (freeze x)
3769   if (auto *PN = dyn_cast<PHINode>(Op0)) {
3770     if (Instruction *NV = foldOpIntoPhi(I, PN))
3771       return NV;
3772   }
3773 
3774   if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I))
3775     return replaceInstUsesWith(I, NI);
3776 
3777   if (match(Op0, m_Undef())) {
3778     // If I is freeze(undef), see its uses and fold it to the best constant.
3779     // - or: pick -1
3780     // - select's condition: pick the value that leads to choosing a constant
3781     // - other ops: pick 0
3782     Constant *BestValue = nullptr;
3783     Constant *NullValue = Constant::getNullValue(I.getType());
3784     for (const auto *U : I.users()) {
3785       Constant *C = NullValue;
3786 
3787       if (match(U, m_Or(m_Value(), m_Value())))
3788         C = Constant::getAllOnesValue(I.getType());
3789       else if (const auto *SI = dyn_cast<SelectInst>(U)) {
3790         if (SI->getCondition() == &I) {
3791           APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1);
3792           C = Constant::getIntegerValue(I.getType(), CondVal);
3793         }
3794       }
3795 
3796       if (!BestValue)
3797         BestValue = C;
3798       else if (BestValue != C)
3799         BestValue = NullValue;
3800     }
3801 
3802     return replaceInstUsesWith(I, BestValue);
3803   }
3804 
3805   // Replace all dominated uses of Op to freeze(Op).
3806   if (freezeDominatedUses(I))
3807     return &I;
3808 
3809   return nullptr;
3810 }
3811 
3812 /// Check for case where the call writes to an otherwise dead alloca.  This
3813 /// shows up for unused out-params in idiomatic C/C++ code.   Note that this
3814 /// helper *only* analyzes the write; doesn't check any other legality aspect.
3815 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) {
3816   auto *CB = dyn_cast<CallBase>(I);
3817   if (!CB)
3818     // TODO: handle e.g. store to alloca here - only worth doing if we extend
3819     // to allow reload along used path as described below.  Otherwise, this
3820     // is simply a store to a dead allocation which will be removed.
3821     return false;
3822   Optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI);
3823   if (!Dest)
3824     return false;
3825   auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr));
3826   if (!AI)
3827     // TODO: allow malloc?
3828     return false;
3829   // TODO: allow memory access dominated by move point?  Note that since AI
3830   // could have a reference to itself captured by the call, we would need to
3831   // account for cycles in doing so.
3832   SmallVector<const User *> AllocaUsers;
3833   SmallPtrSet<const User *, 4> Visited;
3834   auto pushUsers = [&](const Instruction &I) {
3835     for (const User *U : I.users()) {
3836       if (Visited.insert(U).second)
3837         AllocaUsers.push_back(U);
3838     }
3839   };
3840   pushUsers(*AI);
3841   while (!AllocaUsers.empty()) {
3842     auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val());
3843     if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) ||
3844         isa<AddrSpaceCastInst>(UserI)) {
3845       pushUsers(*UserI);
3846       continue;
3847     }
3848     if (UserI == CB)
3849       continue;
3850     // TODO: support lifetime.start/end here
3851     return false;
3852   }
3853   return true;
3854 }
3855 
3856 /// Try to move the specified instruction from its current block into the
3857 /// beginning of DestBlock, which can only happen if it's safe to move the
3858 /// instruction past all of the instructions between it and the end of its
3859 /// block.
3860 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock,
3861                                  TargetLibraryInfo &TLI) {
3862   assert(I->getUniqueUndroppableUser() && "Invariants didn't hold!");
3863   BasicBlock *SrcBlock = I->getParent();
3864 
3865   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3866   if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
3867       I->isTerminator())
3868     return false;
3869 
3870   // Do not sink static or dynamic alloca instructions. Static allocas must
3871   // remain in the entry block, and dynamic allocas must not be sunk in between
3872   // a stacksave / stackrestore pair, which would incorrectly shorten its
3873   // lifetime.
3874   if (isa<AllocaInst>(I))
3875     return false;
3876 
3877   // Do not sink into catchswitch blocks.
3878   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3879     return false;
3880 
3881   // Do not sink convergent call instructions.
3882   if (auto *CI = dyn_cast<CallInst>(I)) {
3883     if (CI->isConvergent())
3884       return false;
3885   }
3886 
3887   // Unless we can prove that the memory write isn't visibile except on the
3888   // path we're sinking to, we must bail.
3889   if (I->mayWriteToMemory()) {
3890     if (!SoleWriteToDeadLocal(I, TLI))
3891       return false;
3892   }
3893 
3894   // We can only sink load instructions if there is nothing between the load and
3895   // the end of block that could change the value.
3896   if (I->mayReadFromMemory()) {
3897     // We don't want to do any sophisticated alias analysis, so we only check
3898     // the instructions after I in I's parent block if we try to sink to its
3899     // successor block.
3900     if (DestBlock->getUniquePredecessor() != I->getParent())
3901       return false;
3902     for (BasicBlock::iterator Scan = std::next(I->getIterator()),
3903                               E = I->getParent()->end();
3904          Scan != E; ++Scan)
3905       if (Scan->mayWriteToMemory())
3906         return false;
3907   }
3908 
3909   I->dropDroppableUses([DestBlock](const Use *U) {
3910     if (auto *I = dyn_cast<Instruction>(U->getUser()))
3911       return I->getParent() != DestBlock;
3912     return true;
3913   });
3914   /// FIXME: We could remove droppable uses that are not dominated by
3915   /// the new position.
3916 
3917   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3918   I->moveBefore(&*InsertPos);
3919   ++NumSunkInst;
3920 
3921   // Also sink all related debug uses from the source basic block. Otherwise we
3922   // get debug use before the def. Attempt to salvage debug uses first, to
3923   // maximise the range variables have location for. If we cannot salvage, then
3924   // mark the location undef: we know it was supposed to receive a new location
3925   // here, but that computation has been sunk.
3926   SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3927   findDbgUsers(DbgUsers, I);
3928   // Process the sinking DbgUsers in reverse order, as we only want to clone the
3929   // last appearing debug intrinsic for each given variable.
3930   SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink;
3931   for (DbgVariableIntrinsic *DVI : DbgUsers)
3932     if (DVI->getParent() == SrcBlock)
3933       DbgUsersToSink.push_back(DVI);
3934   llvm::sort(DbgUsersToSink,
3935              [](auto *A, auto *B) { return B->comesBefore(A); });
3936 
3937   SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
3938   SmallSet<DebugVariable, 4> SunkVariables;
3939   for (auto User : DbgUsersToSink) {
3940     // A dbg.declare instruction should not be cloned, since there can only be
3941     // one per variable fragment. It should be left in the original place
3942     // because the sunk instruction is not an alloca (otherwise we could not be
3943     // here).
3944     if (isa<DbgDeclareInst>(User))
3945       continue;
3946 
3947     DebugVariable DbgUserVariable =
3948         DebugVariable(User->getVariable(), User->getExpression(),
3949                       User->getDebugLoc()->getInlinedAt());
3950 
3951     if (!SunkVariables.insert(DbgUserVariable).second)
3952       continue;
3953 
3954     DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
3955     if (isa<DbgDeclareInst>(User) && isa<CastInst>(I))
3956       DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0));
3957     LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
3958   }
3959 
3960   // Perform salvaging without the clones, then sink the clones.
3961   if (!DIIClones.empty()) {
3962     salvageDebugInfoForDbgValues(*I, DbgUsers);
3963     // The clones are in reverse order of original appearance, reverse again to
3964     // maintain the original order.
3965     for (auto &DIIClone : llvm::reverse(DIIClones)) {
3966       DIIClone->insertBefore(&*InsertPos);
3967       LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
3968     }
3969   }
3970 
3971   return true;
3972 }
3973 
3974 bool InstCombinerImpl::run() {
3975   while (!Worklist.isEmpty()) {
3976     // Walk deferred instructions in reverse order, and push them to the
3977     // worklist, which means they'll end up popped from the worklist in-order.
3978     while (Instruction *I = Worklist.popDeferred()) {
3979       // Check to see if we can DCE the instruction. We do this already here to
3980       // reduce the number of uses and thus allow other folds to trigger.
3981       // Note that eraseInstFromFunction() may push additional instructions on
3982       // the deferred worklist, so this will DCE whole instruction chains.
3983       if (isInstructionTriviallyDead(I, &TLI)) {
3984         eraseInstFromFunction(*I);
3985         ++NumDeadInst;
3986         continue;
3987       }
3988 
3989       Worklist.push(I);
3990     }
3991 
3992     Instruction *I = Worklist.removeOne();
3993     if (I == nullptr) continue;  // skip null values.
3994 
3995     // Check to see if we can DCE the instruction.
3996     if (isInstructionTriviallyDead(I, &TLI)) {
3997       eraseInstFromFunction(*I);
3998       ++NumDeadInst;
3999       continue;
4000     }
4001 
4002     if (!DebugCounter::shouldExecute(VisitCounter))
4003       continue;
4004 
4005     // Instruction isn't dead, see if we can constant propagate it.
4006     if (!I->use_empty() &&
4007         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
4008       if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
4009         LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
4010                           << '\n');
4011 
4012         // Add operands to the worklist.
4013         replaceInstUsesWith(*I, C);
4014         ++NumConstProp;
4015         if (isInstructionTriviallyDead(I, &TLI))
4016           eraseInstFromFunction(*I);
4017         MadeIRChange = true;
4018         continue;
4019       }
4020     }
4021 
4022     // See if we can trivially sink this instruction to its user if we can
4023     // prove that the successor is not executed more frequently than our block.
4024     // Return the UserBlock if successful.
4025     auto getOptionalSinkBlockForInst =
4026         [this](Instruction *I) -> Optional<BasicBlock *> {
4027       if (!EnableCodeSinking)
4028         return None;
4029       auto *UserInst = cast_or_null<Instruction>(I->getUniqueUndroppableUser());
4030       if (!UserInst)
4031         return None;
4032 
4033       BasicBlock *BB = I->getParent();
4034       BasicBlock *UserParent = nullptr;
4035 
4036       // Special handling for Phi nodes - get the block the use occurs in.
4037       if (PHINode *PN = dyn_cast<PHINode>(UserInst)) {
4038         for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
4039           if (PN->getIncomingValue(i) == I) {
4040             // Bail out if we have uses in different blocks. We don't do any
4041             // sophisticated analysis (i.e finding NearestCommonDominator of these
4042             // use blocks).
4043             if (UserParent && UserParent != PN->getIncomingBlock(i))
4044               return None;
4045             UserParent = PN->getIncomingBlock(i);
4046           }
4047         }
4048         assert(UserParent && "expected to find user block!");
4049       } else
4050         UserParent = UserInst->getParent();
4051 
4052       // Try sinking to another block. If that block is unreachable, then do
4053       // not bother. SimplifyCFG should handle it.
4054       if (UserParent == BB || !DT.isReachableFromEntry(UserParent))
4055         return None;
4056 
4057       auto *Term = UserParent->getTerminator();
4058       // See if the user is one of our successors that has only one
4059       // predecessor, so that we don't have to split the critical edge.
4060       // Another option where we can sink is a block that ends with a
4061       // terminator that does not pass control to other block (such as
4062       // return or unreachable or resume). In this case:
4063       //   - I dominates the User (by SSA form);
4064       //   - the User will be executed at most once.
4065       // So sinking I down to User is always profitable or neutral.
4066       if (UserParent->getUniquePredecessor() == BB || succ_empty(Term)) {
4067         assert(DT.dominates(BB, UserParent) && "Dominance relation broken?");
4068         return UserParent;
4069       }
4070       return None;
4071     };
4072 
4073     auto OptBB = getOptionalSinkBlockForInst(I);
4074     if (OptBB) {
4075       auto *UserParent = *OptBB;
4076       // Okay, the CFG is simple enough, try to sink this instruction.
4077       if (TryToSinkInstruction(I, UserParent, TLI)) {
4078         LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
4079         MadeIRChange = true;
4080         // We'll add uses of the sunk instruction below, but since
4081         // sinking can expose opportunities for it's *operands* add
4082         // them to the worklist
4083         for (Use &U : I->operands())
4084           if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
4085             Worklist.push(OpI);
4086       }
4087     }
4088 
4089     // Now that we have an instruction, try combining it to simplify it.
4090     Builder.SetInsertPoint(I);
4091     Builder.CollectMetadataToCopy(
4092         I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
4093 
4094 #ifndef NDEBUG
4095     std::string OrigI;
4096 #endif
4097     LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
4098     LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
4099 
4100     if (Instruction *Result = visit(*I)) {
4101       ++NumCombined;
4102       // Should we replace the old instruction with a new one?
4103       if (Result != I) {
4104         LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
4105                           << "    New = " << *Result << '\n');
4106 
4107         Result->copyMetadata(*I,
4108                              {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
4109         // Everything uses the new instruction now.
4110         I->replaceAllUsesWith(Result);
4111 
4112         // Move the name to the new instruction first.
4113         Result->takeName(I);
4114 
4115         // Insert the new instruction into the basic block...
4116         BasicBlock *InstParent = I->getParent();
4117         BasicBlock::iterator InsertPos = I->getIterator();
4118 
4119         // Are we replace a PHI with something that isn't a PHI, or vice versa?
4120         if (isa<PHINode>(Result) != isa<PHINode>(I)) {
4121           // We need to fix up the insertion point.
4122           if (isa<PHINode>(I)) // PHI -> Non-PHI
4123             InsertPos = InstParent->getFirstInsertionPt();
4124           else // Non-PHI -> PHI
4125             InsertPos = InstParent->getFirstNonPHI()->getIterator();
4126         }
4127 
4128         InstParent->getInstList().insert(InsertPos, Result);
4129 
4130         // Push the new instruction and any users onto the worklist.
4131         Worklist.pushUsersToWorkList(*Result);
4132         Worklist.push(Result);
4133 
4134         eraseInstFromFunction(*I);
4135       } else {
4136         LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
4137                           << "    New = " << *I << '\n');
4138 
4139         // If the instruction was modified, it's possible that it is now dead.
4140         // if so, remove it.
4141         if (isInstructionTriviallyDead(I, &TLI)) {
4142           eraseInstFromFunction(*I);
4143         } else {
4144           Worklist.pushUsersToWorkList(*I);
4145           Worklist.push(I);
4146         }
4147       }
4148       MadeIRChange = true;
4149     }
4150   }
4151 
4152   Worklist.zap();
4153   return MadeIRChange;
4154 }
4155 
4156 // Track the scopes used by !alias.scope and !noalias. In a function, a
4157 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used
4158 // by both sets. If not, the declaration of the scope can be safely omitted.
4159 // The MDNode of the scope can be omitted as well for the instructions that are
4160 // part of this function. We do not do that at this point, as this might become
4161 // too time consuming to do.
4162 class AliasScopeTracker {
4163   SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
4164   SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
4165 
4166 public:
4167   void analyse(Instruction *I) {
4168     // This seems to be faster than checking 'mayReadOrWriteMemory()'.
4169     if (!I->hasMetadataOtherThanDebugLoc())
4170       return;
4171 
4172     auto Track = [](Metadata *ScopeList, auto &Container) {
4173       const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
4174       if (!MDScopeList || !Container.insert(MDScopeList).second)
4175         return;
4176       for (auto &MDOperand : MDScopeList->operands())
4177         if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
4178           Container.insert(MDScope);
4179     };
4180 
4181     Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
4182     Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
4183   }
4184 
4185   bool isNoAliasScopeDeclDead(Instruction *Inst) {
4186     NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
4187     if (!Decl)
4188       return false;
4189 
4190     assert(Decl->use_empty() &&
4191            "llvm.experimental.noalias.scope.decl in use ?");
4192     const MDNode *MDSL = Decl->getScopeList();
4193     assert(MDSL->getNumOperands() == 1 &&
4194            "llvm.experimental.noalias.scope should refer to a single scope");
4195     auto &MDOperand = MDSL->getOperand(0);
4196     if (auto *MD = dyn_cast<MDNode>(MDOperand))
4197       return !UsedAliasScopesAndLists.contains(MD) ||
4198              !UsedNoAliasScopesAndLists.contains(MD);
4199 
4200     // Not an MDNode ? throw away.
4201     return true;
4202   }
4203 };
4204 
4205 /// Populate the IC worklist from a function, by walking it in depth-first
4206 /// order and adding all reachable code to the worklist.
4207 ///
4208 /// This has a couple of tricks to make the code faster and more powerful.  In
4209 /// particular, we constant fold and DCE instructions as we go, to avoid adding
4210 /// them to the worklist (this significantly speeds up instcombine on code where
4211 /// many instructions are dead or constant).  Additionally, if we find a branch
4212 /// whose condition is a known constant, we only visit the reachable successors.
4213 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
4214                                           const TargetLibraryInfo *TLI,
4215                                           InstructionWorklist &ICWorklist) {
4216   bool MadeIRChange = false;
4217   SmallPtrSet<BasicBlock *, 32> Visited;
4218   SmallVector<BasicBlock*, 256> Worklist;
4219   Worklist.push_back(&F.front());
4220 
4221   SmallVector<Instruction *, 128> InstrsForInstructionWorklist;
4222   DenseMap<Constant *, Constant *> FoldedConstants;
4223   AliasScopeTracker SeenAliasScopes;
4224 
4225   do {
4226     BasicBlock *BB = Worklist.pop_back_val();
4227 
4228     // We have now visited this block!  If we've already been here, ignore it.
4229     if (!Visited.insert(BB).second)
4230       continue;
4231 
4232     for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
4233       // ConstantProp instruction if trivially constant.
4234       if (!Inst.use_empty() &&
4235           (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
4236         if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) {
4237           LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst
4238                             << '\n');
4239           Inst.replaceAllUsesWith(C);
4240           ++NumConstProp;
4241           if (isInstructionTriviallyDead(&Inst, TLI))
4242             Inst.eraseFromParent();
4243           MadeIRChange = true;
4244           continue;
4245         }
4246 
4247       // See if we can constant fold its operands.
4248       for (Use &U : Inst.operands()) {
4249         if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
4250           continue;
4251 
4252         auto *C = cast<Constant>(U);
4253         Constant *&FoldRes = FoldedConstants[C];
4254         if (!FoldRes)
4255           FoldRes = ConstantFoldConstant(C, DL, TLI);
4256 
4257         if (FoldRes != C) {
4258           LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst
4259                             << "\n    Old = " << *C
4260                             << "\n    New = " << *FoldRes << '\n');
4261           U = FoldRes;
4262           MadeIRChange = true;
4263         }
4264       }
4265 
4266       // Skip processing debug and pseudo intrinsics in InstCombine. Processing
4267       // these call instructions consumes non-trivial amount of time and
4268       // provides no value for the optimization.
4269       if (!Inst.isDebugOrPseudoInst()) {
4270         InstrsForInstructionWorklist.push_back(&Inst);
4271         SeenAliasScopes.analyse(&Inst);
4272       }
4273     }
4274 
4275     // Recursively visit successors.  If this is a branch or switch on a
4276     // constant, only visit the reachable successor.
4277     Instruction *TI = BB->getTerminator();
4278     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
4279       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
4280         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
4281         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
4282         Worklist.push_back(ReachableBB);
4283         continue;
4284       }
4285     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
4286       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
4287         Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
4288         continue;
4289       }
4290     }
4291 
4292     append_range(Worklist, successors(TI));
4293   } while (!Worklist.empty());
4294 
4295   // Remove instructions inside unreachable blocks. This prevents the
4296   // instcombine code from having to deal with some bad special cases, and
4297   // reduces use counts of instructions.
4298   for (BasicBlock &BB : F) {
4299     if (Visited.count(&BB))
4300       continue;
4301 
4302     unsigned NumDeadInstInBB;
4303     unsigned NumDeadDbgInstInBB;
4304     std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
4305         removeAllNonTerminatorAndEHPadInstructions(&BB);
4306 
4307     MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
4308     NumDeadInst += NumDeadInstInBB;
4309   }
4310 
4311   // Once we've found all of the instructions to add to instcombine's worklist,
4312   // add them in reverse order.  This way instcombine will visit from the top
4313   // of the function down.  This jives well with the way that it adds all uses
4314   // of instructions to the worklist after doing a transformation, thus avoiding
4315   // some N^2 behavior in pathological cases.
4316   ICWorklist.reserve(InstrsForInstructionWorklist.size());
4317   for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) {
4318     // DCE instruction if trivially dead. As we iterate in reverse program
4319     // order here, we will clean up whole chains of dead instructions.
4320     if (isInstructionTriviallyDead(Inst, TLI) ||
4321         SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
4322       ++NumDeadInst;
4323       LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
4324       salvageDebugInfo(*Inst);
4325       Inst->eraseFromParent();
4326       MadeIRChange = true;
4327       continue;
4328     }
4329 
4330     ICWorklist.push(Inst);
4331   }
4332 
4333   return MadeIRChange;
4334 }
4335 
4336 static bool combineInstructionsOverFunction(
4337     Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA,
4338     AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
4339     DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
4340     ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
4341   auto &DL = F.getParent()->getDataLayout();
4342   MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
4343 
4344   /// Builder - This is an IRBuilder that automatically inserts new
4345   /// instructions into the worklist when they are created.
4346   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
4347       F.getContext(), TargetFolder(DL),
4348       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
4349         Worklist.add(I);
4350         if (auto *Assume = dyn_cast<AssumeInst>(I))
4351           AC.registerAssumption(Assume);
4352       }));
4353 
4354   // Lower dbg.declare intrinsics otherwise their value may be clobbered
4355   // by instcombiner.
4356   bool MadeIRChange = false;
4357   if (ShouldLowerDbgDeclare)
4358     MadeIRChange = LowerDbgDeclare(F);
4359 
4360   // Iterate while there is work to do.
4361   unsigned Iteration = 0;
4362   while (true) {
4363     ++NumWorklistIterations;
4364     ++Iteration;
4365 
4366     if (Iteration > InfiniteLoopDetectionThreshold) {
4367       report_fatal_error(
4368           "Instruction Combining seems stuck in an infinite loop after " +
4369           Twine(InfiniteLoopDetectionThreshold) + " iterations.");
4370     }
4371 
4372     if (Iteration > MaxIterations) {
4373       LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
4374                         << " on " << F.getName()
4375                         << " reached; stopping before reaching a fixpoint\n");
4376       break;
4377     }
4378 
4379     LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
4380                       << F.getName() << "\n");
4381 
4382     MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
4383 
4384     InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
4385                         ORE, BFI, PSI, DL, LI);
4386     IC.MaxArraySizeForCombine = MaxArraySize;
4387 
4388     if (!IC.run())
4389       break;
4390 
4391     MadeIRChange = true;
4392   }
4393 
4394   return MadeIRChange;
4395 }
4396 
4397 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
4398 
4399 InstCombinePass::InstCombinePass(unsigned MaxIterations)
4400     : MaxIterations(MaxIterations) {}
4401 
4402 PreservedAnalyses InstCombinePass::run(Function &F,
4403                                        FunctionAnalysisManager &AM) {
4404   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4405   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4406   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4407   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4408   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
4409 
4410   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
4411 
4412   auto *AA = &AM.getResult<AAManager>(F);
4413   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
4414   ProfileSummaryInfo *PSI =
4415       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
4416   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
4417       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
4418 
4419   if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4420                                        BFI, PSI, MaxIterations, LI))
4421     // No changes, all analyses are preserved.
4422     return PreservedAnalyses::all();
4423 
4424   // Mark all the analyses that instcombine updates as preserved.
4425   PreservedAnalyses PA;
4426   PA.preserveSet<CFGAnalyses>();
4427   return PA;
4428 }
4429 
4430 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
4431   AU.setPreservesCFG();
4432   AU.addRequired<AAResultsWrapperPass>();
4433   AU.addRequired<AssumptionCacheTracker>();
4434   AU.addRequired<TargetLibraryInfoWrapperPass>();
4435   AU.addRequired<TargetTransformInfoWrapperPass>();
4436   AU.addRequired<DominatorTreeWrapperPass>();
4437   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4438   AU.addPreserved<DominatorTreeWrapperPass>();
4439   AU.addPreserved<AAResultsWrapperPass>();
4440   AU.addPreserved<BasicAAWrapperPass>();
4441   AU.addPreserved<GlobalsAAWrapperPass>();
4442   AU.addRequired<ProfileSummaryInfoWrapperPass>();
4443   LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
4444 }
4445 
4446 bool InstructionCombiningPass::runOnFunction(Function &F) {
4447   if (skipFunction(F))
4448     return false;
4449 
4450   // Required analyses.
4451   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4452   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4453   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
4454   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4455   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4456   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4457 
4458   // Optional analyses.
4459   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
4460   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
4461   ProfileSummaryInfo *PSI =
4462       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
4463   BlockFrequencyInfo *BFI =
4464       (PSI && PSI->hasProfileSummary()) ?
4465       &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
4466       nullptr;
4467 
4468   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4469                                          BFI, PSI, MaxIterations, LI);
4470 }
4471 
4472 char InstructionCombiningPass::ID = 0;
4473 
4474 InstructionCombiningPass::InstructionCombiningPass()
4475     : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
4476   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4477 }
4478 
4479 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
4480     : FunctionPass(ID), MaxIterations(MaxIterations) {
4481   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4482 }
4483 
4484 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
4485                       "Combine redundant instructions", false, false)
4486 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4487 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4488 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4489 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4490 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4491 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4492 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
4493 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
4494 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
4495 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
4496                     "Combine redundant instructions", false, false)
4497 
4498 // Initialization Routines
4499 void llvm::initializeInstCombine(PassRegistry &Registry) {
4500   initializeInstructionCombiningPassPass(Registry);
4501 }
4502 
4503 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
4504   initializeInstructionCombiningPassPass(*unwrap(R));
4505 }
4506 
4507 FunctionPass *llvm::createInstructionCombiningPass() {
4508   return new InstructionCombiningPass();
4509 }
4510 
4511 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
4512   return new InstructionCombiningPass(MaxIterations);
4513 }
4514 
4515 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
4516   unwrap(PM)->add(createInstructionCombiningPass());
4517 }
4518