1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // InstructionCombining - Combine instructions to form fewer, simple 11 // instructions. This pass does not modify the CFG. This pass is where 12 // algebraic simplification happens. 13 // 14 // This pass combines things like: 15 // %Y = add i32 %X, 1 16 // %Z = add i32 %Y, 1 17 // into: 18 // %Z = add i32 %X, 2 19 // 20 // This is a simple worklist driven algorithm. 21 // 22 // This pass guarantees that the following canonicalizations are performed on 23 // the program: 24 // 1. If a binary operator has a constant operand, it is moved to the RHS 25 // 2. Bitwise operators with constant operands are always grouped so that 26 // shifts are performed first, then or's, then and's, then xor's. 27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 28 // 4. All cmp instructions on boolean values are replaced with logical ops 29 // 5. add X, X is represented as (X*2) => (X << 1) 30 // 6. Multiplies with a power-of-two constant argument are transformed into 31 // shifts. 32 // ... etc. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "InstCombineInternal.h" 37 #include "llvm/ADT/APInt.h" 38 #include "llvm/ADT/ArrayRef.h" 39 #include "llvm/ADT/DenseMap.h" 40 #include "llvm/ADT/None.h" 41 #include "llvm/ADT/SmallPtrSet.h" 42 #include "llvm/ADT/SmallVector.h" 43 #include "llvm/ADT/Statistic.h" 44 #include "llvm/ADT/TinyPtrVector.h" 45 #include "llvm/Analysis/AliasAnalysis.h" 46 #include "llvm/Analysis/AssumptionCache.h" 47 #include "llvm/Analysis/BasicAliasAnalysis.h" 48 #include "llvm/Analysis/CFG.h" 49 #include "llvm/Analysis/ConstantFolding.h" 50 #include "llvm/Analysis/EHPersonalities.h" 51 #include "llvm/Analysis/GlobalsModRef.h" 52 #include "llvm/Analysis/InstructionSimplify.h" 53 #include "llvm/Analysis/LoopInfo.h" 54 #include "llvm/Analysis/MemoryBuiltins.h" 55 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 56 #include "llvm/Analysis/TargetFolder.h" 57 #include "llvm/Analysis/TargetLibraryInfo.h" 58 #include "llvm/Analysis/ValueTracking.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/Constant.h" 62 #include "llvm/IR/Constants.h" 63 #include "llvm/IR/DIBuilder.h" 64 #include "llvm/IR/DataLayout.h" 65 #include "llvm/IR/DerivedTypes.h" 66 #include "llvm/IR/Dominators.h" 67 #include "llvm/IR/Function.h" 68 #include "llvm/IR/GetElementPtrTypeIterator.h" 69 #include "llvm/IR/IRBuilder.h" 70 #include "llvm/IR/InstrTypes.h" 71 #include "llvm/IR/Instruction.h" 72 #include "llvm/IR/Instructions.h" 73 #include "llvm/IR/IntrinsicInst.h" 74 #include "llvm/IR/Intrinsics.h" 75 #include "llvm/IR/Metadata.h" 76 #include "llvm/IR/Operator.h" 77 #include "llvm/IR/PassManager.h" 78 #include "llvm/IR/PatternMatch.h" 79 #include "llvm/IR/Type.h" 80 #include "llvm/IR/Use.h" 81 #include "llvm/IR/User.h" 82 #include "llvm/IR/Value.h" 83 #include "llvm/IR/ValueHandle.h" 84 #include "llvm/Pass.h" 85 #include "llvm/Support/CBindingWrapping.h" 86 #include "llvm/Support/Casting.h" 87 #include "llvm/Support/CommandLine.h" 88 #include "llvm/Support/Compiler.h" 89 #include "llvm/Support/Debug.h" 90 #include "llvm/Support/DebugCounter.h" 91 #include "llvm/Support/ErrorHandling.h" 92 #include "llvm/Support/KnownBits.h" 93 #include "llvm/Support/raw_ostream.h" 94 #include "llvm/Transforms/InstCombine/InstCombine.h" 95 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 96 #include "llvm/Transforms/Scalar.h" 97 #include "llvm/Transforms/Utils/Local.h" 98 #include <algorithm> 99 #include <cassert> 100 #include <cstdint> 101 #include <memory> 102 #include <string> 103 #include <utility> 104 105 using namespace llvm; 106 using namespace llvm::PatternMatch; 107 108 #define DEBUG_TYPE "instcombine" 109 110 STATISTIC(NumCombined , "Number of insts combined"); 111 STATISTIC(NumConstProp, "Number of constant folds"); 112 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 113 STATISTIC(NumSunkInst , "Number of instructions sunk"); 114 STATISTIC(NumExpand, "Number of expansions"); 115 STATISTIC(NumFactor , "Number of factorizations"); 116 STATISTIC(NumReassoc , "Number of reassociations"); 117 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 118 "Controls which instructions are visited"); 119 120 static cl::opt<bool> 121 EnableExpensiveCombines("expensive-combines", 122 cl::desc("Enable expensive instruction combines")); 123 124 static cl::opt<unsigned> 125 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 126 cl::desc("Maximum array size considered when doing a combine")); 127 128 // FIXME: Remove this flag when it is no longer necessary to convert 129 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 130 // increases variable availability at the cost of accuracy. Variables that 131 // cannot be promoted by mem2reg or SROA will be described as living in memory 132 // for their entire lifetime. However, passes like DSE and instcombine can 133 // delete stores to the alloca, leading to misleading and inaccurate debug 134 // information. This flag can be removed when those passes are fixed. 135 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 136 cl::Hidden, cl::init(true)); 137 138 Value *InstCombiner::EmitGEPOffset(User *GEP) { 139 return llvm::EmitGEPOffset(&Builder, DL, GEP); 140 } 141 142 /// Return true if it is desirable to convert an integer computation from a 143 /// given bit width to a new bit width. 144 /// We don't want to convert from a legal to an illegal type or from a smaller 145 /// to a larger illegal type. A width of '1' is always treated as a legal type 146 /// because i1 is a fundamental type in IR, and there are many specialized 147 /// optimizations for i1 types. 148 bool InstCombiner::shouldChangeType(unsigned FromWidth, 149 unsigned ToWidth) const { 150 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 151 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 152 153 // If this is a legal integer from type, and the result would be an illegal 154 // type, don't do the transformation. 155 if (FromLegal && !ToLegal) 156 return false; 157 158 // Otherwise, if both are illegal, do not increase the size of the result. We 159 // do allow things like i160 -> i64, but not i64 -> i160. 160 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 161 return false; 162 163 return true; 164 } 165 166 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 167 /// We don't want to convert from a legal to an illegal type or from a smaller 168 /// to a larger illegal type. i1 is always treated as a legal type because it is 169 /// a fundamental type in IR, and there are many specialized optimizations for 170 /// i1 types. 171 bool InstCombiner::shouldChangeType(Type *From, Type *To) const { 172 assert(From->isIntegerTy() && To->isIntegerTy()); 173 174 unsigned FromWidth = From->getPrimitiveSizeInBits(); 175 unsigned ToWidth = To->getPrimitiveSizeInBits(); 176 return shouldChangeType(FromWidth, ToWidth); 177 } 178 179 // Return true, if No Signed Wrap should be maintained for I. 180 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 181 // where both B and C should be ConstantInts, results in a constant that does 182 // not overflow. This function only handles the Add and Sub opcodes. For 183 // all other opcodes, the function conservatively returns false. 184 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 185 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 186 if (!OBO || !OBO->hasNoSignedWrap()) 187 return false; 188 189 // We reason about Add and Sub Only. 190 Instruction::BinaryOps Opcode = I.getOpcode(); 191 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 192 return false; 193 194 const APInt *BVal, *CVal; 195 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 196 return false; 197 198 bool Overflow = false; 199 if (Opcode == Instruction::Add) 200 (void)BVal->sadd_ov(*CVal, Overflow); 201 else 202 (void)BVal->ssub_ov(*CVal, Overflow); 203 204 return !Overflow; 205 } 206 207 /// Conservatively clears subclassOptionalData after a reassociation or 208 /// commutation. We preserve fast-math flags when applicable as they can be 209 /// preserved. 210 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 211 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 212 if (!FPMO) { 213 I.clearSubclassOptionalData(); 214 return; 215 } 216 217 FastMathFlags FMF = I.getFastMathFlags(); 218 I.clearSubclassOptionalData(); 219 I.setFastMathFlags(FMF); 220 } 221 222 /// Combine constant operands of associative operations either before or after a 223 /// cast to eliminate one of the associative operations: 224 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 225 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 226 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) { 227 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 228 if (!Cast || !Cast->hasOneUse()) 229 return false; 230 231 // TODO: Enhance logic for other casts and remove this check. 232 auto CastOpcode = Cast->getOpcode(); 233 if (CastOpcode != Instruction::ZExt) 234 return false; 235 236 // TODO: Enhance logic for other BinOps and remove this check. 237 if (!BinOp1->isBitwiseLogicOp()) 238 return false; 239 240 auto AssocOpcode = BinOp1->getOpcode(); 241 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 242 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 243 return false; 244 245 Constant *C1, *C2; 246 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 247 !match(BinOp2->getOperand(1), m_Constant(C2))) 248 return false; 249 250 // TODO: This assumes a zext cast. 251 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 252 // to the destination type might lose bits. 253 254 // Fold the constants together in the destination type: 255 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 256 Type *DestTy = C1->getType(); 257 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 258 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 259 Cast->setOperand(0, BinOp2->getOperand(0)); 260 BinOp1->setOperand(1, FoldedC); 261 return true; 262 } 263 264 /// This performs a few simplifications for operators that are associative or 265 /// commutative: 266 /// 267 /// Commutative operators: 268 /// 269 /// 1. Order operands such that they are listed from right (least complex) to 270 /// left (most complex). This puts constants before unary operators before 271 /// binary operators. 272 /// 273 /// Associative operators: 274 /// 275 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 276 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 277 /// 278 /// Associative and commutative operators: 279 /// 280 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 281 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 282 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 283 /// if C1 and C2 are constants. 284 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 285 Instruction::BinaryOps Opcode = I.getOpcode(); 286 bool Changed = false; 287 288 do { 289 // Order operands such that they are listed from right (least complex) to 290 // left (most complex). This puts constants before unary operators before 291 // binary operators. 292 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 293 getComplexity(I.getOperand(1))) 294 Changed = !I.swapOperands(); 295 296 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 297 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 298 299 if (I.isAssociative()) { 300 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 301 if (Op0 && Op0->getOpcode() == Opcode) { 302 Value *A = Op0->getOperand(0); 303 Value *B = Op0->getOperand(1); 304 Value *C = I.getOperand(1); 305 306 // Does "B op C" simplify? 307 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 308 // It simplifies to V. Form "A op V". 309 I.setOperand(0, A); 310 I.setOperand(1, V); 311 // Conservatively clear the optional flags, since they may not be 312 // preserved by the reassociation. 313 if (MaintainNoSignedWrap(I, B, C) && 314 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { 315 // Note: this is only valid because SimplifyBinOp doesn't look at 316 // the operands to Op0. 317 I.clearSubclassOptionalData(); 318 I.setHasNoSignedWrap(true); 319 } else { 320 ClearSubclassDataAfterReassociation(I); 321 } 322 323 Changed = true; 324 ++NumReassoc; 325 continue; 326 } 327 } 328 329 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 330 if (Op1 && Op1->getOpcode() == Opcode) { 331 Value *A = I.getOperand(0); 332 Value *B = Op1->getOperand(0); 333 Value *C = Op1->getOperand(1); 334 335 // Does "A op B" simplify? 336 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 337 // It simplifies to V. Form "V op C". 338 I.setOperand(0, V); 339 I.setOperand(1, C); 340 // Conservatively clear the optional flags, since they may not be 341 // preserved by the reassociation. 342 ClearSubclassDataAfterReassociation(I); 343 Changed = true; 344 ++NumReassoc; 345 continue; 346 } 347 } 348 } 349 350 if (I.isAssociative() && I.isCommutative()) { 351 if (simplifyAssocCastAssoc(&I)) { 352 Changed = true; 353 ++NumReassoc; 354 continue; 355 } 356 357 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 358 if (Op0 && Op0->getOpcode() == Opcode) { 359 Value *A = Op0->getOperand(0); 360 Value *B = Op0->getOperand(1); 361 Value *C = I.getOperand(1); 362 363 // Does "C op A" simplify? 364 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 365 // It simplifies to V. Form "V op B". 366 I.setOperand(0, V); 367 I.setOperand(1, B); 368 // Conservatively clear the optional flags, since they may not be 369 // preserved by the reassociation. 370 ClearSubclassDataAfterReassociation(I); 371 Changed = true; 372 ++NumReassoc; 373 continue; 374 } 375 } 376 377 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 378 if (Op1 && Op1->getOpcode() == Opcode) { 379 Value *A = I.getOperand(0); 380 Value *B = Op1->getOperand(0); 381 Value *C = Op1->getOperand(1); 382 383 // Does "C op A" simplify? 384 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 385 // It simplifies to V. Form "B op V". 386 I.setOperand(0, B); 387 I.setOperand(1, V); 388 // Conservatively clear the optional flags, since they may not be 389 // preserved by the reassociation. 390 ClearSubclassDataAfterReassociation(I); 391 Changed = true; 392 ++NumReassoc; 393 continue; 394 } 395 } 396 397 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 398 // if C1 and C2 are constants. 399 if (Op0 && Op1 && 400 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 401 isa<Constant>(Op0->getOperand(1)) && 402 isa<Constant>(Op1->getOperand(1)) && 403 Op0->hasOneUse() && Op1->hasOneUse()) { 404 Value *A = Op0->getOperand(0); 405 Constant *C1 = cast<Constant>(Op0->getOperand(1)); 406 Value *B = Op1->getOperand(0); 407 Constant *C2 = cast<Constant>(Op1->getOperand(1)); 408 409 Constant *Folded = ConstantExpr::get(Opcode, C1, C2); 410 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B); 411 if (isa<FPMathOperator>(New)) { 412 FastMathFlags Flags = I.getFastMathFlags(); 413 Flags &= Op0->getFastMathFlags(); 414 Flags &= Op1->getFastMathFlags(); 415 New->setFastMathFlags(Flags); 416 } 417 InsertNewInstWith(New, I); 418 New->takeName(Op1); 419 I.setOperand(0, New); 420 I.setOperand(1, Folded); 421 // Conservatively clear the optional flags, since they may not be 422 // preserved by the reassociation. 423 ClearSubclassDataAfterReassociation(I); 424 425 Changed = true; 426 continue; 427 } 428 } 429 430 // No further simplifications. 431 return Changed; 432 } while (true); 433 } 434 435 /// Return whether "X LOp (Y ROp Z)" is always equal to 436 /// "(X LOp Y) ROp (X LOp Z)". 437 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp, 438 Instruction::BinaryOps ROp) { 439 switch (LOp) { 440 default: 441 return false; 442 443 case Instruction::And: 444 // And distributes over Or and Xor. 445 switch (ROp) { 446 default: 447 return false; 448 case Instruction::Or: 449 case Instruction::Xor: 450 return true; 451 } 452 453 case Instruction::Mul: 454 // Multiplication distributes over addition and subtraction. 455 switch (ROp) { 456 default: 457 return false; 458 case Instruction::Add: 459 case Instruction::Sub: 460 return true; 461 } 462 463 case Instruction::Or: 464 // Or distributes over And. 465 switch (ROp) { 466 default: 467 return false; 468 case Instruction::And: 469 return true; 470 } 471 } 472 } 473 474 /// Return whether "(X LOp Y) ROp Z" is always equal to 475 /// "(X ROp Z) LOp (Y ROp Z)". 476 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp, 477 Instruction::BinaryOps ROp) { 478 if (Instruction::isCommutative(ROp)) 479 return LeftDistributesOverRight(ROp, LOp); 480 481 switch (LOp) { 482 default: 483 return false; 484 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts. 485 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts. 486 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts. 487 case Instruction::And: 488 case Instruction::Or: 489 case Instruction::Xor: 490 switch (ROp) { 491 default: 492 return false; 493 case Instruction::Shl: 494 case Instruction::LShr: 495 case Instruction::AShr: 496 return true; 497 } 498 } 499 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 500 // but this requires knowing that the addition does not overflow and other 501 // such subtleties. 502 return false; 503 } 504 505 /// This function returns identity value for given opcode, which can be used to 506 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 507 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 508 if (isa<Constant>(V)) 509 return nullptr; 510 511 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 512 } 513 514 /// This function factors binary ops which can be combined using distributive 515 /// laws. This function tries to transform 'Op' based TopLevelOpcode to enable 516 /// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called 517 /// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms 518 /// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and 519 /// RHS to 4. 520 static Instruction::BinaryOps 521 getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode, 522 BinaryOperator *Op, Value *&LHS, Value *&RHS) { 523 assert(Op && "Expected a binary operator"); 524 525 LHS = Op->getOperand(0); 526 RHS = Op->getOperand(1); 527 528 switch (TopLevelOpcode) { 529 default: 530 return Op->getOpcode(); 531 532 case Instruction::Add: 533 case Instruction::Sub: 534 if (Op->getOpcode() == Instruction::Shl) { 535 if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) { 536 // The multiplier is really 1 << CST. 537 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST); 538 return Instruction::Mul; 539 } 540 } 541 return Op->getOpcode(); 542 } 543 544 // TODO: We can add other conversions e.g. shr => div etc. 545 } 546 547 /// This tries to simplify binary operations by factorizing out common terms 548 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 549 Value *InstCombiner::tryFactorization(BinaryOperator &I, 550 Instruction::BinaryOps InnerOpcode, 551 Value *A, Value *B, Value *C, Value *D) { 552 assert(A && B && C && D && "All values must be provided"); 553 554 Value *V = nullptr; 555 Value *SimplifiedInst = nullptr; 556 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 557 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 558 559 // Does "X op' Y" always equal "Y op' X"? 560 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 561 562 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 563 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 564 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 565 // commutative case, "(A op' B) op (C op' A)"? 566 if (A == C || (InnerCommutative && A == D)) { 567 if (A != C) 568 std::swap(C, D); 569 // Consider forming "A op' (B op D)". 570 // If "B op D" simplifies then it can be formed with no cost. 571 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 572 // If "B op D" doesn't simplify then only go on if both of the existing 573 // operations "A op' B" and "C op' D" will be zapped as no longer used. 574 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 575 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 576 if (V) { 577 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 578 } 579 } 580 581 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 582 if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 583 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 584 // commutative case, "(A op' B) op (B op' D)"? 585 if (B == D || (InnerCommutative && B == C)) { 586 if (B != D) 587 std::swap(C, D); 588 // Consider forming "(A op C) op' B". 589 // If "A op C" simplifies then it can be formed with no cost. 590 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 591 592 // If "A op C" doesn't simplify then only go on if both of the existing 593 // operations "A op' B" and "C op' D" will be zapped as no longer used. 594 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 595 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 596 if (V) { 597 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 598 } 599 } 600 601 if (SimplifiedInst) { 602 ++NumFactor; 603 SimplifiedInst->takeName(&I); 604 605 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag. 606 // TODO: Check for NUW. 607 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 608 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 609 bool HasNSW = false; 610 if (isa<OverflowingBinaryOperator>(&I)) 611 HasNSW = I.hasNoSignedWrap(); 612 613 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) 614 HasNSW &= LOBO->hasNoSignedWrap(); 615 616 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) 617 HasNSW &= ROBO->hasNoSignedWrap(); 618 619 // We can propagate 'nsw' if we know that 620 // %Y = mul nsw i16 %X, C 621 // %Z = add nsw i16 %Y, %X 622 // => 623 // %Z = mul nsw i16 %X, C+1 624 // 625 // iff C+1 isn't INT_MIN 626 const APInt *CInt; 627 if (TopLevelOpcode == Instruction::Add && 628 InnerOpcode == Instruction::Mul) 629 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) 630 BO->setHasNoSignedWrap(HasNSW); 631 } 632 } 633 } 634 return SimplifiedInst; 635 } 636 637 /// This tries to simplify binary operations which some other binary operation 638 /// distributes over either by factorizing out common terms 639 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 640 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 641 /// Returns the simplified value, or null if it didn't simplify. 642 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 643 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 644 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 645 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 646 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 647 648 { 649 // Factorization. 650 Value *A, *B, *C, *D; 651 Instruction::BinaryOps LHSOpcode, RHSOpcode; 652 if (Op0) 653 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 654 if (Op1) 655 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 656 657 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 658 // a common term. 659 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 660 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 661 return V; 662 663 // The instruction has the form "(A op' B) op (C)". Try to factorize common 664 // term. 665 if (Op0) 666 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 667 if (Value *V = 668 tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 669 return V; 670 671 // The instruction has the form "(B) op (C op' D)". Try to factorize common 672 // term. 673 if (Op1) 674 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 675 if (Value *V = 676 tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 677 return V; 678 } 679 680 // Expansion. 681 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 682 // The instruction has the form "(A op' B) op C". See if expanding it out 683 // to "(A op C) op' (B op C)" results in simplifications. 684 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 685 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 686 687 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 688 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I)); 689 690 // Do "A op C" and "B op C" both simplify? 691 if (L && R) { 692 // They do! Return "L op' R". 693 ++NumExpand; 694 C = Builder.CreateBinOp(InnerOpcode, L, R); 695 C->takeName(&I); 696 return C; 697 } 698 699 // Does "A op C" simplify to the identity value for the inner opcode? 700 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 701 // They do! Return "B op C". 702 ++NumExpand; 703 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 704 C->takeName(&I); 705 return C; 706 } 707 708 // Does "B op C" simplify to the identity value for the inner opcode? 709 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 710 // They do! Return "A op C". 711 ++NumExpand; 712 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 713 C->takeName(&I); 714 return C; 715 } 716 } 717 718 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 719 // The instruction has the form "A op (B op' C)". See if expanding it out 720 // to "(A op B) op' (A op C)" results in simplifications. 721 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 722 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 723 724 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I)); 725 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 726 727 // Do "A op B" and "A op C" both simplify? 728 if (L && R) { 729 // They do! Return "L op' R". 730 ++NumExpand; 731 A = Builder.CreateBinOp(InnerOpcode, L, R); 732 A->takeName(&I); 733 return A; 734 } 735 736 // Does "A op B" simplify to the identity value for the inner opcode? 737 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 738 // They do! Return "A op C". 739 ++NumExpand; 740 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 741 A->takeName(&I); 742 return A; 743 } 744 745 // Does "A op C" simplify to the identity value for the inner opcode? 746 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 747 // They do! Return "A op B". 748 ++NumExpand; 749 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 750 A->takeName(&I); 751 return A; 752 } 753 } 754 755 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 756 } 757 758 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 759 Value *LHS, Value *RHS) { 760 Instruction::BinaryOps Opcode = I.getOpcode(); 761 // (op (select (a, b, c)), (select (a, d, e))) -> (select (a, (op b, d), (op 762 // c, e))) 763 Value *A, *B, *C, *D, *E; 764 Value *SI = nullptr; 765 if (match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))) && 766 match(RHS, m_Select(m_Specific(A), m_Value(D), m_Value(E)))) { 767 bool SelectsHaveOneUse = LHS->hasOneUse() && RHS->hasOneUse(); 768 BuilderTy::FastMathFlagGuard Guard(Builder); 769 if (isa<FPMathOperator>(&I)) 770 Builder.setFastMathFlags(I.getFastMathFlags()); 771 772 Value *V1 = SimplifyBinOp(Opcode, C, E, SQ.getWithInstruction(&I)); 773 Value *V2 = SimplifyBinOp(Opcode, B, D, SQ.getWithInstruction(&I)); 774 if (V1 && V2) 775 SI = Builder.CreateSelect(A, V2, V1); 776 else if (V2 && SelectsHaveOneUse) 777 SI = Builder.CreateSelect(A, V2, Builder.CreateBinOp(Opcode, C, E)); 778 else if (V1 && SelectsHaveOneUse) 779 SI = Builder.CreateSelect(A, Builder.CreateBinOp(Opcode, B, D), V1); 780 781 if (SI) 782 SI->takeName(&I); 783 } 784 785 return SI; 786 } 787 788 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 789 /// constant zero (which is the 'negate' form). 790 Value *InstCombiner::dyn_castNegVal(Value *V) const { 791 if (BinaryOperator::isNeg(V)) 792 return BinaryOperator::getNegArgument(V); 793 794 // Constants can be considered to be negated values if they can be folded. 795 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 796 return ConstantExpr::getNeg(C); 797 798 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 799 if (C->getType()->getElementType()->isIntegerTy()) 800 return ConstantExpr::getNeg(C); 801 802 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 803 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 804 Constant *Elt = CV->getAggregateElement(i); 805 if (!Elt) 806 return nullptr; 807 808 if (isa<UndefValue>(Elt)) 809 continue; 810 811 if (!isa<ConstantInt>(Elt)) 812 return nullptr; 813 } 814 return ConstantExpr::getNeg(CV); 815 } 816 817 return nullptr; 818 } 819 820 /// Given a 'fsub' instruction, return the RHS of the instruction if the LHS is 821 /// a constant negative zero (which is the 'negate' form). 822 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const { 823 if (BinaryOperator::isFNeg(V, IgnoreZeroSign)) 824 return BinaryOperator::getFNegArgument(V); 825 826 // Constants can be considered to be negated values if they can be folded. 827 if (ConstantFP *C = dyn_cast<ConstantFP>(V)) 828 return ConstantExpr::getFNeg(C); 829 830 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 831 if (C->getType()->getElementType()->isFloatingPointTy()) 832 return ConstantExpr::getFNeg(C); 833 834 return nullptr; 835 } 836 837 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 838 InstCombiner::BuilderTy &Builder) { 839 if (auto *Cast = dyn_cast<CastInst>(&I)) 840 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 841 842 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 843 844 // Figure out if the constant is the left or the right argument. 845 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 846 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 847 848 if (auto *SOC = dyn_cast<Constant>(SO)) { 849 if (ConstIsRHS) 850 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 851 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 852 } 853 854 Value *Op0 = SO, *Op1 = ConstOperand; 855 if (!ConstIsRHS) 856 std::swap(Op0, Op1); 857 858 auto *BO = cast<BinaryOperator>(&I); 859 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 860 SO->getName() + ".op"); 861 auto *FPInst = dyn_cast<Instruction>(RI); 862 if (FPInst && isa<FPMathOperator>(FPInst)) 863 FPInst->copyFastMathFlags(BO); 864 return RI; 865 } 866 867 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 868 // Don't modify shared select instructions. 869 if (!SI->hasOneUse()) 870 return nullptr; 871 872 Value *TV = SI->getTrueValue(); 873 Value *FV = SI->getFalseValue(); 874 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 875 return nullptr; 876 877 // Bool selects with constant operands can be folded to logical ops. 878 if (SI->getType()->isIntOrIntVectorTy(1)) 879 return nullptr; 880 881 // If it's a bitcast involving vectors, make sure it has the same number of 882 // elements on both sides. 883 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 884 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 885 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 886 887 // Verify that either both or neither are vectors. 888 if ((SrcTy == nullptr) != (DestTy == nullptr)) 889 return nullptr; 890 891 // If vectors, verify that they have the same number of elements. 892 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 893 return nullptr; 894 } 895 896 // Test if a CmpInst instruction is used exclusively by a select as 897 // part of a minimum or maximum operation. If so, refrain from doing 898 // any other folding. This helps out other analyses which understand 899 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 900 // and CodeGen. And in this case, at least one of the comparison 901 // operands has at least one user besides the compare (the select), 902 // which would often largely negate the benefit of folding anyway. 903 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 904 if (CI->hasOneUse()) { 905 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 906 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 907 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 908 return nullptr; 909 } 910 } 911 912 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 913 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 914 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 915 } 916 917 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 918 InstCombiner::BuilderTy &Builder) { 919 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 920 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 921 922 if (auto *InC = dyn_cast<Constant>(InV)) { 923 if (ConstIsRHS) 924 return ConstantExpr::get(I->getOpcode(), InC, C); 925 return ConstantExpr::get(I->getOpcode(), C, InC); 926 } 927 928 Value *Op0 = InV, *Op1 = C; 929 if (!ConstIsRHS) 930 std::swap(Op0, Op1); 931 932 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp"); 933 auto *FPInst = dyn_cast<Instruction>(RI); 934 if (FPInst && isa<FPMathOperator>(FPInst)) 935 FPInst->copyFastMathFlags(I); 936 return RI; 937 } 938 939 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) { 940 unsigned NumPHIValues = PN->getNumIncomingValues(); 941 if (NumPHIValues == 0) 942 return nullptr; 943 944 // We normally only transform phis with a single use. However, if a PHI has 945 // multiple uses and they are all the same operation, we can fold *all* of the 946 // uses into the PHI. 947 if (!PN->hasOneUse()) { 948 // Walk the use list for the instruction, comparing them to I. 949 for (User *U : PN->users()) { 950 Instruction *UI = cast<Instruction>(U); 951 if (UI != &I && !I.isIdenticalTo(UI)) 952 return nullptr; 953 } 954 // Otherwise, we can replace *all* users with the new PHI we form. 955 } 956 957 // Check to see if all of the operands of the PHI are simple constants 958 // (constantint/constantfp/undef). If there is one non-constant value, 959 // remember the BB it is in. If there is more than one or if *it* is a PHI, 960 // bail out. We don't do arbitrary constant expressions here because moving 961 // their computation can be expensive without a cost model. 962 BasicBlock *NonConstBB = nullptr; 963 for (unsigned i = 0; i != NumPHIValues; ++i) { 964 Value *InVal = PN->getIncomingValue(i); 965 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 966 continue; 967 968 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 969 if (NonConstBB) return nullptr; // More than one non-const value. 970 971 NonConstBB = PN->getIncomingBlock(i); 972 973 // If the InVal is an invoke at the end of the pred block, then we can't 974 // insert a computation after it without breaking the edge. 975 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal)) 976 if (II->getParent() == NonConstBB) 977 return nullptr; 978 979 // If the incoming non-constant value is in I's block, we will remove one 980 // instruction, but insert another equivalent one, leading to infinite 981 // instcombine. 982 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI)) 983 return nullptr; 984 } 985 986 // If there is exactly one non-constant value, we can insert a copy of the 987 // operation in that block. However, if this is a critical edge, we would be 988 // inserting the computation on some other paths (e.g. inside a loop). Only 989 // do this if the pred block is unconditionally branching into the phi block. 990 if (NonConstBB != nullptr) { 991 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 992 if (!BI || !BI->isUnconditional()) return nullptr; 993 } 994 995 // Okay, we can do the transformation: create the new PHI node. 996 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 997 InsertNewInstBefore(NewPN, *PN); 998 NewPN->takeName(PN); 999 1000 // If we are going to have to insert a new computation, do so right before the 1001 // predecessor's terminator. 1002 if (NonConstBB) 1003 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1004 1005 // Next, add all of the operands to the PHI. 1006 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1007 // We only currently try to fold the condition of a select when it is a phi, 1008 // not the true/false values. 1009 Value *TrueV = SI->getTrueValue(); 1010 Value *FalseV = SI->getFalseValue(); 1011 BasicBlock *PhiTransBB = PN->getParent(); 1012 for (unsigned i = 0; i != NumPHIValues; ++i) { 1013 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1014 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1015 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1016 Value *InV = nullptr; 1017 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1018 // even if currently isNullValue gives false. 1019 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1020 // For vector constants, we cannot use isNullValue to fold into 1021 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1022 // elements in the vector, we will incorrectly fold InC to 1023 // `TrueVInPred`. 1024 if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC)) 1025 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1026 else { 1027 // Generate the select in the same block as PN's current incoming block. 1028 // Note: ThisBB need not be the NonConstBB because vector constants 1029 // which are constants by definition are handled here. 1030 // FIXME: This can lead to an increase in IR generation because we might 1031 // generate selects for vector constant phi operand, that could not be 1032 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1033 // non-vector phis, this transformation was always profitable because 1034 // the select would be generated exactly once in the NonConstBB. 1035 Builder.SetInsertPoint(ThisBB->getTerminator()); 1036 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1037 FalseVInPred, "phitmp"); 1038 } 1039 NewPN->addIncoming(InV, ThisBB); 1040 } 1041 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1042 Constant *C = cast<Constant>(I.getOperand(1)); 1043 for (unsigned i = 0; i != NumPHIValues; ++i) { 1044 Value *InV = nullptr; 1045 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1046 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1047 else if (isa<ICmpInst>(CI)) 1048 InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 1049 C, "phitmp"); 1050 else 1051 InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 1052 C, "phitmp"); 1053 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1054 } 1055 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1056 for (unsigned i = 0; i != NumPHIValues; ++i) { 1057 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1058 Builder); 1059 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1060 } 1061 } else { 1062 CastInst *CI = cast<CastInst>(&I); 1063 Type *RetTy = CI->getType(); 1064 for (unsigned i = 0; i != NumPHIValues; ++i) { 1065 Value *InV; 1066 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1067 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1068 else 1069 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1070 I.getType(), "phitmp"); 1071 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1072 } 1073 } 1074 1075 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1076 Instruction *User = cast<Instruction>(*UI++); 1077 if (User == &I) continue; 1078 replaceInstUsesWith(*User, NewPN); 1079 eraseInstFromFunction(*User); 1080 } 1081 return replaceInstUsesWith(I, NewPN); 1082 } 1083 1084 Instruction *InstCombiner::foldOpWithConstantIntoOperand(BinaryOperator &I) { 1085 assert(isa<Constant>(I.getOperand(1)) && "Unexpected operand type"); 1086 1087 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1088 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1089 return NewSel; 1090 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1091 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1092 return NewPhi; 1093 } 1094 return nullptr; 1095 } 1096 1097 /// Given a pointer type and a constant offset, determine whether or not there 1098 /// is a sequence of GEP indices into the pointed type that will land us at the 1099 /// specified offset. If so, fill them into NewIndices and return the resultant 1100 /// element type, otherwise return null. 1101 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 1102 SmallVectorImpl<Value *> &NewIndices) { 1103 Type *Ty = PtrTy->getElementType(); 1104 if (!Ty->isSized()) 1105 return nullptr; 1106 1107 // Start with the index over the outer type. Note that the type size 1108 // might be zero (even if the offset isn't zero) if the indexed type 1109 // is something like [0 x {int, int}] 1110 Type *IntPtrTy = DL.getIntPtrType(PtrTy); 1111 int64_t FirstIdx = 0; 1112 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 1113 FirstIdx = Offset/TySize; 1114 Offset -= FirstIdx*TySize; 1115 1116 // Handle hosts where % returns negative instead of values [0..TySize). 1117 if (Offset < 0) { 1118 --FirstIdx; 1119 Offset += TySize; 1120 assert(Offset >= 0); 1121 } 1122 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 1123 } 1124 1125 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx)); 1126 1127 // Index into the types. If we fail, set OrigBase to null. 1128 while (Offset) { 1129 // Indexing into tail padding between struct/array elements. 1130 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1131 return nullptr; 1132 1133 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1134 const StructLayout *SL = DL.getStructLayout(STy); 1135 assert(Offset < (int64_t)SL->getSizeInBytes() && 1136 "Offset must stay within the indexed type"); 1137 1138 unsigned Elt = SL->getElementContainingOffset(Offset); 1139 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1140 Elt)); 1141 1142 Offset -= SL->getElementOffset(Elt); 1143 Ty = STy->getElementType(Elt); 1144 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1145 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1146 assert(EltSize && "Cannot index into a zero-sized array"); 1147 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize)); 1148 Offset %= EltSize; 1149 Ty = AT->getElementType(); 1150 } else { 1151 // Otherwise, we can't index into the middle of this atomic type, bail. 1152 return nullptr; 1153 } 1154 } 1155 1156 return Ty; 1157 } 1158 1159 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1160 // If this GEP has only 0 indices, it is the same pointer as 1161 // Src. If Src is not a trivial GEP too, don't combine 1162 // the indices. 1163 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1164 !Src.hasOneUse()) 1165 return false; 1166 return true; 1167 } 1168 1169 /// Return a value X such that Val = X * Scale, or null if none. 1170 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1171 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1172 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1173 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1174 Scale.getBitWidth() && "Scale not compatible with value!"); 1175 1176 // If Val is zero or Scale is one then Val = Val * Scale. 1177 if (match(Val, m_Zero()) || Scale == 1) { 1178 NoSignedWrap = true; 1179 return Val; 1180 } 1181 1182 // If Scale is zero then it does not divide Val. 1183 if (Scale.isMinValue()) 1184 return nullptr; 1185 1186 // Look through chains of multiplications, searching for a constant that is 1187 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1188 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1189 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1190 // down from Val: 1191 // 1192 // Val = M1 * X || Analysis starts here and works down 1193 // M1 = M2 * Y || Doesn't descend into terms with more 1194 // M2 = Z * 4 \/ than one use 1195 // 1196 // Then to modify a term at the bottom: 1197 // 1198 // Val = M1 * X 1199 // M1 = Z * Y || Replaced M2 with Z 1200 // 1201 // Then to work back up correcting nsw flags. 1202 1203 // Op - the term we are currently analyzing. Starts at Val then drills down. 1204 // Replaced with its descaled value before exiting from the drill down loop. 1205 Value *Op = Val; 1206 1207 // Parent - initially null, but after drilling down notes where Op came from. 1208 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1209 // 0'th operand of Val. 1210 std::pair<Instruction *, unsigned> Parent; 1211 1212 // Set if the transform requires a descaling at deeper levels that doesn't 1213 // overflow. 1214 bool RequireNoSignedWrap = false; 1215 1216 // Log base 2 of the scale. Negative if not a power of 2. 1217 int32_t logScale = Scale.exactLogBase2(); 1218 1219 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1220 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1221 // If Op is a constant divisible by Scale then descale to the quotient. 1222 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1223 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1224 if (!Remainder.isMinValue()) 1225 // Not divisible by Scale. 1226 return nullptr; 1227 // Replace with the quotient in the parent. 1228 Op = ConstantInt::get(CI->getType(), Quotient); 1229 NoSignedWrap = true; 1230 break; 1231 } 1232 1233 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1234 if (BO->getOpcode() == Instruction::Mul) { 1235 // Multiplication. 1236 NoSignedWrap = BO->hasNoSignedWrap(); 1237 if (RequireNoSignedWrap && !NoSignedWrap) 1238 return nullptr; 1239 1240 // There are three cases for multiplication: multiplication by exactly 1241 // the scale, multiplication by a constant different to the scale, and 1242 // multiplication by something else. 1243 Value *LHS = BO->getOperand(0); 1244 Value *RHS = BO->getOperand(1); 1245 1246 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1247 // Multiplication by a constant. 1248 if (CI->getValue() == Scale) { 1249 // Multiplication by exactly the scale, replace the multiplication 1250 // by its left-hand side in the parent. 1251 Op = LHS; 1252 break; 1253 } 1254 1255 // Otherwise drill down into the constant. 1256 if (!Op->hasOneUse()) 1257 return nullptr; 1258 1259 Parent = std::make_pair(BO, 1); 1260 continue; 1261 } 1262 1263 // Multiplication by something else. Drill down into the left-hand side 1264 // since that's where the reassociate pass puts the good stuff. 1265 if (!Op->hasOneUse()) 1266 return nullptr; 1267 1268 Parent = std::make_pair(BO, 0); 1269 continue; 1270 } 1271 1272 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1273 isa<ConstantInt>(BO->getOperand(1))) { 1274 // Multiplication by a power of 2. 1275 NoSignedWrap = BO->hasNoSignedWrap(); 1276 if (RequireNoSignedWrap && !NoSignedWrap) 1277 return nullptr; 1278 1279 Value *LHS = BO->getOperand(0); 1280 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1281 getLimitedValue(Scale.getBitWidth()); 1282 // Op = LHS << Amt. 1283 1284 if (Amt == logScale) { 1285 // Multiplication by exactly the scale, replace the multiplication 1286 // by its left-hand side in the parent. 1287 Op = LHS; 1288 break; 1289 } 1290 if (Amt < logScale || !Op->hasOneUse()) 1291 return nullptr; 1292 1293 // Multiplication by more than the scale. Reduce the multiplying amount 1294 // by the scale in the parent. 1295 Parent = std::make_pair(BO, 1); 1296 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1297 break; 1298 } 1299 } 1300 1301 if (!Op->hasOneUse()) 1302 return nullptr; 1303 1304 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1305 if (Cast->getOpcode() == Instruction::SExt) { 1306 // Op is sign-extended from a smaller type, descale in the smaller type. 1307 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1308 APInt SmallScale = Scale.trunc(SmallSize); 1309 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1310 // descale Op as (sext Y) * Scale. In order to have 1311 // sext (Y * SmallScale) = (sext Y) * Scale 1312 // some conditions need to hold however: SmallScale must sign-extend to 1313 // Scale and the multiplication Y * SmallScale should not overflow. 1314 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1315 // SmallScale does not sign-extend to Scale. 1316 return nullptr; 1317 assert(SmallScale.exactLogBase2() == logScale); 1318 // Require that Y * SmallScale must not overflow. 1319 RequireNoSignedWrap = true; 1320 1321 // Drill down through the cast. 1322 Parent = std::make_pair(Cast, 0); 1323 Scale = SmallScale; 1324 continue; 1325 } 1326 1327 if (Cast->getOpcode() == Instruction::Trunc) { 1328 // Op is truncated from a larger type, descale in the larger type. 1329 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1330 // trunc (Y * sext Scale) = (trunc Y) * Scale 1331 // always holds. However (trunc Y) * Scale may overflow even if 1332 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1333 // from this point up in the expression (see later). 1334 if (RequireNoSignedWrap) 1335 return nullptr; 1336 1337 // Drill down through the cast. 1338 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1339 Parent = std::make_pair(Cast, 0); 1340 Scale = Scale.sext(LargeSize); 1341 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1342 logScale = -1; 1343 assert(Scale.exactLogBase2() == logScale); 1344 continue; 1345 } 1346 } 1347 1348 // Unsupported expression, bail out. 1349 return nullptr; 1350 } 1351 1352 // If Op is zero then Val = Op * Scale. 1353 if (match(Op, m_Zero())) { 1354 NoSignedWrap = true; 1355 return Op; 1356 } 1357 1358 // We know that we can successfully descale, so from here on we can safely 1359 // modify the IR. Op holds the descaled version of the deepest term in the 1360 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1361 // not to overflow. 1362 1363 if (!Parent.first) 1364 // The expression only had one term. 1365 return Op; 1366 1367 // Rewrite the parent using the descaled version of its operand. 1368 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1369 assert(Op != Parent.first->getOperand(Parent.second) && 1370 "Descaling was a no-op?"); 1371 Parent.first->setOperand(Parent.second, Op); 1372 Worklist.Add(Parent.first); 1373 1374 // Now work back up the expression correcting nsw flags. The logic is based 1375 // on the following observation: if X * Y is known not to overflow as a signed 1376 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1377 // then X * Z will not overflow as a signed multiplication either. As we work 1378 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1379 // current level has strictly smaller absolute value than the original. 1380 Instruction *Ancestor = Parent.first; 1381 do { 1382 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1383 // If the multiplication wasn't nsw then we can't say anything about the 1384 // value of the descaled multiplication, and we have to clear nsw flags 1385 // from this point on up. 1386 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1387 NoSignedWrap &= OpNoSignedWrap; 1388 if (NoSignedWrap != OpNoSignedWrap) { 1389 BO->setHasNoSignedWrap(NoSignedWrap); 1390 Worklist.Add(Ancestor); 1391 } 1392 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1393 // The fact that the descaled input to the trunc has smaller absolute 1394 // value than the original input doesn't tell us anything useful about 1395 // the absolute values of the truncations. 1396 NoSignedWrap = false; 1397 } 1398 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1399 "Failed to keep proper track of nsw flags while drilling down?"); 1400 1401 if (Ancestor == Val) 1402 // Got to the top, all done! 1403 return Val; 1404 1405 // Move up one level in the expression. 1406 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1407 Ancestor = Ancestor->user_back(); 1408 } while (true); 1409 } 1410 1411 /// \brief Creates node of binary operation with the same attributes as the 1412 /// specified one but with other operands. 1413 static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS, 1414 InstCombiner::BuilderTy &B) { 1415 Value *BO = B.CreateBinOp(Inst.getOpcode(), LHS, RHS); 1416 // If LHS and RHS are constant, BO won't be a binary operator. 1417 if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BO)) 1418 NewBO->copyIRFlags(&Inst); 1419 return BO; 1420 } 1421 1422 /// \brief Makes transformation of binary operation specific for vector types. 1423 /// \param Inst Binary operator to transform. 1424 /// \return Pointer to node that must replace the original binary operator, or 1425 /// null pointer if no transformation was made. 1426 Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) { 1427 if (!Inst.getType()->isVectorTy()) return nullptr; 1428 1429 // It may not be safe to reorder shuffles and things like div, urem, etc. 1430 // because we may trap when executing those ops on unknown vector elements. 1431 // See PR20059. 1432 if (!isSafeToSpeculativelyExecute(&Inst)) 1433 return nullptr; 1434 1435 unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements(); 1436 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1437 assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth); 1438 assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth); 1439 1440 // If both arguments of the binary operation are shuffles that use the same 1441 // mask and shuffle within a single vector, move the shuffle after the binop: 1442 // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m) 1443 auto *LShuf = dyn_cast<ShuffleVectorInst>(LHS); 1444 auto *RShuf = dyn_cast<ShuffleVectorInst>(RHS); 1445 if (LShuf && RShuf && LShuf->getMask() == RShuf->getMask() && 1446 isa<UndefValue>(LShuf->getOperand(1)) && 1447 isa<UndefValue>(RShuf->getOperand(1)) && 1448 LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType()) { 1449 Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0), 1450 RShuf->getOperand(0), Builder); 1451 return Builder.CreateShuffleVector( 1452 NewBO, UndefValue::get(NewBO->getType()), LShuf->getMask()); 1453 } 1454 1455 // If one argument is a shuffle within one vector, the other is a constant, 1456 // try moving the shuffle after the binary operation. 1457 ShuffleVectorInst *Shuffle = nullptr; 1458 Constant *C1 = nullptr; 1459 if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS); 1460 if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS); 1461 if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS); 1462 if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS); 1463 if (Shuffle && C1 && 1464 (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) && 1465 isa<UndefValue>(Shuffle->getOperand(1)) && 1466 Shuffle->getType() == Shuffle->getOperand(0)->getType()) { 1467 SmallVector<int, 16> ShMask = Shuffle->getShuffleMask(); 1468 // Find constant C2 that has property: 1469 // shuffle(C2, ShMask) = C1 1470 // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>) 1471 // reorder is not possible. 1472 SmallVector<Constant*, 16> C2M(VWidth, 1473 UndefValue::get(C1->getType()->getScalarType())); 1474 bool MayChange = true; 1475 for (unsigned I = 0; I < VWidth; ++I) { 1476 if (ShMask[I] >= 0) { 1477 assert(ShMask[I] < (int)VWidth); 1478 if (!isa<UndefValue>(C2M[ShMask[I]])) { 1479 MayChange = false; 1480 break; 1481 } 1482 C2M[ShMask[I]] = C1->getAggregateElement(I); 1483 } 1484 } 1485 if (MayChange) { 1486 Constant *C2 = ConstantVector::get(C2M); 1487 Value *NewLHS = isa<Constant>(LHS) ? C2 : Shuffle->getOperand(0); 1488 Value *NewRHS = isa<Constant>(LHS) ? Shuffle->getOperand(0) : C2; 1489 Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder); 1490 return Builder.CreateShuffleVector(NewBO, 1491 UndefValue::get(Inst.getType()), Shuffle->getMask()); 1492 } 1493 } 1494 1495 return nullptr; 1496 } 1497 1498 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1499 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1500 1501 if (Value *V = SimplifyGEPInst(GEP.getSourceElementType(), Ops, 1502 SQ.getWithInstruction(&GEP))) 1503 return replaceInstUsesWith(GEP, V); 1504 1505 Value *PtrOp = GEP.getOperand(0); 1506 1507 // Eliminate unneeded casts for indices, and replace indices which displace 1508 // by multiples of a zero size type with zero. 1509 bool MadeChange = false; 1510 Type *IntPtrTy = 1511 DL.getIntPtrType(GEP.getPointerOperandType()->getScalarType()); 1512 1513 gep_type_iterator GTI = gep_type_begin(GEP); 1514 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1515 ++I, ++GTI) { 1516 // Skip indices into struct types. 1517 if (GTI.isStruct()) 1518 continue; 1519 1520 // Index type should have the same width as IntPtr 1521 Type *IndexTy = (*I)->getType(); 1522 Type *NewIndexType = IndexTy->isVectorTy() ? 1523 VectorType::get(IntPtrTy, IndexTy->getVectorNumElements()) : IntPtrTy; 1524 1525 // If the element type has zero size then any index over it is equivalent 1526 // to an index of zero, so replace it with zero if it is not zero already. 1527 Type *EltTy = GTI.getIndexedType(); 1528 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0) 1529 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { 1530 *I = Constant::getNullValue(NewIndexType); 1531 MadeChange = true; 1532 } 1533 1534 if (IndexTy != NewIndexType) { 1535 // If we are using a wider index than needed for this platform, shrink 1536 // it to what we need. If narrower, sign-extend it to what we need. 1537 // This explicit cast can make subsequent optimizations more obvious. 1538 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1539 MadeChange = true; 1540 } 1541 } 1542 if (MadeChange) 1543 return &GEP; 1544 1545 // Check to see if the inputs to the PHI node are getelementptr instructions. 1546 if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) { 1547 GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1548 if (!Op1) 1549 return nullptr; 1550 1551 // Don't fold a GEP into itself through a PHI node. This can only happen 1552 // through the back-edge of a loop. Folding a GEP into itself means that 1553 // the value of the previous iteration needs to be stored in the meantime, 1554 // thus requiring an additional register variable to be live, but not 1555 // actually achieving anything (the GEP still needs to be executed once per 1556 // loop iteration). 1557 if (Op1 == &GEP) 1558 return nullptr; 1559 1560 int DI = -1; 1561 1562 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1563 GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I); 1564 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1565 return nullptr; 1566 1567 // As for Op1 above, don't try to fold a GEP into itself. 1568 if (Op2 == &GEP) 1569 return nullptr; 1570 1571 // Keep track of the type as we walk the GEP. 1572 Type *CurTy = nullptr; 1573 1574 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1575 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1576 return nullptr; 1577 1578 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1579 if (DI == -1) { 1580 // We have not seen any differences yet in the GEPs feeding the 1581 // PHI yet, so we record this one if it is allowed to be a 1582 // variable. 1583 1584 // The first two arguments can vary for any GEP, the rest have to be 1585 // static for struct slots 1586 if (J > 1 && CurTy->isStructTy()) 1587 return nullptr; 1588 1589 DI = J; 1590 } else { 1591 // The GEP is different by more than one input. While this could be 1592 // extended to support GEPs that vary by more than one variable it 1593 // doesn't make sense since it greatly increases the complexity and 1594 // would result in an R+R+R addressing mode which no backend 1595 // directly supports and would need to be broken into several 1596 // simpler instructions anyway. 1597 return nullptr; 1598 } 1599 } 1600 1601 // Sink down a layer of the type for the next iteration. 1602 if (J > 0) { 1603 if (J == 1) { 1604 CurTy = Op1->getSourceElementType(); 1605 } else if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) { 1606 CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); 1607 } else { 1608 CurTy = nullptr; 1609 } 1610 } 1611 } 1612 } 1613 1614 // If not all GEPs are identical we'll have to create a new PHI node. 1615 // Check that the old PHI node has only one use so that it will get 1616 // removed. 1617 if (DI != -1 && !PN->hasOneUse()) 1618 return nullptr; 1619 1620 GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1621 if (DI == -1) { 1622 // All the GEPs feeding the PHI are identical. Clone one down into our 1623 // BB so that it can be merged with the current GEP. 1624 GEP.getParent()->getInstList().insert( 1625 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1626 } else { 1627 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1628 // into the current block so it can be merged, and create a new PHI to 1629 // set that index. 1630 PHINode *NewPN; 1631 { 1632 IRBuilderBase::InsertPointGuard Guard(Builder); 1633 Builder.SetInsertPoint(PN); 1634 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 1635 PN->getNumOperands()); 1636 } 1637 1638 for (auto &I : PN->operands()) 1639 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1640 PN->getIncomingBlock(I)); 1641 1642 NewGEP->setOperand(DI, NewPN); 1643 GEP.getParent()->getInstList().insert( 1644 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1645 NewGEP->setOperand(DI, NewPN); 1646 } 1647 1648 GEP.setOperand(0, NewGEP); 1649 PtrOp = NewGEP; 1650 } 1651 1652 // Combine Indices - If the source pointer to this getelementptr instruction 1653 // is a getelementptr instruction, combine the indices of the two 1654 // getelementptr instructions into a single instruction. 1655 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) { 1656 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1657 return nullptr; 1658 1659 // Note that if our source is a gep chain itself then we wait for that 1660 // chain to be resolved before we perform this transformation. This 1661 // avoids us creating a TON of code in some cases. 1662 if (GEPOperator *SrcGEP = 1663 dyn_cast<GEPOperator>(Src->getOperand(0))) 1664 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1665 return nullptr; // Wait until our source is folded to completion. 1666 1667 SmallVector<Value*, 8> Indices; 1668 1669 // Find out whether the last index in the source GEP is a sequential idx. 1670 bool EndsWithSequential = false; 1671 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1672 I != E; ++I) 1673 EndsWithSequential = I.isSequential(); 1674 1675 // Can we combine the two pointer arithmetics offsets? 1676 if (EndsWithSequential) { 1677 // Replace: gep (gep %P, long B), long A, ... 1678 // With: T = long A+B; gep %P, T, ... 1679 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1680 Value *GO1 = GEP.getOperand(1); 1681 1682 // If they aren't the same type, then the input hasn't been processed 1683 // by the loop above yet (which canonicalizes sequential index types to 1684 // intptr_t). Just avoid transforming this until the input has been 1685 // normalized. 1686 if (SO1->getType() != GO1->getType()) 1687 return nullptr; 1688 1689 Value *Sum = 1690 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 1691 // Only do the combine when we are sure the cost after the 1692 // merge is never more than that before the merge. 1693 if (Sum == nullptr) 1694 return nullptr; 1695 1696 // Update the GEP in place if possible. 1697 if (Src->getNumOperands() == 2) { 1698 GEP.setOperand(0, Src->getOperand(0)); 1699 GEP.setOperand(1, Sum); 1700 return &GEP; 1701 } 1702 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1703 Indices.push_back(Sum); 1704 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1705 } else if (isa<Constant>(*GEP.idx_begin()) && 1706 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1707 Src->getNumOperands() != 1) { 1708 // Otherwise we can do the fold if the first index of the GEP is a zero 1709 Indices.append(Src->op_begin()+1, Src->op_end()); 1710 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1711 } 1712 1713 if (!Indices.empty()) 1714 return GEP.isInBounds() && Src->isInBounds() 1715 ? GetElementPtrInst::CreateInBounds( 1716 Src->getSourceElementType(), Src->getOperand(0), Indices, 1717 GEP.getName()) 1718 : GetElementPtrInst::Create(Src->getSourceElementType(), 1719 Src->getOperand(0), Indices, 1720 GEP.getName()); 1721 } 1722 1723 if (GEP.getNumIndices() == 1) { 1724 unsigned AS = GEP.getPointerAddressSpace(); 1725 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 1726 DL.getPointerSizeInBits(AS)) { 1727 Type *Ty = GEP.getSourceElementType(); 1728 uint64_t TyAllocSize = DL.getTypeAllocSize(Ty); 1729 1730 bool Matched = false; 1731 uint64_t C; 1732 Value *V = nullptr; 1733 if (TyAllocSize == 1) { 1734 V = GEP.getOperand(1); 1735 Matched = true; 1736 } else if (match(GEP.getOperand(1), 1737 m_AShr(m_Value(V), m_ConstantInt(C)))) { 1738 if (TyAllocSize == 1ULL << C) 1739 Matched = true; 1740 } else if (match(GEP.getOperand(1), 1741 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 1742 if (TyAllocSize == C) 1743 Matched = true; 1744 } 1745 1746 if (Matched) { 1747 // Canonicalize (gep i8* X, -(ptrtoint Y)) 1748 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) 1749 // The GEP pattern is emitted by the SCEV expander for certain kinds of 1750 // pointer arithmetic. 1751 if (match(V, m_Neg(m_PtrToInt(m_Value())))) { 1752 Operator *Index = cast<Operator>(V); 1753 Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType()); 1754 Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1)); 1755 return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType()); 1756 } 1757 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) 1758 // to (bitcast Y) 1759 Value *Y; 1760 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), 1761 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) { 1762 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, 1763 GEP.getType()); 1764 } 1765 } 1766 } 1767 } 1768 1769 // We do not handle pointer-vector geps here. 1770 if (GEP.getType()->isVectorTy()) 1771 return nullptr; 1772 1773 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 1774 Value *StrippedPtr = PtrOp->stripPointerCasts(); 1775 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 1776 1777 if (StrippedPtr != PtrOp) { 1778 bool HasZeroPointerIndex = false; 1779 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 1780 HasZeroPointerIndex = C->isZero(); 1781 1782 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 1783 // into : GEP [10 x i8]* X, i32 0, ... 1784 // 1785 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 1786 // into : GEP i8* X, ... 1787 // 1788 // This occurs when the program declares an array extern like "int X[];" 1789 if (HasZeroPointerIndex) { 1790 if (ArrayType *CATy = 1791 dyn_cast<ArrayType>(GEP.getSourceElementType())) { 1792 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 1793 if (CATy->getElementType() == StrippedPtrTy->getElementType()) { 1794 // -> GEP i8* X, ... 1795 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 1796 GetElementPtrInst *Res = GetElementPtrInst::Create( 1797 StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName()); 1798 Res->setIsInBounds(GEP.isInBounds()); 1799 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 1800 return Res; 1801 // Insert Res, and create an addrspacecast. 1802 // e.g., 1803 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 1804 // -> 1805 // %0 = GEP i8 addrspace(1)* X, ... 1806 // addrspacecast i8 addrspace(1)* %0 to i8* 1807 return new AddrSpaceCastInst(Builder.Insert(Res), GEP.getType()); 1808 } 1809 1810 if (ArrayType *XATy = 1811 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){ 1812 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 1813 if (CATy->getElementType() == XATy->getElementType()) { 1814 // -> GEP [10 x i8]* X, i32 0, ... 1815 // At this point, we know that the cast source type is a pointer 1816 // to an array of the same type as the destination pointer 1817 // array. Because the array type is never stepped over (there 1818 // is a leading zero) we can fold the cast into this GEP. 1819 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 1820 GEP.setOperand(0, StrippedPtr); 1821 GEP.setSourceElementType(XATy); 1822 return &GEP; 1823 } 1824 // Cannot replace the base pointer directly because StrippedPtr's 1825 // address space is different. Instead, create a new GEP followed by 1826 // an addrspacecast. 1827 // e.g., 1828 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 1829 // i32 0, ... 1830 // -> 1831 // %0 = GEP [10 x i8] addrspace(1)* X, ... 1832 // addrspacecast i8 addrspace(1)* %0 to i8* 1833 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 1834 Value *NewGEP = GEP.isInBounds() 1835 ? Builder.CreateInBoundsGEP( 1836 nullptr, StrippedPtr, Idx, GEP.getName()) 1837 : Builder.CreateGEP(nullptr, StrippedPtr, Idx, 1838 GEP.getName()); 1839 return new AddrSpaceCastInst(NewGEP, GEP.getType()); 1840 } 1841 } 1842 } 1843 } else if (GEP.getNumOperands() == 2) { 1844 // Transform things like: 1845 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 1846 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 1847 Type *SrcElTy = StrippedPtrTy->getElementType(); 1848 Type *ResElTy = GEP.getSourceElementType(); 1849 if (SrcElTy->isArrayTy() && 1850 DL.getTypeAllocSize(SrcElTy->getArrayElementType()) == 1851 DL.getTypeAllocSize(ResElTy)) { 1852 Type *IdxType = DL.getIntPtrType(GEP.getType()); 1853 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 1854 Value *NewGEP = 1855 GEP.isInBounds() 1856 ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, Idx, 1857 GEP.getName()) 1858 : Builder.CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName()); 1859 1860 // V and GEP are both pointer types --> BitCast 1861 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1862 GEP.getType()); 1863 } 1864 1865 // Transform things like: 1866 // %V = mul i64 %N, 4 1867 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 1868 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 1869 if (ResElTy->isSized() && SrcElTy->isSized()) { 1870 // Check that changing the type amounts to dividing the index by a scale 1871 // factor. 1872 uint64_t ResSize = DL.getTypeAllocSize(ResElTy); 1873 uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy); 1874 if (ResSize && SrcSize % ResSize == 0) { 1875 Value *Idx = GEP.getOperand(1); 1876 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1877 uint64_t Scale = SrcSize / ResSize; 1878 1879 // Earlier transforms ensure that the index has type IntPtrType, which 1880 // considerably simplifies the logic by eliminating implicit casts. 1881 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) && 1882 "Index not cast to pointer width?"); 1883 1884 bool NSW; 1885 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1886 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1887 // If the multiplication NewIdx * Scale may overflow then the new 1888 // GEP may not be "inbounds". 1889 Value *NewGEP = 1890 GEP.isInBounds() && NSW 1891 ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx, 1892 GEP.getName()) 1893 : Builder.CreateGEP(nullptr, StrippedPtr, NewIdx, 1894 GEP.getName()); 1895 1896 // The NewGEP must be pointer typed, so must the old one -> BitCast 1897 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1898 GEP.getType()); 1899 } 1900 } 1901 } 1902 1903 // Similarly, transform things like: 1904 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 1905 // (where tmp = 8*tmp2) into: 1906 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 1907 if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) { 1908 // Check that changing to the array element type amounts to dividing the 1909 // index by a scale factor. 1910 uint64_t ResSize = DL.getTypeAllocSize(ResElTy); 1911 uint64_t ArrayEltSize = 1912 DL.getTypeAllocSize(SrcElTy->getArrayElementType()); 1913 if (ResSize && ArrayEltSize % ResSize == 0) { 1914 Value *Idx = GEP.getOperand(1); 1915 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1916 uint64_t Scale = ArrayEltSize / ResSize; 1917 1918 // Earlier transforms ensure that the index has type IntPtrType, which 1919 // considerably simplifies the logic by eliminating implicit casts. 1920 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) && 1921 "Index not cast to pointer width?"); 1922 1923 bool NSW; 1924 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1925 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1926 // If the multiplication NewIdx * Scale may overflow then the new 1927 // GEP may not be "inbounds". 1928 Value *Off[2] = { 1929 Constant::getNullValue(DL.getIntPtrType(GEP.getType())), 1930 NewIdx}; 1931 1932 Value *NewGEP = GEP.isInBounds() && NSW 1933 ? Builder.CreateInBoundsGEP( 1934 SrcElTy, StrippedPtr, Off, GEP.getName()) 1935 : Builder.CreateGEP(SrcElTy, StrippedPtr, Off, 1936 GEP.getName()); 1937 // The NewGEP must be pointer typed, so must the old one -> BitCast 1938 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1939 GEP.getType()); 1940 } 1941 } 1942 } 1943 } 1944 } 1945 1946 // addrspacecast between types is canonicalized as a bitcast, then an 1947 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 1948 // through the addrspacecast. 1949 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 1950 // X = bitcast A addrspace(1)* to B addrspace(1)* 1951 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 1952 // Z = gep Y, <...constant indices...> 1953 // Into an addrspacecasted GEP of the struct. 1954 if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 1955 PtrOp = BC; 1956 } 1957 1958 /// See if we can simplify: 1959 /// X = bitcast A* to B* 1960 /// Y = gep X, <...constant indices...> 1961 /// into a gep of the original struct. This is important for SROA and alias 1962 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 1963 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) { 1964 Value *Operand = BCI->getOperand(0); 1965 PointerType *OpType = cast<PointerType>(Operand->getType()); 1966 unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType()); 1967 APInt Offset(OffsetBits, 0); 1968 if (!isa<BitCastInst>(Operand) && 1969 GEP.accumulateConstantOffset(DL, Offset)) { 1970 1971 // If this GEP instruction doesn't move the pointer, just replace the GEP 1972 // with a bitcast of the real input to the dest type. 1973 if (!Offset) { 1974 // If the bitcast is of an allocation, and the allocation will be 1975 // converted to match the type of the cast, don't touch this. 1976 if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, &TLI)) { 1977 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 1978 if (Instruction *I = visitBitCast(*BCI)) { 1979 if (I != BCI) { 1980 I->takeName(BCI); 1981 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 1982 replaceInstUsesWith(*BCI, I); 1983 } 1984 return &GEP; 1985 } 1986 } 1987 1988 if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 1989 return new AddrSpaceCastInst(Operand, GEP.getType()); 1990 return new BitCastInst(Operand, GEP.getType()); 1991 } 1992 1993 // Otherwise, if the offset is non-zero, we need to find out if there is a 1994 // field at Offset in 'A's type. If so, we can pull the cast through the 1995 // GEP. 1996 SmallVector<Value*, 8> NewIndices; 1997 if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) { 1998 Value *NGEP = 1999 GEP.isInBounds() 2000 ? Builder.CreateInBoundsGEP(nullptr, Operand, NewIndices) 2001 : Builder.CreateGEP(nullptr, Operand, NewIndices); 2002 2003 if (NGEP->getType() == GEP.getType()) 2004 return replaceInstUsesWith(GEP, NGEP); 2005 NGEP->takeName(&GEP); 2006 2007 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2008 return new AddrSpaceCastInst(NGEP, GEP.getType()); 2009 return new BitCastInst(NGEP, GEP.getType()); 2010 } 2011 } 2012 } 2013 2014 if (!GEP.isInBounds()) { 2015 unsigned PtrWidth = 2016 DL.getPointerSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2017 APInt BasePtrOffset(PtrWidth, 0); 2018 Value *UnderlyingPtrOp = 2019 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2020 BasePtrOffset); 2021 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2022 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2023 BasePtrOffset.isNonNegative()) { 2024 APInt AllocSize(PtrWidth, DL.getTypeAllocSize(AI->getAllocatedType())); 2025 if (BasePtrOffset.ule(AllocSize)) { 2026 return GetElementPtrInst::CreateInBounds( 2027 PtrOp, makeArrayRef(Ops).slice(1), GEP.getName()); 2028 } 2029 } 2030 } 2031 } 2032 2033 return nullptr; 2034 } 2035 2036 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 2037 Instruction *AI) { 2038 if (isa<ConstantPointerNull>(V)) 2039 return true; 2040 if (auto *LI = dyn_cast<LoadInst>(V)) 2041 return isa<GlobalVariable>(LI->getPointerOperand()); 2042 // Two distinct allocations will never be equal. 2043 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2044 // through bitcasts of V can cause 2045 // the result statement below to be true, even when AI and V (ex: 2046 // i8* ->i32* ->i8* of AI) are the same allocations. 2047 return isAllocLikeFn(V, TLI) && V != AI; 2048 } 2049 2050 static bool isAllocSiteRemovable(Instruction *AI, 2051 SmallVectorImpl<WeakTrackingVH> &Users, 2052 const TargetLibraryInfo *TLI) { 2053 SmallVector<Instruction*, 4> Worklist; 2054 Worklist.push_back(AI); 2055 2056 do { 2057 Instruction *PI = Worklist.pop_back_val(); 2058 for (User *U : PI->users()) { 2059 Instruction *I = cast<Instruction>(U); 2060 switch (I->getOpcode()) { 2061 default: 2062 // Give up the moment we see something we can't handle. 2063 return false; 2064 2065 case Instruction::AddrSpaceCast: 2066 case Instruction::BitCast: 2067 case Instruction::GetElementPtr: 2068 Users.emplace_back(I); 2069 Worklist.push_back(I); 2070 continue; 2071 2072 case Instruction::ICmp: { 2073 ICmpInst *ICI = cast<ICmpInst>(I); 2074 // We can fold eq/ne comparisons with null to false/true, respectively. 2075 // We also fold comparisons in some conditions provided the alloc has 2076 // not escaped (see isNeverEqualToUnescapedAlloc). 2077 if (!ICI->isEquality()) 2078 return false; 2079 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2080 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2081 return false; 2082 Users.emplace_back(I); 2083 continue; 2084 } 2085 2086 case Instruction::Call: 2087 // Ignore no-op and store intrinsics. 2088 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2089 switch (II->getIntrinsicID()) { 2090 default: 2091 return false; 2092 2093 case Intrinsic::memmove: 2094 case Intrinsic::memcpy: 2095 case Intrinsic::memset: { 2096 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2097 if (MI->isVolatile() || MI->getRawDest() != PI) 2098 return false; 2099 LLVM_FALLTHROUGH; 2100 } 2101 case Intrinsic::invariant_start: 2102 case Intrinsic::invariant_end: 2103 case Intrinsic::lifetime_start: 2104 case Intrinsic::lifetime_end: 2105 case Intrinsic::objectsize: 2106 Users.emplace_back(I); 2107 continue; 2108 } 2109 } 2110 2111 if (isFreeCall(I, TLI)) { 2112 Users.emplace_back(I); 2113 continue; 2114 } 2115 return false; 2116 2117 case Instruction::Store: { 2118 StoreInst *SI = cast<StoreInst>(I); 2119 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2120 return false; 2121 Users.emplace_back(I); 2122 continue; 2123 } 2124 } 2125 llvm_unreachable("missing a return?"); 2126 } 2127 } while (!Worklist.empty()); 2128 return true; 2129 } 2130 2131 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 2132 // If we have a malloc call which is only used in any amount of comparisons 2133 // to null and free calls, delete the calls and replace the comparisons with 2134 // true or false as appropriate. 2135 SmallVector<WeakTrackingVH, 64> Users; 2136 2137 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2138 // before each store. 2139 TinyPtrVector<DbgInfoIntrinsic *> DIIs; 2140 std::unique_ptr<DIBuilder> DIB; 2141 if (isa<AllocaInst>(MI)) { 2142 DIIs = FindDbgAddrUses(&MI); 2143 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2144 } 2145 2146 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2147 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2148 // Lowering all @llvm.objectsize calls first because they may 2149 // use a bitcast/GEP of the alloca we are removing. 2150 if (!Users[i]) 2151 continue; 2152 2153 Instruction *I = cast<Instruction>(&*Users[i]); 2154 2155 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2156 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2157 ConstantInt *Result = lowerObjectSizeCall(II, DL, &TLI, 2158 /*MustSucceed=*/true); 2159 replaceInstUsesWith(*I, Result); 2160 eraseInstFromFunction(*I); 2161 Users[i] = nullptr; // Skip examining in the next loop. 2162 } 2163 } 2164 } 2165 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2166 if (!Users[i]) 2167 continue; 2168 2169 Instruction *I = cast<Instruction>(&*Users[i]); 2170 2171 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2172 replaceInstUsesWith(*C, 2173 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2174 C->isFalseWhenEqual())); 2175 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) || 2176 isa<AddrSpaceCastInst>(I)) { 2177 replaceInstUsesWith(*I, UndefValue::get(I->getType())); 2178 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2179 for (auto *DII : DIIs) 2180 ConvertDebugDeclareToDebugValue(DII, SI, *DIB); 2181 } 2182 eraseInstFromFunction(*I); 2183 } 2184 2185 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2186 // Replace invoke with a NOP intrinsic to maintain the original CFG 2187 Module *M = II->getModule(); 2188 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2189 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2190 None, "", II->getParent()); 2191 } 2192 2193 for (auto *DII : DIIs) 2194 eraseInstFromFunction(*DII); 2195 2196 return eraseInstFromFunction(MI); 2197 } 2198 return nullptr; 2199 } 2200 2201 /// \brief Move the call to free before a NULL test. 2202 /// 2203 /// Check if this free is accessed after its argument has been test 2204 /// against NULL (property 0). 2205 /// If yes, it is legal to move this call in its predecessor block. 2206 /// 2207 /// The move is performed only if the block containing the call to free 2208 /// will be removed, i.e.: 2209 /// 1. it has only one predecessor P, and P has two successors 2210 /// 2. it contains the call and an unconditional branch 2211 /// 3. its successor is the same as its predecessor's successor 2212 /// 2213 /// The profitability is out-of concern here and this function should 2214 /// be called only if the caller knows this transformation would be 2215 /// profitable (e.g., for code size). 2216 static Instruction * 2217 tryToMoveFreeBeforeNullTest(CallInst &FI) { 2218 Value *Op = FI.getArgOperand(0); 2219 BasicBlock *FreeInstrBB = FI.getParent(); 2220 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2221 2222 // Validate part of constraint #1: Only one predecessor 2223 // FIXME: We can extend the number of predecessor, but in that case, we 2224 // would duplicate the call to free in each predecessor and it may 2225 // not be profitable even for code size. 2226 if (!PredBB) 2227 return nullptr; 2228 2229 // Validate constraint #2: Does this block contains only the call to 2230 // free and an unconditional branch? 2231 // FIXME: We could check if we can speculate everything in the 2232 // predecessor block 2233 if (FreeInstrBB->size() != 2) 2234 return nullptr; 2235 BasicBlock *SuccBB; 2236 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB))) 2237 return nullptr; 2238 2239 // Validate the rest of constraint #1 by matching on the pred branch. 2240 TerminatorInst *TI = PredBB->getTerminator(); 2241 BasicBlock *TrueBB, *FalseBB; 2242 ICmpInst::Predicate Pred; 2243 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB))) 2244 return nullptr; 2245 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2246 return nullptr; 2247 2248 // Validate constraint #3: Ensure the null case just falls through. 2249 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2250 return nullptr; 2251 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2252 "Broken CFG: missing edge from predecessor to successor"); 2253 2254 FI.moveBefore(TI); 2255 return &FI; 2256 } 2257 2258 Instruction *InstCombiner::visitFree(CallInst &FI) { 2259 Value *Op = FI.getArgOperand(0); 2260 2261 // free undef -> unreachable. 2262 if (isa<UndefValue>(Op)) { 2263 // Insert a new store to null because we cannot modify the CFG here. 2264 Builder.CreateStore(ConstantInt::getTrue(FI.getContext()), 2265 UndefValue::get(Type::getInt1PtrTy(FI.getContext()))); 2266 return eraseInstFromFunction(FI); 2267 } 2268 2269 // If we have 'free null' delete the instruction. This can happen in stl code 2270 // when lots of inlining happens. 2271 if (isa<ConstantPointerNull>(Op)) 2272 return eraseInstFromFunction(FI); 2273 2274 // If we optimize for code size, try to move the call to free before the null 2275 // test so that simplify cfg can remove the empty block and dead code 2276 // elimination the branch. I.e., helps to turn something like: 2277 // if (foo) free(foo); 2278 // into 2279 // free(foo); 2280 if (MinimizeSize) 2281 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI)) 2282 return I; 2283 2284 return nullptr; 2285 } 2286 2287 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { 2288 if (RI.getNumOperands() == 0) // ret void 2289 return nullptr; 2290 2291 Value *ResultOp = RI.getOperand(0); 2292 Type *VTy = ResultOp->getType(); 2293 if (!VTy->isIntegerTy()) 2294 return nullptr; 2295 2296 // There might be assume intrinsics dominating this return that completely 2297 // determine the value. If so, constant fold it. 2298 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2299 if (Known.isConstant()) 2300 RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant())); 2301 2302 return nullptr; 2303 } 2304 2305 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 2306 // Change br (not X), label True, label False to: br X, label False, True 2307 Value *X = nullptr; 2308 BasicBlock *TrueDest; 2309 BasicBlock *FalseDest; 2310 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && 2311 !isa<Constant>(X)) { 2312 // Swap Destinations and condition... 2313 BI.setCondition(X); 2314 BI.swapSuccessors(); 2315 return &BI; 2316 } 2317 2318 // If the condition is irrelevant, remove the use so that other 2319 // transforms on the condition become more effective. 2320 if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) && 2321 BI.getSuccessor(0) == BI.getSuccessor(1)) { 2322 BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType())); 2323 return &BI; 2324 } 2325 2326 // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq. 2327 CmpInst::Predicate Pred; 2328 if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), TrueDest, 2329 FalseDest)) && 2330 !isCanonicalPredicate(Pred)) { 2331 // Swap destinations and condition. 2332 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 2333 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2334 BI.swapSuccessors(); 2335 Worklist.Add(Cond); 2336 return &BI; 2337 } 2338 2339 return nullptr; 2340 } 2341 2342 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 2343 Value *Cond = SI.getCondition(); 2344 Value *Op0; 2345 ConstantInt *AddRHS; 2346 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 2347 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2348 for (auto Case : SI.cases()) { 2349 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 2350 assert(isa<ConstantInt>(NewCase) && 2351 "Result of expression should be constant"); 2352 Case.setValue(cast<ConstantInt>(NewCase)); 2353 } 2354 SI.setCondition(Op0); 2355 return &SI; 2356 } 2357 2358 KnownBits Known = computeKnownBits(Cond, 0, &SI); 2359 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 2360 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 2361 2362 // Compute the number of leading bits we can ignore. 2363 // TODO: A better way to determine this would use ComputeNumSignBits(). 2364 for (auto &C : SI.cases()) { 2365 LeadingKnownZeros = std::min( 2366 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2367 LeadingKnownOnes = std::min( 2368 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2369 } 2370 2371 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 2372 2373 // Shrink the condition operand if the new type is smaller than the old type. 2374 // This may produce a non-standard type for the switch, but that's ok because 2375 // the backend should extend back to a legal type for the target. 2376 if (NewWidth > 0 && NewWidth < Known.getBitWidth()) { 2377 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2378 Builder.SetInsertPoint(&SI); 2379 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 2380 SI.setCondition(NewCond); 2381 2382 for (auto Case : SI.cases()) { 2383 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 2384 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 2385 } 2386 return &SI; 2387 } 2388 2389 return nullptr; 2390 } 2391 2392 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 2393 Value *Agg = EV.getAggregateOperand(); 2394 2395 if (!EV.hasIndices()) 2396 return replaceInstUsesWith(EV, Agg); 2397 2398 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 2399 SQ.getWithInstruction(&EV))) 2400 return replaceInstUsesWith(EV, V); 2401 2402 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 2403 // We're extracting from an insertvalue instruction, compare the indices 2404 const unsigned *exti, *exte, *insi, *inse; 2405 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 2406 exte = EV.idx_end(), inse = IV->idx_end(); 2407 exti != exte && insi != inse; 2408 ++exti, ++insi) { 2409 if (*insi != *exti) 2410 // The insert and extract both reference distinctly different elements. 2411 // This means the extract is not influenced by the insert, and we can 2412 // replace the aggregate operand of the extract with the aggregate 2413 // operand of the insert. i.e., replace 2414 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2415 // %E = extractvalue { i32, { i32 } } %I, 0 2416 // with 2417 // %E = extractvalue { i32, { i32 } } %A, 0 2418 return ExtractValueInst::Create(IV->getAggregateOperand(), 2419 EV.getIndices()); 2420 } 2421 if (exti == exte && insi == inse) 2422 // Both iterators are at the end: Index lists are identical. Replace 2423 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2424 // %C = extractvalue { i32, { i32 } } %B, 1, 0 2425 // with "i32 42" 2426 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 2427 if (exti == exte) { 2428 // The extract list is a prefix of the insert list. i.e. replace 2429 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2430 // %E = extractvalue { i32, { i32 } } %I, 1 2431 // with 2432 // %X = extractvalue { i32, { i32 } } %A, 1 2433 // %E = insertvalue { i32 } %X, i32 42, 0 2434 // by switching the order of the insert and extract (though the 2435 // insertvalue should be left in, since it may have other uses). 2436 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 2437 EV.getIndices()); 2438 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 2439 makeArrayRef(insi, inse)); 2440 } 2441 if (insi == inse) 2442 // The insert list is a prefix of the extract list 2443 // We can simply remove the common indices from the extract and make it 2444 // operate on the inserted value instead of the insertvalue result. 2445 // i.e., replace 2446 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2447 // %E = extractvalue { i32, { i32 } } %I, 1, 0 2448 // with 2449 // %E extractvalue { i32 } { i32 42 }, 0 2450 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 2451 makeArrayRef(exti, exte)); 2452 } 2453 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { 2454 // We're extracting from an intrinsic, see if we're the only user, which 2455 // allows us to simplify multiple result intrinsics to simpler things that 2456 // just get one value. 2457 if (II->hasOneUse()) { 2458 // Check if we're grabbing the overflow bit or the result of a 'with 2459 // overflow' intrinsic. If it's the latter we can remove the intrinsic 2460 // and replace it with a traditional binary instruction. 2461 switch (II->getIntrinsicID()) { 2462 case Intrinsic::uadd_with_overflow: 2463 case Intrinsic::sadd_with_overflow: 2464 if (*EV.idx_begin() == 0) { // Normal result. 2465 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2466 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2467 eraseInstFromFunction(*II); 2468 return BinaryOperator::CreateAdd(LHS, RHS); 2469 } 2470 2471 // If the normal result of the add is dead, and the RHS is a constant, 2472 // we can transform this into a range comparison. 2473 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 2474 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) 2475 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1))) 2476 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0), 2477 ConstantExpr::getNot(CI)); 2478 break; 2479 case Intrinsic::usub_with_overflow: 2480 case Intrinsic::ssub_with_overflow: 2481 if (*EV.idx_begin() == 0) { // Normal result. 2482 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2483 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2484 eraseInstFromFunction(*II); 2485 return BinaryOperator::CreateSub(LHS, RHS); 2486 } 2487 break; 2488 case Intrinsic::umul_with_overflow: 2489 case Intrinsic::smul_with_overflow: 2490 if (*EV.idx_begin() == 0) { // Normal result. 2491 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2492 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2493 eraseInstFromFunction(*II); 2494 return BinaryOperator::CreateMul(LHS, RHS); 2495 } 2496 break; 2497 default: 2498 break; 2499 } 2500 } 2501 } 2502 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2503 // If the (non-volatile) load only has one use, we can rewrite this to a 2504 // load from a GEP. This reduces the size of the load. If a load is used 2505 // only by extractvalue instructions then this either must have been 2506 // optimized before, or it is a struct with padding, in which case we 2507 // don't want to do the transformation as it loses padding knowledge. 2508 if (L->isSimple() && L->hasOneUse()) { 2509 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2510 SmallVector<Value*, 4> Indices; 2511 // Prefix an i32 0 since we need the first element. 2512 Indices.push_back(Builder.getInt32(0)); 2513 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2514 I != E; ++I) 2515 Indices.push_back(Builder.getInt32(*I)); 2516 2517 // We need to insert these at the location of the old load, not at that of 2518 // the extractvalue. 2519 Builder.SetInsertPoint(L); 2520 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 2521 L->getPointerOperand(), Indices); 2522 Instruction *NL = Builder.CreateLoad(GEP); 2523 // Whatever aliasing information we had for the orignal load must also 2524 // hold for the smaller load, so propagate the annotations. 2525 AAMDNodes Nodes; 2526 L->getAAMetadata(Nodes); 2527 NL->setAAMetadata(Nodes); 2528 // Returning the load directly will cause the main loop to insert it in 2529 // the wrong spot, so use replaceInstUsesWith(). 2530 return replaceInstUsesWith(EV, NL); 2531 } 2532 // We could simplify extracts from other values. Note that nested extracts may 2533 // already be simplified implicitly by the above: extract (extract (insert) ) 2534 // will be translated into extract ( insert ( extract ) ) first and then just 2535 // the value inserted, if appropriate. Similarly for extracts from single-use 2536 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2537 // and if again single-use then via load (gep (gep)) to load (gep). 2538 // However, double extracts from e.g. function arguments or return values 2539 // aren't handled yet. 2540 return nullptr; 2541 } 2542 2543 /// Return 'true' if the given typeinfo will match anything. 2544 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 2545 switch (Personality) { 2546 case EHPersonality::GNU_C: 2547 case EHPersonality::GNU_C_SjLj: 2548 case EHPersonality::Rust: 2549 // The GCC C EH and Rust personality only exists to support cleanups, so 2550 // it's not clear what the semantics of catch clauses are. 2551 return false; 2552 case EHPersonality::Unknown: 2553 return false; 2554 case EHPersonality::GNU_Ada: 2555 // While __gnat_all_others_value will match any Ada exception, it doesn't 2556 // match foreign exceptions (or didn't, before gcc-4.7). 2557 return false; 2558 case EHPersonality::GNU_CXX: 2559 case EHPersonality::GNU_CXX_SjLj: 2560 case EHPersonality::GNU_ObjC: 2561 case EHPersonality::MSVC_X86SEH: 2562 case EHPersonality::MSVC_Win64SEH: 2563 case EHPersonality::MSVC_CXX: 2564 case EHPersonality::CoreCLR: 2565 return TypeInfo->isNullValue(); 2566 } 2567 llvm_unreachable("invalid enum"); 2568 } 2569 2570 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2571 return 2572 cast<ArrayType>(LHS->getType())->getNumElements() 2573 < 2574 cast<ArrayType>(RHS->getType())->getNumElements(); 2575 } 2576 2577 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2578 // The logic here should be correct for any real-world personality function. 2579 // However if that turns out not to be true, the offending logic can always 2580 // be conditioned on the personality function, like the catch-all logic is. 2581 EHPersonality Personality = 2582 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 2583 2584 // Simplify the list of clauses, eg by removing repeated catch clauses 2585 // (these are often created by inlining). 2586 bool MakeNewInstruction = false; // If true, recreate using the following: 2587 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2588 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2589 2590 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 2591 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 2592 bool isLastClause = i + 1 == e; 2593 if (LI.isCatch(i)) { 2594 // A catch clause. 2595 Constant *CatchClause = LI.getClause(i); 2596 Constant *TypeInfo = CatchClause->stripPointerCasts(); 2597 2598 // If we already saw this clause, there is no point in having a second 2599 // copy of it. 2600 if (AlreadyCaught.insert(TypeInfo).second) { 2601 // This catch clause was not already seen. 2602 NewClauses.push_back(CatchClause); 2603 } else { 2604 // Repeated catch clause - drop the redundant copy. 2605 MakeNewInstruction = true; 2606 } 2607 2608 // If this is a catch-all then there is no point in keeping any following 2609 // clauses or marking the landingpad as having a cleanup. 2610 if (isCatchAll(Personality, TypeInfo)) { 2611 if (!isLastClause) 2612 MakeNewInstruction = true; 2613 CleanupFlag = false; 2614 break; 2615 } 2616 } else { 2617 // A filter clause. If any of the filter elements were already caught 2618 // then they can be dropped from the filter. It is tempting to try to 2619 // exploit the filter further by saying that any typeinfo that does not 2620 // occur in the filter can't be caught later (and thus can be dropped). 2621 // However this would be wrong, since typeinfos can match without being 2622 // equal (for example if one represents a C++ class, and the other some 2623 // class derived from it). 2624 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 2625 Constant *FilterClause = LI.getClause(i); 2626 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 2627 unsigned NumTypeInfos = FilterType->getNumElements(); 2628 2629 // An empty filter catches everything, so there is no point in keeping any 2630 // following clauses or marking the landingpad as having a cleanup. By 2631 // dealing with this case here the following code is made a bit simpler. 2632 if (!NumTypeInfos) { 2633 NewClauses.push_back(FilterClause); 2634 if (!isLastClause) 2635 MakeNewInstruction = true; 2636 CleanupFlag = false; 2637 break; 2638 } 2639 2640 bool MakeNewFilter = false; // If true, make a new filter. 2641 SmallVector<Constant *, 16> NewFilterElts; // New elements. 2642 if (isa<ConstantAggregateZero>(FilterClause)) { 2643 // Not an empty filter - it contains at least one null typeinfo. 2644 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 2645 Constant *TypeInfo = 2646 Constant::getNullValue(FilterType->getElementType()); 2647 // If this typeinfo is a catch-all then the filter can never match. 2648 if (isCatchAll(Personality, TypeInfo)) { 2649 // Throw the filter away. 2650 MakeNewInstruction = true; 2651 continue; 2652 } 2653 2654 // There is no point in having multiple copies of this typeinfo, so 2655 // discard all but the first copy if there is more than one. 2656 NewFilterElts.push_back(TypeInfo); 2657 if (NumTypeInfos > 1) 2658 MakeNewFilter = true; 2659 } else { 2660 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 2661 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 2662 NewFilterElts.reserve(NumTypeInfos); 2663 2664 // Remove any filter elements that were already caught or that already 2665 // occurred in the filter. While there, see if any of the elements are 2666 // catch-alls. If so, the filter can be discarded. 2667 bool SawCatchAll = false; 2668 for (unsigned j = 0; j != NumTypeInfos; ++j) { 2669 Constant *Elt = Filter->getOperand(j); 2670 Constant *TypeInfo = Elt->stripPointerCasts(); 2671 if (isCatchAll(Personality, TypeInfo)) { 2672 // This element is a catch-all. Bail out, noting this fact. 2673 SawCatchAll = true; 2674 break; 2675 } 2676 2677 // Even if we've seen a type in a catch clause, we don't want to 2678 // remove it from the filter. An unexpected type handler may be 2679 // set up for a call site which throws an exception of the same 2680 // type caught. In order for the exception thrown by the unexpected 2681 // handler to propagate correctly, the filter must be correctly 2682 // described for the call site. 2683 // 2684 // Example: 2685 // 2686 // void unexpected() { throw 1;} 2687 // void foo() throw (int) { 2688 // std::set_unexpected(unexpected); 2689 // try { 2690 // throw 2.0; 2691 // } catch (int i) {} 2692 // } 2693 2694 // There is no point in having multiple copies of the same typeinfo in 2695 // a filter, so only add it if we didn't already. 2696 if (SeenInFilter.insert(TypeInfo).second) 2697 NewFilterElts.push_back(cast<Constant>(Elt)); 2698 } 2699 // A filter containing a catch-all cannot match anything by definition. 2700 if (SawCatchAll) { 2701 // Throw the filter away. 2702 MakeNewInstruction = true; 2703 continue; 2704 } 2705 2706 // If we dropped something from the filter, make a new one. 2707 if (NewFilterElts.size() < NumTypeInfos) 2708 MakeNewFilter = true; 2709 } 2710 if (MakeNewFilter) { 2711 FilterType = ArrayType::get(FilterType->getElementType(), 2712 NewFilterElts.size()); 2713 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 2714 MakeNewInstruction = true; 2715 } 2716 2717 NewClauses.push_back(FilterClause); 2718 2719 // If the new filter is empty then it will catch everything so there is 2720 // no point in keeping any following clauses or marking the landingpad 2721 // as having a cleanup. The case of the original filter being empty was 2722 // already handled above. 2723 if (MakeNewFilter && !NewFilterElts.size()) { 2724 assert(MakeNewInstruction && "New filter but not a new instruction!"); 2725 CleanupFlag = false; 2726 break; 2727 } 2728 } 2729 } 2730 2731 // If several filters occur in a row then reorder them so that the shortest 2732 // filters come first (those with the smallest number of elements). This is 2733 // advantageous because shorter filters are more likely to match, speeding up 2734 // unwinding, but mostly because it increases the effectiveness of the other 2735 // filter optimizations below. 2736 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 2737 unsigned j; 2738 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 2739 for (j = i; j != e; ++j) 2740 if (!isa<ArrayType>(NewClauses[j]->getType())) 2741 break; 2742 2743 // Check whether the filters are already sorted by length. We need to know 2744 // if sorting them is actually going to do anything so that we only make a 2745 // new landingpad instruction if it does. 2746 for (unsigned k = i; k + 1 < j; ++k) 2747 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 2748 // Not sorted, so sort the filters now. Doing an unstable sort would be 2749 // correct too but reordering filters pointlessly might confuse users. 2750 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 2751 shorter_filter); 2752 MakeNewInstruction = true; 2753 break; 2754 } 2755 2756 // Look for the next batch of filters. 2757 i = j + 1; 2758 } 2759 2760 // If typeinfos matched if and only if equal, then the elements of a filter L 2761 // that occurs later than a filter F could be replaced by the intersection of 2762 // the elements of F and L. In reality two typeinfos can match without being 2763 // equal (for example if one represents a C++ class, and the other some class 2764 // derived from it) so it would be wrong to perform this transform in general. 2765 // However the transform is correct and useful if F is a subset of L. In that 2766 // case L can be replaced by F, and thus removed altogether since repeating a 2767 // filter is pointless. So here we look at all pairs of filters F and L where 2768 // L follows F in the list of clauses, and remove L if every element of F is 2769 // an element of L. This can occur when inlining C++ functions with exception 2770 // specifications. 2771 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 2772 // Examine each filter in turn. 2773 Value *Filter = NewClauses[i]; 2774 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 2775 if (!FTy) 2776 // Not a filter - skip it. 2777 continue; 2778 unsigned FElts = FTy->getNumElements(); 2779 // Examine each filter following this one. Doing this backwards means that 2780 // we don't have to worry about filters disappearing under us when removed. 2781 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 2782 Value *LFilter = NewClauses[j]; 2783 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 2784 if (!LTy) 2785 // Not a filter - skip it. 2786 continue; 2787 // If Filter is a subset of LFilter, i.e. every element of Filter is also 2788 // an element of LFilter, then discard LFilter. 2789 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 2790 // If Filter is empty then it is a subset of LFilter. 2791 if (!FElts) { 2792 // Discard LFilter. 2793 NewClauses.erase(J); 2794 MakeNewInstruction = true; 2795 // Move on to the next filter. 2796 continue; 2797 } 2798 unsigned LElts = LTy->getNumElements(); 2799 // If Filter is longer than LFilter then it cannot be a subset of it. 2800 if (FElts > LElts) 2801 // Move on to the next filter. 2802 continue; 2803 // At this point we know that LFilter has at least one element. 2804 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 2805 // Filter is a subset of LFilter iff Filter contains only zeros (as we 2806 // already know that Filter is not longer than LFilter). 2807 if (isa<ConstantAggregateZero>(Filter)) { 2808 assert(FElts <= LElts && "Should have handled this case earlier!"); 2809 // Discard LFilter. 2810 NewClauses.erase(J); 2811 MakeNewInstruction = true; 2812 } 2813 // Move on to the next filter. 2814 continue; 2815 } 2816 ConstantArray *LArray = cast<ConstantArray>(LFilter); 2817 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 2818 // Since Filter is non-empty and contains only zeros, it is a subset of 2819 // LFilter iff LFilter contains a zero. 2820 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 2821 for (unsigned l = 0; l != LElts; ++l) 2822 if (LArray->getOperand(l)->isNullValue()) { 2823 // LFilter contains a zero - discard it. 2824 NewClauses.erase(J); 2825 MakeNewInstruction = true; 2826 break; 2827 } 2828 // Move on to the next filter. 2829 continue; 2830 } 2831 // At this point we know that both filters are ConstantArrays. Loop over 2832 // operands to see whether every element of Filter is also an element of 2833 // LFilter. Since filters tend to be short this is probably faster than 2834 // using a method that scales nicely. 2835 ConstantArray *FArray = cast<ConstantArray>(Filter); 2836 bool AllFound = true; 2837 for (unsigned f = 0; f != FElts; ++f) { 2838 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 2839 AllFound = false; 2840 for (unsigned l = 0; l != LElts; ++l) { 2841 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 2842 if (LTypeInfo == FTypeInfo) { 2843 AllFound = true; 2844 break; 2845 } 2846 } 2847 if (!AllFound) 2848 break; 2849 } 2850 if (AllFound) { 2851 // Discard LFilter. 2852 NewClauses.erase(J); 2853 MakeNewInstruction = true; 2854 } 2855 // Move on to the next filter. 2856 } 2857 } 2858 2859 // If we changed any of the clauses, replace the old landingpad instruction 2860 // with a new one. 2861 if (MakeNewInstruction) { 2862 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 2863 NewClauses.size()); 2864 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 2865 NLI->addClause(NewClauses[i]); 2866 // A landing pad with no clauses must have the cleanup flag set. It is 2867 // theoretically possible, though highly unlikely, that we eliminated all 2868 // clauses. If so, force the cleanup flag to true. 2869 if (NewClauses.empty()) 2870 CleanupFlag = true; 2871 NLI->setCleanup(CleanupFlag); 2872 return NLI; 2873 } 2874 2875 // Even if none of the clauses changed, we may nonetheless have understood 2876 // that the cleanup flag is pointless. Clear it if so. 2877 if (LI.isCleanup() != CleanupFlag) { 2878 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 2879 LI.setCleanup(CleanupFlag); 2880 return &LI; 2881 } 2882 2883 return nullptr; 2884 } 2885 2886 /// Try to move the specified instruction from its current block into the 2887 /// beginning of DestBlock, which can only happen if it's safe to move the 2888 /// instruction past all of the instructions between it and the end of its 2889 /// block. 2890 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 2891 assert(I->hasOneUse() && "Invariants didn't hold!"); 2892 2893 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 2894 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 2895 isa<TerminatorInst>(I)) 2896 return false; 2897 2898 // Do not sink alloca instructions out of the entry block. 2899 if (isa<AllocaInst>(I) && I->getParent() == 2900 &DestBlock->getParent()->getEntryBlock()) 2901 return false; 2902 2903 // Do not sink into catchswitch blocks. 2904 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 2905 return false; 2906 2907 // Do not sink convergent call instructions. 2908 if (auto *CI = dyn_cast<CallInst>(I)) { 2909 if (CI->isConvergent()) 2910 return false; 2911 } 2912 // We can only sink load instructions if there is nothing between the load and 2913 // the end of block that could change the value. 2914 if (I->mayReadFromMemory()) { 2915 for (BasicBlock::iterator Scan = I->getIterator(), 2916 E = I->getParent()->end(); 2917 Scan != E; ++Scan) 2918 if (Scan->mayWriteToMemory()) 2919 return false; 2920 } 2921 2922 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 2923 I->moveBefore(&*InsertPos); 2924 ++NumSunkInst; 2925 return true; 2926 } 2927 2928 bool InstCombiner::run() { 2929 while (!Worklist.isEmpty()) { 2930 Instruction *I = Worklist.RemoveOne(); 2931 if (I == nullptr) continue; // skip null values. 2932 2933 // Check to see if we can DCE the instruction. 2934 if (isInstructionTriviallyDead(I, &TLI)) { 2935 DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); 2936 eraseInstFromFunction(*I); 2937 ++NumDeadInst; 2938 MadeIRChange = true; 2939 continue; 2940 } 2941 2942 if (!DebugCounter::shouldExecute(VisitCounter)) 2943 continue; 2944 2945 // Instruction isn't dead, see if we can constant propagate it. 2946 if (!I->use_empty() && 2947 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 2948 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 2949 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n'); 2950 2951 // Add operands to the worklist. 2952 replaceInstUsesWith(*I, C); 2953 ++NumConstProp; 2954 if (isInstructionTriviallyDead(I, &TLI)) 2955 eraseInstFromFunction(*I); 2956 MadeIRChange = true; 2957 continue; 2958 } 2959 } 2960 2961 // In general, it is possible for computeKnownBits to determine all bits in 2962 // a value even when the operands are not all constants. 2963 Type *Ty = I->getType(); 2964 if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) { 2965 KnownBits Known = computeKnownBits(I, /*Depth*/0, I); 2966 if (Known.isConstant()) { 2967 Constant *C = ConstantInt::get(Ty, Known.getConstant()); 2968 DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C << 2969 " from: " << *I << '\n'); 2970 2971 // Add operands to the worklist. 2972 replaceInstUsesWith(*I, C); 2973 ++NumConstProp; 2974 if (isInstructionTriviallyDead(I, &TLI)) 2975 eraseInstFromFunction(*I); 2976 MadeIRChange = true; 2977 continue; 2978 } 2979 } 2980 2981 // See if we can trivially sink this instruction to a successor basic block. 2982 if (I->hasOneUse()) { 2983 BasicBlock *BB = I->getParent(); 2984 Instruction *UserInst = cast<Instruction>(*I->user_begin()); 2985 BasicBlock *UserParent; 2986 2987 // Get the block the use occurs in. 2988 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 2989 UserParent = PN->getIncomingBlock(*I->use_begin()); 2990 else 2991 UserParent = UserInst->getParent(); 2992 2993 if (UserParent != BB) { 2994 bool UserIsSuccessor = false; 2995 // See if the user is one of our successors. 2996 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 2997 if (*SI == UserParent) { 2998 UserIsSuccessor = true; 2999 break; 3000 } 3001 3002 // If the user is one of our immediate successors, and if that successor 3003 // only has us as a predecessors (we'd have to split the critical edge 3004 // otherwise), we can keep going. 3005 if (UserIsSuccessor && UserParent->getUniquePredecessor()) { 3006 // Okay, the CFG is simple enough, try to sink this instruction. 3007 if (TryToSinkInstruction(I, UserParent)) { 3008 DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3009 MadeIRChange = true; 3010 // We'll add uses of the sunk instruction below, but since sinking 3011 // can expose opportunities for it's *operands* add them to the 3012 // worklist 3013 for (Use &U : I->operands()) 3014 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3015 Worklist.Add(OpI); 3016 } 3017 } 3018 } 3019 } 3020 3021 // Now that we have an instruction, try combining it to simplify it. 3022 Builder.SetInsertPoint(I); 3023 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 3024 3025 #ifndef NDEBUG 3026 std::string OrigI; 3027 #endif 3028 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 3029 DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 3030 3031 if (Instruction *Result = visit(*I)) { 3032 ++NumCombined; 3033 // Should we replace the old instruction with a new one? 3034 if (Result != I) { 3035 DEBUG(dbgs() << "IC: Old = " << *I << '\n' 3036 << " New = " << *Result << '\n'); 3037 3038 if (I->getDebugLoc()) 3039 Result->setDebugLoc(I->getDebugLoc()); 3040 // Everything uses the new instruction now. 3041 I->replaceAllUsesWith(Result); 3042 3043 // Move the name to the new instruction first. 3044 Result->takeName(I); 3045 3046 // Push the new instruction and any users onto the worklist. 3047 Worklist.AddUsersToWorkList(*Result); 3048 Worklist.Add(Result); 3049 3050 // Insert the new instruction into the basic block... 3051 BasicBlock *InstParent = I->getParent(); 3052 BasicBlock::iterator InsertPos = I->getIterator(); 3053 3054 // If we replace a PHI with something that isn't a PHI, fix up the 3055 // insertion point. 3056 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 3057 InsertPos = InstParent->getFirstInsertionPt(); 3058 3059 InstParent->getInstList().insert(InsertPos, Result); 3060 3061 eraseInstFromFunction(*I); 3062 } else { 3063 DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3064 << " New = " << *I << '\n'); 3065 3066 // If the instruction was modified, it's possible that it is now dead. 3067 // if so, remove it. 3068 if (isInstructionTriviallyDead(I, &TLI)) { 3069 eraseInstFromFunction(*I); 3070 } else { 3071 Worklist.AddUsersToWorkList(*I); 3072 Worklist.Add(I); 3073 } 3074 } 3075 MadeIRChange = true; 3076 } 3077 } 3078 3079 Worklist.Zap(); 3080 return MadeIRChange; 3081 } 3082 3083 /// Walk the function in depth-first order, adding all reachable code to the 3084 /// worklist. 3085 /// 3086 /// This has a couple of tricks to make the code faster and more powerful. In 3087 /// particular, we constant fold and DCE instructions as we go, to avoid adding 3088 /// them to the worklist (this significantly speeds up instcombine on code where 3089 /// many instructions are dead or constant). Additionally, if we find a branch 3090 /// whose condition is a known constant, we only visit the reachable successors. 3091 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, 3092 SmallPtrSetImpl<BasicBlock *> &Visited, 3093 InstCombineWorklist &ICWorklist, 3094 const TargetLibraryInfo *TLI) { 3095 bool MadeIRChange = false; 3096 SmallVector<BasicBlock*, 256> Worklist; 3097 Worklist.push_back(BB); 3098 3099 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 3100 DenseMap<Constant *, Constant *> FoldedConstants; 3101 3102 do { 3103 BB = Worklist.pop_back_val(); 3104 3105 // We have now visited this block! If we've already been here, ignore it. 3106 if (!Visited.insert(BB).second) 3107 continue; 3108 3109 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 3110 Instruction *Inst = &*BBI++; 3111 3112 // DCE instruction if trivially dead. 3113 if (isInstructionTriviallyDead(Inst, TLI)) { 3114 ++NumDeadInst; 3115 DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 3116 Inst->eraseFromParent(); 3117 MadeIRChange = true; 3118 continue; 3119 } 3120 3121 // ConstantProp instruction if trivially constant. 3122 if (!Inst->use_empty() && 3123 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 3124 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 3125 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " 3126 << *Inst << '\n'); 3127 Inst->replaceAllUsesWith(C); 3128 ++NumConstProp; 3129 if (isInstructionTriviallyDead(Inst, TLI)) 3130 Inst->eraseFromParent(); 3131 MadeIRChange = true; 3132 continue; 3133 } 3134 3135 // See if we can constant fold its operands. 3136 for (Use &U : Inst->operands()) { 3137 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 3138 continue; 3139 3140 auto *C = cast<Constant>(U); 3141 Constant *&FoldRes = FoldedConstants[C]; 3142 if (!FoldRes) 3143 FoldRes = ConstantFoldConstant(C, DL, TLI); 3144 if (!FoldRes) 3145 FoldRes = C; 3146 3147 if (FoldRes != C) { 3148 DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst 3149 << "\n Old = " << *C 3150 << "\n New = " << *FoldRes << '\n'); 3151 U = FoldRes; 3152 MadeIRChange = true; 3153 } 3154 } 3155 3156 // Skip processing debug intrinsics in InstCombine. Processing these call instructions 3157 // consumes non-trivial amount of time and provides no value for the optimization. 3158 if (!isa<DbgInfoIntrinsic>(Inst)) 3159 InstrsForInstCombineWorklist.push_back(Inst); 3160 } 3161 3162 // Recursively visit successors. If this is a branch or switch on a 3163 // constant, only visit the reachable successor. 3164 TerminatorInst *TI = BB->getTerminator(); 3165 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3166 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 3167 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 3168 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 3169 Worklist.push_back(ReachableBB); 3170 continue; 3171 } 3172 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3173 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 3174 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 3175 continue; 3176 } 3177 } 3178 3179 for (BasicBlock *SuccBB : TI->successors()) 3180 Worklist.push_back(SuccBB); 3181 } while (!Worklist.empty()); 3182 3183 // Once we've found all of the instructions to add to instcombine's worklist, 3184 // add them in reverse order. This way instcombine will visit from the top 3185 // of the function down. This jives well with the way that it adds all uses 3186 // of instructions to the worklist after doing a transformation, thus avoiding 3187 // some N^2 behavior in pathological cases. 3188 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist); 3189 3190 return MadeIRChange; 3191 } 3192 3193 /// \brief Populate the IC worklist from a function, and prune any dead basic 3194 /// blocks discovered in the process. 3195 /// 3196 /// This also does basic constant propagation and other forward fixing to make 3197 /// the combiner itself run much faster. 3198 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 3199 TargetLibraryInfo *TLI, 3200 InstCombineWorklist &ICWorklist) { 3201 bool MadeIRChange = false; 3202 3203 // Do a depth-first traversal of the function, populate the worklist with 3204 // the reachable instructions. Ignore blocks that are not reachable. Keep 3205 // track of which blocks we visit. 3206 SmallPtrSet<BasicBlock *, 32> Visited; 3207 MadeIRChange |= 3208 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI); 3209 3210 // Do a quick scan over the function. If we find any blocks that are 3211 // unreachable, remove any instructions inside of them. This prevents 3212 // the instcombine code from having to deal with some bad special cases. 3213 for (BasicBlock &BB : F) { 3214 if (Visited.count(&BB)) 3215 continue; 3216 3217 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB); 3218 MadeIRChange |= NumDeadInstInBB > 0; 3219 NumDeadInst += NumDeadInstInBB; 3220 } 3221 3222 return MadeIRChange; 3223 } 3224 3225 static bool combineInstructionsOverFunction( 3226 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, 3227 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, 3228 OptimizationRemarkEmitter &ORE, bool ExpensiveCombines = true, 3229 LoopInfo *LI = nullptr) { 3230 auto &DL = F.getParent()->getDataLayout(); 3231 ExpensiveCombines |= EnableExpensiveCombines; 3232 3233 /// Builder - This is an IRBuilder that automatically inserts new 3234 /// instructions into the worklist when they are created. 3235 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 3236 F.getContext(), TargetFolder(DL), 3237 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 3238 Worklist.Add(I); 3239 if (match(I, m_Intrinsic<Intrinsic::assume>())) 3240 AC.registerAssumption(cast<CallInst>(I)); 3241 })); 3242 3243 // Lower dbg.declare intrinsics otherwise their value may be clobbered 3244 // by instcombiner. 3245 bool MadeIRChange = false; 3246 if (ShouldLowerDbgDeclare) 3247 MadeIRChange = LowerDbgDeclare(F); 3248 3249 // Iterate while there is work to do. 3250 int Iteration = 0; 3251 while (true) { 3252 ++Iteration; 3253 DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 3254 << F.getName() << "\n"); 3255 3256 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 3257 3258 InstCombiner IC(Worklist, Builder, F.optForMinSize(), ExpensiveCombines, AA, 3259 AC, TLI, DT, ORE, DL, LI); 3260 IC.MaxArraySizeForCombine = MaxArraySize; 3261 3262 if (!IC.run()) 3263 break; 3264 } 3265 3266 return MadeIRChange || Iteration > 1; 3267 } 3268 3269 PreservedAnalyses InstCombinePass::run(Function &F, 3270 FunctionAnalysisManager &AM) { 3271 auto &AC = AM.getResult<AssumptionAnalysis>(F); 3272 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 3273 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 3274 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3275 3276 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 3277 3278 // FIXME: The AliasAnalysis is not yet supported in the new pass manager 3279 if (!combineInstructionsOverFunction(F, Worklist, nullptr, AC, TLI, DT, ORE, 3280 ExpensiveCombines, LI)) 3281 // No changes, all analyses are preserved. 3282 return PreservedAnalyses::all(); 3283 3284 // Mark all the analyses that instcombine updates as preserved. 3285 PreservedAnalyses PA; 3286 PA.preserveSet<CFGAnalyses>(); 3287 PA.preserve<AAManager>(); 3288 PA.preserve<GlobalsAA>(); 3289 return PA; 3290 } 3291 3292 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 3293 AU.setPreservesCFG(); 3294 AU.addRequired<AAResultsWrapperPass>(); 3295 AU.addRequired<AssumptionCacheTracker>(); 3296 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3297 AU.addRequired<DominatorTreeWrapperPass>(); 3298 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3299 AU.addPreserved<DominatorTreeWrapperPass>(); 3300 AU.addPreserved<AAResultsWrapperPass>(); 3301 AU.addPreserved<BasicAAWrapperPass>(); 3302 AU.addPreserved<GlobalsAAWrapperPass>(); 3303 } 3304 3305 bool InstructionCombiningPass::runOnFunction(Function &F) { 3306 if (skipFunction(F)) 3307 return false; 3308 3309 // Required analyses. 3310 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3311 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3312 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 3313 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3314 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 3315 3316 // Optional analyses. 3317 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3318 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 3319 3320 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, 3321 ExpensiveCombines, LI); 3322 } 3323 3324 char InstructionCombiningPass::ID = 0; 3325 3326 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 3327 "Combine redundant instructions", false, false) 3328 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3329 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3330 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3331 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3332 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3333 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3334 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 3335 "Combine redundant instructions", false, false) 3336 3337 // Initialization Routines 3338 void llvm::initializeInstCombine(PassRegistry &Registry) { 3339 initializeInstructionCombiningPassPass(Registry); 3340 } 3341 3342 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 3343 initializeInstructionCombiningPassPass(*unwrap(R)); 3344 } 3345 3346 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) { 3347 return new InstructionCombiningPass(ExpensiveCombines); 3348 } 3349