1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Analysis/AliasAnalysis.h" 46 #include "llvm/Analysis/AssumptionCache.h" 47 #include "llvm/Analysis/BasicAliasAnalysis.h" 48 #include "llvm/Analysis/BlockFrequencyInfo.h" 49 #include "llvm/Analysis/CFG.h" 50 #include "llvm/Analysis/ConstantFolding.h" 51 #include "llvm/Analysis/EHPersonalities.h" 52 #include "llvm/Analysis/GlobalsModRef.h" 53 #include "llvm/Analysis/InstructionSimplify.h" 54 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 55 #include "llvm/Analysis/LoopInfo.h" 56 #include "llvm/Analysis/MemoryBuiltins.h" 57 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 58 #include "llvm/Analysis/ProfileSummaryInfo.h" 59 #include "llvm/Analysis/TargetFolder.h" 60 #include "llvm/Analysis/TargetLibraryInfo.h" 61 #include "llvm/Analysis/TargetTransformInfo.h" 62 #include "llvm/Analysis/Utils/Local.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/Analysis/VectorUtils.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugInfo.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/Dominators.h" 74 #include "llvm/IR/Function.h" 75 #include "llvm/IR/GetElementPtrTypeIterator.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/InstrTypes.h" 78 #include "llvm/IR/Instruction.h" 79 #include "llvm/IR/Instructions.h" 80 #include "llvm/IR/IntrinsicInst.h" 81 #include "llvm/IR/Intrinsics.h" 82 #include "llvm/IR/LegacyPassManager.h" 83 #include "llvm/IR/Metadata.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PassManager.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/Use.h" 89 #include "llvm/IR/User.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/InitializePasses.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/DebugCounter.h" 98 #include "llvm/Support/ErrorHandling.h" 99 #include "llvm/Support/KnownBits.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Transforms/InstCombine/InstCombine.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <algorithm> 104 #include <cassert> 105 #include <cstdint> 106 #include <memory> 107 #include <string> 108 #include <utility> 109 110 #define DEBUG_TYPE "instcombine" 111 #include "llvm/Transforms/Utils/InstructionWorklist.h" 112 113 using namespace llvm; 114 using namespace llvm::PatternMatch; 115 116 STATISTIC(NumWorklistIterations, 117 "Number of instruction combining iterations performed"); 118 119 STATISTIC(NumCombined , "Number of insts combined"); 120 STATISTIC(NumConstProp, "Number of constant folds"); 121 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 122 STATISTIC(NumSunkInst , "Number of instructions sunk"); 123 STATISTIC(NumExpand, "Number of expansions"); 124 STATISTIC(NumFactor , "Number of factorizations"); 125 STATISTIC(NumReassoc , "Number of reassociations"); 126 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 127 "Controls which instructions are visited"); 128 129 // FIXME: these limits eventually should be as low as 2. 130 static constexpr unsigned InstCombineDefaultMaxIterations = 1000; 131 #ifndef NDEBUG 132 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100; 133 #else 134 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; 135 #endif 136 137 static cl::opt<bool> 138 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 139 cl::init(true)); 140 141 static cl::opt<unsigned> MaxSinkNumUsers( 142 "instcombine-max-sink-users", cl::init(32), 143 cl::desc("Maximum number of undroppable users for instruction sinking")); 144 145 static cl::opt<unsigned> LimitMaxIterations( 146 "instcombine-max-iterations", 147 cl::desc("Limit the maximum number of instruction combining iterations"), 148 cl::init(InstCombineDefaultMaxIterations)); 149 150 static cl::opt<unsigned> InfiniteLoopDetectionThreshold( 151 "instcombine-infinite-loop-threshold", 152 cl::desc("Number of instruction combining iterations considered an " 153 "infinite loop"), 154 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); 155 156 static cl::opt<unsigned> 157 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 158 cl::desc("Maximum array size considered when doing a combine")); 159 160 // FIXME: Remove this flag when it is no longer necessary to convert 161 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 162 // increases variable availability at the cost of accuracy. Variables that 163 // cannot be promoted by mem2reg or SROA will be described as living in memory 164 // for their entire lifetime. However, passes like DSE and instcombine can 165 // delete stores to the alloca, leading to misleading and inaccurate debug 166 // information. This flag can be removed when those passes are fixed. 167 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 168 cl::Hidden, cl::init(true)); 169 170 Optional<Instruction *> 171 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 172 // Handle target specific intrinsics 173 if (II.getCalledFunction()->isTargetIntrinsic()) { 174 return TTI.instCombineIntrinsic(*this, II); 175 } 176 return None; 177 } 178 179 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 180 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 181 bool &KnownBitsComputed) { 182 // Handle target specific intrinsics 183 if (II.getCalledFunction()->isTargetIntrinsic()) { 184 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, 185 KnownBitsComputed); 186 } 187 return None; 188 } 189 190 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 191 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, 192 APInt &UndefElts3, 193 std::function<void(Instruction *, unsigned, APInt, APInt &)> 194 SimplifyAndSetOp) { 195 // Handle target specific intrinsics 196 if (II.getCalledFunction()->isTargetIntrinsic()) { 197 return TTI.simplifyDemandedVectorEltsIntrinsic( 198 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 199 SimplifyAndSetOp); 200 } 201 return None; 202 } 203 204 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { 205 return llvm::EmitGEPOffset(&Builder, DL, GEP); 206 } 207 208 /// Legal integers and common types are considered desirable. This is used to 209 /// avoid creating instructions with types that may not be supported well by the 210 /// the backend. 211 /// NOTE: This treats i8, i16 and i32 specially because they are common 212 /// types in frontend languages. 213 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { 214 switch (BitWidth) { 215 case 8: 216 case 16: 217 case 32: 218 return true; 219 default: 220 return DL.isLegalInteger(BitWidth); 221 } 222 } 223 224 /// Return true if it is desirable to convert an integer computation from a 225 /// given bit width to a new bit width. 226 /// We don't want to convert from a legal to an illegal type or from a smaller 227 /// to a larger illegal type. A width of '1' is always treated as a desirable 228 /// type because i1 is a fundamental type in IR, and there are many specialized 229 /// optimizations for i1 types. Common/desirable widths are equally treated as 230 /// legal to convert to, in order to open up more combining opportunities. 231 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 232 unsigned ToWidth) const { 233 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 234 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 235 236 // Convert to desirable widths even if they are not legal types. 237 // Only shrink types, to prevent infinite loops. 238 if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) 239 return true; 240 241 // If this is a legal integer from type, and the result would be an illegal 242 // type, don't do the transformation. 243 if (FromLegal && !ToLegal) 244 return false; 245 246 // Otherwise, if both are illegal, do not increase the size of the result. We 247 // do allow things like i160 -> i64, but not i64 -> i160. 248 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 249 return false; 250 251 return true; 252 } 253 254 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 255 /// We don't want to convert from a legal to an illegal type or from a smaller 256 /// to a larger illegal type. i1 is always treated as a legal type because it is 257 /// a fundamental type in IR, and there are many specialized optimizations for 258 /// i1 types. 259 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 260 // TODO: This could be extended to allow vectors. Datalayout changes might be 261 // needed to properly support that. 262 if (!From->isIntegerTy() || !To->isIntegerTy()) 263 return false; 264 265 unsigned FromWidth = From->getPrimitiveSizeInBits(); 266 unsigned ToWidth = To->getPrimitiveSizeInBits(); 267 return shouldChangeType(FromWidth, ToWidth); 268 } 269 270 // Return true, if No Signed Wrap should be maintained for I. 271 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 272 // where both B and C should be ConstantInts, results in a constant that does 273 // not overflow. This function only handles the Add and Sub opcodes. For 274 // all other opcodes, the function conservatively returns false. 275 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 276 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 277 if (!OBO || !OBO->hasNoSignedWrap()) 278 return false; 279 280 // We reason about Add and Sub Only. 281 Instruction::BinaryOps Opcode = I.getOpcode(); 282 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 283 return false; 284 285 const APInt *BVal, *CVal; 286 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 287 return false; 288 289 bool Overflow = false; 290 if (Opcode == Instruction::Add) 291 (void)BVal->sadd_ov(*CVal, Overflow); 292 else 293 (void)BVal->ssub_ov(*CVal, Overflow); 294 295 return !Overflow; 296 } 297 298 static bool hasNoUnsignedWrap(BinaryOperator &I) { 299 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 300 return OBO && OBO->hasNoUnsignedWrap(); 301 } 302 303 static bool hasNoSignedWrap(BinaryOperator &I) { 304 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 305 return OBO && OBO->hasNoSignedWrap(); 306 } 307 308 /// Conservatively clears subclassOptionalData after a reassociation or 309 /// commutation. We preserve fast-math flags when applicable as they can be 310 /// preserved. 311 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 312 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 313 if (!FPMO) { 314 I.clearSubclassOptionalData(); 315 return; 316 } 317 318 FastMathFlags FMF = I.getFastMathFlags(); 319 I.clearSubclassOptionalData(); 320 I.setFastMathFlags(FMF); 321 } 322 323 /// Combine constant operands of associative operations either before or after a 324 /// cast to eliminate one of the associative operations: 325 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 326 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 327 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 328 InstCombinerImpl &IC) { 329 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 330 if (!Cast || !Cast->hasOneUse()) 331 return false; 332 333 // TODO: Enhance logic for other casts and remove this check. 334 auto CastOpcode = Cast->getOpcode(); 335 if (CastOpcode != Instruction::ZExt) 336 return false; 337 338 // TODO: Enhance logic for other BinOps and remove this check. 339 if (!BinOp1->isBitwiseLogicOp()) 340 return false; 341 342 auto AssocOpcode = BinOp1->getOpcode(); 343 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 344 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 345 return false; 346 347 Constant *C1, *C2; 348 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 349 !match(BinOp2->getOperand(1), m_Constant(C2))) 350 return false; 351 352 // TODO: This assumes a zext cast. 353 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 354 // to the destination type might lose bits. 355 356 // Fold the constants together in the destination type: 357 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 358 Type *DestTy = C1->getType(); 359 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 360 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 361 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 362 IC.replaceOperand(*BinOp1, 1, FoldedC); 363 return true; 364 } 365 366 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast. 367 // inttoptr ( ptrtoint (x) ) --> x 368 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { 369 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); 370 if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) == 371 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { 372 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); 373 Type *CastTy = IntToPtr->getDestTy(); 374 if (PtrToInt && 375 CastTy->getPointerAddressSpace() == 376 PtrToInt->getSrcTy()->getPointerAddressSpace() && 377 DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) == 378 DL.getTypeSizeInBits(PtrToInt->getDestTy())) { 379 return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy, 380 "", PtrToInt); 381 } 382 } 383 return nullptr; 384 } 385 386 /// This performs a few simplifications for operators that are associative or 387 /// commutative: 388 /// 389 /// Commutative operators: 390 /// 391 /// 1. Order operands such that they are listed from right (least complex) to 392 /// left (most complex). This puts constants before unary operators before 393 /// binary operators. 394 /// 395 /// Associative operators: 396 /// 397 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 398 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 399 /// 400 /// Associative and commutative operators: 401 /// 402 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 403 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 404 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 405 /// if C1 and C2 are constants. 406 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 407 Instruction::BinaryOps Opcode = I.getOpcode(); 408 bool Changed = false; 409 410 do { 411 // Order operands such that they are listed from right (least complex) to 412 // left (most complex). This puts constants before unary operators before 413 // binary operators. 414 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 415 getComplexity(I.getOperand(1))) 416 Changed = !I.swapOperands(); 417 418 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 419 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 420 421 if (I.isAssociative()) { 422 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 423 if (Op0 && Op0->getOpcode() == Opcode) { 424 Value *A = Op0->getOperand(0); 425 Value *B = Op0->getOperand(1); 426 Value *C = I.getOperand(1); 427 428 // Does "B op C" simplify? 429 if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 430 // It simplifies to V. Form "A op V". 431 replaceOperand(I, 0, A); 432 replaceOperand(I, 1, V); 433 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 434 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 435 436 // Conservatively clear all optional flags since they may not be 437 // preserved by the reassociation. Reset nsw/nuw based on the above 438 // analysis. 439 ClearSubclassDataAfterReassociation(I); 440 441 // Note: this is only valid because SimplifyBinOp doesn't look at 442 // the operands to Op0. 443 if (IsNUW) 444 I.setHasNoUnsignedWrap(true); 445 446 if (IsNSW) 447 I.setHasNoSignedWrap(true); 448 449 Changed = true; 450 ++NumReassoc; 451 continue; 452 } 453 } 454 455 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 456 if (Op1 && Op1->getOpcode() == Opcode) { 457 Value *A = I.getOperand(0); 458 Value *B = Op1->getOperand(0); 459 Value *C = Op1->getOperand(1); 460 461 // Does "A op B" simplify? 462 if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 463 // It simplifies to V. Form "V op C". 464 replaceOperand(I, 0, V); 465 replaceOperand(I, 1, C); 466 // Conservatively clear the optional flags, since they may not be 467 // preserved by the reassociation. 468 ClearSubclassDataAfterReassociation(I); 469 Changed = true; 470 ++NumReassoc; 471 continue; 472 } 473 } 474 } 475 476 if (I.isAssociative() && I.isCommutative()) { 477 if (simplifyAssocCastAssoc(&I, *this)) { 478 Changed = true; 479 ++NumReassoc; 480 continue; 481 } 482 483 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 484 if (Op0 && Op0->getOpcode() == Opcode) { 485 Value *A = Op0->getOperand(0); 486 Value *B = Op0->getOperand(1); 487 Value *C = I.getOperand(1); 488 489 // Does "C op A" simplify? 490 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 491 // It simplifies to V. Form "V op B". 492 replaceOperand(I, 0, V); 493 replaceOperand(I, 1, B); 494 // Conservatively clear the optional flags, since they may not be 495 // preserved by the reassociation. 496 ClearSubclassDataAfterReassociation(I); 497 Changed = true; 498 ++NumReassoc; 499 continue; 500 } 501 } 502 503 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 504 if (Op1 && Op1->getOpcode() == Opcode) { 505 Value *A = I.getOperand(0); 506 Value *B = Op1->getOperand(0); 507 Value *C = Op1->getOperand(1); 508 509 // Does "C op A" simplify? 510 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 511 // It simplifies to V. Form "B op V". 512 replaceOperand(I, 0, B); 513 replaceOperand(I, 1, V); 514 // Conservatively clear the optional flags, since they may not be 515 // preserved by the reassociation. 516 ClearSubclassDataAfterReassociation(I); 517 Changed = true; 518 ++NumReassoc; 519 continue; 520 } 521 } 522 523 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 524 // if C1 and C2 are constants. 525 Value *A, *B; 526 Constant *C1, *C2; 527 if (Op0 && Op1 && 528 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 529 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 530 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 531 bool IsNUW = hasNoUnsignedWrap(I) && 532 hasNoUnsignedWrap(*Op0) && 533 hasNoUnsignedWrap(*Op1); 534 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 535 BinaryOperator::CreateNUW(Opcode, A, B) : 536 BinaryOperator::Create(Opcode, A, B); 537 538 if (isa<FPMathOperator>(NewBO)) { 539 FastMathFlags Flags = I.getFastMathFlags(); 540 Flags &= Op0->getFastMathFlags(); 541 Flags &= Op1->getFastMathFlags(); 542 NewBO->setFastMathFlags(Flags); 543 } 544 InsertNewInstWith(NewBO, I); 545 NewBO->takeName(Op1); 546 replaceOperand(I, 0, NewBO); 547 replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2)); 548 // Conservatively clear the optional flags, since they may not be 549 // preserved by the reassociation. 550 ClearSubclassDataAfterReassociation(I); 551 if (IsNUW) 552 I.setHasNoUnsignedWrap(true); 553 554 Changed = true; 555 continue; 556 } 557 } 558 559 // No further simplifications. 560 return Changed; 561 } while (true); 562 } 563 564 /// Return whether "X LOp (Y ROp Z)" is always equal to 565 /// "(X LOp Y) ROp (X LOp Z)". 566 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 567 Instruction::BinaryOps ROp) { 568 // X & (Y | Z) <--> (X & Y) | (X & Z) 569 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 570 if (LOp == Instruction::And) 571 return ROp == Instruction::Or || ROp == Instruction::Xor; 572 573 // X | (Y & Z) <--> (X | Y) & (X | Z) 574 if (LOp == Instruction::Or) 575 return ROp == Instruction::And; 576 577 // X * (Y + Z) <--> (X * Y) + (X * Z) 578 // X * (Y - Z) <--> (X * Y) - (X * Z) 579 if (LOp == Instruction::Mul) 580 return ROp == Instruction::Add || ROp == Instruction::Sub; 581 582 return false; 583 } 584 585 /// Return whether "(X LOp Y) ROp Z" is always equal to 586 /// "(X ROp Z) LOp (Y ROp Z)". 587 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 588 Instruction::BinaryOps ROp) { 589 if (Instruction::isCommutative(ROp)) 590 return leftDistributesOverRight(ROp, LOp); 591 592 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 593 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 594 595 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 596 // but this requires knowing that the addition does not overflow and other 597 // such subtleties. 598 } 599 600 /// This function returns identity value for given opcode, which can be used to 601 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 602 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 603 if (isa<Constant>(V)) 604 return nullptr; 605 606 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 607 } 608 609 /// This function predicates factorization using distributive laws. By default, 610 /// it just returns the 'Op' inputs. But for special-cases like 611 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 612 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 613 /// allow more factorization opportunities. 614 static Instruction::BinaryOps 615 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 616 Value *&LHS, Value *&RHS) { 617 assert(Op && "Expected a binary operator"); 618 LHS = Op->getOperand(0); 619 RHS = Op->getOperand(1); 620 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 621 Constant *C; 622 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 623 // X << C --> X * (1 << C) 624 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 625 return Instruction::Mul; 626 } 627 // TODO: We can add other conversions e.g. shr => div etc. 628 } 629 return Op->getOpcode(); 630 } 631 632 /// This tries to simplify binary operations by factorizing out common terms 633 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 634 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I, 635 Instruction::BinaryOps InnerOpcode, 636 Value *A, Value *B, Value *C, 637 Value *D) { 638 assert(A && B && C && D && "All values must be provided"); 639 640 Value *V = nullptr; 641 Value *SimplifiedInst = nullptr; 642 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 643 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 644 645 // Does "X op' Y" always equal "Y op' X"? 646 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 647 648 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 649 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 650 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 651 // commutative case, "(A op' B) op (C op' A)"? 652 if (A == C || (InnerCommutative && A == D)) { 653 if (A != C) 654 std::swap(C, D); 655 // Consider forming "A op' (B op D)". 656 // If "B op D" simplifies then it can be formed with no cost. 657 V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 658 // If "B op D" doesn't simplify then only go on if both of the existing 659 // operations "A op' B" and "C op' D" will be zapped as no longer used. 660 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 661 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 662 if (V) { 663 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 664 } 665 } 666 667 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 668 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 669 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 670 // commutative case, "(A op' B) op (B op' D)"? 671 if (B == D || (InnerCommutative && B == C)) { 672 if (B != D) 673 std::swap(C, D); 674 // Consider forming "(A op C) op' B". 675 // If "A op C" simplifies then it can be formed with no cost. 676 V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 677 678 // If "A op C" doesn't simplify then only go on if both of the existing 679 // operations "A op' B" and "C op' D" will be zapped as no longer used. 680 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 681 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 682 if (V) { 683 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 684 } 685 } 686 687 if (SimplifiedInst) { 688 ++NumFactor; 689 SimplifiedInst->takeName(&I); 690 691 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 692 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 693 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 694 bool HasNSW = false; 695 bool HasNUW = false; 696 if (isa<OverflowingBinaryOperator>(&I)) { 697 HasNSW = I.hasNoSignedWrap(); 698 HasNUW = I.hasNoUnsignedWrap(); 699 } 700 701 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 702 HasNSW &= LOBO->hasNoSignedWrap(); 703 HasNUW &= LOBO->hasNoUnsignedWrap(); 704 } 705 706 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 707 HasNSW &= ROBO->hasNoSignedWrap(); 708 HasNUW &= ROBO->hasNoUnsignedWrap(); 709 } 710 711 if (TopLevelOpcode == Instruction::Add && 712 InnerOpcode == Instruction::Mul) { 713 // We can propagate 'nsw' if we know that 714 // %Y = mul nsw i16 %X, C 715 // %Z = add nsw i16 %Y, %X 716 // => 717 // %Z = mul nsw i16 %X, C+1 718 // 719 // iff C+1 isn't INT_MIN 720 const APInt *CInt; 721 if (match(V, m_APInt(CInt))) { 722 if (!CInt->isMinSignedValue()) 723 BO->setHasNoSignedWrap(HasNSW); 724 } 725 726 // nuw can be propagated with any constant or nuw value. 727 BO->setHasNoUnsignedWrap(HasNUW); 728 } 729 } 730 } 731 } 732 return SimplifiedInst; 733 } 734 735 /// This tries to simplify binary operations which some other binary operation 736 /// distributes over either by factorizing out common terms 737 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 738 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 739 /// Returns the simplified value, or null if it didn't simplify. 740 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 741 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 742 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 743 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 744 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 745 746 { 747 // Factorization. 748 Value *A, *B, *C, *D; 749 Instruction::BinaryOps LHSOpcode, RHSOpcode; 750 if (Op0) 751 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 752 if (Op1) 753 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 754 755 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 756 // a common term. 757 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 758 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 759 return V; 760 761 // The instruction has the form "(A op' B) op (C)". Try to factorize common 762 // term. 763 if (Op0) 764 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 765 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 766 return V; 767 768 // The instruction has the form "(B) op (C op' D)". Try to factorize common 769 // term. 770 if (Op1) 771 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 772 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 773 return V; 774 } 775 776 // Expansion. 777 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 778 // The instruction has the form "(A op' B) op C". See if expanding it out 779 // to "(A op C) op' (B op C)" results in simplifications. 780 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 781 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 782 783 // Disable the use of undef because it's not safe to distribute undef. 784 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 785 Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 786 Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 787 788 // Do "A op C" and "B op C" both simplify? 789 if (L && R) { 790 // They do! Return "L op' R". 791 ++NumExpand; 792 C = Builder.CreateBinOp(InnerOpcode, L, R); 793 C->takeName(&I); 794 return C; 795 } 796 797 // Does "A op C" simplify to the identity value for the inner opcode? 798 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 799 // They do! Return "B op C". 800 ++NumExpand; 801 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 802 C->takeName(&I); 803 return C; 804 } 805 806 // Does "B op C" simplify to the identity value for the inner opcode? 807 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 808 // They do! Return "A op C". 809 ++NumExpand; 810 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 811 C->takeName(&I); 812 return C; 813 } 814 } 815 816 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 817 // The instruction has the form "A op (B op' C)". See if expanding it out 818 // to "(A op B) op' (A op C)" results in simplifications. 819 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 820 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 821 822 // Disable the use of undef because it's not safe to distribute undef. 823 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 824 Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 825 Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 826 827 // Do "A op B" and "A op C" both simplify? 828 if (L && R) { 829 // They do! Return "L op' R". 830 ++NumExpand; 831 A = Builder.CreateBinOp(InnerOpcode, L, R); 832 A->takeName(&I); 833 return A; 834 } 835 836 // Does "A op B" simplify to the identity value for the inner opcode? 837 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 838 // They do! Return "A op C". 839 ++NumExpand; 840 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 841 A->takeName(&I); 842 return A; 843 } 844 845 // Does "A op C" simplify to the identity value for the inner opcode? 846 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 847 // They do! Return "A op B". 848 ++NumExpand; 849 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 850 A->takeName(&I); 851 return A; 852 } 853 } 854 855 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 856 } 857 858 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 859 Value *LHS, 860 Value *RHS) { 861 Value *A, *B, *C, *D, *E, *F; 862 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 863 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 864 if (!LHSIsSelect && !RHSIsSelect) 865 return nullptr; 866 867 FastMathFlags FMF; 868 BuilderTy::FastMathFlagGuard Guard(Builder); 869 if (isa<FPMathOperator>(&I)) { 870 FMF = I.getFastMathFlags(); 871 Builder.setFastMathFlags(FMF); 872 } 873 874 Instruction::BinaryOps Opcode = I.getOpcode(); 875 SimplifyQuery Q = SQ.getWithInstruction(&I); 876 877 Value *Cond, *True = nullptr, *False = nullptr; 878 if (LHSIsSelect && RHSIsSelect && A == D) { 879 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 880 Cond = A; 881 True = simplifyBinOp(Opcode, B, E, FMF, Q); 882 False = simplifyBinOp(Opcode, C, F, FMF, Q); 883 884 if (LHS->hasOneUse() && RHS->hasOneUse()) { 885 if (False && !True) 886 True = Builder.CreateBinOp(Opcode, B, E); 887 else if (True && !False) 888 False = Builder.CreateBinOp(Opcode, C, F); 889 } 890 } else if (LHSIsSelect && LHS->hasOneUse()) { 891 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 892 Cond = A; 893 True = simplifyBinOp(Opcode, B, RHS, FMF, Q); 894 False = simplifyBinOp(Opcode, C, RHS, FMF, Q); 895 } else if (RHSIsSelect && RHS->hasOneUse()) { 896 // X op (D ? E : F) -> D ? (X op E) : (X op F) 897 Cond = D; 898 True = simplifyBinOp(Opcode, LHS, E, FMF, Q); 899 False = simplifyBinOp(Opcode, LHS, F, FMF, Q); 900 } 901 902 if (!True || !False) 903 return nullptr; 904 905 Value *SI = Builder.CreateSelect(Cond, True, False); 906 SI->takeName(&I); 907 return SI; 908 } 909 910 /// Freely adapt every user of V as-if V was changed to !V. 911 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 912 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) { 913 for (User *U : I->users()) { 914 switch (cast<Instruction>(U)->getOpcode()) { 915 case Instruction::Select: { 916 auto *SI = cast<SelectInst>(U); 917 SI->swapValues(); 918 SI->swapProfMetadata(); 919 break; 920 } 921 case Instruction::Br: 922 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 923 break; 924 case Instruction::Xor: 925 replaceInstUsesWith(cast<Instruction>(*U), I); 926 break; 927 default: 928 llvm_unreachable("Got unexpected user - out of sync with " 929 "canFreelyInvertAllUsersOf() ?"); 930 } 931 } 932 } 933 934 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 935 /// constant zero (which is the 'negate' form). 936 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 937 Value *NegV; 938 if (match(V, m_Neg(m_Value(NegV)))) 939 return NegV; 940 941 // Constants can be considered to be negated values if they can be folded. 942 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 943 return ConstantExpr::getNeg(C); 944 945 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 946 if (C->getType()->getElementType()->isIntegerTy()) 947 return ConstantExpr::getNeg(C); 948 949 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 950 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 951 Constant *Elt = CV->getAggregateElement(i); 952 if (!Elt) 953 return nullptr; 954 955 if (isa<UndefValue>(Elt)) 956 continue; 957 958 if (!isa<ConstantInt>(Elt)) 959 return nullptr; 960 } 961 return ConstantExpr::getNeg(CV); 962 } 963 964 // Negate integer vector splats. 965 if (auto *CV = dyn_cast<Constant>(V)) 966 if (CV->getType()->isVectorTy() && 967 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 968 return ConstantExpr::getNeg(CV); 969 970 return nullptr; 971 } 972 973 /// A binop with a constant operand and a sign-extended boolean operand may be 974 /// converted into a select of constants by applying the binary operation to 975 /// the constant with the two possible values of the extended boolean (0 or -1). 976 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) { 977 // TODO: Handle non-commutative binop (constant is operand 0). 978 // TODO: Handle zext. 979 // TODO: Peek through 'not' of cast. 980 Value *BO0 = BO.getOperand(0); 981 Value *BO1 = BO.getOperand(1); 982 Value *X; 983 Constant *C; 984 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) || 985 !X->getType()->isIntOrIntVectorTy(1)) 986 return nullptr; 987 988 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C) 989 Constant *Ones = ConstantInt::getAllOnesValue(BO.getType()); 990 Constant *Zero = ConstantInt::getNullValue(BO.getType()); 991 Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C); 992 Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C); 993 return SelectInst::Create(X, TVal, FVal); 994 } 995 996 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 997 InstCombiner::BuilderTy &Builder) { 998 if (auto *Cast = dyn_cast<CastInst>(&I)) 999 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 1000 1001 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1002 assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) && 1003 "Expected constant-foldable intrinsic"); 1004 Intrinsic::ID IID = II->getIntrinsicID(); 1005 if (II->arg_size() == 1) 1006 return Builder.CreateUnaryIntrinsic(IID, SO); 1007 1008 // This works for real binary ops like min/max (where we always expect the 1009 // constant operand to be canonicalized as op1) and unary ops with a bonus 1010 // constant argument like ctlz/cttz. 1011 // TODO: Handle non-commutative binary intrinsics as below for binops. 1012 assert(II->arg_size() == 2 && "Expected binary intrinsic"); 1013 assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand"); 1014 return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1)); 1015 } 1016 1017 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 1018 1019 // Figure out if the constant is the left or the right argument. 1020 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 1021 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 1022 1023 Value *Op0 = SO, *Op1 = ConstOperand; 1024 if (!ConstIsRHS) 1025 std::swap(Op0, Op1); 1026 1027 Value *NewBO = Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), Op0, 1028 Op1, SO->getName() + ".op"); 1029 if (auto *NewBOI = dyn_cast<Instruction>(NewBO)) 1030 NewBOI->copyIRFlags(&I); 1031 return NewBO; 1032 } 1033 1034 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI, 1035 bool FoldWithMultiUse) { 1036 // Don't modify shared select instructions unless set FoldWithMultiUse 1037 if (!SI->hasOneUse() && !FoldWithMultiUse) 1038 return nullptr; 1039 1040 Value *TV = SI->getTrueValue(); 1041 Value *FV = SI->getFalseValue(); 1042 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 1043 return nullptr; 1044 1045 // Bool selects with constant operands can be folded to logical ops. 1046 if (SI->getType()->isIntOrIntVectorTy(1)) 1047 return nullptr; 1048 1049 // If it's a bitcast involving vectors, make sure it has the same number of 1050 // elements on both sides. 1051 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 1052 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 1053 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 1054 1055 // Verify that either both or neither are vectors. 1056 if ((SrcTy == nullptr) != (DestTy == nullptr)) 1057 return nullptr; 1058 1059 // If vectors, verify that they have the same number of elements. 1060 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) 1061 return nullptr; 1062 } 1063 1064 // Test if a CmpInst instruction is used exclusively by a select as 1065 // part of a minimum or maximum operation. If so, refrain from doing 1066 // any other folding. This helps out other analyses which understand 1067 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 1068 // and CodeGen. And in this case, at least one of the comparison 1069 // operands has at least one user besides the compare (the select), 1070 // which would often largely negate the benefit of folding anyway. 1071 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 1072 if (CI->hasOneUse()) { 1073 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 1074 1075 // FIXME: This is a hack to avoid infinite looping with min/max patterns. 1076 // We have to ensure that vector constants that only differ with 1077 // undef elements are treated as equivalent. 1078 auto areLooselyEqual = [](Value *A, Value *B) { 1079 if (A == B) 1080 return true; 1081 1082 // Test for vector constants. 1083 Constant *ConstA, *ConstB; 1084 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB))) 1085 return false; 1086 1087 // TODO: Deal with FP constants? 1088 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType()) 1089 return false; 1090 1091 // Compare for equality including undefs as equal. 1092 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB); 1093 const APInt *C; 1094 return match(Cmp, m_APIntAllowUndef(C)) && C->isOne(); 1095 }; 1096 1097 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) || 1098 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1))) 1099 return nullptr; 1100 } 1101 } 1102 1103 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 1104 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 1105 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 1106 } 1107 1108 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 1109 InstCombiner::BuilderTy &Builder) { 1110 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 1111 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 1112 1113 Value *Op0 = InV, *Op1 = C; 1114 if (!ConstIsRHS) 1115 std::swap(Op0, Op1); 1116 1117 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo"); 1118 auto *FPInst = dyn_cast<Instruction>(RI); 1119 if (FPInst && isa<FPMathOperator>(FPInst)) 1120 FPInst->copyFastMathFlags(I); 1121 return RI; 1122 } 1123 1124 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { 1125 unsigned NumPHIValues = PN->getNumIncomingValues(); 1126 if (NumPHIValues == 0) 1127 return nullptr; 1128 1129 // We normally only transform phis with a single use. However, if a PHI has 1130 // multiple uses and they are all the same operation, we can fold *all* of the 1131 // uses into the PHI. 1132 if (!PN->hasOneUse()) { 1133 // Walk the use list for the instruction, comparing them to I. 1134 for (User *U : PN->users()) { 1135 Instruction *UI = cast<Instruction>(U); 1136 if (UI != &I && !I.isIdenticalTo(UI)) 1137 return nullptr; 1138 } 1139 // Otherwise, we can replace *all* users with the new PHI we form. 1140 } 1141 1142 // Check to see if all of the operands of the PHI are simple constants 1143 // (constantint/constantfp/undef). If there is one non-constant value, 1144 // remember the BB it is in. If there is more than one or if *it* is a PHI, 1145 // bail out. We don't do arbitrary constant expressions here because moving 1146 // their computation can be expensive without a cost model. 1147 BasicBlock *NonConstBB = nullptr; 1148 for (unsigned i = 0; i != NumPHIValues; ++i) { 1149 Value *InVal = PN->getIncomingValue(i); 1150 // For non-freeze, require constant operand 1151 // For freeze, require non-undef, non-poison operand 1152 if (!isa<FreezeInst>(I) && match(InVal, m_ImmConstant())) 1153 continue; 1154 if (isa<FreezeInst>(I) && isGuaranteedNotToBeUndefOrPoison(InVal)) 1155 continue; 1156 1157 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 1158 if (NonConstBB) return nullptr; // More than one non-const value. 1159 1160 NonConstBB = PN->getIncomingBlock(i); 1161 1162 // If the InVal is an invoke at the end of the pred block, then we can't 1163 // insert a computation after it without breaking the edge. 1164 if (isa<InvokeInst>(InVal)) 1165 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 1166 return nullptr; 1167 1168 // If the incoming non-constant value is reachable from the phis block, 1169 // we'll push the operation across a loop backedge. This could result in 1170 // an infinite combine loop, and is generally non-profitable (especially 1171 // if the operation was originally outside the loop). 1172 if (isPotentiallyReachable(PN->getParent(), NonConstBB, nullptr, &DT, LI)) 1173 return nullptr; 1174 } 1175 1176 // If there is exactly one non-constant value, we can insert a copy of the 1177 // operation in that block. However, if this is a critical edge, we would be 1178 // inserting the computation on some other paths (e.g. inside a loop). Only 1179 // do this if the pred block is unconditionally branching into the phi block. 1180 // Also, make sure that the pred block is not dead code. 1181 if (NonConstBB != nullptr) { 1182 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1183 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB)) 1184 return nullptr; 1185 } 1186 1187 // Okay, we can do the transformation: create the new PHI node. 1188 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1189 InsertNewInstBefore(NewPN, *PN); 1190 NewPN->takeName(PN); 1191 1192 // If we are going to have to insert a new computation, do so right before the 1193 // predecessor's terminator. 1194 if (NonConstBB) 1195 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1196 1197 // Next, add all of the operands to the PHI. 1198 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1199 // We only currently try to fold the condition of a select when it is a phi, 1200 // not the true/false values. 1201 Value *TrueV = SI->getTrueValue(); 1202 Value *FalseV = SI->getFalseValue(); 1203 BasicBlock *PhiTransBB = PN->getParent(); 1204 for (unsigned i = 0; i != NumPHIValues; ++i) { 1205 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1206 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1207 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1208 Value *InV = nullptr; 1209 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1210 // even if currently isNullValue gives false. 1211 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1212 // For vector constants, we cannot use isNullValue to fold into 1213 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1214 // elements in the vector, we will incorrectly fold InC to 1215 // `TrueVInPred`. 1216 if (InC && isa<ConstantInt>(InC)) 1217 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1218 else { 1219 // Generate the select in the same block as PN's current incoming block. 1220 // Note: ThisBB need not be the NonConstBB because vector constants 1221 // which are constants by definition are handled here. 1222 // FIXME: This can lead to an increase in IR generation because we might 1223 // generate selects for vector constant phi operand, that could not be 1224 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1225 // non-vector phis, this transformation was always profitable because 1226 // the select would be generated exactly once in the NonConstBB. 1227 Builder.SetInsertPoint(ThisBB->getTerminator()); 1228 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1229 FalseVInPred, "phi.sel"); 1230 } 1231 NewPN->addIncoming(InV, ThisBB); 1232 } 1233 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1234 Constant *C = cast<Constant>(I.getOperand(1)); 1235 for (unsigned i = 0; i != NumPHIValues; ++i) { 1236 Value *InV = nullptr; 1237 if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1238 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1239 else 1240 InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i), 1241 C, "phi.cmp"); 1242 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1243 } 1244 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1245 for (unsigned i = 0; i != NumPHIValues; ++i) { 1246 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1247 Builder); 1248 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1249 } 1250 } else if (isa<FreezeInst>(&I)) { 1251 for (unsigned i = 0; i != NumPHIValues; ++i) { 1252 Value *InV; 1253 if (NonConstBB == PN->getIncomingBlock(i)) 1254 InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr"); 1255 else 1256 InV = PN->getIncomingValue(i); 1257 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1258 } 1259 } else { 1260 CastInst *CI = cast<CastInst>(&I); 1261 Type *RetTy = CI->getType(); 1262 for (unsigned i = 0; i != NumPHIValues; ++i) { 1263 Value *InV; 1264 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1265 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1266 else 1267 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1268 I.getType(), "phi.cast"); 1269 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1270 } 1271 } 1272 1273 for (User *U : make_early_inc_range(PN->users())) { 1274 Instruction *User = cast<Instruction>(U); 1275 if (User == &I) continue; 1276 replaceInstUsesWith(*User, NewPN); 1277 eraseInstFromFunction(*User); 1278 } 1279 return replaceInstUsesWith(I, NewPN); 1280 } 1281 1282 Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) { 1283 // TODO: This should be similar to the incoming values check in foldOpIntoPhi: 1284 // we are guarding against replicating the binop in >1 predecessor. 1285 // This could miss matching a phi with 2 constant incoming values. 1286 auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0)); 1287 auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1)); 1288 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() || 1289 Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2) 1290 return nullptr; 1291 1292 // TODO: Remove the restriction for binop being in the same block as the phis. 1293 if (BO.getParent() != Phi0->getParent() || 1294 BO.getParent() != Phi1->getParent()) 1295 return nullptr; 1296 1297 // Match a pair of incoming constants for one of the predecessor blocks. 1298 BasicBlock *ConstBB, *OtherBB; 1299 Constant *C0, *C1; 1300 if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) { 1301 ConstBB = Phi0->getIncomingBlock(0); 1302 OtherBB = Phi0->getIncomingBlock(1); 1303 } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) { 1304 ConstBB = Phi0->getIncomingBlock(1); 1305 OtherBB = Phi0->getIncomingBlock(0); 1306 } else { 1307 return nullptr; 1308 } 1309 if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1))) 1310 return nullptr; 1311 1312 // The block that we are hoisting to must reach here unconditionally. 1313 // Otherwise, we could be speculatively executing an expensive or 1314 // non-speculative op. 1315 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator()); 1316 if (!PredBlockBranch || PredBlockBranch->isConditional() || 1317 !DT.isReachableFromEntry(OtherBB)) 1318 return nullptr; 1319 1320 // TODO: This check could be tightened to only apply to binops (div/rem) that 1321 // are not safe to speculatively execute. But that could allow hoisting 1322 // potentially expensive instructions (fdiv for example). 1323 for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter) 1324 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter)) 1325 return nullptr; 1326 1327 // Make a new binop in the predecessor block with the non-constant incoming 1328 // values. 1329 Builder.SetInsertPoint(PredBlockBranch); 1330 Value *NewBO = Builder.CreateBinOp(BO.getOpcode(), 1331 Phi0->getIncomingValueForBlock(OtherBB), 1332 Phi1->getIncomingValueForBlock(OtherBB)); 1333 if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO)) 1334 NotFoldedNewBO->copyIRFlags(&BO); 1335 1336 // Fold constants for the predecessor block with constant incoming values. 1337 Constant *NewC = ConstantExpr::get(BO.getOpcode(), C0, C1); 1338 1339 // Replace the binop with a phi of the new values. The old phis are dead. 1340 PHINode *NewPhi = PHINode::Create(BO.getType(), 2); 1341 NewPhi->addIncoming(NewBO, OtherBB); 1342 NewPhi->addIncoming(NewC, ConstBB); 1343 return NewPhi; 1344 } 1345 1346 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1347 if (!isa<Constant>(I.getOperand(1))) 1348 return nullptr; 1349 1350 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1351 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1352 return NewSel; 1353 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1354 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1355 return NewPhi; 1356 } 1357 return nullptr; 1358 } 1359 1360 /// Given a pointer type and a constant offset, determine whether or not there 1361 /// is a sequence of GEP indices into the pointed type that will land us at the 1362 /// specified offset. If so, fill them into NewIndices and return the resultant 1363 /// element type, otherwise return null. 1364 static Type *findElementAtOffset(PointerType *PtrTy, int64_t IntOffset, 1365 SmallVectorImpl<Value *> &NewIndices, 1366 const DataLayout &DL) { 1367 // Only used by visitGEPOfBitcast(), which is skipped for opaque pointers. 1368 Type *Ty = PtrTy->getNonOpaquePointerElementType(); 1369 if (!Ty->isSized()) 1370 return nullptr; 1371 1372 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset); 1373 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset); 1374 if (!Offset.isZero()) 1375 return nullptr; 1376 1377 for (const APInt &Index : Indices) 1378 NewIndices.push_back(ConstantInt::get(PtrTy->getContext(), Index)); 1379 return Ty; 1380 } 1381 1382 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1383 // If this GEP has only 0 indices, it is the same pointer as 1384 // Src. If Src is not a trivial GEP too, don't combine 1385 // the indices. 1386 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1387 !Src.hasOneUse()) 1388 return false; 1389 return true; 1390 } 1391 1392 /// Return a value X such that Val = X * Scale, or null if none. 1393 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1394 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1395 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1396 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1397 Scale.getBitWidth() && "Scale not compatible with value!"); 1398 1399 // If Val is zero or Scale is one then Val = Val * Scale. 1400 if (match(Val, m_Zero()) || Scale == 1) { 1401 NoSignedWrap = true; 1402 return Val; 1403 } 1404 1405 // If Scale is zero then it does not divide Val. 1406 if (Scale.isMinValue()) 1407 return nullptr; 1408 1409 // Look through chains of multiplications, searching for a constant that is 1410 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1411 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1412 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1413 // down from Val: 1414 // 1415 // Val = M1 * X || Analysis starts here and works down 1416 // M1 = M2 * Y || Doesn't descend into terms with more 1417 // M2 = Z * 4 \/ than one use 1418 // 1419 // Then to modify a term at the bottom: 1420 // 1421 // Val = M1 * X 1422 // M1 = Z * Y || Replaced M2 with Z 1423 // 1424 // Then to work back up correcting nsw flags. 1425 1426 // Op - the term we are currently analyzing. Starts at Val then drills down. 1427 // Replaced with its descaled value before exiting from the drill down loop. 1428 Value *Op = Val; 1429 1430 // Parent - initially null, but after drilling down notes where Op came from. 1431 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1432 // 0'th operand of Val. 1433 std::pair<Instruction *, unsigned> Parent; 1434 1435 // Set if the transform requires a descaling at deeper levels that doesn't 1436 // overflow. 1437 bool RequireNoSignedWrap = false; 1438 1439 // Log base 2 of the scale. Negative if not a power of 2. 1440 int32_t logScale = Scale.exactLogBase2(); 1441 1442 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1443 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1444 // If Op is a constant divisible by Scale then descale to the quotient. 1445 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1446 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1447 if (!Remainder.isMinValue()) 1448 // Not divisible by Scale. 1449 return nullptr; 1450 // Replace with the quotient in the parent. 1451 Op = ConstantInt::get(CI->getType(), Quotient); 1452 NoSignedWrap = true; 1453 break; 1454 } 1455 1456 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1457 if (BO->getOpcode() == Instruction::Mul) { 1458 // Multiplication. 1459 NoSignedWrap = BO->hasNoSignedWrap(); 1460 if (RequireNoSignedWrap && !NoSignedWrap) 1461 return nullptr; 1462 1463 // There are three cases for multiplication: multiplication by exactly 1464 // the scale, multiplication by a constant different to the scale, and 1465 // multiplication by something else. 1466 Value *LHS = BO->getOperand(0); 1467 Value *RHS = BO->getOperand(1); 1468 1469 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1470 // Multiplication by a constant. 1471 if (CI->getValue() == Scale) { 1472 // Multiplication by exactly the scale, replace the multiplication 1473 // by its left-hand side in the parent. 1474 Op = LHS; 1475 break; 1476 } 1477 1478 // Otherwise drill down into the constant. 1479 if (!Op->hasOneUse()) 1480 return nullptr; 1481 1482 Parent = std::make_pair(BO, 1); 1483 continue; 1484 } 1485 1486 // Multiplication by something else. Drill down into the left-hand side 1487 // since that's where the reassociate pass puts the good stuff. 1488 if (!Op->hasOneUse()) 1489 return nullptr; 1490 1491 Parent = std::make_pair(BO, 0); 1492 continue; 1493 } 1494 1495 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1496 isa<ConstantInt>(BO->getOperand(1))) { 1497 // Multiplication by a power of 2. 1498 NoSignedWrap = BO->hasNoSignedWrap(); 1499 if (RequireNoSignedWrap && !NoSignedWrap) 1500 return nullptr; 1501 1502 Value *LHS = BO->getOperand(0); 1503 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1504 getLimitedValue(Scale.getBitWidth()); 1505 // Op = LHS << Amt. 1506 1507 if (Amt == logScale) { 1508 // Multiplication by exactly the scale, replace the multiplication 1509 // by its left-hand side in the parent. 1510 Op = LHS; 1511 break; 1512 } 1513 if (Amt < logScale || !Op->hasOneUse()) 1514 return nullptr; 1515 1516 // Multiplication by more than the scale. Reduce the multiplying amount 1517 // by the scale in the parent. 1518 Parent = std::make_pair(BO, 1); 1519 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1520 break; 1521 } 1522 } 1523 1524 if (!Op->hasOneUse()) 1525 return nullptr; 1526 1527 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1528 if (Cast->getOpcode() == Instruction::SExt) { 1529 // Op is sign-extended from a smaller type, descale in the smaller type. 1530 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1531 APInt SmallScale = Scale.trunc(SmallSize); 1532 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1533 // descale Op as (sext Y) * Scale. In order to have 1534 // sext (Y * SmallScale) = (sext Y) * Scale 1535 // some conditions need to hold however: SmallScale must sign-extend to 1536 // Scale and the multiplication Y * SmallScale should not overflow. 1537 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1538 // SmallScale does not sign-extend to Scale. 1539 return nullptr; 1540 assert(SmallScale.exactLogBase2() == logScale); 1541 // Require that Y * SmallScale must not overflow. 1542 RequireNoSignedWrap = true; 1543 1544 // Drill down through the cast. 1545 Parent = std::make_pair(Cast, 0); 1546 Scale = SmallScale; 1547 continue; 1548 } 1549 1550 if (Cast->getOpcode() == Instruction::Trunc) { 1551 // Op is truncated from a larger type, descale in the larger type. 1552 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1553 // trunc (Y * sext Scale) = (trunc Y) * Scale 1554 // always holds. However (trunc Y) * Scale may overflow even if 1555 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1556 // from this point up in the expression (see later). 1557 if (RequireNoSignedWrap) 1558 return nullptr; 1559 1560 // Drill down through the cast. 1561 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1562 Parent = std::make_pair(Cast, 0); 1563 Scale = Scale.sext(LargeSize); 1564 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1565 logScale = -1; 1566 assert(Scale.exactLogBase2() == logScale); 1567 continue; 1568 } 1569 } 1570 1571 // Unsupported expression, bail out. 1572 return nullptr; 1573 } 1574 1575 // If Op is zero then Val = Op * Scale. 1576 if (match(Op, m_Zero())) { 1577 NoSignedWrap = true; 1578 return Op; 1579 } 1580 1581 // We know that we can successfully descale, so from here on we can safely 1582 // modify the IR. Op holds the descaled version of the deepest term in the 1583 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1584 // not to overflow. 1585 1586 if (!Parent.first) 1587 // The expression only had one term. 1588 return Op; 1589 1590 // Rewrite the parent using the descaled version of its operand. 1591 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1592 assert(Op != Parent.first->getOperand(Parent.second) && 1593 "Descaling was a no-op?"); 1594 replaceOperand(*Parent.first, Parent.second, Op); 1595 Worklist.push(Parent.first); 1596 1597 // Now work back up the expression correcting nsw flags. The logic is based 1598 // on the following observation: if X * Y is known not to overflow as a signed 1599 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1600 // then X * Z will not overflow as a signed multiplication either. As we work 1601 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1602 // current level has strictly smaller absolute value than the original. 1603 Instruction *Ancestor = Parent.first; 1604 do { 1605 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1606 // If the multiplication wasn't nsw then we can't say anything about the 1607 // value of the descaled multiplication, and we have to clear nsw flags 1608 // from this point on up. 1609 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1610 NoSignedWrap &= OpNoSignedWrap; 1611 if (NoSignedWrap != OpNoSignedWrap) { 1612 BO->setHasNoSignedWrap(NoSignedWrap); 1613 Worklist.push(Ancestor); 1614 } 1615 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1616 // The fact that the descaled input to the trunc has smaller absolute 1617 // value than the original input doesn't tell us anything useful about 1618 // the absolute values of the truncations. 1619 NoSignedWrap = false; 1620 } 1621 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1622 "Failed to keep proper track of nsw flags while drilling down?"); 1623 1624 if (Ancestor == Val) 1625 // Got to the top, all done! 1626 return Val; 1627 1628 // Move up one level in the expression. 1629 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1630 Ancestor = Ancestor->user_back(); 1631 } while (true); 1632 } 1633 1634 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 1635 if (!isa<VectorType>(Inst.getType())) 1636 return nullptr; 1637 1638 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1639 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1640 assert(cast<VectorType>(LHS->getType())->getElementCount() == 1641 cast<VectorType>(Inst.getType())->getElementCount()); 1642 assert(cast<VectorType>(RHS->getType())->getElementCount() == 1643 cast<VectorType>(Inst.getType())->getElementCount()); 1644 1645 // If both operands of the binop are vector concatenations, then perform the 1646 // narrow binop on each pair of the source operands followed by concatenation 1647 // of the results. 1648 Value *L0, *L1, *R0, *R1; 1649 ArrayRef<int> Mask; 1650 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 1651 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 1652 LHS->hasOneUse() && RHS->hasOneUse() && 1653 cast<ShuffleVectorInst>(LHS)->isConcat() && 1654 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1655 // This transform does not have the speculative execution constraint as 1656 // below because the shuffle is a concatenation. The new binops are 1657 // operating on exactly the same elements as the existing binop. 1658 // TODO: We could ease the mask requirement to allow different undef lanes, 1659 // but that requires an analysis of the binop-with-undef output value. 1660 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1661 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1662 BO->copyIRFlags(&Inst); 1663 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1664 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1665 BO->copyIRFlags(&Inst); 1666 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1667 } 1668 1669 // It may not be safe to reorder shuffles and things like div, urem, etc. 1670 // because we may trap when executing those ops on unknown vector elements. 1671 // See PR20059. 1672 if (!isSafeToSpeculativelyExecute(&Inst)) 1673 return nullptr; 1674 1675 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 1676 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1677 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1678 BO->copyIRFlags(&Inst); 1679 return new ShuffleVectorInst(XY, M); 1680 }; 1681 1682 // If both arguments of the binary operation are shuffles that use the same 1683 // mask and shuffle within a single vector, move the shuffle after the binop. 1684 Value *V1, *V2; 1685 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) && 1686 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) && 1687 V1->getType() == V2->getType() && 1688 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1689 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1690 return createBinOpShuffle(V1, V2, Mask); 1691 } 1692 1693 // If both arguments of a commutative binop are select-shuffles that use the 1694 // same mask with commuted operands, the shuffles are unnecessary. 1695 if (Inst.isCommutative() && 1696 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 1697 match(RHS, 1698 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 1699 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1700 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1701 // TODO: Allow shuffles that contain undefs in the mask? 1702 // That is legal, but it reduces undef knowledge. 1703 // TODO: Allow arbitrary shuffles by shuffling after binop? 1704 // That might be legal, but we have to deal with poison. 1705 if (LShuf->isSelect() && 1706 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) && 1707 RShuf->isSelect() && 1708 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) { 1709 // Example: 1710 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1711 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1712 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1713 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1714 NewBO->copyIRFlags(&Inst); 1715 return NewBO; 1716 } 1717 } 1718 1719 // If one argument is a shuffle within one vector and the other is a constant, 1720 // try moving the shuffle after the binary operation. This canonicalization 1721 // intends to move shuffles closer to other shuffles and binops closer to 1722 // other binops, so they can be folded. It may also enable demanded elements 1723 // transforms. 1724 Constant *C; 1725 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 1726 if (InstVTy && 1727 match(&Inst, 1728 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))), 1729 m_ImmConstant(C))) && 1730 cast<FixedVectorType>(V1->getType())->getNumElements() <= 1731 InstVTy->getNumElements()) { 1732 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 1733 "Shuffle should not change scalar type"); 1734 1735 // Find constant NewC that has property: 1736 // shuffle(NewC, ShMask) = C 1737 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1738 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1739 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1740 bool ConstOp1 = isa<Constant>(RHS); 1741 ArrayRef<int> ShMask = Mask; 1742 unsigned SrcVecNumElts = 1743 cast<FixedVectorType>(V1->getType())->getNumElements(); 1744 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1745 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1746 bool MayChange = true; 1747 unsigned NumElts = InstVTy->getNumElements(); 1748 for (unsigned I = 0; I < NumElts; ++I) { 1749 Constant *CElt = C->getAggregateElement(I); 1750 if (ShMask[I] >= 0) { 1751 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1752 Constant *NewCElt = NewVecC[ShMask[I]]; 1753 // Bail out if: 1754 // 1. The constant vector contains a constant expression. 1755 // 2. The shuffle needs an element of the constant vector that can't 1756 // be mapped to a new constant vector. 1757 // 3. This is a widening shuffle that copies elements of V1 into the 1758 // extended elements (extending with undef is allowed). 1759 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1760 I >= SrcVecNumElts) { 1761 MayChange = false; 1762 break; 1763 } 1764 NewVecC[ShMask[I]] = CElt; 1765 } 1766 // If this is a widening shuffle, we must be able to extend with undef 1767 // elements. If the original binop does not produce an undef in the high 1768 // lanes, then this transform is not safe. 1769 // Similarly for undef lanes due to the shuffle mask, we can only 1770 // transform binops that preserve undef. 1771 // TODO: We could shuffle those non-undef constant values into the 1772 // result by using a constant vector (rather than an undef vector) 1773 // as operand 1 of the new binop, but that might be too aggressive 1774 // for target-independent shuffle creation. 1775 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1776 Constant *MaybeUndef = 1777 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1778 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1779 if (!match(MaybeUndef, m_Undef())) { 1780 MayChange = false; 1781 break; 1782 } 1783 } 1784 } 1785 if (MayChange) { 1786 Constant *NewC = ConstantVector::get(NewVecC); 1787 // It may not be safe to execute a binop on a vector with undef elements 1788 // because the entire instruction can be folded to undef or create poison 1789 // that did not exist in the original code. 1790 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1791 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1792 1793 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1794 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1795 Value *NewLHS = ConstOp1 ? V1 : NewC; 1796 Value *NewRHS = ConstOp1 ? NewC : V1; 1797 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1798 } 1799 } 1800 1801 // Try to reassociate to sink a splat shuffle after a binary operation. 1802 if (Inst.isAssociative() && Inst.isCommutative()) { 1803 // Canonicalize shuffle operand as LHS. 1804 if (isa<ShuffleVectorInst>(RHS)) 1805 std::swap(LHS, RHS); 1806 1807 Value *X; 1808 ArrayRef<int> MaskC; 1809 int SplatIndex; 1810 Value *Y, *OtherOp; 1811 if (!match(LHS, 1812 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 1813 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || 1814 X->getType() != Inst.getType() || 1815 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp))))) 1816 return nullptr; 1817 1818 // FIXME: This may not be safe if the analysis allows undef elements. By 1819 // moving 'Y' before the splat shuffle, we are implicitly assuming 1820 // that it is not undef/poison at the splat index. 1821 if (isSplatValue(OtherOp, SplatIndex)) { 1822 std::swap(Y, OtherOp); 1823 } else if (!isSplatValue(Y, SplatIndex)) { 1824 return nullptr; 1825 } 1826 1827 // X and Y are splatted values, so perform the binary operation on those 1828 // values followed by a splat followed by the 2nd binary operation: 1829 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 1830 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 1831 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 1832 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 1833 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 1834 1835 // Intersect FMF on both new binops. Other (poison-generating) flags are 1836 // dropped to be safe. 1837 if (isa<FPMathOperator>(R)) { 1838 R->copyFastMathFlags(&Inst); 1839 R->andIRFlags(RHS); 1840 } 1841 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 1842 NewInstBO->copyIRFlags(R); 1843 return R; 1844 } 1845 1846 return nullptr; 1847 } 1848 1849 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1850 /// of a value. This requires a potentially expensive known bits check to make 1851 /// sure the narrow op does not overflow. 1852 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 1853 // We need at least one extended operand. 1854 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1855 1856 // If this is a sub, we swap the operands since we always want an extension 1857 // on the RHS. The LHS can be an extension or a constant. 1858 if (BO.getOpcode() == Instruction::Sub) 1859 std::swap(Op0, Op1); 1860 1861 Value *X; 1862 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1863 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1864 return nullptr; 1865 1866 // If both operands are the same extension from the same source type and we 1867 // can eliminate at least one (hasOneUse), this might work. 1868 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1869 Value *Y; 1870 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1871 cast<Operator>(Op1)->getOpcode() == CastOpc && 1872 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1873 // If that did not match, see if we have a suitable constant operand. 1874 // Truncating and extending must produce the same constant. 1875 Constant *WideC; 1876 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1877 return nullptr; 1878 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1879 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1880 return nullptr; 1881 Y = NarrowC; 1882 } 1883 1884 // Swap back now that we found our operands. 1885 if (BO.getOpcode() == Instruction::Sub) 1886 std::swap(X, Y); 1887 1888 // Both operands have narrow versions. Last step: the math must not overflow 1889 // in the narrow width. 1890 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1891 return nullptr; 1892 1893 // bo (ext X), (ext Y) --> ext (bo X, Y) 1894 // bo (ext X), C --> ext (bo X, C') 1895 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1896 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1897 if (IsSext) 1898 NewBinOp->setHasNoSignedWrap(); 1899 else 1900 NewBinOp->setHasNoUnsignedWrap(); 1901 } 1902 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1903 } 1904 1905 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 1906 // At least one GEP must be inbounds. 1907 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 1908 return false; 1909 1910 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 1911 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 1912 } 1913 1914 /// Thread a GEP operation with constant indices through the constant true/false 1915 /// arms of a select. 1916 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 1917 InstCombiner::BuilderTy &Builder) { 1918 if (!GEP.hasAllConstantIndices()) 1919 return nullptr; 1920 1921 Instruction *Sel; 1922 Value *Cond; 1923 Constant *TrueC, *FalseC; 1924 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 1925 !match(Sel, 1926 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 1927 return nullptr; 1928 1929 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 1930 // Propagate 'inbounds' and metadata from existing instructions. 1931 // Note: using IRBuilder to create the constants for efficiency. 1932 SmallVector<Value *, 4> IndexC(GEP.indices()); 1933 bool IsInBounds = GEP.isInBounds(); 1934 Type *Ty = GEP.getSourceElementType(); 1935 Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", IsInBounds); 1936 Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", IsInBounds); 1937 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 1938 } 1939 1940 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP, 1941 GEPOperator *Src) { 1942 // Combine Indices - If the source pointer to this getelementptr instruction 1943 // is a getelementptr instruction with matching element type, combine the 1944 // indices of the two getelementptr instructions into a single instruction. 1945 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1946 return nullptr; 1947 1948 if (Src->getResultElementType() == GEP.getSourceElementType() && 1949 Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1950 Src->hasOneUse()) { 1951 Value *GO1 = GEP.getOperand(1); 1952 Value *SO1 = Src->getOperand(1); 1953 1954 if (LI) { 1955 // Try to reassociate loop invariant GEP chains to enable LICM. 1956 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1957 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1958 // invariant: this breaks the dependence between GEPs and allows LICM 1959 // to hoist the invariant part out of the loop. 1960 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1961 // The swapped GEPs are inbounds if both original GEPs are inbounds 1962 // and the sign of the offsets is the same. For simplicity, only 1963 // handle both offsets being non-negative. 1964 bool IsInBounds = Src->isInBounds() && GEP.isInBounds() && 1965 isKnownNonNegative(SO1, DL, 0, &AC, &GEP, &DT) && 1966 isKnownNonNegative(GO1, DL, 0, &AC, &GEP, &DT); 1967 // Put NewSrc at same location as %src. 1968 Builder.SetInsertPoint(cast<Instruction>(Src)); 1969 Value *NewSrc = Builder.CreateGEP(GEP.getSourceElementType(), 1970 Src->getPointerOperand(), GO1, 1971 Src->getName(), IsInBounds); 1972 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 1973 GEP.getSourceElementType(), NewSrc, {SO1}); 1974 NewGEP->setIsInBounds(IsInBounds); 1975 return NewGEP; 1976 } 1977 } 1978 } 1979 } 1980 1981 // Note that if our source is a gep chain itself then we wait for that 1982 // chain to be resolved before we perform this transformation. This 1983 // avoids us creating a TON of code in some cases. 1984 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 1985 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1986 return nullptr; // Wait until our source is folded to completion. 1987 1988 // For constant GEPs, use a more general offset-based folding approach. 1989 // Only do this for opaque pointers, as the result element type may change. 1990 Type *PtrTy = Src->getType()->getScalarType(); 1991 if (PtrTy->isOpaquePointerTy() && GEP.hasAllConstantIndices() && 1992 (Src->hasOneUse() || Src->hasAllConstantIndices())) { 1993 // Split Src into a variable part and a constant suffix. 1994 gep_type_iterator GTI = gep_type_begin(*Src); 1995 Type *BaseType = GTI.getIndexedType(); 1996 bool IsFirstType = true; 1997 unsigned NumVarIndices = 0; 1998 for (auto Pair : enumerate(Src->indices())) { 1999 if (!isa<ConstantInt>(Pair.value())) { 2000 BaseType = GTI.getIndexedType(); 2001 IsFirstType = false; 2002 NumVarIndices = Pair.index() + 1; 2003 } 2004 ++GTI; 2005 } 2006 2007 // Determine the offset for the constant suffix of Src. 2008 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0); 2009 if (NumVarIndices != Src->getNumIndices()) { 2010 // FIXME: getIndexedOffsetInType() does not handled scalable vectors. 2011 if (isa<ScalableVectorType>(BaseType)) 2012 return nullptr; 2013 2014 SmallVector<Value *> ConstantIndices; 2015 if (!IsFirstType) 2016 ConstantIndices.push_back( 2017 Constant::getNullValue(Type::getInt32Ty(GEP.getContext()))); 2018 append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices)); 2019 Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices); 2020 } 2021 2022 // Add the offset for GEP (which is fully constant). 2023 if (!GEP.accumulateConstantOffset(DL, Offset)) 2024 return nullptr; 2025 2026 // Convert the total offset back into indices. 2027 SmallVector<APInt> ConstIndices = 2028 DL.getGEPIndicesForOffset(BaseType, Offset); 2029 if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) 2030 return nullptr; 2031 2032 bool IsInBounds = isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)); 2033 SmallVector<Value *> Indices; 2034 append_range(Indices, drop_end(Src->indices(), 2035 Src->getNumIndices() - NumVarIndices)); 2036 for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) { 2037 Indices.push_back(ConstantInt::get(GEP.getContext(), Idx)); 2038 // Even if the total offset is inbounds, we may end up representing it 2039 // by first performing a larger negative offset, and then a smaller 2040 // positive one. The large negative offset might go out of bounds. Only 2041 // preserve inbounds if all signs are the same. 2042 IsInBounds &= Idx.isNonNegative() == ConstIndices[0].isNonNegative(); 2043 } 2044 2045 return IsInBounds 2046 ? GetElementPtrInst::CreateInBounds(Src->getSourceElementType(), 2047 Src->getOperand(0), Indices, 2048 GEP.getName()) 2049 : GetElementPtrInst::Create(Src->getSourceElementType(), 2050 Src->getOperand(0), Indices, 2051 GEP.getName()); 2052 } 2053 2054 if (Src->getResultElementType() != GEP.getSourceElementType()) 2055 return nullptr; 2056 2057 SmallVector<Value*, 8> Indices; 2058 2059 // Find out whether the last index in the source GEP is a sequential idx. 2060 bool EndsWithSequential = false; 2061 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 2062 I != E; ++I) 2063 EndsWithSequential = I.isSequential(); 2064 2065 // Can we combine the two pointer arithmetics offsets? 2066 if (EndsWithSequential) { 2067 // Replace: gep (gep %P, long B), long A, ... 2068 // With: T = long A+B; gep %P, T, ... 2069 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 2070 Value *GO1 = GEP.getOperand(1); 2071 2072 // If they aren't the same type, then the input hasn't been processed 2073 // by the loop above yet (which canonicalizes sequential index types to 2074 // intptr_t). Just avoid transforming this until the input has been 2075 // normalized. 2076 if (SO1->getType() != GO1->getType()) 2077 return nullptr; 2078 2079 Value *Sum = 2080 simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 2081 // Only do the combine when we are sure the cost after the 2082 // merge is never more than that before the merge. 2083 if (Sum == nullptr) 2084 return nullptr; 2085 2086 // Update the GEP in place if possible. 2087 if (Src->getNumOperands() == 2) { 2088 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 2089 replaceOperand(GEP, 0, Src->getOperand(0)); 2090 replaceOperand(GEP, 1, Sum); 2091 return &GEP; 2092 } 2093 Indices.append(Src->op_begin()+1, Src->op_end()-1); 2094 Indices.push_back(Sum); 2095 Indices.append(GEP.op_begin()+2, GEP.op_end()); 2096 } else if (isa<Constant>(*GEP.idx_begin()) && 2097 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2098 Src->getNumOperands() != 1) { 2099 // Otherwise we can do the fold if the first index of the GEP is a zero 2100 Indices.append(Src->op_begin()+1, Src->op_end()); 2101 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2102 } 2103 2104 if (!Indices.empty()) 2105 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2106 ? GetElementPtrInst::CreateInBounds( 2107 Src->getSourceElementType(), Src->getOperand(0), Indices, 2108 GEP.getName()) 2109 : GetElementPtrInst::Create(Src->getSourceElementType(), 2110 Src->getOperand(0), Indices, 2111 GEP.getName()); 2112 2113 return nullptr; 2114 } 2115 2116 // Note that we may have also stripped an address space cast in between. 2117 Instruction *InstCombinerImpl::visitGEPOfBitcast(BitCastInst *BCI, 2118 GetElementPtrInst &GEP) { 2119 // With opaque pointers, there is no pointer element type we can use to 2120 // adjust the GEP type. 2121 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2122 if (SrcType->isOpaque()) 2123 return nullptr; 2124 2125 Type *GEPEltType = GEP.getSourceElementType(); 2126 Type *SrcEltType = SrcType->getNonOpaquePointerElementType(); 2127 Value *SrcOp = BCI->getOperand(0); 2128 2129 // GEP directly using the source operand if this GEP is accessing an element 2130 // of a bitcasted pointer to vector or array of the same dimensions: 2131 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2132 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2133 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, 2134 const DataLayout &DL) { 2135 auto *VecVTy = cast<FixedVectorType>(VecTy); 2136 return ArrTy->getArrayElementType() == VecVTy->getElementType() && 2137 ArrTy->getArrayNumElements() == VecVTy->getNumElements() && 2138 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); 2139 }; 2140 if (GEP.getNumOperands() == 3 && 2141 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) && 2142 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || 2143 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() && 2144 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { 2145 2146 // Create a new GEP here, as using `setOperand()` followed by 2147 // `setSourceElementType()` won't actually update the type of the 2148 // existing GEP Value. Causing issues if this Value is accessed when 2149 // constructing an AddrSpaceCastInst 2150 SmallVector<Value *, 8> Indices(GEP.indices()); 2151 Value *NGEP = 2152 Builder.CreateGEP(SrcEltType, SrcOp, Indices, "", GEP.isInBounds()); 2153 NGEP->takeName(&GEP); 2154 2155 // Preserve GEP address space to satisfy users 2156 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2157 return new AddrSpaceCastInst(NGEP, GEP.getType()); 2158 2159 return replaceInstUsesWith(GEP, NGEP); 2160 } 2161 2162 // See if we can simplify: 2163 // X = bitcast A* to B* 2164 // Y = gep X, <...constant indices...> 2165 // into a gep of the original struct. This is important for SROA and alias 2166 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2167 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEP.getType()); 2168 APInt Offset(OffsetBits, 0); 2169 2170 // If the bitcast argument is an allocation, The bitcast is for convertion 2171 // to actual type of allocation. Removing such bitcasts, results in having 2172 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of 2173 // struct or array hierarchy. 2174 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have 2175 // a better chance to succeed. 2176 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) && 2177 !isAllocationFn(SrcOp, &TLI)) { 2178 // If this GEP instruction doesn't move the pointer, just replace the GEP 2179 // with a bitcast of the real input to the dest type. 2180 if (!Offset) { 2181 // If the bitcast is of an allocation, and the allocation will be 2182 // converted to match the type of the cast, don't touch this. 2183 if (isa<AllocaInst>(SrcOp)) { 2184 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2185 if (Instruction *I = visitBitCast(*BCI)) { 2186 if (I != BCI) { 2187 I->takeName(BCI); 2188 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2189 replaceInstUsesWith(*BCI, I); 2190 } 2191 return &GEP; 2192 } 2193 } 2194 2195 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2196 return new AddrSpaceCastInst(SrcOp, GEP.getType()); 2197 return new BitCastInst(SrcOp, GEP.getType()); 2198 } 2199 2200 // Otherwise, if the offset is non-zero, we need to find out if there is a 2201 // field at Offset in 'A's type. If so, we can pull the cast through the 2202 // GEP. 2203 SmallVector<Value *, 8> NewIndices; 2204 if (findElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices, DL)) { 2205 Value *NGEP = Builder.CreateGEP(SrcEltType, SrcOp, NewIndices, "", 2206 GEP.isInBounds()); 2207 2208 if (NGEP->getType() == GEP.getType()) 2209 return replaceInstUsesWith(GEP, NGEP); 2210 NGEP->takeName(&GEP); 2211 2212 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2213 return new AddrSpaceCastInst(NGEP, GEP.getType()); 2214 return new BitCastInst(NGEP, GEP.getType()); 2215 } 2216 } 2217 2218 return nullptr; 2219 } 2220 2221 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 2222 Value *PtrOp = GEP.getOperand(0); 2223 SmallVector<Value *, 8> Indices(GEP.indices()); 2224 Type *GEPType = GEP.getType(); 2225 Type *GEPEltType = GEP.getSourceElementType(); 2226 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType); 2227 if (Value *V = simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(), 2228 SQ.getWithInstruction(&GEP))) 2229 return replaceInstUsesWith(GEP, V); 2230 2231 // For vector geps, use the generic demanded vector support. 2232 // Skip if GEP return type is scalable. The number of elements is unknown at 2233 // compile-time. 2234 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 2235 auto VWidth = GEPFVTy->getNumElements(); 2236 APInt UndefElts(VWidth, 0); 2237 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2238 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 2239 UndefElts)) { 2240 if (V != &GEP) 2241 return replaceInstUsesWith(GEP, V); 2242 return &GEP; 2243 } 2244 2245 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 2246 // possible (decide on canonical form for pointer broadcast), 3) exploit 2247 // undef elements to decrease demanded bits 2248 } 2249 2250 // Eliminate unneeded casts for indices, and replace indices which displace 2251 // by multiples of a zero size type with zero. 2252 bool MadeChange = false; 2253 2254 // Index width may not be the same width as pointer width. 2255 // Data layout chooses the right type based on supported integer types. 2256 Type *NewScalarIndexTy = 2257 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 2258 2259 gep_type_iterator GTI = gep_type_begin(GEP); 2260 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 2261 ++I, ++GTI) { 2262 // Skip indices into struct types. 2263 if (GTI.isStruct()) 2264 continue; 2265 2266 Type *IndexTy = (*I)->getType(); 2267 Type *NewIndexType = 2268 IndexTy->isVectorTy() 2269 ? VectorType::get(NewScalarIndexTy, 2270 cast<VectorType>(IndexTy)->getElementCount()) 2271 : NewScalarIndexTy; 2272 2273 // If the element type has zero size then any index over it is equivalent 2274 // to an index of zero, so replace it with zero if it is not zero already. 2275 Type *EltTy = GTI.getIndexedType(); 2276 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 2277 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 2278 *I = Constant::getNullValue(NewIndexType); 2279 MadeChange = true; 2280 } 2281 2282 if (IndexTy != NewIndexType) { 2283 // If we are using a wider index than needed for this platform, shrink 2284 // it to what we need. If narrower, sign-extend it to what we need. 2285 // This explicit cast can make subsequent optimizations more obvious. 2286 *I = Builder.CreateIntCast(*I, NewIndexType, true); 2287 MadeChange = true; 2288 } 2289 } 2290 if (MadeChange) 2291 return &GEP; 2292 2293 // Check to see if the inputs to the PHI node are getelementptr instructions. 2294 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 2295 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 2296 if (!Op1) 2297 return nullptr; 2298 2299 // Don't fold a GEP into itself through a PHI node. This can only happen 2300 // through the back-edge of a loop. Folding a GEP into itself means that 2301 // the value of the previous iteration needs to be stored in the meantime, 2302 // thus requiring an additional register variable to be live, but not 2303 // actually achieving anything (the GEP still needs to be executed once per 2304 // loop iteration). 2305 if (Op1 == &GEP) 2306 return nullptr; 2307 2308 int DI = -1; 2309 2310 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 2311 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 2312 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() || 2313 Op1->getSourceElementType() != Op2->getSourceElementType()) 2314 return nullptr; 2315 2316 // As for Op1 above, don't try to fold a GEP into itself. 2317 if (Op2 == &GEP) 2318 return nullptr; 2319 2320 // Keep track of the type as we walk the GEP. 2321 Type *CurTy = nullptr; 2322 2323 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 2324 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 2325 return nullptr; 2326 2327 if (Op1->getOperand(J) != Op2->getOperand(J)) { 2328 if (DI == -1) { 2329 // We have not seen any differences yet in the GEPs feeding the 2330 // PHI yet, so we record this one if it is allowed to be a 2331 // variable. 2332 2333 // The first two arguments can vary for any GEP, the rest have to be 2334 // static for struct slots 2335 if (J > 1) { 2336 assert(CurTy && "No current type?"); 2337 if (CurTy->isStructTy()) 2338 return nullptr; 2339 } 2340 2341 DI = J; 2342 } else { 2343 // The GEP is different by more than one input. While this could be 2344 // extended to support GEPs that vary by more than one variable it 2345 // doesn't make sense since it greatly increases the complexity and 2346 // would result in an R+R+R addressing mode which no backend 2347 // directly supports and would need to be broken into several 2348 // simpler instructions anyway. 2349 return nullptr; 2350 } 2351 } 2352 2353 // Sink down a layer of the type for the next iteration. 2354 if (J > 0) { 2355 if (J == 1) { 2356 CurTy = Op1->getSourceElementType(); 2357 } else { 2358 CurTy = 2359 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 2360 } 2361 } 2362 } 2363 } 2364 2365 // If not all GEPs are identical we'll have to create a new PHI node. 2366 // Check that the old PHI node has only one use so that it will get 2367 // removed. 2368 if (DI != -1 && !PN->hasOneUse()) 2369 return nullptr; 2370 2371 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 2372 if (DI == -1) { 2373 // All the GEPs feeding the PHI are identical. Clone one down into our 2374 // BB so that it can be merged with the current GEP. 2375 } else { 2376 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 2377 // into the current block so it can be merged, and create a new PHI to 2378 // set that index. 2379 PHINode *NewPN; 2380 { 2381 IRBuilderBase::InsertPointGuard Guard(Builder); 2382 Builder.SetInsertPoint(PN); 2383 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 2384 PN->getNumOperands()); 2385 } 2386 2387 for (auto &I : PN->operands()) 2388 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 2389 PN->getIncomingBlock(I)); 2390 2391 NewGEP->setOperand(DI, NewPN); 2392 } 2393 2394 GEP.getParent()->getInstList().insert( 2395 GEP.getParent()->getFirstInsertionPt(), NewGEP); 2396 replaceOperand(GEP, 0, NewGEP); 2397 PtrOp = NewGEP; 2398 } 2399 2400 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) 2401 if (Instruction *I = visitGEPOfGEP(GEP, Src)) 2402 return I; 2403 2404 // Skip if GEP source element type is scalable. The type alloc size is unknown 2405 // at compile-time. 2406 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { 2407 unsigned AS = GEP.getPointerAddressSpace(); 2408 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 2409 DL.getIndexSizeInBits(AS)) { 2410 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2411 2412 bool Matched = false; 2413 uint64_t C; 2414 Value *V = nullptr; 2415 if (TyAllocSize == 1) { 2416 V = GEP.getOperand(1); 2417 Matched = true; 2418 } else if (match(GEP.getOperand(1), 2419 m_AShr(m_Value(V), m_ConstantInt(C)))) { 2420 if (TyAllocSize == 1ULL << C) 2421 Matched = true; 2422 } else if (match(GEP.getOperand(1), 2423 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 2424 if (TyAllocSize == C) 2425 Matched = true; 2426 } 2427 2428 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but 2429 // only if both point to the same underlying object (otherwise provenance 2430 // is not necessarily retained). 2431 Value *Y; 2432 Value *X = GEP.getOperand(0); 2433 if (Matched && 2434 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 2435 getUnderlyingObject(X) == getUnderlyingObject(Y)) 2436 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 2437 } 2438 } 2439 2440 // We do not handle pointer-vector geps here. 2441 if (GEPType->isVectorTy()) 2442 return nullptr; 2443 2444 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 2445 Value *StrippedPtr = PtrOp->stripPointerCasts(); 2446 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 2447 2448 // TODO: The basic approach of these folds is not compatible with opaque 2449 // pointers, because we can't use bitcasts as a hint for a desirable GEP 2450 // type. Instead, we should perform canonicalization directly on the GEP 2451 // type. For now, skip these. 2452 if (StrippedPtr != PtrOp && !StrippedPtrTy->isOpaque()) { 2453 bool HasZeroPointerIndex = false; 2454 Type *StrippedPtrEltTy = StrippedPtrTy->getNonOpaquePointerElementType(); 2455 2456 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 2457 HasZeroPointerIndex = C->isZero(); 2458 2459 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2460 // into : GEP [10 x i8]* X, i32 0, ... 2461 // 2462 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2463 // into : GEP i8* X, ... 2464 // 2465 // This occurs when the program declares an array extern like "int X[];" 2466 if (HasZeroPointerIndex) { 2467 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2468 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2469 if (CATy->getElementType() == StrippedPtrEltTy) { 2470 // -> GEP i8* X, ... 2471 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices())); 2472 GetElementPtrInst *Res = GetElementPtrInst::Create( 2473 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2474 Res->setIsInBounds(GEP.isInBounds()); 2475 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2476 return Res; 2477 // Insert Res, and create an addrspacecast. 2478 // e.g., 2479 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2480 // -> 2481 // %0 = GEP i8 addrspace(1)* X, ... 2482 // addrspacecast i8 addrspace(1)* %0 to i8* 2483 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2484 } 2485 2486 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2487 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2488 if (CATy->getElementType() == XATy->getElementType()) { 2489 // -> GEP [10 x i8]* X, i32 0, ... 2490 // At this point, we know that the cast source type is a pointer 2491 // to an array of the same type as the destination pointer 2492 // array. Because the array type is never stepped over (there 2493 // is a leading zero) we can fold the cast into this GEP. 2494 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2495 GEP.setSourceElementType(XATy); 2496 return replaceOperand(GEP, 0, StrippedPtr); 2497 } 2498 // Cannot replace the base pointer directly because StrippedPtr's 2499 // address space is different. Instead, create a new GEP followed by 2500 // an addrspacecast. 2501 // e.g., 2502 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2503 // i32 0, ... 2504 // -> 2505 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2506 // addrspacecast i8 addrspace(1)* %0 to i8* 2507 SmallVector<Value *, 8> Idx(GEP.indices()); 2508 Value *NewGEP = 2509 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2510 GEP.getName(), GEP.isInBounds()); 2511 return new AddrSpaceCastInst(NewGEP, GEPType); 2512 } 2513 } 2514 } 2515 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) { 2516 // Skip if GEP source element type is scalable. The type alloc size is 2517 // unknown at compile-time. 2518 // Transform things like: %t = getelementptr i32* 2519 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2 2520 // x i32]* %str, i32 0, i32 %V; bitcast 2521 if (StrippedPtrEltTy->isArrayTy() && 2522 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2523 DL.getTypeAllocSize(GEPEltType)) { 2524 Type *IdxType = DL.getIndexType(GEPType); 2525 Value *Idx[2] = {Constant::getNullValue(IdxType), GEP.getOperand(1)}; 2526 Value *NewGEP = Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2527 GEP.getName(), GEP.isInBounds()); 2528 2529 // V and GEP are both pointer types --> BitCast 2530 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2531 } 2532 2533 // Transform things like: 2534 // %V = mul i64 %N, 4 2535 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2536 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2537 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2538 // Check that changing the type amounts to dividing the index by a scale 2539 // factor. 2540 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2541 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize(); 2542 if (ResSize && SrcSize % ResSize == 0) { 2543 Value *Idx = GEP.getOperand(1); 2544 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2545 uint64_t Scale = SrcSize / ResSize; 2546 2547 // Earlier transforms ensure that the index has the right type 2548 // according to Data Layout, which considerably simplifies the 2549 // logic by eliminating implicit casts. 2550 assert(Idx->getType() == DL.getIndexType(GEPType) && 2551 "Index type does not match the Data Layout preferences"); 2552 2553 bool NSW; 2554 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2555 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2556 // If the multiplication NewIdx * Scale may overflow then the new 2557 // GEP may not be "inbounds". 2558 Value *NewGEP = 2559 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2560 GEP.getName(), GEP.isInBounds() && NSW); 2561 2562 // The NewGEP must be pointer typed, so must the old one -> BitCast 2563 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2564 GEPType); 2565 } 2566 } 2567 } 2568 2569 // Similarly, transform things like: 2570 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2571 // (where tmp = 8*tmp2) into: 2572 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2573 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2574 StrippedPtrEltTy->isArrayTy()) { 2575 // Check that changing to the array element type amounts to dividing the 2576 // index by a scale factor. 2577 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2578 uint64_t ArrayEltSize = 2579 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) 2580 .getFixedSize(); 2581 if (ResSize && ArrayEltSize % ResSize == 0) { 2582 Value *Idx = GEP.getOperand(1); 2583 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2584 uint64_t Scale = ArrayEltSize / ResSize; 2585 2586 // Earlier transforms ensure that the index has the right type 2587 // according to the Data Layout, which considerably simplifies 2588 // the logic by eliminating implicit casts. 2589 assert(Idx->getType() == DL.getIndexType(GEPType) && 2590 "Index type does not match the Data Layout preferences"); 2591 2592 bool NSW; 2593 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2594 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2595 // If the multiplication NewIdx * Scale may overflow then the new 2596 // GEP may not be "inbounds". 2597 Type *IndTy = DL.getIndexType(GEPType); 2598 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2599 2600 Value *NewGEP = 2601 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2602 GEP.getName(), GEP.isInBounds() && NSW); 2603 // The NewGEP must be pointer typed, so must the old one -> BitCast 2604 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2605 GEPType); 2606 } 2607 } 2608 } 2609 } 2610 } 2611 2612 // addrspacecast between types is canonicalized as a bitcast, then an 2613 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2614 // through the addrspacecast. 2615 Value *ASCStrippedPtrOp = PtrOp; 2616 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2617 // X = bitcast A addrspace(1)* to B addrspace(1)* 2618 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2619 // Z = gep Y, <...constant indices...> 2620 // Into an addrspacecasted GEP of the struct. 2621 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2622 ASCStrippedPtrOp = BC; 2623 } 2624 2625 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) 2626 if (Instruction *I = visitGEPOfBitcast(BCI, GEP)) 2627 return I; 2628 2629 if (!GEP.isInBounds()) { 2630 unsigned IdxWidth = 2631 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2632 APInt BasePtrOffset(IdxWidth, 0); 2633 Value *UnderlyingPtrOp = 2634 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2635 BasePtrOffset); 2636 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2637 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2638 BasePtrOffset.isNonNegative()) { 2639 APInt AllocSize( 2640 IdxWidth, 2641 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize()); 2642 if (BasePtrOffset.ule(AllocSize)) { 2643 return GetElementPtrInst::CreateInBounds( 2644 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName()); 2645 } 2646 } 2647 } 2648 } 2649 2650 if (Instruction *R = foldSelectGEP(GEP, Builder)) 2651 return R; 2652 2653 return nullptr; 2654 } 2655 2656 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, 2657 Instruction *AI) { 2658 if (isa<ConstantPointerNull>(V)) 2659 return true; 2660 if (auto *LI = dyn_cast<LoadInst>(V)) 2661 return isa<GlobalVariable>(LI->getPointerOperand()); 2662 // Two distinct allocations will never be equal. 2663 return isAllocLikeFn(V, &TLI) && V != AI; 2664 } 2665 2666 /// Given a call CB which uses an address UsedV, return true if we can prove the 2667 /// call's only possible effect is storing to V. 2668 static bool isRemovableWrite(CallBase &CB, Value *UsedV, 2669 const TargetLibraryInfo &TLI) { 2670 if (!CB.use_empty()) 2671 // TODO: add recursion if returned attribute is present 2672 return false; 2673 2674 if (CB.isTerminator()) 2675 // TODO: remove implementation restriction 2676 return false; 2677 2678 if (!CB.willReturn() || !CB.doesNotThrow()) 2679 return false; 2680 2681 // If the only possible side effect of the call is writing to the alloca, 2682 // and the result isn't used, we can safely remove any reads implied by the 2683 // call including those which might read the alloca itself. 2684 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI); 2685 return Dest && Dest->Ptr == UsedV; 2686 } 2687 2688 static bool isAllocSiteRemovable(Instruction *AI, 2689 SmallVectorImpl<WeakTrackingVH> &Users, 2690 const TargetLibraryInfo &TLI) { 2691 SmallVector<Instruction*, 4> Worklist; 2692 const Optional<StringRef> Family = getAllocationFamily(AI, &TLI); 2693 Worklist.push_back(AI); 2694 2695 do { 2696 Instruction *PI = Worklist.pop_back_val(); 2697 for (User *U : PI->users()) { 2698 Instruction *I = cast<Instruction>(U); 2699 switch (I->getOpcode()) { 2700 default: 2701 // Give up the moment we see something we can't handle. 2702 return false; 2703 2704 case Instruction::AddrSpaceCast: 2705 case Instruction::BitCast: 2706 case Instruction::GetElementPtr: 2707 Users.emplace_back(I); 2708 Worklist.push_back(I); 2709 continue; 2710 2711 case Instruction::ICmp: { 2712 ICmpInst *ICI = cast<ICmpInst>(I); 2713 // We can fold eq/ne comparisons with null to false/true, respectively. 2714 // We also fold comparisons in some conditions provided the alloc has 2715 // not escaped (see isNeverEqualToUnescapedAlloc). 2716 if (!ICI->isEquality()) 2717 return false; 2718 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2719 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2720 return false; 2721 Users.emplace_back(I); 2722 continue; 2723 } 2724 2725 case Instruction::Call: 2726 // Ignore no-op and store intrinsics. 2727 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2728 switch (II->getIntrinsicID()) { 2729 default: 2730 return false; 2731 2732 case Intrinsic::memmove: 2733 case Intrinsic::memcpy: 2734 case Intrinsic::memset: { 2735 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2736 if (MI->isVolatile() || MI->getRawDest() != PI) 2737 return false; 2738 LLVM_FALLTHROUGH; 2739 } 2740 case Intrinsic::assume: 2741 case Intrinsic::invariant_start: 2742 case Intrinsic::invariant_end: 2743 case Intrinsic::lifetime_start: 2744 case Intrinsic::lifetime_end: 2745 case Intrinsic::objectsize: 2746 Users.emplace_back(I); 2747 continue; 2748 case Intrinsic::launder_invariant_group: 2749 case Intrinsic::strip_invariant_group: 2750 Users.emplace_back(I); 2751 Worklist.push_back(I); 2752 continue; 2753 } 2754 } 2755 2756 if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) { 2757 Users.emplace_back(I); 2758 continue; 2759 } 2760 2761 if (isFreeCall(I, &TLI) && getAllocationFamily(I, &TLI) == Family) { 2762 assert(Family); 2763 Users.emplace_back(I); 2764 continue; 2765 } 2766 2767 if (isReallocLikeFn(I, &TLI) && 2768 getAllocationFamily(I, &TLI) == Family) { 2769 assert(Family); 2770 Users.emplace_back(I); 2771 Worklist.push_back(I); 2772 continue; 2773 } 2774 2775 return false; 2776 2777 case Instruction::Store: { 2778 StoreInst *SI = cast<StoreInst>(I); 2779 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2780 return false; 2781 Users.emplace_back(I); 2782 continue; 2783 } 2784 } 2785 llvm_unreachable("missing a return?"); 2786 } 2787 } while (!Worklist.empty()); 2788 return true; 2789 } 2790 2791 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 2792 assert(isa<AllocaInst>(MI) || isAllocRemovable(&cast<CallBase>(MI), &TLI)); 2793 2794 // If we have a malloc call which is only used in any amount of comparisons to 2795 // null and free calls, delete the calls and replace the comparisons with true 2796 // or false as appropriate. 2797 2798 // This is based on the principle that we can substitute our own allocation 2799 // function (which will never return null) rather than knowledge of the 2800 // specific function being called. In some sense this can change the permitted 2801 // outputs of a program (when we convert a malloc to an alloca, the fact that 2802 // the allocation is now on the stack is potentially visible, for example), 2803 // but we believe in a permissible manner. 2804 SmallVector<WeakTrackingVH, 64> Users; 2805 2806 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2807 // before each store. 2808 SmallVector<DbgVariableIntrinsic *, 8> DVIs; 2809 std::unique_ptr<DIBuilder> DIB; 2810 if (isa<AllocaInst>(MI)) { 2811 findDbgUsers(DVIs, &MI); 2812 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2813 } 2814 2815 if (isAllocSiteRemovable(&MI, Users, TLI)) { 2816 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2817 // Lowering all @llvm.objectsize calls first because they may 2818 // use a bitcast/GEP of the alloca we are removing. 2819 if (!Users[i]) 2820 continue; 2821 2822 Instruction *I = cast<Instruction>(&*Users[i]); 2823 2824 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2825 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2826 Value *Result = 2827 lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/true); 2828 replaceInstUsesWith(*I, Result); 2829 eraseInstFromFunction(*I); 2830 Users[i] = nullptr; // Skip examining in the next loop. 2831 } 2832 } 2833 } 2834 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2835 if (!Users[i]) 2836 continue; 2837 2838 Instruction *I = cast<Instruction>(&*Users[i]); 2839 2840 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2841 replaceInstUsesWith(*C, 2842 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2843 C->isFalseWhenEqual())); 2844 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2845 for (auto *DVI : DVIs) 2846 if (DVI->isAddressOfVariable()) 2847 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 2848 } else { 2849 // Casts, GEP, or anything else: we're about to delete this instruction, 2850 // so it can not have any valid uses. 2851 replaceInstUsesWith(*I, PoisonValue::get(I->getType())); 2852 } 2853 eraseInstFromFunction(*I); 2854 } 2855 2856 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2857 // Replace invoke with a NOP intrinsic to maintain the original CFG 2858 Module *M = II->getModule(); 2859 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2860 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2861 None, "", II->getParent()); 2862 } 2863 2864 // Remove debug intrinsics which describe the value contained within the 2865 // alloca. In addition to removing dbg.{declare,addr} which simply point to 2866 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 2867 // 2868 // ``` 2869 // define void @foo(i32 %0) { 2870 // %a = alloca i32 ; Deleted. 2871 // store i32 %0, i32* %a 2872 // dbg.value(i32 %0, "arg0") ; Not deleted. 2873 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 2874 // call void @trivially_inlinable_no_op(i32* %a) 2875 // ret void 2876 // } 2877 // ``` 2878 // 2879 // This may not be required if we stop describing the contents of allocas 2880 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 2881 // the LowerDbgDeclare utility. 2882 // 2883 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 2884 // "arg0" dbg.value may be stale after the call. However, failing to remove 2885 // the DW_OP_deref dbg.value causes large gaps in location coverage. 2886 for (auto *DVI : DVIs) 2887 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 2888 DVI->eraseFromParent(); 2889 2890 return eraseInstFromFunction(MI); 2891 } 2892 return nullptr; 2893 } 2894 2895 /// Move the call to free before a NULL test. 2896 /// 2897 /// Check if this free is accessed after its argument has been test 2898 /// against NULL (property 0). 2899 /// If yes, it is legal to move this call in its predecessor block. 2900 /// 2901 /// The move is performed only if the block containing the call to free 2902 /// will be removed, i.e.: 2903 /// 1. it has only one predecessor P, and P has two successors 2904 /// 2. it contains the call, noops, and an unconditional branch 2905 /// 3. its successor is the same as its predecessor's successor 2906 /// 2907 /// The profitability is out-of concern here and this function should 2908 /// be called only if the caller knows this transformation would be 2909 /// profitable (e.g., for code size). 2910 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2911 const DataLayout &DL) { 2912 Value *Op = FI.getArgOperand(0); 2913 BasicBlock *FreeInstrBB = FI.getParent(); 2914 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2915 2916 // Validate part of constraint #1: Only one predecessor 2917 // FIXME: We can extend the number of predecessor, but in that case, we 2918 // would duplicate the call to free in each predecessor and it may 2919 // not be profitable even for code size. 2920 if (!PredBB) 2921 return nullptr; 2922 2923 // Validate constraint #2: Does this block contains only the call to 2924 // free, noops, and an unconditional branch? 2925 BasicBlock *SuccBB; 2926 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2927 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2928 return nullptr; 2929 2930 // If there are only 2 instructions in the block, at this point, 2931 // this is the call to free and unconditional. 2932 // If there are more than 2 instructions, check that they are noops 2933 // i.e., they won't hurt the performance of the generated code. 2934 if (FreeInstrBB->size() != 2) { 2935 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 2936 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2937 continue; 2938 auto *Cast = dyn_cast<CastInst>(&Inst); 2939 if (!Cast || !Cast->isNoopCast(DL)) 2940 return nullptr; 2941 } 2942 } 2943 // Validate the rest of constraint #1 by matching on the pred branch. 2944 Instruction *TI = PredBB->getTerminator(); 2945 BasicBlock *TrueBB, *FalseBB; 2946 ICmpInst::Predicate Pred; 2947 if (!match(TI, m_Br(m_ICmp(Pred, 2948 m_CombineOr(m_Specific(Op), 2949 m_Specific(Op->stripPointerCasts())), 2950 m_Zero()), 2951 TrueBB, FalseBB))) 2952 return nullptr; 2953 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2954 return nullptr; 2955 2956 // Validate constraint #3: Ensure the null case just falls through. 2957 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2958 return nullptr; 2959 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2960 "Broken CFG: missing edge from predecessor to successor"); 2961 2962 // At this point, we know that everything in FreeInstrBB can be moved 2963 // before TI. 2964 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) { 2965 if (&Instr == FreeInstrBBTerminator) 2966 break; 2967 Instr.moveBefore(TI); 2968 } 2969 assert(FreeInstrBB->size() == 1 && 2970 "Only the branch instruction should remain"); 2971 2972 // Now that we've moved the call to free before the NULL check, we have to 2973 // remove any attributes on its parameter that imply it's non-null, because 2974 // those attributes might have only been valid because of the NULL check, and 2975 // we can get miscompiles if we keep them. This is conservative if non-null is 2976 // also implied by something other than the NULL check, but it's guaranteed to 2977 // be correct, and the conservativeness won't matter in practice, since the 2978 // attributes are irrelevant for the call to free itself and the pointer 2979 // shouldn't be used after the call. 2980 AttributeList Attrs = FI.getAttributes(); 2981 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull); 2982 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable); 2983 if (Dereferenceable.isValid()) { 2984 uint64_t Bytes = Dereferenceable.getDereferenceableBytes(); 2985 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, 2986 Attribute::Dereferenceable); 2987 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes); 2988 } 2989 FI.setAttributes(Attrs); 2990 2991 return &FI; 2992 } 2993 2994 Instruction *InstCombinerImpl::visitFree(CallInst &FI) { 2995 Value *Op = FI.getArgOperand(0); 2996 2997 // free undef -> unreachable. 2998 if (isa<UndefValue>(Op)) { 2999 // Leave a marker since we can't modify the CFG here. 3000 CreateNonTerminatorUnreachable(&FI); 3001 return eraseInstFromFunction(FI); 3002 } 3003 3004 // If we have 'free null' delete the instruction. This can happen in stl code 3005 // when lots of inlining happens. 3006 if (isa<ConstantPointerNull>(Op)) 3007 return eraseInstFromFunction(FI); 3008 3009 // If we had free(realloc(...)) with no intervening uses, then eliminate the 3010 // realloc() entirely. 3011 if (CallInst *CI = dyn_cast<CallInst>(Op)) { 3012 if (CI->hasOneUse() && isReallocLikeFn(CI, &TLI)) { 3013 return eraseInstFromFunction( 3014 *replaceInstUsesWith(*CI, CI->getOperand(0))); 3015 } 3016 } 3017 3018 // If we optimize for code size, try to move the call to free before the null 3019 // test so that simplify cfg can remove the empty block and dead code 3020 // elimination the branch. I.e., helps to turn something like: 3021 // if (foo) free(foo); 3022 // into 3023 // free(foo); 3024 // 3025 // Note that we can only do this for 'free' and not for any flavor of 3026 // 'operator delete'; there is no 'operator delete' symbol for which we are 3027 // permitted to invent a call, even if we're passing in a null pointer. 3028 if (MinimizeSize) { 3029 LibFunc Func; 3030 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 3031 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 3032 return I; 3033 } 3034 3035 return nullptr; 3036 } 3037 3038 static bool isMustTailCall(Value *V) { 3039 if (auto *CI = dyn_cast<CallInst>(V)) 3040 return CI->isMustTailCall(); 3041 return false; 3042 } 3043 3044 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 3045 if (RI.getNumOperands() == 0) // ret void 3046 return nullptr; 3047 3048 Value *ResultOp = RI.getOperand(0); 3049 Type *VTy = ResultOp->getType(); 3050 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp)) 3051 return nullptr; 3052 3053 // Don't replace result of musttail calls. 3054 if (isMustTailCall(ResultOp)) 3055 return nullptr; 3056 3057 // There might be assume intrinsics dominating this return that completely 3058 // determine the value. If so, constant fold it. 3059 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 3060 if (Known.isConstant()) 3061 return replaceOperand(RI, 0, 3062 Constant::getIntegerValue(VTy, Known.getConstant())); 3063 3064 return nullptr; 3065 } 3066 3067 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! 3068 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 3069 // Try to remove the previous instruction if it must lead to unreachable. 3070 // This includes instructions like stores and "llvm.assume" that may not get 3071 // removed by simple dead code elimination. 3072 while (Instruction *Prev = I.getPrevNonDebugInstruction()) { 3073 // While we theoretically can erase EH, that would result in a block that 3074 // used to start with an EH no longer starting with EH, which is invalid. 3075 // To make it valid, we'd need to fixup predecessors to no longer refer to 3076 // this block, but that changes CFG, which is not allowed in InstCombine. 3077 if (Prev->isEHPad()) 3078 return nullptr; // Can not drop any more instructions. We're done here. 3079 3080 if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) 3081 return nullptr; // Can not drop any more instructions. We're done here. 3082 // Otherwise, this instruction can be freely erased, 3083 // even if it is not side-effect free. 3084 3085 // A value may still have uses before we process it here (for example, in 3086 // another unreachable block), so convert those to poison. 3087 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); 3088 eraseInstFromFunction(*Prev); 3089 } 3090 assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty."); 3091 // FIXME: recurse into unconditional predecessors? 3092 return nullptr; 3093 } 3094 3095 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 3096 assert(BI.isUnconditional() && "Only for unconditional branches."); 3097 3098 // If this store is the second-to-last instruction in the basic block 3099 // (excluding debug info and bitcasts of pointers) and if the block ends with 3100 // an unconditional branch, try to move the store to the successor block. 3101 3102 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 3103 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 3104 return BBI->isDebugOrPseudoInst() || 3105 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 3106 }; 3107 3108 BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 3109 do { 3110 if (BBI != FirstInstr) 3111 --BBI; 3112 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 3113 3114 return dyn_cast<StoreInst>(BBI); 3115 }; 3116 3117 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 3118 if (mergeStoreIntoSuccessor(*SI)) 3119 return &BI; 3120 3121 return nullptr; 3122 } 3123 3124 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 3125 if (BI.isUnconditional()) 3126 return visitUnconditionalBranchInst(BI); 3127 3128 // Change br (not X), label True, label False to: br X, label False, True 3129 Value *X = nullptr; 3130 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 3131 !isa<Constant>(X)) { 3132 // Swap Destinations and condition... 3133 BI.swapSuccessors(); 3134 return replaceOperand(BI, 0, X); 3135 } 3136 3137 // If the condition is irrelevant, remove the use so that other 3138 // transforms on the condition become more effective. 3139 if (!isa<ConstantInt>(BI.getCondition()) && 3140 BI.getSuccessor(0) == BI.getSuccessor(1)) 3141 return replaceOperand( 3142 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType())); 3143 3144 // Canonicalize, for example, fcmp_one -> fcmp_oeq. 3145 CmpInst::Predicate Pred; 3146 if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())), 3147 m_BasicBlock(), m_BasicBlock())) && 3148 !isCanonicalPredicate(Pred)) { 3149 // Swap destinations and condition. 3150 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 3151 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 3152 BI.swapSuccessors(); 3153 Worklist.push(Cond); 3154 return &BI; 3155 } 3156 3157 return nullptr; 3158 } 3159 3160 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 3161 Value *Cond = SI.getCondition(); 3162 Value *Op0; 3163 ConstantInt *AddRHS; 3164 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 3165 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 3166 for (auto Case : SI.cases()) { 3167 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 3168 assert(isa<ConstantInt>(NewCase) && 3169 "Result of expression should be constant"); 3170 Case.setValue(cast<ConstantInt>(NewCase)); 3171 } 3172 return replaceOperand(SI, 0, Op0); 3173 } 3174 3175 KnownBits Known = computeKnownBits(Cond, 0, &SI); 3176 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 3177 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 3178 3179 // Compute the number of leading bits we can ignore. 3180 // TODO: A better way to determine this would use ComputeNumSignBits(). 3181 for (auto &C : SI.cases()) { 3182 LeadingKnownZeros = std::min( 3183 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 3184 LeadingKnownOnes = std::min( 3185 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 3186 } 3187 3188 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 3189 3190 // Shrink the condition operand if the new type is smaller than the old type. 3191 // But do not shrink to a non-standard type, because backend can't generate 3192 // good code for that yet. 3193 // TODO: We can make it aggressive again after fixing PR39569. 3194 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 3195 shouldChangeType(Known.getBitWidth(), NewWidth)) { 3196 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 3197 Builder.SetInsertPoint(&SI); 3198 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 3199 3200 for (auto Case : SI.cases()) { 3201 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3202 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3203 } 3204 return replaceOperand(SI, 0, NewCond); 3205 } 3206 3207 return nullptr; 3208 } 3209 3210 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 3211 Value *Agg = EV.getAggregateOperand(); 3212 3213 if (!EV.hasIndices()) 3214 return replaceInstUsesWith(EV, Agg); 3215 3216 if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(), 3217 SQ.getWithInstruction(&EV))) 3218 return replaceInstUsesWith(EV, V); 3219 3220 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 3221 // We're extracting from an insertvalue instruction, compare the indices 3222 const unsigned *exti, *exte, *insi, *inse; 3223 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 3224 exte = EV.idx_end(), inse = IV->idx_end(); 3225 exti != exte && insi != inse; 3226 ++exti, ++insi) { 3227 if (*insi != *exti) 3228 // The insert and extract both reference distinctly different elements. 3229 // This means the extract is not influenced by the insert, and we can 3230 // replace the aggregate operand of the extract with the aggregate 3231 // operand of the insert. i.e., replace 3232 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3233 // %E = extractvalue { i32, { i32 } } %I, 0 3234 // with 3235 // %E = extractvalue { i32, { i32 } } %A, 0 3236 return ExtractValueInst::Create(IV->getAggregateOperand(), 3237 EV.getIndices()); 3238 } 3239 if (exti == exte && insi == inse) 3240 // Both iterators are at the end: Index lists are identical. Replace 3241 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3242 // %C = extractvalue { i32, { i32 } } %B, 1, 0 3243 // with "i32 42" 3244 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 3245 if (exti == exte) { 3246 // The extract list is a prefix of the insert list. i.e. replace 3247 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3248 // %E = extractvalue { i32, { i32 } } %I, 1 3249 // with 3250 // %X = extractvalue { i32, { i32 } } %A, 1 3251 // %E = insertvalue { i32 } %X, i32 42, 0 3252 // by switching the order of the insert and extract (though the 3253 // insertvalue should be left in, since it may have other uses). 3254 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 3255 EV.getIndices()); 3256 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 3257 makeArrayRef(insi, inse)); 3258 } 3259 if (insi == inse) 3260 // The insert list is a prefix of the extract list 3261 // We can simply remove the common indices from the extract and make it 3262 // operate on the inserted value instead of the insertvalue result. 3263 // i.e., replace 3264 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3265 // %E = extractvalue { i32, { i32 } } %I, 1, 0 3266 // with 3267 // %E extractvalue { i32 } { i32 42 }, 0 3268 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 3269 makeArrayRef(exti, exte)); 3270 } 3271 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 3272 // extractvalue (any_mul_with_overflow X, -1), 0 --> -X 3273 Intrinsic::ID OvID = WO->getIntrinsicID(); 3274 if (*EV.idx_begin() == 0 && 3275 (OvID == Intrinsic::smul_with_overflow || 3276 OvID == Intrinsic::umul_with_overflow) && 3277 match(WO->getArgOperand(1), m_AllOnes())) { 3278 return BinaryOperator::CreateNeg(WO->getArgOperand(0)); 3279 } 3280 3281 // We're extracting from an overflow intrinsic, see if we're the only user, 3282 // which allows us to simplify multiple result intrinsics to simpler 3283 // things that just get one value. 3284 if (WO->hasOneUse()) { 3285 // Check if we're grabbing only the result of a 'with overflow' intrinsic 3286 // and replace it with a traditional binary instruction. 3287 if (*EV.idx_begin() == 0) { 3288 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 3289 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 3290 // Replace the old instruction's uses with poison. 3291 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); 3292 eraseInstFromFunction(*WO); 3293 return BinaryOperator::Create(BinOp, LHS, RHS); 3294 } 3295 3296 assert(*EV.idx_begin() == 1 && 3297 "unexpected extract index for overflow inst"); 3298 3299 // If only the overflow result is used, and the right hand side is a 3300 // constant (or constant splat), we can remove the intrinsic by directly 3301 // checking for overflow. 3302 const APInt *C; 3303 if (match(WO->getRHS(), m_APInt(C))) { 3304 // Compute the no-wrap range for LHS given RHS=C, then construct an 3305 // equivalent icmp, potentially using an offset. 3306 ConstantRange NWR = 3307 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 3308 WO->getNoWrapKind()); 3309 3310 CmpInst::Predicate Pred; 3311 APInt NewRHSC, Offset; 3312 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 3313 auto *OpTy = WO->getRHS()->getType(); 3314 auto *NewLHS = WO->getLHS(); 3315 if (Offset != 0) 3316 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset)); 3317 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, 3318 ConstantInt::get(OpTy, NewRHSC)); 3319 } 3320 } 3321 } 3322 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 3323 // If the (non-volatile) load only has one use, we can rewrite this to a 3324 // load from a GEP. This reduces the size of the load. If a load is used 3325 // only by extractvalue instructions then this either must have been 3326 // optimized before, or it is a struct with padding, in which case we 3327 // don't want to do the transformation as it loses padding knowledge. 3328 if (L->isSimple() && L->hasOneUse()) { 3329 // extractvalue has integer indices, getelementptr has Value*s. Convert. 3330 SmallVector<Value*, 4> Indices; 3331 // Prefix an i32 0 since we need the first element. 3332 Indices.push_back(Builder.getInt32(0)); 3333 for (unsigned Idx : EV.indices()) 3334 Indices.push_back(Builder.getInt32(Idx)); 3335 3336 // We need to insert these at the location of the old load, not at that of 3337 // the extractvalue. 3338 Builder.SetInsertPoint(L); 3339 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 3340 L->getPointerOperand(), Indices); 3341 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 3342 // Whatever aliasing information we had for the orignal load must also 3343 // hold for the smaller load, so propagate the annotations. 3344 NL->setAAMetadata(L->getAAMetadata()); 3345 // Returning the load directly will cause the main loop to insert it in 3346 // the wrong spot, so use replaceInstUsesWith(). 3347 return replaceInstUsesWith(EV, NL); 3348 } 3349 // We could simplify extracts from other values. Note that nested extracts may 3350 // already be simplified implicitly by the above: extract (extract (insert) ) 3351 // will be translated into extract ( insert ( extract ) ) first and then just 3352 // the value inserted, if appropriate. Similarly for extracts from single-use 3353 // loads: extract (extract (load)) will be translated to extract (load (gep)) 3354 // and if again single-use then via load (gep (gep)) to load (gep). 3355 // However, double extracts from e.g. function arguments or return values 3356 // aren't handled yet. 3357 return nullptr; 3358 } 3359 3360 /// Return 'true' if the given typeinfo will match anything. 3361 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 3362 switch (Personality) { 3363 case EHPersonality::GNU_C: 3364 case EHPersonality::GNU_C_SjLj: 3365 case EHPersonality::Rust: 3366 // The GCC C EH and Rust personality only exists to support cleanups, so 3367 // it's not clear what the semantics of catch clauses are. 3368 return false; 3369 case EHPersonality::Unknown: 3370 return false; 3371 case EHPersonality::GNU_Ada: 3372 // While __gnat_all_others_value will match any Ada exception, it doesn't 3373 // match foreign exceptions (or didn't, before gcc-4.7). 3374 return false; 3375 case EHPersonality::GNU_CXX: 3376 case EHPersonality::GNU_CXX_SjLj: 3377 case EHPersonality::GNU_ObjC: 3378 case EHPersonality::MSVC_X86SEH: 3379 case EHPersonality::MSVC_TableSEH: 3380 case EHPersonality::MSVC_CXX: 3381 case EHPersonality::CoreCLR: 3382 case EHPersonality::Wasm_CXX: 3383 case EHPersonality::XL_CXX: 3384 return TypeInfo->isNullValue(); 3385 } 3386 llvm_unreachable("invalid enum"); 3387 } 3388 3389 static bool shorter_filter(const Value *LHS, const Value *RHS) { 3390 return 3391 cast<ArrayType>(LHS->getType())->getNumElements() 3392 < 3393 cast<ArrayType>(RHS->getType())->getNumElements(); 3394 } 3395 3396 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 3397 // The logic here should be correct for any real-world personality function. 3398 // However if that turns out not to be true, the offending logic can always 3399 // be conditioned on the personality function, like the catch-all logic is. 3400 EHPersonality Personality = 3401 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 3402 3403 // Simplify the list of clauses, eg by removing repeated catch clauses 3404 // (these are often created by inlining). 3405 bool MakeNewInstruction = false; // If true, recreate using the following: 3406 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 3407 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 3408 3409 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 3410 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 3411 bool isLastClause = i + 1 == e; 3412 if (LI.isCatch(i)) { 3413 // A catch clause. 3414 Constant *CatchClause = LI.getClause(i); 3415 Constant *TypeInfo = CatchClause->stripPointerCasts(); 3416 3417 // If we already saw this clause, there is no point in having a second 3418 // copy of it. 3419 if (AlreadyCaught.insert(TypeInfo).second) { 3420 // This catch clause was not already seen. 3421 NewClauses.push_back(CatchClause); 3422 } else { 3423 // Repeated catch clause - drop the redundant copy. 3424 MakeNewInstruction = true; 3425 } 3426 3427 // If this is a catch-all then there is no point in keeping any following 3428 // clauses or marking the landingpad as having a cleanup. 3429 if (isCatchAll(Personality, TypeInfo)) { 3430 if (!isLastClause) 3431 MakeNewInstruction = true; 3432 CleanupFlag = false; 3433 break; 3434 } 3435 } else { 3436 // A filter clause. If any of the filter elements were already caught 3437 // then they can be dropped from the filter. It is tempting to try to 3438 // exploit the filter further by saying that any typeinfo that does not 3439 // occur in the filter can't be caught later (and thus can be dropped). 3440 // However this would be wrong, since typeinfos can match without being 3441 // equal (for example if one represents a C++ class, and the other some 3442 // class derived from it). 3443 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 3444 Constant *FilterClause = LI.getClause(i); 3445 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 3446 unsigned NumTypeInfos = FilterType->getNumElements(); 3447 3448 // An empty filter catches everything, so there is no point in keeping any 3449 // following clauses or marking the landingpad as having a cleanup. By 3450 // dealing with this case here the following code is made a bit simpler. 3451 if (!NumTypeInfos) { 3452 NewClauses.push_back(FilterClause); 3453 if (!isLastClause) 3454 MakeNewInstruction = true; 3455 CleanupFlag = false; 3456 break; 3457 } 3458 3459 bool MakeNewFilter = false; // If true, make a new filter. 3460 SmallVector<Constant *, 16> NewFilterElts; // New elements. 3461 if (isa<ConstantAggregateZero>(FilterClause)) { 3462 // Not an empty filter - it contains at least one null typeinfo. 3463 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 3464 Constant *TypeInfo = 3465 Constant::getNullValue(FilterType->getElementType()); 3466 // If this typeinfo is a catch-all then the filter can never match. 3467 if (isCatchAll(Personality, TypeInfo)) { 3468 // Throw the filter away. 3469 MakeNewInstruction = true; 3470 continue; 3471 } 3472 3473 // There is no point in having multiple copies of this typeinfo, so 3474 // discard all but the first copy if there is more than one. 3475 NewFilterElts.push_back(TypeInfo); 3476 if (NumTypeInfos > 1) 3477 MakeNewFilter = true; 3478 } else { 3479 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 3480 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 3481 NewFilterElts.reserve(NumTypeInfos); 3482 3483 // Remove any filter elements that were already caught or that already 3484 // occurred in the filter. While there, see if any of the elements are 3485 // catch-alls. If so, the filter can be discarded. 3486 bool SawCatchAll = false; 3487 for (unsigned j = 0; j != NumTypeInfos; ++j) { 3488 Constant *Elt = Filter->getOperand(j); 3489 Constant *TypeInfo = Elt->stripPointerCasts(); 3490 if (isCatchAll(Personality, TypeInfo)) { 3491 // This element is a catch-all. Bail out, noting this fact. 3492 SawCatchAll = true; 3493 break; 3494 } 3495 3496 // Even if we've seen a type in a catch clause, we don't want to 3497 // remove it from the filter. An unexpected type handler may be 3498 // set up for a call site which throws an exception of the same 3499 // type caught. In order for the exception thrown by the unexpected 3500 // handler to propagate correctly, the filter must be correctly 3501 // described for the call site. 3502 // 3503 // Example: 3504 // 3505 // void unexpected() { throw 1;} 3506 // void foo() throw (int) { 3507 // std::set_unexpected(unexpected); 3508 // try { 3509 // throw 2.0; 3510 // } catch (int i) {} 3511 // } 3512 3513 // There is no point in having multiple copies of the same typeinfo in 3514 // a filter, so only add it if we didn't already. 3515 if (SeenInFilter.insert(TypeInfo).second) 3516 NewFilterElts.push_back(cast<Constant>(Elt)); 3517 } 3518 // A filter containing a catch-all cannot match anything by definition. 3519 if (SawCatchAll) { 3520 // Throw the filter away. 3521 MakeNewInstruction = true; 3522 continue; 3523 } 3524 3525 // If we dropped something from the filter, make a new one. 3526 if (NewFilterElts.size() < NumTypeInfos) 3527 MakeNewFilter = true; 3528 } 3529 if (MakeNewFilter) { 3530 FilterType = ArrayType::get(FilterType->getElementType(), 3531 NewFilterElts.size()); 3532 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 3533 MakeNewInstruction = true; 3534 } 3535 3536 NewClauses.push_back(FilterClause); 3537 3538 // If the new filter is empty then it will catch everything so there is 3539 // no point in keeping any following clauses or marking the landingpad 3540 // as having a cleanup. The case of the original filter being empty was 3541 // already handled above. 3542 if (MakeNewFilter && !NewFilterElts.size()) { 3543 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3544 CleanupFlag = false; 3545 break; 3546 } 3547 } 3548 } 3549 3550 // If several filters occur in a row then reorder them so that the shortest 3551 // filters come first (those with the smallest number of elements). This is 3552 // advantageous because shorter filters are more likely to match, speeding up 3553 // unwinding, but mostly because it increases the effectiveness of the other 3554 // filter optimizations below. 3555 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3556 unsigned j; 3557 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3558 for (j = i; j != e; ++j) 3559 if (!isa<ArrayType>(NewClauses[j]->getType())) 3560 break; 3561 3562 // Check whether the filters are already sorted by length. We need to know 3563 // if sorting them is actually going to do anything so that we only make a 3564 // new landingpad instruction if it does. 3565 for (unsigned k = i; k + 1 < j; ++k) 3566 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3567 // Not sorted, so sort the filters now. Doing an unstable sort would be 3568 // correct too but reordering filters pointlessly might confuse users. 3569 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3570 shorter_filter); 3571 MakeNewInstruction = true; 3572 break; 3573 } 3574 3575 // Look for the next batch of filters. 3576 i = j + 1; 3577 } 3578 3579 // If typeinfos matched if and only if equal, then the elements of a filter L 3580 // that occurs later than a filter F could be replaced by the intersection of 3581 // the elements of F and L. In reality two typeinfos can match without being 3582 // equal (for example if one represents a C++ class, and the other some class 3583 // derived from it) so it would be wrong to perform this transform in general. 3584 // However the transform is correct and useful if F is a subset of L. In that 3585 // case L can be replaced by F, and thus removed altogether since repeating a 3586 // filter is pointless. So here we look at all pairs of filters F and L where 3587 // L follows F in the list of clauses, and remove L if every element of F is 3588 // an element of L. This can occur when inlining C++ functions with exception 3589 // specifications. 3590 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3591 // Examine each filter in turn. 3592 Value *Filter = NewClauses[i]; 3593 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3594 if (!FTy) 3595 // Not a filter - skip it. 3596 continue; 3597 unsigned FElts = FTy->getNumElements(); 3598 // Examine each filter following this one. Doing this backwards means that 3599 // we don't have to worry about filters disappearing under us when removed. 3600 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3601 Value *LFilter = NewClauses[j]; 3602 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3603 if (!LTy) 3604 // Not a filter - skip it. 3605 continue; 3606 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3607 // an element of LFilter, then discard LFilter. 3608 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3609 // If Filter is empty then it is a subset of LFilter. 3610 if (!FElts) { 3611 // Discard LFilter. 3612 NewClauses.erase(J); 3613 MakeNewInstruction = true; 3614 // Move on to the next filter. 3615 continue; 3616 } 3617 unsigned LElts = LTy->getNumElements(); 3618 // If Filter is longer than LFilter then it cannot be a subset of it. 3619 if (FElts > LElts) 3620 // Move on to the next filter. 3621 continue; 3622 // At this point we know that LFilter has at least one element. 3623 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3624 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3625 // already know that Filter is not longer than LFilter). 3626 if (isa<ConstantAggregateZero>(Filter)) { 3627 assert(FElts <= LElts && "Should have handled this case earlier!"); 3628 // Discard LFilter. 3629 NewClauses.erase(J); 3630 MakeNewInstruction = true; 3631 } 3632 // Move on to the next filter. 3633 continue; 3634 } 3635 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3636 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3637 // Since Filter is non-empty and contains only zeros, it is a subset of 3638 // LFilter iff LFilter contains a zero. 3639 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3640 for (unsigned l = 0; l != LElts; ++l) 3641 if (LArray->getOperand(l)->isNullValue()) { 3642 // LFilter contains a zero - discard it. 3643 NewClauses.erase(J); 3644 MakeNewInstruction = true; 3645 break; 3646 } 3647 // Move on to the next filter. 3648 continue; 3649 } 3650 // At this point we know that both filters are ConstantArrays. Loop over 3651 // operands to see whether every element of Filter is also an element of 3652 // LFilter. Since filters tend to be short this is probably faster than 3653 // using a method that scales nicely. 3654 ConstantArray *FArray = cast<ConstantArray>(Filter); 3655 bool AllFound = true; 3656 for (unsigned f = 0; f != FElts; ++f) { 3657 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3658 AllFound = false; 3659 for (unsigned l = 0; l != LElts; ++l) { 3660 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3661 if (LTypeInfo == FTypeInfo) { 3662 AllFound = true; 3663 break; 3664 } 3665 } 3666 if (!AllFound) 3667 break; 3668 } 3669 if (AllFound) { 3670 // Discard LFilter. 3671 NewClauses.erase(J); 3672 MakeNewInstruction = true; 3673 } 3674 // Move on to the next filter. 3675 } 3676 } 3677 3678 // If we changed any of the clauses, replace the old landingpad instruction 3679 // with a new one. 3680 if (MakeNewInstruction) { 3681 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3682 NewClauses.size()); 3683 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3684 NLI->addClause(NewClauses[i]); 3685 // A landing pad with no clauses must have the cleanup flag set. It is 3686 // theoretically possible, though highly unlikely, that we eliminated all 3687 // clauses. If so, force the cleanup flag to true. 3688 if (NewClauses.empty()) 3689 CleanupFlag = true; 3690 NLI->setCleanup(CleanupFlag); 3691 return NLI; 3692 } 3693 3694 // Even if none of the clauses changed, we may nonetheless have understood 3695 // that the cleanup flag is pointless. Clear it if so. 3696 if (LI.isCleanup() != CleanupFlag) { 3697 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3698 LI.setCleanup(CleanupFlag); 3699 return &LI; 3700 } 3701 3702 return nullptr; 3703 } 3704 3705 Value * 3706 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { 3707 // Try to push freeze through instructions that propagate but don't produce 3708 // poison as far as possible. If an operand of freeze follows three 3709 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one 3710 // guaranteed-non-poison operands then push the freeze through to the one 3711 // operand that is not guaranteed non-poison. The actual transform is as 3712 // follows. 3713 // Op1 = ... ; Op1 can be posion 3714 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have 3715 // ; single guaranteed-non-poison operands 3716 // ... = Freeze(Op0) 3717 // => 3718 // Op1 = ... 3719 // Op1.fr = Freeze(Op1) 3720 // ... = Inst(Op1.fr, NonPoisonOps...) 3721 auto *OrigOp = OrigFI.getOperand(0); 3722 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp); 3723 3724 // While we could change the other users of OrigOp to use freeze(OrigOp), that 3725 // potentially reduces their optimization potential, so let's only do this iff 3726 // the OrigOp is only used by the freeze. 3727 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp)) 3728 return nullptr; 3729 3730 // We can't push the freeze through an instruction which can itself create 3731 // poison. If the only source of new poison is flags, we can simply 3732 // strip them (since we know the only use is the freeze and nothing can 3733 // benefit from them.) 3734 if (canCreateUndefOrPoison(cast<Operator>(OrigOp), /*ConsiderFlags*/ false)) 3735 return nullptr; 3736 3737 // If operand is guaranteed not to be poison, there is no need to add freeze 3738 // to the operand. So we first find the operand that is not guaranteed to be 3739 // poison. 3740 Use *MaybePoisonOperand = nullptr; 3741 for (Use &U : OrigOpInst->operands()) { 3742 if (isGuaranteedNotToBeUndefOrPoison(U.get())) 3743 continue; 3744 if (!MaybePoisonOperand) 3745 MaybePoisonOperand = &U; 3746 else 3747 return nullptr; 3748 } 3749 3750 OrigOpInst->dropPoisonGeneratingFlags(); 3751 3752 // If all operands are guaranteed to be non-poison, we can drop freeze. 3753 if (!MaybePoisonOperand) 3754 return OrigOp; 3755 3756 Builder.SetInsertPoint(OrigOpInst); 3757 auto *FrozenMaybePoisonOperand = Builder.CreateFreeze( 3758 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); 3759 3760 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); 3761 return OrigOp; 3762 } 3763 3764 Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI, 3765 PHINode *PN) { 3766 // Detect whether this is a recurrence with a start value and some number of 3767 // backedge values. We'll check whether we can push the freeze through the 3768 // backedge values (possibly dropping poison flags along the way) until we 3769 // reach the phi again. In that case, we can move the freeze to the start 3770 // value. 3771 Use *StartU = nullptr; 3772 SmallVector<Value *> Worklist; 3773 for (Use &U : PN->incoming_values()) { 3774 if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) { 3775 // Add backedge value to worklist. 3776 Worklist.push_back(U.get()); 3777 continue; 3778 } 3779 3780 // Don't bother handling multiple start values. 3781 if (StartU) 3782 return nullptr; 3783 StartU = &U; 3784 } 3785 3786 if (!StartU || Worklist.empty()) 3787 return nullptr; // Not a recurrence. 3788 3789 Value *StartV = StartU->get(); 3790 BasicBlock *StartBB = PN->getIncomingBlock(*StartU); 3791 bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV); 3792 // We can't insert freeze if the the start value is the result of the 3793 // terminator (e.g. an invoke). 3794 if (StartNeedsFreeze && StartBB->getTerminator() == StartV) 3795 return nullptr; 3796 3797 SmallPtrSet<Value *, 32> Visited; 3798 SmallVector<Instruction *> DropFlags; 3799 while (!Worklist.empty()) { 3800 Value *V = Worklist.pop_back_val(); 3801 if (!Visited.insert(V).second) 3802 continue; 3803 3804 if (Visited.size() > 32) 3805 return nullptr; // Limit the total number of values we inspect. 3806 3807 // Assume that PN is non-poison, because it will be after the transform. 3808 if (V == PN || isGuaranteedNotToBeUndefOrPoison(V)) 3809 continue; 3810 3811 Instruction *I = dyn_cast<Instruction>(V); 3812 if (!I || canCreateUndefOrPoison(cast<Operator>(I), 3813 /*ConsiderFlags*/ false)) 3814 return nullptr; 3815 3816 DropFlags.push_back(I); 3817 append_range(Worklist, I->operands()); 3818 } 3819 3820 for (Instruction *I : DropFlags) 3821 I->dropPoisonGeneratingFlags(); 3822 3823 if (StartNeedsFreeze) { 3824 Builder.SetInsertPoint(StartBB->getTerminator()); 3825 Value *FrozenStartV = Builder.CreateFreeze(StartV, 3826 StartV->getName() + ".fr"); 3827 replaceUse(*StartU, FrozenStartV); 3828 } 3829 return replaceInstUsesWith(FI, PN); 3830 } 3831 3832 bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) { 3833 Value *Op = FI.getOperand(0); 3834 3835 if (isa<Constant>(Op) || Op->hasOneUse()) 3836 return false; 3837 3838 // Move the freeze directly after the definition of its operand, so that 3839 // it dominates the maximum number of uses. Note that it may not dominate 3840 // *all* uses if the operand is an invoke/callbr and the use is in a phi on 3841 // the normal/default destination. This is why the domination check in the 3842 // replacement below is still necessary. 3843 Instruction *MoveBefore = nullptr; 3844 if (isa<Argument>(Op)) { 3845 MoveBefore = &FI.getFunction()->getEntryBlock().front(); 3846 while (isa<AllocaInst>(MoveBefore)) 3847 MoveBefore = MoveBefore->getNextNode(); 3848 } else if (auto *PN = dyn_cast<PHINode>(Op)) { 3849 MoveBefore = PN->getParent()->getFirstNonPHI(); 3850 } else if (auto *II = dyn_cast<InvokeInst>(Op)) { 3851 MoveBefore = II->getNormalDest()->getFirstNonPHI(); 3852 } else if (auto *CB = dyn_cast<CallBrInst>(Op)) { 3853 MoveBefore = CB->getDefaultDest()->getFirstNonPHI(); 3854 } else { 3855 auto *I = cast<Instruction>(Op); 3856 assert(!I->isTerminator() && "Cannot be a terminator"); 3857 MoveBefore = I->getNextNode(); 3858 } 3859 3860 bool Changed = false; 3861 if (&FI != MoveBefore) { 3862 FI.moveBefore(MoveBefore); 3863 Changed = true; 3864 } 3865 3866 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { 3867 bool Dominates = DT.dominates(&FI, U); 3868 Changed |= Dominates; 3869 return Dominates; 3870 }); 3871 3872 return Changed; 3873 } 3874 3875 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 3876 Value *Op0 = I.getOperand(0); 3877 3878 if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3879 return replaceInstUsesWith(I, V); 3880 3881 // freeze (phi const, x) --> phi const, (freeze x) 3882 if (auto *PN = dyn_cast<PHINode>(Op0)) { 3883 if (Instruction *NV = foldOpIntoPhi(I, PN)) 3884 return NV; 3885 if (Instruction *NV = foldFreezeIntoRecurrence(I, PN)) 3886 return NV; 3887 } 3888 3889 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) 3890 return replaceInstUsesWith(I, NI); 3891 3892 // If I is freeze(undef), check its uses and fold it to a fixed constant. 3893 // - or: pick -1 3894 // - select's condition: if the true value is constant, choose it by making 3895 // the condition true. 3896 // - default: pick 0 3897 // 3898 // Note that this transform is intentionally done here rather than 3899 // via an analysis in InstSimplify or at individual user sites. That is 3900 // because we must produce the same value for all uses of the freeze - 3901 // it's the reason "freeze" exists! 3902 // 3903 // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid 3904 // duplicating logic for binops at least. 3905 auto getUndefReplacement = [&I](Type *Ty) { 3906 Constant *BestValue = nullptr; 3907 Constant *NullValue = Constant::getNullValue(Ty); 3908 for (const auto *U : I.users()) { 3909 Constant *C = NullValue; 3910 if (match(U, m_Or(m_Value(), m_Value()))) 3911 C = ConstantInt::getAllOnesValue(Ty); 3912 else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value()))) 3913 C = ConstantInt::getTrue(Ty); 3914 3915 if (!BestValue) 3916 BestValue = C; 3917 else if (BestValue != C) 3918 BestValue = NullValue; 3919 } 3920 assert(BestValue && "Must have at least one use"); 3921 return BestValue; 3922 }; 3923 3924 if (match(Op0, m_Undef())) 3925 return replaceInstUsesWith(I, getUndefReplacement(I.getType())); 3926 3927 Constant *C; 3928 if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) { 3929 Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType()); 3930 return replaceInstUsesWith(I, Constant::replaceUndefsWith(C, ReplaceC)); 3931 } 3932 3933 // Replace uses of Op with freeze(Op). 3934 if (freezeOtherUses(I)) 3935 return &I; 3936 3937 return nullptr; 3938 } 3939 3940 /// Check for case where the call writes to an otherwise dead alloca. This 3941 /// shows up for unused out-params in idiomatic C/C++ code. Note that this 3942 /// helper *only* analyzes the write; doesn't check any other legality aspect. 3943 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) { 3944 auto *CB = dyn_cast<CallBase>(I); 3945 if (!CB) 3946 // TODO: handle e.g. store to alloca here - only worth doing if we extend 3947 // to allow reload along used path as described below. Otherwise, this 3948 // is simply a store to a dead allocation which will be removed. 3949 return false; 3950 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI); 3951 if (!Dest) 3952 return false; 3953 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr)); 3954 if (!AI) 3955 // TODO: allow malloc? 3956 return false; 3957 // TODO: allow memory access dominated by move point? Note that since AI 3958 // could have a reference to itself captured by the call, we would need to 3959 // account for cycles in doing so. 3960 SmallVector<const User *> AllocaUsers; 3961 SmallPtrSet<const User *, 4> Visited; 3962 auto pushUsers = [&](const Instruction &I) { 3963 for (const User *U : I.users()) { 3964 if (Visited.insert(U).second) 3965 AllocaUsers.push_back(U); 3966 } 3967 }; 3968 pushUsers(*AI); 3969 while (!AllocaUsers.empty()) { 3970 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val()); 3971 if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) || 3972 isa<AddrSpaceCastInst>(UserI)) { 3973 pushUsers(*UserI); 3974 continue; 3975 } 3976 if (UserI == CB) 3977 continue; 3978 // TODO: support lifetime.start/end here 3979 return false; 3980 } 3981 return true; 3982 } 3983 3984 /// Try to move the specified instruction from its current block into the 3985 /// beginning of DestBlock, which can only happen if it's safe to move the 3986 /// instruction past all of the instructions between it and the end of its 3987 /// block. 3988 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock, 3989 TargetLibraryInfo &TLI) { 3990 BasicBlock *SrcBlock = I->getParent(); 3991 3992 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3993 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || 3994 I->isTerminator()) 3995 return false; 3996 3997 // Do not sink static or dynamic alloca instructions. Static allocas must 3998 // remain in the entry block, and dynamic allocas must not be sunk in between 3999 // a stacksave / stackrestore pair, which would incorrectly shorten its 4000 // lifetime. 4001 if (isa<AllocaInst>(I)) 4002 return false; 4003 4004 // Do not sink into catchswitch blocks. 4005 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 4006 return false; 4007 4008 // Do not sink convergent call instructions. 4009 if (auto *CI = dyn_cast<CallInst>(I)) { 4010 if (CI->isConvergent()) 4011 return false; 4012 } 4013 4014 // Unless we can prove that the memory write isn't visibile except on the 4015 // path we're sinking to, we must bail. 4016 if (I->mayWriteToMemory()) { 4017 if (!SoleWriteToDeadLocal(I, TLI)) 4018 return false; 4019 } 4020 4021 // We can only sink load instructions if there is nothing between the load and 4022 // the end of block that could change the value. 4023 if (I->mayReadFromMemory()) { 4024 // We don't want to do any sophisticated alias analysis, so we only check 4025 // the instructions after I in I's parent block if we try to sink to its 4026 // successor block. 4027 if (DestBlock->getUniquePredecessor() != I->getParent()) 4028 return false; 4029 for (BasicBlock::iterator Scan = std::next(I->getIterator()), 4030 E = I->getParent()->end(); 4031 Scan != E; ++Scan) 4032 if (Scan->mayWriteToMemory()) 4033 return false; 4034 } 4035 4036 I->dropDroppableUses([DestBlock](const Use *U) { 4037 if (auto *I = dyn_cast<Instruction>(U->getUser())) 4038 return I->getParent() != DestBlock; 4039 return true; 4040 }); 4041 /// FIXME: We could remove droppable uses that are not dominated by 4042 /// the new position. 4043 4044 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 4045 I->moveBefore(&*InsertPos); 4046 ++NumSunkInst; 4047 4048 // Also sink all related debug uses from the source basic block. Otherwise we 4049 // get debug use before the def. Attempt to salvage debug uses first, to 4050 // maximise the range variables have location for. If we cannot salvage, then 4051 // mark the location undef: we know it was supposed to receive a new location 4052 // here, but that computation has been sunk. 4053 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 4054 findDbgUsers(DbgUsers, I); 4055 // Process the sinking DbgUsers in reverse order, as we only want to clone the 4056 // last appearing debug intrinsic for each given variable. 4057 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 4058 for (DbgVariableIntrinsic *DVI : DbgUsers) 4059 if (DVI->getParent() == SrcBlock) 4060 DbgUsersToSink.push_back(DVI); 4061 llvm::sort(DbgUsersToSink, 4062 [](auto *A, auto *B) { return B->comesBefore(A); }); 4063 4064 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 4065 SmallSet<DebugVariable, 4> SunkVariables; 4066 for (auto User : DbgUsersToSink) { 4067 // A dbg.declare instruction should not be cloned, since there can only be 4068 // one per variable fragment. It should be left in the original place 4069 // because the sunk instruction is not an alloca (otherwise we could not be 4070 // here). 4071 if (isa<DbgDeclareInst>(User)) 4072 continue; 4073 4074 DebugVariable DbgUserVariable = 4075 DebugVariable(User->getVariable(), User->getExpression(), 4076 User->getDebugLoc()->getInlinedAt()); 4077 4078 if (!SunkVariables.insert(DbgUserVariable).second) 4079 continue; 4080 4081 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 4082 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 4083 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 4084 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 4085 } 4086 4087 // Perform salvaging without the clones, then sink the clones. 4088 if (!DIIClones.empty()) { 4089 salvageDebugInfoForDbgValues(*I, DbgUsers); 4090 // The clones are in reverse order of original appearance, reverse again to 4091 // maintain the original order. 4092 for (auto &DIIClone : llvm::reverse(DIIClones)) { 4093 DIIClone->insertBefore(&*InsertPos); 4094 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 4095 } 4096 } 4097 4098 return true; 4099 } 4100 4101 bool InstCombinerImpl::run() { 4102 while (!Worklist.isEmpty()) { 4103 // Walk deferred instructions in reverse order, and push them to the 4104 // worklist, which means they'll end up popped from the worklist in-order. 4105 while (Instruction *I = Worklist.popDeferred()) { 4106 // Check to see if we can DCE the instruction. We do this already here to 4107 // reduce the number of uses and thus allow other folds to trigger. 4108 // Note that eraseInstFromFunction() may push additional instructions on 4109 // the deferred worklist, so this will DCE whole instruction chains. 4110 if (isInstructionTriviallyDead(I, &TLI)) { 4111 eraseInstFromFunction(*I); 4112 ++NumDeadInst; 4113 continue; 4114 } 4115 4116 Worklist.push(I); 4117 } 4118 4119 Instruction *I = Worklist.removeOne(); 4120 if (I == nullptr) continue; // skip null values. 4121 4122 // Check to see if we can DCE the instruction. 4123 if (isInstructionTriviallyDead(I, &TLI)) { 4124 eraseInstFromFunction(*I); 4125 ++NumDeadInst; 4126 continue; 4127 } 4128 4129 if (!DebugCounter::shouldExecute(VisitCounter)) 4130 continue; 4131 4132 // Instruction isn't dead, see if we can constant propagate it. 4133 if (!I->use_empty() && 4134 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 4135 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 4136 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 4137 << '\n'); 4138 4139 // Add operands to the worklist. 4140 replaceInstUsesWith(*I, C); 4141 ++NumConstProp; 4142 if (isInstructionTriviallyDead(I, &TLI)) 4143 eraseInstFromFunction(*I); 4144 MadeIRChange = true; 4145 continue; 4146 } 4147 } 4148 4149 // See if we can trivially sink this instruction to its user if we can 4150 // prove that the successor is not executed more frequently than our block. 4151 // Return the UserBlock if successful. 4152 auto getOptionalSinkBlockForInst = 4153 [this](Instruction *I) -> Optional<BasicBlock *> { 4154 if (!EnableCodeSinking) 4155 return None; 4156 4157 BasicBlock *BB = I->getParent(); 4158 BasicBlock *UserParent = nullptr; 4159 unsigned NumUsers = 0; 4160 4161 for (auto *U : I->users()) { 4162 if (U->isDroppable()) 4163 continue; 4164 if (NumUsers > MaxSinkNumUsers) 4165 return None; 4166 4167 Instruction *UserInst = cast<Instruction>(U); 4168 // Special handling for Phi nodes - get the block the use occurs in. 4169 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) { 4170 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 4171 if (PN->getIncomingValue(i) == I) { 4172 // Bail out if we have uses in different blocks. We don't do any 4173 // sophisticated analysis (i.e finding NearestCommonDominator of 4174 // these use blocks). 4175 if (UserParent && UserParent != PN->getIncomingBlock(i)) 4176 return None; 4177 UserParent = PN->getIncomingBlock(i); 4178 } 4179 } 4180 assert(UserParent && "expected to find user block!"); 4181 } else { 4182 if (UserParent && UserParent != UserInst->getParent()) 4183 return None; 4184 UserParent = UserInst->getParent(); 4185 } 4186 4187 // Make sure these checks are done only once, naturally we do the checks 4188 // the first time we get the userparent, this will save compile time. 4189 if (NumUsers == 0) { 4190 // Try sinking to another block. If that block is unreachable, then do 4191 // not bother. SimplifyCFG should handle it. 4192 if (UserParent == BB || !DT.isReachableFromEntry(UserParent)) 4193 return None; 4194 4195 auto *Term = UserParent->getTerminator(); 4196 // See if the user is one of our successors that has only one 4197 // predecessor, so that we don't have to split the critical edge. 4198 // Another option where we can sink is a block that ends with a 4199 // terminator that does not pass control to other block (such as 4200 // return or unreachable or resume). In this case: 4201 // - I dominates the User (by SSA form); 4202 // - the User will be executed at most once. 4203 // So sinking I down to User is always profitable or neutral. 4204 if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term)) 4205 return None; 4206 4207 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?"); 4208 } 4209 4210 NumUsers++; 4211 } 4212 4213 // No user or only has droppable users. 4214 if (!UserParent) 4215 return None; 4216 4217 return UserParent; 4218 }; 4219 4220 auto OptBB = getOptionalSinkBlockForInst(I); 4221 if (OptBB) { 4222 auto *UserParent = *OptBB; 4223 // Okay, the CFG is simple enough, try to sink this instruction. 4224 if (TryToSinkInstruction(I, UserParent, TLI)) { 4225 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 4226 MadeIRChange = true; 4227 // We'll add uses of the sunk instruction below, but since 4228 // sinking can expose opportunities for it's *operands* add 4229 // them to the worklist 4230 for (Use &U : I->operands()) 4231 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 4232 Worklist.push(OpI); 4233 } 4234 } 4235 4236 // Now that we have an instruction, try combining it to simplify it. 4237 Builder.SetInsertPoint(I); 4238 Builder.CollectMetadataToCopy( 4239 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4240 4241 #ifndef NDEBUG 4242 std::string OrigI; 4243 #endif 4244 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 4245 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 4246 4247 if (Instruction *Result = visit(*I)) { 4248 ++NumCombined; 4249 // Should we replace the old instruction with a new one? 4250 if (Result != I) { 4251 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 4252 << " New = " << *Result << '\n'); 4253 4254 Result->copyMetadata(*I, 4255 {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4256 // Everything uses the new instruction now. 4257 I->replaceAllUsesWith(Result); 4258 4259 // Move the name to the new instruction first. 4260 Result->takeName(I); 4261 4262 // Insert the new instruction into the basic block... 4263 BasicBlock *InstParent = I->getParent(); 4264 BasicBlock::iterator InsertPos = I->getIterator(); 4265 4266 // Are we replace a PHI with something that isn't a PHI, or vice versa? 4267 if (isa<PHINode>(Result) != isa<PHINode>(I)) { 4268 // We need to fix up the insertion point. 4269 if (isa<PHINode>(I)) // PHI -> Non-PHI 4270 InsertPos = InstParent->getFirstInsertionPt(); 4271 else // Non-PHI -> PHI 4272 InsertPos = InstParent->getFirstNonPHI()->getIterator(); 4273 } 4274 4275 InstParent->getInstList().insert(InsertPos, Result); 4276 4277 // Push the new instruction and any users onto the worklist. 4278 Worklist.pushUsersToWorkList(*Result); 4279 Worklist.push(Result); 4280 4281 eraseInstFromFunction(*I); 4282 } else { 4283 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 4284 << " New = " << *I << '\n'); 4285 4286 // If the instruction was modified, it's possible that it is now dead. 4287 // if so, remove it. 4288 if (isInstructionTriviallyDead(I, &TLI)) { 4289 eraseInstFromFunction(*I); 4290 } else { 4291 Worklist.pushUsersToWorkList(*I); 4292 Worklist.push(I); 4293 } 4294 } 4295 MadeIRChange = true; 4296 } 4297 } 4298 4299 Worklist.zap(); 4300 return MadeIRChange; 4301 } 4302 4303 // Track the scopes used by !alias.scope and !noalias. In a function, a 4304 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 4305 // by both sets. If not, the declaration of the scope can be safely omitted. 4306 // The MDNode of the scope can be omitted as well for the instructions that are 4307 // part of this function. We do not do that at this point, as this might become 4308 // too time consuming to do. 4309 class AliasScopeTracker { 4310 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 4311 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 4312 4313 public: 4314 void analyse(Instruction *I) { 4315 // This seems to be faster than checking 'mayReadOrWriteMemory()'. 4316 if (!I->hasMetadataOtherThanDebugLoc()) 4317 return; 4318 4319 auto Track = [](Metadata *ScopeList, auto &Container) { 4320 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 4321 if (!MDScopeList || !Container.insert(MDScopeList).second) 4322 return; 4323 for (auto &MDOperand : MDScopeList->operands()) 4324 if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 4325 Container.insert(MDScope); 4326 }; 4327 4328 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 4329 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 4330 } 4331 4332 bool isNoAliasScopeDeclDead(Instruction *Inst) { 4333 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 4334 if (!Decl) 4335 return false; 4336 4337 assert(Decl->use_empty() && 4338 "llvm.experimental.noalias.scope.decl in use ?"); 4339 const MDNode *MDSL = Decl->getScopeList(); 4340 assert(MDSL->getNumOperands() == 1 && 4341 "llvm.experimental.noalias.scope should refer to a single scope"); 4342 auto &MDOperand = MDSL->getOperand(0); 4343 if (auto *MD = dyn_cast<MDNode>(MDOperand)) 4344 return !UsedAliasScopesAndLists.contains(MD) || 4345 !UsedNoAliasScopesAndLists.contains(MD); 4346 4347 // Not an MDNode ? throw away. 4348 return true; 4349 } 4350 }; 4351 4352 /// Populate the IC worklist from a function, by walking it in depth-first 4353 /// order and adding all reachable code to the worklist. 4354 /// 4355 /// This has a couple of tricks to make the code faster and more powerful. In 4356 /// particular, we constant fold and DCE instructions as we go, to avoid adding 4357 /// them to the worklist (this significantly speeds up instcombine on code where 4358 /// many instructions are dead or constant). Additionally, if we find a branch 4359 /// whose condition is a known constant, we only visit the reachable successors. 4360 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 4361 const TargetLibraryInfo *TLI, 4362 InstructionWorklist &ICWorklist) { 4363 bool MadeIRChange = false; 4364 SmallPtrSet<BasicBlock *, 32> Visited; 4365 SmallVector<BasicBlock*, 256> Worklist; 4366 Worklist.push_back(&F.front()); 4367 4368 SmallVector<Instruction *, 128> InstrsForInstructionWorklist; 4369 DenseMap<Constant *, Constant *> FoldedConstants; 4370 AliasScopeTracker SeenAliasScopes; 4371 4372 do { 4373 BasicBlock *BB = Worklist.pop_back_val(); 4374 4375 // We have now visited this block! If we've already been here, ignore it. 4376 if (!Visited.insert(BB).second) 4377 continue; 4378 4379 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 4380 // ConstantProp instruction if trivially constant. 4381 if (!Inst.use_empty() && 4382 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0)))) 4383 if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) { 4384 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst 4385 << '\n'); 4386 Inst.replaceAllUsesWith(C); 4387 ++NumConstProp; 4388 if (isInstructionTriviallyDead(&Inst, TLI)) 4389 Inst.eraseFromParent(); 4390 MadeIRChange = true; 4391 continue; 4392 } 4393 4394 // See if we can constant fold its operands. 4395 for (Use &U : Inst.operands()) { 4396 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 4397 continue; 4398 4399 auto *C = cast<Constant>(U); 4400 Constant *&FoldRes = FoldedConstants[C]; 4401 if (!FoldRes) 4402 FoldRes = ConstantFoldConstant(C, DL, TLI); 4403 4404 if (FoldRes != C) { 4405 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst 4406 << "\n Old = " << *C 4407 << "\n New = " << *FoldRes << '\n'); 4408 U = FoldRes; 4409 MadeIRChange = true; 4410 } 4411 } 4412 4413 // Skip processing debug and pseudo intrinsics in InstCombine. Processing 4414 // these call instructions consumes non-trivial amount of time and 4415 // provides no value for the optimization. 4416 if (!Inst.isDebugOrPseudoInst()) { 4417 InstrsForInstructionWorklist.push_back(&Inst); 4418 SeenAliasScopes.analyse(&Inst); 4419 } 4420 } 4421 4422 // Recursively visit successors. If this is a branch or switch on a 4423 // constant, only visit the reachable successor. 4424 Instruction *TI = BB->getTerminator(); 4425 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 4426 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 4427 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 4428 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 4429 Worklist.push_back(ReachableBB); 4430 continue; 4431 } 4432 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 4433 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 4434 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 4435 continue; 4436 } 4437 } 4438 4439 append_range(Worklist, successors(TI)); 4440 } while (!Worklist.empty()); 4441 4442 // Remove instructions inside unreachable blocks. This prevents the 4443 // instcombine code from having to deal with some bad special cases, and 4444 // reduces use counts of instructions. 4445 for (BasicBlock &BB : F) { 4446 if (Visited.count(&BB)) 4447 continue; 4448 4449 unsigned NumDeadInstInBB; 4450 unsigned NumDeadDbgInstInBB; 4451 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 4452 removeAllNonTerminatorAndEHPadInstructions(&BB); 4453 4454 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 4455 NumDeadInst += NumDeadInstInBB; 4456 } 4457 4458 // Once we've found all of the instructions to add to instcombine's worklist, 4459 // add them in reverse order. This way instcombine will visit from the top 4460 // of the function down. This jives well with the way that it adds all uses 4461 // of instructions to the worklist after doing a transformation, thus avoiding 4462 // some N^2 behavior in pathological cases. 4463 ICWorklist.reserve(InstrsForInstructionWorklist.size()); 4464 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) { 4465 // DCE instruction if trivially dead. As we iterate in reverse program 4466 // order here, we will clean up whole chains of dead instructions. 4467 if (isInstructionTriviallyDead(Inst, TLI) || 4468 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 4469 ++NumDeadInst; 4470 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 4471 salvageDebugInfo(*Inst); 4472 Inst->eraseFromParent(); 4473 MadeIRChange = true; 4474 continue; 4475 } 4476 4477 ICWorklist.push(Inst); 4478 } 4479 4480 return MadeIRChange; 4481 } 4482 4483 static bool combineInstructionsOverFunction( 4484 Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, 4485 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 4486 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 4487 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) { 4488 auto &DL = F.getParent()->getDataLayout(); 4489 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 4490 4491 /// Builder - This is an IRBuilder that automatically inserts new 4492 /// instructions into the worklist when they are created. 4493 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 4494 F.getContext(), TargetFolder(DL), 4495 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 4496 Worklist.add(I); 4497 if (auto *Assume = dyn_cast<AssumeInst>(I)) 4498 AC.registerAssumption(Assume); 4499 })); 4500 4501 // Lower dbg.declare intrinsics otherwise their value may be clobbered 4502 // by instcombiner. 4503 bool MadeIRChange = false; 4504 if (ShouldLowerDbgDeclare) 4505 MadeIRChange = LowerDbgDeclare(F); 4506 4507 // Iterate while there is work to do. 4508 unsigned Iteration = 0; 4509 while (true) { 4510 ++NumWorklistIterations; 4511 ++Iteration; 4512 4513 if (Iteration > InfiniteLoopDetectionThreshold) { 4514 report_fatal_error( 4515 "Instruction Combining seems stuck in an infinite loop after " + 4516 Twine(InfiniteLoopDetectionThreshold) + " iterations."); 4517 } 4518 4519 if (Iteration > MaxIterations) { 4520 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 4521 << " on " << F.getName() 4522 << " reached; stopping before reaching a fixpoint\n"); 4523 break; 4524 } 4525 4526 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 4527 << F.getName() << "\n"); 4528 4529 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 4530 4531 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 4532 ORE, BFI, PSI, DL, LI); 4533 IC.MaxArraySizeForCombine = MaxArraySize; 4534 4535 if (!IC.run()) 4536 break; 4537 4538 MadeIRChange = true; 4539 } 4540 4541 return MadeIRChange; 4542 } 4543 4544 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {} 4545 4546 InstCombinePass::InstCombinePass(unsigned MaxIterations) 4547 : MaxIterations(MaxIterations) {} 4548 4549 PreservedAnalyses InstCombinePass::run(Function &F, 4550 FunctionAnalysisManager &AM) { 4551 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4552 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4553 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4554 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4555 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 4556 4557 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 4558 4559 auto *AA = &AM.getResult<AAManager>(F); 4560 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 4561 ProfileSummaryInfo *PSI = 4562 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 4563 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 4564 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 4565 4566 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4567 BFI, PSI, MaxIterations, LI)) 4568 // No changes, all analyses are preserved. 4569 return PreservedAnalyses::all(); 4570 4571 // Mark all the analyses that instcombine updates as preserved. 4572 PreservedAnalyses PA; 4573 PA.preserveSet<CFGAnalyses>(); 4574 return PA; 4575 } 4576 4577 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 4578 AU.setPreservesCFG(); 4579 AU.addRequired<AAResultsWrapperPass>(); 4580 AU.addRequired<AssumptionCacheTracker>(); 4581 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4582 AU.addRequired<TargetTransformInfoWrapperPass>(); 4583 AU.addRequired<DominatorTreeWrapperPass>(); 4584 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4585 AU.addPreserved<DominatorTreeWrapperPass>(); 4586 AU.addPreserved<AAResultsWrapperPass>(); 4587 AU.addPreserved<BasicAAWrapperPass>(); 4588 AU.addPreserved<GlobalsAAWrapperPass>(); 4589 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 4590 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 4591 } 4592 4593 bool InstructionCombiningPass::runOnFunction(Function &F) { 4594 if (skipFunction(F)) 4595 return false; 4596 4597 // Required analyses. 4598 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4599 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4600 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 4601 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4602 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4603 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4604 4605 // Optional analyses. 4606 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 4607 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 4608 ProfileSummaryInfo *PSI = 4609 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 4610 BlockFrequencyInfo *BFI = 4611 (PSI && PSI->hasProfileSummary()) ? 4612 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 4613 nullptr; 4614 4615 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4616 BFI, PSI, MaxIterations, LI); 4617 } 4618 4619 char InstructionCombiningPass::ID = 0; 4620 4621 InstructionCombiningPass::InstructionCombiningPass() 4622 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) { 4623 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4624 } 4625 4626 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations) 4627 : FunctionPass(ID), MaxIterations(MaxIterations) { 4628 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4629 } 4630 4631 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 4632 "Combine redundant instructions", false, false) 4633 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4634 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4635 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4636 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4637 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4638 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4639 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 4640 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 4641 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 4642 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 4643 "Combine redundant instructions", false, false) 4644 4645 // Initialization Routines 4646 void llvm::initializeInstCombine(PassRegistry &Registry) { 4647 initializeInstructionCombiningPassPass(Registry); 4648 } 4649 4650 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 4651 initializeInstructionCombiningPassPass(*unwrap(R)); 4652 } 4653 4654 FunctionPass *llvm::createInstructionCombiningPass() { 4655 return new InstructionCombiningPass(); 4656 } 4657 4658 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) { 4659 return new InstructionCombiningPass(MaxIterations); 4660 } 4661 4662 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 4663 unwrap(PM)->add(createInstructionCombiningPass()); 4664 } 4665