1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions.  This pass does not modify the CFG.  This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 //    %Y = add i32 %X, 1
15 //    %Z = add i32 %Y, 1
16 // into:
17 //    %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 //    1. If a binary operator has a constant operand, it is moved to the RHS
24 //    2. Bitwise operators with constant operands are always grouped so that
25 //       shifts are performed first, then or's, then and's, then xor's.
26 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 //    4. All cmp instructions on boolean values are replaced with logical ops
28 //    5. add X, X is represented as (X*2) => (X << 1)
29 //    6. Multiplies with a power-of-two constant argument are transformed into
30 //       shifts.
31 //   ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BlockFrequencyInfo.h"
50 #include "llvm/Analysis/CFG.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/EHPersonalities.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/MemoryBuiltins.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ProfileSummaryInfo.h"
60 #include "llvm/Analysis/TargetFolder.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/ValueTracking.h"
63 #include "llvm/Analysis/VectorUtils.h"
64 #include "llvm/IR/BasicBlock.h"
65 #include "llvm/IR/CFG.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DIBuilder.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/IRBuilder.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/IntrinsicInst.h"
79 #include "llvm/IR/Intrinsics.h"
80 #include "llvm/IR/LegacyPassManager.h"
81 #include "llvm/IR/Metadata.h"
82 #include "llvm/IR/Operator.h"
83 #include "llvm/IR/PassManager.h"
84 #include "llvm/IR/PatternMatch.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/Use.h"
87 #include "llvm/IR/User.h"
88 #include "llvm/IR/Value.h"
89 #include "llvm/IR/ValueHandle.h"
90 #include "llvm/InitializePasses.h"
91 #include "llvm/Pass.h"
92 #include "llvm/Support/CBindingWrapping.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/DebugCounter.h"
98 #include "llvm/Support/ErrorHandling.h"
99 #include "llvm/Support/KnownBits.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Transforms/InstCombine/InstCombine.h"
102 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstdint>
107 #include <memory>
108 #include <string>
109 #include <utility>
110 
111 using namespace llvm;
112 using namespace llvm::PatternMatch;
113 
114 #define DEBUG_TYPE "instcombine"
115 
116 STATISTIC(NumCombined , "Number of insts combined");
117 STATISTIC(NumConstProp, "Number of constant folds");
118 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
119 STATISTIC(NumSunkInst , "Number of instructions sunk");
120 STATISTIC(NumExpand,    "Number of expansions");
121 STATISTIC(NumFactor   , "Number of factorizations");
122 STATISTIC(NumReassoc  , "Number of reassociations");
123 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
124               "Controls which instructions are visited");
125 
126 static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
127 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
128 
129 static cl::opt<bool>
130 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
131                                               cl::init(true));
132 
133 // FIXME: This option is no longer used for anything and may be removed.
134 static cl::opt<bool>
135 EnableExpensiveCombines("expensive-combines",
136                         cl::desc("Enable expensive instruction combines"));
137 
138 static cl::opt<unsigned> LimitMaxIterations(
139     "instcombine-max-iterations",
140     cl::desc("Limit the maximum number of instruction combining iterations"),
141     cl::init(InstCombineDefaultMaxIterations));
142 
143 static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
144     "instcombine-infinite-loop-threshold",
145     cl::desc("Number of instruction combining iterations considered an "
146              "infinite loop"),
147     cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
148 
149 static cl::opt<unsigned>
150 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
151              cl::desc("Maximum array size considered when doing a combine"));
152 
153 // FIXME: Remove this flag when it is no longer necessary to convert
154 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
155 // increases variable availability at the cost of accuracy. Variables that
156 // cannot be promoted by mem2reg or SROA will be described as living in memory
157 // for their entire lifetime. However, passes like DSE and instcombine can
158 // delete stores to the alloca, leading to misleading and inaccurate debug
159 // information. This flag can be removed when those passes are fixed.
160 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
161                                                cl::Hidden, cl::init(true));
162 
163 Value *InstCombiner::EmitGEPOffset(User *GEP) {
164   return llvm::EmitGEPOffset(&Builder, DL, GEP);
165 }
166 
167 /// Return true if it is desirable to convert an integer computation from a
168 /// given bit width to a new bit width.
169 /// We don't want to convert from a legal to an illegal type or from a smaller
170 /// to a larger illegal type. A width of '1' is always treated as a legal type
171 /// because i1 is a fundamental type in IR, and there are many specialized
172 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
173 /// legal to convert to, in order to open up more combining opportunities.
174 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common
175 /// from frontend languages.
176 bool InstCombiner::shouldChangeType(unsigned FromWidth,
177                                     unsigned ToWidth) const {
178   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
179   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
180 
181   // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
182   // shrink types, to prevent infinite loops.
183   if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
184     return true;
185 
186   // If this is a legal integer from type, and the result would be an illegal
187   // type, don't do the transformation.
188   if (FromLegal && !ToLegal)
189     return false;
190 
191   // Otherwise, if both are illegal, do not increase the size of the result. We
192   // do allow things like i160 -> i64, but not i64 -> i160.
193   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
194     return false;
195 
196   return true;
197 }
198 
199 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
200 /// We don't want to convert from a legal to an illegal type or from a smaller
201 /// to a larger illegal type. i1 is always treated as a legal type because it is
202 /// a fundamental type in IR, and there are many specialized optimizations for
203 /// i1 types.
204 bool InstCombiner::shouldChangeType(Type *From, Type *To) const {
205   // TODO: This could be extended to allow vectors. Datalayout changes might be
206   // needed to properly support that.
207   if (!From->isIntegerTy() || !To->isIntegerTy())
208     return false;
209 
210   unsigned FromWidth = From->getPrimitiveSizeInBits();
211   unsigned ToWidth = To->getPrimitiveSizeInBits();
212   return shouldChangeType(FromWidth, ToWidth);
213 }
214 
215 // Return true, if No Signed Wrap should be maintained for I.
216 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
217 // where both B and C should be ConstantInts, results in a constant that does
218 // not overflow. This function only handles the Add and Sub opcodes. For
219 // all other opcodes, the function conservatively returns false.
220 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
221   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
222   if (!OBO || !OBO->hasNoSignedWrap())
223     return false;
224 
225   // We reason about Add and Sub Only.
226   Instruction::BinaryOps Opcode = I.getOpcode();
227   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
228     return false;
229 
230   const APInt *BVal, *CVal;
231   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
232     return false;
233 
234   bool Overflow = false;
235   if (Opcode == Instruction::Add)
236     (void)BVal->sadd_ov(*CVal, Overflow);
237   else
238     (void)BVal->ssub_ov(*CVal, Overflow);
239 
240   return !Overflow;
241 }
242 
243 static bool hasNoUnsignedWrap(BinaryOperator &I) {
244   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
245   return OBO && OBO->hasNoUnsignedWrap();
246 }
247 
248 static bool hasNoSignedWrap(BinaryOperator &I) {
249   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
250   return OBO && OBO->hasNoSignedWrap();
251 }
252 
253 /// Conservatively clears subclassOptionalData after a reassociation or
254 /// commutation. We preserve fast-math flags when applicable as they can be
255 /// preserved.
256 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
257   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
258   if (!FPMO) {
259     I.clearSubclassOptionalData();
260     return;
261   }
262 
263   FastMathFlags FMF = I.getFastMathFlags();
264   I.clearSubclassOptionalData();
265   I.setFastMathFlags(FMF);
266 }
267 
268 /// Combine constant operands of associative operations either before or after a
269 /// cast to eliminate one of the associative operations:
270 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
271 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
272 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) {
273   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
274   if (!Cast || !Cast->hasOneUse())
275     return false;
276 
277   // TODO: Enhance logic for other casts and remove this check.
278   auto CastOpcode = Cast->getOpcode();
279   if (CastOpcode != Instruction::ZExt)
280     return false;
281 
282   // TODO: Enhance logic for other BinOps and remove this check.
283   if (!BinOp1->isBitwiseLogicOp())
284     return false;
285 
286   auto AssocOpcode = BinOp1->getOpcode();
287   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
288   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
289     return false;
290 
291   Constant *C1, *C2;
292   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
293       !match(BinOp2->getOperand(1), m_Constant(C2)))
294     return false;
295 
296   // TODO: This assumes a zext cast.
297   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
298   // to the destination type might lose bits.
299 
300   // Fold the constants together in the destination type:
301   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
302   Type *DestTy = C1->getType();
303   Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
304   Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
305   Cast->setOperand(0, BinOp2->getOperand(0));
306   BinOp1->setOperand(1, FoldedC);
307   return true;
308 }
309 
310 /// This performs a few simplifications for operators that are associative or
311 /// commutative:
312 ///
313 ///  Commutative operators:
314 ///
315 ///  1. Order operands such that they are listed from right (least complex) to
316 ///     left (most complex).  This puts constants before unary operators before
317 ///     binary operators.
318 ///
319 ///  Associative operators:
320 ///
321 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
322 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
323 ///
324 ///  Associative and commutative operators:
325 ///
326 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
327 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
328 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
329 ///     if C1 and C2 are constants.
330 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
331   Instruction::BinaryOps Opcode = I.getOpcode();
332   bool Changed = false;
333 
334   do {
335     // Order operands such that they are listed from right (least complex) to
336     // left (most complex).  This puts constants before unary operators before
337     // binary operators.
338     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
339         getComplexity(I.getOperand(1)))
340       Changed = !I.swapOperands();
341 
342     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
343     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
344 
345     if (I.isAssociative()) {
346       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
347       if (Op0 && Op0->getOpcode() == Opcode) {
348         Value *A = Op0->getOperand(0);
349         Value *B = Op0->getOperand(1);
350         Value *C = I.getOperand(1);
351 
352         // Does "B op C" simplify?
353         if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
354           // It simplifies to V.  Form "A op V".
355           replaceOperand(I, 0, A);
356           replaceOperand(I, 1, V);
357           bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
358           bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
359 
360           // Conservatively clear all optional flags since they may not be
361           // preserved by the reassociation. Reset nsw/nuw based on the above
362           // analysis.
363           ClearSubclassDataAfterReassociation(I);
364 
365           // Note: this is only valid because SimplifyBinOp doesn't look at
366           // the operands to Op0.
367           if (IsNUW)
368             I.setHasNoUnsignedWrap(true);
369 
370           if (IsNSW)
371             I.setHasNoSignedWrap(true);
372 
373           Changed = true;
374           ++NumReassoc;
375           continue;
376         }
377       }
378 
379       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
380       if (Op1 && Op1->getOpcode() == Opcode) {
381         Value *A = I.getOperand(0);
382         Value *B = Op1->getOperand(0);
383         Value *C = Op1->getOperand(1);
384 
385         // Does "A op B" simplify?
386         if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
387           // It simplifies to V.  Form "V op C".
388           replaceOperand(I, 0, V);
389           replaceOperand(I, 1, C);
390           // Conservatively clear the optional flags, since they may not be
391           // preserved by the reassociation.
392           ClearSubclassDataAfterReassociation(I);
393           Changed = true;
394           ++NumReassoc;
395           continue;
396         }
397       }
398     }
399 
400     if (I.isAssociative() && I.isCommutative()) {
401       if (simplifyAssocCastAssoc(&I)) {
402         Changed = true;
403         ++NumReassoc;
404         continue;
405       }
406 
407       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
408       if (Op0 && Op0->getOpcode() == Opcode) {
409         Value *A = Op0->getOperand(0);
410         Value *B = Op0->getOperand(1);
411         Value *C = I.getOperand(1);
412 
413         // Does "C op A" simplify?
414         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
415           // It simplifies to V.  Form "V op B".
416           replaceOperand(I, 0, V);
417           replaceOperand(I, 1, B);
418           // Conservatively clear the optional flags, since they may not be
419           // preserved by the reassociation.
420           ClearSubclassDataAfterReassociation(I);
421           Changed = true;
422           ++NumReassoc;
423           continue;
424         }
425       }
426 
427       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
428       if (Op1 && Op1->getOpcode() == Opcode) {
429         Value *A = I.getOperand(0);
430         Value *B = Op1->getOperand(0);
431         Value *C = Op1->getOperand(1);
432 
433         // Does "C op A" simplify?
434         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
435           // It simplifies to V.  Form "B op V".
436           replaceOperand(I, 0, B);
437           replaceOperand(I, 1, V);
438           // Conservatively clear the optional flags, since they may not be
439           // preserved by the reassociation.
440           ClearSubclassDataAfterReassociation(I);
441           Changed = true;
442           ++NumReassoc;
443           continue;
444         }
445       }
446 
447       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
448       // if C1 and C2 are constants.
449       Value *A, *B;
450       Constant *C1, *C2;
451       if (Op0 && Op1 &&
452           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
453           match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
454           match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
455         bool IsNUW = hasNoUnsignedWrap(I) &&
456            hasNoUnsignedWrap(*Op0) &&
457            hasNoUnsignedWrap(*Op1);
458          BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
459            BinaryOperator::CreateNUW(Opcode, A, B) :
460            BinaryOperator::Create(Opcode, A, B);
461 
462          if (isa<FPMathOperator>(NewBO)) {
463           FastMathFlags Flags = I.getFastMathFlags();
464           Flags &= Op0->getFastMathFlags();
465           Flags &= Op1->getFastMathFlags();
466           NewBO->setFastMathFlags(Flags);
467         }
468         InsertNewInstWith(NewBO, I);
469         NewBO->takeName(Op1);
470         replaceOperand(I, 0, NewBO);
471         replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
472         // Conservatively clear the optional flags, since they may not be
473         // preserved by the reassociation.
474         ClearSubclassDataAfterReassociation(I);
475         if (IsNUW)
476           I.setHasNoUnsignedWrap(true);
477 
478         Changed = true;
479         continue;
480       }
481     }
482 
483     // No further simplifications.
484     return Changed;
485   } while (true);
486 }
487 
488 /// Return whether "X LOp (Y ROp Z)" is always equal to
489 /// "(X LOp Y) ROp (X LOp Z)".
490 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
491                                      Instruction::BinaryOps ROp) {
492   // X & (Y | Z) <--> (X & Y) | (X & Z)
493   // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
494   if (LOp == Instruction::And)
495     return ROp == Instruction::Or || ROp == Instruction::Xor;
496 
497   // X | (Y & Z) <--> (X | Y) & (X | Z)
498   if (LOp == Instruction::Or)
499     return ROp == Instruction::And;
500 
501   // X * (Y + Z) <--> (X * Y) + (X * Z)
502   // X * (Y - Z) <--> (X * Y) - (X * Z)
503   if (LOp == Instruction::Mul)
504     return ROp == Instruction::Add || ROp == Instruction::Sub;
505 
506   return false;
507 }
508 
509 /// Return whether "(X LOp Y) ROp Z" is always equal to
510 /// "(X ROp Z) LOp (Y ROp Z)".
511 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
512                                      Instruction::BinaryOps ROp) {
513   if (Instruction::isCommutative(ROp))
514     return leftDistributesOverRight(ROp, LOp);
515 
516   // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
517   return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
518 
519   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
520   // but this requires knowing that the addition does not overflow and other
521   // such subtleties.
522 }
523 
524 /// This function returns identity value for given opcode, which can be used to
525 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
526 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
527   if (isa<Constant>(V))
528     return nullptr;
529 
530   return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
531 }
532 
533 /// This function predicates factorization using distributive laws. By default,
534 /// it just returns the 'Op' inputs. But for special-cases like
535 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
536 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
537 /// allow more factorization opportunities.
538 static Instruction::BinaryOps
539 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
540                           Value *&LHS, Value *&RHS) {
541   assert(Op && "Expected a binary operator");
542   LHS = Op->getOperand(0);
543   RHS = Op->getOperand(1);
544   if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
545     Constant *C;
546     if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
547       // X << C --> X * (1 << C)
548       RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
549       return Instruction::Mul;
550     }
551     // TODO: We can add other conversions e.g. shr => div etc.
552   }
553   return Op->getOpcode();
554 }
555 
556 /// This tries to simplify binary operations by factorizing out common terms
557 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
558 Value *InstCombiner::tryFactorization(BinaryOperator &I,
559                                       Instruction::BinaryOps InnerOpcode,
560                                       Value *A, Value *B, Value *C, Value *D) {
561   assert(A && B && C && D && "All values must be provided");
562 
563   Value *V = nullptr;
564   Value *SimplifiedInst = nullptr;
565   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
566   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
567 
568   // Does "X op' Y" always equal "Y op' X"?
569   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
570 
571   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
572   if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
573     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
574     // commutative case, "(A op' B) op (C op' A)"?
575     if (A == C || (InnerCommutative && A == D)) {
576       if (A != C)
577         std::swap(C, D);
578       // Consider forming "A op' (B op D)".
579       // If "B op D" simplifies then it can be formed with no cost.
580       V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
581       // If "B op D" doesn't simplify then only go on if both of the existing
582       // operations "A op' B" and "C op' D" will be zapped as no longer used.
583       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
584         V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
585       if (V) {
586         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
587       }
588     }
589 
590   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
591   if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
592     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
593     // commutative case, "(A op' B) op (B op' D)"?
594     if (B == D || (InnerCommutative && B == C)) {
595       if (B != D)
596         std::swap(C, D);
597       // Consider forming "(A op C) op' B".
598       // If "A op C" simplifies then it can be formed with no cost.
599       V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
600 
601       // If "A op C" doesn't simplify then only go on if both of the existing
602       // operations "A op' B" and "C op' D" will be zapped as no longer used.
603       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
604         V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
605       if (V) {
606         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
607       }
608     }
609 
610   if (SimplifiedInst) {
611     ++NumFactor;
612     SimplifiedInst->takeName(&I);
613 
614     // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
615     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
616       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
617         bool HasNSW = false;
618         bool HasNUW = false;
619         if (isa<OverflowingBinaryOperator>(&I)) {
620           HasNSW = I.hasNoSignedWrap();
621           HasNUW = I.hasNoUnsignedWrap();
622         }
623 
624         if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
625           HasNSW &= LOBO->hasNoSignedWrap();
626           HasNUW &= LOBO->hasNoUnsignedWrap();
627         }
628 
629         if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
630           HasNSW &= ROBO->hasNoSignedWrap();
631           HasNUW &= ROBO->hasNoUnsignedWrap();
632         }
633 
634         if (TopLevelOpcode == Instruction::Add &&
635             InnerOpcode == Instruction::Mul) {
636           // We can propagate 'nsw' if we know that
637           //  %Y = mul nsw i16 %X, C
638           //  %Z = add nsw i16 %Y, %X
639           // =>
640           //  %Z = mul nsw i16 %X, C+1
641           //
642           // iff C+1 isn't INT_MIN
643           const APInt *CInt;
644           if (match(V, m_APInt(CInt))) {
645             if (!CInt->isMinSignedValue())
646               BO->setHasNoSignedWrap(HasNSW);
647           }
648 
649           // nuw can be propagated with any constant or nuw value.
650           BO->setHasNoUnsignedWrap(HasNUW);
651         }
652       }
653     }
654   }
655   return SimplifiedInst;
656 }
657 
658 /// This tries to simplify binary operations which some other binary operation
659 /// distributes over either by factorizing out common terms
660 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
661 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
662 /// Returns the simplified value, or null if it didn't simplify.
663 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
664   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
665   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
666   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
667   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
668 
669   {
670     // Factorization.
671     Value *A, *B, *C, *D;
672     Instruction::BinaryOps LHSOpcode, RHSOpcode;
673     if (Op0)
674       LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
675     if (Op1)
676       RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
677 
678     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
679     // a common term.
680     if (Op0 && Op1 && LHSOpcode == RHSOpcode)
681       if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
682         return V;
683 
684     // The instruction has the form "(A op' B) op (C)".  Try to factorize common
685     // term.
686     if (Op0)
687       if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
688         if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
689           return V;
690 
691     // The instruction has the form "(B) op (C op' D)".  Try to factorize common
692     // term.
693     if (Op1)
694       if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
695         if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
696           return V;
697   }
698 
699   // Expansion.
700   if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
701     // The instruction has the form "(A op' B) op C".  See if expanding it out
702     // to "(A op C) op' (B op C)" results in simplifications.
703     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
704     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
705 
706     Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
707     Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I));
708 
709     // Do "A op C" and "B op C" both simplify?
710     if (L && R) {
711       // They do! Return "L op' R".
712       ++NumExpand;
713       C = Builder.CreateBinOp(InnerOpcode, L, R);
714       C->takeName(&I);
715       return C;
716     }
717 
718     // Does "A op C" simplify to the identity value for the inner opcode?
719     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
720       // They do! Return "B op C".
721       ++NumExpand;
722       C = Builder.CreateBinOp(TopLevelOpcode, B, C);
723       C->takeName(&I);
724       return C;
725     }
726 
727     // Does "B op C" simplify to the identity value for the inner opcode?
728     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
729       // They do! Return "A op C".
730       ++NumExpand;
731       C = Builder.CreateBinOp(TopLevelOpcode, A, C);
732       C->takeName(&I);
733       return C;
734     }
735   }
736 
737   if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
738     // The instruction has the form "A op (B op' C)".  See if expanding it out
739     // to "(A op B) op' (A op C)" results in simplifications.
740     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
741     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
742 
743     Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I));
744     Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
745 
746     // Do "A op B" and "A op C" both simplify?
747     if (L && R) {
748       // They do! Return "L op' R".
749       ++NumExpand;
750       A = Builder.CreateBinOp(InnerOpcode, L, R);
751       A->takeName(&I);
752       return A;
753     }
754 
755     // Does "A op B" simplify to the identity value for the inner opcode?
756     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
757       // They do! Return "A op C".
758       ++NumExpand;
759       A = Builder.CreateBinOp(TopLevelOpcode, A, C);
760       A->takeName(&I);
761       return A;
762     }
763 
764     // Does "A op C" simplify to the identity value for the inner opcode?
765     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
766       // They do! Return "A op B".
767       ++NumExpand;
768       A = Builder.CreateBinOp(TopLevelOpcode, A, B);
769       A->takeName(&I);
770       return A;
771     }
772   }
773 
774   return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
775 }
776 
777 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
778                                                     Value *LHS, Value *RHS) {
779   Value *A, *B, *C, *D, *E, *F;
780   bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
781   bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
782   if (!LHSIsSelect && !RHSIsSelect)
783     return nullptr;
784 
785   FastMathFlags FMF;
786   BuilderTy::FastMathFlagGuard Guard(Builder);
787   if (isa<FPMathOperator>(&I)) {
788     FMF = I.getFastMathFlags();
789     Builder.setFastMathFlags(FMF);
790   }
791 
792   Instruction::BinaryOps Opcode = I.getOpcode();
793   SimplifyQuery Q = SQ.getWithInstruction(&I);
794 
795   Value *Cond, *True = nullptr, *False = nullptr;
796   if (LHSIsSelect && RHSIsSelect && A == D) {
797     // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
798     Cond = A;
799     True = SimplifyBinOp(Opcode, B, E, FMF, Q);
800     False = SimplifyBinOp(Opcode, C, F, FMF, Q);
801 
802     if (LHS->hasOneUse() && RHS->hasOneUse()) {
803       if (False && !True)
804         True = Builder.CreateBinOp(Opcode, B, E);
805       else if (True && !False)
806         False = Builder.CreateBinOp(Opcode, C, F);
807     }
808   } else if (LHSIsSelect && LHS->hasOneUse()) {
809     // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
810     Cond = A;
811     True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
812     False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
813   } else if (RHSIsSelect && RHS->hasOneUse()) {
814     // X op (D ? E : F) -> D ? (X op E) : (X op F)
815     Cond = D;
816     True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
817     False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
818   }
819 
820   if (!True || !False)
821     return nullptr;
822 
823   Value *SI = Builder.CreateSelect(Cond, True, False);
824   SI->takeName(&I);
825   return SI;
826 }
827 
828 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
829 /// constant zero (which is the 'negate' form).
830 Value *InstCombiner::dyn_castNegVal(Value *V) const {
831   Value *NegV;
832   if (match(V, m_Neg(m_Value(NegV))))
833     return NegV;
834 
835   // Constants can be considered to be negated values if they can be folded.
836   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
837     return ConstantExpr::getNeg(C);
838 
839   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
840     if (C->getType()->getElementType()->isIntegerTy())
841       return ConstantExpr::getNeg(C);
842 
843   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
844     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
845       Constant *Elt = CV->getAggregateElement(i);
846       if (!Elt)
847         return nullptr;
848 
849       if (isa<UndefValue>(Elt))
850         continue;
851 
852       if (!isa<ConstantInt>(Elt))
853         return nullptr;
854     }
855     return ConstantExpr::getNeg(CV);
856   }
857 
858   return nullptr;
859 }
860 
861 /// Get negated V (that is 0-V) without increasing instruction count,
862 /// assuming that the original V will become unused.
863 Value *InstCombiner::freelyNegateValue(Value *V) {
864   if (Value *NegV = dyn_castNegVal(V))
865     return NegV;
866 
867   Instruction *I = dyn_cast<Instruction>(V);
868   if (!I)
869     return nullptr;
870 
871   unsigned BitWidth = I->getType()->getScalarSizeInBits();
872   switch (I->getOpcode()) {
873   // 0-(zext i1 A)  =>  sext i1 A
874   case Instruction::ZExt:
875     if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1))
876       return Builder.CreateSExtOrBitCast(
877           I->getOperand(0), I->getType(), I->getName() + ".neg");
878     return nullptr;
879 
880   // 0-(sext i1 A)  =>  zext i1 A
881   case Instruction::SExt:
882     if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1))
883       return Builder.CreateZExtOrBitCast(
884           I->getOperand(0), I->getType(), I->getName() + ".neg");
885     return nullptr;
886 
887   // 0-(A lshr (BW-1))  =>  A ashr (BW-1)
888   case Instruction::LShr:
889     if (match(I->getOperand(1), m_SpecificInt(BitWidth - 1)))
890       return Builder.CreateAShr(
891           I->getOperand(0), I->getOperand(1),
892           I->getName() + ".neg", cast<BinaryOperator>(I)->isExact());
893     return nullptr;
894 
895   // 0-(A ashr (BW-1))  =>  A lshr (BW-1)
896   case Instruction::AShr:
897     if (match(I->getOperand(1), m_SpecificInt(BitWidth - 1)))
898       return Builder.CreateLShr(
899           I->getOperand(0), I->getOperand(1),
900           I->getName() + ".neg", cast<BinaryOperator>(I)->isExact());
901     return nullptr;
902 
903   default:
904     break;
905   }
906 
907   // TODO: The "sub" pattern below could also be applied without the one-use
908   // restriction. Not allowing it for now in line with existing behavior.
909   if (!I->hasOneUse())
910     return nullptr;
911 
912   switch (I->getOpcode()) {
913   // 0-(A-B)  =>  B-A
914   case Instruction::Sub:
915     return Builder.CreateSub(
916         I->getOperand(1), I->getOperand(0), I->getName() + ".neg");
917 
918   // 0-(A sdiv C)  =>  A sdiv (0-C)  provided the negation doesn't overflow.
919   case Instruction::SDiv: {
920     Constant *C = dyn_cast<Constant>(I->getOperand(1));
921     if (C && !C->containsUndefElement() && C->isNotMinSignedValue() &&
922         C->isNotOneValue())
923       return Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(C),
924           I->getName() + ".neg", cast<BinaryOperator>(I)->isExact());
925     return nullptr;
926   }
927 
928   // 0-(A<<B)  =>  (0-A)<<B
929   case Instruction::Shl:
930     if (Value *NegA = freelyNegateValue(I->getOperand(0)))
931       return Builder.CreateShl(NegA, I->getOperand(1), I->getName() + ".neg");
932     return nullptr;
933 
934   // 0-(trunc A)  =>  trunc (0-A)
935   case Instruction::Trunc:
936     if (Value *NegA = freelyNegateValue(I->getOperand(0)))
937       return Builder.CreateTrunc(NegA, I->getType(), I->getName() + ".neg");
938     return nullptr;
939 
940   // 0-(A*B)  =>  (0-A)*B
941   // 0-(A*B)  =>  A*(0-B)
942   case Instruction::Mul:
943     if (Value *NegA = freelyNegateValue(I->getOperand(0)))
944       return Builder.CreateMul(NegA, I->getOperand(1), V->getName() + ".neg");
945     if (Value *NegB = freelyNegateValue(I->getOperand(1)))
946       return Builder.CreateMul(I->getOperand(0), NegB, V->getName() + ".neg");
947     return nullptr;
948 
949   default:
950     return nullptr;
951   }
952 }
953 
954 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
955                                              InstCombiner::BuilderTy &Builder) {
956   if (auto *Cast = dyn_cast<CastInst>(&I))
957     return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
958 
959   assert(I.isBinaryOp() && "Unexpected opcode for select folding");
960 
961   // Figure out if the constant is the left or the right argument.
962   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
963   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
964 
965   if (auto *SOC = dyn_cast<Constant>(SO)) {
966     if (ConstIsRHS)
967       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
968     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
969   }
970 
971   Value *Op0 = SO, *Op1 = ConstOperand;
972   if (!ConstIsRHS)
973     std::swap(Op0, Op1);
974 
975   auto *BO = cast<BinaryOperator>(&I);
976   Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
977                                   SO->getName() + ".op");
978   auto *FPInst = dyn_cast<Instruction>(RI);
979   if (FPInst && isa<FPMathOperator>(FPInst))
980     FPInst->copyFastMathFlags(BO);
981   return RI;
982 }
983 
984 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
985   // Don't modify shared select instructions.
986   if (!SI->hasOneUse())
987     return nullptr;
988 
989   Value *TV = SI->getTrueValue();
990   Value *FV = SI->getFalseValue();
991   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
992     return nullptr;
993 
994   // Bool selects with constant operands can be folded to logical ops.
995   if (SI->getType()->isIntOrIntVectorTy(1))
996     return nullptr;
997 
998   // If it's a bitcast involving vectors, make sure it has the same number of
999   // elements on both sides.
1000   if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
1001     VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
1002     VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
1003 
1004     // Verify that either both or neither are vectors.
1005     if ((SrcTy == nullptr) != (DestTy == nullptr))
1006       return nullptr;
1007 
1008     // If vectors, verify that they have the same number of elements.
1009     if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
1010       return nullptr;
1011   }
1012 
1013   // Test if a CmpInst instruction is used exclusively by a select as
1014   // part of a minimum or maximum operation. If so, refrain from doing
1015   // any other folding. This helps out other analyses which understand
1016   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
1017   // and CodeGen. And in this case, at least one of the comparison
1018   // operands has at least one user besides the compare (the select),
1019   // which would often largely negate the benefit of folding anyway.
1020   if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
1021     if (CI->hasOneUse()) {
1022       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1023       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
1024           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
1025         return nullptr;
1026     }
1027   }
1028 
1029   Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
1030   Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
1031   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1032 }
1033 
1034 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
1035                                         InstCombiner::BuilderTy &Builder) {
1036   bool ConstIsRHS = isa<Constant>(I->getOperand(1));
1037   Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
1038 
1039   if (auto *InC = dyn_cast<Constant>(InV)) {
1040     if (ConstIsRHS)
1041       return ConstantExpr::get(I->getOpcode(), InC, C);
1042     return ConstantExpr::get(I->getOpcode(), C, InC);
1043   }
1044 
1045   Value *Op0 = InV, *Op1 = C;
1046   if (!ConstIsRHS)
1047     std::swap(Op0, Op1);
1048 
1049   Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp");
1050   auto *FPInst = dyn_cast<Instruction>(RI);
1051   if (FPInst && isa<FPMathOperator>(FPInst))
1052     FPInst->copyFastMathFlags(I);
1053   return RI;
1054 }
1055 
1056 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1057   unsigned NumPHIValues = PN->getNumIncomingValues();
1058   if (NumPHIValues == 0)
1059     return nullptr;
1060 
1061   // We normally only transform phis with a single use.  However, if a PHI has
1062   // multiple uses and they are all the same operation, we can fold *all* of the
1063   // uses into the PHI.
1064   if (!PN->hasOneUse()) {
1065     // Walk the use list for the instruction, comparing them to I.
1066     for (User *U : PN->users()) {
1067       Instruction *UI = cast<Instruction>(U);
1068       if (UI != &I && !I.isIdenticalTo(UI))
1069         return nullptr;
1070     }
1071     // Otherwise, we can replace *all* users with the new PHI we form.
1072   }
1073 
1074   // Check to see if all of the operands of the PHI are simple constants
1075   // (constantint/constantfp/undef).  If there is one non-constant value,
1076   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
1077   // bail out.  We don't do arbitrary constant expressions here because moving
1078   // their computation can be expensive without a cost model.
1079   BasicBlock *NonConstBB = nullptr;
1080   for (unsigned i = 0; i != NumPHIValues; ++i) {
1081     Value *InVal = PN->getIncomingValue(i);
1082     if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
1083       continue;
1084 
1085     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
1086     if (NonConstBB) return nullptr;  // More than one non-const value.
1087 
1088     NonConstBB = PN->getIncomingBlock(i);
1089 
1090     // If the InVal is an invoke at the end of the pred block, then we can't
1091     // insert a computation after it without breaking the edge.
1092     if (isa<InvokeInst>(InVal))
1093       if (cast<Instruction>(InVal)->getParent() == NonConstBB)
1094         return nullptr;
1095 
1096     // If the incoming non-constant value is in I's block, we will remove one
1097     // instruction, but insert another equivalent one, leading to infinite
1098     // instcombine.
1099     if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
1100       return nullptr;
1101   }
1102 
1103   // If there is exactly one non-constant value, we can insert a copy of the
1104   // operation in that block.  However, if this is a critical edge, we would be
1105   // inserting the computation on some other paths (e.g. inside a loop).  Only
1106   // do this if the pred block is unconditionally branching into the phi block.
1107   if (NonConstBB != nullptr) {
1108     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1109     if (!BI || !BI->isUnconditional()) return nullptr;
1110   }
1111 
1112   // Okay, we can do the transformation: create the new PHI node.
1113   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1114   InsertNewInstBefore(NewPN, *PN);
1115   NewPN->takeName(PN);
1116 
1117   // If we are going to have to insert a new computation, do so right before the
1118   // predecessor's terminator.
1119   if (NonConstBB)
1120     Builder.SetInsertPoint(NonConstBB->getTerminator());
1121 
1122   // Next, add all of the operands to the PHI.
1123   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1124     // We only currently try to fold the condition of a select when it is a phi,
1125     // not the true/false values.
1126     Value *TrueV = SI->getTrueValue();
1127     Value *FalseV = SI->getFalseValue();
1128     BasicBlock *PhiTransBB = PN->getParent();
1129     for (unsigned i = 0; i != NumPHIValues; ++i) {
1130       BasicBlock *ThisBB = PN->getIncomingBlock(i);
1131       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1132       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1133       Value *InV = nullptr;
1134       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
1135       // even if currently isNullValue gives false.
1136       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1137       // For vector constants, we cannot use isNullValue to fold into
1138       // FalseVInPred versus TrueVInPred. When we have individual nonzero
1139       // elements in the vector, we will incorrectly fold InC to
1140       // `TrueVInPred`.
1141       if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC))
1142         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1143       else {
1144         // Generate the select in the same block as PN's current incoming block.
1145         // Note: ThisBB need not be the NonConstBB because vector constants
1146         // which are constants by definition are handled here.
1147         // FIXME: This can lead to an increase in IR generation because we might
1148         // generate selects for vector constant phi operand, that could not be
1149         // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1150         // non-vector phis, this transformation was always profitable because
1151         // the select would be generated exactly once in the NonConstBB.
1152         Builder.SetInsertPoint(ThisBB->getTerminator());
1153         InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1154                                    FalseVInPred, "phitmp");
1155       }
1156       NewPN->addIncoming(InV, ThisBB);
1157     }
1158   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1159     Constant *C = cast<Constant>(I.getOperand(1));
1160     for (unsigned i = 0; i != NumPHIValues; ++i) {
1161       Value *InV = nullptr;
1162       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1163         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1164       else if (isa<ICmpInst>(CI))
1165         InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
1166                                  C, "phitmp");
1167       else
1168         InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
1169                                  C, "phitmp");
1170       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1171     }
1172   } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1173     for (unsigned i = 0; i != NumPHIValues; ++i) {
1174       Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1175                                              Builder);
1176       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1177     }
1178   } else {
1179     CastInst *CI = cast<CastInst>(&I);
1180     Type *RetTy = CI->getType();
1181     for (unsigned i = 0; i != NumPHIValues; ++i) {
1182       Value *InV;
1183       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1184         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1185       else
1186         InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1187                                  I.getType(), "phitmp");
1188       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1189     }
1190   }
1191 
1192   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1193     Instruction *User = cast<Instruction>(*UI++);
1194     if (User == &I) continue;
1195     replaceInstUsesWith(*User, NewPN);
1196     eraseInstFromFunction(*User);
1197   }
1198   return replaceInstUsesWith(I, NewPN);
1199 }
1200 
1201 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1202   if (!isa<Constant>(I.getOperand(1)))
1203     return nullptr;
1204 
1205   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1206     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1207       return NewSel;
1208   } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1209     if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1210       return NewPhi;
1211   }
1212   return nullptr;
1213 }
1214 
1215 /// Given a pointer type and a constant offset, determine whether or not there
1216 /// is a sequence of GEP indices into the pointed type that will land us at the
1217 /// specified offset. If so, fill them into NewIndices and return the resultant
1218 /// element type, otherwise return null.
1219 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
1220                                         SmallVectorImpl<Value *> &NewIndices) {
1221   Type *Ty = PtrTy->getElementType();
1222   if (!Ty->isSized())
1223     return nullptr;
1224 
1225   // Start with the index over the outer type.  Note that the type size
1226   // might be zero (even if the offset isn't zero) if the indexed type
1227   // is something like [0 x {int, int}]
1228   Type *IndexTy = DL.getIndexType(PtrTy);
1229   int64_t FirstIdx = 0;
1230   if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
1231     FirstIdx = Offset/TySize;
1232     Offset -= FirstIdx*TySize;
1233 
1234     // Handle hosts where % returns negative instead of values [0..TySize).
1235     if (Offset < 0) {
1236       --FirstIdx;
1237       Offset += TySize;
1238       assert(Offset >= 0);
1239     }
1240     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
1241   }
1242 
1243   NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
1244 
1245   // Index into the types.  If we fail, set OrigBase to null.
1246   while (Offset) {
1247     // Indexing into tail padding between struct/array elements.
1248     if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
1249       return nullptr;
1250 
1251     if (StructType *STy = dyn_cast<StructType>(Ty)) {
1252       const StructLayout *SL = DL.getStructLayout(STy);
1253       assert(Offset < (int64_t)SL->getSizeInBytes() &&
1254              "Offset must stay within the indexed type");
1255 
1256       unsigned Elt = SL->getElementContainingOffset(Offset);
1257       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1258                                             Elt));
1259 
1260       Offset -= SL->getElementOffset(Elt);
1261       Ty = STy->getElementType(Elt);
1262     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
1263       uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
1264       assert(EltSize && "Cannot index into a zero-sized array");
1265       NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
1266       Offset %= EltSize;
1267       Ty = AT->getElementType();
1268     } else {
1269       // Otherwise, we can't index into the middle of this atomic type, bail.
1270       return nullptr;
1271     }
1272   }
1273 
1274   return Ty;
1275 }
1276 
1277 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1278   // If this GEP has only 0 indices, it is the same pointer as
1279   // Src. If Src is not a trivial GEP too, don't combine
1280   // the indices.
1281   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1282       !Src.hasOneUse())
1283     return false;
1284   return true;
1285 }
1286 
1287 /// Return a value X such that Val = X * Scale, or null if none.
1288 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1289 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1290   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1291   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1292          Scale.getBitWidth() && "Scale not compatible with value!");
1293 
1294   // If Val is zero or Scale is one then Val = Val * Scale.
1295   if (match(Val, m_Zero()) || Scale == 1) {
1296     NoSignedWrap = true;
1297     return Val;
1298   }
1299 
1300   // If Scale is zero then it does not divide Val.
1301   if (Scale.isMinValue())
1302     return nullptr;
1303 
1304   // Look through chains of multiplications, searching for a constant that is
1305   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1306   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1307   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1308   // down from Val:
1309   //
1310   //     Val = M1 * X          ||   Analysis starts here and works down
1311   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1312   //      M2 =  Z * 4          \/   than one use
1313   //
1314   // Then to modify a term at the bottom:
1315   //
1316   //     Val = M1 * X
1317   //      M1 =  Z * Y          ||   Replaced M2 with Z
1318   //
1319   // Then to work back up correcting nsw flags.
1320 
1321   // Op - the term we are currently analyzing.  Starts at Val then drills down.
1322   // Replaced with its descaled value before exiting from the drill down loop.
1323   Value *Op = Val;
1324 
1325   // Parent - initially null, but after drilling down notes where Op came from.
1326   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1327   // 0'th operand of Val.
1328   std::pair<Instruction *, unsigned> Parent;
1329 
1330   // Set if the transform requires a descaling at deeper levels that doesn't
1331   // overflow.
1332   bool RequireNoSignedWrap = false;
1333 
1334   // Log base 2 of the scale. Negative if not a power of 2.
1335   int32_t logScale = Scale.exactLogBase2();
1336 
1337   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1338     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1339       // If Op is a constant divisible by Scale then descale to the quotient.
1340       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1341       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1342       if (!Remainder.isMinValue())
1343         // Not divisible by Scale.
1344         return nullptr;
1345       // Replace with the quotient in the parent.
1346       Op = ConstantInt::get(CI->getType(), Quotient);
1347       NoSignedWrap = true;
1348       break;
1349     }
1350 
1351     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1352       if (BO->getOpcode() == Instruction::Mul) {
1353         // Multiplication.
1354         NoSignedWrap = BO->hasNoSignedWrap();
1355         if (RequireNoSignedWrap && !NoSignedWrap)
1356           return nullptr;
1357 
1358         // There are three cases for multiplication: multiplication by exactly
1359         // the scale, multiplication by a constant different to the scale, and
1360         // multiplication by something else.
1361         Value *LHS = BO->getOperand(0);
1362         Value *RHS = BO->getOperand(1);
1363 
1364         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1365           // Multiplication by a constant.
1366           if (CI->getValue() == Scale) {
1367             // Multiplication by exactly the scale, replace the multiplication
1368             // by its left-hand side in the parent.
1369             Op = LHS;
1370             break;
1371           }
1372 
1373           // Otherwise drill down into the constant.
1374           if (!Op->hasOneUse())
1375             return nullptr;
1376 
1377           Parent = std::make_pair(BO, 1);
1378           continue;
1379         }
1380 
1381         // Multiplication by something else. Drill down into the left-hand side
1382         // since that's where the reassociate pass puts the good stuff.
1383         if (!Op->hasOneUse())
1384           return nullptr;
1385 
1386         Parent = std::make_pair(BO, 0);
1387         continue;
1388       }
1389 
1390       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1391           isa<ConstantInt>(BO->getOperand(1))) {
1392         // Multiplication by a power of 2.
1393         NoSignedWrap = BO->hasNoSignedWrap();
1394         if (RequireNoSignedWrap && !NoSignedWrap)
1395           return nullptr;
1396 
1397         Value *LHS = BO->getOperand(0);
1398         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1399           getLimitedValue(Scale.getBitWidth());
1400         // Op = LHS << Amt.
1401 
1402         if (Amt == logScale) {
1403           // Multiplication by exactly the scale, replace the multiplication
1404           // by its left-hand side in the parent.
1405           Op = LHS;
1406           break;
1407         }
1408         if (Amt < logScale || !Op->hasOneUse())
1409           return nullptr;
1410 
1411         // Multiplication by more than the scale.  Reduce the multiplying amount
1412         // by the scale in the parent.
1413         Parent = std::make_pair(BO, 1);
1414         Op = ConstantInt::get(BO->getType(), Amt - logScale);
1415         break;
1416       }
1417     }
1418 
1419     if (!Op->hasOneUse())
1420       return nullptr;
1421 
1422     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1423       if (Cast->getOpcode() == Instruction::SExt) {
1424         // Op is sign-extended from a smaller type, descale in the smaller type.
1425         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1426         APInt SmallScale = Scale.trunc(SmallSize);
1427         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1428         // descale Op as (sext Y) * Scale.  In order to have
1429         //   sext (Y * SmallScale) = (sext Y) * Scale
1430         // some conditions need to hold however: SmallScale must sign-extend to
1431         // Scale and the multiplication Y * SmallScale should not overflow.
1432         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1433           // SmallScale does not sign-extend to Scale.
1434           return nullptr;
1435         assert(SmallScale.exactLogBase2() == logScale);
1436         // Require that Y * SmallScale must not overflow.
1437         RequireNoSignedWrap = true;
1438 
1439         // Drill down through the cast.
1440         Parent = std::make_pair(Cast, 0);
1441         Scale = SmallScale;
1442         continue;
1443       }
1444 
1445       if (Cast->getOpcode() == Instruction::Trunc) {
1446         // Op is truncated from a larger type, descale in the larger type.
1447         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1448         //   trunc (Y * sext Scale) = (trunc Y) * Scale
1449         // always holds.  However (trunc Y) * Scale may overflow even if
1450         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1451         // from this point up in the expression (see later).
1452         if (RequireNoSignedWrap)
1453           return nullptr;
1454 
1455         // Drill down through the cast.
1456         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1457         Parent = std::make_pair(Cast, 0);
1458         Scale = Scale.sext(LargeSize);
1459         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1460           logScale = -1;
1461         assert(Scale.exactLogBase2() == logScale);
1462         continue;
1463       }
1464     }
1465 
1466     // Unsupported expression, bail out.
1467     return nullptr;
1468   }
1469 
1470   // If Op is zero then Val = Op * Scale.
1471   if (match(Op, m_Zero())) {
1472     NoSignedWrap = true;
1473     return Op;
1474   }
1475 
1476   // We know that we can successfully descale, so from here on we can safely
1477   // modify the IR.  Op holds the descaled version of the deepest term in the
1478   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1479   // not to overflow.
1480 
1481   if (!Parent.first)
1482     // The expression only had one term.
1483     return Op;
1484 
1485   // Rewrite the parent using the descaled version of its operand.
1486   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1487   assert(Op != Parent.first->getOperand(Parent.second) &&
1488          "Descaling was a no-op?");
1489   Parent.first->setOperand(Parent.second, Op);
1490   Worklist.push(Parent.first);
1491 
1492   // Now work back up the expression correcting nsw flags.  The logic is based
1493   // on the following observation: if X * Y is known not to overflow as a signed
1494   // multiplication, and Y is replaced by a value Z with smaller absolute value,
1495   // then X * Z will not overflow as a signed multiplication either.  As we work
1496   // our way up, having NoSignedWrap 'true' means that the descaled value at the
1497   // current level has strictly smaller absolute value than the original.
1498   Instruction *Ancestor = Parent.first;
1499   do {
1500     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1501       // If the multiplication wasn't nsw then we can't say anything about the
1502       // value of the descaled multiplication, and we have to clear nsw flags
1503       // from this point on up.
1504       bool OpNoSignedWrap = BO->hasNoSignedWrap();
1505       NoSignedWrap &= OpNoSignedWrap;
1506       if (NoSignedWrap != OpNoSignedWrap) {
1507         BO->setHasNoSignedWrap(NoSignedWrap);
1508         Worklist.push(Ancestor);
1509       }
1510     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1511       // The fact that the descaled input to the trunc has smaller absolute
1512       // value than the original input doesn't tell us anything useful about
1513       // the absolute values of the truncations.
1514       NoSignedWrap = false;
1515     }
1516     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1517            "Failed to keep proper track of nsw flags while drilling down?");
1518 
1519     if (Ancestor == Val)
1520       // Got to the top, all done!
1521       return Val;
1522 
1523     // Move up one level in the expression.
1524     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1525     Ancestor = Ancestor->user_back();
1526   } while (true);
1527 }
1528 
1529 Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) {
1530   if (!Inst.getType()->isVectorTy()) return nullptr;
1531 
1532   BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1533   unsigned NumElts = cast<VectorType>(Inst.getType())->getNumElements();
1534   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1535   assert(cast<VectorType>(LHS->getType())->getNumElements() == NumElts);
1536   assert(cast<VectorType>(RHS->getType())->getNumElements() == NumElts);
1537 
1538   // If both operands of the binop are vector concatenations, then perform the
1539   // narrow binop on each pair of the source operands followed by concatenation
1540   // of the results.
1541   Value *L0, *L1, *R0, *R1;
1542   Constant *Mask;
1543   if (match(LHS, m_ShuffleVector(m_Value(L0), m_Value(L1), m_Constant(Mask))) &&
1544       match(RHS, m_ShuffleVector(m_Value(R0), m_Value(R1), m_Specific(Mask))) &&
1545       LHS->hasOneUse() && RHS->hasOneUse() &&
1546       cast<ShuffleVectorInst>(LHS)->isConcat() &&
1547       cast<ShuffleVectorInst>(RHS)->isConcat()) {
1548     // This transform does not have the speculative execution constraint as
1549     // below because the shuffle is a concatenation. The new binops are
1550     // operating on exactly the same elements as the existing binop.
1551     // TODO: We could ease the mask requirement to allow different undef lanes,
1552     //       but that requires an analysis of the binop-with-undef output value.
1553     Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1554     if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1555       BO->copyIRFlags(&Inst);
1556     Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1557     if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1558       BO->copyIRFlags(&Inst);
1559     return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1560   }
1561 
1562   // It may not be safe to reorder shuffles and things like div, urem, etc.
1563   // because we may trap when executing those ops on unknown vector elements.
1564   // See PR20059.
1565   if (!isSafeToSpeculativelyExecute(&Inst))
1566     return nullptr;
1567 
1568   auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) {
1569     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1570     if (auto *BO = dyn_cast<BinaryOperator>(XY))
1571       BO->copyIRFlags(&Inst);
1572     return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
1573   };
1574 
1575   // If both arguments of the binary operation are shuffles that use the same
1576   // mask and shuffle within a single vector, move the shuffle after the binop.
1577   Value *V1, *V2;
1578   if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) &&
1579       match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) &&
1580       V1->getType() == V2->getType() &&
1581       (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1582     // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1583     return createBinOpShuffle(V1, V2, Mask);
1584   }
1585 
1586   // If both arguments of a commutative binop are select-shuffles that use the
1587   // same mask with commuted operands, the shuffles are unnecessary.
1588   if (Inst.isCommutative() &&
1589       match(LHS, m_ShuffleVector(m_Value(V1), m_Value(V2), m_Constant(Mask))) &&
1590       match(RHS, m_ShuffleVector(m_Specific(V2), m_Specific(V1),
1591                                  m_Specific(Mask)))) {
1592     auto *LShuf = cast<ShuffleVectorInst>(LHS);
1593     auto *RShuf = cast<ShuffleVectorInst>(RHS);
1594     // TODO: Allow shuffles that contain undefs in the mask?
1595     //       That is legal, but it reduces undef knowledge.
1596     // TODO: Allow arbitrary shuffles by shuffling after binop?
1597     //       That might be legal, but we have to deal with poison.
1598     if (LShuf->isSelect() && !LShuf->getMask()->containsUndefElement() &&
1599         RShuf->isSelect() && !RShuf->getMask()->containsUndefElement()) {
1600       // Example:
1601       // LHS = shuffle V1, V2, <0, 5, 6, 3>
1602       // RHS = shuffle V2, V1, <0, 5, 6, 3>
1603       // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1604       Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1605       NewBO->copyIRFlags(&Inst);
1606       return NewBO;
1607     }
1608   }
1609 
1610   // If one argument is a shuffle within one vector and the other is a constant,
1611   // try moving the shuffle after the binary operation. This canonicalization
1612   // intends to move shuffles closer to other shuffles and binops closer to
1613   // other binops, so they can be folded. It may also enable demanded elements
1614   // transforms.
1615   Constant *C;
1616   if (match(&Inst, m_c_BinOp(
1617           m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))),
1618           m_Constant(C))) &&
1619       V1->getType()->getVectorNumElements() <= NumElts) {
1620     assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
1621            "Shuffle should not change scalar type");
1622 
1623     // Find constant NewC that has property:
1624     //   shuffle(NewC, ShMask) = C
1625     // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1626     // reorder is not possible. A 1-to-1 mapping is not required. Example:
1627     // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1628     bool ConstOp1 = isa<Constant>(RHS);
1629     SmallVector<int, 16> ShMask;
1630     ShuffleVectorInst::getShuffleMask(Mask, ShMask);
1631     unsigned SrcVecNumElts = V1->getType()->getVectorNumElements();
1632     UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1633     SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1634     bool MayChange = true;
1635     for (unsigned I = 0; I < NumElts; ++I) {
1636       Constant *CElt = C->getAggregateElement(I);
1637       if (ShMask[I] >= 0) {
1638         assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1639         Constant *NewCElt = NewVecC[ShMask[I]];
1640         // Bail out if:
1641         // 1. The constant vector contains a constant expression.
1642         // 2. The shuffle needs an element of the constant vector that can't
1643         //    be mapped to a new constant vector.
1644         // 3. This is a widening shuffle that copies elements of V1 into the
1645         //    extended elements (extending with undef is allowed).
1646         if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1647             I >= SrcVecNumElts) {
1648           MayChange = false;
1649           break;
1650         }
1651         NewVecC[ShMask[I]] = CElt;
1652       }
1653       // If this is a widening shuffle, we must be able to extend with undef
1654       // elements. If the original binop does not produce an undef in the high
1655       // lanes, then this transform is not safe.
1656       // Similarly for undef lanes due to the shuffle mask, we can only
1657       // transform binops that preserve undef.
1658       // TODO: We could shuffle those non-undef constant values into the
1659       //       result by using a constant vector (rather than an undef vector)
1660       //       as operand 1 of the new binop, but that might be too aggressive
1661       //       for target-independent shuffle creation.
1662       if (I >= SrcVecNumElts || ShMask[I] < 0) {
1663         Constant *MaybeUndef =
1664             ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1665                      : ConstantExpr::get(Opcode, CElt, UndefScalar);
1666         if (!isa<UndefValue>(MaybeUndef)) {
1667           MayChange = false;
1668           break;
1669         }
1670       }
1671     }
1672     if (MayChange) {
1673       Constant *NewC = ConstantVector::get(NewVecC);
1674       // It may not be safe to execute a binop on a vector with undef elements
1675       // because the entire instruction can be folded to undef or create poison
1676       // that did not exist in the original code.
1677       if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1678         NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1679 
1680       // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1681       // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1682       Value *NewLHS = ConstOp1 ? V1 : NewC;
1683       Value *NewRHS = ConstOp1 ? NewC : V1;
1684       return createBinOpShuffle(NewLHS, NewRHS, Mask);
1685     }
1686   }
1687 
1688   // Try to reassociate to sink a splat shuffle after a binary operation.
1689   if (Inst.isAssociative() && Inst.isCommutative()) {
1690     // Canonicalize shuffle operand as LHS.
1691     if (isa<ShuffleVectorInst>(RHS))
1692       std::swap(LHS, RHS);
1693 
1694     Value *X;
1695     Constant *MaskC;
1696     const APInt *SplatIndex;
1697     BinaryOperator *BO;
1698     if (!match(LHS, m_OneUse(m_ShuffleVector(m_Value(X), m_Undef(),
1699                                              m_Constant(MaskC)))) ||
1700         !match(MaskC, m_APIntAllowUndef(SplatIndex)) ||
1701         X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) ||
1702         BO->getOpcode() != Opcode)
1703       return nullptr;
1704 
1705     // FIXME: This may not be safe if the analysis allows undef elements. By
1706     //        moving 'Y' before the splat shuffle, we are implicitly assuming
1707     //        that it is not undef/poison at the splat index.
1708     Value *Y, *OtherOp;
1709     if (isSplatValue(BO->getOperand(0), SplatIndex->getZExtValue())) {
1710       Y = BO->getOperand(0);
1711       OtherOp = BO->getOperand(1);
1712     } else if (isSplatValue(BO->getOperand(1), SplatIndex->getZExtValue())) {
1713       Y = BO->getOperand(1);
1714       OtherOp = BO->getOperand(0);
1715     } else {
1716       return nullptr;
1717     }
1718 
1719     // X and Y are splatted values, so perform the binary operation on those
1720     // values followed by a splat followed by the 2nd binary operation:
1721     // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1722     Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1723     UndefValue *Undef = UndefValue::get(Inst.getType());
1724     Constant *NewMask = ConstantInt::get(MaskC->getType(), *SplatIndex);
1725     Value *NewSplat = Builder.CreateShuffleVector(NewBO, Undef, NewMask);
1726     Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1727 
1728     // Intersect FMF on both new binops. Other (poison-generating) flags are
1729     // dropped to be safe.
1730     if (isa<FPMathOperator>(R)) {
1731       R->copyFastMathFlags(&Inst);
1732       R->andIRFlags(BO);
1733     }
1734     if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1735       NewInstBO->copyIRFlags(R);
1736     return R;
1737   }
1738 
1739   return nullptr;
1740 }
1741 
1742 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1743 /// of a value. This requires a potentially expensive known bits check to make
1744 /// sure the narrow op does not overflow.
1745 Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) {
1746   // We need at least one extended operand.
1747   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1748 
1749   // If this is a sub, we swap the operands since we always want an extension
1750   // on the RHS. The LHS can be an extension or a constant.
1751   if (BO.getOpcode() == Instruction::Sub)
1752     std::swap(Op0, Op1);
1753 
1754   Value *X;
1755   bool IsSext = match(Op0, m_SExt(m_Value(X)));
1756   if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1757     return nullptr;
1758 
1759   // If both operands are the same extension from the same source type and we
1760   // can eliminate at least one (hasOneUse), this might work.
1761   CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1762   Value *Y;
1763   if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1764         cast<Operator>(Op1)->getOpcode() == CastOpc &&
1765         (Op0->hasOneUse() || Op1->hasOneUse()))) {
1766     // If that did not match, see if we have a suitable constant operand.
1767     // Truncating and extending must produce the same constant.
1768     Constant *WideC;
1769     if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1770       return nullptr;
1771     Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1772     if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1773       return nullptr;
1774     Y = NarrowC;
1775   }
1776 
1777   // Swap back now that we found our operands.
1778   if (BO.getOpcode() == Instruction::Sub)
1779     std::swap(X, Y);
1780 
1781   // Both operands have narrow versions. Last step: the math must not overflow
1782   // in the narrow width.
1783   if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1784     return nullptr;
1785 
1786   // bo (ext X), (ext Y) --> ext (bo X, Y)
1787   // bo (ext X), C       --> ext (bo X, C')
1788   Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1789   if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1790     if (IsSext)
1791       NewBinOp->setHasNoSignedWrap();
1792     else
1793       NewBinOp->setHasNoUnsignedWrap();
1794   }
1795   return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1796 }
1797 
1798 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1799   // At least one GEP must be inbounds.
1800   if (!GEP1.isInBounds() && !GEP2.isInBounds())
1801     return false;
1802 
1803   return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1804          (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1805 }
1806 
1807 /// Thread a GEP operation with constant indices through the constant true/false
1808 /// arms of a select.
1809 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1810                                   InstCombiner::BuilderTy &Builder) {
1811   if (!GEP.hasAllConstantIndices())
1812     return nullptr;
1813 
1814   Instruction *Sel;
1815   Value *Cond;
1816   Constant *TrueC, *FalseC;
1817   if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1818       !match(Sel,
1819              m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1820     return nullptr;
1821 
1822   // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1823   // Propagate 'inbounds' and metadata from existing instructions.
1824   // Note: using IRBuilder to create the constants for efficiency.
1825   SmallVector<Value *, 4> IndexC(GEP.idx_begin(), GEP.idx_end());
1826   bool IsInBounds = GEP.isInBounds();
1827   Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(TrueC, IndexC)
1828                                : Builder.CreateGEP(TrueC, IndexC);
1829   Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(FalseC, IndexC)
1830                                 : Builder.CreateGEP(FalseC, IndexC);
1831   return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1832 }
1833 
1834 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1835   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1836   Type *GEPType = GEP.getType();
1837   Type *GEPEltType = GEP.getSourceElementType();
1838   if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
1839     return replaceInstUsesWith(GEP, V);
1840 
1841   // For vector geps, use the generic demanded vector support.
1842   if (GEP.getType()->isVectorTy()) {
1843     auto VWidth = GEP.getType()->getVectorNumElements();
1844     APInt UndefElts(VWidth, 0);
1845     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1846     if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
1847                                               UndefElts)) {
1848       if (V != &GEP)
1849         return replaceInstUsesWith(GEP, V);
1850       return &GEP;
1851     }
1852 
1853     // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
1854     // possible (decide on canonical form for pointer broadcast), 3) exploit
1855     // undef elements to decrease demanded bits
1856   }
1857 
1858   Value *PtrOp = GEP.getOperand(0);
1859 
1860   // Eliminate unneeded casts for indices, and replace indices which displace
1861   // by multiples of a zero size type with zero.
1862   bool MadeChange = false;
1863 
1864   // Index width may not be the same width as pointer width.
1865   // Data layout chooses the right type based on supported integer types.
1866   Type *NewScalarIndexTy =
1867       DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1868 
1869   gep_type_iterator GTI = gep_type_begin(GEP);
1870   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1871        ++I, ++GTI) {
1872     // Skip indices into struct types.
1873     if (GTI.isStruct())
1874       continue;
1875 
1876     Type *IndexTy = (*I)->getType();
1877     Type *NewIndexType =
1878         IndexTy->isVectorTy()
1879             ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements())
1880             : NewScalarIndexTy;
1881 
1882     // If the element type has zero size then any index over it is equivalent
1883     // to an index of zero, so replace it with zero if it is not zero already.
1884     Type *EltTy = GTI.getIndexedType();
1885     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0)
1886       if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
1887         *I = Constant::getNullValue(NewIndexType);
1888         MadeChange = true;
1889       }
1890 
1891     if (IndexTy != NewIndexType) {
1892       // If we are using a wider index than needed for this platform, shrink
1893       // it to what we need.  If narrower, sign-extend it to what we need.
1894       // This explicit cast can make subsequent optimizations more obvious.
1895       *I = Builder.CreateIntCast(*I, NewIndexType, true);
1896       MadeChange = true;
1897     }
1898   }
1899   if (MadeChange)
1900     return &GEP;
1901 
1902   // Check to see if the inputs to the PHI node are getelementptr instructions.
1903   if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1904     auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1905     if (!Op1)
1906       return nullptr;
1907 
1908     // Don't fold a GEP into itself through a PHI node. This can only happen
1909     // through the back-edge of a loop. Folding a GEP into itself means that
1910     // the value of the previous iteration needs to be stored in the meantime,
1911     // thus requiring an additional register variable to be live, but not
1912     // actually achieving anything (the GEP still needs to be executed once per
1913     // loop iteration).
1914     if (Op1 == &GEP)
1915       return nullptr;
1916 
1917     int DI = -1;
1918 
1919     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1920       auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1921       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1922         return nullptr;
1923 
1924       // As for Op1 above, don't try to fold a GEP into itself.
1925       if (Op2 == &GEP)
1926         return nullptr;
1927 
1928       // Keep track of the type as we walk the GEP.
1929       Type *CurTy = nullptr;
1930 
1931       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1932         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1933           return nullptr;
1934 
1935         if (Op1->getOperand(J) != Op2->getOperand(J)) {
1936           if (DI == -1) {
1937             // We have not seen any differences yet in the GEPs feeding the
1938             // PHI yet, so we record this one if it is allowed to be a
1939             // variable.
1940 
1941             // The first two arguments can vary for any GEP, the rest have to be
1942             // static for struct slots
1943             if (J > 1) {
1944               assert(CurTy && "No current type?");
1945               if (CurTy->isStructTy())
1946                 return nullptr;
1947             }
1948 
1949             DI = J;
1950           } else {
1951             // The GEP is different by more than one input. While this could be
1952             // extended to support GEPs that vary by more than one variable it
1953             // doesn't make sense since it greatly increases the complexity and
1954             // would result in an R+R+R addressing mode which no backend
1955             // directly supports and would need to be broken into several
1956             // simpler instructions anyway.
1957             return nullptr;
1958           }
1959         }
1960 
1961         // Sink down a layer of the type for the next iteration.
1962         if (J > 0) {
1963           if (J == 1) {
1964             CurTy = Op1->getSourceElementType();
1965           } else {
1966             CurTy =
1967                 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
1968           }
1969         }
1970       }
1971     }
1972 
1973     // If not all GEPs are identical we'll have to create a new PHI node.
1974     // Check that the old PHI node has only one use so that it will get
1975     // removed.
1976     if (DI != -1 && !PN->hasOneUse())
1977       return nullptr;
1978 
1979     auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1980     if (DI == -1) {
1981       // All the GEPs feeding the PHI are identical. Clone one down into our
1982       // BB so that it can be merged with the current GEP.
1983       GEP.getParent()->getInstList().insert(
1984           GEP.getParent()->getFirstInsertionPt(), NewGEP);
1985     } else {
1986       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1987       // into the current block so it can be merged, and create a new PHI to
1988       // set that index.
1989       PHINode *NewPN;
1990       {
1991         IRBuilderBase::InsertPointGuard Guard(Builder);
1992         Builder.SetInsertPoint(PN);
1993         NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
1994                                   PN->getNumOperands());
1995       }
1996 
1997       for (auto &I : PN->operands())
1998         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1999                            PN->getIncomingBlock(I));
2000 
2001       NewGEP->setOperand(DI, NewPN);
2002       GEP.getParent()->getInstList().insert(
2003           GEP.getParent()->getFirstInsertionPt(), NewGEP);
2004       NewGEP->setOperand(DI, NewPN);
2005     }
2006 
2007     GEP.setOperand(0, NewGEP);
2008     PtrOp = NewGEP;
2009   }
2010 
2011   // Combine Indices - If the source pointer to this getelementptr instruction
2012   // is a getelementptr instruction, combine the indices of the two
2013   // getelementptr instructions into a single instruction.
2014   if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
2015     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2016       return nullptr;
2017 
2018     // Try to reassociate loop invariant GEP chains to enable LICM.
2019     if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
2020         Src->hasOneUse()) {
2021       if (Loop *L = LI->getLoopFor(GEP.getParent())) {
2022         Value *GO1 = GEP.getOperand(1);
2023         Value *SO1 = Src->getOperand(1);
2024         // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
2025         // invariant: this breaks the dependence between GEPs and allows LICM
2026         // to hoist the invariant part out of the loop.
2027         if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
2028           // We have to be careful here.
2029           // We have something like:
2030           //  %src = getelementptr <ty>, <ty>* %base, <ty> %idx
2031           //  %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
2032           // If we just swap idx & idx2 then we could inadvertantly
2033           // change %src from a vector to a scalar, or vice versa.
2034           // Cases:
2035           //  1) %base a scalar & idx a scalar & idx2 a vector
2036           //      => Swapping idx & idx2 turns %src into a vector type.
2037           //  2) %base a scalar & idx a vector & idx2 a scalar
2038           //      => Swapping idx & idx2 turns %src in a scalar type
2039           //  3) %base, %idx, and %idx2 are scalars
2040           //      => %src & %gep are scalars
2041           //      => swapping idx & idx2 is safe
2042           //  4) %base a vector
2043           //      => %src is a vector
2044           //      => swapping idx & idx2 is safe.
2045           auto *SO0 = Src->getOperand(0);
2046           auto *SO0Ty = SO0->getType();
2047           if (!isa<VectorType>(GEPType) || // case 3
2048               isa<VectorType>(SO0Ty)) {    // case 4
2049             Src->setOperand(1, GO1);
2050             GEP.setOperand(1, SO1);
2051             return &GEP;
2052           } else {
2053             // Case 1 or 2
2054             // -- have to recreate %src & %gep
2055             // put NewSrc at same location as %src
2056             Builder.SetInsertPoint(cast<Instruction>(PtrOp));
2057             auto *NewSrc = cast<GetElementPtrInst>(
2058                 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()));
2059             NewSrc->setIsInBounds(Src->isInBounds());
2060             auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
2061             NewGEP->setIsInBounds(GEP.isInBounds());
2062             return NewGEP;
2063           }
2064         }
2065       }
2066     }
2067 
2068     // Note that if our source is a gep chain itself then we wait for that
2069     // chain to be resolved before we perform this transformation.  This
2070     // avoids us creating a TON of code in some cases.
2071     if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
2072       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
2073         return nullptr;   // Wait until our source is folded to completion.
2074 
2075     SmallVector<Value*, 8> Indices;
2076 
2077     // Find out whether the last index in the source GEP is a sequential idx.
2078     bool EndsWithSequential = false;
2079     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2080          I != E; ++I)
2081       EndsWithSequential = I.isSequential();
2082 
2083     // Can we combine the two pointer arithmetics offsets?
2084     if (EndsWithSequential) {
2085       // Replace: gep (gep %P, long B), long A, ...
2086       // With:    T = long A+B; gep %P, T, ...
2087       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2088       Value *GO1 = GEP.getOperand(1);
2089 
2090       // If they aren't the same type, then the input hasn't been processed
2091       // by the loop above yet (which canonicalizes sequential index types to
2092       // intptr_t).  Just avoid transforming this until the input has been
2093       // normalized.
2094       if (SO1->getType() != GO1->getType())
2095         return nullptr;
2096 
2097       Value *Sum =
2098           SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2099       // Only do the combine when we are sure the cost after the
2100       // merge is never more than that before the merge.
2101       if (Sum == nullptr)
2102         return nullptr;
2103 
2104       // Update the GEP in place if possible.
2105       if (Src->getNumOperands() == 2) {
2106         GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2107         GEP.setOperand(0, Src->getOperand(0));
2108         GEP.setOperand(1, Sum);
2109         return &GEP;
2110       }
2111       Indices.append(Src->op_begin()+1, Src->op_end()-1);
2112       Indices.push_back(Sum);
2113       Indices.append(GEP.op_begin()+2, GEP.op_end());
2114     } else if (isa<Constant>(*GEP.idx_begin()) &&
2115                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2116                Src->getNumOperands() != 1) {
2117       // Otherwise we can do the fold if the first index of the GEP is a zero
2118       Indices.append(Src->op_begin()+1, Src->op_end());
2119       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2120     }
2121 
2122     if (!Indices.empty())
2123       return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2124                  ? GetElementPtrInst::CreateInBounds(
2125                        Src->getSourceElementType(), Src->getOperand(0), Indices,
2126                        GEP.getName())
2127                  : GetElementPtrInst::Create(Src->getSourceElementType(),
2128                                              Src->getOperand(0), Indices,
2129                                              GEP.getName());
2130   }
2131 
2132   if (GEP.getNumIndices() == 1) {
2133     unsigned AS = GEP.getPointerAddressSpace();
2134     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2135         DL.getIndexSizeInBits(AS)) {
2136       uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType);
2137 
2138       bool Matched = false;
2139       uint64_t C;
2140       Value *V = nullptr;
2141       if (TyAllocSize == 1) {
2142         V = GEP.getOperand(1);
2143         Matched = true;
2144       } else if (match(GEP.getOperand(1),
2145                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
2146         if (TyAllocSize == 1ULL << C)
2147           Matched = true;
2148       } else if (match(GEP.getOperand(1),
2149                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2150         if (TyAllocSize == C)
2151           Matched = true;
2152       }
2153 
2154       if (Matched) {
2155         // Canonicalize (gep i8* X, -(ptrtoint Y))
2156         // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
2157         // The GEP pattern is emitted by the SCEV expander for certain kinds of
2158         // pointer arithmetic.
2159         if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
2160           Operator *Index = cast<Operator>(V);
2161           Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
2162           Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
2163           return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
2164         }
2165         // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
2166         // to (bitcast Y)
2167         Value *Y;
2168         if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
2169                            m_PtrToInt(m_Specific(GEP.getOperand(0))))))
2170           return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2171       }
2172     }
2173   }
2174 
2175   // We do not handle pointer-vector geps here.
2176   if (GEPType->isVectorTy())
2177     return nullptr;
2178 
2179   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2180   Value *StrippedPtr = PtrOp->stripPointerCasts();
2181   PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2182 
2183   if (StrippedPtr != PtrOp) {
2184     bool HasZeroPointerIndex = false;
2185     Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
2186 
2187     if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2188       HasZeroPointerIndex = C->isZero();
2189 
2190     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2191     // into     : GEP [10 x i8]* X, i32 0, ...
2192     //
2193     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2194     //           into     : GEP i8* X, ...
2195     //
2196     // This occurs when the program declares an array extern like "int X[];"
2197     if (HasZeroPointerIndex) {
2198       if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2199         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2200         if (CATy->getElementType() == StrippedPtrEltTy) {
2201           // -> GEP i8* X, ...
2202           SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
2203           GetElementPtrInst *Res = GetElementPtrInst::Create(
2204               StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2205           Res->setIsInBounds(GEP.isInBounds());
2206           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2207             return Res;
2208           // Insert Res, and create an addrspacecast.
2209           // e.g.,
2210           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2211           // ->
2212           // %0 = GEP i8 addrspace(1)* X, ...
2213           // addrspacecast i8 addrspace(1)* %0 to i8*
2214           return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2215         }
2216 
2217         if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2218           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2219           if (CATy->getElementType() == XATy->getElementType()) {
2220             // -> GEP [10 x i8]* X, i32 0, ...
2221             // At this point, we know that the cast source type is a pointer
2222             // to an array of the same type as the destination pointer
2223             // array.  Because the array type is never stepped over (there
2224             // is a leading zero) we can fold the cast into this GEP.
2225             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2226               GEP.setOperand(0, StrippedPtr);
2227               GEP.setSourceElementType(XATy);
2228               return &GEP;
2229             }
2230             // Cannot replace the base pointer directly because StrippedPtr's
2231             // address space is different. Instead, create a new GEP followed by
2232             // an addrspacecast.
2233             // e.g.,
2234             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2235             //   i32 0, ...
2236             // ->
2237             // %0 = GEP [10 x i8] addrspace(1)* X, ...
2238             // addrspacecast i8 addrspace(1)* %0 to i8*
2239             SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
2240             Value *NewGEP =
2241                 GEP.isInBounds()
2242                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2243                                                 Idx, GEP.getName())
2244                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2245                                         GEP.getName());
2246             return new AddrSpaceCastInst(NewGEP, GEPType);
2247           }
2248         }
2249       }
2250     } else if (GEP.getNumOperands() == 2) {
2251       // Transform things like:
2252       // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
2253       // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
2254       if (StrippedPtrEltTy->isArrayTy() &&
2255           DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2256               DL.getTypeAllocSize(GEPEltType)) {
2257         Type *IdxType = DL.getIndexType(GEPType);
2258         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2259         Value *NewGEP =
2260             GEP.isInBounds()
2261                 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2262                                             GEP.getName())
2263                 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2264                                     GEP.getName());
2265 
2266         // V and GEP are both pointer types --> BitCast
2267         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2268       }
2269 
2270       // Transform things like:
2271       // %V = mul i64 %N, 4
2272       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2273       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
2274       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2275         // Check that changing the type amounts to dividing the index by a scale
2276         // factor.
2277         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
2278         uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy);
2279         if (ResSize && SrcSize % ResSize == 0) {
2280           Value *Idx = GEP.getOperand(1);
2281           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2282           uint64_t Scale = SrcSize / ResSize;
2283 
2284           // Earlier transforms ensure that the index has the right type
2285           // according to Data Layout, which considerably simplifies the
2286           // logic by eliminating implicit casts.
2287           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2288                  "Index type does not match the Data Layout preferences");
2289 
2290           bool NSW;
2291           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2292             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2293             // If the multiplication NewIdx * Scale may overflow then the new
2294             // GEP may not be "inbounds".
2295             Value *NewGEP =
2296                 GEP.isInBounds() && NSW
2297                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2298                                                 NewIdx, GEP.getName())
2299                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2300                                         GEP.getName());
2301 
2302             // The NewGEP must be pointer typed, so must the old one -> BitCast
2303             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2304                                                                  GEPType);
2305           }
2306         }
2307       }
2308 
2309       // Similarly, transform things like:
2310       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2311       //   (where tmp = 8*tmp2) into:
2312       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2313       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2314           StrippedPtrEltTy->isArrayTy()) {
2315         // Check that changing to the array element type amounts to dividing the
2316         // index by a scale factor.
2317         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
2318         uint64_t ArrayEltSize =
2319             DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType());
2320         if (ResSize && ArrayEltSize % ResSize == 0) {
2321           Value *Idx = GEP.getOperand(1);
2322           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2323           uint64_t Scale = ArrayEltSize / ResSize;
2324 
2325           // Earlier transforms ensure that the index has the right type
2326           // according to the Data Layout, which considerably simplifies
2327           // the logic by eliminating implicit casts.
2328           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2329                  "Index type does not match the Data Layout preferences");
2330 
2331           bool NSW;
2332           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2333             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2334             // If the multiplication NewIdx * Scale may overflow then the new
2335             // GEP may not be "inbounds".
2336             Type *IndTy = DL.getIndexType(GEPType);
2337             Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2338 
2339             Value *NewGEP =
2340                 GEP.isInBounds() && NSW
2341                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2342                                                 Off, GEP.getName())
2343                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2344                                         GEP.getName());
2345             // The NewGEP must be pointer typed, so must the old one -> BitCast
2346             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2347                                                                  GEPType);
2348           }
2349         }
2350       }
2351     }
2352   }
2353 
2354   // addrspacecast between types is canonicalized as a bitcast, then an
2355   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2356   // through the addrspacecast.
2357   Value *ASCStrippedPtrOp = PtrOp;
2358   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2359     //   X = bitcast A addrspace(1)* to B addrspace(1)*
2360     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2361     //   Z = gep Y, <...constant indices...>
2362     // Into an addrspacecasted GEP of the struct.
2363     if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2364       ASCStrippedPtrOp = BC;
2365   }
2366 
2367   if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2368     Value *SrcOp = BCI->getOperand(0);
2369     PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2370     Type *SrcEltType = SrcType->getElementType();
2371 
2372     // GEP directly using the source operand if this GEP is accessing an element
2373     // of a bitcasted pointer to vector or array of the same dimensions:
2374     // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2375     // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2376     auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2377                                           const DataLayout &DL) {
2378       return ArrTy->getArrayElementType() == VecTy->getVectorElementType() &&
2379              ArrTy->getArrayNumElements() == VecTy->getVectorNumElements() &&
2380              DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2381     };
2382     if (GEP.getNumOperands() == 3 &&
2383         ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() &&
2384           areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2385          (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() &&
2386           areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2387 
2388       // Create a new GEP here, as using `setOperand()` followed by
2389       // `setSourceElementType()` won't actually update the type of the
2390       // existing GEP Value. Causing issues if this Value is accessed when
2391       // constructing an AddrSpaceCastInst
2392       Value *NGEP =
2393           GEP.isInBounds()
2394               ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
2395               : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
2396       NGEP->takeName(&GEP);
2397 
2398       // Preserve GEP address space to satisfy users
2399       if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2400         return new AddrSpaceCastInst(NGEP, GEPType);
2401 
2402       return replaceInstUsesWith(GEP, NGEP);
2403     }
2404 
2405     // See if we can simplify:
2406     //   X = bitcast A* to B*
2407     //   Y = gep X, <...constant indices...>
2408     // into a gep of the original struct. This is important for SROA and alias
2409     // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2410     unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2411     APInt Offset(OffsetBits, 0);
2412     if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
2413       // If this GEP instruction doesn't move the pointer, just replace the GEP
2414       // with a bitcast of the real input to the dest type.
2415       if (!Offset) {
2416         // If the bitcast is of an allocation, and the allocation will be
2417         // converted to match the type of the cast, don't touch this.
2418         if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
2419           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2420           if (Instruction *I = visitBitCast(*BCI)) {
2421             if (I != BCI) {
2422               I->takeName(BCI);
2423               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2424               replaceInstUsesWith(*BCI, I);
2425             }
2426             return &GEP;
2427           }
2428         }
2429 
2430         if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2431           return new AddrSpaceCastInst(SrcOp, GEPType);
2432         return new BitCastInst(SrcOp, GEPType);
2433       }
2434 
2435       // Otherwise, if the offset is non-zero, we need to find out if there is a
2436       // field at Offset in 'A's type.  If so, we can pull the cast through the
2437       // GEP.
2438       SmallVector<Value*, 8> NewIndices;
2439       if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2440         Value *NGEP =
2441             GEP.isInBounds()
2442                 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2443                 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2444 
2445         if (NGEP->getType() == GEPType)
2446           return replaceInstUsesWith(GEP, NGEP);
2447         NGEP->takeName(&GEP);
2448 
2449         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2450           return new AddrSpaceCastInst(NGEP, GEPType);
2451         return new BitCastInst(NGEP, GEPType);
2452       }
2453     }
2454   }
2455 
2456   if (!GEP.isInBounds()) {
2457     unsigned IdxWidth =
2458         DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2459     APInt BasePtrOffset(IdxWidth, 0);
2460     Value *UnderlyingPtrOp =
2461             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2462                                                              BasePtrOffset);
2463     if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2464       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2465           BasePtrOffset.isNonNegative()) {
2466         APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType()));
2467         if (BasePtrOffset.ule(AllocSize)) {
2468           return GetElementPtrInst::CreateInBounds(
2469               GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
2470               GEP.getName());
2471         }
2472       }
2473     }
2474   }
2475 
2476   if (Instruction *R = foldSelectGEP(GEP, Builder))
2477     return R;
2478 
2479   return nullptr;
2480 }
2481 
2482 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
2483                                          Instruction *AI) {
2484   if (isa<ConstantPointerNull>(V))
2485     return true;
2486   if (auto *LI = dyn_cast<LoadInst>(V))
2487     return isa<GlobalVariable>(LI->getPointerOperand());
2488   // Two distinct allocations will never be equal.
2489   // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2490   // through bitcasts of V can cause
2491   // the result statement below to be true, even when AI and V (ex:
2492   // i8* ->i32* ->i8* of AI) are the same allocations.
2493   return isAllocLikeFn(V, TLI) && V != AI;
2494 }
2495 
2496 static bool isAllocSiteRemovable(Instruction *AI,
2497                                  SmallVectorImpl<WeakTrackingVH> &Users,
2498                                  const TargetLibraryInfo *TLI) {
2499   SmallVector<Instruction*, 4> Worklist;
2500   Worklist.push_back(AI);
2501 
2502   do {
2503     Instruction *PI = Worklist.pop_back_val();
2504     for (User *U : PI->users()) {
2505       Instruction *I = cast<Instruction>(U);
2506       switch (I->getOpcode()) {
2507       default:
2508         // Give up the moment we see something we can't handle.
2509         return false;
2510 
2511       case Instruction::AddrSpaceCast:
2512       case Instruction::BitCast:
2513       case Instruction::GetElementPtr:
2514         Users.emplace_back(I);
2515         Worklist.push_back(I);
2516         continue;
2517 
2518       case Instruction::ICmp: {
2519         ICmpInst *ICI = cast<ICmpInst>(I);
2520         // We can fold eq/ne comparisons with null to false/true, respectively.
2521         // We also fold comparisons in some conditions provided the alloc has
2522         // not escaped (see isNeverEqualToUnescapedAlloc).
2523         if (!ICI->isEquality())
2524           return false;
2525         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2526         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2527           return false;
2528         Users.emplace_back(I);
2529         continue;
2530       }
2531 
2532       case Instruction::Call:
2533         // Ignore no-op and store intrinsics.
2534         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2535           switch (II->getIntrinsicID()) {
2536           default:
2537             return false;
2538 
2539           case Intrinsic::memmove:
2540           case Intrinsic::memcpy:
2541           case Intrinsic::memset: {
2542             MemIntrinsic *MI = cast<MemIntrinsic>(II);
2543             if (MI->isVolatile() || MI->getRawDest() != PI)
2544               return false;
2545             LLVM_FALLTHROUGH;
2546           }
2547           case Intrinsic::invariant_start:
2548           case Intrinsic::invariant_end:
2549           case Intrinsic::lifetime_start:
2550           case Intrinsic::lifetime_end:
2551           case Intrinsic::objectsize:
2552             Users.emplace_back(I);
2553             continue;
2554           }
2555         }
2556 
2557         if (isFreeCall(I, TLI)) {
2558           Users.emplace_back(I);
2559           continue;
2560         }
2561         return false;
2562 
2563       case Instruction::Store: {
2564         StoreInst *SI = cast<StoreInst>(I);
2565         if (SI->isVolatile() || SI->getPointerOperand() != PI)
2566           return false;
2567         Users.emplace_back(I);
2568         continue;
2569       }
2570       }
2571       llvm_unreachable("missing a return?");
2572     }
2573   } while (!Worklist.empty());
2574   return true;
2575 }
2576 
2577 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
2578   // If we have a malloc call which is only used in any amount of comparisons to
2579   // null and free calls, delete the calls and replace the comparisons with true
2580   // or false as appropriate.
2581 
2582   // This is based on the principle that we can substitute our own allocation
2583   // function (which will never return null) rather than knowledge of the
2584   // specific function being called. In some sense this can change the permitted
2585   // outputs of a program (when we convert a malloc to an alloca, the fact that
2586   // the allocation is now on the stack is potentially visible, for example),
2587   // but we believe in a permissible manner.
2588   SmallVector<WeakTrackingVH, 64> Users;
2589 
2590   // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2591   // before each store.
2592   TinyPtrVector<DbgVariableIntrinsic *> DIIs;
2593   std::unique_ptr<DIBuilder> DIB;
2594   if (isa<AllocaInst>(MI)) {
2595     DIIs = FindDbgAddrUses(&MI);
2596     DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2597   }
2598 
2599   if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2600     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2601       // Lowering all @llvm.objectsize calls first because they may
2602       // use a bitcast/GEP of the alloca we are removing.
2603       if (!Users[i])
2604        continue;
2605 
2606       Instruction *I = cast<Instruction>(&*Users[i]);
2607 
2608       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2609         if (II->getIntrinsicID() == Intrinsic::objectsize) {
2610           Value *Result =
2611               lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2612           replaceInstUsesWith(*I, Result);
2613           eraseInstFromFunction(*I);
2614           Users[i] = nullptr; // Skip examining in the next loop.
2615         }
2616       }
2617     }
2618     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2619       if (!Users[i])
2620         continue;
2621 
2622       Instruction *I = cast<Instruction>(&*Users[i]);
2623 
2624       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2625         replaceInstUsesWith(*C,
2626                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
2627                                              C->isFalseWhenEqual()));
2628       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2629         for (auto *DII : DIIs)
2630           ConvertDebugDeclareToDebugValue(DII, SI, *DIB);
2631       } else {
2632         // Casts, GEP, or anything else: we're about to delete this instruction,
2633         // so it can not have any valid uses.
2634         replaceInstUsesWith(*I, UndefValue::get(I->getType()));
2635       }
2636       eraseInstFromFunction(*I);
2637     }
2638 
2639     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2640       // Replace invoke with a NOP intrinsic to maintain the original CFG
2641       Module *M = II->getModule();
2642       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2643       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2644                          None, "", II->getParent());
2645     }
2646 
2647     for (auto *DII : DIIs)
2648       eraseInstFromFunction(*DII);
2649 
2650     return eraseInstFromFunction(MI);
2651   }
2652   return nullptr;
2653 }
2654 
2655 /// Move the call to free before a NULL test.
2656 ///
2657 /// Check if this free is accessed after its argument has been test
2658 /// against NULL (property 0).
2659 /// If yes, it is legal to move this call in its predecessor block.
2660 ///
2661 /// The move is performed only if the block containing the call to free
2662 /// will be removed, i.e.:
2663 /// 1. it has only one predecessor P, and P has two successors
2664 /// 2. it contains the call, noops, and an unconditional branch
2665 /// 3. its successor is the same as its predecessor's successor
2666 ///
2667 /// The profitability is out-of concern here and this function should
2668 /// be called only if the caller knows this transformation would be
2669 /// profitable (e.g., for code size).
2670 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2671                                                 const DataLayout &DL) {
2672   Value *Op = FI.getArgOperand(0);
2673   BasicBlock *FreeInstrBB = FI.getParent();
2674   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2675 
2676   // Validate part of constraint #1: Only one predecessor
2677   // FIXME: We can extend the number of predecessor, but in that case, we
2678   //        would duplicate the call to free in each predecessor and it may
2679   //        not be profitable even for code size.
2680   if (!PredBB)
2681     return nullptr;
2682 
2683   // Validate constraint #2: Does this block contains only the call to
2684   //                         free, noops, and an unconditional branch?
2685   BasicBlock *SuccBB;
2686   Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2687   if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2688     return nullptr;
2689 
2690   // If there are only 2 instructions in the block, at this point,
2691   // this is the call to free and unconditional.
2692   // If there are more than 2 instructions, check that they are noops
2693   // i.e., they won't hurt the performance of the generated code.
2694   if (FreeInstrBB->size() != 2) {
2695     for (const Instruction &Inst : *FreeInstrBB) {
2696       if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2697         continue;
2698       auto *Cast = dyn_cast<CastInst>(&Inst);
2699       if (!Cast || !Cast->isNoopCast(DL))
2700         return nullptr;
2701     }
2702   }
2703   // Validate the rest of constraint #1 by matching on the pred branch.
2704   Instruction *TI = PredBB->getTerminator();
2705   BasicBlock *TrueBB, *FalseBB;
2706   ICmpInst::Predicate Pred;
2707   if (!match(TI, m_Br(m_ICmp(Pred,
2708                              m_CombineOr(m_Specific(Op),
2709                                          m_Specific(Op->stripPointerCasts())),
2710                              m_Zero()),
2711                       TrueBB, FalseBB)))
2712     return nullptr;
2713   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2714     return nullptr;
2715 
2716   // Validate constraint #3: Ensure the null case just falls through.
2717   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2718     return nullptr;
2719   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2720          "Broken CFG: missing edge from predecessor to successor");
2721 
2722   // At this point, we know that everything in FreeInstrBB can be moved
2723   // before TI.
2724   for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
2725        It != End;) {
2726     Instruction &Instr = *It++;
2727     if (&Instr == FreeInstrBBTerminator)
2728       break;
2729     Instr.moveBefore(TI);
2730   }
2731   assert(FreeInstrBB->size() == 1 &&
2732          "Only the branch instruction should remain");
2733   return &FI;
2734 }
2735 
2736 Instruction *InstCombiner::visitFree(CallInst &FI) {
2737   Value *Op = FI.getArgOperand(0);
2738 
2739   // free undef -> unreachable.
2740   if (isa<UndefValue>(Op)) {
2741     // Leave a marker since we can't modify the CFG here.
2742     CreateNonTerminatorUnreachable(&FI);
2743     return eraseInstFromFunction(FI);
2744   }
2745 
2746   // If we have 'free null' delete the instruction.  This can happen in stl code
2747   // when lots of inlining happens.
2748   if (isa<ConstantPointerNull>(Op))
2749     return eraseInstFromFunction(FI);
2750 
2751   // If we optimize for code size, try to move the call to free before the null
2752   // test so that simplify cfg can remove the empty block and dead code
2753   // elimination the branch. I.e., helps to turn something like:
2754   // if (foo) free(foo);
2755   // into
2756   // free(foo);
2757   if (MinimizeSize)
2758     if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2759       return I;
2760 
2761   return nullptr;
2762 }
2763 
2764 static bool isMustTailCall(Value *V) {
2765   if (auto *CI = dyn_cast<CallInst>(V))
2766     return CI->isMustTailCall();
2767   return false;
2768 }
2769 
2770 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
2771   if (RI.getNumOperands() == 0) // ret void
2772     return nullptr;
2773 
2774   Value *ResultOp = RI.getOperand(0);
2775   Type *VTy = ResultOp->getType();
2776   if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
2777     return nullptr;
2778 
2779   // Don't replace result of musttail calls.
2780   if (isMustTailCall(ResultOp))
2781     return nullptr;
2782 
2783   // There might be assume intrinsics dominating this return that completely
2784   // determine the value. If so, constant fold it.
2785   KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2786   if (Known.isConstant())
2787     return replaceOperand(RI, 0,
2788         Constant::getIntegerValue(VTy, Known.getConstant()));
2789 
2790   return nullptr;
2791 }
2792 
2793 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2794   // Change br (not X), label True, label False to: br X, label False, True
2795   Value *X = nullptr;
2796   if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
2797       !isa<Constant>(X)) {
2798     // Swap Destinations and condition...
2799     BI.swapSuccessors();
2800     return replaceOperand(BI, 0, X);
2801   }
2802 
2803   // If the condition is irrelevant, remove the use so that other
2804   // transforms on the condition become more effective.
2805   if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) &&
2806       BI.getSuccessor(0) == BI.getSuccessor(1))
2807     return replaceOperand(
2808         BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
2809 
2810   // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq.
2811   CmpInst::Predicate Pred;
2812   if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())),
2813                       m_BasicBlock(), m_BasicBlock())) &&
2814       !isCanonicalPredicate(Pred)) {
2815     // Swap destinations and condition.
2816     CmpInst *Cond = cast<CmpInst>(BI.getCondition());
2817     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2818     BI.swapSuccessors();
2819     Worklist.push(Cond);
2820     return &BI;
2821   }
2822 
2823   return nullptr;
2824 }
2825 
2826 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
2827   Value *Cond = SI.getCondition();
2828   Value *Op0;
2829   ConstantInt *AddRHS;
2830   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
2831     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2832     for (auto Case : SI.cases()) {
2833       Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
2834       assert(isa<ConstantInt>(NewCase) &&
2835              "Result of expression should be constant");
2836       Case.setValue(cast<ConstantInt>(NewCase));
2837     }
2838     return replaceOperand(SI, 0, Op0);
2839   }
2840 
2841   KnownBits Known = computeKnownBits(Cond, 0, &SI);
2842   unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
2843   unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
2844 
2845   // Compute the number of leading bits we can ignore.
2846   // TODO: A better way to determine this would use ComputeNumSignBits().
2847   for (auto &C : SI.cases()) {
2848     LeadingKnownZeros = std::min(
2849         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2850     LeadingKnownOnes = std::min(
2851         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2852   }
2853 
2854   unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
2855 
2856   // Shrink the condition operand if the new type is smaller than the old type.
2857   // But do not shrink to a non-standard type, because backend can't generate
2858   // good code for that yet.
2859   // TODO: We can make it aggressive again after fixing PR39569.
2860   if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
2861       shouldChangeType(Known.getBitWidth(), NewWidth)) {
2862     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2863     Builder.SetInsertPoint(&SI);
2864     Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
2865 
2866     for (auto Case : SI.cases()) {
2867       APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
2868       Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
2869     }
2870     return replaceOperand(SI, 0, NewCond);
2871   }
2872 
2873   return nullptr;
2874 }
2875 
2876 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
2877   Value *Agg = EV.getAggregateOperand();
2878 
2879   if (!EV.hasIndices())
2880     return replaceInstUsesWith(EV, Agg);
2881 
2882   if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
2883                                           SQ.getWithInstruction(&EV)))
2884     return replaceInstUsesWith(EV, V);
2885 
2886   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2887     // We're extracting from an insertvalue instruction, compare the indices
2888     const unsigned *exti, *exte, *insi, *inse;
2889     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2890          exte = EV.idx_end(), inse = IV->idx_end();
2891          exti != exte && insi != inse;
2892          ++exti, ++insi) {
2893       if (*insi != *exti)
2894         // The insert and extract both reference distinctly different elements.
2895         // This means the extract is not influenced by the insert, and we can
2896         // replace the aggregate operand of the extract with the aggregate
2897         // operand of the insert. i.e., replace
2898         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2899         // %E = extractvalue { i32, { i32 } } %I, 0
2900         // with
2901         // %E = extractvalue { i32, { i32 } } %A, 0
2902         return ExtractValueInst::Create(IV->getAggregateOperand(),
2903                                         EV.getIndices());
2904     }
2905     if (exti == exte && insi == inse)
2906       // Both iterators are at the end: Index lists are identical. Replace
2907       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2908       // %C = extractvalue { i32, { i32 } } %B, 1, 0
2909       // with "i32 42"
2910       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
2911     if (exti == exte) {
2912       // The extract list is a prefix of the insert list. i.e. replace
2913       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2914       // %E = extractvalue { i32, { i32 } } %I, 1
2915       // with
2916       // %X = extractvalue { i32, { i32 } } %A, 1
2917       // %E = insertvalue { i32 } %X, i32 42, 0
2918       // by switching the order of the insert and extract (though the
2919       // insertvalue should be left in, since it may have other uses).
2920       Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
2921                                                 EV.getIndices());
2922       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
2923                                      makeArrayRef(insi, inse));
2924     }
2925     if (insi == inse)
2926       // The insert list is a prefix of the extract list
2927       // We can simply remove the common indices from the extract and make it
2928       // operate on the inserted value instead of the insertvalue result.
2929       // i.e., replace
2930       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2931       // %E = extractvalue { i32, { i32 } } %I, 1, 0
2932       // with
2933       // %E extractvalue { i32 } { i32 42 }, 0
2934       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
2935                                       makeArrayRef(exti, exte));
2936   }
2937   if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
2938     // We're extracting from an overflow intrinsic, see if we're the only user,
2939     // which allows us to simplify multiple result intrinsics to simpler
2940     // things that just get one value.
2941     if (WO->hasOneUse()) {
2942       // Check if we're grabbing only the result of a 'with overflow' intrinsic
2943       // and replace it with a traditional binary instruction.
2944       if (*EV.idx_begin() == 0) {
2945         Instruction::BinaryOps BinOp = WO->getBinaryOp();
2946         Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
2947         replaceInstUsesWith(*WO, UndefValue::get(WO->getType()));
2948         eraseInstFromFunction(*WO);
2949         return BinaryOperator::Create(BinOp, LHS, RHS);
2950       }
2951 
2952       // If the normal result of the add is dead, and the RHS is a constant,
2953       // we can transform this into a range comparison.
2954       // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
2955       if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2956         if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS()))
2957           return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(),
2958                               ConstantExpr::getNot(CI));
2959     }
2960   }
2961   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2962     // If the (non-volatile) load only has one use, we can rewrite this to a
2963     // load from a GEP. This reduces the size of the load. If a load is used
2964     // only by extractvalue instructions then this either must have been
2965     // optimized before, or it is a struct with padding, in which case we
2966     // don't want to do the transformation as it loses padding knowledge.
2967     if (L->isSimple() && L->hasOneUse()) {
2968       // extractvalue has integer indices, getelementptr has Value*s. Convert.
2969       SmallVector<Value*, 4> Indices;
2970       // Prefix an i32 0 since we need the first element.
2971       Indices.push_back(Builder.getInt32(0));
2972       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2973             I != E; ++I)
2974         Indices.push_back(Builder.getInt32(*I));
2975 
2976       // We need to insert these at the location of the old load, not at that of
2977       // the extractvalue.
2978       Builder.SetInsertPoint(L);
2979       Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
2980                                              L->getPointerOperand(), Indices);
2981       Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
2982       // Whatever aliasing information we had for the orignal load must also
2983       // hold for the smaller load, so propagate the annotations.
2984       AAMDNodes Nodes;
2985       L->getAAMetadata(Nodes);
2986       NL->setAAMetadata(Nodes);
2987       // Returning the load directly will cause the main loop to insert it in
2988       // the wrong spot, so use replaceInstUsesWith().
2989       return replaceInstUsesWith(EV, NL);
2990     }
2991   // We could simplify extracts from other values. Note that nested extracts may
2992   // already be simplified implicitly by the above: extract (extract (insert) )
2993   // will be translated into extract ( insert ( extract ) ) first and then just
2994   // the value inserted, if appropriate. Similarly for extracts from single-use
2995   // loads: extract (extract (load)) will be translated to extract (load (gep))
2996   // and if again single-use then via load (gep (gep)) to load (gep).
2997   // However, double extracts from e.g. function arguments or return values
2998   // aren't handled yet.
2999   return nullptr;
3000 }
3001 
3002 /// Return 'true' if the given typeinfo will match anything.
3003 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3004   switch (Personality) {
3005   case EHPersonality::GNU_C:
3006   case EHPersonality::GNU_C_SjLj:
3007   case EHPersonality::Rust:
3008     // The GCC C EH and Rust personality only exists to support cleanups, so
3009     // it's not clear what the semantics of catch clauses are.
3010     return false;
3011   case EHPersonality::Unknown:
3012     return false;
3013   case EHPersonality::GNU_Ada:
3014     // While __gnat_all_others_value will match any Ada exception, it doesn't
3015     // match foreign exceptions (or didn't, before gcc-4.7).
3016     return false;
3017   case EHPersonality::GNU_CXX:
3018   case EHPersonality::GNU_CXX_SjLj:
3019   case EHPersonality::GNU_ObjC:
3020   case EHPersonality::MSVC_X86SEH:
3021   case EHPersonality::MSVC_Win64SEH:
3022   case EHPersonality::MSVC_CXX:
3023   case EHPersonality::CoreCLR:
3024   case EHPersonality::Wasm_CXX:
3025     return TypeInfo->isNullValue();
3026   }
3027   llvm_unreachable("invalid enum");
3028 }
3029 
3030 static bool shorter_filter(const Value *LHS, const Value *RHS) {
3031   return
3032     cast<ArrayType>(LHS->getType())->getNumElements()
3033   <
3034     cast<ArrayType>(RHS->getType())->getNumElements();
3035 }
3036 
3037 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
3038   // The logic here should be correct for any real-world personality function.
3039   // However if that turns out not to be true, the offending logic can always
3040   // be conditioned on the personality function, like the catch-all logic is.
3041   EHPersonality Personality =
3042       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3043 
3044   // Simplify the list of clauses, eg by removing repeated catch clauses
3045   // (these are often created by inlining).
3046   bool MakeNewInstruction = false; // If true, recreate using the following:
3047   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3048   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
3049 
3050   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3051   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3052     bool isLastClause = i + 1 == e;
3053     if (LI.isCatch(i)) {
3054       // A catch clause.
3055       Constant *CatchClause = LI.getClause(i);
3056       Constant *TypeInfo = CatchClause->stripPointerCasts();
3057 
3058       // If we already saw this clause, there is no point in having a second
3059       // copy of it.
3060       if (AlreadyCaught.insert(TypeInfo).second) {
3061         // This catch clause was not already seen.
3062         NewClauses.push_back(CatchClause);
3063       } else {
3064         // Repeated catch clause - drop the redundant copy.
3065         MakeNewInstruction = true;
3066       }
3067 
3068       // If this is a catch-all then there is no point in keeping any following
3069       // clauses or marking the landingpad as having a cleanup.
3070       if (isCatchAll(Personality, TypeInfo)) {
3071         if (!isLastClause)
3072           MakeNewInstruction = true;
3073         CleanupFlag = false;
3074         break;
3075       }
3076     } else {
3077       // A filter clause.  If any of the filter elements were already caught
3078       // then they can be dropped from the filter.  It is tempting to try to
3079       // exploit the filter further by saying that any typeinfo that does not
3080       // occur in the filter can't be caught later (and thus can be dropped).
3081       // However this would be wrong, since typeinfos can match without being
3082       // equal (for example if one represents a C++ class, and the other some
3083       // class derived from it).
3084       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3085       Constant *FilterClause = LI.getClause(i);
3086       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3087       unsigned NumTypeInfos = FilterType->getNumElements();
3088 
3089       // An empty filter catches everything, so there is no point in keeping any
3090       // following clauses or marking the landingpad as having a cleanup.  By
3091       // dealing with this case here the following code is made a bit simpler.
3092       if (!NumTypeInfos) {
3093         NewClauses.push_back(FilterClause);
3094         if (!isLastClause)
3095           MakeNewInstruction = true;
3096         CleanupFlag = false;
3097         break;
3098       }
3099 
3100       bool MakeNewFilter = false; // If true, make a new filter.
3101       SmallVector<Constant *, 16> NewFilterElts; // New elements.
3102       if (isa<ConstantAggregateZero>(FilterClause)) {
3103         // Not an empty filter - it contains at least one null typeinfo.
3104         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3105         Constant *TypeInfo =
3106           Constant::getNullValue(FilterType->getElementType());
3107         // If this typeinfo is a catch-all then the filter can never match.
3108         if (isCatchAll(Personality, TypeInfo)) {
3109           // Throw the filter away.
3110           MakeNewInstruction = true;
3111           continue;
3112         }
3113 
3114         // There is no point in having multiple copies of this typeinfo, so
3115         // discard all but the first copy if there is more than one.
3116         NewFilterElts.push_back(TypeInfo);
3117         if (NumTypeInfos > 1)
3118           MakeNewFilter = true;
3119       } else {
3120         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3121         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3122         NewFilterElts.reserve(NumTypeInfos);
3123 
3124         // Remove any filter elements that were already caught or that already
3125         // occurred in the filter.  While there, see if any of the elements are
3126         // catch-alls.  If so, the filter can be discarded.
3127         bool SawCatchAll = false;
3128         for (unsigned j = 0; j != NumTypeInfos; ++j) {
3129           Constant *Elt = Filter->getOperand(j);
3130           Constant *TypeInfo = Elt->stripPointerCasts();
3131           if (isCatchAll(Personality, TypeInfo)) {
3132             // This element is a catch-all.  Bail out, noting this fact.
3133             SawCatchAll = true;
3134             break;
3135           }
3136 
3137           // Even if we've seen a type in a catch clause, we don't want to
3138           // remove it from the filter.  An unexpected type handler may be
3139           // set up for a call site which throws an exception of the same
3140           // type caught.  In order for the exception thrown by the unexpected
3141           // handler to propagate correctly, the filter must be correctly
3142           // described for the call site.
3143           //
3144           // Example:
3145           //
3146           // void unexpected() { throw 1;}
3147           // void foo() throw (int) {
3148           //   std::set_unexpected(unexpected);
3149           //   try {
3150           //     throw 2.0;
3151           //   } catch (int i) {}
3152           // }
3153 
3154           // There is no point in having multiple copies of the same typeinfo in
3155           // a filter, so only add it if we didn't already.
3156           if (SeenInFilter.insert(TypeInfo).second)
3157             NewFilterElts.push_back(cast<Constant>(Elt));
3158         }
3159         // A filter containing a catch-all cannot match anything by definition.
3160         if (SawCatchAll) {
3161           // Throw the filter away.
3162           MakeNewInstruction = true;
3163           continue;
3164         }
3165 
3166         // If we dropped something from the filter, make a new one.
3167         if (NewFilterElts.size() < NumTypeInfos)
3168           MakeNewFilter = true;
3169       }
3170       if (MakeNewFilter) {
3171         FilterType = ArrayType::get(FilterType->getElementType(),
3172                                     NewFilterElts.size());
3173         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3174         MakeNewInstruction = true;
3175       }
3176 
3177       NewClauses.push_back(FilterClause);
3178 
3179       // If the new filter is empty then it will catch everything so there is
3180       // no point in keeping any following clauses or marking the landingpad
3181       // as having a cleanup.  The case of the original filter being empty was
3182       // already handled above.
3183       if (MakeNewFilter && !NewFilterElts.size()) {
3184         assert(MakeNewInstruction && "New filter but not a new instruction!");
3185         CleanupFlag = false;
3186         break;
3187       }
3188     }
3189   }
3190 
3191   // If several filters occur in a row then reorder them so that the shortest
3192   // filters come first (those with the smallest number of elements).  This is
3193   // advantageous because shorter filters are more likely to match, speeding up
3194   // unwinding, but mostly because it increases the effectiveness of the other
3195   // filter optimizations below.
3196   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3197     unsigned j;
3198     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3199     for (j = i; j != e; ++j)
3200       if (!isa<ArrayType>(NewClauses[j]->getType()))
3201         break;
3202 
3203     // Check whether the filters are already sorted by length.  We need to know
3204     // if sorting them is actually going to do anything so that we only make a
3205     // new landingpad instruction if it does.
3206     for (unsigned k = i; k + 1 < j; ++k)
3207       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3208         // Not sorted, so sort the filters now.  Doing an unstable sort would be
3209         // correct too but reordering filters pointlessly might confuse users.
3210         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3211                          shorter_filter);
3212         MakeNewInstruction = true;
3213         break;
3214       }
3215 
3216     // Look for the next batch of filters.
3217     i = j + 1;
3218   }
3219 
3220   // If typeinfos matched if and only if equal, then the elements of a filter L
3221   // that occurs later than a filter F could be replaced by the intersection of
3222   // the elements of F and L.  In reality two typeinfos can match without being
3223   // equal (for example if one represents a C++ class, and the other some class
3224   // derived from it) so it would be wrong to perform this transform in general.
3225   // However the transform is correct and useful if F is a subset of L.  In that
3226   // case L can be replaced by F, and thus removed altogether since repeating a
3227   // filter is pointless.  So here we look at all pairs of filters F and L where
3228   // L follows F in the list of clauses, and remove L if every element of F is
3229   // an element of L.  This can occur when inlining C++ functions with exception
3230   // specifications.
3231   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3232     // Examine each filter in turn.
3233     Value *Filter = NewClauses[i];
3234     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3235     if (!FTy)
3236       // Not a filter - skip it.
3237       continue;
3238     unsigned FElts = FTy->getNumElements();
3239     // Examine each filter following this one.  Doing this backwards means that
3240     // we don't have to worry about filters disappearing under us when removed.
3241     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3242       Value *LFilter = NewClauses[j];
3243       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3244       if (!LTy)
3245         // Not a filter - skip it.
3246         continue;
3247       // If Filter is a subset of LFilter, i.e. every element of Filter is also
3248       // an element of LFilter, then discard LFilter.
3249       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3250       // If Filter is empty then it is a subset of LFilter.
3251       if (!FElts) {
3252         // Discard LFilter.
3253         NewClauses.erase(J);
3254         MakeNewInstruction = true;
3255         // Move on to the next filter.
3256         continue;
3257       }
3258       unsigned LElts = LTy->getNumElements();
3259       // If Filter is longer than LFilter then it cannot be a subset of it.
3260       if (FElts > LElts)
3261         // Move on to the next filter.
3262         continue;
3263       // At this point we know that LFilter has at least one element.
3264       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3265         // Filter is a subset of LFilter iff Filter contains only zeros (as we
3266         // already know that Filter is not longer than LFilter).
3267         if (isa<ConstantAggregateZero>(Filter)) {
3268           assert(FElts <= LElts && "Should have handled this case earlier!");
3269           // Discard LFilter.
3270           NewClauses.erase(J);
3271           MakeNewInstruction = true;
3272         }
3273         // Move on to the next filter.
3274         continue;
3275       }
3276       ConstantArray *LArray = cast<ConstantArray>(LFilter);
3277       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3278         // Since Filter is non-empty and contains only zeros, it is a subset of
3279         // LFilter iff LFilter contains a zero.
3280         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3281         for (unsigned l = 0; l != LElts; ++l)
3282           if (LArray->getOperand(l)->isNullValue()) {
3283             // LFilter contains a zero - discard it.
3284             NewClauses.erase(J);
3285             MakeNewInstruction = true;
3286             break;
3287           }
3288         // Move on to the next filter.
3289         continue;
3290       }
3291       // At this point we know that both filters are ConstantArrays.  Loop over
3292       // operands to see whether every element of Filter is also an element of
3293       // LFilter.  Since filters tend to be short this is probably faster than
3294       // using a method that scales nicely.
3295       ConstantArray *FArray = cast<ConstantArray>(Filter);
3296       bool AllFound = true;
3297       for (unsigned f = 0; f != FElts; ++f) {
3298         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3299         AllFound = false;
3300         for (unsigned l = 0; l != LElts; ++l) {
3301           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3302           if (LTypeInfo == FTypeInfo) {
3303             AllFound = true;
3304             break;
3305           }
3306         }
3307         if (!AllFound)
3308           break;
3309       }
3310       if (AllFound) {
3311         // Discard LFilter.
3312         NewClauses.erase(J);
3313         MakeNewInstruction = true;
3314       }
3315       // Move on to the next filter.
3316     }
3317   }
3318 
3319   // If we changed any of the clauses, replace the old landingpad instruction
3320   // with a new one.
3321   if (MakeNewInstruction) {
3322     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3323                                                  NewClauses.size());
3324     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3325       NLI->addClause(NewClauses[i]);
3326     // A landing pad with no clauses must have the cleanup flag set.  It is
3327     // theoretically possible, though highly unlikely, that we eliminated all
3328     // clauses.  If so, force the cleanup flag to true.
3329     if (NewClauses.empty())
3330       CleanupFlag = true;
3331     NLI->setCleanup(CleanupFlag);
3332     return NLI;
3333   }
3334 
3335   // Even if none of the clauses changed, we may nonetheless have understood
3336   // that the cleanup flag is pointless.  Clear it if so.
3337   if (LI.isCleanup() != CleanupFlag) {
3338     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3339     LI.setCleanup(CleanupFlag);
3340     return &LI;
3341   }
3342 
3343   return nullptr;
3344 }
3345 
3346 Instruction *InstCombiner::visitFreeze(FreezeInst &I) {
3347   Value *Op0 = I.getOperand(0);
3348 
3349   if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3350     return replaceInstUsesWith(I, V);
3351 
3352   return nullptr;
3353 }
3354 
3355 /// Try to move the specified instruction from its current block into the
3356 /// beginning of DestBlock, which can only happen if it's safe to move the
3357 /// instruction past all of the instructions between it and the end of its
3358 /// block.
3359 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3360   assert(I->hasOneUse() && "Invariants didn't hold!");
3361   BasicBlock *SrcBlock = I->getParent();
3362 
3363   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3364   if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3365       I->isTerminator())
3366     return false;
3367 
3368   // Do not sink static or dynamic alloca instructions. Static allocas must
3369   // remain in the entry block, and dynamic allocas must not be sunk in between
3370   // a stacksave / stackrestore pair, which would incorrectly shorten its
3371   // lifetime.
3372   if (isa<AllocaInst>(I))
3373     return false;
3374 
3375   // Do not sink into catchswitch blocks.
3376   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3377     return false;
3378 
3379   // Do not sink convergent call instructions.
3380   if (auto *CI = dyn_cast<CallInst>(I)) {
3381     if (CI->isConvergent())
3382       return false;
3383   }
3384   // We can only sink load instructions if there is nothing between the load and
3385   // the end of block that could change the value.
3386   if (I->mayReadFromMemory()) {
3387     for (BasicBlock::iterator Scan = I->getIterator(),
3388                               E = I->getParent()->end();
3389          Scan != E; ++Scan)
3390       if (Scan->mayWriteToMemory())
3391         return false;
3392   }
3393   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3394   I->moveBefore(&*InsertPos);
3395   ++NumSunkInst;
3396 
3397   // Also sink all related debug uses from the source basic block. Otherwise we
3398   // get debug use before the def. Attempt to salvage debug uses first, to
3399   // maximise the range variables have location for. If we cannot salvage, then
3400   // mark the location undef: we know it was supposed to receive a new location
3401   // here, but that computation has been sunk.
3402   SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3403   findDbgUsers(DbgUsers, I);
3404   for (auto *DII : reverse(DbgUsers)) {
3405     if (DII->getParent() == SrcBlock) {
3406       if (isa<DbgDeclareInst>(DII)) {
3407         // A dbg.declare instruction should not be cloned, since there can only be
3408         // one per variable fragment. It should be left in the original place since
3409         // sunk instruction is not an alloca(otherwise we could not be here).
3410         // But we need to update arguments of dbg.declare instruction, so that it
3411         // would not point into sunk instruction.
3412         if (!isa<CastInst>(I))
3413           continue; // dbg.declare points at something it shouldn't
3414 
3415         DII->setOperand(
3416             0, MetadataAsValue::get(I->getContext(),
3417                                     ValueAsMetadata::get(I->getOperand(0))));
3418         continue;
3419       }
3420 
3421       // dbg.value is in the same basic block as the sunk inst, see if we can
3422       // salvage it. Clone a new copy of the instruction: on success we need
3423       // both salvaged and unsalvaged copies.
3424       SmallVector<DbgVariableIntrinsic *, 1> TmpUser{
3425           cast<DbgVariableIntrinsic>(DII->clone())};
3426 
3427       if (!salvageDebugInfoForDbgValues(*I, TmpUser)) {
3428         // We are unable to salvage: sink the cloned dbg.value, and mark the
3429         // original as undef, terminating any earlier variable location.
3430         LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n');
3431         TmpUser[0]->insertBefore(&*InsertPos);
3432         Value *Undef = UndefValue::get(I->getType());
3433         DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
3434                                                 ValueAsMetadata::get(Undef)));
3435       } else {
3436         // We successfully salvaged: place the salvaged dbg.value in the
3437         // original location, and move the unmodified dbg.value to sink with
3438         // the sunk inst.
3439         TmpUser[0]->insertBefore(DII);
3440         DII->moveBefore(&*InsertPos);
3441       }
3442     }
3443   }
3444   return true;
3445 }
3446 
3447 bool InstCombiner::run() {
3448   while (!Worklist.isEmpty()) {
3449     // Walk deferred instructions in reverse order, and push them to the
3450     // worklist, which means they'll end up popped from the worklist in-order.
3451     while (Instruction *I = Worklist.popDeferred()) {
3452       // Check to see if we can DCE the instruction. We do this already here to
3453       // reduce the number of uses and thus allow other folds to trigger.
3454       // Note that eraseInstFromFunction() may push additional instructions on
3455       // the deferred worklist, so this will DCE whole instruction chains.
3456       if (isInstructionTriviallyDead(I, &TLI)) {
3457         eraseInstFromFunction(*I);
3458         ++NumDeadInst;
3459         continue;
3460       }
3461 
3462       Worklist.push(I);
3463     }
3464 
3465     Instruction *I = Worklist.removeOne();
3466     if (I == nullptr) continue;  // skip null values.
3467 
3468     // Check to see if we can DCE the instruction.
3469     if (isInstructionTriviallyDead(I, &TLI)) {
3470       eraseInstFromFunction(*I);
3471       ++NumDeadInst;
3472       continue;
3473     }
3474 
3475     if (!DebugCounter::shouldExecute(VisitCounter))
3476       continue;
3477 
3478     // Instruction isn't dead, see if we can constant propagate it.
3479     if (!I->use_empty() &&
3480         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3481       if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3482         LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3483                           << '\n');
3484 
3485         // Add operands to the worklist.
3486         replaceInstUsesWith(*I, C);
3487         ++NumConstProp;
3488         if (isInstructionTriviallyDead(I, &TLI))
3489           eraseInstFromFunction(*I);
3490         MadeIRChange = true;
3491         continue;
3492       }
3493     }
3494 
3495     // See if we can trivially sink this instruction to a successor basic block.
3496     if (EnableCodeSinking && I->hasOneUse()) {
3497       BasicBlock *BB = I->getParent();
3498       Instruction *UserInst = cast<Instruction>(*I->user_begin());
3499       BasicBlock *UserParent;
3500 
3501       // Get the block the use occurs in.
3502       if (PHINode *PN = dyn_cast<PHINode>(UserInst))
3503         UserParent = PN->getIncomingBlock(*I->use_begin());
3504       else
3505         UserParent = UserInst->getParent();
3506 
3507       if (UserParent != BB) {
3508         bool UserIsSuccessor = false;
3509         // See if the user is one of our successors.
3510         for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
3511           if (*SI == UserParent) {
3512             UserIsSuccessor = true;
3513             break;
3514           }
3515 
3516         // If the user is one of our immediate successors, and if that successor
3517         // only has us as a predecessors (we'd have to split the critical edge
3518         // otherwise), we can keep going.
3519         if (UserIsSuccessor && UserParent->getUniquePredecessor()) {
3520           // Okay, the CFG is simple enough, try to sink this instruction.
3521           if (TryToSinkInstruction(I, UserParent)) {
3522             LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3523             MadeIRChange = true;
3524             // We'll add uses of the sunk instruction below, but since sinking
3525             // can expose opportunities for it's *operands* add them to the
3526             // worklist
3527             for (Use &U : I->operands())
3528               if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3529                 Worklist.push(OpI);
3530           }
3531         }
3532       }
3533     }
3534 
3535     // Now that we have an instruction, try combining it to simplify it.
3536     Builder.SetInsertPoint(I);
3537     Builder.SetCurrentDebugLocation(I->getDebugLoc());
3538 
3539 #ifndef NDEBUG
3540     std::string OrigI;
3541 #endif
3542     LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3543     LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3544 
3545     if (Instruction *Result = visit(*I)) {
3546       ++NumCombined;
3547       // Should we replace the old instruction with a new one?
3548       if (Result != I) {
3549         LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3550                           << "    New = " << *Result << '\n');
3551 
3552         if (I->getDebugLoc())
3553           Result->setDebugLoc(I->getDebugLoc());
3554         // Everything uses the new instruction now.
3555         I->replaceAllUsesWith(Result);
3556 
3557         // Move the name to the new instruction first.
3558         Result->takeName(I);
3559 
3560         // Insert the new instruction into the basic block...
3561         BasicBlock *InstParent = I->getParent();
3562         BasicBlock::iterator InsertPos = I->getIterator();
3563 
3564         // If we replace a PHI with something that isn't a PHI, fix up the
3565         // insertion point.
3566         if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
3567           InsertPos = InstParent->getFirstInsertionPt();
3568 
3569         InstParent->getInstList().insert(InsertPos, Result);
3570 
3571         // Push the new instruction and any users onto the worklist.
3572         Worklist.pushUsersToWorkList(*Result);
3573         Worklist.push(Result);
3574 
3575         eraseInstFromFunction(*I);
3576       } else {
3577         LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3578                           << "    New = " << *I << '\n');
3579 
3580         // If the instruction was modified, it's possible that it is now dead.
3581         // if so, remove it.
3582         if (isInstructionTriviallyDead(I, &TLI)) {
3583           eraseInstFromFunction(*I);
3584         } else {
3585           Worklist.pushUsersToWorkList(*I);
3586           Worklist.push(I);
3587         }
3588       }
3589       MadeIRChange = true;
3590     }
3591   }
3592 
3593   Worklist.zap();
3594   return MadeIRChange;
3595 }
3596 
3597 /// Walk the function in depth-first order, adding all reachable code to the
3598 /// worklist.
3599 ///
3600 /// This has a couple of tricks to make the code faster and more powerful.  In
3601 /// particular, we constant fold and DCE instructions as we go, to avoid adding
3602 /// them to the worklist (this significantly speeds up instcombine on code where
3603 /// many instructions are dead or constant).  Additionally, if we find a branch
3604 /// whose condition is a known constant, we only visit the reachable successors.
3605 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
3606                                        SmallPtrSetImpl<BasicBlock *> &Visited,
3607                                        InstCombineWorklist &ICWorklist,
3608                                        const TargetLibraryInfo *TLI) {
3609   bool MadeIRChange = false;
3610   SmallVector<BasicBlock*, 256> Worklist;
3611   Worklist.push_back(BB);
3612 
3613   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
3614   DenseMap<Constant *, Constant *> FoldedConstants;
3615 
3616   do {
3617     BB = Worklist.pop_back_val();
3618 
3619     // We have now visited this block!  If we've already been here, ignore it.
3620     if (!Visited.insert(BB).second)
3621       continue;
3622 
3623     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3624       Instruction *Inst = &*BBI++;
3625 
3626       // ConstantProp instruction if trivially constant.
3627       if (!Inst->use_empty() &&
3628           (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
3629         if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
3630           LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
3631                             << '\n');
3632           Inst->replaceAllUsesWith(C);
3633           ++NumConstProp;
3634           if (isInstructionTriviallyDead(Inst, TLI))
3635             Inst->eraseFromParent();
3636           MadeIRChange = true;
3637           continue;
3638         }
3639 
3640       // See if we can constant fold its operands.
3641       for (Use &U : Inst->operands()) {
3642         if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
3643           continue;
3644 
3645         auto *C = cast<Constant>(U);
3646         Constant *&FoldRes = FoldedConstants[C];
3647         if (!FoldRes)
3648           FoldRes = ConstantFoldConstant(C, DL, TLI);
3649 
3650         if (FoldRes != C) {
3651           LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
3652                             << "\n    Old = " << *C
3653                             << "\n    New = " << *FoldRes << '\n');
3654           U = FoldRes;
3655           MadeIRChange = true;
3656         }
3657       }
3658 
3659       // Skip processing debug intrinsics in InstCombine. Processing these call instructions
3660       // consumes non-trivial amount of time and provides no value for the optimization.
3661       if (!isa<DbgInfoIntrinsic>(Inst))
3662         InstrsForInstCombineWorklist.push_back(Inst);
3663     }
3664 
3665     // Recursively visit successors.  If this is a branch or switch on a
3666     // constant, only visit the reachable successor.
3667     Instruction *TI = BB->getTerminator();
3668     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3669       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
3670         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
3671         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
3672         Worklist.push_back(ReachableBB);
3673         continue;
3674       }
3675     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3676       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
3677         Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
3678         continue;
3679       }
3680     }
3681 
3682     for (BasicBlock *SuccBB : successors(TI))
3683       Worklist.push_back(SuccBB);
3684   } while (!Worklist.empty());
3685 
3686   // Once we've found all of the instructions to add to instcombine's worklist,
3687   // add them in reverse order.  This way instcombine will visit from the top
3688   // of the function down.  This jives well with the way that it adds all uses
3689   // of instructions to the worklist after doing a transformation, thus avoiding
3690   // some N^2 behavior in pathological cases.
3691   ICWorklist.reserve(InstrsForInstCombineWorklist.size());
3692   for (Instruction *Inst : reverse(InstrsForInstCombineWorklist)) {
3693     // DCE instruction if trivially dead. As we iterate in reverse program
3694     // order here, we will clean up whole chains of dead instructions.
3695     if (isInstructionTriviallyDead(Inst, TLI)) {
3696       ++NumDeadInst;
3697       LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
3698       salvageDebugInfoOrMarkUndef(*Inst);
3699       Inst->eraseFromParent();
3700       MadeIRChange = true;
3701       continue;
3702     }
3703 
3704     ICWorklist.push(Inst);
3705   }
3706 
3707   return MadeIRChange;
3708 }
3709 
3710 /// Populate the IC worklist from a function, and prune any dead basic
3711 /// blocks discovered in the process.
3712 ///
3713 /// This also does basic constant propagation and other forward fixing to make
3714 /// the combiner itself run much faster.
3715 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3716                                           TargetLibraryInfo *TLI,
3717                                           InstCombineWorklist &ICWorklist) {
3718   bool MadeIRChange = false;
3719 
3720   // Do a depth-first traversal of the function, populate the worklist with
3721   // the reachable instructions.  Ignore blocks that are not reachable.  Keep
3722   // track of which blocks we visit.
3723   SmallPtrSet<BasicBlock *, 32> Visited;
3724   MadeIRChange |=
3725       AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);
3726 
3727   // Do a quick scan over the function.  If we find any blocks that are
3728   // unreachable, remove any instructions inside of them.  This prevents
3729   // the instcombine code from having to deal with some bad special cases.
3730   for (BasicBlock &BB : F) {
3731     if (Visited.count(&BB))
3732       continue;
3733 
3734     unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
3735     MadeIRChange |= NumDeadInstInBB > 0;
3736     NumDeadInst += NumDeadInstInBB;
3737   }
3738 
3739   return MadeIRChange;
3740 }
3741 
3742 static bool combineInstructionsOverFunction(
3743     Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
3744     AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
3745     OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
3746     ProfileSummaryInfo *PSI, bool ExpensiveCombines, unsigned MaxIterations,
3747     LoopInfo *LI) {
3748   auto &DL = F.getParent()->getDataLayout();
3749   if (EnableExpensiveCombines.getNumOccurrences())
3750     ExpensiveCombines = EnableExpensiveCombines;
3751   MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
3752 
3753   /// Builder - This is an IRBuilder that automatically inserts new
3754   /// instructions into the worklist when they are created.
3755   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
3756       F.getContext(), TargetFolder(DL),
3757       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
3758         Worklist.add(I);
3759         if (match(I, m_Intrinsic<Intrinsic::assume>()))
3760           AC.registerAssumption(cast<CallInst>(I));
3761       }));
3762 
3763   // Lower dbg.declare intrinsics otherwise their value may be clobbered
3764   // by instcombiner.
3765   bool MadeIRChange = false;
3766   if (ShouldLowerDbgDeclare)
3767     MadeIRChange = LowerDbgDeclare(F);
3768 
3769   // Iterate while there is work to do.
3770   unsigned Iteration = 0;
3771   while (true) {
3772     ++Iteration;
3773 
3774     if (Iteration > InfiniteLoopDetectionThreshold) {
3775       report_fatal_error(
3776           "Instruction Combining seems stuck in an infinite loop after " +
3777           Twine(InfiniteLoopDetectionThreshold) + " iterations.");
3778     }
3779 
3780     if (Iteration > MaxIterations) {
3781       LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
3782                         << " on " << F.getName()
3783                         << " reached; stopping before reaching a fixpoint\n");
3784       break;
3785     }
3786 
3787     LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
3788                       << F.getName() << "\n");
3789 
3790     MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
3791 
3792     InstCombiner IC(Worklist, Builder, F.hasMinSize(), ExpensiveCombines, AA,
3793                     AC, TLI, DT, ORE, BFI, PSI, DL, LI);
3794     IC.MaxArraySizeForCombine = MaxArraySize;
3795 
3796     if (!IC.run())
3797       break;
3798 
3799     MadeIRChange = true;
3800   }
3801 
3802   return MadeIRChange;
3803 }
3804 
3805 InstCombinePass::InstCombinePass(bool ExpensiveCombines)
3806     : ExpensiveCombines(ExpensiveCombines), MaxIterations(LimitMaxIterations) {}
3807 
3808 InstCombinePass::InstCombinePass(bool ExpensiveCombines, unsigned MaxIterations)
3809     : ExpensiveCombines(ExpensiveCombines), MaxIterations(MaxIterations) {}
3810 
3811 PreservedAnalyses InstCombinePass::run(Function &F,
3812                                        FunctionAnalysisManager &AM) {
3813   auto &AC = AM.getResult<AssumptionAnalysis>(F);
3814   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3815   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3816   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
3817 
3818   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
3819 
3820   auto *AA = &AM.getResult<AAManager>(F);
3821   const ModuleAnalysisManager &MAM =
3822       AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
3823   ProfileSummaryInfo *PSI =
3824       MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
3825   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
3826       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
3827 
3828   if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI,
3829                                        PSI, ExpensiveCombines, MaxIterations,
3830                                        LI))
3831     // No changes, all analyses are preserved.
3832     return PreservedAnalyses::all();
3833 
3834   // Mark all the analyses that instcombine updates as preserved.
3835   PreservedAnalyses PA;
3836   PA.preserveSet<CFGAnalyses>();
3837   PA.preserve<AAManager>();
3838   PA.preserve<BasicAA>();
3839   PA.preserve<GlobalsAA>();
3840   return PA;
3841 }
3842 
3843 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3844   AU.setPreservesCFG();
3845   AU.addRequired<AAResultsWrapperPass>();
3846   AU.addRequired<AssumptionCacheTracker>();
3847   AU.addRequired<TargetLibraryInfoWrapperPass>();
3848   AU.addRequired<DominatorTreeWrapperPass>();
3849   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3850   AU.addPreserved<DominatorTreeWrapperPass>();
3851   AU.addPreserved<AAResultsWrapperPass>();
3852   AU.addPreserved<BasicAAWrapperPass>();
3853   AU.addPreserved<GlobalsAAWrapperPass>();
3854   AU.addRequired<ProfileSummaryInfoWrapperPass>();
3855   LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
3856 }
3857 
3858 bool InstructionCombiningPass::runOnFunction(Function &F) {
3859   if (skipFunction(F))
3860     return false;
3861 
3862   // Required analyses.
3863   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3864   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3865   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3866   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3867   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
3868 
3869   // Optional analyses.
3870   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3871   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3872   ProfileSummaryInfo *PSI =
3873       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3874   BlockFrequencyInfo *BFI =
3875       (PSI && PSI->hasProfileSummary()) ?
3876       &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
3877       nullptr;
3878 
3879   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI,
3880                                          PSI, ExpensiveCombines, MaxIterations,
3881                                          LI);
3882 }
3883 
3884 char InstructionCombiningPass::ID = 0;
3885 
3886 InstructionCombiningPass::InstructionCombiningPass(bool ExpensiveCombines)
3887     : FunctionPass(ID), ExpensiveCombines(ExpensiveCombines),
3888       MaxIterations(InstCombineDefaultMaxIterations) {
3889   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
3890 }
3891 
3892 InstructionCombiningPass::InstructionCombiningPass(bool ExpensiveCombines,
3893                                                    unsigned MaxIterations)
3894     : FunctionPass(ID), ExpensiveCombines(ExpensiveCombines),
3895       MaxIterations(MaxIterations) {
3896   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
3897 }
3898 
3899 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
3900                       "Combine redundant instructions", false, false)
3901 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3902 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3903 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3904 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3905 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3906 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3907 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
3908 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
3909 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
3910                     "Combine redundant instructions", false, false)
3911 
3912 // Initialization Routines
3913 void llvm::initializeInstCombine(PassRegistry &Registry) {
3914   initializeInstructionCombiningPassPass(Registry);
3915 }
3916 
3917 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
3918   initializeInstructionCombiningPassPass(*unwrap(R));
3919 }
3920 
3921 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) {
3922   return new InstructionCombiningPass(ExpensiveCombines);
3923 }
3924 
3925 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines,
3926                                                    unsigned MaxIterations) {
3927   return new InstructionCombiningPass(ExpensiveCombines, MaxIterations);
3928 }
3929 
3930 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
3931   unwrap(PM)->add(createInstructionCombiningPass());
3932 }
3933