1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // InstructionCombining - Combine instructions to form fewer, simple 11 // instructions. This pass does not modify the CFG. This pass is where 12 // algebraic simplification happens. 13 // 14 // This pass combines things like: 15 // %Y = add i32 %X, 1 16 // %Z = add i32 %Y, 1 17 // into: 18 // %Z = add i32 %X, 2 19 // 20 // This is a simple worklist driven algorithm. 21 // 22 // This pass guarantees that the following canonicalizations are performed on 23 // the program: 24 // 1. If a binary operator has a constant operand, it is moved to the RHS 25 // 2. Bitwise operators with constant operands are always grouped so that 26 // shifts are performed first, then or's, then and's, then xor's. 27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 28 // 4. All cmp instructions on boolean values are replaced with logical ops 29 // 5. add X, X is represented as (X*2) => (X << 1) 30 // 6. Multiplies with a power-of-two constant argument are transformed into 31 // shifts. 32 // ... etc. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #define DEBUG_TYPE "instcombine" 37 #include "llvm/Transforms/Scalar.h" 38 #include "InstCombine.h" 39 #include "llvm/IntrinsicInst.h" 40 #include "llvm/Analysis/ConstantFolding.h" 41 #include "llvm/Analysis/InstructionSimplify.h" 42 #include "llvm/Analysis/MemoryBuiltins.h" 43 #include "llvm/Target/TargetData.h" 44 #include "llvm/Target/TargetLibraryInfo.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 #include "llvm/Support/CFG.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/GetElementPtrTypeIterator.h" 49 #include "llvm/Support/PatternMatch.h" 50 #include "llvm/Support/ValueHandle.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/Statistic.h" 53 #include "llvm/ADT/StringSwitch.h" 54 #include "llvm-c/Initialization.h" 55 #include <algorithm> 56 #include <climits> 57 using namespace llvm; 58 using namespace llvm::PatternMatch; 59 60 STATISTIC(NumCombined , "Number of insts combined"); 61 STATISTIC(NumConstProp, "Number of constant folds"); 62 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 63 STATISTIC(NumSunkInst , "Number of instructions sunk"); 64 STATISTIC(NumExpand, "Number of expansions"); 65 STATISTIC(NumFactor , "Number of factorizations"); 66 STATISTIC(NumReassoc , "Number of reassociations"); 67 68 // Initialization Routines 69 void llvm::initializeInstCombine(PassRegistry &Registry) { 70 initializeInstCombinerPass(Registry); 71 } 72 73 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 74 initializeInstCombine(*unwrap(R)); 75 } 76 77 char InstCombiner::ID = 0; 78 INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine", 79 "Combine redundant instructions", false, false) 80 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 81 INITIALIZE_PASS_END(InstCombiner, "instcombine", 82 "Combine redundant instructions", false, false) 83 84 void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const { 85 AU.setPreservesCFG(); 86 AU.addRequired<TargetLibraryInfo>(); 87 } 88 89 90 /// ShouldChangeType - Return true if it is desirable to convert a computation 91 /// from 'From' to 'To'. We don't want to convert from a legal to an illegal 92 /// type for example, or from a smaller to a larger illegal type. 93 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const { 94 assert(From->isIntegerTy() && To->isIntegerTy()); 95 96 // If we don't have TD, we don't know if the source/dest are legal. 97 if (!TD) return false; 98 99 unsigned FromWidth = From->getPrimitiveSizeInBits(); 100 unsigned ToWidth = To->getPrimitiveSizeInBits(); 101 bool FromLegal = TD->isLegalInteger(FromWidth); 102 bool ToLegal = TD->isLegalInteger(ToWidth); 103 104 // If this is a legal integer from type, and the result would be an illegal 105 // type, don't do the transformation. 106 if (FromLegal && !ToLegal) 107 return false; 108 109 // Otherwise, if both are illegal, do not increase the size of the result. We 110 // do allow things like i160 -> i64, but not i64 -> i160. 111 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 112 return false; 113 114 return true; 115 } 116 117 // Return true, if No Signed Wrap should be maintained for I. 118 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 119 // where both B and C should be ConstantInts, results in a constant that does 120 // not overflow. This function only handles the Add and Sub opcodes. For 121 // all other opcodes, the function conservatively returns false. 122 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 123 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 124 if (!OBO || !OBO->hasNoSignedWrap()) { 125 return false; 126 } 127 128 // We reason about Add and Sub Only. 129 Instruction::BinaryOps Opcode = I.getOpcode(); 130 if (Opcode != Instruction::Add && 131 Opcode != Instruction::Sub) { 132 return false; 133 } 134 135 ConstantInt *CB = dyn_cast<ConstantInt>(B); 136 ConstantInt *CC = dyn_cast<ConstantInt>(C); 137 138 if (!CB || !CC) { 139 return false; 140 } 141 142 const APInt &BVal = CB->getValue(); 143 const APInt &CVal = CC->getValue(); 144 bool Overflow = false; 145 146 if (Opcode == Instruction::Add) { 147 BVal.sadd_ov(CVal, Overflow); 148 } else { 149 BVal.ssub_ov(CVal, Overflow); 150 } 151 152 return !Overflow; 153 } 154 155 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for 156 /// operators which are associative or commutative: 157 // 158 // Commutative operators: 159 // 160 // 1. Order operands such that they are listed from right (least complex) to 161 // left (most complex). This puts constants before unary operators before 162 // binary operators. 163 // 164 // Associative operators: 165 // 166 // 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 167 // 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 168 // 169 // Associative and commutative operators: 170 // 171 // 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 172 // 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 173 // 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 174 // if C1 and C2 are constants. 175 // 176 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 177 Instruction::BinaryOps Opcode = I.getOpcode(); 178 bool Changed = false; 179 180 do { 181 // Order operands such that they are listed from right (least complex) to 182 // left (most complex). This puts constants before unary operators before 183 // binary operators. 184 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 185 getComplexity(I.getOperand(1))) 186 Changed = !I.swapOperands(); 187 188 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 189 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 190 191 if (I.isAssociative()) { 192 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 193 if (Op0 && Op0->getOpcode() == Opcode) { 194 Value *A = Op0->getOperand(0); 195 Value *B = Op0->getOperand(1); 196 Value *C = I.getOperand(1); 197 198 // Does "B op C" simplify? 199 if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) { 200 // It simplifies to V. Form "A op V". 201 I.setOperand(0, A); 202 I.setOperand(1, V); 203 // Conservatively clear the optional flags, since they may not be 204 // preserved by the reassociation. 205 if (MaintainNoSignedWrap(I, B, C) && 206 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { 207 // Note: this is only valid because SimplifyBinOp doesn't look at 208 // the operands to Op0. 209 I.clearSubclassOptionalData(); 210 I.setHasNoSignedWrap(true); 211 } else { 212 I.clearSubclassOptionalData(); 213 } 214 215 Changed = true; 216 ++NumReassoc; 217 continue; 218 } 219 } 220 221 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 222 if (Op1 && Op1->getOpcode() == Opcode) { 223 Value *A = I.getOperand(0); 224 Value *B = Op1->getOperand(0); 225 Value *C = Op1->getOperand(1); 226 227 // Does "A op B" simplify? 228 if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) { 229 // It simplifies to V. Form "V op C". 230 I.setOperand(0, V); 231 I.setOperand(1, C); 232 // Conservatively clear the optional flags, since they may not be 233 // preserved by the reassociation. 234 I.clearSubclassOptionalData(); 235 Changed = true; 236 ++NumReassoc; 237 continue; 238 } 239 } 240 } 241 242 if (I.isAssociative() && I.isCommutative()) { 243 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 244 if (Op0 && Op0->getOpcode() == Opcode) { 245 Value *A = Op0->getOperand(0); 246 Value *B = Op0->getOperand(1); 247 Value *C = I.getOperand(1); 248 249 // Does "C op A" simplify? 250 if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) { 251 // It simplifies to V. Form "V op B". 252 I.setOperand(0, V); 253 I.setOperand(1, B); 254 // Conservatively clear the optional flags, since they may not be 255 // preserved by the reassociation. 256 I.clearSubclassOptionalData(); 257 Changed = true; 258 ++NumReassoc; 259 continue; 260 } 261 } 262 263 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 264 if (Op1 && Op1->getOpcode() == Opcode) { 265 Value *A = I.getOperand(0); 266 Value *B = Op1->getOperand(0); 267 Value *C = Op1->getOperand(1); 268 269 // Does "C op A" simplify? 270 if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) { 271 // It simplifies to V. Form "B op V". 272 I.setOperand(0, B); 273 I.setOperand(1, V); 274 // Conservatively clear the optional flags, since they may not be 275 // preserved by the reassociation. 276 I.clearSubclassOptionalData(); 277 Changed = true; 278 ++NumReassoc; 279 continue; 280 } 281 } 282 283 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 284 // if C1 and C2 are constants. 285 if (Op0 && Op1 && 286 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 287 isa<Constant>(Op0->getOperand(1)) && 288 isa<Constant>(Op1->getOperand(1)) && 289 Op0->hasOneUse() && Op1->hasOneUse()) { 290 Value *A = Op0->getOperand(0); 291 Constant *C1 = cast<Constant>(Op0->getOperand(1)); 292 Value *B = Op1->getOperand(0); 293 Constant *C2 = cast<Constant>(Op1->getOperand(1)); 294 295 Constant *Folded = ConstantExpr::get(Opcode, C1, C2); 296 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B); 297 InsertNewInstWith(New, I); 298 New->takeName(Op1); 299 I.setOperand(0, New); 300 I.setOperand(1, Folded); 301 // Conservatively clear the optional flags, since they may not be 302 // preserved by the reassociation. 303 I.clearSubclassOptionalData(); 304 305 Changed = true; 306 continue; 307 } 308 } 309 310 // No further simplifications. 311 return Changed; 312 } while (1); 313 } 314 315 /// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to 316 /// "(X LOp Y) ROp (X LOp Z)". 317 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp, 318 Instruction::BinaryOps ROp) { 319 switch (LOp) { 320 default: 321 return false; 322 323 case Instruction::And: 324 // And distributes over Or and Xor. 325 switch (ROp) { 326 default: 327 return false; 328 case Instruction::Or: 329 case Instruction::Xor: 330 return true; 331 } 332 333 case Instruction::Mul: 334 // Multiplication distributes over addition and subtraction. 335 switch (ROp) { 336 default: 337 return false; 338 case Instruction::Add: 339 case Instruction::Sub: 340 return true; 341 } 342 343 case Instruction::Or: 344 // Or distributes over And. 345 switch (ROp) { 346 default: 347 return false; 348 case Instruction::And: 349 return true; 350 } 351 } 352 } 353 354 /// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to 355 /// "(X ROp Z) LOp (Y ROp Z)". 356 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp, 357 Instruction::BinaryOps ROp) { 358 if (Instruction::isCommutative(ROp)) 359 return LeftDistributesOverRight(ROp, LOp); 360 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 361 // but this requires knowing that the addition does not overflow and other 362 // such subtleties. 363 return false; 364 } 365 366 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations 367 /// which some other binary operation distributes over either by factorizing 368 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this 369 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is 370 /// a win). Returns the simplified value, or null if it didn't simplify. 371 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 372 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 373 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 374 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 375 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op 376 377 // Factorization. 378 if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) { 379 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 380 // a common term. 381 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1); 382 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1); 383 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 384 385 // Does "X op' Y" always equal "Y op' X"? 386 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 387 388 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 389 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 390 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 391 // commutative case, "(A op' B) op (C op' A)"? 392 if (A == C || (InnerCommutative && A == D)) { 393 if (A != C) 394 std::swap(C, D); 395 // Consider forming "A op' (B op D)". 396 // If "B op D" simplifies then it can be formed with no cost. 397 Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD); 398 // If "B op D" doesn't simplify then only go on if both of the existing 399 // operations "A op' B" and "C op' D" will be zapped as no longer used. 400 if (!V && Op0->hasOneUse() && Op1->hasOneUse()) 401 V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName()); 402 if (V) { 403 ++NumFactor; 404 V = Builder->CreateBinOp(InnerOpcode, A, V); 405 V->takeName(&I); 406 return V; 407 } 408 } 409 410 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 411 if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 412 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 413 // commutative case, "(A op' B) op (B op' D)"? 414 if (B == D || (InnerCommutative && B == C)) { 415 if (B != D) 416 std::swap(C, D); 417 // Consider forming "(A op C) op' B". 418 // If "A op C" simplifies then it can be formed with no cost. 419 Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD); 420 // If "A op C" doesn't simplify then only go on if both of the existing 421 // operations "A op' B" and "C op' D" will be zapped as no longer used. 422 if (!V && Op0->hasOneUse() && Op1->hasOneUse()) 423 V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName()); 424 if (V) { 425 ++NumFactor; 426 V = Builder->CreateBinOp(InnerOpcode, V, B); 427 V->takeName(&I); 428 return V; 429 } 430 } 431 } 432 433 // Expansion. 434 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 435 // The instruction has the form "(A op' B) op C". See if expanding it out 436 // to "(A op C) op' (B op C)" results in simplifications. 437 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 438 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 439 440 // Do "A op C" and "B op C" both simplify? 441 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD)) 442 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) { 443 // They do! Return "L op' R". 444 ++NumExpand; 445 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 446 if ((L == A && R == B) || 447 (Instruction::isCommutative(InnerOpcode) && L == B && R == A)) 448 return Op0; 449 // Otherwise return "L op' R" if it simplifies. 450 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD)) 451 return V; 452 // Otherwise, create a new instruction. 453 C = Builder->CreateBinOp(InnerOpcode, L, R); 454 C->takeName(&I); 455 return C; 456 } 457 } 458 459 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 460 // The instruction has the form "A op (B op' C)". See if expanding it out 461 // to "(A op B) op' (A op C)" results in simplifications. 462 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 463 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 464 465 // Do "A op B" and "A op C" both simplify? 466 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD)) 467 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) { 468 // They do! Return "L op' R". 469 ++NumExpand; 470 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 471 if ((L == B && R == C) || 472 (Instruction::isCommutative(InnerOpcode) && L == C && R == B)) 473 return Op1; 474 // Otherwise return "L op' R" if it simplifies. 475 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD)) 476 return V; 477 // Otherwise, create a new instruction. 478 A = Builder->CreateBinOp(InnerOpcode, L, R); 479 A->takeName(&I); 480 return A; 481 } 482 } 483 484 return 0; 485 } 486 487 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction 488 // if the LHS is a constant zero (which is the 'negate' form). 489 // 490 Value *InstCombiner::dyn_castNegVal(Value *V) const { 491 if (BinaryOperator::isNeg(V)) 492 return BinaryOperator::getNegArgument(V); 493 494 // Constants can be considered to be negated values if they can be folded. 495 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 496 return ConstantExpr::getNeg(C); 497 498 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 499 if (C->getType()->getElementType()->isIntegerTy()) 500 return ConstantExpr::getNeg(C); 501 502 return 0; 503 } 504 505 // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the 506 // instruction if the LHS is a constant negative zero (which is the 'negate' 507 // form). 508 // 509 Value *InstCombiner::dyn_castFNegVal(Value *V) const { 510 if (BinaryOperator::isFNeg(V)) 511 return BinaryOperator::getFNegArgument(V); 512 513 // Constants can be considered to be negated values if they can be folded. 514 if (ConstantFP *C = dyn_cast<ConstantFP>(V)) 515 return ConstantExpr::getFNeg(C); 516 517 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 518 if (C->getType()->getElementType()->isFloatingPointTy()) 519 return ConstantExpr::getFNeg(C); 520 521 return 0; 522 } 523 524 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO, 525 InstCombiner *IC) { 526 if (CastInst *CI = dyn_cast<CastInst>(&I)) { 527 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType()); 528 } 529 530 // Figure out if the constant is the left or the right argument. 531 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 532 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 533 534 if (Constant *SOC = dyn_cast<Constant>(SO)) { 535 if (ConstIsRHS) 536 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 537 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 538 } 539 540 Value *Op0 = SO, *Op1 = ConstOperand; 541 if (!ConstIsRHS) 542 std::swap(Op0, Op1); 543 544 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) 545 return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1, 546 SO->getName()+".op"); 547 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I)) 548 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, 549 SO->getName()+".cmp"); 550 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I)) 551 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, 552 SO->getName()+".cmp"); 553 llvm_unreachable("Unknown binary instruction type!"); 554 } 555 556 // FoldOpIntoSelect - Given an instruction with a select as one operand and a 557 // constant as the other operand, try to fold the binary operator into the 558 // select arguments. This also works for Cast instructions, which obviously do 559 // not have a second operand. 560 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 561 // Don't modify shared select instructions 562 if (!SI->hasOneUse()) return 0; 563 Value *TV = SI->getOperand(1); 564 Value *FV = SI->getOperand(2); 565 566 if (isa<Constant>(TV) || isa<Constant>(FV)) { 567 // Bool selects with constant operands can be folded to logical ops. 568 if (SI->getType()->isIntegerTy(1)) return 0; 569 570 // If it's a bitcast involving vectors, make sure it has the same number of 571 // elements on both sides. 572 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) { 573 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 574 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 575 576 // Verify that either both or neither are vectors. 577 if ((SrcTy == NULL) != (DestTy == NULL)) return 0; 578 // If vectors, verify that they have the same number of elements. 579 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 580 return 0; 581 } 582 583 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this); 584 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this); 585 586 return SelectInst::Create(SI->getCondition(), 587 SelectTrueVal, SelectFalseVal); 588 } 589 return 0; 590 } 591 592 593 /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which 594 /// has a PHI node as operand #0, see if we can fold the instruction into the 595 /// PHI (which is only possible if all operands to the PHI are constants). 596 /// 597 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { 598 PHINode *PN = cast<PHINode>(I.getOperand(0)); 599 unsigned NumPHIValues = PN->getNumIncomingValues(); 600 if (NumPHIValues == 0) 601 return 0; 602 603 // We normally only transform phis with a single use. However, if a PHI has 604 // multiple uses and they are all the same operation, we can fold *all* of the 605 // uses into the PHI. 606 if (!PN->hasOneUse()) { 607 // Walk the use list for the instruction, comparing them to I. 608 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); 609 UI != E; ++UI) { 610 Instruction *User = cast<Instruction>(*UI); 611 if (User != &I && !I.isIdenticalTo(User)) 612 return 0; 613 } 614 // Otherwise, we can replace *all* users with the new PHI we form. 615 } 616 617 // Check to see if all of the operands of the PHI are simple constants 618 // (constantint/constantfp/undef). If there is one non-constant value, 619 // remember the BB it is in. If there is more than one or if *it* is a PHI, 620 // bail out. We don't do arbitrary constant expressions here because moving 621 // their computation can be expensive without a cost model. 622 BasicBlock *NonConstBB = 0; 623 for (unsigned i = 0; i != NumPHIValues; ++i) { 624 Value *InVal = PN->getIncomingValue(i); 625 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 626 continue; 627 628 if (isa<PHINode>(InVal)) return 0; // Itself a phi. 629 if (NonConstBB) return 0; // More than one non-const value. 630 631 NonConstBB = PN->getIncomingBlock(i); 632 633 // If the InVal is an invoke at the end of the pred block, then we can't 634 // insert a computation after it without breaking the edge. 635 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal)) 636 if (II->getParent() == NonConstBB) 637 return 0; 638 639 // If the incoming non-constant value is in I's block, we will remove one 640 // instruction, but insert another equivalent one, leading to infinite 641 // instcombine. 642 if (NonConstBB == I.getParent()) 643 return 0; 644 } 645 646 // If there is exactly one non-constant value, we can insert a copy of the 647 // operation in that block. However, if this is a critical edge, we would be 648 // inserting the computation one some other paths (e.g. inside a loop). Only 649 // do this if the pred block is unconditionally branching into the phi block. 650 if (NonConstBB != 0) { 651 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 652 if (!BI || !BI->isUnconditional()) return 0; 653 } 654 655 // Okay, we can do the transformation: create the new PHI node. 656 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 657 InsertNewInstBefore(NewPN, *PN); 658 NewPN->takeName(PN); 659 660 // If we are going to have to insert a new computation, do so right before the 661 // predecessors terminator. 662 if (NonConstBB) 663 Builder->SetInsertPoint(NonConstBB->getTerminator()); 664 665 // Next, add all of the operands to the PHI. 666 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 667 // We only currently try to fold the condition of a select when it is a phi, 668 // not the true/false values. 669 Value *TrueV = SI->getTrueValue(); 670 Value *FalseV = SI->getFalseValue(); 671 BasicBlock *PhiTransBB = PN->getParent(); 672 for (unsigned i = 0; i != NumPHIValues; ++i) { 673 BasicBlock *ThisBB = PN->getIncomingBlock(i); 674 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 675 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 676 Value *InV = 0; 677 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 678 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 679 else 680 InV = Builder->CreateSelect(PN->getIncomingValue(i), 681 TrueVInPred, FalseVInPred, "phitmp"); 682 NewPN->addIncoming(InV, ThisBB); 683 } 684 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 685 Constant *C = cast<Constant>(I.getOperand(1)); 686 for (unsigned i = 0; i != NumPHIValues; ++i) { 687 Value *InV = 0; 688 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 689 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 690 else if (isa<ICmpInst>(CI)) 691 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 692 C, "phitmp"); 693 else 694 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 695 C, "phitmp"); 696 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 697 } 698 } else if (I.getNumOperands() == 2) { 699 Constant *C = cast<Constant>(I.getOperand(1)); 700 for (unsigned i = 0; i != NumPHIValues; ++i) { 701 Value *InV = 0; 702 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 703 InV = ConstantExpr::get(I.getOpcode(), InC, C); 704 else 705 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 706 PN->getIncomingValue(i), C, "phitmp"); 707 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 708 } 709 } else { 710 CastInst *CI = cast<CastInst>(&I); 711 Type *RetTy = CI->getType(); 712 for (unsigned i = 0; i != NumPHIValues; ++i) { 713 Value *InV; 714 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 715 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 716 else 717 InV = Builder->CreateCast(CI->getOpcode(), 718 PN->getIncomingValue(i), I.getType(), "phitmp"); 719 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 720 } 721 } 722 723 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); 724 UI != E; ) { 725 Instruction *User = cast<Instruction>(*UI++); 726 if (User == &I) continue; 727 ReplaceInstUsesWith(*User, NewPN); 728 EraseInstFromFunction(*User); 729 } 730 return ReplaceInstUsesWith(I, NewPN); 731 } 732 733 /// FindElementAtOffset - Given a type and a constant offset, determine whether 734 /// or not there is a sequence of GEP indices into the type that will land us at 735 /// the specified offset. If so, fill them into NewIndices and return the 736 /// resultant element type, otherwise return null. 737 Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset, 738 SmallVectorImpl<Value*> &NewIndices) { 739 if (!TD) return 0; 740 if (!Ty->isSized()) return 0; 741 742 // Start with the index over the outer type. Note that the type size 743 // might be zero (even if the offset isn't zero) if the indexed type 744 // is something like [0 x {int, int}] 745 Type *IntPtrTy = TD->getIntPtrType(Ty->getContext()); 746 int64_t FirstIdx = 0; 747 if (int64_t TySize = TD->getTypeAllocSize(Ty)) { 748 FirstIdx = Offset/TySize; 749 Offset -= FirstIdx*TySize; 750 751 // Handle hosts where % returns negative instead of values [0..TySize). 752 if (Offset < 0) { 753 --FirstIdx; 754 Offset += TySize; 755 assert(Offset >= 0); 756 } 757 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 758 } 759 760 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx)); 761 762 // Index into the types. If we fail, set OrigBase to null. 763 while (Offset) { 764 // Indexing into tail padding between struct/array elements. 765 if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty)) 766 return 0; 767 768 if (StructType *STy = dyn_cast<StructType>(Ty)) { 769 const StructLayout *SL = TD->getStructLayout(STy); 770 assert(Offset < (int64_t)SL->getSizeInBytes() && 771 "Offset must stay within the indexed type"); 772 773 unsigned Elt = SL->getElementContainingOffset(Offset); 774 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 775 Elt)); 776 777 Offset -= SL->getElementOffset(Elt); 778 Ty = STy->getElementType(Elt); 779 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 780 uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType()); 781 assert(EltSize && "Cannot index into a zero-sized array"); 782 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize)); 783 Offset %= EltSize; 784 Ty = AT->getElementType(); 785 } else { 786 // Otherwise, we can't index into the middle of this atomic type, bail. 787 return 0; 788 } 789 } 790 791 return Ty; 792 } 793 794 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 795 // If this GEP has only 0 indices, it is the same pointer as 796 // Src. If Src is not a trivial GEP too, don't combine 797 // the indices. 798 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 799 !Src.hasOneUse()) 800 return false; 801 return true; 802 } 803 804 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 805 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 806 807 if (Value *V = SimplifyGEPInst(Ops, TD)) 808 return ReplaceInstUsesWith(GEP, V); 809 810 Value *PtrOp = GEP.getOperand(0); 811 812 // Eliminate unneeded casts for indices, and replace indices which displace 813 // by multiples of a zero size type with zero. 814 if (TD) { 815 bool MadeChange = false; 816 Type *IntPtrTy = TD->getIntPtrType(GEP.getContext()); 817 818 gep_type_iterator GTI = gep_type_begin(GEP); 819 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); 820 I != E; ++I, ++GTI) { 821 // Skip indices into struct types. 822 SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI); 823 if (!SeqTy) continue; 824 825 // If the element type has zero size then any index over it is equivalent 826 // to an index of zero, so replace it with zero if it is not zero already. 827 if (SeqTy->getElementType()->isSized() && 828 TD->getTypeAllocSize(SeqTy->getElementType()) == 0) 829 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { 830 *I = Constant::getNullValue(IntPtrTy); 831 MadeChange = true; 832 } 833 834 Type *IndexTy = (*I)->getType(); 835 if (IndexTy != IntPtrTy && !IndexTy->isVectorTy()) { 836 // If we are using a wider index than needed for this platform, shrink 837 // it to what we need. If narrower, sign-extend it to what we need. 838 // This explicit cast can make subsequent optimizations more obvious. 839 *I = Builder->CreateIntCast(*I, IntPtrTy, true); 840 MadeChange = true; 841 } 842 } 843 if (MadeChange) return &GEP; 844 } 845 846 // Combine Indices - If the source pointer to this getelementptr instruction 847 // is a getelementptr instruction, combine the indices of the two 848 // getelementptr instructions into a single instruction. 849 // 850 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) { 851 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 852 return 0; 853 854 // Note that if our source is a gep chain itself that we wait for that 855 // chain to be resolved before we perform this transformation. This 856 // avoids us creating a TON of code in some cases. 857 if (GEPOperator *SrcGEP = 858 dyn_cast<GEPOperator>(Src->getOperand(0))) 859 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 860 return 0; // Wait until our source is folded to completion. 861 862 SmallVector<Value*, 8> Indices; 863 864 // Find out whether the last index in the source GEP is a sequential idx. 865 bool EndsWithSequential = false; 866 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 867 I != E; ++I) 868 EndsWithSequential = !(*I)->isStructTy(); 869 870 // Can we combine the two pointer arithmetics offsets? 871 if (EndsWithSequential) { 872 // Replace: gep (gep %P, long B), long A, ... 873 // With: T = long A+B; gep %P, T, ... 874 // 875 Value *Sum; 876 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 877 Value *GO1 = GEP.getOperand(1); 878 if (SO1 == Constant::getNullValue(SO1->getType())) { 879 Sum = GO1; 880 } else if (GO1 == Constant::getNullValue(GO1->getType())) { 881 Sum = SO1; 882 } else { 883 // If they aren't the same type, then the input hasn't been processed 884 // by the loop above yet (which canonicalizes sequential index types to 885 // intptr_t). Just avoid transforming this until the input has been 886 // normalized. 887 if (SO1->getType() != GO1->getType()) 888 return 0; 889 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum"); 890 } 891 892 // Update the GEP in place if possible. 893 if (Src->getNumOperands() == 2) { 894 GEP.setOperand(0, Src->getOperand(0)); 895 GEP.setOperand(1, Sum); 896 return &GEP; 897 } 898 Indices.append(Src->op_begin()+1, Src->op_end()-1); 899 Indices.push_back(Sum); 900 Indices.append(GEP.op_begin()+2, GEP.op_end()); 901 } else if (isa<Constant>(*GEP.idx_begin()) && 902 cast<Constant>(*GEP.idx_begin())->isNullValue() && 903 Src->getNumOperands() != 1) { 904 // Otherwise we can do the fold if the first index of the GEP is a zero 905 Indices.append(Src->op_begin()+1, Src->op_end()); 906 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 907 } 908 909 if (!Indices.empty()) 910 return (GEP.isInBounds() && Src->isInBounds()) ? 911 GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices, 912 GEP.getName()) : 913 GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName()); 914 } 915 916 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 917 Value *StrippedPtr = PtrOp->stripPointerCasts(); 918 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType()); 919 // We do not handle pointer-vector geps here 920 if (!StrippedPtr) 921 return 0; 922 923 if (StrippedPtr != PtrOp && 924 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) { 925 926 bool HasZeroPointerIndex = false; 927 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 928 HasZeroPointerIndex = C->isZero(); 929 930 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 931 // into : GEP [10 x i8]* X, i32 0, ... 932 // 933 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 934 // into : GEP i8* X, ... 935 // 936 // This occurs when the program declares an array extern like "int X[];" 937 if (HasZeroPointerIndex) { 938 PointerType *CPTy = cast<PointerType>(PtrOp->getType()); 939 if (ArrayType *CATy = 940 dyn_cast<ArrayType>(CPTy->getElementType())) { 941 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 942 if (CATy->getElementType() == StrippedPtrTy->getElementType()) { 943 // -> GEP i8* X, ... 944 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 945 GetElementPtrInst *Res = 946 GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName()); 947 Res->setIsInBounds(GEP.isInBounds()); 948 return Res; 949 } 950 951 if (ArrayType *XATy = 952 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){ 953 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 954 if (CATy->getElementType() == XATy->getElementType()) { 955 // -> GEP [10 x i8]* X, i32 0, ... 956 // At this point, we know that the cast source type is a pointer 957 // to an array of the same type as the destination pointer 958 // array. Because the array type is never stepped over (there 959 // is a leading zero) we can fold the cast into this GEP. 960 GEP.setOperand(0, StrippedPtr); 961 return &GEP; 962 } 963 } 964 } 965 } else if (GEP.getNumOperands() == 2) { 966 // Transform things like: 967 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 968 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 969 Type *SrcElTy = StrippedPtrTy->getElementType(); 970 Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType(); 971 if (TD && SrcElTy->isArrayTy() && 972 TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) == 973 TD->getTypeAllocSize(ResElTy)) { 974 Value *Idx[2]; 975 Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext())); 976 Idx[1] = GEP.getOperand(1); 977 Value *NewGEP = GEP.isInBounds() ? 978 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) : 979 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName()); 980 // V and GEP are both pointer types --> BitCast 981 return new BitCastInst(NewGEP, GEP.getType()); 982 } 983 984 // Transform things like: 985 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 986 // (where tmp = 8*tmp2) into: 987 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 988 989 if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) { 990 uint64_t ArrayEltSize = 991 TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()); 992 993 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We 994 // allow either a mul, shift, or constant here. 995 Value *NewIdx = 0; 996 ConstantInt *Scale = 0; 997 if (ArrayEltSize == 1) { 998 NewIdx = GEP.getOperand(1); 999 Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1); 1000 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) { 1001 NewIdx = ConstantInt::get(CI->getType(), 1); 1002 Scale = CI; 1003 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){ 1004 if (Inst->getOpcode() == Instruction::Shl && 1005 isa<ConstantInt>(Inst->getOperand(1))) { 1006 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1)); 1007 uint32_t ShAmtVal = ShAmt->getLimitedValue(64); 1008 Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()), 1009 1ULL << ShAmtVal); 1010 NewIdx = Inst->getOperand(0); 1011 } else if (Inst->getOpcode() == Instruction::Mul && 1012 isa<ConstantInt>(Inst->getOperand(1))) { 1013 Scale = cast<ConstantInt>(Inst->getOperand(1)); 1014 NewIdx = Inst->getOperand(0); 1015 } 1016 } 1017 1018 // If the index will be to exactly the right offset with the scale taken 1019 // out, perform the transformation. Note, we don't know whether Scale is 1020 // signed or not. We'll use unsigned version of division/modulo 1021 // operation after making sure Scale doesn't have the sign bit set. 1022 if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL && 1023 Scale->getZExtValue() % ArrayEltSize == 0) { 1024 Scale = ConstantInt::get(Scale->getType(), 1025 Scale->getZExtValue() / ArrayEltSize); 1026 if (Scale->getZExtValue() != 1) { 1027 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(), 1028 false /*ZExt*/); 1029 NewIdx = Builder->CreateMul(NewIdx, C, "idxscale"); 1030 } 1031 1032 // Insert the new GEP instruction. 1033 Value *Idx[2]; 1034 Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext())); 1035 Idx[1] = NewIdx; 1036 Value *NewGEP = GEP.isInBounds() ? 1037 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()): 1038 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName()); 1039 // The NewGEP must be pointer typed, so must the old one -> BitCast 1040 return new BitCastInst(NewGEP, GEP.getType()); 1041 } 1042 } 1043 } 1044 } 1045 1046 /// See if we can simplify: 1047 /// X = bitcast A* to B* 1048 /// Y = gep X, <...constant indices...> 1049 /// into a gep of the original struct. This is important for SROA and alias 1050 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 1051 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) { 1052 if (TD && 1053 !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() && 1054 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) { 1055 1056 // Determine how much the GEP moves the pointer. We are guaranteed to get 1057 // a constant back from EmitGEPOffset. 1058 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP)); 1059 int64_t Offset = OffsetV->getSExtValue(); 1060 1061 // If this GEP instruction doesn't move the pointer, just replace the GEP 1062 // with a bitcast of the real input to the dest type. 1063 if (Offset == 0) { 1064 // If the bitcast is of an allocation, and the allocation will be 1065 // converted to match the type of the cast, don't touch this. 1066 if (isa<AllocaInst>(BCI->getOperand(0)) || 1067 isMalloc(BCI->getOperand(0))) { 1068 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 1069 if (Instruction *I = visitBitCast(*BCI)) { 1070 if (I != BCI) { 1071 I->takeName(BCI); 1072 BCI->getParent()->getInstList().insert(BCI, I); 1073 ReplaceInstUsesWith(*BCI, I); 1074 } 1075 return &GEP; 1076 } 1077 } 1078 return new BitCastInst(BCI->getOperand(0), GEP.getType()); 1079 } 1080 1081 // Otherwise, if the offset is non-zero, we need to find out if there is a 1082 // field at Offset in 'A's type. If so, we can pull the cast through the 1083 // GEP. 1084 SmallVector<Value*, 8> NewIndices; 1085 Type *InTy = 1086 cast<PointerType>(BCI->getOperand(0)->getType())->getElementType(); 1087 if (FindElementAtOffset(InTy, Offset, NewIndices)) { 1088 Value *NGEP = GEP.isInBounds() ? 1089 Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) : 1090 Builder->CreateGEP(BCI->getOperand(0), NewIndices); 1091 1092 if (NGEP->getType() == GEP.getType()) 1093 return ReplaceInstUsesWith(GEP, NGEP); 1094 NGEP->takeName(&GEP); 1095 return new BitCastInst(NGEP, GEP.getType()); 1096 } 1097 } 1098 } 1099 1100 return 0; 1101 } 1102 1103 1104 1105 static bool IsOnlyNullComparedAndFreed(Value *V, SmallVectorImpl<WeakVH> &Users, 1106 int Depth = 0) { 1107 if (Depth == 8) 1108 return false; 1109 1110 for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); 1111 UI != UE; ++UI) { 1112 User *U = *UI; 1113 if (isFreeCall(U)) { 1114 Users.push_back(U); 1115 continue; 1116 } 1117 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) { 1118 if (ICI->isEquality() && isa<ConstantPointerNull>(ICI->getOperand(1))) { 1119 Users.push_back(ICI); 1120 continue; 1121 } 1122 } 1123 if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 1124 if (IsOnlyNullComparedAndFreed(BCI, Users, Depth+1)) { 1125 Users.push_back(BCI); 1126 continue; 1127 } 1128 } 1129 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1130 if (IsOnlyNullComparedAndFreed(GEPI, Users, Depth+1)) { 1131 Users.push_back(GEPI); 1132 continue; 1133 } 1134 } 1135 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 1136 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 1137 II->getIntrinsicID() == Intrinsic::lifetime_end) { 1138 Users.push_back(II); 1139 continue; 1140 } 1141 } 1142 return false; 1143 } 1144 return true; 1145 } 1146 1147 Instruction *InstCombiner::visitMalloc(Instruction &MI) { 1148 // If we have a malloc call which is only used in any amount of comparisons 1149 // to null and free calls, delete the calls and replace the comparisons with 1150 // true or false as appropriate. 1151 SmallVector<WeakVH, 64> Users; 1152 if (IsOnlyNullComparedAndFreed(&MI, Users)) { 1153 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 1154 Instruction *I = cast_or_null<Instruction>(&*Users[i]); 1155 if (!I) continue; 1156 1157 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 1158 ReplaceInstUsesWith(*C, 1159 ConstantInt::get(Type::getInt1Ty(C->getContext()), 1160 C->isFalseWhenEqual())); 1161 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) { 1162 ReplaceInstUsesWith(*I, UndefValue::get(I->getType())); 1163 } 1164 EraseInstFromFunction(*I); 1165 } 1166 return EraseInstFromFunction(MI); 1167 } 1168 return 0; 1169 } 1170 1171 1172 1173 Instruction *InstCombiner::visitFree(CallInst &FI) { 1174 Value *Op = FI.getArgOperand(0); 1175 1176 // free undef -> unreachable. 1177 if (isa<UndefValue>(Op)) { 1178 // Insert a new store to null because we cannot modify the CFG here. 1179 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()), 1180 UndefValue::get(Type::getInt1PtrTy(FI.getContext()))); 1181 return EraseInstFromFunction(FI); 1182 } 1183 1184 // If we have 'free null' delete the instruction. This can happen in stl code 1185 // when lots of inlining happens. 1186 if (isa<ConstantPointerNull>(Op)) 1187 return EraseInstFromFunction(FI); 1188 1189 return 0; 1190 } 1191 1192 1193 1194 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 1195 // Change br (not X), label True, label False to: br X, label False, True 1196 Value *X = 0; 1197 BasicBlock *TrueDest; 1198 BasicBlock *FalseDest; 1199 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && 1200 !isa<Constant>(X)) { 1201 // Swap Destinations and condition... 1202 BI.setCondition(X); 1203 BI.swapSuccessors(); 1204 return &BI; 1205 } 1206 1207 // Cannonicalize fcmp_one -> fcmp_oeq 1208 FCmpInst::Predicate FPred; Value *Y; 1209 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), 1210 TrueDest, FalseDest)) && 1211 BI.getCondition()->hasOneUse()) 1212 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE || 1213 FPred == FCmpInst::FCMP_OGE) { 1214 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition()); 1215 Cond->setPredicate(FCmpInst::getInversePredicate(FPred)); 1216 1217 // Swap Destinations and condition. 1218 BI.swapSuccessors(); 1219 Worklist.Add(Cond); 1220 return &BI; 1221 } 1222 1223 // Cannonicalize icmp_ne -> icmp_eq 1224 ICmpInst::Predicate IPred; 1225 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)), 1226 TrueDest, FalseDest)) && 1227 BI.getCondition()->hasOneUse()) 1228 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE || 1229 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE || 1230 IPred == ICmpInst::ICMP_SGE) { 1231 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition()); 1232 Cond->setPredicate(ICmpInst::getInversePredicate(IPred)); 1233 // Swap Destinations and condition. 1234 BI.swapSuccessors(); 1235 Worklist.Add(Cond); 1236 return &BI; 1237 } 1238 1239 return 0; 1240 } 1241 1242 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 1243 Value *Cond = SI.getCondition(); 1244 if (Instruction *I = dyn_cast<Instruction>(Cond)) { 1245 if (I->getOpcode() == Instruction::Add) 1246 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 1247 // change 'switch (X+4) case 1:' into 'switch (X) case -3' 1248 // Skip the first item since that's the default case. 1249 for (SwitchInst::CaseIt i = SI.caseBegin(), e = SI.caseEnd(); 1250 i != e; ++i) { 1251 ConstantInt* CaseVal = i.getCaseValue(); 1252 Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal), 1253 AddRHS); 1254 assert(isa<ConstantInt>(NewCaseVal) && 1255 "Result of expression should be constant"); 1256 i.setValue(cast<ConstantInt>(NewCaseVal)); 1257 } 1258 SI.setCondition(I->getOperand(0)); 1259 Worklist.Add(I); 1260 return &SI; 1261 } 1262 } 1263 return 0; 1264 } 1265 1266 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 1267 Value *Agg = EV.getAggregateOperand(); 1268 1269 if (!EV.hasIndices()) 1270 return ReplaceInstUsesWith(EV, Agg); 1271 1272 if (Constant *C = dyn_cast<Constant>(Agg)) { 1273 if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) { 1274 if (EV.getNumIndices() == 0) 1275 return ReplaceInstUsesWith(EV, C2); 1276 // Extract the remaining indices out of the constant indexed by the 1277 // first index 1278 return ExtractValueInst::Create(C2, EV.getIndices().slice(1)); 1279 } 1280 return 0; // Can't handle other constants 1281 } 1282 1283 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 1284 // We're extracting from an insertvalue instruction, compare the indices 1285 const unsigned *exti, *exte, *insi, *inse; 1286 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 1287 exte = EV.idx_end(), inse = IV->idx_end(); 1288 exti != exte && insi != inse; 1289 ++exti, ++insi) { 1290 if (*insi != *exti) 1291 // The insert and extract both reference distinctly different elements. 1292 // This means the extract is not influenced by the insert, and we can 1293 // replace the aggregate operand of the extract with the aggregate 1294 // operand of the insert. i.e., replace 1295 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 1296 // %E = extractvalue { i32, { i32 } } %I, 0 1297 // with 1298 // %E = extractvalue { i32, { i32 } } %A, 0 1299 return ExtractValueInst::Create(IV->getAggregateOperand(), 1300 EV.getIndices()); 1301 } 1302 if (exti == exte && insi == inse) 1303 // Both iterators are at the end: Index lists are identical. Replace 1304 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 1305 // %C = extractvalue { i32, { i32 } } %B, 1, 0 1306 // with "i32 42" 1307 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand()); 1308 if (exti == exte) { 1309 // The extract list is a prefix of the insert list. i.e. replace 1310 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 1311 // %E = extractvalue { i32, { i32 } } %I, 1 1312 // with 1313 // %X = extractvalue { i32, { i32 } } %A, 1 1314 // %E = insertvalue { i32 } %X, i32 42, 0 1315 // by switching the order of the insert and extract (though the 1316 // insertvalue should be left in, since it may have other uses). 1317 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(), 1318 EV.getIndices()); 1319 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 1320 makeArrayRef(insi, inse)); 1321 } 1322 if (insi == inse) 1323 // The insert list is a prefix of the extract list 1324 // We can simply remove the common indices from the extract and make it 1325 // operate on the inserted value instead of the insertvalue result. 1326 // i.e., replace 1327 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 1328 // %E = extractvalue { i32, { i32 } } %I, 1, 0 1329 // with 1330 // %E extractvalue { i32 } { i32 42 }, 0 1331 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 1332 makeArrayRef(exti, exte)); 1333 } 1334 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { 1335 // We're extracting from an intrinsic, see if we're the only user, which 1336 // allows us to simplify multiple result intrinsics to simpler things that 1337 // just get one value. 1338 if (II->hasOneUse()) { 1339 // Check if we're grabbing the overflow bit or the result of a 'with 1340 // overflow' intrinsic. If it's the latter we can remove the intrinsic 1341 // and replace it with a traditional binary instruction. 1342 switch (II->getIntrinsicID()) { 1343 case Intrinsic::uadd_with_overflow: 1344 case Intrinsic::sadd_with_overflow: 1345 if (*EV.idx_begin() == 0) { // Normal result. 1346 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 1347 ReplaceInstUsesWith(*II, UndefValue::get(II->getType())); 1348 EraseInstFromFunction(*II); 1349 return BinaryOperator::CreateAdd(LHS, RHS); 1350 } 1351 1352 // If the normal result of the add is dead, and the RHS is a constant, 1353 // we can transform this into a range comparison. 1354 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 1355 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) 1356 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1))) 1357 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0), 1358 ConstantExpr::getNot(CI)); 1359 break; 1360 case Intrinsic::usub_with_overflow: 1361 case Intrinsic::ssub_with_overflow: 1362 if (*EV.idx_begin() == 0) { // Normal result. 1363 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 1364 ReplaceInstUsesWith(*II, UndefValue::get(II->getType())); 1365 EraseInstFromFunction(*II); 1366 return BinaryOperator::CreateSub(LHS, RHS); 1367 } 1368 break; 1369 case Intrinsic::umul_with_overflow: 1370 case Intrinsic::smul_with_overflow: 1371 if (*EV.idx_begin() == 0) { // Normal result. 1372 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 1373 ReplaceInstUsesWith(*II, UndefValue::get(II->getType())); 1374 EraseInstFromFunction(*II); 1375 return BinaryOperator::CreateMul(LHS, RHS); 1376 } 1377 break; 1378 default: 1379 break; 1380 } 1381 } 1382 } 1383 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 1384 // If the (non-volatile) load only has one use, we can rewrite this to a 1385 // load from a GEP. This reduces the size of the load. 1386 // FIXME: If a load is used only by extractvalue instructions then this 1387 // could be done regardless of having multiple uses. 1388 if (L->isSimple() && L->hasOneUse()) { 1389 // extractvalue has integer indices, getelementptr has Value*s. Convert. 1390 SmallVector<Value*, 4> Indices; 1391 // Prefix an i32 0 since we need the first element. 1392 Indices.push_back(Builder->getInt32(0)); 1393 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 1394 I != E; ++I) 1395 Indices.push_back(Builder->getInt32(*I)); 1396 1397 // We need to insert these at the location of the old load, not at that of 1398 // the extractvalue. 1399 Builder->SetInsertPoint(L->getParent(), L); 1400 Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices); 1401 // Returning the load directly will cause the main loop to insert it in 1402 // the wrong spot, so use ReplaceInstUsesWith(). 1403 return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP)); 1404 } 1405 // We could simplify extracts from other values. Note that nested extracts may 1406 // already be simplified implicitly by the above: extract (extract (insert) ) 1407 // will be translated into extract ( insert ( extract ) ) first and then just 1408 // the value inserted, if appropriate. Similarly for extracts from single-use 1409 // loads: extract (extract (load)) will be translated to extract (load (gep)) 1410 // and if again single-use then via load (gep (gep)) to load (gep). 1411 // However, double extracts from e.g. function arguments or return values 1412 // aren't handled yet. 1413 return 0; 1414 } 1415 1416 enum Personality_Type { 1417 Unknown_Personality, 1418 GNU_Ada_Personality, 1419 GNU_CXX_Personality, 1420 GNU_ObjC_Personality 1421 }; 1422 1423 /// RecognizePersonality - See if the given exception handling personality 1424 /// function is one that we understand. If so, return a description of it; 1425 /// otherwise return Unknown_Personality. 1426 static Personality_Type RecognizePersonality(Value *Pers) { 1427 Function *F = dyn_cast<Function>(Pers->stripPointerCasts()); 1428 if (!F) 1429 return Unknown_Personality; 1430 return StringSwitch<Personality_Type>(F->getName()) 1431 .Case("__gnat_eh_personality", GNU_Ada_Personality) 1432 .Case("__gxx_personality_v0", GNU_CXX_Personality) 1433 .Case("__objc_personality_v0", GNU_ObjC_Personality) 1434 .Default(Unknown_Personality); 1435 } 1436 1437 /// isCatchAll - Return 'true' if the given typeinfo will match anything. 1438 static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) { 1439 switch (Personality) { 1440 case Unknown_Personality: 1441 return false; 1442 case GNU_Ada_Personality: 1443 // While __gnat_all_others_value will match any Ada exception, it doesn't 1444 // match foreign exceptions (or didn't, before gcc-4.7). 1445 return false; 1446 case GNU_CXX_Personality: 1447 case GNU_ObjC_Personality: 1448 return TypeInfo->isNullValue(); 1449 } 1450 llvm_unreachable("Unknown personality!"); 1451 } 1452 1453 static bool shorter_filter(const Value *LHS, const Value *RHS) { 1454 return 1455 cast<ArrayType>(LHS->getType())->getNumElements() 1456 < 1457 cast<ArrayType>(RHS->getType())->getNumElements(); 1458 } 1459 1460 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 1461 // The logic here should be correct for any real-world personality function. 1462 // However if that turns out not to be true, the offending logic can always 1463 // be conditioned on the personality function, like the catch-all logic is. 1464 Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn()); 1465 1466 // Simplify the list of clauses, eg by removing repeated catch clauses 1467 // (these are often created by inlining). 1468 bool MakeNewInstruction = false; // If true, recreate using the following: 1469 SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction; 1470 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 1471 1472 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 1473 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 1474 bool isLastClause = i + 1 == e; 1475 if (LI.isCatch(i)) { 1476 // A catch clause. 1477 Value *CatchClause = LI.getClause(i); 1478 Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts()); 1479 1480 // If we already saw this clause, there is no point in having a second 1481 // copy of it. 1482 if (AlreadyCaught.insert(TypeInfo)) { 1483 // This catch clause was not already seen. 1484 NewClauses.push_back(CatchClause); 1485 } else { 1486 // Repeated catch clause - drop the redundant copy. 1487 MakeNewInstruction = true; 1488 } 1489 1490 // If this is a catch-all then there is no point in keeping any following 1491 // clauses or marking the landingpad as having a cleanup. 1492 if (isCatchAll(Personality, TypeInfo)) { 1493 if (!isLastClause) 1494 MakeNewInstruction = true; 1495 CleanupFlag = false; 1496 break; 1497 } 1498 } else { 1499 // A filter clause. If any of the filter elements were already caught 1500 // then they can be dropped from the filter. It is tempting to try to 1501 // exploit the filter further by saying that any typeinfo that does not 1502 // occur in the filter can't be caught later (and thus can be dropped). 1503 // However this would be wrong, since typeinfos can match without being 1504 // equal (for example if one represents a C++ class, and the other some 1505 // class derived from it). 1506 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 1507 Value *FilterClause = LI.getClause(i); 1508 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 1509 unsigned NumTypeInfos = FilterType->getNumElements(); 1510 1511 // An empty filter catches everything, so there is no point in keeping any 1512 // following clauses or marking the landingpad as having a cleanup. By 1513 // dealing with this case here the following code is made a bit simpler. 1514 if (!NumTypeInfos) { 1515 NewClauses.push_back(FilterClause); 1516 if (!isLastClause) 1517 MakeNewInstruction = true; 1518 CleanupFlag = false; 1519 break; 1520 } 1521 1522 bool MakeNewFilter = false; // If true, make a new filter. 1523 SmallVector<Constant *, 16> NewFilterElts; // New elements. 1524 if (isa<ConstantAggregateZero>(FilterClause)) { 1525 // Not an empty filter - it contains at least one null typeinfo. 1526 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 1527 Constant *TypeInfo = 1528 Constant::getNullValue(FilterType->getElementType()); 1529 // If this typeinfo is a catch-all then the filter can never match. 1530 if (isCatchAll(Personality, TypeInfo)) { 1531 // Throw the filter away. 1532 MakeNewInstruction = true; 1533 continue; 1534 } 1535 1536 // There is no point in having multiple copies of this typeinfo, so 1537 // discard all but the first copy if there is more than one. 1538 NewFilterElts.push_back(TypeInfo); 1539 if (NumTypeInfos > 1) 1540 MakeNewFilter = true; 1541 } else { 1542 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 1543 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 1544 NewFilterElts.reserve(NumTypeInfos); 1545 1546 // Remove any filter elements that were already caught or that already 1547 // occurred in the filter. While there, see if any of the elements are 1548 // catch-alls. If so, the filter can be discarded. 1549 bool SawCatchAll = false; 1550 for (unsigned j = 0; j != NumTypeInfos; ++j) { 1551 Value *Elt = Filter->getOperand(j); 1552 Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts()); 1553 if (isCatchAll(Personality, TypeInfo)) { 1554 // This element is a catch-all. Bail out, noting this fact. 1555 SawCatchAll = true; 1556 break; 1557 } 1558 if (AlreadyCaught.count(TypeInfo)) 1559 // Already caught by an earlier clause, so having it in the filter 1560 // is pointless. 1561 continue; 1562 // There is no point in having multiple copies of the same typeinfo in 1563 // a filter, so only add it if we didn't already. 1564 if (SeenInFilter.insert(TypeInfo)) 1565 NewFilterElts.push_back(cast<Constant>(Elt)); 1566 } 1567 // A filter containing a catch-all cannot match anything by definition. 1568 if (SawCatchAll) { 1569 // Throw the filter away. 1570 MakeNewInstruction = true; 1571 continue; 1572 } 1573 1574 // If we dropped something from the filter, make a new one. 1575 if (NewFilterElts.size() < NumTypeInfos) 1576 MakeNewFilter = true; 1577 } 1578 if (MakeNewFilter) { 1579 FilterType = ArrayType::get(FilterType->getElementType(), 1580 NewFilterElts.size()); 1581 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 1582 MakeNewInstruction = true; 1583 } 1584 1585 NewClauses.push_back(FilterClause); 1586 1587 // If the new filter is empty then it will catch everything so there is 1588 // no point in keeping any following clauses or marking the landingpad 1589 // as having a cleanup. The case of the original filter being empty was 1590 // already handled above. 1591 if (MakeNewFilter && !NewFilterElts.size()) { 1592 assert(MakeNewInstruction && "New filter but not a new instruction!"); 1593 CleanupFlag = false; 1594 break; 1595 } 1596 } 1597 } 1598 1599 // If several filters occur in a row then reorder them so that the shortest 1600 // filters come first (those with the smallest number of elements). This is 1601 // advantageous because shorter filters are more likely to match, speeding up 1602 // unwinding, but mostly because it increases the effectiveness of the other 1603 // filter optimizations below. 1604 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 1605 unsigned j; 1606 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 1607 for (j = i; j != e; ++j) 1608 if (!isa<ArrayType>(NewClauses[j]->getType())) 1609 break; 1610 1611 // Check whether the filters are already sorted by length. We need to know 1612 // if sorting them is actually going to do anything so that we only make a 1613 // new landingpad instruction if it does. 1614 for (unsigned k = i; k + 1 < j; ++k) 1615 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 1616 // Not sorted, so sort the filters now. Doing an unstable sort would be 1617 // correct too but reordering filters pointlessly might confuse users. 1618 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 1619 shorter_filter); 1620 MakeNewInstruction = true; 1621 break; 1622 } 1623 1624 // Look for the next batch of filters. 1625 i = j + 1; 1626 } 1627 1628 // If typeinfos matched if and only if equal, then the elements of a filter L 1629 // that occurs later than a filter F could be replaced by the intersection of 1630 // the elements of F and L. In reality two typeinfos can match without being 1631 // equal (for example if one represents a C++ class, and the other some class 1632 // derived from it) so it would be wrong to perform this transform in general. 1633 // However the transform is correct and useful if F is a subset of L. In that 1634 // case L can be replaced by F, and thus removed altogether since repeating a 1635 // filter is pointless. So here we look at all pairs of filters F and L where 1636 // L follows F in the list of clauses, and remove L if every element of F is 1637 // an element of L. This can occur when inlining C++ functions with exception 1638 // specifications. 1639 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 1640 // Examine each filter in turn. 1641 Value *Filter = NewClauses[i]; 1642 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 1643 if (!FTy) 1644 // Not a filter - skip it. 1645 continue; 1646 unsigned FElts = FTy->getNumElements(); 1647 // Examine each filter following this one. Doing this backwards means that 1648 // we don't have to worry about filters disappearing under us when removed. 1649 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 1650 Value *LFilter = NewClauses[j]; 1651 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 1652 if (!LTy) 1653 // Not a filter - skip it. 1654 continue; 1655 // If Filter is a subset of LFilter, i.e. every element of Filter is also 1656 // an element of LFilter, then discard LFilter. 1657 SmallVector<Value *, 16>::iterator J = NewClauses.begin() + j; 1658 // If Filter is empty then it is a subset of LFilter. 1659 if (!FElts) { 1660 // Discard LFilter. 1661 NewClauses.erase(J); 1662 MakeNewInstruction = true; 1663 // Move on to the next filter. 1664 continue; 1665 } 1666 unsigned LElts = LTy->getNumElements(); 1667 // If Filter is longer than LFilter then it cannot be a subset of it. 1668 if (FElts > LElts) 1669 // Move on to the next filter. 1670 continue; 1671 // At this point we know that LFilter has at least one element. 1672 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 1673 // Filter is a subset of LFilter iff Filter contains only zeros (as we 1674 // already know that Filter is not longer than LFilter). 1675 if (isa<ConstantAggregateZero>(Filter)) { 1676 assert(FElts <= LElts && "Should have handled this case earlier!"); 1677 // Discard LFilter. 1678 NewClauses.erase(J); 1679 MakeNewInstruction = true; 1680 } 1681 // Move on to the next filter. 1682 continue; 1683 } 1684 ConstantArray *LArray = cast<ConstantArray>(LFilter); 1685 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 1686 // Since Filter is non-empty and contains only zeros, it is a subset of 1687 // LFilter iff LFilter contains a zero. 1688 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 1689 for (unsigned l = 0; l != LElts; ++l) 1690 if (LArray->getOperand(l)->isNullValue()) { 1691 // LFilter contains a zero - discard it. 1692 NewClauses.erase(J); 1693 MakeNewInstruction = true; 1694 break; 1695 } 1696 // Move on to the next filter. 1697 continue; 1698 } 1699 // At this point we know that both filters are ConstantArrays. Loop over 1700 // operands to see whether every element of Filter is also an element of 1701 // LFilter. Since filters tend to be short this is probably faster than 1702 // using a method that scales nicely. 1703 ConstantArray *FArray = cast<ConstantArray>(Filter); 1704 bool AllFound = true; 1705 for (unsigned f = 0; f != FElts; ++f) { 1706 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 1707 AllFound = false; 1708 for (unsigned l = 0; l != LElts; ++l) { 1709 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 1710 if (LTypeInfo == FTypeInfo) { 1711 AllFound = true; 1712 break; 1713 } 1714 } 1715 if (!AllFound) 1716 break; 1717 } 1718 if (AllFound) { 1719 // Discard LFilter. 1720 NewClauses.erase(J); 1721 MakeNewInstruction = true; 1722 } 1723 // Move on to the next filter. 1724 } 1725 } 1726 1727 // If we changed any of the clauses, replace the old landingpad instruction 1728 // with a new one. 1729 if (MakeNewInstruction) { 1730 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 1731 LI.getPersonalityFn(), 1732 NewClauses.size()); 1733 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 1734 NLI->addClause(NewClauses[i]); 1735 // A landing pad with no clauses must have the cleanup flag set. It is 1736 // theoretically possible, though highly unlikely, that we eliminated all 1737 // clauses. If so, force the cleanup flag to true. 1738 if (NewClauses.empty()) 1739 CleanupFlag = true; 1740 NLI->setCleanup(CleanupFlag); 1741 return NLI; 1742 } 1743 1744 // Even if none of the clauses changed, we may nonetheless have understood 1745 // that the cleanup flag is pointless. Clear it if so. 1746 if (LI.isCleanup() != CleanupFlag) { 1747 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 1748 LI.setCleanup(CleanupFlag); 1749 return &LI; 1750 } 1751 1752 return 0; 1753 } 1754 1755 1756 1757 1758 /// TryToSinkInstruction - Try to move the specified instruction from its 1759 /// current block into the beginning of DestBlock, which can only happen if it's 1760 /// safe to move the instruction past all of the instructions between it and the 1761 /// end of its block. 1762 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 1763 assert(I->hasOneUse() && "Invariants didn't hold!"); 1764 1765 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1766 if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() || 1767 isa<TerminatorInst>(I)) 1768 return false; 1769 1770 // Do not sink alloca instructions out of the entry block. 1771 if (isa<AllocaInst>(I) && I->getParent() == 1772 &DestBlock->getParent()->getEntryBlock()) 1773 return false; 1774 1775 // We can only sink load instructions if there is nothing between the load and 1776 // the end of block that could change the value. 1777 if (I->mayReadFromMemory()) { 1778 for (BasicBlock::iterator Scan = I, E = I->getParent()->end(); 1779 Scan != E; ++Scan) 1780 if (Scan->mayWriteToMemory()) 1781 return false; 1782 } 1783 1784 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 1785 I->moveBefore(InsertPos); 1786 ++NumSunkInst; 1787 return true; 1788 } 1789 1790 1791 /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding 1792 /// all reachable code to the worklist. 1793 /// 1794 /// This has a couple of tricks to make the code faster and more powerful. In 1795 /// particular, we constant fold and DCE instructions as we go, to avoid adding 1796 /// them to the worklist (this significantly speeds up instcombine on code where 1797 /// many instructions are dead or constant). Additionally, if we find a branch 1798 /// whose condition is a known constant, we only visit the reachable successors. 1799 /// 1800 static bool AddReachableCodeToWorklist(BasicBlock *BB, 1801 SmallPtrSet<BasicBlock*, 64> &Visited, 1802 InstCombiner &IC, 1803 const TargetData *TD, 1804 const TargetLibraryInfo *TLI) { 1805 bool MadeIRChange = false; 1806 SmallVector<BasicBlock*, 256> Worklist; 1807 Worklist.push_back(BB); 1808 1809 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 1810 DenseMap<ConstantExpr*, Constant*> FoldedConstants; 1811 1812 do { 1813 BB = Worklist.pop_back_val(); 1814 1815 // We have now visited this block! If we've already been here, ignore it. 1816 if (!Visited.insert(BB)) continue; 1817 1818 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 1819 Instruction *Inst = BBI++; 1820 1821 // DCE instruction if trivially dead. 1822 if (isInstructionTriviallyDead(Inst)) { 1823 ++NumDeadInst; 1824 DEBUG(errs() << "IC: DCE: " << *Inst << '\n'); 1825 Inst->eraseFromParent(); 1826 continue; 1827 } 1828 1829 // ConstantProp instruction if trivially constant. 1830 if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0))) 1831 if (Constant *C = ConstantFoldInstruction(Inst, TD, TLI)) { 1832 DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " 1833 << *Inst << '\n'); 1834 Inst->replaceAllUsesWith(C); 1835 ++NumConstProp; 1836 Inst->eraseFromParent(); 1837 continue; 1838 } 1839 1840 if (TD) { 1841 // See if we can constant fold its operands. 1842 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); 1843 i != e; ++i) { 1844 ConstantExpr *CE = dyn_cast<ConstantExpr>(i); 1845 if (CE == 0) continue; 1846 1847 Constant*& FoldRes = FoldedConstants[CE]; 1848 if (!FoldRes) 1849 FoldRes = ConstantFoldConstantExpression(CE, TD, TLI); 1850 if (!FoldRes) 1851 FoldRes = CE; 1852 1853 if (FoldRes != CE) { 1854 *i = FoldRes; 1855 MadeIRChange = true; 1856 } 1857 } 1858 } 1859 1860 InstrsForInstCombineWorklist.push_back(Inst); 1861 } 1862 1863 // Recursively visit successors. If this is a branch or switch on a 1864 // constant, only visit the reachable successor. 1865 TerminatorInst *TI = BB->getTerminator(); 1866 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1867 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 1868 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 1869 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 1870 Worklist.push_back(ReachableBB); 1871 continue; 1872 } 1873 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1874 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 1875 // See if this is an explicit destination. 1876 for (SwitchInst::CaseIt i = SI->caseBegin(), e = SI->caseEnd(); 1877 i != e; ++i) 1878 if (i.getCaseValue() == Cond) { 1879 BasicBlock *ReachableBB = i.getCaseSuccessor(); 1880 Worklist.push_back(ReachableBB); 1881 continue; 1882 } 1883 1884 // Otherwise it is the default destination. 1885 Worklist.push_back(SI->getDefaultDest()); 1886 continue; 1887 } 1888 } 1889 1890 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 1891 Worklist.push_back(TI->getSuccessor(i)); 1892 } while (!Worklist.empty()); 1893 1894 // Once we've found all of the instructions to add to instcombine's worklist, 1895 // add them in reverse order. This way instcombine will visit from the top 1896 // of the function down. This jives well with the way that it adds all uses 1897 // of instructions to the worklist after doing a transformation, thus avoiding 1898 // some N^2 behavior in pathological cases. 1899 IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0], 1900 InstrsForInstCombineWorklist.size()); 1901 1902 return MadeIRChange; 1903 } 1904 1905 bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { 1906 MadeIRChange = false; 1907 1908 DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 1909 << F.getName() << "\n"); 1910 1911 { 1912 // Do a depth-first traversal of the function, populate the worklist with 1913 // the reachable instructions. Ignore blocks that are not reachable. Keep 1914 // track of which blocks we visit. 1915 SmallPtrSet<BasicBlock*, 64> Visited; 1916 MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD, 1917 TLI); 1918 1919 // Do a quick scan over the function. If we find any blocks that are 1920 // unreachable, remove any instructions inside of them. This prevents 1921 // the instcombine code from having to deal with some bad special cases. 1922 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1923 if (Visited.count(BB)) continue; 1924 1925 // Delete the instructions backwards, as it has a reduced likelihood of 1926 // having to update as many def-use and use-def chains. 1927 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1928 while (EndInst != BB->begin()) { 1929 // Delete the next to last instruction. 1930 BasicBlock::iterator I = EndInst; 1931 Instruction *Inst = --I; 1932 if (!Inst->use_empty()) 1933 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1934 if (isa<LandingPadInst>(Inst)) { 1935 EndInst = Inst; 1936 continue; 1937 } 1938 if (!isa<DbgInfoIntrinsic>(Inst)) { 1939 ++NumDeadInst; 1940 MadeIRChange = true; 1941 } 1942 Inst->eraseFromParent(); 1943 } 1944 } 1945 } 1946 1947 while (!Worklist.isEmpty()) { 1948 Instruction *I = Worklist.RemoveOne(); 1949 if (I == 0) continue; // skip null values. 1950 1951 // Check to see if we can DCE the instruction. 1952 if (isInstructionTriviallyDead(I)) { 1953 DEBUG(errs() << "IC: DCE: " << *I << '\n'); 1954 EraseInstFromFunction(*I); 1955 ++NumDeadInst; 1956 MadeIRChange = true; 1957 continue; 1958 } 1959 1960 // Instruction isn't dead, see if we can constant propagate it. 1961 if (!I->use_empty() && isa<Constant>(I->getOperand(0))) 1962 if (Constant *C = ConstantFoldInstruction(I, TD, TLI)) { 1963 DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n'); 1964 1965 // Add operands to the worklist. 1966 ReplaceInstUsesWith(*I, C); 1967 ++NumConstProp; 1968 EraseInstFromFunction(*I); 1969 MadeIRChange = true; 1970 continue; 1971 } 1972 1973 // See if we can trivially sink this instruction to a successor basic block. 1974 if (I->hasOneUse()) { 1975 BasicBlock *BB = I->getParent(); 1976 Instruction *UserInst = cast<Instruction>(I->use_back()); 1977 BasicBlock *UserParent; 1978 1979 // Get the block the use occurs in. 1980 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 1981 UserParent = PN->getIncomingBlock(I->use_begin().getUse()); 1982 else 1983 UserParent = UserInst->getParent(); 1984 1985 if (UserParent != BB) { 1986 bool UserIsSuccessor = false; 1987 // See if the user is one of our successors. 1988 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 1989 if (*SI == UserParent) { 1990 UserIsSuccessor = true; 1991 break; 1992 } 1993 1994 // If the user is one of our immediate successors, and if that successor 1995 // only has us as a predecessors (we'd have to split the critical edge 1996 // otherwise), we can keep going. 1997 if (UserIsSuccessor && UserParent->getSinglePredecessor()) 1998 // Okay, the CFG is simple enough, try to sink this instruction. 1999 MadeIRChange |= TryToSinkInstruction(I, UserParent); 2000 } 2001 } 2002 2003 // Now that we have an instruction, try combining it to simplify it. 2004 Builder->SetInsertPoint(I->getParent(), I); 2005 Builder->SetCurrentDebugLocation(I->getDebugLoc()); 2006 2007 #ifndef NDEBUG 2008 std::string OrigI; 2009 #endif 2010 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 2011 DEBUG(errs() << "IC: Visiting: " << OrigI << '\n'); 2012 2013 if (Instruction *Result = visit(*I)) { 2014 ++NumCombined; 2015 // Should we replace the old instruction with a new one? 2016 if (Result != I) { 2017 DEBUG(errs() << "IC: Old = " << *I << '\n' 2018 << " New = " << *Result << '\n'); 2019 2020 if (!I->getDebugLoc().isUnknown()) 2021 Result->setDebugLoc(I->getDebugLoc()); 2022 // Everything uses the new instruction now. 2023 I->replaceAllUsesWith(Result); 2024 2025 // Move the name to the new instruction first. 2026 Result->takeName(I); 2027 2028 // Push the new instruction and any users onto the worklist. 2029 Worklist.Add(Result); 2030 Worklist.AddUsersToWorkList(*Result); 2031 2032 // Insert the new instruction into the basic block... 2033 BasicBlock *InstParent = I->getParent(); 2034 BasicBlock::iterator InsertPos = I; 2035 2036 // If we replace a PHI with something that isn't a PHI, fix up the 2037 // insertion point. 2038 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 2039 InsertPos = InstParent->getFirstInsertionPt(); 2040 2041 InstParent->getInstList().insert(InsertPos, Result); 2042 2043 EraseInstFromFunction(*I); 2044 } else { 2045 #ifndef NDEBUG 2046 DEBUG(errs() << "IC: Mod = " << OrigI << '\n' 2047 << " New = " << *I << '\n'); 2048 #endif 2049 2050 // If the instruction was modified, it's possible that it is now dead. 2051 // if so, remove it. 2052 if (isInstructionTriviallyDead(I)) { 2053 EraseInstFromFunction(*I); 2054 } else { 2055 Worklist.Add(I); 2056 Worklist.AddUsersToWorkList(*I); 2057 } 2058 } 2059 MadeIRChange = true; 2060 } 2061 } 2062 2063 Worklist.Zap(); 2064 return MadeIRChange; 2065 } 2066 2067 2068 bool InstCombiner::runOnFunction(Function &F) { 2069 TD = getAnalysisIfAvailable<TargetData>(); 2070 TLI = &getAnalysis<TargetLibraryInfo>(); 2071 2072 /// Builder - This is an IRBuilder that automatically inserts new 2073 /// instructions into the worklist when they are created. 2074 IRBuilder<true, TargetFolder, InstCombineIRInserter> 2075 TheBuilder(F.getContext(), TargetFolder(TD), 2076 InstCombineIRInserter(Worklist)); 2077 Builder = &TheBuilder; 2078 2079 bool EverMadeChange = false; 2080 2081 // Lower dbg.declare intrinsics otherwise their value may be clobbered 2082 // by instcombiner. 2083 EverMadeChange = LowerDbgDeclare(F); 2084 2085 // Iterate while there is work to do. 2086 unsigned Iteration = 0; 2087 while (DoOneIteration(F, Iteration++)) 2088 EverMadeChange = true; 2089 2090 Builder = 0; 2091 return EverMadeChange; 2092 } 2093 2094 FunctionPass *llvm::createInstructionCombiningPass() { 2095 return new InstCombiner(); 2096 } 2097