1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/TinyPtrVector.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/BlockFrequencyInfo.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/MemoryBuiltins.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ProfileSummaryInfo.h" 60 #include "llvm/Analysis/TargetFolder.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/Analysis/VectorUtils.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Dominators.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GetElementPtrTypeIterator.h" 75 #include "llvm/IR/IRBuilder.h" 76 #include "llvm/IR/InstrTypes.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/Intrinsics.h" 81 #include "llvm/IR/LegacyPassManager.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/PassManager.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/Use.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/IR/ValueHandle.h" 91 #include "llvm/InitializePasses.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/CBindingWrapping.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/DebugCounter.h" 99 #include "llvm/Support/ErrorHandling.h" 100 #include "llvm/Support/KnownBits.h" 101 #include "llvm/Support/raw_ostream.h" 102 #include "llvm/Transforms/InstCombine/InstCombine.h" 103 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 104 #include "llvm/Transforms/Utils/Local.h" 105 #include <algorithm> 106 #include <cassert> 107 #include <cstdint> 108 #include <memory> 109 #include <string> 110 #include <utility> 111 112 using namespace llvm; 113 using namespace llvm::PatternMatch; 114 115 #define DEBUG_TYPE "instcombine" 116 117 STATISTIC(NumWorklistIterations, 118 "Number of instruction combining iterations performed"); 119 120 STATISTIC(NumCombined , "Number of insts combined"); 121 STATISTIC(NumConstProp, "Number of constant folds"); 122 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 123 STATISTIC(NumSunkInst , "Number of instructions sunk"); 124 STATISTIC(NumExpand, "Number of expansions"); 125 STATISTIC(NumFactor , "Number of factorizations"); 126 STATISTIC(NumReassoc , "Number of reassociations"); 127 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 128 "Controls which instructions are visited"); 129 130 // FIXME: these limits eventually should be as low as 2. 131 static constexpr unsigned InstCombineDefaultMaxIterations = 1000; 132 #ifndef NDEBUG 133 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100; 134 #else 135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; 136 #endif 137 138 static cl::opt<bool> 139 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 140 cl::init(true)); 141 142 static cl::opt<unsigned> LimitMaxIterations( 143 "instcombine-max-iterations", 144 cl::desc("Limit the maximum number of instruction combining iterations"), 145 cl::init(InstCombineDefaultMaxIterations)); 146 147 static cl::opt<unsigned> InfiniteLoopDetectionThreshold( 148 "instcombine-infinite-loop-threshold", 149 cl::desc("Number of instruction combining iterations considered an " 150 "infinite loop"), 151 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); 152 153 static cl::opt<unsigned> 154 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 155 cl::desc("Maximum array size considered when doing a combine")); 156 157 // FIXME: Remove this flag when it is no longer necessary to convert 158 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 159 // increases variable availability at the cost of accuracy. Variables that 160 // cannot be promoted by mem2reg or SROA will be described as living in memory 161 // for their entire lifetime. However, passes like DSE and instcombine can 162 // delete stores to the alloca, leading to misleading and inaccurate debug 163 // information. This flag can be removed when those passes are fixed. 164 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 165 cl::Hidden, cl::init(true)); 166 167 Optional<Instruction *> 168 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 169 // Handle target specific intrinsics 170 if (II.getCalledFunction()->isTargetIntrinsic()) { 171 return TTI.instCombineIntrinsic(*this, II); 172 } 173 return None; 174 } 175 176 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 177 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 178 bool &KnownBitsComputed) { 179 // Handle target specific intrinsics 180 if (II.getCalledFunction()->isTargetIntrinsic()) { 181 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, 182 KnownBitsComputed); 183 } 184 return None; 185 } 186 187 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 188 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, 189 APInt &UndefElts3, 190 std::function<void(Instruction *, unsigned, APInt, APInt &)> 191 SimplifyAndSetOp) { 192 // Handle target specific intrinsics 193 if (II.getCalledFunction()->isTargetIntrinsic()) { 194 return TTI.simplifyDemandedVectorEltsIntrinsic( 195 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 196 SimplifyAndSetOp); 197 } 198 return None; 199 } 200 201 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { 202 return llvm::EmitGEPOffset(&Builder, DL, GEP); 203 } 204 205 /// Return true if it is desirable to convert an integer computation from a 206 /// given bit width to a new bit width. 207 /// We don't want to convert from a legal to an illegal type or from a smaller 208 /// to a larger illegal type. A width of '1' is always treated as a legal type 209 /// because i1 is a fundamental type in IR, and there are many specialized 210 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as 211 /// legal to convert to, in order to open up more combining opportunities. 212 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common 213 /// from frontend languages. 214 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 215 unsigned ToWidth) const { 216 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 217 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 218 219 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only 220 // shrink types, to prevent infinite loops. 221 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32)) 222 return true; 223 224 // If this is a legal integer from type, and the result would be an illegal 225 // type, don't do the transformation. 226 if (FromLegal && !ToLegal) 227 return false; 228 229 // Otherwise, if both are illegal, do not increase the size of the result. We 230 // do allow things like i160 -> i64, but not i64 -> i160. 231 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 232 return false; 233 234 return true; 235 } 236 237 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 238 /// We don't want to convert from a legal to an illegal type or from a smaller 239 /// to a larger illegal type. i1 is always treated as a legal type because it is 240 /// a fundamental type in IR, and there are many specialized optimizations for 241 /// i1 types. 242 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 243 // TODO: This could be extended to allow vectors. Datalayout changes might be 244 // needed to properly support that. 245 if (!From->isIntegerTy() || !To->isIntegerTy()) 246 return false; 247 248 unsigned FromWidth = From->getPrimitiveSizeInBits(); 249 unsigned ToWidth = To->getPrimitiveSizeInBits(); 250 return shouldChangeType(FromWidth, ToWidth); 251 } 252 253 // Return true, if No Signed Wrap should be maintained for I. 254 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 255 // where both B and C should be ConstantInts, results in a constant that does 256 // not overflow. This function only handles the Add and Sub opcodes. For 257 // all other opcodes, the function conservatively returns false. 258 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 259 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 260 if (!OBO || !OBO->hasNoSignedWrap()) 261 return false; 262 263 // We reason about Add and Sub Only. 264 Instruction::BinaryOps Opcode = I.getOpcode(); 265 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 266 return false; 267 268 const APInt *BVal, *CVal; 269 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 270 return false; 271 272 bool Overflow = false; 273 if (Opcode == Instruction::Add) 274 (void)BVal->sadd_ov(*CVal, Overflow); 275 else 276 (void)BVal->ssub_ov(*CVal, Overflow); 277 278 return !Overflow; 279 } 280 281 static bool hasNoUnsignedWrap(BinaryOperator &I) { 282 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 283 return OBO && OBO->hasNoUnsignedWrap(); 284 } 285 286 static bool hasNoSignedWrap(BinaryOperator &I) { 287 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 288 return OBO && OBO->hasNoSignedWrap(); 289 } 290 291 /// Conservatively clears subclassOptionalData after a reassociation or 292 /// commutation. We preserve fast-math flags when applicable as they can be 293 /// preserved. 294 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 295 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 296 if (!FPMO) { 297 I.clearSubclassOptionalData(); 298 return; 299 } 300 301 FastMathFlags FMF = I.getFastMathFlags(); 302 I.clearSubclassOptionalData(); 303 I.setFastMathFlags(FMF); 304 } 305 306 /// Combine constant operands of associative operations either before or after a 307 /// cast to eliminate one of the associative operations: 308 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 309 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 310 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 311 InstCombinerImpl &IC) { 312 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 313 if (!Cast || !Cast->hasOneUse()) 314 return false; 315 316 // TODO: Enhance logic for other casts and remove this check. 317 auto CastOpcode = Cast->getOpcode(); 318 if (CastOpcode != Instruction::ZExt) 319 return false; 320 321 // TODO: Enhance logic for other BinOps and remove this check. 322 if (!BinOp1->isBitwiseLogicOp()) 323 return false; 324 325 auto AssocOpcode = BinOp1->getOpcode(); 326 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 327 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 328 return false; 329 330 Constant *C1, *C2; 331 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 332 !match(BinOp2->getOperand(1), m_Constant(C2))) 333 return false; 334 335 // TODO: This assumes a zext cast. 336 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 337 // to the destination type might lose bits. 338 339 // Fold the constants together in the destination type: 340 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 341 Type *DestTy = C1->getType(); 342 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 343 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 344 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 345 IC.replaceOperand(*BinOp1, 1, FoldedC); 346 return true; 347 } 348 349 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast. 350 // inttoptr ( ptrtoint (x) ) --> x 351 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { 352 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); 353 if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) == 354 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { 355 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); 356 Type *CastTy = IntToPtr->getDestTy(); 357 if (PtrToInt && 358 CastTy->getPointerAddressSpace() == 359 PtrToInt->getSrcTy()->getPointerAddressSpace() && 360 DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) == 361 DL.getTypeSizeInBits(PtrToInt->getDestTy())) { 362 return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy, 363 "", PtrToInt); 364 } 365 } 366 return nullptr; 367 } 368 369 /// This performs a few simplifications for operators that are associative or 370 /// commutative: 371 /// 372 /// Commutative operators: 373 /// 374 /// 1. Order operands such that they are listed from right (least complex) to 375 /// left (most complex). This puts constants before unary operators before 376 /// binary operators. 377 /// 378 /// Associative operators: 379 /// 380 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 381 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 382 /// 383 /// Associative and commutative operators: 384 /// 385 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 386 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 387 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 388 /// if C1 and C2 are constants. 389 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 390 Instruction::BinaryOps Opcode = I.getOpcode(); 391 bool Changed = false; 392 393 do { 394 // Order operands such that they are listed from right (least complex) to 395 // left (most complex). This puts constants before unary operators before 396 // binary operators. 397 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 398 getComplexity(I.getOperand(1))) 399 Changed = !I.swapOperands(); 400 401 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 402 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 403 404 if (I.isAssociative()) { 405 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 406 if (Op0 && Op0->getOpcode() == Opcode) { 407 Value *A = Op0->getOperand(0); 408 Value *B = Op0->getOperand(1); 409 Value *C = I.getOperand(1); 410 411 // Does "B op C" simplify? 412 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 413 // It simplifies to V. Form "A op V". 414 replaceOperand(I, 0, A); 415 replaceOperand(I, 1, V); 416 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 417 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 418 419 // Conservatively clear all optional flags since they may not be 420 // preserved by the reassociation. Reset nsw/nuw based on the above 421 // analysis. 422 ClearSubclassDataAfterReassociation(I); 423 424 // Note: this is only valid because SimplifyBinOp doesn't look at 425 // the operands to Op0. 426 if (IsNUW) 427 I.setHasNoUnsignedWrap(true); 428 429 if (IsNSW) 430 I.setHasNoSignedWrap(true); 431 432 Changed = true; 433 ++NumReassoc; 434 continue; 435 } 436 } 437 438 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 439 if (Op1 && Op1->getOpcode() == Opcode) { 440 Value *A = I.getOperand(0); 441 Value *B = Op1->getOperand(0); 442 Value *C = Op1->getOperand(1); 443 444 // Does "A op B" simplify? 445 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 446 // It simplifies to V. Form "V op C". 447 replaceOperand(I, 0, V); 448 replaceOperand(I, 1, C); 449 // Conservatively clear the optional flags, since they may not be 450 // preserved by the reassociation. 451 ClearSubclassDataAfterReassociation(I); 452 Changed = true; 453 ++NumReassoc; 454 continue; 455 } 456 } 457 } 458 459 if (I.isAssociative() && I.isCommutative()) { 460 if (simplifyAssocCastAssoc(&I, *this)) { 461 Changed = true; 462 ++NumReassoc; 463 continue; 464 } 465 466 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 467 if (Op0 && Op0->getOpcode() == Opcode) { 468 Value *A = Op0->getOperand(0); 469 Value *B = Op0->getOperand(1); 470 Value *C = I.getOperand(1); 471 472 // Does "C op A" simplify? 473 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 474 // It simplifies to V. Form "V op B". 475 replaceOperand(I, 0, V); 476 replaceOperand(I, 1, B); 477 // Conservatively clear the optional flags, since they may not be 478 // preserved by the reassociation. 479 ClearSubclassDataAfterReassociation(I); 480 Changed = true; 481 ++NumReassoc; 482 continue; 483 } 484 } 485 486 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 487 if (Op1 && Op1->getOpcode() == Opcode) { 488 Value *A = I.getOperand(0); 489 Value *B = Op1->getOperand(0); 490 Value *C = Op1->getOperand(1); 491 492 // Does "C op A" simplify? 493 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 494 // It simplifies to V. Form "B op V". 495 replaceOperand(I, 0, B); 496 replaceOperand(I, 1, V); 497 // Conservatively clear the optional flags, since they may not be 498 // preserved by the reassociation. 499 ClearSubclassDataAfterReassociation(I); 500 Changed = true; 501 ++NumReassoc; 502 continue; 503 } 504 } 505 506 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 507 // if C1 and C2 are constants. 508 Value *A, *B; 509 Constant *C1, *C2; 510 if (Op0 && Op1 && 511 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 512 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 513 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 514 bool IsNUW = hasNoUnsignedWrap(I) && 515 hasNoUnsignedWrap(*Op0) && 516 hasNoUnsignedWrap(*Op1); 517 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 518 BinaryOperator::CreateNUW(Opcode, A, B) : 519 BinaryOperator::Create(Opcode, A, B); 520 521 if (isa<FPMathOperator>(NewBO)) { 522 FastMathFlags Flags = I.getFastMathFlags(); 523 Flags &= Op0->getFastMathFlags(); 524 Flags &= Op1->getFastMathFlags(); 525 NewBO->setFastMathFlags(Flags); 526 } 527 InsertNewInstWith(NewBO, I); 528 NewBO->takeName(Op1); 529 replaceOperand(I, 0, NewBO); 530 replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2)); 531 // Conservatively clear the optional flags, since they may not be 532 // preserved by the reassociation. 533 ClearSubclassDataAfterReassociation(I); 534 if (IsNUW) 535 I.setHasNoUnsignedWrap(true); 536 537 Changed = true; 538 continue; 539 } 540 } 541 542 // No further simplifications. 543 return Changed; 544 } while (true); 545 } 546 547 /// Return whether "X LOp (Y ROp Z)" is always equal to 548 /// "(X LOp Y) ROp (X LOp Z)". 549 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 550 Instruction::BinaryOps ROp) { 551 // X & (Y | Z) <--> (X & Y) | (X & Z) 552 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 553 if (LOp == Instruction::And) 554 return ROp == Instruction::Or || ROp == Instruction::Xor; 555 556 // X | (Y & Z) <--> (X | Y) & (X | Z) 557 if (LOp == Instruction::Or) 558 return ROp == Instruction::And; 559 560 // X * (Y + Z) <--> (X * Y) + (X * Z) 561 // X * (Y - Z) <--> (X * Y) - (X * Z) 562 if (LOp == Instruction::Mul) 563 return ROp == Instruction::Add || ROp == Instruction::Sub; 564 565 return false; 566 } 567 568 /// Return whether "(X LOp Y) ROp Z" is always equal to 569 /// "(X ROp Z) LOp (Y ROp Z)". 570 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 571 Instruction::BinaryOps ROp) { 572 if (Instruction::isCommutative(ROp)) 573 return leftDistributesOverRight(ROp, LOp); 574 575 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 576 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 577 578 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 579 // but this requires knowing that the addition does not overflow and other 580 // such subtleties. 581 } 582 583 /// This function returns identity value for given opcode, which can be used to 584 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 585 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 586 if (isa<Constant>(V)) 587 return nullptr; 588 589 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 590 } 591 592 /// This function predicates factorization using distributive laws. By default, 593 /// it just returns the 'Op' inputs. But for special-cases like 594 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 595 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 596 /// allow more factorization opportunities. 597 static Instruction::BinaryOps 598 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 599 Value *&LHS, Value *&RHS) { 600 assert(Op && "Expected a binary operator"); 601 LHS = Op->getOperand(0); 602 RHS = Op->getOperand(1); 603 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 604 Constant *C; 605 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 606 // X << C --> X * (1 << C) 607 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 608 return Instruction::Mul; 609 } 610 // TODO: We can add other conversions e.g. shr => div etc. 611 } 612 return Op->getOpcode(); 613 } 614 615 /// This tries to simplify binary operations by factorizing out common terms 616 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 617 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I, 618 Instruction::BinaryOps InnerOpcode, 619 Value *A, Value *B, Value *C, 620 Value *D) { 621 assert(A && B && C && D && "All values must be provided"); 622 623 Value *V = nullptr; 624 Value *SimplifiedInst = nullptr; 625 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 626 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 627 628 // Does "X op' Y" always equal "Y op' X"? 629 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 630 631 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 632 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 633 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 634 // commutative case, "(A op' B) op (C op' A)"? 635 if (A == C || (InnerCommutative && A == D)) { 636 if (A != C) 637 std::swap(C, D); 638 // Consider forming "A op' (B op D)". 639 // If "B op D" simplifies then it can be formed with no cost. 640 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 641 // If "B op D" doesn't simplify then only go on if both of the existing 642 // operations "A op' B" and "C op' D" will be zapped as no longer used. 643 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 644 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 645 if (V) { 646 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 647 } 648 } 649 650 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 651 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 652 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 653 // commutative case, "(A op' B) op (B op' D)"? 654 if (B == D || (InnerCommutative && B == C)) { 655 if (B != D) 656 std::swap(C, D); 657 // Consider forming "(A op C) op' B". 658 // If "A op C" simplifies then it can be formed with no cost. 659 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 660 661 // If "A op C" doesn't simplify then only go on if both of the existing 662 // operations "A op' B" and "C op' D" will be zapped as no longer used. 663 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 664 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 665 if (V) { 666 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 667 } 668 } 669 670 if (SimplifiedInst) { 671 ++NumFactor; 672 SimplifiedInst->takeName(&I); 673 674 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 675 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 676 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 677 bool HasNSW = false; 678 bool HasNUW = false; 679 if (isa<OverflowingBinaryOperator>(&I)) { 680 HasNSW = I.hasNoSignedWrap(); 681 HasNUW = I.hasNoUnsignedWrap(); 682 } 683 684 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 685 HasNSW &= LOBO->hasNoSignedWrap(); 686 HasNUW &= LOBO->hasNoUnsignedWrap(); 687 } 688 689 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 690 HasNSW &= ROBO->hasNoSignedWrap(); 691 HasNUW &= ROBO->hasNoUnsignedWrap(); 692 } 693 694 if (TopLevelOpcode == Instruction::Add && 695 InnerOpcode == Instruction::Mul) { 696 // We can propagate 'nsw' if we know that 697 // %Y = mul nsw i16 %X, C 698 // %Z = add nsw i16 %Y, %X 699 // => 700 // %Z = mul nsw i16 %X, C+1 701 // 702 // iff C+1 isn't INT_MIN 703 const APInt *CInt; 704 if (match(V, m_APInt(CInt))) { 705 if (!CInt->isMinSignedValue()) 706 BO->setHasNoSignedWrap(HasNSW); 707 } 708 709 // nuw can be propagated with any constant or nuw value. 710 BO->setHasNoUnsignedWrap(HasNUW); 711 } 712 } 713 } 714 } 715 return SimplifiedInst; 716 } 717 718 /// This tries to simplify binary operations which some other binary operation 719 /// distributes over either by factorizing out common terms 720 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 721 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 722 /// Returns the simplified value, or null if it didn't simplify. 723 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 724 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 725 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 726 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 727 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 728 729 { 730 // Factorization. 731 Value *A, *B, *C, *D; 732 Instruction::BinaryOps LHSOpcode, RHSOpcode; 733 if (Op0) 734 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 735 if (Op1) 736 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 737 738 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 739 // a common term. 740 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 741 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 742 return V; 743 744 // The instruction has the form "(A op' B) op (C)". Try to factorize common 745 // term. 746 if (Op0) 747 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 748 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 749 return V; 750 751 // The instruction has the form "(B) op (C op' D)". Try to factorize common 752 // term. 753 if (Op1) 754 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 755 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 756 return V; 757 } 758 759 // Expansion. 760 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 761 // The instruction has the form "(A op' B) op C". See if expanding it out 762 // to "(A op C) op' (B op C)" results in simplifications. 763 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 764 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 765 766 // Disable the use of undef because it's not safe to distribute undef. 767 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 768 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 769 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 770 771 // Do "A op C" and "B op C" both simplify? 772 if (L && R) { 773 // They do! Return "L op' R". 774 ++NumExpand; 775 C = Builder.CreateBinOp(InnerOpcode, L, R); 776 C->takeName(&I); 777 return C; 778 } 779 780 // Does "A op C" simplify to the identity value for the inner opcode? 781 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 782 // They do! Return "B op C". 783 ++NumExpand; 784 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 785 C->takeName(&I); 786 return C; 787 } 788 789 // Does "B op C" simplify to the identity value for the inner opcode? 790 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 791 // They do! Return "A op C". 792 ++NumExpand; 793 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 794 C->takeName(&I); 795 return C; 796 } 797 } 798 799 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 800 // The instruction has the form "A op (B op' C)". See if expanding it out 801 // to "(A op B) op' (A op C)" results in simplifications. 802 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 803 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 804 805 // Disable the use of undef because it's not safe to distribute undef. 806 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 807 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 808 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 809 810 // Do "A op B" and "A op C" both simplify? 811 if (L && R) { 812 // They do! Return "L op' R". 813 ++NumExpand; 814 A = Builder.CreateBinOp(InnerOpcode, L, R); 815 A->takeName(&I); 816 return A; 817 } 818 819 // Does "A op B" simplify to the identity value for the inner opcode? 820 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 821 // They do! Return "A op C". 822 ++NumExpand; 823 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 824 A->takeName(&I); 825 return A; 826 } 827 828 // Does "A op C" simplify to the identity value for the inner opcode? 829 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 830 // They do! Return "A op B". 831 ++NumExpand; 832 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 833 A->takeName(&I); 834 return A; 835 } 836 } 837 838 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 839 } 840 841 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 842 Value *LHS, 843 Value *RHS) { 844 Value *A, *B, *C, *D, *E, *F; 845 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 846 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 847 if (!LHSIsSelect && !RHSIsSelect) 848 return nullptr; 849 850 FastMathFlags FMF; 851 BuilderTy::FastMathFlagGuard Guard(Builder); 852 if (isa<FPMathOperator>(&I)) { 853 FMF = I.getFastMathFlags(); 854 Builder.setFastMathFlags(FMF); 855 } 856 857 Instruction::BinaryOps Opcode = I.getOpcode(); 858 SimplifyQuery Q = SQ.getWithInstruction(&I); 859 860 Value *Cond, *True = nullptr, *False = nullptr; 861 if (LHSIsSelect && RHSIsSelect && A == D) { 862 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 863 Cond = A; 864 True = SimplifyBinOp(Opcode, B, E, FMF, Q); 865 False = SimplifyBinOp(Opcode, C, F, FMF, Q); 866 867 if (LHS->hasOneUse() && RHS->hasOneUse()) { 868 if (False && !True) 869 True = Builder.CreateBinOp(Opcode, B, E); 870 else if (True && !False) 871 False = Builder.CreateBinOp(Opcode, C, F); 872 } 873 } else if (LHSIsSelect && LHS->hasOneUse()) { 874 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 875 Cond = A; 876 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q); 877 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q); 878 } else if (RHSIsSelect && RHS->hasOneUse()) { 879 // X op (D ? E : F) -> D ? (X op E) : (X op F) 880 Cond = D; 881 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q); 882 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q); 883 } 884 885 if (!True || !False) 886 return nullptr; 887 888 Value *SI = Builder.CreateSelect(Cond, True, False); 889 SI->takeName(&I); 890 return SI; 891 } 892 893 /// Freely adapt every user of V as-if V was changed to !V. 894 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 895 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) { 896 for (User *U : I->users()) { 897 switch (cast<Instruction>(U)->getOpcode()) { 898 case Instruction::Select: { 899 auto *SI = cast<SelectInst>(U); 900 SI->swapValues(); 901 SI->swapProfMetadata(); 902 break; 903 } 904 case Instruction::Br: 905 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 906 break; 907 case Instruction::Xor: 908 replaceInstUsesWith(cast<Instruction>(*U), I); 909 break; 910 default: 911 llvm_unreachable("Got unexpected user - out of sync with " 912 "canFreelyInvertAllUsersOf() ?"); 913 } 914 } 915 } 916 917 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 918 /// constant zero (which is the 'negate' form). 919 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 920 Value *NegV; 921 if (match(V, m_Neg(m_Value(NegV)))) 922 return NegV; 923 924 // Constants can be considered to be negated values if they can be folded. 925 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 926 return ConstantExpr::getNeg(C); 927 928 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 929 if (C->getType()->getElementType()->isIntegerTy()) 930 return ConstantExpr::getNeg(C); 931 932 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 933 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 934 Constant *Elt = CV->getAggregateElement(i); 935 if (!Elt) 936 return nullptr; 937 938 if (isa<UndefValue>(Elt)) 939 continue; 940 941 if (!isa<ConstantInt>(Elt)) 942 return nullptr; 943 } 944 return ConstantExpr::getNeg(CV); 945 } 946 947 // Negate integer vector splats. 948 if (auto *CV = dyn_cast<Constant>(V)) 949 if (CV->getType()->isVectorTy() && 950 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 951 return ConstantExpr::getNeg(CV); 952 953 return nullptr; 954 } 955 956 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 957 InstCombiner::BuilderTy &Builder) { 958 if (auto *Cast = dyn_cast<CastInst>(&I)) 959 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 960 961 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 962 assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) && 963 "Expected constant-foldable intrinsic"); 964 Intrinsic::ID IID = II->getIntrinsicID(); 965 if (II->getNumArgOperands() == 1) 966 return Builder.CreateUnaryIntrinsic(IID, SO); 967 968 // This works for real binary ops like min/max (where we always expect the 969 // constant operand to be canonicalized as op1) and unary ops with a bonus 970 // constant argument like ctlz/cttz. 971 // TODO: Handle non-commutative binary intrinsics as below for binops. 972 assert(II->getNumArgOperands() == 2 && "Expected binary intrinsic"); 973 assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand"); 974 return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1)); 975 } 976 977 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 978 979 // Figure out if the constant is the left or the right argument. 980 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 981 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 982 983 if (auto *SOC = dyn_cast<Constant>(SO)) { 984 if (ConstIsRHS) 985 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 986 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 987 } 988 989 Value *Op0 = SO, *Op1 = ConstOperand; 990 if (!ConstIsRHS) 991 std::swap(Op0, Op1); 992 993 auto *BO = cast<BinaryOperator>(&I); 994 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 995 SO->getName() + ".op"); 996 auto *FPInst = dyn_cast<Instruction>(RI); 997 if (FPInst && isa<FPMathOperator>(FPInst)) 998 FPInst->copyFastMathFlags(BO); 999 return RI; 1000 } 1001 1002 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, 1003 SelectInst *SI) { 1004 // Don't modify shared select instructions. 1005 if (!SI->hasOneUse()) 1006 return nullptr; 1007 1008 Value *TV = SI->getTrueValue(); 1009 Value *FV = SI->getFalseValue(); 1010 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 1011 return nullptr; 1012 1013 // Bool selects with constant operands can be folded to logical ops. 1014 if (SI->getType()->isIntOrIntVectorTy(1)) 1015 return nullptr; 1016 1017 // If it's a bitcast involving vectors, make sure it has the same number of 1018 // elements on both sides. 1019 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 1020 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 1021 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 1022 1023 // Verify that either both or neither are vectors. 1024 if ((SrcTy == nullptr) != (DestTy == nullptr)) 1025 return nullptr; 1026 1027 // If vectors, verify that they have the same number of elements. 1028 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) 1029 return nullptr; 1030 } 1031 1032 // Test if a CmpInst instruction is used exclusively by a select as 1033 // part of a minimum or maximum operation. If so, refrain from doing 1034 // any other folding. This helps out other analyses which understand 1035 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 1036 // and CodeGen. And in this case, at least one of the comparison 1037 // operands has at least one user besides the compare (the select), 1038 // which would often largely negate the benefit of folding anyway. 1039 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 1040 if (CI->hasOneUse()) { 1041 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 1042 1043 // FIXME: This is a hack to avoid infinite looping with min/max patterns. 1044 // We have to ensure that vector constants that only differ with 1045 // undef elements are treated as equivalent. 1046 auto areLooselyEqual = [](Value *A, Value *B) { 1047 if (A == B) 1048 return true; 1049 1050 // Test for vector constants. 1051 Constant *ConstA, *ConstB; 1052 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB))) 1053 return false; 1054 1055 // TODO: Deal with FP constants? 1056 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType()) 1057 return false; 1058 1059 // Compare for equality including undefs as equal. 1060 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB); 1061 const APInt *C; 1062 return match(Cmp, m_APIntAllowUndef(C)) && C->isOneValue(); 1063 }; 1064 1065 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) || 1066 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1))) 1067 return nullptr; 1068 } 1069 } 1070 1071 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 1072 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 1073 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 1074 } 1075 1076 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 1077 InstCombiner::BuilderTy &Builder) { 1078 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 1079 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 1080 1081 if (auto *InC = dyn_cast<Constant>(InV)) { 1082 if (ConstIsRHS) 1083 return ConstantExpr::get(I->getOpcode(), InC, C); 1084 return ConstantExpr::get(I->getOpcode(), C, InC); 1085 } 1086 1087 Value *Op0 = InV, *Op1 = C; 1088 if (!ConstIsRHS) 1089 std::swap(Op0, Op1); 1090 1091 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo"); 1092 auto *FPInst = dyn_cast<Instruction>(RI); 1093 if (FPInst && isa<FPMathOperator>(FPInst)) 1094 FPInst->copyFastMathFlags(I); 1095 return RI; 1096 } 1097 1098 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { 1099 unsigned NumPHIValues = PN->getNumIncomingValues(); 1100 if (NumPHIValues == 0) 1101 return nullptr; 1102 1103 // We normally only transform phis with a single use. However, if a PHI has 1104 // multiple uses and they are all the same operation, we can fold *all* of the 1105 // uses into the PHI. 1106 if (!PN->hasOneUse()) { 1107 // Walk the use list for the instruction, comparing them to I. 1108 for (User *U : PN->users()) { 1109 Instruction *UI = cast<Instruction>(U); 1110 if (UI != &I && !I.isIdenticalTo(UI)) 1111 return nullptr; 1112 } 1113 // Otherwise, we can replace *all* users with the new PHI we form. 1114 } 1115 1116 // Check to see if all of the operands of the PHI are simple constants 1117 // (constantint/constantfp/undef). If there is one non-constant value, 1118 // remember the BB it is in. If there is more than one or if *it* is a PHI, 1119 // bail out. We don't do arbitrary constant expressions here because moving 1120 // their computation can be expensive without a cost model. 1121 BasicBlock *NonConstBB = nullptr; 1122 for (unsigned i = 0; i != NumPHIValues; ++i) { 1123 Value *InVal = PN->getIncomingValue(i); 1124 // If I is a freeze instruction, count undef as a non-constant. 1125 if (match(InVal, m_ImmConstant()) && 1126 (!isa<FreezeInst>(I) || isGuaranteedNotToBeUndefOrPoison(InVal))) 1127 continue; 1128 1129 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 1130 if (NonConstBB) return nullptr; // More than one non-const value. 1131 1132 NonConstBB = PN->getIncomingBlock(i); 1133 1134 // If the InVal is an invoke at the end of the pred block, then we can't 1135 // insert a computation after it without breaking the edge. 1136 if (isa<InvokeInst>(InVal)) 1137 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 1138 return nullptr; 1139 1140 // If the incoming non-constant value is in I's block, we will remove one 1141 // instruction, but insert another equivalent one, leading to infinite 1142 // instcombine. 1143 if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI)) 1144 return nullptr; 1145 } 1146 1147 // If there is exactly one non-constant value, we can insert a copy of the 1148 // operation in that block. However, if this is a critical edge, we would be 1149 // inserting the computation on some other paths (e.g. inside a loop). Only 1150 // do this if the pred block is unconditionally branching into the phi block. 1151 // Also, make sure that the pred block is not dead code. 1152 if (NonConstBB != nullptr) { 1153 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1154 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB)) 1155 return nullptr; 1156 } 1157 1158 // Okay, we can do the transformation: create the new PHI node. 1159 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1160 InsertNewInstBefore(NewPN, *PN); 1161 NewPN->takeName(PN); 1162 1163 // If we are going to have to insert a new computation, do so right before the 1164 // predecessor's terminator. 1165 if (NonConstBB) 1166 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1167 1168 // Next, add all of the operands to the PHI. 1169 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1170 // We only currently try to fold the condition of a select when it is a phi, 1171 // not the true/false values. 1172 Value *TrueV = SI->getTrueValue(); 1173 Value *FalseV = SI->getFalseValue(); 1174 BasicBlock *PhiTransBB = PN->getParent(); 1175 for (unsigned i = 0; i != NumPHIValues; ++i) { 1176 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1177 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1178 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1179 Value *InV = nullptr; 1180 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1181 // even if currently isNullValue gives false. 1182 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1183 // For vector constants, we cannot use isNullValue to fold into 1184 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1185 // elements in the vector, we will incorrectly fold InC to 1186 // `TrueVInPred`. 1187 if (InC && isa<ConstantInt>(InC)) 1188 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1189 else { 1190 // Generate the select in the same block as PN's current incoming block. 1191 // Note: ThisBB need not be the NonConstBB because vector constants 1192 // which are constants by definition are handled here. 1193 // FIXME: This can lead to an increase in IR generation because we might 1194 // generate selects for vector constant phi operand, that could not be 1195 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1196 // non-vector phis, this transformation was always profitable because 1197 // the select would be generated exactly once in the NonConstBB. 1198 Builder.SetInsertPoint(ThisBB->getTerminator()); 1199 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1200 FalseVInPred, "phi.sel"); 1201 } 1202 NewPN->addIncoming(InV, ThisBB); 1203 } 1204 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1205 Constant *C = cast<Constant>(I.getOperand(1)); 1206 for (unsigned i = 0; i != NumPHIValues; ++i) { 1207 Value *InV = nullptr; 1208 if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1209 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1210 else 1211 InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i), 1212 C, "phi.cmp"); 1213 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1214 } 1215 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1216 for (unsigned i = 0; i != NumPHIValues; ++i) { 1217 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1218 Builder); 1219 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1220 } 1221 } else if (isa<FreezeInst>(&I)) { 1222 for (unsigned i = 0; i != NumPHIValues; ++i) { 1223 Value *InV; 1224 if (NonConstBB == PN->getIncomingBlock(i)) 1225 InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr"); 1226 else 1227 InV = PN->getIncomingValue(i); 1228 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1229 } 1230 } else { 1231 CastInst *CI = cast<CastInst>(&I); 1232 Type *RetTy = CI->getType(); 1233 for (unsigned i = 0; i != NumPHIValues; ++i) { 1234 Value *InV; 1235 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1236 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1237 else 1238 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1239 I.getType(), "phi.cast"); 1240 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1241 } 1242 } 1243 1244 for (User *U : make_early_inc_range(PN->users())) { 1245 Instruction *User = cast<Instruction>(U); 1246 if (User == &I) continue; 1247 replaceInstUsesWith(*User, NewPN); 1248 eraseInstFromFunction(*User); 1249 } 1250 return replaceInstUsesWith(I, NewPN); 1251 } 1252 1253 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1254 if (!isa<Constant>(I.getOperand(1))) 1255 return nullptr; 1256 1257 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1258 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1259 return NewSel; 1260 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1261 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1262 return NewPhi; 1263 } 1264 return nullptr; 1265 } 1266 1267 /// Given a pointer type and a constant offset, determine whether or not there 1268 /// is a sequence of GEP indices into the pointed type that will land us at the 1269 /// specified offset. If so, fill them into NewIndices and return the resultant 1270 /// element type, otherwise return null. 1271 Type * 1272 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 1273 SmallVectorImpl<Value *> &NewIndices) { 1274 Type *Ty = PtrTy->getElementType(); 1275 if (!Ty->isSized()) 1276 return nullptr; 1277 1278 // Start with the index over the outer type. Note that the type size 1279 // might be zero (even if the offset isn't zero) if the indexed type 1280 // is something like [0 x {int, int}] 1281 Type *IndexTy = DL.getIndexType(PtrTy); 1282 int64_t FirstIdx = 0; 1283 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 1284 FirstIdx = Offset/TySize; 1285 Offset -= FirstIdx*TySize; 1286 1287 // Handle hosts where % returns negative instead of values [0..TySize). 1288 if (Offset < 0) { 1289 --FirstIdx; 1290 Offset += TySize; 1291 assert(Offset >= 0); 1292 } 1293 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 1294 } 1295 1296 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx)); 1297 1298 // Index into the types. If we fail, set OrigBase to null. 1299 while (Offset) { 1300 // Indexing into tail padding between struct/array elements. 1301 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1302 return nullptr; 1303 1304 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1305 const StructLayout *SL = DL.getStructLayout(STy); 1306 assert(Offset < (int64_t)SL->getSizeInBytes() && 1307 "Offset must stay within the indexed type"); 1308 1309 unsigned Elt = SL->getElementContainingOffset(Offset); 1310 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1311 Elt)); 1312 1313 Offset -= SL->getElementOffset(Elt); 1314 Ty = STy->getElementType(Elt); 1315 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1316 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1317 assert(EltSize && "Cannot index into a zero-sized array"); 1318 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize)); 1319 Offset %= EltSize; 1320 Ty = AT->getElementType(); 1321 } else { 1322 // Otherwise, we can't index into the middle of this atomic type, bail. 1323 return nullptr; 1324 } 1325 } 1326 1327 return Ty; 1328 } 1329 1330 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1331 // If this GEP has only 0 indices, it is the same pointer as 1332 // Src. If Src is not a trivial GEP too, don't combine 1333 // the indices. 1334 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1335 !Src.hasOneUse()) 1336 return false; 1337 return true; 1338 } 1339 1340 /// Return a value X such that Val = X * Scale, or null if none. 1341 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1342 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1343 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1344 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1345 Scale.getBitWidth() && "Scale not compatible with value!"); 1346 1347 // If Val is zero or Scale is one then Val = Val * Scale. 1348 if (match(Val, m_Zero()) || Scale == 1) { 1349 NoSignedWrap = true; 1350 return Val; 1351 } 1352 1353 // If Scale is zero then it does not divide Val. 1354 if (Scale.isMinValue()) 1355 return nullptr; 1356 1357 // Look through chains of multiplications, searching for a constant that is 1358 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1359 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1360 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1361 // down from Val: 1362 // 1363 // Val = M1 * X || Analysis starts here and works down 1364 // M1 = M2 * Y || Doesn't descend into terms with more 1365 // M2 = Z * 4 \/ than one use 1366 // 1367 // Then to modify a term at the bottom: 1368 // 1369 // Val = M1 * X 1370 // M1 = Z * Y || Replaced M2 with Z 1371 // 1372 // Then to work back up correcting nsw flags. 1373 1374 // Op - the term we are currently analyzing. Starts at Val then drills down. 1375 // Replaced with its descaled value before exiting from the drill down loop. 1376 Value *Op = Val; 1377 1378 // Parent - initially null, but after drilling down notes where Op came from. 1379 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1380 // 0'th operand of Val. 1381 std::pair<Instruction *, unsigned> Parent; 1382 1383 // Set if the transform requires a descaling at deeper levels that doesn't 1384 // overflow. 1385 bool RequireNoSignedWrap = false; 1386 1387 // Log base 2 of the scale. Negative if not a power of 2. 1388 int32_t logScale = Scale.exactLogBase2(); 1389 1390 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1391 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1392 // If Op is a constant divisible by Scale then descale to the quotient. 1393 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1394 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1395 if (!Remainder.isMinValue()) 1396 // Not divisible by Scale. 1397 return nullptr; 1398 // Replace with the quotient in the parent. 1399 Op = ConstantInt::get(CI->getType(), Quotient); 1400 NoSignedWrap = true; 1401 break; 1402 } 1403 1404 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1405 if (BO->getOpcode() == Instruction::Mul) { 1406 // Multiplication. 1407 NoSignedWrap = BO->hasNoSignedWrap(); 1408 if (RequireNoSignedWrap && !NoSignedWrap) 1409 return nullptr; 1410 1411 // There are three cases for multiplication: multiplication by exactly 1412 // the scale, multiplication by a constant different to the scale, and 1413 // multiplication by something else. 1414 Value *LHS = BO->getOperand(0); 1415 Value *RHS = BO->getOperand(1); 1416 1417 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1418 // Multiplication by a constant. 1419 if (CI->getValue() == Scale) { 1420 // Multiplication by exactly the scale, replace the multiplication 1421 // by its left-hand side in the parent. 1422 Op = LHS; 1423 break; 1424 } 1425 1426 // Otherwise drill down into the constant. 1427 if (!Op->hasOneUse()) 1428 return nullptr; 1429 1430 Parent = std::make_pair(BO, 1); 1431 continue; 1432 } 1433 1434 // Multiplication by something else. Drill down into the left-hand side 1435 // since that's where the reassociate pass puts the good stuff. 1436 if (!Op->hasOneUse()) 1437 return nullptr; 1438 1439 Parent = std::make_pair(BO, 0); 1440 continue; 1441 } 1442 1443 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1444 isa<ConstantInt>(BO->getOperand(1))) { 1445 // Multiplication by a power of 2. 1446 NoSignedWrap = BO->hasNoSignedWrap(); 1447 if (RequireNoSignedWrap && !NoSignedWrap) 1448 return nullptr; 1449 1450 Value *LHS = BO->getOperand(0); 1451 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1452 getLimitedValue(Scale.getBitWidth()); 1453 // Op = LHS << Amt. 1454 1455 if (Amt == logScale) { 1456 // Multiplication by exactly the scale, replace the multiplication 1457 // by its left-hand side in the parent. 1458 Op = LHS; 1459 break; 1460 } 1461 if (Amt < logScale || !Op->hasOneUse()) 1462 return nullptr; 1463 1464 // Multiplication by more than the scale. Reduce the multiplying amount 1465 // by the scale in the parent. 1466 Parent = std::make_pair(BO, 1); 1467 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1468 break; 1469 } 1470 } 1471 1472 if (!Op->hasOneUse()) 1473 return nullptr; 1474 1475 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1476 if (Cast->getOpcode() == Instruction::SExt) { 1477 // Op is sign-extended from a smaller type, descale in the smaller type. 1478 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1479 APInt SmallScale = Scale.trunc(SmallSize); 1480 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1481 // descale Op as (sext Y) * Scale. In order to have 1482 // sext (Y * SmallScale) = (sext Y) * Scale 1483 // some conditions need to hold however: SmallScale must sign-extend to 1484 // Scale and the multiplication Y * SmallScale should not overflow. 1485 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1486 // SmallScale does not sign-extend to Scale. 1487 return nullptr; 1488 assert(SmallScale.exactLogBase2() == logScale); 1489 // Require that Y * SmallScale must not overflow. 1490 RequireNoSignedWrap = true; 1491 1492 // Drill down through the cast. 1493 Parent = std::make_pair(Cast, 0); 1494 Scale = SmallScale; 1495 continue; 1496 } 1497 1498 if (Cast->getOpcode() == Instruction::Trunc) { 1499 // Op is truncated from a larger type, descale in the larger type. 1500 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1501 // trunc (Y * sext Scale) = (trunc Y) * Scale 1502 // always holds. However (trunc Y) * Scale may overflow even if 1503 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1504 // from this point up in the expression (see later). 1505 if (RequireNoSignedWrap) 1506 return nullptr; 1507 1508 // Drill down through the cast. 1509 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1510 Parent = std::make_pair(Cast, 0); 1511 Scale = Scale.sext(LargeSize); 1512 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1513 logScale = -1; 1514 assert(Scale.exactLogBase2() == logScale); 1515 continue; 1516 } 1517 } 1518 1519 // Unsupported expression, bail out. 1520 return nullptr; 1521 } 1522 1523 // If Op is zero then Val = Op * Scale. 1524 if (match(Op, m_Zero())) { 1525 NoSignedWrap = true; 1526 return Op; 1527 } 1528 1529 // We know that we can successfully descale, so from here on we can safely 1530 // modify the IR. Op holds the descaled version of the deepest term in the 1531 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1532 // not to overflow. 1533 1534 if (!Parent.first) 1535 // The expression only had one term. 1536 return Op; 1537 1538 // Rewrite the parent using the descaled version of its operand. 1539 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1540 assert(Op != Parent.first->getOperand(Parent.second) && 1541 "Descaling was a no-op?"); 1542 replaceOperand(*Parent.first, Parent.second, Op); 1543 Worklist.push(Parent.first); 1544 1545 // Now work back up the expression correcting nsw flags. The logic is based 1546 // on the following observation: if X * Y is known not to overflow as a signed 1547 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1548 // then X * Z will not overflow as a signed multiplication either. As we work 1549 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1550 // current level has strictly smaller absolute value than the original. 1551 Instruction *Ancestor = Parent.first; 1552 do { 1553 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1554 // If the multiplication wasn't nsw then we can't say anything about the 1555 // value of the descaled multiplication, and we have to clear nsw flags 1556 // from this point on up. 1557 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1558 NoSignedWrap &= OpNoSignedWrap; 1559 if (NoSignedWrap != OpNoSignedWrap) { 1560 BO->setHasNoSignedWrap(NoSignedWrap); 1561 Worklist.push(Ancestor); 1562 } 1563 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1564 // The fact that the descaled input to the trunc has smaller absolute 1565 // value than the original input doesn't tell us anything useful about 1566 // the absolute values of the truncations. 1567 NoSignedWrap = false; 1568 } 1569 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1570 "Failed to keep proper track of nsw flags while drilling down?"); 1571 1572 if (Ancestor == Val) 1573 // Got to the top, all done! 1574 return Val; 1575 1576 // Move up one level in the expression. 1577 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1578 Ancestor = Ancestor->user_back(); 1579 } while (true); 1580 } 1581 1582 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 1583 if (!isa<VectorType>(Inst.getType())) 1584 return nullptr; 1585 1586 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1587 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1588 assert(cast<VectorType>(LHS->getType())->getElementCount() == 1589 cast<VectorType>(Inst.getType())->getElementCount()); 1590 assert(cast<VectorType>(RHS->getType())->getElementCount() == 1591 cast<VectorType>(Inst.getType())->getElementCount()); 1592 1593 // If both operands of the binop are vector concatenations, then perform the 1594 // narrow binop on each pair of the source operands followed by concatenation 1595 // of the results. 1596 Value *L0, *L1, *R0, *R1; 1597 ArrayRef<int> Mask; 1598 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 1599 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 1600 LHS->hasOneUse() && RHS->hasOneUse() && 1601 cast<ShuffleVectorInst>(LHS)->isConcat() && 1602 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1603 // This transform does not have the speculative execution constraint as 1604 // below because the shuffle is a concatenation. The new binops are 1605 // operating on exactly the same elements as the existing binop. 1606 // TODO: We could ease the mask requirement to allow different undef lanes, 1607 // but that requires an analysis of the binop-with-undef output value. 1608 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1609 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1610 BO->copyIRFlags(&Inst); 1611 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1612 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1613 BO->copyIRFlags(&Inst); 1614 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1615 } 1616 1617 // It may not be safe to reorder shuffles and things like div, urem, etc. 1618 // because we may trap when executing those ops on unknown vector elements. 1619 // See PR20059. 1620 if (!isSafeToSpeculativelyExecute(&Inst)) 1621 return nullptr; 1622 1623 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 1624 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1625 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1626 BO->copyIRFlags(&Inst); 1627 return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M); 1628 }; 1629 1630 // If both arguments of the binary operation are shuffles that use the same 1631 // mask and shuffle within a single vector, move the shuffle after the binop. 1632 Value *V1, *V2; 1633 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) && 1634 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) && 1635 V1->getType() == V2->getType() && 1636 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1637 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1638 return createBinOpShuffle(V1, V2, Mask); 1639 } 1640 1641 // If both arguments of a commutative binop are select-shuffles that use the 1642 // same mask with commuted operands, the shuffles are unnecessary. 1643 if (Inst.isCommutative() && 1644 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 1645 match(RHS, 1646 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 1647 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1648 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1649 // TODO: Allow shuffles that contain undefs in the mask? 1650 // That is legal, but it reduces undef knowledge. 1651 // TODO: Allow arbitrary shuffles by shuffling after binop? 1652 // That might be legal, but we have to deal with poison. 1653 if (LShuf->isSelect() && 1654 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) && 1655 RShuf->isSelect() && 1656 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) { 1657 // Example: 1658 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1659 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1660 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1661 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1662 NewBO->copyIRFlags(&Inst); 1663 return NewBO; 1664 } 1665 } 1666 1667 // If one argument is a shuffle within one vector and the other is a constant, 1668 // try moving the shuffle after the binary operation. This canonicalization 1669 // intends to move shuffles closer to other shuffles and binops closer to 1670 // other binops, so they can be folded. It may also enable demanded elements 1671 // transforms. 1672 Constant *C; 1673 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 1674 if (InstVTy && 1675 match(&Inst, 1676 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))), 1677 m_ImmConstant(C))) && 1678 cast<FixedVectorType>(V1->getType())->getNumElements() <= 1679 InstVTy->getNumElements()) { 1680 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 1681 "Shuffle should not change scalar type"); 1682 1683 // Find constant NewC that has property: 1684 // shuffle(NewC, ShMask) = C 1685 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1686 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1687 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1688 bool ConstOp1 = isa<Constant>(RHS); 1689 ArrayRef<int> ShMask = Mask; 1690 unsigned SrcVecNumElts = 1691 cast<FixedVectorType>(V1->getType())->getNumElements(); 1692 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1693 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1694 bool MayChange = true; 1695 unsigned NumElts = InstVTy->getNumElements(); 1696 for (unsigned I = 0; I < NumElts; ++I) { 1697 Constant *CElt = C->getAggregateElement(I); 1698 if (ShMask[I] >= 0) { 1699 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1700 Constant *NewCElt = NewVecC[ShMask[I]]; 1701 // Bail out if: 1702 // 1. The constant vector contains a constant expression. 1703 // 2. The shuffle needs an element of the constant vector that can't 1704 // be mapped to a new constant vector. 1705 // 3. This is a widening shuffle that copies elements of V1 into the 1706 // extended elements (extending with undef is allowed). 1707 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1708 I >= SrcVecNumElts) { 1709 MayChange = false; 1710 break; 1711 } 1712 NewVecC[ShMask[I]] = CElt; 1713 } 1714 // If this is a widening shuffle, we must be able to extend with undef 1715 // elements. If the original binop does not produce an undef in the high 1716 // lanes, then this transform is not safe. 1717 // Similarly for undef lanes due to the shuffle mask, we can only 1718 // transform binops that preserve undef. 1719 // TODO: We could shuffle those non-undef constant values into the 1720 // result by using a constant vector (rather than an undef vector) 1721 // as operand 1 of the new binop, but that might be too aggressive 1722 // for target-independent shuffle creation. 1723 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1724 Constant *MaybeUndef = 1725 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1726 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1727 if (!match(MaybeUndef, m_Undef())) { 1728 MayChange = false; 1729 break; 1730 } 1731 } 1732 } 1733 if (MayChange) { 1734 Constant *NewC = ConstantVector::get(NewVecC); 1735 // It may not be safe to execute a binop on a vector with undef elements 1736 // because the entire instruction can be folded to undef or create poison 1737 // that did not exist in the original code. 1738 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1739 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1740 1741 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1742 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1743 Value *NewLHS = ConstOp1 ? V1 : NewC; 1744 Value *NewRHS = ConstOp1 ? NewC : V1; 1745 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1746 } 1747 } 1748 1749 // Try to reassociate to sink a splat shuffle after a binary operation. 1750 if (Inst.isAssociative() && Inst.isCommutative()) { 1751 // Canonicalize shuffle operand as LHS. 1752 if (isa<ShuffleVectorInst>(RHS)) 1753 std::swap(LHS, RHS); 1754 1755 Value *X; 1756 ArrayRef<int> MaskC; 1757 int SplatIndex; 1758 BinaryOperator *BO; 1759 if (!match(LHS, 1760 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 1761 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || 1762 X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) || 1763 BO->getOpcode() != Opcode) 1764 return nullptr; 1765 1766 // FIXME: This may not be safe if the analysis allows undef elements. By 1767 // moving 'Y' before the splat shuffle, we are implicitly assuming 1768 // that it is not undef/poison at the splat index. 1769 Value *Y, *OtherOp; 1770 if (isSplatValue(BO->getOperand(0), SplatIndex)) { 1771 Y = BO->getOperand(0); 1772 OtherOp = BO->getOperand(1); 1773 } else if (isSplatValue(BO->getOperand(1), SplatIndex)) { 1774 Y = BO->getOperand(1); 1775 OtherOp = BO->getOperand(0); 1776 } else { 1777 return nullptr; 1778 } 1779 1780 // X and Y are splatted values, so perform the binary operation on those 1781 // values followed by a splat followed by the 2nd binary operation: 1782 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 1783 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 1784 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 1785 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 1786 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 1787 1788 // Intersect FMF on both new binops. Other (poison-generating) flags are 1789 // dropped to be safe. 1790 if (isa<FPMathOperator>(R)) { 1791 R->copyFastMathFlags(&Inst); 1792 R->andIRFlags(BO); 1793 } 1794 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 1795 NewInstBO->copyIRFlags(R); 1796 return R; 1797 } 1798 1799 return nullptr; 1800 } 1801 1802 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1803 /// of a value. This requires a potentially expensive known bits check to make 1804 /// sure the narrow op does not overflow. 1805 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 1806 // We need at least one extended operand. 1807 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1808 1809 // If this is a sub, we swap the operands since we always want an extension 1810 // on the RHS. The LHS can be an extension or a constant. 1811 if (BO.getOpcode() == Instruction::Sub) 1812 std::swap(Op0, Op1); 1813 1814 Value *X; 1815 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1816 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1817 return nullptr; 1818 1819 // If both operands are the same extension from the same source type and we 1820 // can eliminate at least one (hasOneUse), this might work. 1821 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1822 Value *Y; 1823 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1824 cast<Operator>(Op1)->getOpcode() == CastOpc && 1825 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1826 // If that did not match, see if we have a suitable constant operand. 1827 // Truncating and extending must produce the same constant. 1828 Constant *WideC; 1829 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1830 return nullptr; 1831 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1832 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1833 return nullptr; 1834 Y = NarrowC; 1835 } 1836 1837 // Swap back now that we found our operands. 1838 if (BO.getOpcode() == Instruction::Sub) 1839 std::swap(X, Y); 1840 1841 // Both operands have narrow versions. Last step: the math must not overflow 1842 // in the narrow width. 1843 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1844 return nullptr; 1845 1846 // bo (ext X), (ext Y) --> ext (bo X, Y) 1847 // bo (ext X), C --> ext (bo X, C') 1848 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1849 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1850 if (IsSext) 1851 NewBinOp->setHasNoSignedWrap(); 1852 else 1853 NewBinOp->setHasNoUnsignedWrap(); 1854 } 1855 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1856 } 1857 1858 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 1859 // At least one GEP must be inbounds. 1860 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 1861 return false; 1862 1863 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 1864 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 1865 } 1866 1867 /// Thread a GEP operation with constant indices through the constant true/false 1868 /// arms of a select. 1869 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 1870 InstCombiner::BuilderTy &Builder) { 1871 if (!GEP.hasAllConstantIndices()) 1872 return nullptr; 1873 1874 Instruction *Sel; 1875 Value *Cond; 1876 Constant *TrueC, *FalseC; 1877 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 1878 !match(Sel, 1879 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 1880 return nullptr; 1881 1882 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 1883 // Propagate 'inbounds' and metadata from existing instructions. 1884 // Note: using IRBuilder to create the constants for efficiency. 1885 SmallVector<Value *, 4> IndexC(GEP.indices()); 1886 bool IsInBounds = GEP.isInBounds(); 1887 Type *Ty = GEP.getSourceElementType(); 1888 Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC) 1889 : Builder.CreateGEP(Ty, TrueC, IndexC); 1890 Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC) 1891 : Builder.CreateGEP(Ty, FalseC, IndexC); 1892 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 1893 } 1894 1895 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1896 SmallVector<Value *, 8> Ops(GEP.operands()); 1897 Type *GEPType = GEP.getType(); 1898 Type *GEPEltType = GEP.getSourceElementType(); 1899 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType); 1900 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP))) 1901 return replaceInstUsesWith(GEP, V); 1902 1903 // For vector geps, use the generic demanded vector support. 1904 // Skip if GEP return type is scalable. The number of elements is unknown at 1905 // compile-time. 1906 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 1907 auto VWidth = GEPFVTy->getNumElements(); 1908 APInt UndefElts(VWidth, 0); 1909 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1910 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 1911 UndefElts)) { 1912 if (V != &GEP) 1913 return replaceInstUsesWith(GEP, V); 1914 return &GEP; 1915 } 1916 1917 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 1918 // possible (decide on canonical form for pointer broadcast), 3) exploit 1919 // undef elements to decrease demanded bits 1920 } 1921 1922 Value *PtrOp = GEP.getOperand(0); 1923 1924 // Eliminate unneeded casts for indices, and replace indices which displace 1925 // by multiples of a zero size type with zero. 1926 bool MadeChange = false; 1927 1928 // Index width may not be the same width as pointer width. 1929 // Data layout chooses the right type based on supported integer types. 1930 Type *NewScalarIndexTy = 1931 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 1932 1933 gep_type_iterator GTI = gep_type_begin(GEP); 1934 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1935 ++I, ++GTI) { 1936 // Skip indices into struct types. 1937 if (GTI.isStruct()) 1938 continue; 1939 1940 Type *IndexTy = (*I)->getType(); 1941 Type *NewIndexType = 1942 IndexTy->isVectorTy() 1943 ? VectorType::get(NewScalarIndexTy, 1944 cast<VectorType>(IndexTy)->getElementCount()) 1945 : NewScalarIndexTy; 1946 1947 // If the element type has zero size then any index over it is equivalent 1948 // to an index of zero, so replace it with zero if it is not zero already. 1949 Type *EltTy = GTI.getIndexedType(); 1950 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 1951 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 1952 *I = Constant::getNullValue(NewIndexType); 1953 MadeChange = true; 1954 } 1955 1956 if (IndexTy != NewIndexType) { 1957 // If we are using a wider index than needed for this platform, shrink 1958 // it to what we need. If narrower, sign-extend it to what we need. 1959 // This explicit cast can make subsequent optimizations more obvious. 1960 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1961 MadeChange = true; 1962 } 1963 } 1964 if (MadeChange) 1965 return &GEP; 1966 1967 // Check to see if the inputs to the PHI node are getelementptr instructions. 1968 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 1969 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1970 if (!Op1) 1971 return nullptr; 1972 1973 // Don't fold a GEP into itself through a PHI node. This can only happen 1974 // through the back-edge of a loop. Folding a GEP into itself means that 1975 // the value of the previous iteration needs to be stored in the meantime, 1976 // thus requiring an additional register variable to be live, but not 1977 // actually achieving anything (the GEP still needs to be executed once per 1978 // loop iteration). 1979 if (Op1 == &GEP) 1980 return nullptr; 1981 1982 int DI = -1; 1983 1984 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1985 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 1986 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1987 return nullptr; 1988 1989 // As for Op1 above, don't try to fold a GEP into itself. 1990 if (Op2 == &GEP) 1991 return nullptr; 1992 1993 // Keep track of the type as we walk the GEP. 1994 Type *CurTy = nullptr; 1995 1996 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1997 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1998 return nullptr; 1999 2000 if (Op1->getOperand(J) != Op2->getOperand(J)) { 2001 if (DI == -1) { 2002 // We have not seen any differences yet in the GEPs feeding the 2003 // PHI yet, so we record this one if it is allowed to be a 2004 // variable. 2005 2006 // The first two arguments can vary for any GEP, the rest have to be 2007 // static for struct slots 2008 if (J > 1) { 2009 assert(CurTy && "No current type?"); 2010 if (CurTy->isStructTy()) 2011 return nullptr; 2012 } 2013 2014 DI = J; 2015 } else { 2016 // The GEP is different by more than one input. While this could be 2017 // extended to support GEPs that vary by more than one variable it 2018 // doesn't make sense since it greatly increases the complexity and 2019 // would result in an R+R+R addressing mode which no backend 2020 // directly supports and would need to be broken into several 2021 // simpler instructions anyway. 2022 return nullptr; 2023 } 2024 } 2025 2026 // Sink down a layer of the type for the next iteration. 2027 if (J > 0) { 2028 if (J == 1) { 2029 CurTy = Op1->getSourceElementType(); 2030 } else { 2031 CurTy = 2032 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 2033 } 2034 } 2035 } 2036 } 2037 2038 // If not all GEPs are identical we'll have to create a new PHI node. 2039 // Check that the old PHI node has only one use so that it will get 2040 // removed. 2041 if (DI != -1 && !PN->hasOneUse()) 2042 return nullptr; 2043 2044 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 2045 if (DI == -1) { 2046 // All the GEPs feeding the PHI are identical. Clone one down into our 2047 // BB so that it can be merged with the current GEP. 2048 } else { 2049 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 2050 // into the current block so it can be merged, and create a new PHI to 2051 // set that index. 2052 PHINode *NewPN; 2053 { 2054 IRBuilderBase::InsertPointGuard Guard(Builder); 2055 Builder.SetInsertPoint(PN); 2056 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 2057 PN->getNumOperands()); 2058 } 2059 2060 for (auto &I : PN->operands()) 2061 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 2062 PN->getIncomingBlock(I)); 2063 2064 NewGEP->setOperand(DI, NewPN); 2065 } 2066 2067 GEP.getParent()->getInstList().insert( 2068 GEP.getParent()->getFirstInsertionPt(), NewGEP); 2069 replaceOperand(GEP, 0, NewGEP); 2070 PtrOp = NewGEP; 2071 } 2072 2073 // Combine Indices - If the source pointer to this getelementptr instruction 2074 // is a getelementptr instruction, combine the indices of the two 2075 // getelementptr instructions into a single instruction. 2076 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { 2077 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 2078 return nullptr; 2079 2080 if (Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 2081 Src->hasOneUse()) { 2082 Value *GO1 = GEP.getOperand(1); 2083 Value *SO1 = Src->getOperand(1); 2084 2085 if (LI) { 2086 // Try to reassociate loop invariant GEP chains to enable LICM. 2087 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 2088 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 2089 // invariant: this breaks the dependence between GEPs and allows LICM 2090 // to hoist the invariant part out of the loop. 2091 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 2092 // We have to be careful here. 2093 // We have something like: 2094 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 2095 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 2096 // If we just swap idx & idx2 then we could inadvertantly 2097 // change %src from a vector to a scalar, or vice versa. 2098 // Cases: 2099 // 1) %base a scalar & idx a scalar & idx2 a vector 2100 // => Swapping idx & idx2 turns %src into a vector type. 2101 // 2) %base a scalar & idx a vector & idx2 a scalar 2102 // => Swapping idx & idx2 turns %src in a scalar type 2103 // 3) %base, %idx, and %idx2 are scalars 2104 // => %src & %gep are scalars 2105 // => swapping idx & idx2 is safe 2106 // 4) %base a vector 2107 // => %src is a vector 2108 // => swapping idx & idx2 is safe. 2109 auto *SO0 = Src->getOperand(0); 2110 auto *SO0Ty = SO0->getType(); 2111 if (!isa<VectorType>(GEPType) || // case 3 2112 isa<VectorType>(SO0Ty)) { // case 4 2113 Src->setOperand(1, GO1); 2114 GEP.setOperand(1, SO1); 2115 return &GEP; 2116 } else { 2117 // Case 1 or 2 2118 // -- have to recreate %src & %gep 2119 // put NewSrc at same location as %src 2120 Builder.SetInsertPoint(cast<Instruction>(PtrOp)); 2121 Value *NewSrc = 2122 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()); 2123 // Propagate 'inbounds' if the new source was not constant-folded. 2124 if (auto *NewSrcGEPI = dyn_cast<GetElementPtrInst>(NewSrc)) 2125 NewSrcGEPI->setIsInBounds(Src->isInBounds()); 2126 GetElementPtrInst *NewGEP = 2127 GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1}); 2128 NewGEP->setIsInBounds(GEP.isInBounds()); 2129 return NewGEP; 2130 } 2131 } 2132 } 2133 } 2134 2135 // Guard the gep(gep) fold so we don't create an add inside a loop 2136 // when there wasn't an equivalent instruction there before. 2137 bool DifferentLoops = false; 2138 if (LI) 2139 if (auto *GEPLoop = LI->getLoopFor(GEP.getParent())) 2140 if (auto *SrcOpI = dyn_cast<Instruction>(Src)) 2141 if (LI->getLoopFor(SrcOpI->getParent()) != GEPLoop) 2142 DifferentLoops = true; 2143 2144 // Fold (gep(gep(Ptr,Idx0),Idx1) -> gep(Ptr,add(Idx0,Idx1)) 2145 if (!DifferentLoops && GO1->getType() == SO1->getType()) { 2146 bool NewInBounds = GEP.isInBounds() && Src->isInBounds(); 2147 auto *NewIdx = 2148 Builder.CreateAdd(GO1, SO1, GEP.getName() + ".idx", 2149 /*HasNUW*/ false, /*HasNSW*/ NewInBounds); 2150 auto *NewGEP = GetElementPtrInst::Create( 2151 GEPEltType, Src->getPointerOperand(), {NewIdx}); 2152 NewGEP->setIsInBounds(NewInBounds); 2153 return NewGEP; 2154 } 2155 } 2156 2157 // Note that if our source is a gep chain itself then we wait for that 2158 // chain to be resolved before we perform this transformation. This 2159 // avoids us creating a TON of code in some cases. 2160 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 2161 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 2162 return nullptr; // Wait until our source is folded to completion. 2163 2164 SmallVector<Value*, 8> Indices; 2165 2166 // Find out whether the last index in the source GEP is a sequential idx. 2167 bool EndsWithSequential = false; 2168 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 2169 I != E; ++I) 2170 EndsWithSequential = I.isSequential(); 2171 2172 // Can we combine the two pointer arithmetics offsets? 2173 if (EndsWithSequential) { 2174 // Replace: gep (gep %P, long B), long A, ... 2175 // With: T = long A+B; gep %P, T, ... 2176 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 2177 Value *GO1 = GEP.getOperand(1); 2178 2179 // If they aren't the same type, then the input hasn't been processed 2180 // by the loop above yet (which canonicalizes sequential index types to 2181 // intptr_t). Just avoid transforming this until the input has been 2182 // normalized. 2183 if (SO1->getType() != GO1->getType()) 2184 return nullptr; 2185 2186 Value *Sum = 2187 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 2188 // Only do the combine when we are sure the cost after the 2189 // merge is never more than that before the merge. 2190 if (Sum == nullptr) 2191 return nullptr; 2192 2193 // Update the GEP in place if possible. 2194 if (Src->getNumOperands() == 2) { 2195 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 2196 replaceOperand(GEP, 0, Src->getOperand(0)); 2197 replaceOperand(GEP, 1, Sum); 2198 return &GEP; 2199 } 2200 Indices.append(Src->op_begin()+1, Src->op_end()-1); 2201 Indices.push_back(Sum); 2202 Indices.append(GEP.op_begin()+2, GEP.op_end()); 2203 } else if (isa<Constant>(*GEP.idx_begin()) && 2204 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2205 Src->getNumOperands() != 1) { 2206 // Otherwise we can do the fold if the first index of the GEP is a zero 2207 Indices.append(Src->op_begin()+1, Src->op_end()); 2208 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2209 } 2210 2211 if (!Indices.empty()) 2212 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2213 ? GetElementPtrInst::CreateInBounds( 2214 Src->getSourceElementType(), Src->getOperand(0), Indices, 2215 GEP.getName()) 2216 : GetElementPtrInst::Create(Src->getSourceElementType(), 2217 Src->getOperand(0), Indices, 2218 GEP.getName()); 2219 } 2220 2221 // Skip if GEP source element type is scalable. The type alloc size is unknown 2222 // at compile-time. 2223 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { 2224 unsigned AS = GEP.getPointerAddressSpace(); 2225 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 2226 DL.getIndexSizeInBits(AS)) { 2227 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2228 2229 bool Matched = false; 2230 uint64_t C; 2231 Value *V = nullptr; 2232 if (TyAllocSize == 1) { 2233 V = GEP.getOperand(1); 2234 Matched = true; 2235 } else if (match(GEP.getOperand(1), 2236 m_AShr(m_Value(V), m_ConstantInt(C)))) { 2237 if (TyAllocSize == 1ULL << C) 2238 Matched = true; 2239 } else if (match(GEP.getOperand(1), 2240 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 2241 if (TyAllocSize == C) 2242 Matched = true; 2243 } 2244 2245 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but 2246 // only if both point to the same underlying object (otherwise provenance 2247 // is not necessarily retained). 2248 Value *Y; 2249 Value *X = GEP.getOperand(0); 2250 if (Matched && 2251 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 2252 getUnderlyingObject(X) == getUnderlyingObject(Y)) 2253 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 2254 } 2255 } 2256 2257 // We do not handle pointer-vector geps here. 2258 if (GEPType->isVectorTy()) 2259 return nullptr; 2260 2261 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 2262 Value *StrippedPtr = PtrOp->stripPointerCasts(); 2263 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 2264 2265 if (StrippedPtr != PtrOp) { 2266 bool HasZeroPointerIndex = false; 2267 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType(); 2268 2269 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 2270 HasZeroPointerIndex = C->isZero(); 2271 2272 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2273 // into : GEP [10 x i8]* X, i32 0, ... 2274 // 2275 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2276 // into : GEP i8* X, ... 2277 // 2278 // This occurs when the program declares an array extern like "int X[];" 2279 if (HasZeroPointerIndex) { 2280 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2281 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2282 if (CATy->getElementType() == StrippedPtrEltTy) { 2283 // -> GEP i8* X, ... 2284 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices())); 2285 GetElementPtrInst *Res = GetElementPtrInst::Create( 2286 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2287 Res->setIsInBounds(GEP.isInBounds()); 2288 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2289 return Res; 2290 // Insert Res, and create an addrspacecast. 2291 // e.g., 2292 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2293 // -> 2294 // %0 = GEP i8 addrspace(1)* X, ... 2295 // addrspacecast i8 addrspace(1)* %0 to i8* 2296 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2297 } 2298 2299 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2300 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2301 if (CATy->getElementType() == XATy->getElementType()) { 2302 // -> GEP [10 x i8]* X, i32 0, ... 2303 // At this point, we know that the cast source type is a pointer 2304 // to an array of the same type as the destination pointer 2305 // array. Because the array type is never stepped over (there 2306 // is a leading zero) we can fold the cast into this GEP. 2307 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2308 GEP.setSourceElementType(XATy); 2309 return replaceOperand(GEP, 0, StrippedPtr); 2310 } 2311 // Cannot replace the base pointer directly because StrippedPtr's 2312 // address space is different. Instead, create a new GEP followed by 2313 // an addrspacecast. 2314 // e.g., 2315 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2316 // i32 0, ... 2317 // -> 2318 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2319 // addrspacecast i8 addrspace(1)* %0 to i8* 2320 SmallVector<Value *, 8> Idx(GEP.indices()); 2321 Value *NewGEP = 2322 GEP.isInBounds() 2323 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2324 Idx, GEP.getName()) 2325 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2326 GEP.getName()); 2327 return new AddrSpaceCastInst(NewGEP, GEPType); 2328 } 2329 } 2330 } 2331 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) { 2332 // Skip if GEP source element type is scalable. The type alloc size is 2333 // unknown at compile-time. 2334 // Transform things like: %t = getelementptr i32* 2335 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2 2336 // x i32]* %str, i32 0, i32 %V; bitcast 2337 if (StrippedPtrEltTy->isArrayTy() && 2338 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2339 DL.getTypeAllocSize(GEPEltType)) { 2340 Type *IdxType = DL.getIndexType(GEPType); 2341 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 2342 Value *NewGEP = 2343 GEP.isInBounds() 2344 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2345 GEP.getName()) 2346 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2347 GEP.getName()); 2348 2349 // V and GEP are both pointer types --> BitCast 2350 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2351 } 2352 2353 // Transform things like: 2354 // %V = mul i64 %N, 4 2355 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2356 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2357 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2358 // Check that changing the type amounts to dividing the index by a scale 2359 // factor. 2360 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2361 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize(); 2362 if (ResSize && SrcSize % ResSize == 0) { 2363 Value *Idx = GEP.getOperand(1); 2364 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2365 uint64_t Scale = SrcSize / ResSize; 2366 2367 // Earlier transforms ensure that the index has the right type 2368 // according to Data Layout, which considerably simplifies the 2369 // logic by eliminating implicit casts. 2370 assert(Idx->getType() == DL.getIndexType(GEPType) && 2371 "Index type does not match the Data Layout preferences"); 2372 2373 bool NSW; 2374 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2375 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2376 // If the multiplication NewIdx * Scale may overflow then the new 2377 // GEP may not be "inbounds". 2378 Value *NewGEP = 2379 GEP.isInBounds() && NSW 2380 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2381 NewIdx, GEP.getName()) 2382 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2383 GEP.getName()); 2384 2385 // The NewGEP must be pointer typed, so must the old one -> BitCast 2386 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2387 GEPType); 2388 } 2389 } 2390 } 2391 2392 // Similarly, transform things like: 2393 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2394 // (where tmp = 8*tmp2) into: 2395 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2396 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2397 StrippedPtrEltTy->isArrayTy()) { 2398 // Check that changing to the array element type amounts to dividing the 2399 // index by a scale factor. 2400 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2401 uint64_t ArrayEltSize = 2402 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) 2403 .getFixedSize(); 2404 if (ResSize && ArrayEltSize % ResSize == 0) { 2405 Value *Idx = GEP.getOperand(1); 2406 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2407 uint64_t Scale = ArrayEltSize / ResSize; 2408 2409 // Earlier transforms ensure that the index has the right type 2410 // according to the Data Layout, which considerably simplifies 2411 // the logic by eliminating implicit casts. 2412 assert(Idx->getType() == DL.getIndexType(GEPType) && 2413 "Index type does not match the Data Layout preferences"); 2414 2415 bool NSW; 2416 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2417 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2418 // If the multiplication NewIdx * Scale may overflow then the new 2419 // GEP may not be "inbounds". 2420 Type *IndTy = DL.getIndexType(GEPType); 2421 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2422 2423 Value *NewGEP = 2424 GEP.isInBounds() && NSW 2425 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2426 Off, GEP.getName()) 2427 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2428 GEP.getName()); 2429 // The NewGEP must be pointer typed, so must the old one -> BitCast 2430 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2431 GEPType); 2432 } 2433 } 2434 } 2435 } 2436 } 2437 2438 // addrspacecast between types is canonicalized as a bitcast, then an 2439 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2440 // through the addrspacecast. 2441 Value *ASCStrippedPtrOp = PtrOp; 2442 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2443 // X = bitcast A addrspace(1)* to B addrspace(1)* 2444 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2445 // Z = gep Y, <...constant indices...> 2446 // Into an addrspacecasted GEP of the struct. 2447 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2448 ASCStrippedPtrOp = BC; 2449 } 2450 2451 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 2452 Value *SrcOp = BCI->getOperand(0); 2453 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2454 Type *SrcEltType = SrcType->getElementType(); 2455 2456 // GEP directly using the source operand if this GEP is accessing an element 2457 // of a bitcasted pointer to vector or array of the same dimensions: 2458 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2459 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2460 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, 2461 const DataLayout &DL) { 2462 auto *VecVTy = cast<FixedVectorType>(VecTy); 2463 return ArrTy->getArrayElementType() == VecVTy->getElementType() && 2464 ArrTy->getArrayNumElements() == VecVTy->getNumElements() && 2465 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); 2466 }; 2467 if (GEP.getNumOperands() == 3 && 2468 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) && 2469 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || 2470 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() && 2471 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { 2472 2473 // Create a new GEP here, as using `setOperand()` followed by 2474 // `setSourceElementType()` won't actually update the type of the 2475 // existing GEP Value. Causing issues if this Value is accessed when 2476 // constructing an AddrSpaceCastInst 2477 Value *NGEP = 2478 GEP.isInBounds() 2479 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}) 2480 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}); 2481 NGEP->takeName(&GEP); 2482 2483 // Preserve GEP address space to satisfy users 2484 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2485 return new AddrSpaceCastInst(NGEP, GEPType); 2486 2487 return replaceInstUsesWith(GEP, NGEP); 2488 } 2489 2490 // See if we can simplify: 2491 // X = bitcast A* to B* 2492 // Y = gep X, <...constant indices...> 2493 // into a gep of the original struct. This is important for SROA and alias 2494 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2495 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 2496 APInt Offset(OffsetBits, 0); 2497 2498 // If the bitcast argument is an allocation, The bitcast is for convertion 2499 // to actual type of allocation. Removing such bitcasts, results in having 2500 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of 2501 // struct or array hierarchy. 2502 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have 2503 // a better chance to succeed. 2504 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) && 2505 !isAllocationFn(SrcOp, &TLI)) { 2506 // If this GEP instruction doesn't move the pointer, just replace the GEP 2507 // with a bitcast of the real input to the dest type. 2508 if (!Offset) { 2509 // If the bitcast is of an allocation, and the allocation will be 2510 // converted to match the type of the cast, don't touch this. 2511 if (isa<AllocaInst>(SrcOp)) { 2512 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2513 if (Instruction *I = visitBitCast(*BCI)) { 2514 if (I != BCI) { 2515 I->takeName(BCI); 2516 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2517 replaceInstUsesWith(*BCI, I); 2518 } 2519 return &GEP; 2520 } 2521 } 2522 2523 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2524 return new AddrSpaceCastInst(SrcOp, GEPType); 2525 return new BitCastInst(SrcOp, GEPType); 2526 } 2527 2528 // Otherwise, if the offset is non-zero, we need to find out if there is a 2529 // field at Offset in 'A's type. If so, we can pull the cast through the 2530 // GEP. 2531 SmallVector<Value*, 8> NewIndices; 2532 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2533 Value *NGEP = 2534 GEP.isInBounds() 2535 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) 2536 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); 2537 2538 if (NGEP->getType() == GEPType) 2539 return replaceInstUsesWith(GEP, NGEP); 2540 NGEP->takeName(&GEP); 2541 2542 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2543 return new AddrSpaceCastInst(NGEP, GEPType); 2544 return new BitCastInst(NGEP, GEPType); 2545 } 2546 } 2547 } 2548 2549 if (!GEP.isInBounds()) { 2550 unsigned IdxWidth = 2551 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2552 APInt BasePtrOffset(IdxWidth, 0); 2553 Value *UnderlyingPtrOp = 2554 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2555 BasePtrOffset); 2556 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2557 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2558 BasePtrOffset.isNonNegative()) { 2559 APInt AllocSize( 2560 IdxWidth, 2561 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize()); 2562 if (BasePtrOffset.ule(AllocSize)) { 2563 return GetElementPtrInst::CreateInBounds( 2564 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1), 2565 GEP.getName()); 2566 } 2567 } 2568 } 2569 } 2570 2571 if (Instruction *R = foldSelectGEP(GEP, Builder)) 2572 return R; 2573 2574 return nullptr; 2575 } 2576 2577 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 2578 Instruction *AI) { 2579 if (isa<ConstantPointerNull>(V)) 2580 return true; 2581 if (auto *LI = dyn_cast<LoadInst>(V)) 2582 return isa<GlobalVariable>(LI->getPointerOperand()); 2583 // Two distinct allocations will never be equal. 2584 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2585 // through bitcasts of V can cause 2586 // the result statement below to be true, even when AI and V (ex: 2587 // i8* ->i32* ->i8* of AI) are the same allocations. 2588 return isAllocLikeFn(V, TLI) && V != AI; 2589 } 2590 2591 static bool isAllocSiteRemovable(Instruction *AI, 2592 SmallVectorImpl<WeakTrackingVH> &Users, 2593 const TargetLibraryInfo *TLI) { 2594 SmallVector<Instruction*, 4> Worklist; 2595 Worklist.push_back(AI); 2596 2597 do { 2598 Instruction *PI = Worklist.pop_back_val(); 2599 for (User *U : PI->users()) { 2600 Instruction *I = cast<Instruction>(U); 2601 switch (I->getOpcode()) { 2602 default: 2603 // Give up the moment we see something we can't handle. 2604 return false; 2605 2606 case Instruction::AddrSpaceCast: 2607 case Instruction::BitCast: 2608 case Instruction::GetElementPtr: 2609 Users.emplace_back(I); 2610 Worklist.push_back(I); 2611 continue; 2612 2613 case Instruction::ICmp: { 2614 ICmpInst *ICI = cast<ICmpInst>(I); 2615 // We can fold eq/ne comparisons with null to false/true, respectively. 2616 // We also fold comparisons in some conditions provided the alloc has 2617 // not escaped (see isNeverEqualToUnescapedAlloc). 2618 if (!ICI->isEquality()) 2619 return false; 2620 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2621 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2622 return false; 2623 Users.emplace_back(I); 2624 continue; 2625 } 2626 2627 case Instruction::Call: 2628 // Ignore no-op and store intrinsics. 2629 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2630 switch (II->getIntrinsicID()) { 2631 default: 2632 return false; 2633 2634 case Intrinsic::memmove: 2635 case Intrinsic::memcpy: 2636 case Intrinsic::memset: { 2637 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2638 if (MI->isVolatile() || MI->getRawDest() != PI) 2639 return false; 2640 LLVM_FALLTHROUGH; 2641 } 2642 case Intrinsic::assume: 2643 case Intrinsic::invariant_start: 2644 case Intrinsic::invariant_end: 2645 case Intrinsic::lifetime_start: 2646 case Intrinsic::lifetime_end: 2647 case Intrinsic::objectsize: 2648 Users.emplace_back(I); 2649 continue; 2650 case Intrinsic::launder_invariant_group: 2651 case Intrinsic::strip_invariant_group: 2652 Users.emplace_back(I); 2653 Worklist.push_back(I); 2654 continue; 2655 } 2656 } 2657 2658 if (isFreeCall(I, TLI)) { 2659 Users.emplace_back(I); 2660 continue; 2661 } 2662 return false; 2663 2664 case Instruction::Store: { 2665 StoreInst *SI = cast<StoreInst>(I); 2666 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2667 return false; 2668 Users.emplace_back(I); 2669 continue; 2670 } 2671 } 2672 llvm_unreachable("missing a return?"); 2673 } 2674 } while (!Worklist.empty()); 2675 return true; 2676 } 2677 2678 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 2679 // If we have a malloc call which is only used in any amount of comparisons to 2680 // null and free calls, delete the calls and replace the comparisons with true 2681 // or false as appropriate. 2682 2683 // This is based on the principle that we can substitute our own allocation 2684 // function (which will never return null) rather than knowledge of the 2685 // specific function being called. In some sense this can change the permitted 2686 // outputs of a program (when we convert a malloc to an alloca, the fact that 2687 // the allocation is now on the stack is potentially visible, for example), 2688 // but we believe in a permissible manner. 2689 SmallVector<WeakTrackingVH, 64> Users; 2690 2691 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2692 // before each store. 2693 SmallVector<DbgVariableIntrinsic *, 8> DVIs; 2694 std::unique_ptr<DIBuilder> DIB; 2695 if (isa<AllocaInst>(MI)) { 2696 findDbgUsers(DVIs, &MI); 2697 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2698 } 2699 2700 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2701 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2702 // Lowering all @llvm.objectsize calls first because they may 2703 // use a bitcast/GEP of the alloca we are removing. 2704 if (!Users[i]) 2705 continue; 2706 2707 Instruction *I = cast<Instruction>(&*Users[i]); 2708 2709 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2710 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2711 Value *Result = 2712 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); 2713 replaceInstUsesWith(*I, Result); 2714 eraseInstFromFunction(*I); 2715 Users[i] = nullptr; // Skip examining in the next loop. 2716 } 2717 } 2718 } 2719 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2720 if (!Users[i]) 2721 continue; 2722 2723 Instruction *I = cast<Instruction>(&*Users[i]); 2724 2725 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2726 replaceInstUsesWith(*C, 2727 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2728 C->isFalseWhenEqual())); 2729 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2730 for (auto *DVI : DVIs) 2731 if (DVI->isAddressOfVariable()) 2732 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 2733 } else { 2734 // Casts, GEP, or anything else: we're about to delete this instruction, 2735 // so it can not have any valid uses. 2736 replaceInstUsesWith(*I, PoisonValue::get(I->getType())); 2737 } 2738 eraseInstFromFunction(*I); 2739 } 2740 2741 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2742 // Replace invoke with a NOP intrinsic to maintain the original CFG 2743 Module *M = II->getModule(); 2744 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2745 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2746 None, "", II->getParent()); 2747 } 2748 2749 // Remove debug intrinsics which describe the value contained within the 2750 // alloca. In addition to removing dbg.{declare,addr} which simply point to 2751 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 2752 // 2753 // ``` 2754 // define void @foo(i32 %0) { 2755 // %a = alloca i32 ; Deleted. 2756 // store i32 %0, i32* %a 2757 // dbg.value(i32 %0, "arg0") ; Not deleted. 2758 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 2759 // call void @trivially_inlinable_no_op(i32* %a) 2760 // ret void 2761 // } 2762 // ``` 2763 // 2764 // This may not be required if we stop describing the contents of allocas 2765 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 2766 // the LowerDbgDeclare utility. 2767 // 2768 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 2769 // "arg0" dbg.value may be stale after the call. However, failing to remove 2770 // the DW_OP_deref dbg.value causes large gaps in location coverage. 2771 for (auto *DVI : DVIs) 2772 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 2773 DVI->eraseFromParent(); 2774 2775 return eraseInstFromFunction(MI); 2776 } 2777 return nullptr; 2778 } 2779 2780 /// Move the call to free before a NULL test. 2781 /// 2782 /// Check if this free is accessed after its argument has been test 2783 /// against NULL (property 0). 2784 /// If yes, it is legal to move this call in its predecessor block. 2785 /// 2786 /// The move is performed only if the block containing the call to free 2787 /// will be removed, i.e.: 2788 /// 1. it has only one predecessor P, and P has two successors 2789 /// 2. it contains the call, noops, and an unconditional branch 2790 /// 3. its successor is the same as its predecessor's successor 2791 /// 2792 /// The profitability is out-of concern here and this function should 2793 /// be called only if the caller knows this transformation would be 2794 /// profitable (e.g., for code size). 2795 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2796 const DataLayout &DL) { 2797 Value *Op = FI.getArgOperand(0); 2798 BasicBlock *FreeInstrBB = FI.getParent(); 2799 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2800 2801 // Validate part of constraint #1: Only one predecessor 2802 // FIXME: We can extend the number of predecessor, but in that case, we 2803 // would duplicate the call to free in each predecessor and it may 2804 // not be profitable even for code size. 2805 if (!PredBB) 2806 return nullptr; 2807 2808 // Validate constraint #2: Does this block contains only the call to 2809 // free, noops, and an unconditional branch? 2810 BasicBlock *SuccBB; 2811 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2812 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2813 return nullptr; 2814 2815 // If there are only 2 instructions in the block, at this point, 2816 // this is the call to free and unconditional. 2817 // If there are more than 2 instructions, check that they are noops 2818 // i.e., they won't hurt the performance of the generated code. 2819 if (FreeInstrBB->size() != 2) { 2820 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 2821 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2822 continue; 2823 auto *Cast = dyn_cast<CastInst>(&Inst); 2824 if (!Cast || !Cast->isNoopCast(DL)) 2825 return nullptr; 2826 } 2827 } 2828 // Validate the rest of constraint #1 by matching on the pred branch. 2829 Instruction *TI = PredBB->getTerminator(); 2830 BasicBlock *TrueBB, *FalseBB; 2831 ICmpInst::Predicate Pred; 2832 if (!match(TI, m_Br(m_ICmp(Pred, 2833 m_CombineOr(m_Specific(Op), 2834 m_Specific(Op->stripPointerCasts())), 2835 m_Zero()), 2836 TrueBB, FalseBB))) 2837 return nullptr; 2838 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2839 return nullptr; 2840 2841 // Validate constraint #3: Ensure the null case just falls through. 2842 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2843 return nullptr; 2844 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2845 "Broken CFG: missing edge from predecessor to successor"); 2846 2847 // At this point, we know that everything in FreeInstrBB can be moved 2848 // before TI. 2849 for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end(); 2850 It != End;) { 2851 Instruction &Instr = *It++; 2852 if (&Instr == FreeInstrBBTerminator) 2853 break; 2854 Instr.moveBefore(TI); 2855 } 2856 assert(FreeInstrBB->size() == 1 && 2857 "Only the branch instruction should remain"); 2858 return &FI; 2859 } 2860 2861 Instruction *InstCombinerImpl::visitFree(CallInst &FI) { 2862 Value *Op = FI.getArgOperand(0); 2863 2864 // free undef -> unreachable. 2865 if (isa<UndefValue>(Op)) { 2866 // Leave a marker since we can't modify the CFG here. 2867 CreateNonTerminatorUnreachable(&FI); 2868 return eraseInstFromFunction(FI); 2869 } 2870 2871 // If we have 'free null' delete the instruction. This can happen in stl code 2872 // when lots of inlining happens. 2873 if (isa<ConstantPointerNull>(Op)) 2874 return eraseInstFromFunction(FI); 2875 2876 // If we optimize for code size, try to move the call to free before the null 2877 // test so that simplify cfg can remove the empty block and dead code 2878 // elimination the branch. I.e., helps to turn something like: 2879 // if (foo) free(foo); 2880 // into 2881 // free(foo); 2882 // 2883 // Note that we can only do this for 'free' and not for any flavor of 2884 // 'operator delete'; there is no 'operator delete' symbol for which we are 2885 // permitted to invent a call, even if we're passing in a null pointer. 2886 if (MinimizeSize) { 2887 LibFunc Func; 2888 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 2889 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 2890 return I; 2891 } 2892 2893 return nullptr; 2894 } 2895 2896 static bool isMustTailCall(Value *V) { 2897 if (auto *CI = dyn_cast<CallInst>(V)) 2898 return CI->isMustTailCall(); 2899 return false; 2900 } 2901 2902 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 2903 if (RI.getNumOperands() == 0) // ret void 2904 return nullptr; 2905 2906 Value *ResultOp = RI.getOperand(0); 2907 Type *VTy = ResultOp->getType(); 2908 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp)) 2909 return nullptr; 2910 2911 // Don't replace result of musttail calls. 2912 if (isMustTailCall(ResultOp)) 2913 return nullptr; 2914 2915 // There might be assume intrinsics dominating this return that completely 2916 // determine the value. If so, constant fold it. 2917 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2918 if (Known.isConstant()) 2919 return replaceOperand(RI, 0, 2920 Constant::getIntegerValue(VTy, Known.getConstant())); 2921 2922 return nullptr; 2923 } 2924 2925 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! 2926 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 2927 // Try to remove the previous instruction if it must lead to unreachable. 2928 // This includes instructions like stores and "llvm.assume" that may not get 2929 // removed by simple dead code elimination. 2930 while (Instruction *Prev = I.getPrevNonDebugInstruction()) { 2931 // While we theoretically can erase EH, that would result in a block that 2932 // used to start with an EH no longer starting with EH, which is invalid. 2933 // To make it valid, we'd need to fixup predecessors to no longer refer to 2934 // this block, but that changes CFG, which is not allowed in InstCombine. 2935 if (Prev->isEHPad()) 2936 return nullptr; // Can not drop any more instructions. We're done here. 2937 2938 if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) 2939 return nullptr; // Can not drop any more instructions. We're done here. 2940 // Otherwise, this instruction can be freely erased, 2941 // even if it is not side-effect free. 2942 2943 // A value may still have uses before we process it here (for example, in 2944 // another unreachable block), so convert those to poison. 2945 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); 2946 eraseInstFromFunction(*Prev); 2947 } 2948 assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty."); 2949 // FIXME: recurse into unconditional predecessors? 2950 return nullptr; 2951 } 2952 2953 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 2954 assert(BI.isUnconditional() && "Only for unconditional branches."); 2955 2956 // If this store is the second-to-last instruction in the basic block 2957 // (excluding debug info and bitcasts of pointers) and if the block ends with 2958 // an unconditional branch, try to move the store to the successor block. 2959 2960 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 2961 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 2962 return isa<DbgInfoIntrinsic>(BBI) || 2963 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 2964 }; 2965 2966 BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 2967 do { 2968 if (BBI != FirstInstr) 2969 --BBI; 2970 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 2971 2972 return dyn_cast<StoreInst>(BBI); 2973 }; 2974 2975 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 2976 if (mergeStoreIntoSuccessor(*SI)) 2977 return &BI; 2978 2979 return nullptr; 2980 } 2981 2982 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 2983 if (BI.isUnconditional()) 2984 return visitUnconditionalBranchInst(BI); 2985 2986 // Change br (not X), label True, label False to: br X, label False, True 2987 Value *X = nullptr; 2988 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 2989 !isa<Constant>(X)) { 2990 // Swap Destinations and condition... 2991 BI.swapSuccessors(); 2992 return replaceOperand(BI, 0, X); 2993 } 2994 2995 // If the condition is irrelevant, remove the use so that other 2996 // transforms on the condition become more effective. 2997 if (!isa<ConstantInt>(BI.getCondition()) && 2998 BI.getSuccessor(0) == BI.getSuccessor(1)) 2999 return replaceOperand( 3000 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType())); 3001 3002 // Canonicalize, for example, fcmp_one -> fcmp_oeq. 3003 CmpInst::Predicate Pred; 3004 if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())), 3005 m_BasicBlock(), m_BasicBlock())) && 3006 !isCanonicalPredicate(Pred)) { 3007 // Swap destinations and condition. 3008 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 3009 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 3010 BI.swapSuccessors(); 3011 Worklist.push(Cond); 3012 return &BI; 3013 } 3014 3015 return nullptr; 3016 } 3017 3018 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 3019 Value *Cond = SI.getCondition(); 3020 Value *Op0; 3021 ConstantInt *AddRHS; 3022 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 3023 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 3024 for (auto Case : SI.cases()) { 3025 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 3026 assert(isa<ConstantInt>(NewCase) && 3027 "Result of expression should be constant"); 3028 Case.setValue(cast<ConstantInt>(NewCase)); 3029 } 3030 return replaceOperand(SI, 0, Op0); 3031 } 3032 3033 KnownBits Known = computeKnownBits(Cond, 0, &SI); 3034 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 3035 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 3036 3037 // Compute the number of leading bits we can ignore. 3038 // TODO: A better way to determine this would use ComputeNumSignBits(). 3039 for (auto &C : SI.cases()) { 3040 LeadingKnownZeros = std::min( 3041 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 3042 LeadingKnownOnes = std::min( 3043 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 3044 } 3045 3046 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 3047 3048 // Shrink the condition operand if the new type is smaller than the old type. 3049 // But do not shrink to a non-standard type, because backend can't generate 3050 // good code for that yet. 3051 // TODO: We can make it aggressive again after fixing PR39569. 3052 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 3053 shouldChangeType(Known.getBitWidth(), NewWidth)) { 3054 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 3055 Builder.SetInsertPoint(&SI); 3056 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 3057 3058 for (auto Case : SI.cases()) { 3059 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3060 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3061 } 3062 return replaceOperand(SI, 0, NewCond); 3063 } 3064 3065 return nullptr; 3066 } 3067 3068 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 3069 Value *Agg = EV.getAggregateOperand(); 3070 3071 if (!EV.hasIndices()) 3072 return replaceInstUsesWith(EV, Agg); 3073 3074 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 3075 SQ.getWithInstruction(&EV))) 3076 return replaceInstUsesWith(EV, V); 3077 3078 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 3079 // We're extracting from an insertvalue instruction, compare the indices 3080 const unsigned *exti, *exte, *insi, *inse; 3081 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 3082 exte = EV.idx_end(), inse = IV->idx_end(); 3083 exti != exte && insi != inse; 3084 ++exti, ++insi) { 3085 if (*insi != *exti) 3086 // The insert and extract both reference distinctly different elements. 3087 // This means the extract is not influenced by the insert, and we can 3088 // replace the aggregate operand of the extract with the aggregate 3089 // operand of the insert. i.e., replace 3090 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3091 // %E = extractvalue { i32, { i32 } } %I, 0 3092 // with 3093 // %E = extractvalue { i32, { i32 } } %A, 0 3094 return ExtractValueInst::Create(IV->getAggregateOperand(), 3095 EV.getIndices()); 3096 } 3097 if (exti == exte && insi == inse) 3098 // Both iterators are at the end: Index lists are identical. Replace 3099 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3100 // %C = extractvalue { i32, { i32 } } %B, 1, 0 3101 // with "i32 42" 3102 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 3103 if (exti == exte) { 3104 // The extract list is a prefix of the insert list. i.e. replace 3105 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3106 // %E = extractvalue { i32, { i32 } } %I, 1 3107 // with 3108 // %X = extractvalue { i32, { i32 } } %A, 1 3109 // %E = insertvalue { i32 } %X, i32 42, 0 3110 // by switching the order of the insert and extract (though the 3111 // insertvalue should be left in, since it may have other uses). 3112 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 3113 EV.getIndices()); 3114 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 3115 makeArrayRef(insi, inse)); 3116 } 3117 if (insi == inse) 3118 // The insert list is a prefix of the extract list 3119 // We can simply remove the common indices from the extract and make it 3120 // operate on the inserted value instead of the insertvalue result. 3121 // i.e., replace 3122 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3123 // %E = extractvalue { i32, { i32 } } %I, 1, 0 3124 // with 3125 // %E extractvalue { i32 } { i32 42 }, 0 3126 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 3127 makeArrayRef(exti, exte)); 3128 } 3129 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 3130 // We're extracting from an overflow intrinsic, see if we're the only user, 3131 // which allows us to simplify multiple result intrinsics to simpler 3132 // things that just get one value. 3133 if (WO->hasOneUse()) { 3134 // Check if we're grabbing only the result of a 'with overflow' intrinsic 3135 // and replace it with a traditional binary instruction. 3136 if (*EV.idx_begin() == 0) { 3137 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 3138 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 3139 // Replace the old instruction's uses with poison. 3140 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); 3141 eraseInstFromFunction(*WO); 3142 return BinaryOperator::Create(BinOp, LHS, RHS); 3143 } 3144 3145 assert(*EV.idx_begin() == 1 && 3146 "unexpected extract index for overflow inst"); 3147 3148 // If only the overflow result is used, and the right hand side is a 3149 // constant (or constant splat), we can remove the intrinsic by directly 3150 // checking for overflow. 3151 const APInt *C; 3152 if (match(WO->getRHS(), m_APInt(C))) { 3153 // Compute the no-wrap range [X,Y) for LHS given RHS=C, then 3154 // check for the inverted range using range offset trick (i.e. 3155 // use a subtract to shift the range to bottom of either the 3156 // signed or unsigned domain and then use a single compare to 3157 // check range membership). 3158 ConstantRange NWR = 3159 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 3160 WO->getNoWrapKind()); 3161 APInt Min = WO->isSigned() ? NWR.getSignedMin() : NWR.getUnsignedMin(); 3162 NWR = NWR.subtract(Min); 3163 3164 CmpInst::Predicate Pred; 3165 APInt NewRHSC; 3166 if (NWR.getEquivalentICmp(Pred, NewRHSC)) { 3167 auto *OpTy = WO->getRHS()->getType(); 3168 auto *NewLHS = Builder.CreateSub(WO->getLHS(), 3169 ConstantInt::get(OpTy, Min)); 3170 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, 3171 ConstantInt::get(OpTy, NewRHSC)); 3172 } 3173 } 3174 } 3175 } 3176 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 3177 // If the (non-volatile) load only has one use, we can rewrite this to a 3178 // load from a GEP. This reduces the size of the load. If a load is used 3179 // only by extractvalue instructions then this either must have been 3180 // optimized before, or it is a struct with padding, in which case we 3181 // don't want to do the transformation as it loses padding knowledge. 3182 if (L->isSimple() && L->hasOneUse()) { 3183 // extractvalue has integer indices, getelementptr has Value*s. Convert. 3184 SmallVector<Value*, 4> Indices; 3185 // Prefix an i32 0 since we need the first element. 3186 Indices.push_back(Builder.getInt32(0)); 3187 for (unsigned Idx : EV.indices()) 3188 Indices.push_back(Builder.getInt32(Idx)); 3189 3190 // We need to insert these at the location of the old load, not at that of 3191 // the extractvalue. 3192 Builder.SetInsertPoint(L); 3193 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 3194 L->getPointerOperand(), Indices); 3195 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 3196 // Whatever aliasing information we had for the orignal load must also 3197 // hold for the smaller load, so propagate the annotations. 3198 AAMDNodes Nodes; 3199 L->getAAMetadata(Nodes); 3200 NL->setAAMetadata(Nodes); 3201 // Returning the load directly will cause the main loop to insert it in 3202 // the wrong spot, so use replaceInstUsesWith(). 3203 return replaceInstUsesWith(EV, NL); 3204 } 3205 // We could simplify extracts from other values. Note that nested extracts may 3206 // already be simplified implicitly by the above: extract (extract (insert) ) 3207 // will be translated into extract ( insert ( extract ) ) first and then just 3208 // the value inserted, if appropriate. Similarly for extracts from single-use 3209 // loads: extract (extract (load)) will be translated to extract (load (gep)) 3210 // and if again single-use then via load (gep (gep)) to load (gep). 3211 // However, double extracts from e.g. function arguments or return values 3212 // aren't handled yet. 3213 return nullptr; 3214 } 3215 3216 /// Return 'true' if the given typeinfo will match anything. 3217 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 3218 switch (Personality) { 3219 case EHPersonality::GNU_C: 3220 case EHPersonality::GNU_C_SjLj: 3221 case EHPersonality::Rust: 3222 // The GCC C EH and Rust personality only exists to support cleanups, so 3223 // it's not clear what the semantics of catch clauses are. 3224 return false; 3225 case EHPersonality::Unknown: 3226 return false; 3227 case EHPersonality::GNU_Ada: 3228 // While __gnat_all_others_value will match any Ada exception, it doesn't 3229 // match foreign exceptions (or didn't, before gcc-4.7). 3230 return false; 3231 case EHPersonality::GNU_CXX: 3232 case EHPersonality::GNU_CXX_SjLj: 3233 case EHPersonality::GNU_ObjC: 3234 case EHPersonality::MSVC_X86SEH: 3235 case EHPersonality::MSVC_TableSEH: 3236 case EHPersonality::MSVC_CXX: 3237 case EHPersonality::CoreCLR: 3238 case EHPersonality::Wasm_CXX: 3239 case EHPersonality::XL_CXX: 3240 return TypeInfo->isNullValue(); 3241 } 3242 llvm_unreachable("invalid enum"); 3243 } 3244 3245 static bool shorter_filter(const Value *LHS, const Value *RHS) { 3246 return 3247 cast<ArrayType>(LHS->getType())->getNumElements() 3248 < 3249 cast<ArrayType>(RHS->getType())->getNumElements(); 3250 } 3251 3252 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 3253 // The logic here should be correct for any real-world personality function. 3254 // However if that turns out not to be true, the offending logic can always 3255 // be conditioned on the personality function, like the catch-all logic is. 3256 EHPersonality Personality = 3257 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 3258 3259 // Simplify the list of clauses, eg by removing repeated catch clauses 3260 // (these are often created by inlining). 3261 bool MakeNewInstruction = false; // If true, recreate using the following: 3262 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 3263 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 3264 3265 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 3266 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 3267 bool isLastClause = i + 1 == e; 3268 if (LI.isCatch(i)) { 3269 // A catch clause. 3270 Constant *CatchClause = LI.getClause(i); 3271 Constant *TypeInfo = CatchClause->stripPointerCasts(); 3272 3273 // If we already saw this clause, there is no point in having a second 3274 // copy of it. 3275 if (AlreadyCaught.insert(TypeInfo).second) { 3276 // This catch clause was not already seen. 3277 NewClauses.push_back(CatchClause); 3278 } else { 3279 // Repeated catch clause - drop the redundant copy. 3280 MakeNewInstruction = true; 3281 } 3282 3283 // If this is a catch-all then there is no point in keeping any following 3284 // clauses or marking the landingpad as having a cleanup. 3285 if (isCatchAll(Personality, TypeInfo)) { 3286 if (!isLastClause) 3287 MakeNewInstruction = true; 3288 CleanupFlag = false; 3289 break; 3290 } 3291 } else { 3292 // A filter clause. If any of the filter elements were already caught 3293 // then they can be dropped from the filter. It is tempting to try to 3294 // exploit the filter further by saying that any typeinfo that does not 3295 // occur in the filter can't be caught later (and thus can be dropped). 3296 // However this would be wrong, since typeinfos can match without being 3297 // equal (for example if one represents a C++ class, and the other some 3298 // class derived from it). 3299 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 3300 Constant *FilterClause = LI.getClause(i); 3301 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 3302 unsigned NumTypeInfos = FilterType->getNumElements(); 3303 3304 // An empty filter catches everything, so there is no point in keeping any 3305 // following clauses or marking the landingpad as having a cleanup. By 3306 // dealing with this case here the following code is made a bit simpler. 3307 if (!NumTypeInfos) { 3308 NewClauses.push_back(FilterClause); 3309 if (!isLastClause) 3310 MakeNewInstruction = true; 3311 CleanupFlag = false; 3312 break; 3313 } 3314 3315 bool MakeNewFilter = false; // If true, make a new filter. 3316 SmallVector<Constant *, 16> NewFilterElts; // New elements. 3317 if (isa<ConstantAggregateZero>(FilterClause)) { 3318 // Not an empty filter - it contains at least one null typeinfo. 3319 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 3320 Constant *TypeInfo = 3321 Constant::getNullValue(FilterType->getElementType()); 3322 // If this typeinfo is a catch-all then the filter can never match. 3323 if (isCatchAll(Personality, TypeInfo)) { 3324 // Throw the filter away. 3325 MakeNewInstruction = true; 3326 continue; 3327 } 3328 3329 // There is no point in having multiple copies of this typeinfo, so 3330 // discard all but the first copy if there is more than one. 3331 NewFilterElts.push_back(TypeInfo); 3332 if (NumTypeInfos > 1) 3333 MakeNewFilter = true; 3334 } else { 3335 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 3336 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 3337 NewFilterElts.reserve(NumTypeInfos); 3338 3339 // Remove any filter elements that were already caught or that already 3340 // occurred in the filter. While there, see if any of the elements are 3341 // catch-alls. If so, the filter can be discarded. 3342 bool SawCatchAll = false; 3343 for (unsigned j = 0; j != NumTypeInfos; ++j) { 3344 Constant *Elt = Filter->getOperand(j); 3345 Constant *TypeInfo = Elt->stripPointerCasts(); 3346 if (isCatchAll(Personality, TypeInfo)) { 3347 // This element is a catch-all. Bail out, noting this fact. 3348 SawCatchAll = true; 3349 break; 3350 } 3351 3352 // Even if we've seen a type in a catch clause, we don't want to 3353 // remove it from the filter. An unexpected type handler may be 3354 // set up for a call site which throws an exception of the same 3355 // type caught. In order for the exception thrown by the unexpected 3356 // handler to propagate correctly, the filter must be correctly 3357 // described for the call site. 3358 // 3359 // Example: 3360 // 3361 // void unexpected() { throw 1;} 3362 // void foo() throw (int) { 3363 // std::set_unexpected(unexpected); 3364 // try { 3365 // throw 2.0; 3366 // } catch (int i) {} 3367 // } 3368 3369 // There is no point in having multiple copies of the same typeinfo in 3370 // a filter, so only add it if we didn't already. 3371 if (SeenInFilter.insert(TypeInfo).second) 3372 NewFilterElts.push_back(cast<Constant>(Elt)); 3373 } 3374 // A filter containing a catch-all cannot match anything by definition. 3375 if (SawCatchAll) { 3376 // Throw the filter away. 3377 MakeNewInstruction = true; 3378 continue; 3379 } 3380 3381 // If we dropped something from the filter, make a new one. 3382 if (NewFilterElts.size() < NumTypeInfos) 3383 MakeNewFilter = true; 3384 } 3385 if (MakeNewFilter) { 3386 FilterType = ArrayType::get(FilterType->getElementType(), 3387 NewFilterElts.size()); 3388 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 3389 MakeNewInstruction = true; 3390 } 3391 3392 NewClauses.push_back(FilterClause); 3393 3394 // If the new filter is empty then it will catch everything so there is 3395 // no point in keeping any following clauses or marking the landingpad 3396 // as having a cleanup. The case of the original filter being empty was 3397 // already handled above. 3398 if (MakeNewFilter && !NewFilterElts.size()) { 3399 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3400 CleanupFlag = false; 3401 break; 3402 } 3403 } 3404 } 3405 3406 // If several filters occur in a row then reorder them so that the shortest 3407 // filters come first (those with the smallest number of elements). This is 3408 // advantageous because shorter filters are more likely to match, speeding up 3409 // unwinding, but mostly because it increases the effectiveness of the other 3410 // filter optimizations below. 3411 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3412 unsigned j; 3413 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3414 for (j = i; j != e; ++j) 3415 if (!isa<ArrayType>(NewClauses[j]->getType())) 3416 break; 3417 3418 // Check whether the filters are already sorted by length. We need to know 3419 // if sorting them is actually going to do anything so that we only make a 3420 // new landingpad instruction if it does. 3421 for (unsigned k = i; k + 1 < j; ++k) 3422 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3423 // Not sorted, so sort the filters now. Doing an unstable sort would be 3424 // correct too but reordering filters pointlessly might confuse users. 3425 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3426 shorter_filter); 3427 MakeNewInstruction = true; 3428 break; 3429 } 3430 3431 // Look for the next batch of filters. 3432 i = j + 1; 3433 } 3434 3435 // If typeinfos matched if and only if equal, then the elements of a filter L 3436 // that occurs later than a filter F could be replaced by the intersection of 3437 // the elements of F and L. In reality two typeinfos can match without being 3438 // equal (for example if one represents a C++ class, and the other some class 3439 // derived from it) so it would be wrong to perform this transform in general. 3440 // However the transform is correct and useful if F is a subset of L. In that 3441 // case L can be replaced by F, and thus removed altogether since repeating a 3442 // filter is pointless. So here we look at all pairs of filters F and L where 3443 // L follows F in the list of clauses, and remove L if every element of F is 3444 // an element of L. This can occur when inlining C++ functions with exception 3445 // specifications. 3446 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3447 // Examine each filter in turn. 3448 Value *Filter = NewClauses[i]; 3449 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3450 if (!FTy) 3451 // Not a filter - skip it. 3452 continue; 3453 unsigned FElts = FTy->getNumElements(); 3454 // Examine each filter following this one. Doing this backwards means that 3455 // we don't have to worry about filters disappearing under us when removed. 3456 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3457 Value *LFilter = NewClauses[j]; 3458 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3459 if (!LTy) 3460 // Not a filter - skip it. 3461 continue; 3462 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3463 // an element of LFilter, then discard LFilter. 3464 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3465 // If Filter is empty then it is a subset of LFilter. 3466 if (!FElts) { 3467 // Discard LFilter. 3468 NewClauses.erase(J); 3469 MakeNewInstruction = true; 3470 // Move on to the next filter. 3471 continue; 3472 } 3473 unsigned LElts = LTy->getNumElements(); 3474 // If Filter is longer than LFilter then it cannot be a subset of it. 3475 if (FElts > LElts) 3476 // Move on to the next filter. 3477 continue; 3478 // At this point we know that LFilter has at least one element. 3479 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3480 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3481 // already know that Filter is not longer than LFilter). 3482 if (isa<ConstantAggregateZero>(Filter)) { 3483 assert(FElts <= LElts && "Should have handled this case earlier!"); 3484 // Discard LFilter. 3485 NewClauses.erase(J); 3486 MakeNewInstruction = true; 3487 } 3488 // Move on to the next filter. 3489 continue; 3490 } 3491 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3492 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3493 // Since Filter is non-empty and contains only zeros, it is a subset of 3494 // LFilter iff LFilter contains a zero. 3495 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3496 for (unsigned l = 0; l != LElts; ++l) 3497 if (LArray->getOperand(l)->isNullValue()) { 3498 // LFilter contains a zero - discard it. 3499 NewClauses.erase(J); 3500 MakeNewInstruction = true; 3501 break; 3502 } 3503 // Move on to the next filter. 3504 continue; 3505 } 3506 // At this point we know that both filters are ConstantArrays. Loop over 3507 // operands to see whether every element of Filter is also an element of 3508 // LFilter. Since filters tend to be short this is probably faster than 3509 // using a method that scales nicely. 3510 ConstantArray *FArray = cast<ConstantArray>(Filter); 3511 bool AllFound = true; 3512 for (unsigned f = 0; f != FElts; ++f) { 3513 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3514 AllFound = false; 3515 for (unsigned l = 0; l != LElts; ++l) { 3516 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3517 if (LTypeInfo == FTypeInfo) { 3518 AllFound = true; 3519 break; 3520 } 3521 } 3522 if (!AllFound) 3523 break; 3524 } 3525 if (AllFound) { 3526 // Discard LFilter. 3527 NewClauses.erase(J); 3528 MakeNewInstruction = true; 3529 } 3530 // Move on to the next filter. 3531 } 3532 } 3533 3534 // If we changed any of the clauses, replace the old landingpad instruction 3535 // with a new one. 3536 if (MakeNewInstruction) { 3537 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3538 NewClauses.size()); 3539 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3540 NLI->addClause(NewClauses[i]); 3541 // A landing pad with no clauses must have the cleanup flag set. It is 3542 // theoretically possible, though highly unlikely, that we eliminated all 3543 // clauses. If so, force the cleanup flag to true. 3544 if (NewClauses.empty()) 3545 CleanupFlag = true; 3546 NLI->setCleanup(CleanupFlag); 3547 return NLI; 3548 } 3549 3550 // Even if none of the clauses changed, we may nonetheless have understood 3551 // that the cleanup flag is pointless. Clear it if so. 3552 if (LI.isCleanup() != CleanupFlag) { 3553 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3554 LI.setCleanup(CleanupFlag); 3555 return &LI; 3556 } 3557 3558 return nullptr; 3559 } 3560 3561 Value * 3562 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { 3563 // Try to push freeze through instructions that propagate but don't produce 3564 // poison as far as possible. If an operand of freeze follows three 3565 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one 3566 // guaranteed-non-poison operands then push the freeze through to the one 3567 // operand that is not guaranteed non-poison. The actual transform is as 3568 // follows. 3569 // Op1 = ... ; Op1 can be posion 3570 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have 3571 // ; single guaranteed-non-poison operands 3572 // ... = Freeze(Op0) 3573 // => 3574 // Op1 = ... 3575 // Op1.fr = Freeze(Op1) 3576 // ... = Inst(Op1.fr, NonPoisonOps...) 3577 auto *OrigOp = OrigFI.getOperand(0); 3578 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp); 3579 3580 // While we could change the other users of OrigOp to use freeze(OrigOp), that 3581 // potentially reduces their optimization potential, so let's only do this iff 3582 // the OrigOp is only used by the freeze. 3583 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp) || 3584 canCreateUndefOrPoison(dyn_cast<Operator>(OrigOp))) 3585 return nullptr; 3586 3587 // If operand is guaranteed not to be poison, there is no need to add freeze 3588 // to the operand. So we first find the operand that is not guaranteed to be 3589 // poison. 3590 Use *MaybePoisonOperand = nullptr; 3591 for (Use &U : OrigOpInst->operands()) { 3592 if (isGuaranteedNotToBeUndefOrPoison(U.get())) 3593 continue; 3594 if (!MaybePoisonOperand) 3595 MaybePoisonOperand = &U; 3596 else 3597 return nullptr; 3598 } 3599 3600 // If all operands are guaranteed to be non-poison, we can drop freeze. 3601 if (!MaybePoisonOperand) 3602 return OrigOp; 3603 3604 auto *FrozenMaybePoisonOperand = new FreezeInst( 3605 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); 3606 3607 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); 3608 FrozenMaybePoisonOperand->insertBefore(OrigOpInst); 3609 return OrigOp; 3610 } 3611 3612 bool InstCombinerImpl::freezeDominatedUses(FreezeInst &FI) { 3613 Value *Op = FI.getOperand(0); 3614 3615 if (isa<Constant>(Op)) 3616 return false; 3617 3618 bool Changed = false; 3619 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { 3620 bool Dominates = DT.dominates(&FI, U); 3621 Changed |= Dominates; 3622 return Dominates; 3623 }); 3624 3625 return Changed; 3626 } 3627 3628 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 3629 Value *Op0 = I.getOperand(0); 3630 3631 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3632 return replaceInstUsesWith(I, V); 3633 3634 // freeze (phi const, x) --> phi const, (freeze x) 3635 if (auto *PN = dyn_cast<PHINode>(Op0)) { 3636 if (Instruction *NV = foldOpIntoPhi(I, PN)) 3637 return NV; 3638 } 3639 3640 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) 3641 return replaceInstUsesWith(I, NI); 3642 3643 if (match(Op0, m_Undef())) { 3644 // If I is freeze(undef), see its uses and fold it to the best constant. 3645 // - or: pick -1 3646 // - select's condition: pick the value that leads to choosing a constant 3647 // - other ops: pick 0 3648 Constant *BestValue = nullptr; 3649 Constant *NullValue = Constant::getNullValue(I.getType()); 3650 for (const auto *U : I.users()) { 3651 Constant *C = NullValue; 3652 3653 if (match(U, m_Or(m_Value(), m_Value()))) 3654 C = Constant::getAllOnesValue(I.getType()); 3655 else if (const auto *SI = dyn_cast<SelectInst>(U)) { 3656 if (SI->getCondition() == &I) { 3657 APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1); 3658 C = Constant::getIntegerValue(I.getType(), CondVal); 3659 } 3660 } 3661 3662 if (!BestValue) 3663 BestValue = C; 3664 else if (BestValue != C) 3665 BestValue = NullValue; 3666 } 3667 3668 return replaceInstUsesWith(I, BestValue); 3669 } 3670 3671 // Replace all dominated uses of Op to freeze(Op). 3672 if (freezeDominatedUses(I)) 3673 return &I; 3674 3675 return nullptr; 3676 } 3677 3678 /// Try to move the specified instruction from its current block into the 3679 /// beginning of DestBlock, which can only happen if it's safe to move the 3680 /// instruction past all of the instructions between it and the end of its 3681 /// block. 3682 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 3683 assert(I->getSingleUndroppableUse() && "Invariants didn't hold!"); 3684 BasicBlock *SrcBlock = I->getParent(); 3685 3686 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3687 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 3688 I->isTerminator()) 3689 return false; 3690 3691 // Do not sink static or dynamic alloca instructions. Static allocas must 3692 // remain in the entry block, and dynamic allocas must not be sunk in between 3693 // a stacksave / stackrestore pair, which would incorrectly shorten its 3694 // lifetime. 3695 if (isa<AllocaInst>(I)) 3696 return false; 3697 3698 // Do not sink into catchswitch blocks. 3699 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 3700 return false; 3701 3702 // Do not sink convergent call instructions. 3703 if (auto *CI = dyn_cast<CallInst>(I)) { 3704 if (CI->isConvergent()) 3705 return false; 3706 } 3707 // We can only sink load instructions if there is nothing between the load and 3708 // the end of block that could change the value. 3709 if (I->mayReadFromMemory()) { 3710 // We don't want to do any sophisticated alias analysis, so we only check 3711 // the instructions after I in I's parent block if we try to sink to its 3712 // successor block. 3713 if (DestBlock->getUniquePredecessor() != I->getParent()) 3714 return false; 3715 for (BasicBlock::iterator Scan = I->getIterator(), 3716 E = I->getParent()->end(); 3717 Scan != E; ++Scan) 3718 if (Scan->mayWriteToMemory()) 3719 return false; 3720 } 3721 3722 I->dropDroppableUses([DestBlock](const Use *U) { 3723 if (auto *I = dyn_cast<Instruction>(U->getUser())) 3724 return I->getParent() != DestBlock; 3725 return true; 3726 }); 3727 /// FIXME: We could remove droppable uses that are not dominated by 3728 /// the new position. 3729 3730 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 3731 I->moveBefore(&*InsertPos); 3732 ++NumSunkInst; 3733 3734 // Also sink all related debug uses from the source basic block. Otherwise we 3735 // get debug use before the def. Attempt to salvage debug uses first, to 3736 // maximise the range variables have location for. If we cannot salvage, then 3737 // mark the location undef: we know it was supposed to receive a new location 3738 // here, but that computation has been sunk. 3739 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 3740 findDbgUsers(DbgUsers, I); 3741 // Process the sinking DbgUsers in reverse order, as we only want to clone the 3742 // last appearing debug intrinsic for each given variable. 3743 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 3744 for (DbgVariableIntrinsic *DVI : DbgUsers) 3745 if (DVI->getParent() == SrcBlock) 3746 DbgUsersToSink.push_back(DVI); 3747 llvm::sort(DbgUsersToSink, 3748 [](auto *A, auto *B) { return B->comesBefore(A); }); 3749 3750 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 3751 SmallSet<DebugVariable, 4> SunkVariables; 3752 for (auto User : DbgUsersToSink) { 3753 // A dbg.declare instruction should not be cloned, since there can only be 3754 // one per variable fragment. It should be left in the original place 3755 // because the sunk instruction is not an alloca (otherwise we could not be 3756 // here). 3757 if (isa<DbgDeclareInst>(User)) 3758 continue; 3759 3760 DebugVariable DbgUserVariable = 3761 DebugVariable(User->getVariable(), User->getExpression(), 3762 User->getDebugLoc()->getInlinedAt()); 3763 3764 if (!SunkVariables.insert(DbgUserVariable).second) 3765 continue; 3766 3767 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 3768 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 3769 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 3770 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 3771 } 3772 3773 // Perform salvaging without the clones, then sink the clones. 3774 if (!DIIClones.empty()) { 3775 salvageDebugInfoForDbgValues(*I, DbgUsers); 3776 // The clones are in reverse order of original appearance, reverse again to 3777 // maintain the original order. 3778 for (auto &DIIClone : llvm::reverse(DIIClones)) { 3779 DIIClone->insertBefore(&*InsertPos); 3780 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 3781 } 3782 } 3783 3784 return true; 3785 } 3786 3787 bool InstCombinerImpl::run() { 3788 while (!Worklist.isEmpty()) { 3789 // Walk deferred instructions in reverse order, and push them to the 3790 // worklist, which means they'll end up popped from the worklist in-order. 3791 while (Instruction *I = Worklist.popDeferred()) { 3792 // Check to see if we can DCE the instruction. We do this already here to 3793 // reduce the number of uses and thus allow other folds to trigger. 3794 // Note that eraseInstFromFunction() may push additional instructions on 3795 // the deferred worklist, so this will DCE whole instruction chains. 3796 if (isInstructionTriviallyDead(I, &TLI)) { 3797 eraseInstFromFunction(*I); 3798 ++NumDeadInst; 3799 continue; 3800 } 3801 3802 Worklist.push(I); 3803 } 3804 3805 Instruction *I = Worklist.removeOne(); 3806 if (I == nullptr) continue; // skip null values. 3807 3808 // Check to see if we can DCE the instruction. 3809 if (isInstructionTriviallyDead(I, &TLI)) { 3810 eraseInstFromFunction(*I); 3811 ++NumDeadInst; 3812 continue; 3813 } 3814 3815 if (!DebugCounter::shouldExecute(VisitCounter)) 3816 continue; 3817 3818 // Instruction isn't dead, see if we can constant propagate it. 3819 if (!I->use_empty() && 3820 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 3821 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 3822 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 3823 << '\n'); 3824 3825 // Add operands to the worklist. 3826 replaceInstUsesWith(*I, C); 3827 ++NumConstProp; 3828 if (isInstructionTriviallyDead(I, &TLI)) 3829 eraseInstFromFunction(*I); 3830 MadeIRChange = true; 3831 continue; 3832 } 3833 } 3834 3835 // See if we can trivially sink this instruction to its user if we can 3836 // prove that the successor is not executed more frequently than our block. 3837 if (EnableCodeSinking) 3838 if (Use *SingleUse = I->getSingleUndroppableUse()) { 3839 BasicBlock *BB = I->getParent(); 3840 Instruction *UserInst = cast<Instruction>(SingleUse->getUser()); 3841 BasicBlock *UserParent; 3842 3843 // Get the block the use occurs in. 3844 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 3845 UserParent = PN->getIncomingBlock(*SingleUse); 3846 else 3847 UserParent = UserInst->getParent(); 3848 3849 // Try sinking to another block. If that block is unreachable, then do 3850 // not bother. SimplifyCFG should handle it. 3851 if (UserParent != BB && DT.isReachableFromEntry(UserParent)) { 3852 // See if the user is one of our successors that has only one 3853 // predecessor, so that we don't have to split the critical edge. 3854 bool ShouldSink = UserParent->getUniquePredecessor() == BB; 3855 // Another option where we can sink is a block that ends with a 3856 // terminator that does not pass control to other block (such as 3857 // return or unreachable). In this case: 3858 // - I dominates the User (by SSA form); 3859 // - the User will be executed at most once. 3860 // So sinking I down to User is always profitable or neutral. 3861 if (!ShouldSink) { 3862 auto *Term = UserParent->getTerminator(); 3863 ShouldSink = isa<ReturnInst>(Term) || isa<UnreachableInst>(Term); 3864 } 3865 if (ShouldSink) { 3866 assert(DT.dominates(BB, UserParent) && 3867 "Dominance relation broken?"); 3868 // Okay, the CFG is simple enough, try to sink this instruction. 3869 if (TryToSinkInstruction(I, UserParent)) { 3870 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3871 MadeIRChange = true; 3872 // We'll add uses of the sunk instruction below, but since sinking 3873 // can expose opportunities for it's *operands* add them to the 3874 // worklist 3875 for (Use &U : I->operands()) 3876 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3877 Worklist.push(OpI); 3878 } 3879 } 3880 } 3881 } 3882 3883 // Now that we have an instruction, try combining it to simplify it. 3884 Builder.SetInsertPoint(I); 3885 Builder.CollectMetadataToCopy( 3886 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 3887 3888 #ifndef NDEBUG 3889 std::string OrigI; 3890 #endif 3891 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 3892 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 3893 3894 if (Instruction *Result = visit(*I)) { 3895 ++NumCombined; 3896 // Should we replace the old instruction with a new one? 3897 if (Result != I) { 3898 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 3899 << " New = " << *Result << '\n'); 3900 3901 Result->copyMetadata(*I, 3902 {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 3903 // Everything uses the new instruction now. 3904 I->replaceAllUsesWith(Result); 3905 3906 // Move the name to the new instruction first. 3907 Result->takeName(I); 3908 3909 // Insert the new instruction into the basic block... 3910 BasicBlock *InstParent = I->getParent(); 3911 BasicBlock::iterator InsertPos = I->getIterator(); 3912 3913 // Are we replace a PHI with something that isn't a PHI, or vice versa? 3914 if (isa<PHINode>(Result) != isa<PHINode>(I)) { 3915 // We need to fix up the insertion point. 3916 if (isa<PHINode>(I)) // PHI -> Non-PHI 3917 InsertPos = InstParent->getFirstInsertionPt(); 3918 else // Non-PHI -> PHI 3919 InsertPos = InstParent->getFirstNonPHI()->getIterator(); 3920 } 3921 3922 InstParent->getInstList().insert(InsertPos, Result); 3923 3924 // Push the new instruction and any users onto the worklist. 3925 Worklist.pushUsersToWorkList(*Result); 3926 Worklist.push(Result); 3927 3928 eraseInstFromFunction(*I); 3929 } else { 3930 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3931 << " New = " << *I << '\n'); 3932 3933 // If the instruction was modified, it's possible that it is now dead. 3934 // if so, remove it. 3935 if (isInstructionTriviallyDead(I, &TLI)) { 3936 eraseInstFromFunction(*I); 3937 } else { 3938 Worklist.pushUsersToWorkList(*I); 3939 Worklist.push(I); 3940 } 3941 } 3942 MadeIRChange = true; 3943 } 3944 } 3945 3946 Worklist.zap(); 3947 return MadeIRChange; 3948 } 3949 3950 // Track the scopes used by !alias.scope and !noalias. In a function, a 3951 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 3952 // by both sets. If not, the declaration of the scope can be safely omitted. 3953 // The MDNode of the scope can be omitted as well for the instructions that are 3954 // part of this function. We do not do that at this point, as this might become 3955 // too time consuming to do. 3956 class AliasScopeTracker { 3957 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 3958 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 3959 3960 public: 3961 void analyse(Instruction *I) { 3962 // This seems to be faster than checking 'mayReadOrWriteMemory()'. 3963 if (!I->hasMetadataOtherThanDebugLoc()) 3964 return; 3965 3966 auto Track = [](Metadata *ScopeList, auto &Container) { 3967 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 3968 if (!MDScopeList || !Container.insert(MDScopeList).second) 3969 return; 3970 for (auto &MDOperand : MDScopeList->operands()) 3971 if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 3972 Container.insert(MDScope); 3973 }; 3974 3975 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 3976 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 3977 } 3978 3979 bool isNoAliasScopeDeclDead(Instruction *Inst) { 3980 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 3981 if (!Decl) 3982 return false; 3983 3984 assert(Decl->use_empty() && 3985 "llvm.experimental.noalias.scope.decl in use ?"); 3986 const MDNode *MDSL = Decl->getScopeList(); 3987 assert(MDSL->getNumOperands() == 1 && 3988 "llvm.experimental.noalias.scope should refer to a single scope"); 3989 auto &MDOperand = MDSL->getOperand(0); 3990 if (auto *MD = dyn_cast<MDNode>(MDOperand)) 3991 return !UsedAliasScopesAndLists.contains(MD) || 3992 !UsedNoAliasScopesAndLists.contains(MD); 3993 3994 // Not an MDNode ? throw away. 3995 return true; 3996 } 3997 }; 3998 3999 /// Populate the IC worklist from a function, by walking it in depth-first 4000 /// order and adding all reachable code to the worklist. 4001 /// 4002 /// This has a couple of tricks to make the code faster and more powerful. In 4003 /// particular, we constant fold and DCE instructions as we go, to avoid adding 4004 /// them to the worklist (this significantly speeds up instcombine on code where 4005 /// many instructions are dead or constant). Additionally, if we find a branch 4006 /// whose condition is a known constant, we only visit the reachable successors. 4007 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 4008 const TargetLibraryInfo *TLI, 4009 InstCombineWorklist &ICWorklist) { 4010 bool MadeIRChange = false; 4011 SmallPtrSet<BasicBlock *, 32> Visited; 4012 SmallVector<BasicBlock*, 256> Worklist; 4013 Worklist.push_back(&F.front()); 4014 4015 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 4016 DenseMap<Constant *, Constant *> FoldedConstants; 4017 AliasScopeTracker SeenAliasScopes; 4018 4019 do { 4020 BasicBlock *BB = Worklist.pop_back_val(); 4021 4022 // We have now visited this block! If we've already been here, ignore it. 4023 if (!Visited.insert(BB).second) 4024 continue; 4025 4026 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 4027 Instruction *Inst = &*BBI++; 4028 4029 // ConstantProp instruction if trivially constant. 4030 if (!Inst->use_empty() && 4031 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 4032 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 4033 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst 4034 << '\n'); 4035 Inst->replaceAllUsesWith(C); 4036 ++NumConstProp; 4037 if (isInstructionTriviallyDead(Inst, TLI)) 4038 Inst->eraseFromParent(); 4039 MadeIRChange = true; 4040 continue; 4041 } 4042 4043 // See if we can constant fold its operands. 4044 for (Use &U : Inst->operands()) { 4045 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 4046 continue; 4047 4048 auto *C = cast<Constant>(U); 4049 Constant *&FoldRes = FoldedConstants[C]; 4050 if (!FoldRes) 4051 FoldRes = ConstantFoldConstant(C, DL, TLI); 4052 4053 if (FoldRes != C) { 4054 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst 4055 << "\n Old = " << *C 4056 << "\n New = " << *FoldRes << '\n'); 4057 U = FoldRes; 4058 MadeIRChange = true; 4059 } 4060 } 4061 4062 // Skip processing debug and pseudo intrinsics in InstCombine. Processing 4063 // these call instructions consumes non-trivial amount of time and 4064 // provides no value for the optimization. 4065 if (!Inst->isDebugOrPseudoInst()) { 4066 InstrsForInstCombineWorklist.push_back(Inst); 4067 SeenAliasScopes.analyse(Inst); 4068 } 4069 } 4070 4071 // Recursively visit successors. If this is a branch or switch on a 4072 // constant, only visit the reachable successor. 4073 Instruction *TI = BB->getTerminator(); 4074 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 4075 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 4076 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 4077 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 4078 Worklist.push_back(ReachableBB); 4079 continue; 4080 } 4081 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 4082 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 4083 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 4084 continue; 4085 } 4086 } 4087 4088 append_range(Worklist, successors(TI)); 4089 } while (!Worklist.empty()); 4090 4091 // Remove instructions inside unreachable blocks. This prevents the 4092 // instcombine code from having to deal with some bad special cases, and 4093 // reduces use counts of instructions. 4094 for (BasicBlock &BB : F) { 4095 if (Visited.count(&BB)) 4096 continue; 4097 4098 unsigned NumDeadInstInBB; 4099 unsigned NumDeadDbgInstInBB; 4100 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 4101 removeAllNonTerminatorAndEHPadInstructions(&BB); 4102 4103 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 4104 NumDeadInst += NumDeadInstInBB; 4105 } 4106 4107 // Once we've found all of the instructions to add to instcombine's worklist, 4108 // add them in reverse order. This way instcombine will visit from the top 4109 // of the function down. This jives well with the way that it adds all uses 4110 // of instructions to the worklist after doing a transformation, thus avoiding 4111 // some N^2 behavior in pathological cases. 4112 ICWorklist.reserve(InstrsForInstCombineWorklist.size()); 4113 for (Instruction *Inst : reverse(InstrsForInstCombineWorklist)) { 4114 // DCE instruction if trivially dead. As we iterate in reverse program 4115 // order here, we will clean up whole chains of dead instructions. 4116 if (isInstructionTriviallyDead(Inst, TLI) || 4117 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 4118 ++NumDeadInst; 4119 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 4120 salvageDebugInfo(*Inst); 4121 Inst->eraseFromParent(); 4122 MadeIRChange = true; 4123 continue; 4124 } 4125 4126 ICWorklist.push(Inst); 4127 } 4128 4129 return MadeIRChange; 4130 } 4131 4132 static bool combineInstructionsOverFunction( 4133 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, 4134 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 4135 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 4136 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) { 4137 auto &DL = F.getParent()->getDataLayout(); 4138 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 4139 4140 /// Builder - This is an IRBuilder that automatically inserts new 4141 /// instructions into the worklist when they are created. 4142 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 4143 F.getContext(), TargetFolder(DL), 4144 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 4145 Worklist.add(I); 4146 if (auto *Assume = dyn_cast<AssumeInst>(I)) 4147 AC.registerAssumption(Assume); 4148 })); 4149 4150 // Lower dbg.declare intrinsics otherwise their value may be clobbered 4151 // by instcombiner. 4152 bool MadeIRChange = false; 4153 if (ShouldLowerDbgDeclare) 4154 MadeIRChange = LowerDbgDeclare(F); 4155 4156 // Iterate while there is work to do. 4157 unsigned Iteration = 0; 4158 while (true) { 4159 ++NumWorklistIterations; 4160 ++Iteration; 4161 4162 if (Iteration > InfiniteLoopDetectionThreshold) { 4163 report_fatal_error( 4164 "Instruction Combining seems stuck in an infinite loop after " + 4165 Twine(InfiniteLoopDetectionThreshold) + " iterations."); 4166 } 4167 4168 if (Iteration > MaxIterations) { 4169 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 4170 << " on " << F.getName() 4171 << " reached; stopping before reaching a fixpoint\n"); 4172 break; 4173 } 4174 4175 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 4176 << F.getName() << "\n"); 4177 4178 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 4179 4180 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 4181 ORE, BFI, PSI, DL, LI); 4182 IC.MaxArraySizeForCombine = MaxArraySize; 4183 4184 if (!IC.run()) 4185 break; 4186 4187 MadeIRChange = true; 4188 } 4189 4190 return MadeIRChange; 4191 } 4192 4193 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {} 4194 4195 InstCombinePass::InstCombinePass(unsigned MaxIterations) 4196 : MaxIterations(MaxIterations) {} 4197 4198 PreservedAnalyses InstCombinePass::run(Function &F, 4199 FunctionAnalysisManager &AM) { 4200 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4201 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4202 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4203 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4204 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 4205 4206 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 4207 4208 auto *AA = &AM.getResult<AAManager>(F); 4209 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 4210 ProfileSummaryInfo *PSI = 4211 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 4212 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 4213 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 4214 4215 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4216 BFI, PSI, MaxIterations, LI)) 4217 // No changes, all analyses are preserved. 4218 return PreservedAnalyses::all(); 4219 4220 // Mark all the analyses that instcombine updates as preserved. 4221 PreservedAnalyses PA; 4222 PA.preserveSet<CFGAnalyses>(); 4223 return PA; 4224 } 4225 4226 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 4227 AU.setPreservesCFG(); 4228 AU.addRequired<AAResultsWrapperPass>(); 4229 AU.addRequired<AssumptionCacheTracker>(); 4230 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4231 AU.addRequired<TargetTransformInfoWrapperPass>(); 4232 AU.addRequired<DominatorTreeWrapperPass>(); 4233 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4234 AU.addPreserved<DominatorTreeWrapperPass>(); 4235 AU.addPreserved<AAResultsWrapperPass>(); 4236 AU.addPreserved<BasicAAWrapperPass>(); 4237 AU.addPreserved<GlobalsAAWrapperPass>(); 4238 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 4239 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 4240 } 4241 4242 bool InstructionCombiningPass::runOnFunction(Function &F) { 4243 if (skipFunction(F)) 4244 return false; 4245 4246 // Required analyses. 4247 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4248 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4249 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 4250 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4251 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4252 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4253 4254 // Optional analyses. 4255 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 4256 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 4257 ProfileSummaryInfo *PSI = 4258 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 4259 BlockFrequencyInfo *BFI = 4260 (PSI && PSI->hasProfileSummary()) ? 4261 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 4262 nullptr; 4263 4264 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4265 BFI, PSI, MaxIterations, LI); 4266 } 4267 4268 char InstructionCombiningPass::ID = 0; 4269 4270 InstructionCombiningPass::InstructionCombiningPass() 4271 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) { 4272 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4273 } 4274 4275 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations) 4276 : FunctionPass(ID), MaxIterations(MaxIterations) { 4277 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4278 } 4279 4280 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 4281 "Combine redundant instructions", false, false) 4282 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4283 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4284 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4285 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4286 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4287 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4288 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 4289 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 4290 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 4291 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 4292 "Combine redundant instructions", false, false) 4293 4294 // Initialization Routines 4295 void llvm::initializeInstCombine(PassRegistry &Registry) { 4296 initializeInstructionCombiningPassPass(Registry); 4297 } 4298 4299 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 4300 initializeInstructionCombiningPassPass(*unwrap(R)); 4301 } 4302 4303 FunctionPass *llvm::createInstructionCombiningPass() { 4304 return new InstructionCombiningPass(); 4305 } 4306 4307 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) { 4308 return new InstructionCombiningPass(MaxIterations); 4309 } 4310 4311 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 4312 unwrap(PM)->add(createInstructionCombiningPass()); 4313 } 4314