1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // InstructionCombining - Combine instructions to form fewer, simple
11 // instructions.  This pass does not modify the CFG.  This pass is where
12 // algebraic simplification happens.
13 //
14 // This pass combines things like:
15 //    %Y = add i32 %X, 1
16 //    %Z = add i32 %Y, 1
17 // into:
18 //    %Z = add i32 %X, 2
19 //
20 // This is a simple worklist driven algorithm.
21 //
22 // This pass guarantees that the following canonicalizations are performed on
23 // the program:
24 //    1. If a binary operator has a constant operand, it is moved to the RHS
25 //    2. Bitwise operators with constant operands are always grouped so that
26 //       shifts are performed first, then or's, then and's, then xor's.
27 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28 //    4. All cmp instructions on boolean values are replaced with logical ops
29 //    5. add X, X is represented as (X*2) => (X << 1)
30 //    6. Multiplies with a power-of-two constant argument are transformed into
31 //       shifts.
32 //   ... etc.
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "llvm/Transforms/InstCombine/InstCombine.h"
37 #include "InstCombineInternal.h"
38 #include "llvm-c/Initialization.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/Statistic.h"
41 #include "llvm/ADT/StringSwitch.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/Analysis/AssumptionCache.h"
44 #include "llvm/Analysis/BasicAliasAnalysis.h"
45 #include "llvm/Analysis/CFG.h"
46 #include "llvm/Analysis/ConstantFolding.h"
47 #include "llvm/Analysis/EHPersonalities.h"
48 #include "llvm/Analysis/GlobalsModRef.h"
49 #include "llvm/Analysis/InstructionSimplify.h"
50 #include "llvm/Analysis/LoopInfo.h"
51 #include "llvm/Analysis/MemoryBuiltins.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Analysis/ValueTracking.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/GetElementPtrTypeIterator.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/ValueHandle.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/Local.h"
66 #include <algorithm>
67 #include <climits>
68 using namespace llvm;
69 using namespace llvm::PatternMatch;
70 
71 #define DEBUG_TYPE "instcombine"
72 
73 STATISTIC(NumCombined , "Number of insts combined");
74 STATISTIC(NumConstProp, "Number of constant folds");
75 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
76 STATISTIC(NumSunkInst , "Number of instructions sunk");
77 STATISTIC(NumExpand,    "Number of expansions");
78 STATISTIC(NumFactor   , "Number of factorizations");
79 STATISTIC(NumReassoc  , "Number of reassociations");
80 
81 static cl::opt<bool>
82 EnableExpensiveCombines("expensive-combines",
83                         cl::desc("Enable expensive instruction combines"));
84 
85 Value *InstCombiner::EmitGEPOffset(User *GEP) {
86   return llvm::EmitGEPOffset(Builder, DL, GEP);
87 }
88 
89 /// Return true if it is desirable to convert an integer computation from a
90 /// given bit width to a new bit width.
91 /// We don't want to convert from a legal to an illegal type for example or from
92 /// a smaller to a larger illegal type.
93 bool InstCombiner::ShouldChangeType(unsigned FromWidth,
94                                     unsigned ToWidth) const {
95   bool FromLegal = DL.isLegalInteger(FromWidth);
96   bool ToLegal = DL.isLegalInteger(ToWidth);
97 
98   // If this is a legal integer from type, and the result would be an illegal
99   // type, don't do the transformation.
100   if (FromLegal && !ToLegal)
101     return false;
102 
103   // Otherwise, if both are illegal, do not increase the size of the result. We
104   // do allow things like i160 -> i64, but not i64 -> i160.
105   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
106     return false;
107 
108   return true;
109 }
110 
111 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
112 /// We don't want to convert from a legal to an illegal type for example or from
113 /// a smaller to a larger illegal type.
114 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
115   assert(From->isIntegerTy() && To->isIntegerTy());
116 
117   unsigned FromWidth = From->getPrimitiveSizeInBits();
118   unsigned ToWidth = To->getPrimitiveSizeInBits();
119   return ShouldChangeType(FromWidth, ToWidth);
120 }
121 
122 // Return true, if No Signed Wrap should be maintained for I.
123 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
124 // where both B and C should be ConstantInts, results in a constant that does
125 // not overflow. This function only handles the Add and Sub opcodes. For
126 // all other opcodes, the function conservatively returns false.
127 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
128   OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
129   if (!OBO || !OBO->hasNoSignedWrap())
130     return false;
131 
132   // We reason about Add and Sub Only.
133   Instruction::BinaryOps Opcode = I.getOpcode();
134   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
135     return false;
136 
137   const APInt *BVal, *CVal;
138   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
139     return false;
140 
141   bool Overflow = false;
142   if (Opcode == Instruction::Add)
143     BVal->sadd_ov(*CVal, Overflow);
144   else
145     BVal->ssub_ov(*CVal, Overflow);
146 
147   return !Overflow;
148 }
149 
150 /// Conservatively clears subclassOptionalData after a reassociation or
151 /// commutation. We preserve fast-math flags when applicable as they can be
152 /// preserved.
153 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
154   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
155   if (!FPMO) {
156     I.clearSubclassOptionalData();
157     return;
158   }
159 
160   FastMathFlags FMF = I.getFastMathFlags();
161   I.clearSubclassOptionalData();
162   I.setFastMathFlags(FMF);
163 }
164 
165 /// Combine constant operands of associative operations either before or after a
166 /// cast to eliminate one of the associative operations:
167 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
168 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
169 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) {
170   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
171   if (!Cast || !Cast->hasOneUse())
172     return false;
173 
174   // TODO: Enhance logic for other casts and remove this check.
175   auto CastOpcode = Cast->getOpcode();
176   if (CastOpcode != Instruction::ZExt)
177     return false;
178 
179   // TODO: Enhance logic for other BinOps and remove this check.
180   auto AssocOpcode = BinOp1->getOpcode();
181   if (AssocOpcode != Instruction::Xor && AssocOpcode != Instruction::And &&
182       AssocOpcode != Instruction::Or)
183     return false;
184 
185   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
186   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
187     return false;
188 
189   Constant *C1, *C2;
190   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
191       !match(BinOp2->getOperand(1), m_Constant(C2)))
192     return false;
193 
194   // TODO: This assumes a zext cast.
195   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
196   // to the destination type might lose bits.
197 
198   // Fold the constants together in the destination type:
199   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
200   Type *DestTy = C1->getType();
201   Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
202   Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
203   Cast->setOperand(0, BinOp2->getOperand(0));
204   BinOp1->setOperand(1, FoldedC);
205   return true;
206 }
207 
208 /// This performs a few simplifications for operators that are associative or
209 /// commutative:
210 ///
211 ///  Commutative operators:
212 ///
213 ///  1. Order operands such that they are listed from right (least complex) to
214 ///     left (most complex).  This puts constants before unary operators before
215 ///     binary operators.
216 ///
217 ///  Associative operators:
218 ///
219 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
220 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
221 ///
222 ///  Associative and commutative operators:
223 ///
224 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
225 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
226 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
227 ///     if C1 and C2 are constants.
228 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
229   Instruction::BinaryOps Opcode = I.getOpcode();
230   bool Changed = false;
231 
232   do {
233     // Order operands such that they are listed from right (least complex) to
234     // left (most complex).  This puts constants before unary operators before
235     // binary operators.
236     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
237         getComplexity(I.getOperand(1)))
238       Changed = !I.swapOperands();
239 
240     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
241     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
242 
243     if (I.isAssociative()) {
244       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
245       if (Op0 && Op0->getOpcode() == Opcode) {
246         Value *A = Op0->getOperand(0);
247         Value *B = Op0->getOperand(1);
248         Value *C = I.getOperand(1);
249 
250         // Does "B op C" simplify?
251         if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
252           // It simplifies to V.  Form "A op V".
253           I.setOperand(0, A);
254           I.setOperand(1, V);
255           // Conservatively clear the optional flags, since they may not be
256           // preserved by the reassociation.
257           if (MaintainNoSignedWrap(I, B, C) &&
258               (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
259             // Note: this is only valid because SimplifyBinOp doesn't look at
260             // the operands to Op0.
261             I.clearSubclassOptionalData();
262             I.setHasNoSignedWrap(true);
263           } else {
264             ClearSubclassDataAfterReassociation(I);
265           }
266 
267           Changed = true;
268           ++NumReassoc;
269           continue;
270         }
271       }
272 
273       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
274       if (Op1 && Op1->getOpcode() == Opcode) {
275         Value *A = I.getOperand(0);
276         Value *B = Op1->getOperand(0);
277         Value *C = Op1->getOperand(1);
278 
279         // Does "A op B" simplify?
280         if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
281           // It simplifies to V.  Form "V op C".
282           I.setOperand(0, V);
283           I.setOperand(1, C);
284           // Conservatively clear the optional flags, since they may not be
285           // preserved by the reassociation.
286           ClearSubclassDataAfterReassociation(I);
287           Changed = true;
288           ++NumReassoc;
289           continue;
290         }
291       }
292     }
293 
294     if (I.isAssociative() && I.isCommutative()) {
295       if (simplifyAssocCastAssoc(&I)) {
296         Changed = true;
297         ++NumReassoc;
298         continue;
299       }
300 
301       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
302       if (Op0 && Op0->getOpcode() == Opcode) {
303         Value *A = Op0->getOperand(0);
304         Value *B = Op0->getOperand(1);
305         Value *C = I.getOperand(1);
306 
307         // Does "C op A" simplify?
308         if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
309           // It simplifies to V.  Form "V op B".
310           I.setOperand(0, V);
311           I.setOperand(1, B);
312           // Conservatively clear the optional flags, since they may not be
313           // preserved by the reassociation.
314           ClearSubclassDataAfterReassociation(I);
315           Changed = true;
316           ++NumReassoc;
317           continue;
318         }
319       }
320 
321       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
322       if (Op1 && Op1->getOpcode() == Opcode) {
323         Value *A = I.getOperand(0);
324         Value *B = Op1->getOperand(0);
325         Value *C = Op1->getOperand(1);
326 
327         // Does "C op A" simplify?
328         if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
329           // It simplifies to V.  Form "B op V".
330           I.setOperand(0, B);
331           I.setOperand(1, V);
332           // Conservatively clear the optional flags, since they may not be
333           // preserved by the reassociation.
334           ClearSubclassDataAfterReassociation(I);
335           Changed = true;
336           ++NumReassoc;
337           continue;
338         }
339       }
340 
341       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
342       // if C1 and C2 are constants.
343       if (Op0 && Op1 &&
344           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
345           isa<Constant>(Op0->getOperand(1)) &&
346           isa<Constant>(Op1->getOperand(1)) &&
347           Op0->hasOneUse() && Op1->hasOneUse()) {
348         Value *A = Op0->getOperand(0);
349         Constant *C1 = cast<Constant>(Op0->getOperand(1));
350         Value *B = Op1->getOperand(0);
351         Constant *C2 = cast<Constant>(Op1->getOperand(1));
352 
353         Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
354         BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
355         if (isa<FPMathOperator>(New)) {
356           FastMathFlags Flags = I.getFastMathFlags();
357           Flags &= Op0->getFastMathFlags();
358           Flags &= Op1->getFastMathFlags();
359           New->setFastMathFlags(Flags);
360         }
361         InsertNewInstWith(New, I);
362         New->takeName(Op1);
363         I.setOperand(0, New);
364         I.setOperand(1, Folded);
365         // Conservatively clear the optional flags, since they may not be
366         // preserved by the reassociation.
367         ClearSubclassDataAfterReassociation(I);
368 
369         Changed = true;
370         continue;
371       }
372     }
373 
374     // No further simplifications.
375     return Changed;
376   } while (1);
377 }
378 
379 /// Return whether "X LOp (Y ROp Z)" is always equal to
380 /// "(X LOp Y) ROp (X LOp Z)".
381 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
382                                      Instruction::BinaryOps ROp) {
383   switch (LOp) {
384   default:
385     return false;
386 
387   case Instruction::And:
388     // And distributes over Or and Xor.
389     switch (ROp) {
390     default:
391       return false;
392     case Instruction::Or:
393     case Instruction::Xor:
394       return true;
395     }
396 
397   case Instruction::Mul:
398     // Multiplication distributes over addition and subtraction.
399     switch (ROp) {
400     default:
401       return false;
402     case Instruction::Add:
403     case Instruction::Sub:
404       return true;
405     }
406 
407   case Instruction::Or:
408     // Or distributes over And.
409     switch (ROp) {
410     default:
411       return false;
412     case Instruction::And:
413       return true;
414     }
415   }
416 }
417 
418 /// Return whether "(X LOp Y) ROp Z" is always equal to
419 /// "(X ROp Z) LOp (Y ROp Z)".
420 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
421                                      Instruction::BinaryOps ROp) {
422   if (Instruction::isCommutative(ROp))
423     return LeftDistributesOverRight(ROp, LOp);
424 
425   switch (LOp) {
426   default:
427     return false;
428   // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
429   // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
430   // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
431   case Instruction::And:
432   case Instruction::Or:
433   case Instruction::Xor:
434     switch (ROp) {
435     default:
436       return false;
437     case Instruction::Shl:
438     case Instruction::LShr:
439     case Instruction::AShr:
440       return true;
441     }
442   }
443   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
444   // but this requires knowing that the addition does not overflow and other
445   // such subtleties.
446   return false;
447 }
448 
449 /// This function returns identity value for given opcode, which can be used to
450 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
451 static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) {
452   if (isa<Constant>(V))
453     return nullptr;
454 
455   if (OpCode == Instruction::Mul)
456     return ConstantInt::get(V->getType(), 1);
457 
458   // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc.
459 
460   return nullptr;
461 }
462 
463 /// This function factors binary ops which can be combined using distributive
464 /// laws. This function tries to transform 'Op' based TopLevelOpcode to enable
465 /// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called
466 /// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms
467 /// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and
468 /// RHS to 4.
469 static Instruction::BinaryOps
470 getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,
471                           BinaryOperator *Op, Value *&LHS, Value *&RHS) {
472   if (!Op)
473     return Instruction::BinaryOpsEnd;
474 
475   LHS = Op->getOperand(0);
476   RHS = Op->getOperand(1);
477 
478   switch (TopLevelOpcode) {
479   default:
480     return Op->getOpcode();
481 
482   case Instruction::Add:
483   case Instruction::Sub:
484     if (Op->getOpcode() == Instruction::Shl) {
485       if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
486         // The multiplier is really 1 << CST.
487         RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
488         return Instruction::Mul;
489       }
490     }
491     return Op->getOpcode();
492   }
493 
494   // TODO: We can add other conversions e.g. shr => div etc.
495 }
496 
497 /// This tries to simplify binary operations by factorizing out common terms
498 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
499 static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
500                                const DataLayout &DL, BinaryOperator &I,
501                                Instruction::BinaryOps InnerOpcode, Value *A,
502                                Value *B, Value *C, Value *D) {
503 
504   // If any of A, B, C, D are null, we can not factor I, return early.
505   // Checking A and C should be enough.
506   if (!A || !C || !B || !D)
507     return nullptr;
508 
509   Value *V = nullptr;
510   Value *SimplifiedInst = nullptr;
511   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
512   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
513 
514   // Does "X op' Y" always equal "Y op' X"?
515   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
516 
517   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
518   if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
519     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
520     // commutative case, "(A op' B) op (C op' A)"?
521     if (A == C || (InnerCommutative && A == D)) {
522       if (A != C)
523         std::swap(C, D);
524       // Consider forming "A op' (B op D)".
525       // If "B op D" simplifies then it can be formed with no cost.
526       V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
527       // If "B op D" doesn't simplify then only go on if both of the existing
528       // operations "A op' B" and "C op' D" will be zapped as no longer used.
529       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
530         V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
531       if (V) {
532         SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V);
533       }
534     }
535 
536   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
537   if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
538     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
539     // commutative case, "(A op' B) op (B op' D)"?
540     if (B == D || (InnerCommutative && B == C)) {
541       if (B != D)
542         std::swap(C, D);
543       // Consider forming "(A op C) op' B".
544       // If "A op C" simplifies then it can be formed with no cost.
545       V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
546 
547       // If "A op C" doesn't simplify then only go on if both of the existing
548       // operations "A op' B" and "C op' D" will be zapped as no longer used.
549       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
550         V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
551       if (V) {
552         SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B);
553       }
554     }
555 
556   if (SimplifiedInst) {
557     ++NumFactor;
558     SimplifiedInst->takeName(&I);
559 
560     // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
561     // TODO: Check for NUW.
562     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
563       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
564         bool HasNSW = false;
565         if (isa<OverflowingBinaryOperator>(&I))
566           HasNSW = I.hasNoSignedWrap();
567 
568         if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
569           if (isa<OverflowingBinaryOperator>(Op0))
570             HasNSW &= Op0->hasNoSignedWrap();
571 
572         if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
573           if (isa<OverflowingBinaryOperator>(Op1))
574             HasNSW &= Op1->hasNoSignedWrap();
575 
576         // We can propagate 'nsw' if we know that
577         //  %Y = mul nsw i16 %X, C
578         //  %Z = add nsw i16 %Y, %X
579         // =>
580         //  %Z = mul nsw i16 %X, C+1
581         //
582         // iff C+1 isn't INT_MIN
583         const APInt *CInt;
584         if (TopLevelOpcode == Instruction::Add &&
585             InnerOpcode == Instruction::Mul)
586           if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
587             BO->setHasNoSignedWrap(HasNSW);
588       }
589     }
590   }
591   return SimplifiedInst;
592 }
593 
594 /// This tries to simplify binary operations which some other binary operation
595 /// distributes over either by factorizing out common terms
596 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
597 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
598 /// Returns the simplified value, or null if it didn't simplify.
599 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
600   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
601   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
602   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
603 
604   // Factorization.
605   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
606   auto TopLevelOpcode = I.getOpcode();
607   auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
608   auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
609 
610   // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
611   // a common term.
612   if (LHSOpcode == RHSOpcode) {
613     if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D))
614       return V;
615   }
616 
617   // The instruction has the form "(A op' B) op (C)".  Try to factorize common
618   // term.
619   if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS,
620                                   getIdentityValue(LHSOpcode, RHS)))
621     return V;
622 
623   // The instruction has the form "(B) op (C op' D)".  Try to factorize common
624   // term.
625   if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS,
626                                   getIdentityValue(RHSOpcode, LHS), C, D))
627     return V;
628 
629   // Expansion.
630   if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
631     // The instruction has the form "(A op' B) op C".  See if expanding it out
632     // to "(A op C) op' (B op C)" results in simplifications.
633     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
634     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
635 
636     // Do "A op C" and "B op C" both simplify?
637     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
638       if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
639         // They do! Return "L op' R".
640         ++NumExpand;
641         // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
642         if ((L == A && R == B) ||
643             (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
644           return Op0;
645         // Otherwise return "L op' R" if it simplifies.
646         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
647           return V;
648         // Otherwise, create a new instruction.
649         C = Builder->CreateBinOp(InnerOpcode, L, R);
650         C->takeName(&I);
651         return C;
652       }
653   }
654 
655   if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
656     // The instruction has the form "A op (B op' C)".  See if expanding it out
657     // to "(A op B) op' (A op C)" results in simplifications.
658     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
659     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
660 
661     // Do "A op B" and "A op C" both simplify?
662     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
663       if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
664         // They do! Return "L op' R".
665         ++NumExpand;
666         // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
667         if ((L == B && R == C) ||
668             (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
669           return Op1;
670         // Otherwise return "L op' R" if it simplifies.
671         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
672           return V;
673         // Otherwise, create a new instruction.
674         A = Builder->CreateBinOp(InnerOpcode, L, R);
675         A->takeName(&I);
676         return A;
677       }
678   }
679 
680   // (op (select (a, c, b)), (select (a, d, b))) -> (select (a, (op c, d), 0))
681   // (op (select (a, b, c)), (select (a, b, d))) -> (select (a, 0, (op c, d)))
682   if (auto *SI0 = dyn_cast<SelectInst>(LHS)) {
683     if (auto *SI1 = dyn_cast<SelectInst>(RHS)) {
684       if (SI0->getCondition() == SI1->getCondition()) {
685         Value *SI = nullptr;
686         if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getFalseValue(),
687                                      SI1->getFalseValue(), DL, &TLI, &DT, &AC))
688           SI = Builder->CreateSelect(SI0->getCondition(),
689                                      Builder->CreateBinOp(TopLevelOpcode,
690                                                           SI0->getTrueValue(),
691                                                           SI1->getTrueValue()),
692                                      V);
693         if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getTrueValue(),
694                                      SI1->getTrueValue(), DL, &TLI, &DT, &AC))
695           SI = Builder->CreateSelect(
696               SI0->getCondition(), V,
697               Builder->CreateBinOp(TopLevelOpcode, SI0->getFalseValue(),
698                                    SI1->getFalseValue()));
699         if (SI) {
700           SI->takeName(&I);
701           return SI;
702         }
703       }
704     }
705   }
706 
707   return nullptr;
708 }
709 
710 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
711 /// constant zero (which is the 'negate' form).
712 Value *InstCombiner::dyn_castNegVal(Value *V) const {
713   if (BinaryOperator::isNeg(V))
714     return BinaryOperator::getNegArgument(V);
715 
716   // Constants can be considered to be negated values if they can be folded.
717   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
718     return ConstantExpr::getNeg(C);
719 
720   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
721     if (C->getType()->getElementType()->isIntegerTy())
722       return ConstantExpr::getNeg(C);
723 
724   return nullptr;
725 }
726 
727 /// Given a 'fsub' instruction, return the RHS of the instruction if the LHS is
728 /// a constant negative zero (which is the 'negate' form).
729 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
730   if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
731     return BinaryOperator::getFNegArgument(V);
732 
733   // Constants can be considered to be negated values if they can be folded.
734   if (ConstantFP *C = dyn_cast<ConstantFP>(V))
735     return ConstantExpr::getFNeg(C);
736 
737   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
738     if (C->getType()->getElementType()->isFloatingPointTy())
739       return ConstantExpr::getFNeg(C);
740 
741   return nullptr;
742 }
743 
744 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
745                                              InstCombiner *IC) {
746   if (CastInst *CI = dyn_cast<CastInst>(&I)) {
747     return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
748   }
749 
750   // Figure out if the constant is the left or the right argument.
751   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
752   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
753 
754   if (Constant *SOC = dyn_cast<Constant>(SO)) {
755     if (ConstIsRHS)
756       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
757     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
758   }
759 
760   Value *Op0 = SO, *Op1 = ConstOperand;
761   if (!ConstIsRHS)
762     std::swap(Op0, Op1);
763 
764   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) {
765     Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
766                                     SO->getName()+".op");
767     Instruction *FPInst = dyn_cast<Instruction>(RI);
768     if (FPInst && isa<FPMathOperator>(FPInst))
769       FPInst->copyFastMathFlags(BO);
770     return RI;
771   }
772   if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
773     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
774                                    SO->getName()+".cmp");
775   if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
776     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
777                                    SO->getName()+".cmp");
778   llvm_unreachable("Unknown binary instruction type!");
779 }
780 
781 /// Given an instruction with a select as one operand and a constant as the
782 /// other operand, try to fold the binary operator into the select arguments.
783 /// This also works for Cast instructions, which obviously do not have a second
784 /// operand.
785 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
786   // Don't modify shared select instructions
787   if (!SI->hasOneUse()) return nullptr;
788   Value *TV = SI->getOperand(1);
789   Value *FV = SI->getOperand(2);
790 
791   if (isa<Constant>(TV) || isa<Constant>(FV)) {
792     // Bool selects with constant operands can be folded to logical ops.
793     if (SI->getType()->getScalarType()->isIntegerTy(1)) return nullptr;
794 
795     // If it's a bitcast involving vectors, make sure it has the same number of
796     // elements on both sides.
797     if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
798       VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
799       VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
800 
801       // Verify that either both or neither are vectors.
802       if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr;
803       // If vectors, verify that they have the same number of elements.
804       if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
805         return nullptr;
806     }
807 
808     // Test if a CmpInst instruction is used exclusively by a select as
809     // part of a minimum or maximum operation. If so, refrain from doing
810     // any other folding. This helps out other analyses which understand
811     // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
812     // and CodeGen. And in this case, at least one of the comparison
813     // operands has at least one user besides the compare (the select),
814     // which would often largely negate the benefit of folding anyway.
815     if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
816       if (CI->hasOneUse()) {
817         Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
818         if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
819             (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
820           return nullptr;
821       }
822     }
823 
824     Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
825     Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
826 
827     return SelectInst::Create(SI->getCondition(),
828                               SelectTrueVal, SelectFalseVal);
829   }
830   return nullptr;
831 }
832 
833 /// Given a binary operator, cast instruction, or select which has a PHI node as
834 /// operand #0, see if we can fold the instruction into the PHI (which is only
835 /// possible if all operands to the PHI are constants).
836 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
837   PHINode *PN = cast<PHINode>(I.getOperand(0));
838   unsigned NumPHIValues = PN->getNumIncomingValues();
839   if (NumPHIValues == 0)
840     return nullptr;
841 
842   // We normally only transform phis with a single use.  However, if a PHI has
843   // multiple uses and they are all the same operation, we can fold *all* of the
844   // uses into the PHI.
845   if (!PN->hasOneUse()) {
846     // Walk the use list for the instruction, comparing them to I.
847     for (User *U : PN->users()) {
848       Instruction *UI = cast<Instruction>(U);
849       if (UI != &I && !I.isIdenticalTo(UI))
850         return nullptr;
851     }
852     // Otherwise, we can replace *all* users with the new PHI we form.
853   }
854 
855   // Check to see if all of the operands of the PHI are simple constants
856   // (constantint/constantfp/undef).  If there is one non-constant value,
857   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
858   // bail out.  We don't do arbitrary constant expressions here because moving
859   // their computation can be expensive without a cost model.
860   BasicBlock *NonConstBB = nullptr;
861   for (unsigned i = 0; i != NumPHIValues; ++i) {
862     Value *InVal = PN->getIncomingValue(i);
863     if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
864       continue;
865 
866     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
867     if (NonConstBB) return nullptr;  // More than one non-const value.
868 
869     NonConstBB = PN->getIncomingBlock(i);
870 
871     // If the InVal is an invoke at the end of the pred block, then we can't
872     // insert a computation after it without breaking the edge.
873     if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
874       if (II->getParent() == NonConstBB)
875         return nullptr;
876 
877     // If the incoming non-constant value is in I's block, we will remove one
878     // instruction, but insert another equivalent one, leading to infinite
879     // instcombine.
880     if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
881       return nullptr;
882   }
883 
884   // If there is exactly one non-constant value, we can insert a copy of the
885   // operation in that block.  However, if this is a critical edge, we would be
886   // inserting the computation on some other paths (e.g. inside a loop).  Only
887   // do this if the pred block is unconditionally branching into the phi block.
888   if (NonConstBB != nullptr) {
889     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
890     if (!BI || !BI->isUnconditional()) return nullptr;
891   }
892 
893   // Okay, we can do the transformation: create the new PHI node.
894   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
895   InsertNewInstBefore(NewPN, *PN);
896   NewPN->takeName(PN);
897 
898   // If we are going to have to insert a new computation, do so right before the
899   // predecessor's terminator.
900   if (NonConstBB)
901     Builder->SetInsertPoint(NonConstBB->getTerminator());
902 
903   // Next, add all of the operands to the PHI.
904   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
905     // We only currently try to fold the condition of a select when it is a phi,
906     // not the true/false values.
907     Value *TrueV = SI->getTrueValue();
908     Value *FalseV = SI->getFalseValue();
909     BasicBlock *PhiTransBB = PN->getParent();
910     for (unsigned i = 0; i != NumPHIValues; ++i) {
911       BasicBlock *ThisBB = PN->getIncomingBlock(i);
912       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
913       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
914       Value *InV = nullptr;
915       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
916       // even if currently isNullValue gives false.
917       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
918       if (InC && !isa<ConstantExpr>(InC))
919         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
920       else
921         InV = Builder->CreateSelect(PN->getIncomingValue(i),
922                                     TrueVInPred, FalseVInPred, "phitmp");
923       NewPN->addIncoming(InV, ThisBB);
924     }
925   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
926     Constant *C = cast<Constant>(I.getOperand(1));
927     for (unsigned i = 0; i != NumPHIValues; ++i) {
928       Value *InV = nullptr;
929       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
930         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
931       else if (isa<ICmpInst>(CI))
932         InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
933                                   C, "phitmp");
934       else
935         InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
936                                   C, "phitmp");
937       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
938     }
939   } else if (I.getNumOperands() == 2) {
940     Constant *C = cast<Constant>(I.getOperand(1));
941     for (unsigned i = 0; i != NumPHIValues; ++i) {
942       Value *InV = nullptr;
943       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
944         InV = ConstantExpr::get(I.getOpcode(), InC, C);
945       else
946         InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
947                                    PN->getIncomingValue(i), C, "phitmp");
948       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
949     }
950   } else {
951     CastInst *CI = cast<CastInst>(&I);
952     Type *RetTy = CI->getType();
953     for (unsigned i = 0; i != NumPHIValues; ++i) {
954       Value *InV;
955       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
956         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
957       else
958         InV = Builder->CreateCast(CI->getOpcode(),
959                                 PN->getIncomingValue(i), I.getType(), "phitmp");
960       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
961     }
962   }
963 
964   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
965     Instruction *User = cast<Instruction>(*UI++);
966     if (User == &I) continue;
967     replaceInstUsesWith(*User, NewPN);
968     eraseInstFromFunction(*User);
969   }
970   return replaceInstUsesWith(I, NewPN);
971 }
972 
973 /// Given a pointer type and a constant offset, determine whether or not there
974 /// is a sequence of GEP indices into the pointed type that will land us at the
975 /// specified offset. If so, fill them into NewIndices and return the resultant
976 /// element type, otherwise return null.
977 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
978                                         SmallVectorImpl<Value *> &NewIndices) {
979   Type *Ty = PtrTy->getElementType();
980   if (!Ty->isSized())
981     return nullptr;
982 
983   // Start with the index over the outer type.  Note that the type size
984   // might be zero (even if the offset isn't zero) if the indexed type
985   // is something like [0 x {int, int}]
986   Type *IntPtrTy = DL.getIntPtrType(PtrTy);
987   int64_t FirstIdx = 0;
988   if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
989     FirstIdx = Offset/TySize;
990     Offset -= FirstIdx*TySize;
991 
992     // Handle hosts where % returns negative instead of values [0..TySize).
993     if (Offset < 0) {
994       --FirstIdx;
995       Offset += TySize;
996       assert(Offset >= 0);
997     }
998     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
999   }
1000 
1001   NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
1002 
1003   // Index into the types.  If we fail, set OrigBase to null.
1004   while (Offset) {
1005     // Indexing into tail padding between struct/array elements.
1006     if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
1007       return nullptr;
1008 
1009     if (StructType *STy = dyn_cast<StructType>(Ty)) {
1010       const StructLayout *SL = DL.getStructLayout(STy);
1011       assert(Offset < (int64_t)SL->getSizeInBytes() &&
1012              "Offset must stay within the indexed type");
1013 
1014       unsigned Elt = SL->getElementContainingOffset(Offset);
1015       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1016                                             Elt));
1017 
1018       Offset -= SL->getElementOffset(Elt);
1019       Ty = STy->getElementType(Elt);
1020     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
1021       uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
1022       assert(EltSize && "Cannot index into a zero-sized array");
1023       NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
1024       Offset %= EltSize;
1025       Ty = AT->getElementType();
1026     } else {
1027       // Otherwise, we can't index into the middle of this atomic type, bail.
1028       return nullptr;
1029     }
1030   }
1031 
1032   return Ty;
1033 }
1034 
1035 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1036   // If this GEP has only 0 indices, it is the same pointer as
1037   // Src. If Src is not a trivial GEP too, don't combine
1038   // the indices.
1039   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1040       !Src.hasOneUse())
1041     return false;
1042   return true;
1043 }
1044 
1045 /// Return a value X such that Val = X * Scale, or null if none.
1046 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1047 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1048   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1049   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1050          Scale.getBitWidth() && "Scale not compatible with value!");
1051 
1052   // If Val is zero or Scale is one then Val = Val * Scale.
1053   if (match(Val, m_Zero()) || Scale == 1) {
1054     NoSignedWrap = true;
1055     return Val;
1056   }
1057 
1058   // If Scale is zero then it does not divide Val.
1059   if (Scale.isMinValue())
1060     return nullptr;
1061 
1062   // Look through chains of multiplications, searching for a constant that is
1063   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1064   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1065   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1066   // down from Val:
1067   //
1068   //     Val = M1 * X          ||   Analysis starts here and works down
1069   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1070   //      M2 =  Z * 4          \/   than one use
1071   //
1072   // Then to modify a term at the bottom:
1073   //
1074   //     Val = M1 * X
1075   //      M1 =  Z * Y          ||   Replaced M2 with Z
1076   //
1077   // Then to work back up correcting nsw flags.
1078 
1079   // Op - the term we are currently analyzing.  Starts at Val then drills down.
1080   // Replaced with its descaled value before exiting from the drill down loop.
1081   Value *Op = Val;
1082 
1083   // Parent - initially null, but after drilling down notes where Op came from.
1084   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1085   // 0'th operand of Val.
1086   std::pair<Instruction*, unsigned> Parent;
1087 
1088   // Set if the transform requires a descaling at deeper levels that doesn't
1089   // overflow.
1090   bool RequireNoSignedWrap = false;
1091 
1092   // Log base 2 of the scale. Negative if not a power of 2.
1093   int32_t logScale = Scale.exactLogBase2();
1094 
1095   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1096 
1097     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1098       // If Op is a constant divisible by Scale then descale to the quotient.
1099       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1100       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1101       if (!Remainder.isMinValue())
1102         // Not divisible by Scale.
1103         return nullptr;
1104       // Replace with the quotient in the parent.
1105       Op = ConstantInt::get(CI->getType(), Quotient);
1106       NoSignedWrap = true;
1107       break;
1108     }
1109 
1110     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1111 
1112       if (BO->getOpcode() == Instruction::Mul) {
1113         // Multiplication.
1114         NoSignedWrap = BO->hasNoSignedWrap();
1115         if (RequireNoSignedWrap && !NoSignedWrap)
1116           return nullptr;
1117 
1118         // There are three cases for multiplication: multiplication by exactly
1119         // the scale, multiplication by a constant different to the scale, and
1120         // multiplication by something else.
1121         Value *LHS = BO->getOperand(0);
1122         Value *RHS = BO->getOperand(1);
1123 
1124         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1125           // Multiplication by a constant.
1126           if (CI->getValue() == Scale) {
1127             // Multiplication by exactly the scale, replace the multiplication
1128             // by its left-hand side in the parent.
1129             Op = LHS;
1130             break;
1131           }
1132 
1133           // Otherwise drill down into the constant.
1134           if (!Op->hasOneUse())
1135             return nullptr;
1136 
1137           Parent = std::make_pair(BO, 1);
1138           continue;
1139         }
1140 
1141         // Multiplication by something else. Drill down into the left-hand side
1142         // since that's where the reassociate pass puts the good stuff.
1143         if (!Op->hasOneUse())
1144           return nullptr;
1145 
1146         Parent = std::make_pair(BO, 0);
1147         continue;
1148       }
1149 
1150       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1151           isa<ConstantInt>(BO->getOperand(1))) {
1152         // Multiplication by a power of 2.
1153         NoSignedWrap = BO->hasNoSignedWrap();
1154         if (RequireNoSignedWrap && !NoSignedWrap)
1155           return nullptr;
1156 
1157         Value *LHS = BO->getOperand(0);
1158         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1159           getLimitedValue(Scale.getBitWidth());
1160         // Op = LHS << Amt.
1161 
1162         if (Amt == logScale) {
1163           // Multiplication by exactly the scale, replace the multiplication
1164           // by its left-hand side in the parent.
1165           Op = LHS;
1166           break;
1167         }
1168         if (Amt < logScale || !Op->hasOneUse())
1169           return nullptr;
1170 
1171         // Multiplication by more than the scale.  Reduce the multiplying amount
1172         // by the scale in the parent.
1173         Parent = std::make_pair(BO, 1);
1174         Op = ConstantInt::get(BO->getType(), Amt - logScale);
1175         break;
1176       }
1177     }
1178 
1179     if (!Op->hasOneUse())
1180       return nullptr;
1181 
1182     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1183       if (Cast->getOpcode() == Instruction::SExt) {
1184         // Op is sign-extended from a smaller type, descale in the smaller type.
1185         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1186         APInt SmallScale = Scale.trunc(SmallSize);
1187         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1188         // descale Op as (sext Y) * Scale.  In order to have
1189         //   sext (Y * SmallScale) = (sext Y) * Scale
1190         // some conditions need to hold however: SmallScale must sign-extend to
1191         // Scale and the multiplication Y * SmallScale should not overflow.
1192         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1193           // SmallScale does not sign-extend to Scale.
1194           return nullptr;
1195         assert(SmallScale.exactLogBase2() == logScale);
1196         // Require that Y * SmallScale must not overflow.
1197         RequireNoSignedWrap = true;
1198 
1199         // Drill down through the cast.
1200         Parent = std::make_pair(Cast, 0);
1201         Scale = SmallScale;
1202         continue;
1203       }
1204 
1205       if (Cast->getOpcode() == Instruction::Trunc) {
1206         // Op is truncated from a larger type, descale in the larger type.
1207         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1208         //   trunc (Y * sext Scale) = (trunc Y) * Scale
1209         // always holds.  However (trunc Y) * Scale may overflow even if
1210         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1211         // from this point up in the expression (see later).
1212         if (RequireNoSignedWrap)
1213           return nullptr;
1214 
1215         // Drill down through the cast.
1216         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1217         Parent = std::make_pair(Cast, 0);
1218         Scale = Scale.sext(LargeSize);
1219         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1220           logScale = -1;
1221         assert(Scale.exactLogBase2() == logScale);
1222         continue;
1223       }
1224     }
1225 
1226     // Unsupported expression, bail out.
1227     return nullptr;
1228   }
1229 
1230   // If Op is zero then Val = Op * Scale.
1231   if (match(Op, m_Zero())) {
1232     NoSignedWrap = true;
1233     return Op;
1234   }
1235 
1236   // We know that we can successfully descale, so from here on we can safely
1237   // modify the IR.  Op holds the descaled version of the deepest term in the
1238   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1239   // not to overflow.
1240 
1241   if (!Parent.first)
1242     // The expression only had one term.
1243     return Op;
1244 
1245   // Rewrite the parent using the descaled version of its operand.
1246   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1247   assert(Op != Parent.first->getOperand(Parent.second) &&
1248          "Descaling was a no-op?");
1249   Parent.first->setOperand(Parent.second, Op);
1250   Worklist.Add(Parent.first);
1251 
1252   // Now work back up the expression correcting nsw flags.  The logic is based
1253   // on the following observation: if X * Y is known not to overflow as a signed
1254   // multiplication, and Y is replaced by a value Z with smaller absolute value,
1255   // then X * Z will not overflow as a signed multiplication either.  As we work
1256   // our way up, having NoSignedWrap 'true' means that the descaled value at the
1257   // current level has strictly smaller absolute value than the original.
1258   Instruction *Ancestor = Parent.first;
1259   do {
1260     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1261       // If the multiplication wasn't nsw then we can't say anything about the
1262       // value of the descaled multiplication, and we have to clear nsw flags
1263       // from this point on up.
1264       bool OpNoSignedWrap = BO->hasNoSignedWrap();
1265       NoSignedWrap &= OpNoSignedWrap;
1266       if (NoSignedWrap != OpNoSignedWrap) {
1267         BO->setHasNoSignedWrap(NoSignedWrap);
1268         Worklist.Add(Ancestor);
1269       }
1270     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1271       // The fact that the descaled input to the trunc has smaller absolute
1272       // value than the original input doesn't tell us anything useful about
1273       // the absolute values of the truncations.
1274       NoSignedWrap = false;
1275     }
1276     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1277            "Failed to keep proper track of nsw flags while drilling down?");
1278 
1279     if (Ancestor == Val)
1280       // Got to the top, all done!
1281       return Val;
1282 
1283     // Move up one level in the expression.
1284     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1285     Ancestor = Ancestor->user_back();
1286   } while (1);
1287 }
1288 
1289 /// \brief Creates node of binary operation with the same attributes as the
1290 /// specified one but with other operands.
1291 static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS,
1292                                  InstCombiner::BuilderTy *B) {
1293   Value *BO = B->CreateBinOp(Inst.getOpcode(), LHS, RHS);
1294   // If LHS and RHS are constant, BO won't be a binary operator.
1295   if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BO))
1296     NewBO->copyIRFlags(&Inst);
1297   return BO;
1298 }
1299 
1300 /// \brief Makes transformation of binary operation specific for vector types.
1301 /// \param Inst Binary operator to transform.
1302 /// \return Pointer to node that must replace the original binary operator, or
1303 ///         null pointer if no transformation was made.
1304 Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
1305   if (!Inst.getType()->isVectorTy()) return nullptr;
1306 
1307   // It may not be safe to reorder shuffles and things like div, urem, etc.
1308   // because we may trap when executing those ops on unknown vector elements.
1309   // See PR20059.
1310   if (!isSafeToSpeculativelyExecute(&Inst))
1311     return nullptr;
1312 
1313   unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
1314   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1315   assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
1316   assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
1317 
1318   // If both arguments of binary operation are shuffles, which use the same
1319   // mask and shuffle within a single vector, it is worthwhile to move the
1320   // shuffle after binary operation:
1321   //   Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m)
1322   if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) {
1323     ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS);
1324     ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS);
1325     if (isa<UndefValue>(LShuf->getOperand(1)) &&
1326         isa<UndefValue>(RShuf->getOperand(1)) &&
1327         LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() &&
1328         LShuf->getMask() == RShuf->getMask()) {
1329       Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0),
1330           RShuf->getOperand(0), Builder);
1331       return Builder->CreateShuffleVector(NewBO,
1332           UndefValue::get(NewBO->getType()), LShuf->getMask());
1333     }
1334   }
1335 
1336   // If one argument is a shuffle within one vector, the other is a constant,
1337   // try moving the shuffle after the binary operation.
1338   ShuffleVectorInst *Shuffle = nullptr;
1339   Constant *C1 = nullptr;
1340   if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS);
1341   if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS);
1342   if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS);
1343   if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS);
1344   if (Shuffle && C1 &&
1345       (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) &&
1346       isa<UndefValue>(Shuffle->getOperand(1)) &&
1347       Shuffle->getType() == Shuffle->getOperand(0)->getType()) {
1348     SmallVector<int, 16> ShMask = Shuffle->getShuffleMask();
1349     // Find constant C2 that has property:
1350     //   shuffle(C2, ShMask) = C1
1351     // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>)
1352     // reorder is not possible.
1353     SmallVector<Constant*, 16> C2M(VWidth,
1354                                UndefValue::get(C1->getType()->getScalarType()));
1355     bool MayChange = true;
1356     for (unsigned I = 0; I < VWidth; ++I) {
1357       if (ShMask[I] >= 0) {
1358         assert(ShMask[I] < (int)VWidth);
1359         if (!isa<UndefValue>(C2M[ShMask[I]])) {
1360           MayChange = false;
1361           break;
1362         }
1363         C2M[ShMask[I]] = C1->getAggregateElement(I);
1364       }
1365     }
1366     if (MayChange) {
1367       Constant *C2 = ConstantVector::get(C2M);
1368       Value *NewLHS = isa<Constant>(LHS) ? C2 : Shuffle->getOperand(0);
1369       Value *NewRHS = isa<Constant>(LHS) ? Shuffle->getOperand(0) : C2;
1370       Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder);
1371       return Builder->CreateShuffleVector(NewBO,
1372           UndefValue::get(Inst.getType()), Shuffle->getMask());
1373     }
1374   }
1375 
1376   return nullptr;
1377 }
1378 
1379 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1380   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1381 
1382   if (Value *V =
1383           SimplifyGEPInst(GEP.getSourceElementType(), Ops, DL, &TLI, &DT, &AC))
1384     return replaceInstUsesWith(GEP, V);
1385 
1386   Value *PtrOp = GEP.getOperand(0);
1387 
1388   // Eliminate unneeded casts for indices, and replace indices which displace
1389   // by multiples of a zero size type with zero.
1390   bool MadeChange = false;
1391   Type *IntPtrTy =
1392     DL.getIntPtrType(GEP.getPointerOperandType()->getScalarType());
1393 
1394   gep_type_iterator GTI = gep_type_begin(GEP);
1395   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1396        ++I, ++GTI) {
1397     // Skip indices into struct types.
1398     if (isa<StructType>(*GTI))
1399       continue;
1400 
1401     // Index type should have the same width as IntPtr
1402     Type *IndexTy = (*I)->getType();
1403     Type *NewIndexType = IndexTy->isVectorTy() ?
1404       VectorType::get(IntPtrTy, IndexTy->getVectorNumElements()) : IntPtrTy;
1405 
1406     // If the element type has zero size then any index over it is equivalent
1407     // to an index of zero, so replace it with zero if it is not zero already.
1408     Type *EltTy = GTI.getIndexedType();
1409     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0)
1410       if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1411         *I = Constant::getNullValue(NewIndexType);
1412         MadeChange = true;
1413       }
1414 
1415     if (IndexTy != NewIndexType) {
1416       // If we are using a wider index than needed for this platform, shrink
1417       // it to what we need.  If narrower, sign-extend it to what we need.
1418       // This explicit cast can make subsequent optimizations more obvious.
1419       *I = Builder->CreateIntCast(*I, NewIndexType, true);
1420       MadeChange = true;
1421     }
1422   }
1423   if (MadeChange)
1424     return &GEP;
1425 
1426   // Check to see if the inputs to the PHI node are getelementptr instructions.
1427   if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
1428     GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1429     if (!Op1)
1430       return nullptr;
1431 
1432     // Don't fold a GEP into itself through a PHI node. This can only happen
1433     // through the back-edge of a loop. Folding a GEP into itself means that
1434     // the value of the previous iteration needs to be stored in the meantime,
1435     // thus requiring an additional register variable to be live, but not
1436     // actually achieving anything (the GEP still needs to be executed once per
1437     // loop iteration).
1438     if (Op1 == &GEP)
1439       return nullptr;
1440 
1441     int DI = -1;
1442 
1443     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1444       GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I);
1445       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1446         return nullptr;
1447 
1448       // As for Op1 above, don't try to fold a GEP into itself.
1449       if (Op2 == &GEP)
1450         return nullptr;
1451 
1452       // Keep track of the type as we walk the GEP.
1453       Type *CurTy = nullptr;
1454 
1455       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1456         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1457           return nullptr;
1458 
1459         if (Op1->getOperand(J) != Op2->getOperand(J)) {
1460           if (DI == -1) {
1461             // We have not seen any differences yet in the GEPs feeding the
1462             // PHI yet, so we record this one if it is allowed to be a
1463             // variable.
1464 
1465             // The first two arguments can vary for any GEP, the rest have to be
1466             // static for struct slots
1467             if (J > 1 && CurTy->isStructTy())
1468               return nullptr;
1469 
1470             DI = J;
1471           } else {
1472             // The GEP is different by more than one input. While this could be
1473             // extended to support GEPs that vary by more than one variable it
1474             // doesn't make sense since it greatly increases the complexity and
1475             // would result in an R+R+R addressing mode which no backend
1476             // directly supports and would need to be broken into several
1477             // simpler instructions anyway.
1478             return nullptr;
1479           }
1480         }
1481 
1482         // Sink down a layer of the type for the next iteration.
1483         if (J > 0) {
1484           if (J == 1) {
1485             CurTy = Op1->getSourceElementType();
1486           } else if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) {
1487             CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
1488           } else {
1489             CurTy = nullptr;
1490           }
1491         }
1492       }
1493     }
1494 
1495     // If not all GEPs are identical we'll have to create a new PHI node.
1496     // Check that the old PHI node has only one use so that it will get
1497     // removed.
1498     if (DI != -1 && !PN->hasOneUse())
1499       return nullptr;
1500 
1501     GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1502     if (DI == -1) {
1503       // All the GEPs feeding the PHI are identical. Clone one down into our
1504       // BB so that it can be merged with the current GEP.
1505       GEP.getParent()->getInstList().insert(
1506           GEP.getParent()->getFirstInsertionPt(), NewGEP);
1507     } else {
1508       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1509       // into the current block so it can be merged, and create a new PHI to
1510       // set that index.
1511       PHINode *NewPN;
1512       {
1513         IRBuilderBase::InsertPointGuard Guard(*Builder);
1514         Builder->SetInsertPoint(PN);
1515         NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(),
1516                                    PN->getNumOperands());
1517       }
1518 
1519       for (auto &I : PN->operands())
1520         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1521                            PN->getIncomingBlock(I));
1522 
1523       NewGEP->setOperand(DI, NewPN);
1524       GEP.getParent()->getInstList().insert(
1525           GEP.getParent()->getFirstInsertionPt(), NewGEP);
1526       NewGEP->setOperand(DI, NewPN);
1527     }
1528 
1529     GEP.setOperand(0, NewGEP);
1530     PtrOp = NewGEP;
1531   }
1532 
1533   // Combine Indices - If the source pointer to this getelementptr instruction
1534   // is a getelementptr instruction, combine the indices of the two
1535   // getelementptr instructions into a single instruction.
1536   //
1537   if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
1538     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1539       return nullptr;
1540 
1541     // Note that if our source is a gep chain itself then we wait for that
1542     // chain to be resolved before we perform this transformation.  This
1543     // avoids us creating a TON of code in some cases.
1544     if (GEPOperator *SrcGEP =
1545           dyn_cast<GEPOperator>(Src->getOperand(0)))
1546       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1547         return nullptr;   // Wait until our source is folded to completion.
1548 
1549     SmallVector<Value*, 8> Indices;
1550 
1551     // Find out whether the last index in the source GEP is a sequential idx.
1552     bool EndsWithSequential = false;
1553     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1554          I != E; ++I)
1555       EndsWithSequential = !(*I)->isStructTy();
1556 
1557     // Can we combine the two pointer arithmetics offsets?
1558     if (EndsWithSequential) {
1559       // Replace: gep (gep %P, long B), long A, ...
1560       // With:    T = long A+B; gep %P, T, ...
1561       //
1562       Value *Sum;
1563       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1564       Value *GO1 = GEP.getOperand(1);
1565       if (SO1 == Constant::getNullValue(SO1->getType())) {
1566         Sum = GO1;
1567       } else if (GO1 == Constant::getNullValue(GO1->getType())) {
1568         Sum = SO1;
1569       } else {
1570         // If they aren't the same type, then the input hasn't been processed
1571         // by the loop above yet (which canonicalizes sequential index types to
1572         // intptr_t).  Just avoid transforming this until the input has been
1573         // normalized.
1574         if (SO1->getType() != GO1->getType())
1575           return nullptr;
1576         // Only do the combine when GO1 and SO1 are both constants. Only in
1577         // this case, we are sure the cost after the merge is never more than
1578         // that before the merge.
1579         if (!isa<Constant>(GO1) || !isa<Constant>(SO1))
1580           return nullptr;
1581         Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
1582       }
1583 
1584       // Update the GEP in place if possible.
1585       if (Src->getNumOperands() == 2) {
1586         GEP.setOperand(0, Src->getOperand(0));
1587         GEP.setOperand(1, Sum);
1588         return &GEP;
1589       }
1590       Indices.append(Src->op_begin()+1, Src->op_end()-1);
1591       Indices.push_back(Sum);
1592       Indices.append(GEP.op_begin()+2, GEP.op_end());
1593     } else if (isa<Constant>(*GEP.idx_begin()) &&
1594                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1595                Src->getNumOperands() != 1) {
1596       // Otherwise we can do the fold if the first index of the GEP is a zero
1597       Indices.append(Src->op_begin()+1, Src->op_end());
1598       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1599     }
1600 
1601     if (!Indices.empty())
1602       return GEP.isInBounds() && Src->isInBounds()
1603                  ? GetElementPtrInst::CreateInBounds(
1604                        Src->getSourceElementType(), Src->getOperand(0), Indices,
1605                        GEP.getName())
1606                  : GetElementPtrInst::Create(Src->getSourceElementType(),
1607                                              Src->getOperand(0), Indices,
1608                                              GEP.getName());
1609   }
1610 
1611   if (GEP.getNumIndices() == 1) {
1612     unsigned AS = GEP.getPointerAddressSpace();
1613     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
1614         DL.getPointerSizeInBits(AS)) {
1615       Type *Ty = GEP.getSourceElementType();
1616       uint64_t TyAllocSize = DL.getTypeAllocSize(Ty);
1617 
1618       bool Matched = false;
1619       uint64_t C;
1620       Value *V = nullptr;
1621       if (TyAllocSize == 1) {
1622         V = GEP.getOperand(1);
1623         Matched = true;
1624       } else if (match(GEP.getOperand(1),
1625                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
1626         if (TyAllocSize == 1ULL << C)
1627           Matched = true;
1628       } else if (match(GEP.getOperand(1),
1629                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
1630         if (TyAllocSize == C)
1631           Matched = true;
1632       }
1633 
1634       if (Matched) {
1635         // Canonicalize (gep i8* X, -(ptrtoint Y))
1636         // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
1637         // The GEP pattern is emitted by the SCEV expander for certain kinds of
1638         // pointer arithmetic.
1639         if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
1640           Operator *Index = cast<Operator>(V);
1641           Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
1642           Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
1643           return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
1644         }
1645         // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
1646         // to (bitcast Y)
1647         Value *Y;
1648         if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
1649                            m_PtrToInt(m_Specific(GEP.getOperand(0)))))) {
1650           return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y,
1651                                                                GEP.getType());
1652         }
1653       }
1654     }
1655   }
1656 
1657   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1658   Value *StrippedPtr = PtrOp->stripPointerCasts();
1659   PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1660 
1661   // We do not handle pointer-vector geps here.
1662   if (!StrippedPtrTy)
1663     return nullptr;
1664 
1665   if (StrippedPtr != PtrOp) {
1666     bool HasZeroPointerIndex = false;
1667     if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1668       HasZeroPointerIndex = C->isZero();
1669 
1670     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1671     // into     : GEP [10 x i8]* X, i32 0, ...
1672     //
1673     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1674     //           into     : GEP i8* X, ...
1675     //
1676     // This occurs when the program declares an array extern like "int X[];"
1677     if (HasZeroPointerIndex) {
1678       if (ArrayType *CATy =
1679           dyn_cast<ArrayType>(GEP.getSourceElementType())) {
1680         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1681         if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
1682           // -> GEP i8* X, ...
1683           SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1684           GetElementPtrInst *Res = GetElementPtrInst::Create(
1685               StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName());
1686           Res->setIsInBounds(GEP.isInBounds());
1687           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
1688             return Res;
1689           // Insert Res, and create an addrspacecast.
1690           // e.g.,
1691           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
1692           // ->
1693           // %0 = GEP i8 addrspace(1)* X, ...
1694           // addrspacecast i8 addrspace(1)* %0 to i8*
1695           return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType());
1696         }
1697 
1698         if (ArrayType *XATy =
1699               dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
1700           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
1701           if (CATy->getElementType() == XATy->getElementType()) {
1702             // -> GEP [10 x i8]* X, i32 0, ...
1703             // At this point, we know that the cast source type is a pointer
1704             // to an array of the same type as the destination pointer
1705             // array.  Because the array type is never stepped over (there
1706             // is a leading zero) we can fold the cast into this GEP.
1707             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
1708               GEP.setOperand(0, StrippedPtr);
1709               GEP.setSourceElementType(XATy);
1710               return &GEP;
1711             }
1712             // Cannot replace the base pointer directly because StrippedPtr's
1713             // address space is different. Instead, create a new GEP followed by
1714             // an addrspacecast.
1715             // e.g.,
1716             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
1717             //   i32 0, ...
1718             // ->
1719             // %0 = GEP [10 x i8] addrspace(1)* X, ...
1720             // addrspacecast i8 addrspace(1)* %0 to i8*
1721             SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
1722             Value *NewGEP = GEP.isInBounds()
1723                                 ? Builder->CreateInBoundsGEP(
1724                                       nullptr, StrippedPtr, Idx, GEP.getName())
1725                                 : Builder->CreateGEP(nullptr, StrippedPtr, Idx,
1726                                                      GEP.getName());
1727             return new AddrSpaceCastInst(NewGEP, GEP.getType());
1728           }
1729         }
1730       }
1731     } else if (GEP.getNumOperands() == 2) {
1732       // Transform things like:
1733       // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1734       // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
1735       Type *SrcElTy = StrippedPtrTy->getElementType();
1736       Type *ResElTy = GEP.getSourceElementType();
1737       if (SrcElTy->isArrayTy() &&
1738           DL.getTypeAllocSize(SrcElTy->getArrayElementType()) ==
1739               DL.getTypeAllocSize(ResElTy)) {
1740         Type *IdxType = DL.getIntPtrType(GEP.getType());
1741         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
1742         Value *NewGEP =
1743             GEP.isInBounds()
1744                 ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, Idx,
1745                                              GEP.getName())
1746                 : Builder->CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName());
1747 
1748         // V and GEP are both pointer types --> BitCast
1749         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1750                                                              GEP.getType());
1751       }
1752 
1753       // Transform things like:
1754       // %V = mul i64 %N, 4
1755       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1756       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
1757       if (ResElTy->isSized() && SrcElTy->isSized()) {
1758         // Check that changing the type amounts to dividing the index by a scale
1759         // factor.
1760         uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
1761         uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy);
1762         if (ResSize && SrcSize % ResSize == 0) {
1763           Value *Idx = GEP.getOperand(1);
1764           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1765           uint64_t Scale = SrcSize / ResSize;
1766 
1767           // Earlier transforms ensure that the index has type IntPtrType, which
1768           // considerably simplifies the logic by eliminating implicit casts.
1769           assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
1770                  "Index not cast to pointer width?");
1771 
1772           bool NSW;
1773           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1774             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1775             // If the multiplication NewIdx * Scale may overflow then the new
1776             // GEP may not be "inbounds".
1777             Value *NewGEP =
1778                 GEP.isInBounds() && NSW
1779                     ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx,
1780                                                  GEP.getName())
1781                     : Builder->CreateGEP(nullptr, StrippedPtr, NewIdx,
1782                                          GEP.getName());
1783 
1784             // The NewGEP must be pointer typed, so must the old one -> BitCast
1785             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1786                                                                  GEP.getType());
1787           }
1788         }
1789       }
1790 
1791       // Similarly, transform things like:
1792       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
1793       //   (where tmp = 8*tmp2) into:
1794       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
1795       if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) {
1796         // Check that changing to the array element type amounts to dividing the
1797         // index by a scale factor.
1798         uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
1799         uint64_t ArrayEltSize =
1800             DL.getTypeAllocSize(SrcElTy->getArrayElementType());
1801         if (ResSize && ArrayEltSize % ResSize == 0) {
1802           Value *Idx = GEP.getOperand(1);
1803           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1804           uint64_t Scale = ArrayEltSize / ResSize;
1805 
1806           // Earlier transforms ensure that the index has type IntPtrType, which
1807           // considerably simplifies the logic by eliminating implicit casts.
1808           assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
1809                  "Index not cast to pointer width?");
1810 
1811           bool NSW;
1812           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1813             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1814             // If the multiplication NewIdx * Scale may overflow then the new
1815             // GEP may not be "inbounds".
1816             Value *Off[2] = {
1817                 Constant::getNullValue(DL.getIntPtrType(GEP.getType())),
1818                 NewIdx};
1819 
1820             Value *NewGEP = GEP.isInBounds() && NSW
1821                                 ? Builder->CreateInBoundsGEP(
1822                                       SrcElTy, StrippedPtr, Off, GEP.getName())
1823                                 : Builder->CreateGEP(SrcElTy, StrippedPtr, Off,
1824                                                      GEP.getName());
1825             // The NewGEP must be pointer typed, so must the old one -> BitCast
1826             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1827                                                                  GEP.getType());
1828           }
1829         }
1830       }
1831     }
1832   }
1833 
1834   // addrspacecast between types is canonicalized as a bitcast, then an
1835   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
1836   // through the addrspacecast.
1837   if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
1838     //   X = bitcast A addrspace(1)* to B addrspace(1)*
1839     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
1840     //   Z = gep Y, <...constant indices...>
1841     // Into an addrspacecasted GEP of the struct.
1842     if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
1843       PtrOp = BC;
1844   }
1845 
1846   /// See if we can simplify:
1847   ///   X = bitcast A* to B*
1848   ///   Y = gep X, <...constant indices...>
1849   /// into a gep of the original struct.  This is important for SROA and alias
1850   /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
1851   if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1852     Value *Operand = BCI->getOperand(0);
1853     PointerType *OpType = cast<PointerType>(Operand->getType());
1854     unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType());
1855     APInt Offset(OffsetBits, 0);
1856     if (!isa<BitCastInst>(Operand) &&
1857         GEP.accumulateConstantOffset(DL, Offset)) {
1858 
1859       // If this GEP instruction doesn't move the pointer, just replace the GEP
1860       // with a bitcast of the real input to the dest type.
1861       if (!Offset) {
1862         // If the bitcast is of an allocation, and the allocation will be
1863         // converted to match the type of the cast, don't touch this.
1864         if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, &TLI)) {
1865           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1866           if (Instruction *I = visitBitCast(*BCI)) {
1867             if (I != BCI) {
1868               I->takeName(BCI);
1869               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
1870               replaceInstUsesWith(*BCI, I);
1871             }
1872             return &GEP;
1873           }
1874         }
1875 
1876         if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1877           return new AddrSpaceCastInst(Operand, GEP.getType());
1878         return new BitCastInst(Operand, GEP.getType());
1879       }
1880 
1881       // Otherwise, if the offset is non-zero, we need to find out if there is a
1882       // field at Offset in 'A's type.  If so, we can pull the cast through the
1883       // GEP.
1884       SmallVector<Value*, 8> NewIndices;
1885       if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
1886         Value *NGEP =
1887             GEP.isInBounds()
1888                 ? Builder->CreateInBoundsGEP(nullptr, Operand, NewIndices)
1889                 : Builder->CreateGEP(nullptr, Operand, NewIndices);
1890 
1891         if (NGEP->getType() == GEP.getType())
1892           return replaceInstUsesWith(GEP, NGEP);
1893         NGEP->takeName(&GEP);
1894 
1895         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1896           return new AddrSpaceCastInst(NGEP, GEP.getType());
1897         return new BitCastInst(NGEP, GEP.getType());
1898       }
1899     }
1900   }
1901 
1902   if (!GEP.isInBounds()) {
1903     unsigned PtrWidth =
1904         DL.getPointerSizeInBits(PtrOp->getType()->getPointerAddressSpace());
1905     APInt BasePtrOffset(PtrWidth, 0);
1906     Value *UnderlyingPtrOp =
1907             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
1908                                                              BasePtrOffset);
1909     if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
1910       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
1911           BasePtrOffset.isNonNegative()) {
1912         APInt AllocSize(PtrWidth, DL.getTypeAllocSize(AI->getAllocatedType()));
1913         if (BasePtrOffset.ule(AllocSize)) {
1914           return GetElementPtrInst::CreateInBounds(
1915               PtrOp, makeArrayRef(Ops).slice(1), GEP.getName());
1916         }
1917       }
1918     }
1919   }
1920 
1921   return nullptr;
1922 }
1923 
1924 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
1925                                          Instruction *AI) {
1926   if (isa<ConstantPointerNull>(V))
1927     return true;
1928   if (auto *LI = dyn_cast<LoadInst>(V))
1929     return isa<GlobalVariable>(LI->getPointerOperand());
1930   // Two distinct allocations will never be equal.
1931   // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
1932   // through bitcasts of V can cause
1933   // the result statement below to be true, even when AI and V (ex:
1934   // i8* ->i32* ->i8* of AI) are the same allocations.
1935   return isAllocLikeFn(V, TLI) && V != AI;
1936 }
1937 
1938 static bool
1939 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1940                      const TargetLibraryInfo *TLI) {
1941   SmallVector<Instruction*, 4> Worklist;
1942   Worklist.push_back(AI);
1943 
1944   do {
1945     Instruction *PI = Worklist.pop_back_val();
1946     for (User *U : PI->users()) {
1947       Instruction *I = cast<Instruction>(U);
1948       switch (I->getOpcode()) {
1949       default:
1950         // Give up the moment we see something we can't handle.
1951         return false;
1952 
1953       case Instruction::BitCast:
1954       case Instruction::GetElementPtr:
1955         Users.emplace_back(I);
1956         Worklist.push_back(I);
1957         continue;
1958 
1959       case Instruction::ICmp: {
1960         ICmpInst *ICI = cast<ICmpInst>(I);
1961         // We can fold eq/ne comparisons with null to false/true, respectively.
1962         // We also fold comparisons in some conditions provided the alloc has
1963         // not escaped (see isNeverEqualToUnescapedAlloc).
1964         if (!ICI->isEquality())
1965           return false;
1966         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
1967         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
1968           return false;
1969         Users.emplace_back(I);
1970         continue;
1971       }
1972 
1973       case Instruction::Call:
1974         // Ignore no-op and store intrinsics.
1975         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1976           switch (II->getIntrinsicID()) {
1977           default:
1978             return false;
1979 
1980           case Intrinsic::memmove:
1981           case Intrinsic::memcpy:
1982           case Intrinsic::memset: {
1983             MemIntrinsic *MI = cast<MemIntrinsic>(II);
1984             if (MI->isVolatile() || MI->getRawDest() != PI)
1985               return false;
1986             LLVM_FALLTHROUGH;
1987           }
1988           case Intrinsic::dbg_declare:
1989           case Intrinsic::dbg_value:
1990           case Intrinsic::invariant_start:
1991           case Intrinsic::invariant_end:
1992           case Intrinsic::lifetime_start:
1993           case Intrinsic::lifetime_end:
1994           case Intrinsic::objectsize:
1995             Users.emplace_back(I);
1996             continue;
1997           }
1998         }
1999 
2000         if (isFreeCall(I, TLI)) {
2001           Users.emplace_back(I);
2002           continue;
2003         }
2004         return false;
2005 
2006       case Instruction::Store: {
2007         StoreInst *SI = cast<StoreInst>(I);
2008         if (SI->isVolatile() || SI->getPointerOperand() != PI)
2009           return false;
2010         Users.emplace_back(I);
2011         continue;
2012       }
2013       }
2014       llvm_unreachable("missing a return?");
2015     }
2016   } while (!Worklist.empty());
2017   return true;
2018 }
2019 
2020 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
2021   // If we have a malloc call which is only used in any amount of comparisons
2022   // to null and free calls, delete the calls and replace the comparisons with
2023   // true or false as appropriate.
2024   SmallVector<WeakVH, 64> Users;
2025   if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2026     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2027       // Lowering all @llvm.objectsize calls first because they may
2028       // use a bitcast/GEP of the alloca we are removing.
2029       if (!Users[i])
2030        continue;
2031 
2032       Instruction *I = cast<Instruction>(&*Users[i]);
2033 
2034       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2035         if (II->getIntrinsicID() == Intrinsic::objectsize) {
2036           uint64_t Size;
2037           if (!getObjectSize(II->getArgOperand(0), Size, DL, &TLI)) {
2038             ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
2039             Size = CI->isZero() ? -1ULL : 0;
2040           }
2041           replaceInstUsesWith(*I, ConstantInt::get(I->getType(), Size));
2042           eraseInstFromFunction(*I);
2043           Users[i] = nullptr; // Skip examining in the next loop.
2044         }
2045       }
2046     }
2047     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2048       if (!Users[i])
2049         continue;
2050 
2051       Instruction *I = cast<Instruction>(&*Users[i]);
2052 
2053       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2054         replaceInstUsesWith(*C,
2055                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
2056                                              C->isFalseWhenEqual()));
2057       } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
2058         replaceInstUsesWith(*I, UndefValue::get(I->getType()));
2059       }
2060       eraseInstFromFunction(*I);
2061     }
2062 
2063     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2064       // Replace invoke with a NOP intrinsic to maintain the original CFG
2065       Module *M = II->getModule();
2066       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2067       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2068                          None, "", II->getParent());
2069     }
2070     return eraseInstFromFunction(MI);
2071   }
2072   return nullptr;
2073 }
2074 
2075 /// \brief Move the call to free before a NULL test.
2076 ///
2077 /// Check if this free is accessed after its argument has been test
2078 /// against NULL (property 0).
2079 /// If yes, it is legal to move this call in its predecessor block.
2080 ///
2081 /// The move is performed only if the block containing the call to free
2082 /// will be removed, i.e.:
2083 /// 1. it has only one predecessor P, and P has two successors
2084 /// 2. it contains the call and an unconditional branch
2085 /// 3. its successor is the same as its predecessor's successor
2086 ///
2087 /// The profitability is out-of concern here and this function should
2088 /// be called only if the caller knows this transformation would be
2089 /// profitable (e.g., for code size).
2090 static Instruction *
2091 tryToMoveFreeBeforeNullTest(CallInst &FI) {
2092   Value *Op = FI.getArgOperand(0);
2093   BasicBlock *FreeInstrBB = FI.getParent();
2094   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2095 
2096   // Validate part of constraint #1: Only one predecessor
2097   // FIXME: We can extend the number of predecessor, but in that case, we
2098   //        would duplicate the call to free in each predecessor and it may
2099   //        not be profitable even for code size.
2100   if (!PredBB)
2101     return nullptr;
2102 
2103   // Validate constraint #2: Does this block contains only the call to
2104   //                         free and an unconditional branch?
2105   // FIXME: We could check if we can speculate everything in the
2106   //        predecessor block
2107   if (FreeInstrBB->size() != 2)
2108     return nullptr;
2109   BasicBlock *SuccBB;
2110   if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
2111     return nullptr;
2112 
2113   // Validate the rest of constraint #1 by matching on the pred branch.
2114   TerminatorInst *TI = PredBB->getTerminator();
2115   BasicBlock *TrueBB, *FalseBB;
2116   ICmpInst::Predicate Pred;
2117   if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
2118     return nullptr;
2119   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2120     return nullptr;
2121 
2122   // Validate constraint #3: Ensure the null case just falls through.
2123   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2124     return nullptr;
2125   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2126          "Broken CFG: missing edge from predecessor to successor");
2127 
2128   FI.moveBefore(TI);
2129   return &FI;
2130 }
2131 
2132 
2133 Instruction *InstCombiner::visitFree(CallInst &FI) {
2134   Value *Op = FI.getArgOperand(0);
2135 
2136   // free undef -> unreachable.
2137   if (isa<UndefValue>(Op)) {
2138     // Insert a new store to null because we cannot modify the CFG here.
2139     Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
2140                          UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
2141     return eraseInstFromFunction(FI);
2142   }
2143 
2144   // If we have 'free null' delete the instruction.  This can happen in stl code
2145   // when lots of inlining happens.
2146   if (isa<ConstantPointerNull>(Op))
2147     return eraseInstFromFunction(FI);
2148 
2149   // If we optimize for code size, try to move the call to free before the null
2150   // test so that simplify cfg can remove the empty block and dead code
2151   // elimination the branch. I.e., helps to turn something like:
2152   // if (foo) free(foo);
2153   // into
2154   // free(foo);
2155   if (MinimizeSize)
2156     if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
2157       return I;
2158 
2159   return nullptr;
2160 }
2161 
2162 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
2163   if (RI.getNumOperands() == 0) // ret void
2164     return nullptr;
2165 
2166   Value *ResultOp = RI.getOperand(0);
2167   Type *VTy = ResultOp->getType();
2168   if (!VTy->isIntegerTy())
2169     return nullptr;
2170 
2171   // There might be assume intrinsics dominating this return that completely
2172   // determine the value. If so, constant fold it.
2173   unsigned BitWidth = VTy->getPrimitiveSizeInBits();
2174   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2175   computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI);
2176   if ((KnownZero|KnownOne).isAllOnesValue())
2177     RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne));
2178 
2179   return nullptr;
2180 }
2181 
2182 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2183   // Change br (not X), label True, label False to: br X, label False, True
2184   Value *X = nullptr;
2185   BasicBlock *TrueDest;
2186   BasicBlock *FalseDest;
2187   if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
2188       !isa<Constant>(X)) {
2189     // Swap Destinations and condition...
2190     BI.setCondition(X);
2191     BI.swapSuccessors();
2192     return &BI;
2193   }
2194 
2195   // If the condition is irrelevant, remove the use so that other
2196   // transforms on the condition become more effective.
2197   if (BI.isConditional() &&
2198       BI.getSuccessor(0) == BI.getSuccessor(1) &&
2199       !isa<UndefValue>(BI.getCondition())) {
2200     BI.setCondition(UndefValue::get(BI.getCondition()->getType()));
2201     return &BI;
2202   }
2203 
2204   // Canonicalize fcmp_one -> fcmp_oeq
2205   FCmpInst::Predicate FPred; Value *Y;
2206   if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
2207                              TrueDest, FalseDest)) &&
2208       BI.getCondition()->hasOneUse())
2209     if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
2210         FPred == FCmpInst::FCMP_OGE) {
2211       FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
2212       Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
2213 
2214       // Swap Destinations and condition.
2215       BI.swapSuccessors();
2216       Worklist.Add(Cond);
2217       return &BI;
2218     }
2219 
2220   // Canonicalize icmp_ne -> icmp_eq
2221   ICmpInst::Predicate IPred;
2222   if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
2223                       TrueDest, FalseDest)) &&
2224       BI.getCondition()->hasOneUse())
2225     if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
2226         IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
2227         IPred == ICmpInst::ICMP_SGE) {
2228       ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
2229       Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
2230       // Swap Destinations and condition.
2231       BI.swapSuccessors();
2232       Worklist.Add(Cond);
2233       return &BI;
2234     }
2235 
2236   return nullptr;
2237 }
2238 
2239 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
2240   Value *Cond = SI.getCondition();
2241   unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth();
2242   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2243   computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI);
2244   unsigned LeadingKnownZeros = KnownZero.countLeadingOnes();
2245   unsigned LeadingKnownOnes = KnownOne.countLeadingOnes();
2246 
2247   // Compute the number of leading bits we can ignore.
2248   // TODO: A better way to determine this would use ComputeNumSignBits().
2249   for (auto &C : SI.cases()) {
2250     LeadingKnownZeros = std::min(
2251         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2252     LeadingKnownOnes = std::min(
2253         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2254   }
2255 
2256   unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes);
2257 
2258   // Shrink the condition operand if the new type is smaller than the old type.
2259   // This may produce a non-standard type for the switch, but that's ok because
2260   // the backend should extend back to a legal type for the target.
2261   bool TruncCond = false;
2262   if (NewWidth > 0 && NewWidth < BitWidth) {
2263     TruncCond = true;
2264     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2265     Builder->SetInsertPoint(&SI);
2266     Value *NewCond = Builder->CreateTrunc(Cond, Ty, "trunc");
2267     SI.setCondition(NewCond);
2268 
2269     for (auto &C : SI.cases())
2270       static_cast<SwitchInst::CaseIt *>(&C)->setValue(ConstantInt::get(
2271           SI.getContext(), C.getCaseValue()->getValue().trunc(NewWidth)));
2272   }
2273 
2274   Value *Op0 = nullptr;
2275   ConstantInt *AddRHS = nullptr;
2276   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
2277     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2278     for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e;
2279          ++i) {
2280       ConstantInt *CaseVal = i.getCaseValue();
2281       Constant *LHS = CaseVal;
2282       if (TruncCond) {
2283         LHS = LeadingKnownZeros
2284                   ? ConstantExpr::getZExt(CaseVal, Cond->getType())
2285                   : ConstantExpr::getSExt(CaseVal, Cond->getType());
2286       }
2287       Constant *NewCaseVal = ConstantExpr::getSub(LHS, AddRHS);
2288       assert(isa<ConstantInt>(NewCaseVal) &&
2289              "Result of expression should be constant");
2290       i.setValue(cast<ConstantInt>(NewCaseVal));
2291     }
2292     SI.setCondition(Op0);
2293     if (auto *CondI = dyn_cast<Instruction>(Cond))
2294       Worklist.Add(CondI);
2295     return &SI;
2296   }
2297 
2298   return TruncCond ? &SI : nullptr;
2299 }
2300 
2301 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
2302   Value *Agg = EV.getAggregateOperand();
2303 
2304   if (!EV.hasIndices())
2305     return replaceInstUsesWith(EV, Agg);
2306 
2307   if (Value *V =
2308           SimplifyExtractValueInst(Agg, EV.getIndices(), DL, &TLI, &DT, &AC))
2309     return replaceInstUsesWith(EV, V);
2310 
2311   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2312     // We're extracting from an insertvalue instruction, compare the indices
2313     const unsigned *exti, *exte, *insi, *inse;
2314     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2315          exte = EV.idx_end(), inse = IV->idx_end();
2316          exti != exte && insi != inse;
2317          ++exti, ++insi) {
2318       if (*insi != *exti)
2319         // The insert and extract both reference distinctly different elements.
2320         // This means the extract is not influenced by the insert, and we can
2321         // replace the aggregate operand of the extract with the aggregate
2322         // operand of the insert. i.e., replace
2323         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2324         // %E = extractvalue { i32, { i32 } } %I, 0
2325         // with
2326         // %E = extractvalue { i32, { i32 } } %A, 0
2327         return ExtractValueInst::Create(IV->getAggregateOperand(),
2328                                         EV.getIndices());
2329     }
2330     if (exti == exte && insi == inse)
2331       // Both iterators are at the end: Index lists are identical. Replace
2332       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2333       // %C = extractvalue { i32, { i32 } } %B, 1, 0
2334       // with "i32 42"
2335       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
2336     if (exti == exte) {
2337       // The extract list is a prefix of the insert list. i.e. replace
2338       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2339       // %E = extractvalue { i32, { i32 } } %I, 1
2340       // with
2341       // %X = extractvalue { i32, { i32 } } %A, 1
2342       // %E = insertvalue { i32 } %X, i32 42, 0
2343       // by switching the order of the insert and extract (though the
2344       // insertvalue should be left in, since it may have other uses).
2345       Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
2346                                                  EV.getIndices());
2347       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
2348                                      makeArrayRef(insi, inse));
2349     }
2350     if (insi == inse)
2351       // The insert list is a prefix of the extract list
2352       // We can simply remove the common indices from the extract and make it
2353       // operate on the inserted value instead of the insertvalue result.
2354       // i.e., replace
2355       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2356       // %E = extractvalue { i32, { i32 } } %I, 1, 0
2357       // with
2358       // %E extractvalue { i32 } { i32 42 }, 0
2359       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
2360                                       makeArrayRef(exti, exte));
2361   }
2362   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
2363     // We're extracting from an intrinsic, see if we're the only user, which
2364     // allows us to simplify multiple result intrinsics to simpler things that
2365     // just get one value.
2366     if (II->hasOneUse()) {
2367       // Check if we're grabbing the overflow bit or the result of a 'with
2368       // overflow' intrinsic.  If it's the latter we can remove the intrinsic
2369       // and replace it with a traditional binary instruction.
2370       switch (II->getIntrinsicID()) {
2371       case Intrinsic::uadd_with_overflow:
2372       case Intrinsic::sadd_with_overflow:
2373         if (*EV.idx_begin() == 0) {  // Normal result.
2374           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2375           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2376           eraseInstFromFunction(*II);
2377           return BinaryOperator::CreateAdd(LHS, RHS);
2378         }
2379 
2380         // If the normal result of the add is dead, and the RHS is a constant,
2381         // we can transform this into a range comparison.
2382         // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
2383         if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2384           if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
2385             return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
2386                                 ConstantExpr::getNot(CI));
2387         break;
2388       case Intrinsic::usub_with_overflow:
2389       case Intrinsic::ssub_with_overflow:
2390         if (*EV.idx_begin() == 0) {  // Normal result.
2391           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2392           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2393           eraseInstFromFunction(*II);
2394           return BinaryOperator::CreateSub(LHS, RHS);
2395         }
2396         break;
2397       case Intrinsic::umul_with_overflow:
2398       case Intrinsic::smul_with_overflow:
2399         if (*EV.idx_begin() == 0) {  // Normal result.
2400           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2401           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2402           eraseInstFromFunction(*II);
2403           return BinaryOperator::CreateMul(LHS, RHS);
2404         }
2405         break;
2406       default:
2407         break;
2408       }
2409     }
2410   }
2411   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2412     // If the (non-volatile) load only has one use, we can rewrite this to a
2413     // load from a GEP. This reduces the size of the load. If a load is used
2414     // only by extractvalue instructions then this either must have been
2415     // optimized before, or it is a struct with padding, in which case we
2416     // don't want to do the transformation as it loses padding knowledge.
2417     if (L->isSimple() && L->hasOneUse()) {
2418       // extractvalue has integer indices, getelementptr has Value*s. Convert.
2419       SmallVector<Value*, 4> Indices;
2420       // Prefix an i32 0 since we need the first element.
2421       Indices.push_back(Builder->getInt32(0));
2422       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2423             I != E; ++I)
2424         Indices.push_back(Builder->getInt32(*I));
2425 
2426       // We need to insert these at the location of the old load, not at that of
2427       // the extractvalue.
2428       Builder->SetInsertPoint(L);
2429       Value *GEP = Builder->CreateInBoundsGEP(L->getType(),
2430                                               L->getPointerOperand(), Indices);
2431       // Returning the load directly will cause the main loop to insert it in
2432       // the wrong spot, so use replaceInstUsesWith().
2433       return replaceInstUsesWith(EV, Builder->CreateLoad(GEP));
2434     }
2435   // We could simplify extracts from other values. Note that nested extracts may
2436   // already be simplified implicitly by the above: extract (extract (insert) )
2437   // will be translated into extract ( insert ( extract ) ) first and then just
2438   // the value inserted, if appropriate. Similarly for extracts from single-use
2439   // loads: extract (extract (load)) will be translated to extract (load (gep))
2440   // and if again single-use then via load (gep (gep)) to load (gep).
2441   // However, double extracts from e.g. function arguments or return values
2442   // aren't handled yet.
2443   return nullptr;
2444 }
2445 
2446 /// Return 'true' if the given typeinfo will match anything.
2447 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
2448   switch (Personality) {
2449   case EHPersonality::GNU_C:
2450   case EHPersonality::GNU_C_SjLj:
2451   case EHPersonality::Rust:
2452     // The GCC C EH and Rust personality only exists to support cleanups, so
2453     // it's not clear what the semantics of catch clauses are.
2454     return false;
2455   case EHPersonality::Unknown:
2456     return false;
2457   case EHPersonality::GNU_Ada:
2458     // While __gnat_all_others_value will match any Ada exception, it doesn't
2459     // match foreign exceptions (or didn't, before gcc-4.7).
2460     return false;
2461   case EHPersonality::GNU_CXX:
2462   case EHPersonality::GNU_CXX_SjLj:
2463   case EHPersonality::GNU_ObjC:
2464   case EHPersonality::MSVC_X86SEH:
2465   case EHPersonality::MSVC_Win64SEH:
2466   case EHPersonality::MSVC_CXX:
2467   case EHPersonality::CoreCLR:
2468     return TypeInfo->isNullValue();
2469   }
2470   llvm_unreachable("invalid enum");
2471 }
2472 
2473 static bool shorter_filter(const Value *LHS, const Value *RHS) {
2474   return
2475     cast<ArrayType>(LHS->getType())->getNumElements()
2476   <
2477     cast<ArrayType>(RHS->getType())->getNumElements();
2478 }
2479 
2480 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
2481   // The logic here should be correct for any real-world personality function.
2482   // However if that turns out not to be true, the offending logic can always
2483   // be conditioned on the personality function, like the catch-all logic is.
2484   EHPersonality Personality =
2485       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
2486 
2487   // Simplify the list of clauses, eg by removing repeated catch clauses
2488   // (these are often created by inlining).
2489   bool MakeNewInstruction = false; // If true, recreate using the following:
2490   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
2491   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
2492 
2493   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
2494   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
2495     bool isLastClause = i + 1 == e;
2496     if (LI.isCatch(i)) {
2497       // A catch clause.
2498       Constant *CatchClause = LI.getClause(i);
2499       Constant *TypeInfo = CatchClause->stripPointerCasts();
2500 
2501       // If we already saw this clause, there is no point in having a second
2502       // copy of it.
2503       if (AlreadyCaught.insert(TypeInfo).second) {
2504         // This catch clause was not already seen.
2505         NewClauses.push_back(CatchClause);
2506       } else {
2507         // Repeated catch clause - drop the redundant copy.
2508         MakeNewInstruction = true;
2509       }
2510 
2511       // If this is a catch-all then there is no point in keeping any following
2512       // clauses or marking the landingpad as having a cleanup.
2513       if (isCatchAll(Personality, TypeInfo)) {
2514         if (!isLastClause)
2515           MakeNewInstruction = true;
2516         CleanupFlag = false;
2517         break;
2518       }
2519     } else {
2520       // A filter clause.  If any of the filter elements were already caught
2521       // then they can be dropped from the filter.  It is tempting to try to
2522       // exploit the filter further by saying that any typeinfo that does not
2523       // occur in the filter can't be caught later (and thus can be dropped).
2524       // However this would be wrong, since typeinfos can match without being
2525       // equal (for example if one represents a C++ class, and the other some
2526       // class derived from it).
2527       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
2528       Constant *FilterClause = LI.getClause(i);
2529       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
2530       unsigned NumTypeInfos = FilterType->getNumElements();
2531 
2532       // An empty filter catches everything, so there is no point in keeping any
2533       // following clauses or marking the landingpad as having a cleanup.  By
2534       // dealing with this case here the following code is made a bit simpler.
2535       if (!NumTypeInfos) {
2536         NewClauses.push_back(FilterClause);
2537         if (!isLastClause)
2538           MakeNewInstruction = true;
2539         CleanupFlag = false;
2540         break;
2541       }
2542 
2543       bool MakeNewFilter = false; // If true, make a new filter.
2544       SmallVector<Constant *, 16> NewFilterElts; // New elements.
2545       if (isa<ConstantAggregateZero>(FilterClause)) {
2546         // Not an empty filter - it contains at least one null typeinfo.
2547         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
2548         Constant *TypeInfo =
2549           Constant::getNullValue(FilterType->getElementType());
2550         // If this typeinfo is a catch-all then the filter can never match.
2551         if (isCatchAll(Personality, TypeInfo)) {
2552           // Throw the filter away.
2553           MakeNewInstruction = true;
2554           continue;
2555         }
2556 
2557         // There is no point in having multiple copies of this typeinfo, so
2558         // discard all but the first copy if there is more than one.
2559         NewFilterElts.push_back(TypeInfo);
2560         if (NumTypeInfos > 1)
2561           MakeNewFilter = true;
2562       } else {
2563         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
2564         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
2565         NewFilterElts.reserve(NumTypeInfos);
2566 
2567         // Remove any filter elements that were already caught or that already
2568         // occurred in the filter.  While there, see if any of the elements are
2569         // catch-alls.  If so, the filter can be discarded.
2570         bool SawCatchAll = false;
2571         for (unsigned j = 0; j != NumTypeInfos; ++j) {
2572           Constant *Elt = Filter->getOperand(j);
2573           Constant *TypeInfo = Elt->stripPointerCasts();
2574           if (isCatchAll(Personality, TypeInfo)) {
2575             // This element is a catch-all.  Bail out, noting this fact.
2576             SawCatchAll = true;
2577             break;
2578           }
2579 
2580           // Even if we've seen a type in a catch clause, we don't want to
2581           // remove it from the filter.  An unexpected type handler may be
2582           // set up for a call site which throws an exception of the same
2583           // type caught.  In order for the exception thrown by the unexpected
2584           // handler to propogate correctly, the filter must be correctly
2585           // described for the call site.
2586           //
2587           // Example:
2588           //
2589           // void unexpected() { throw 1;}
2590           // void foo() throw (int) {
2591           //   std::set_unexpected(unexpected);
2592           //   try {
2593           //     throw 2.0;
2594           //   } catch (int i) {}
2595           // }
2596 
2597           // There is no point in having multiple copies of the same typeinfo in
2598           // a filter, so only add it if we didn't already.
2599           if (SeenInFilter.insert(TypeInfo).second)
2600             NewFilterElts.push_back(cast<Constant>(Elt));
2601         }
2602         // A filter containing a catch-all cannot match anything by definition.
2603         if (SawCatchAll) {
2604           // Throw the filter away.
2605           MakeNewInstruction = true;
2606           continue;
2607         }
2608 
2609         // If we dropped something from the filter, make a new one.
2610         if (NewFilterElts.size() < NumTypeInfos)
2611           MakeNewFilter = true;
2612       }
2613       if (MakeNewFilter) {
2614         FilterType = ArrayType::get(FilterType->getElementType(),
2615                                     NewFilterElts.size());
2616         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2617         MakeNewInstruction = true;
2618       }
2619 
2620       NewClauses.push_back(FilterClause);
2621 
2622       // If the new filter is empty then it will catch everything so there is
2623       // no point in keeping any following clauses or marking the landingpad
2624       // as having a cleanup.  The case of the original filter being empty was
2625       // already handled above.
2626       if (MakeNewFilter && !NewFilterElts.size()) {
2627         assert(MakeNewInstruction && "New filter but not a new instruction!");
2628         CleanupFlag = false;
2629         break;
2630       }
2631     }
2632   }
2633 
2634   // If several filters occur in a row then reorder them so that the shortest
2635   // filters come first (those with the smallest number of elements).  This is
2636   // advantageous because shorter filters are more likely to match, speeding up
2637   // unwinding, but mostly because it increases the effectiveness of the other
2638   // filter optimizations below.
2639   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2640     unsigned j;
2641     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2642     for (j = i; j != e; ++j)
2643       if (!isa<ArrayType>(NewClauses[j]->getType()))
2644         break;
2645 
2646     // Check whether the filters are already sorted by length.  We need to know
2647     // if sorting them is actually going to do anything so that we only make a
2648     // new landingpad instruction if it does.
2649     for (unsigned k = i; k + 1 < j; ++k)
2650       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2651         // Not sorted, so sort the filters now.  Doing an unstable sort would be
2652         // correct too but reordering filters pointlessly might confuse users.
2653         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2654                          shorter_filter);
2655         MakeNewInstruction = true;
2656         break;
2657       }
2658 
2659     // Look for the next batch of filters.
2660     i = j + 1;
2661   }
2662 
2663   // If typeinfos matched if and only if equal, then the elements of a filter L
2664   // that occurs later than a filter F could be replaced by the intersection of
2665   // the elements of F and L.  In reality two typeinfos can match without being
2666   // equal (for example if one represents a C++ class, and the other some class
2667   // derived from it) so it would be wrong to perform this transform in general.
2668   // However the transform is correct and useful if F is a subset of L.  In that
2669   // case L can be replaced by F, and thus removed altogether since repeating a
2670   // filter is pointless.  So here we look at all pairs of filters F and L where
2671   // L follows F in the list of clauses, and remove L if every element of F is
2672   // an element of L.  This can occur when inlining C++ functions with exception
2673   // specifications.
2674   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2675     // Examine each filter in turn.
2676     Value *Filter = NewClauses[i];
2677     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2678     if (!FTy)
2679       // Not a filter - skip it.
2680       continue;
2681     unsigned FElts = FTy->getNumElements();
2682     // Examine each filter following this one.  Doing this backwards means that
2683     // we don't have to worry about filters disappearing under us when removed.
2684     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2685       Value *LFilter = NewClauses[j];
2686       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2687       if (!LTy)
2688         // Not a filter - skip it.
2689         continue;
2690       // If Filter is a subset of LFilter, i.e. every element of Filter is also
2691       // an element of LFilter, then discard LFilter.
2692       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
2693       // If Filter is empty then it is a subset of LFilter.
2694       if (!FElts) {
2695         // Discard LFilter.
2696         NewClauses.erase(J);
2697         MakeNewInstruction = true;
2698         // Move on to the next filter.
2699         continue;
2700       }
2701       unsigned LElts = LTy->getNumElements();
2702       // If Filter is longer than LFilter then it cannot be a subset of it.
2703       if (FElts > LElts)
2704         // Move on to the next filter.
2705         continue;
2706       // At this point we know that LFilter has at least one element.
2707       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
2708         // Filter is a subset of LFilter iff Filter contains only zeros (as we
2709         // already know that Filter is not longer than LFilter).
2710         if (isa<ConstantAggregateZero>(Filter)) {
2711           assert(FElts <= LElts && "Should have handled this case earlier!");
2712           // Discard LFilter.
2713           NewClauses.erase(J);
2714           MakeNewInstruction = true;
2715         }
2716         // Move on to the next filter.
2717         continue;
2718       }
2719       ConstantArray *LArray = cast<ConstantArray>(LFilter);
2720       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2721         // Since Filter is non-empty and contains only zeros, it is a subset of
2722         // LFilter iff LFilter contains a zero.
2723         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2724         for (unsigned l = 0; l != LElts; ++l)
2725           if (LArray->getOperand(l)->isNullValue()) {
2726             // LFilter contains a zero - discard it.
2727             NewClauses.erase(J);
2728             MakeNewInstruction = true;
2729             break;
2730           }
2731         // Move on to the next filter.
2732         continue;
2733       }
2734       // At this point we know that both filters are ConstantArrays.  Loop over
2735       // operands to see whether every element of Filter is also an element of
2736       // LFilter.  Since filters tend to be short this is probably faster than
2737       // using a method that scales nicely.
2738       ConstantArray *FArray = cast<ConstantArray>(Filter);
2739       bool AllFound = true;
2740       for (unsigned f = 0; f != FElts; ++f) {
2741         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2742         AllFound = false;
2743         for (unsigned l = 0; l != LElts; ++l) {
2744           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2745           if (LTypeInfo == FTypeInfo) {
2746             AllFound = true;
2747             break;
2748           }
2749         }
2750         if (!AllFound)
2751           break;
2752       }
2753       if (AllFound) {
2754         // Discard LFilter.
2755         NewClauses.erase(J);
2756         MakeNewInstruction = true;
2757       }
2758       // Move on to the next filter.
2759     }
2760   }
2761 
2762   // If we changed any of the clauses, replace the old landingpad instruction
2763   // with a new one.
2764   if (MakeNewInstruction) {
2765     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2766                                                  NewClauses.size());
2767     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2768       NLI->addClause(NewClauses[i]);
2769     // A landing pad with no clauses must have the cleanup flag set.  It is
2770     // theoretically possible, though highly unlikely, that we eliminated all
2771     // clauses.  If so, force the cleanup flag to true.
2772     if (NewClauses.empty())
2773       CleanupFlag = true;
2774     NLI->setCleanup(CleanupFlag);
2775     return NLI;
2776   }
2777 
2778   // Even if none of the clauses changed, we may nonetheless have understood
2779   // that the cleanup flag is pointless.  Clear it if so.
2780   if (LI.isCleanup() != CleanupFlag) {
2781     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2782     LI.setCleanup(CleanupFlag);
2783     return &LI;
2784   }
2785 
2786   return nullptr;
2787 }
2788 
2789 /// Try to move the specified instruction from its current block into the
2790 /// beginning of DestBlock, which can only happen if it's safe to move the
2791 /// instruction past all of the instructions between it and the end of its
2792 /// block.
2793 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2794   assert(I->hasOneUse() && "Invariants didn't hold!");
2795 
2796   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
2797   if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
2798       isa<TerminatorInst>(I))
2799     return false;
2800 
2801   // Do not sink alloca instructions out of the entry block.
2802   if (isa<AllocaInst>(I) && I->getParent() ==
2803         &DestBlock->getParent()->getEntryBlock())
2804     return false;
2805 
2806   // Do not sink into catchswitch blocks.
2807   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
2808     return false;
2809 
2810   // Do not sink convergent call instructions.
2811   if (auto *CI = dyn_cast<CallInst>(I)) {
2812     if (CI->isConvergent())
2813       return false;
2814   }
2815   // We can only sink load instructions if there is nothing between the load and
2816   // the end of block that could change the value.
2817   if (I->mayReadFromMemory()) {
2818     for (BasicBlock::iterator Scan = I->getIterator(),
2819                               E = I->getParent()->end();
2820          Scan != E; ++Scan)
2821       if (Scan->mayWriteToMemory())
2822         return false;
2823   }
2824 
2825   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
2826   I->moveBefore(&*InsertPos);
2827   ++NumSunkInst;
2828   return true;
2829 }
2830 
2831 bool InstCombiner::run() {
2832   while (!Worklist.isEmpty()) {
2833     Instruction *I = Worklist.RemoveOne();
2834     if (I == nullptr) continue;  // skip null values.
2835 
2836     // Check to see if we can DCE the instruction.
2837     if (isInstructionTriviallyDead(I, &TLI)) {
2838       DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
2839       eraseInstFromFunction(*I);
2840       ++NumDeadInst;
2841       MadeIRChange = true;
2842       continue;
2843     }
2844 
2845     // Instruction isn't dead, see if we can constant propagate it.
2846     if (!I->use_empty() &&
2847         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
2848       if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
2849         DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
2850 
2851         // Add operands to the worklist.
2852         replaceInstUsesWith(*I, C);
2853         ++NumConstProp;
2854         if (isInstructionTriviallyDead(I, &TLI))
2855           eraseInstFromFunction(*I);
2856         MadeIRChange = true;
2857         continue;
2858       }
2859     }
2860 
2861     // In general, it is possible for computeKnownBits to determine all bits in
2862     // a value even when the operands are not all constants.
2863     Type *Ty = I->getType();
2864     if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) {
2865       unsigned BitWidth = Ty->getScalarSizeInBits();
2866       APInt KnownZero(BitWidth, 0);
2867       APInt KnownOne(BitWidth, 0);
2868       computeKnownBits(I, KnownZero, KnownOne, /*Depth*/0, I);
2869       if ((KnownZero | KnownOne).isAllOnesValue()) {
2870         Constant *C = ConstantInt::get(Ty, KnownOne);
2871         DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C <<
2872                         " from: " << *I << '\n');
2873 
2874         // Add operands to the worklist.
2875         replaceInstUsesWith(*I, C);
2876         ++NumConstProp;
2877         if (isInstructionTriviallyDead(I, &TLI))
2878           eraseInstFromFunction(*I);
2879         MadeIRChange = true;
2880         continue;
2881       }
2882     }
2883 
2884     // See if we can trivially sink this instruction to a successor basic block.
2885     if (I->hasOneUse()) {
2886       BasicBlock *BB = I->getParent();
2887       Instruction *UserInst = cast<Instruction>(*I->user_begin());
2888       BasicBlock *UserParent;
2889 
2890       // Get the block the use occurs in.
2891       if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2892         UserParent = PN->getIncomingBlock(*I->use_begin());
2893       else
2894         UserParent = UserInst->getParent();
2895 
2896       if (UserParent != BB) {
2897         bool UserIsSuccessor = false;
2898         // See if the user is one of our successors.
2899         for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2900           if (*SI == UserParent) {
2901             UserIsSuccessor = true;
2902             break;
2903           }
2904 
2905         // If the user is one of our immediate successors, and if that successor
2906         // only has us as a predecessors (we'd have to split the critical edge
2907         // otherwise), we can keep going.
2908         if (UserIsSuccessor && UserParent->getUniquePredecessor()) {
2909           // Okay, the CFG is simple enough, try to sink this instruction.
2910           if (TryToSinkInstruction(I, UserParent)) {
2911             DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
2912             MadeIRChange = true;
2913             // We'll add uses of the sunk instruction below, but since sinking
2914             // can expose opportunities for it's *operands* add them to the
2915             // worklist
2916             for (Use &U : I->operands())
2917               if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
2918                 Worklist.Add(OpI);
2919           }
2920         }
2921       }
2922     }
2923 
2924     // Now that we have an instruction, try combining it to simplify it.
2925     Builder->SetInsertPoint(I);
2926     Builder->SetCurrentDebugLocation(I->getDebugLoc());
2927 
2928 #ifndef NDEBUG
2929     std::string OrigI;
2930 #endif
2931     DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
2932     DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
2933 
2934     if (Instruction *Result = visit(*I)) {
2935       ++NumCombined;
2936       // Should we replace the old instruction with a new one?
2937       if (Result != I) {
2938         DEBUG(dbgs() << "IC: Old = " << *I << '\n'
2939                      << "    New = " << *Result << '\n');
2940 
2941         if (I->getDebugLoc())
2942           Result->setDebugLoc(I->getDebugLoc());
2943         // Everything uses the new instruction now.
2944         I->replaceAllUsesWith(Result);
2945 
2946         // Move the name to the new instruction first.
2947         Result->takeName(I);
2948 
2949         // Push the new instruction and any users onto the worklist.
2950         Worklist.Add(Result);
2951         Worklist.AddUsersToWorkList(*Result);
2952 
2953         // Insert the new instruction into the basic block...
2954         BasicBlock *InstParent = I->getParent();
2955         BasicBlock::iterator InsertPos = I->getIterator();
2956 
2957         // If we replace a PHI with something that isn't a PHI, fix up the
2958         // insertion point.
2959         if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2960           InsertPos = InstParent->getFirstInsertionPt();
2961 
2962         InstParent->getInstList().insert(InsertPos, Result);
2963 
2964         eraseInstFromFunction(*I);
2965       } else {
2966         DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
2967                      << "    New = " << *I << '\n');
2968 
2969         // If the instruction was modified, it's possible that it is now dead.
2970         // if so, remove it.
2971         if (isInstructionTriviallyDead(I, &TLI)) {
2972           eraseInstFromFunction(*I);
2973         } else {
2974           Worklist.Add(I);
2975           Worklist.AddUsersToWorkList(*I);
2976         }
2977       }
2978       MadeIRChange = true;
2979     }
2980   }
2981 
2982   Worklist.Zap();
2983   return MadeIRChange;
2984 }
2985 
2986 /// Walk the function in depth-first order, adding all reachable code to the
2987 /// worklist.
2988 ///
2989 /// This has a couple of tricks to make the code faster and more powerful.  In
2990 /// particular, we constant fold and DCE instructions as we go, to avoid adding
2991 /// them to the worklist (this significantly speeds up instcombine on code where
2992 /// many instructions are dead or constant).  Additionally, if we find a branch
2993 /// whose condition is a known constant, we only visit the reachable successors.
2994 ///
2995 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
2996                                        SmallPtrSetImpl<BasicBlock *> &Visited,
2997                                        InstCombineWorklist &ICWorklist,
2998                                        const TargetLibraryInfo *TLI) {
2999   bool MadeIRChange = false;
3000   SmallVector<BasicBlock*, 256> Worklist;
3001   Worklist.push_back(BB);
3002 
3003   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
3004   DenseMap<Constant *, Constant *> FoldedConstants;
3005 
3006   do {
3007     BB = Worklist.pop_back_val();
3008 
3009     // We have now visited this block!  If we've already been here, ignore it.
3010     if (!Visited.insert(BB).second)
3011       continue;
3012 
3013     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3014       Instruction *Inst = &*BBI++;
3015 
3016       // DCE instruction if trivially dead.
3017       if (isInstructionTriviallyDead(Inst, TLI)) {
3018         ++NumDeadInst;
3019         DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
3020         Inst->eraseFromParent();
3021         continue;
3022       }
3023 
3024       // ConstantProp instruction if trivially constant.
3025       if (!Inst->use_empty() &&
3026           (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
3027         if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
3028           DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
3029                        << *Inst << '\n');
3030           Inst->replaceAllUsesWith(C);
3031           ++NumConstProp;
3032           if (isInstructionTriviallyDead(Inst, TLI))
3033             Inst->eraseFromParent();
3034           continue;
3035         }
3036 
3037       // See if we can constant fold its operands.
3038       for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); i != e;
3039            ++i) {
3040         if (!isa<ConstantVector>(i) && !isa<ConstantExpr>(i))
3041           continue;
3042 
3043         auto *C = cast<Constant>(i);
3044         Constant *&FoldRes = FoldedConstants[C];
3045         if (!FoldRes)
3046           FoldRes = ConstantFoldConstant(C, DL, TLI);
3047         if (!FoldRes)
3048           FoldRes = C;
3049 
3050         if (FoldRes != C) {
3051           *i = FoldRes;
3052           MadeIRChange = true;
3053         }
3054       }
3055 
3056       InstrsForInstCombineWorklist.push_back(Inst);
3057     }
3058 
3059     // Recursively visit successors.  If this is a branch or switch on a
3060     // constant, only visit the reachable successor.
3061     TerminatorInst *TI = BB->getTerminator();
3062     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3063       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
3064         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
3065         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
3066         Worklist.push_back(ReachableBB);
3067         continue;
3068       }
3069     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3070       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
3071         // See if this is an explicit destination.
3072         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3073              i != e; ++i)
3074           if (i.getCaseValue() == Cond) {
3075             BasicBlock *ReachableBB = i.getCaseSuccessor();
3076             Worklist.push_back(ReachableBB);
3077             continue;
3078           }
3079 
3080         // Otherwise it is the default destination.
3081         Worklist.push_back(SI->getDefaultDest());
3082         continue;
3083       }
3084     }
3085 
3086     for (BasicBlock *SuccBB : TI->successors())
3087       Worklist.push_back(SuccBB);
3088   } while (!Worklist.empty());
3089 
3090   // Once we've found all of the instructions to add to instcombine's worklist,
3091   // add them in reverse order.  This way instcombine will visit from the top
3092   // of the function down.  This jives well with the way that it adds all uses
3093   // of instructions to the worklist after doing a transformation, thus avoiding
3094   // some N^2 behavior in pathological cases.
3095   ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist);
3096 
3097   return MadeIRChange;
3098 }
3099 
3100 /// \brief Populate the IC worklist from a function, and prune any dead basic
3101 /// blocks discovered in the process.
3102 ///
3103 /// This also does basic constant propagation and other forward fixing to make
3104 /// the combiner itself run much faster.
3105 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3106                                           TargetLibraryInfo *TLI,
3107                                           InstCombineWorklist &ICWorklist) {
3108   bool MadeIRChange = false;
3109 
3110   // Do a depth-first traversal of the function, populate the worklist with
3111   // the reachable instructions.  Ignore blocks that are not reachable.  Keep
3112   // track of which blocks we visit.
3113   SmallPtrSet<BasicBlock *, 32> Visited;
3114   MadeIRChange |=
3115       AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);
3116 
3117   // Do a quick scan over the function.  If we find any blocks that are
3118   // unreachable, remove any instructions inside of them.  This prevents
3119   // the instcombine code from having to deal with some bad special cases.
3120   for (BasicBlock &BB : F) {
3121     if (Visited.count(&BB))
3122       continue;
3123 
3124     unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
3125     MadeIRChange |= NumDeadInstInBB > 0;
3126     NumDeadInst += NumDeadInstInBB;
3127   }
3128 
3129   return MadeIRChange;
3130 }
3131 
3132 static bool
3133 combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist,
3134                                 AliasAnalysis *AA, AssumptionCache &AC,
3135                                 TargetLibraryInfo &TLI, DominatorTree &DT,
3136                                 bool ExpensiveCombines = true,
3137                                 LoopInfo *LI = nullptr) {
3138   auto &DL = F.getParent()->getDataLayout();
3139   ExpensiveCombines |= EnableExpensiveCombines;
3140 
3141   /// Builder - This is an IRBuilder that automatically inserts new
3142   /// instructions into the worklist when they are created.
3143   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
3144       F.getContext(), TargetFolder(DL),
3145       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
3146         Worklist.Add(I);
3147 
3148         using namespace llvm::PatternMatch;
3149         if (match(I, m_Intrinsic<Intrinsic::assume>()))
3150           AC.registerAssumption(cast<CallInst>(I));
3151       }));
3152 
3153   // Lower dbg.declare intrinsics otherwise their value may be clobbered
3154   // by instcombiner.
3155   bool DbgDeclaresChanged = LowerDbgDeclare(F);
3156 
3157   // Iterate while there is work to do.
3158   int Iteration = 0;
3159   for (;;) {
3160     ++Iteration;
3161     DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
3162                  << F.getName() << "\n");
3163 
3164     bool Changed = prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
3165 
3166     InstCombiner IC(Worklist, &Builder, F.optForMinSize(), ExpensiveCombines,
3167                     AA, AC, TLI, DT, DL, LI);
3168     Changed |= IC.run();
3169 
3170     if (!Changed)
3171       break;
3172   }
3173 
3174   return DbgDeclaresChanged || Iteration > 1;
3175 }
3176 
3177 PreservedAnalyses InstCombinePass::run(Function &F,
3178                                        FunctionAnalysisManager &AM) {
3179   auto &AC = AM.getResult<AssumptionAnalysis>(F);
3180   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3181   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3182 
3183   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
3184 
3185   // FIXME: The AliasAnalysis is not yet supported in the new pass manager
3186   if (!combineInstructionsOverFunction(F, Worklist, nullptr, AC, TLI, DT,
3187                                        ExpensiveCombines, LI))
3188     // No changes, all analyses are preserved.
3189     return PreservedAnalyses::all();
3190 
3191   // Mark all the analyses that instcombine updates as preserved.
3192   // FIXME: This should also 'preserve the CFG'.
3193   PreservedAnalyses PA;
3194   PA.preserve<DominatorTreeAnalysis>();
3195   return PA;
3196 }
3197 
3198 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3199   AU.setPreservesCFG();
3200   AU.addRequired<AAResultsWrapperPass>();
3201   AU.addRequired<AssumptionCacheTracker>();
3202   AU.addRequired<TargetLibraryInfoWrapperPass>();
3203   AU.addRequired<DominatorTreeWrapperPass>();
3204   AU.addPreserved<DominatorTreeWrapperPass>();
3205   AU.addPreserved<AAResultsWrapperPass>();
3206   AU.addPreserved<BasicAAWrapperPass>();
3207   AU.addPreserved<GlobalsAAWrapperPass>();
3208 }
3209 
3210 bool InstructionCombiningPass::runOnFunction(Function &F) {
3211   if (skipFunction(F))
3212     return false;
3213 
3214   // Required analyses.
3215   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3216   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3217   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
3218   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3219 
3220   // Optional analyses.
3221   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3222   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3223 
3224   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT,
3225                                          ExpensiveCombines, LI);
3226 }
3227 
3228 char InstructionCombiningPass::ID = 0;
3229 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
3230                       "Combine redundant instructions", false, false)
3231 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3232 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3233 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3234 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3235 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3236 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
3237                     "Combine redundant instructions", false, false)
3238 
3239 // Initialization Routines
3240 void llvm::initializeInstCombine(PassRegistry &Registry) {
3241   initializeInstructionCombiningPassPass(Registry);
3242 }
3243 
3244 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
3245   initializeInstructionCombiningPassPass(*unwrap(R));
3246 }
3247 
3248 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) {
3249   return new InstructionCombiningPass(ExpensiveCombines);
3250 }
3251