1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // InstructionCombining - Combine instructions to form fewer, simple 11 // instructions. This pass does not modify the CFG. This pass is where 12 // algebraic simplification happens. 13 // 14 // This pass combines things like: 15 // %Y = add i32 %X, 1 16 // %Z = add i32 %Y, 1 17 // into: 18 // %Z = add i32 %X, 2 19 // 20 // This is a simple worklist driven algorithm. 21 // 22 // This pass guarantees that the following canonicalizations are performed on 23 // the program: 24 // 1. If a binary operator has a constant operand, it is moved to the RHS 25 // 2. Bitwise operators with constant operands are always grouped so that 26 // shifts are performed first, then or's, then and's, then xor's. 27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 28 // 4. All cmp instructions on boolean values are replaced with logical ops 29 // 5. add X, X is represented as (X*2) => (X << 1) 30 // 6. Multiplies with a power-of-two constant argument are transformed into 31 // shifts. 32 // ... etc. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/Transforms/InstCombine/InstCombine.h" 37 #include "InstCombineInternal.h" 38 #include "llvm-c/Initialization.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/Statistic.h" 41 #include "llvm/ADT/StringSwitch.h" 42 #include "llvm/Analysis/AssumptionCache.h" 43 #include "llvm/Analysis/CFG.h" 44 #include "llvm/Analysis/ConstantFolding.h" 45 #include "llvm/Analysis/GlobalsModRef.h" 46 #include "llvm/Analysis/InstructionSimplify.h" 47 #include "llvm/Analysis/LibCallSemantics.h" 48 #include "llvm/Analysis/LoopInfo.h" 49 #include "llvm/Analysis/MemoryBuiltins.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/Analysis/ValueTracking.h" 52 #include "llvm/IR/CFG.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/Dominators.h" 55 #include "llvm/IR/GetElementPtrTypeIterator.h" 56 #include "llvm/IR/IntrinsicInst.h" 57 #include "llvm/IR/PatternMatch.h" 58 #include "llvm/IR/ValueHandle.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Transforms/Scalar.h" 63 #include "llvm/Transforms/Utils/Local.h" 64 #include <algorithm> 65 #include <climits> 66 using namespace llvm; 67 using namespace llvm::PatternMatch; 68 69 #define DEBUG_TYPE "instcombine" 70 71 STATISTIC(NumCombined , "Number of insts combined"); 72 STATISTIC(NumConstProp, "Number of constant folds"); 73 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 74 STATISTIC(NumSunkInst , "Number of instructions sunk"); 75 STATISTIC(NumExpand, "Number of expansions"); 76 STATISTIC(NumFactor , "Number of factorizations"); 77 STATISTIC(NumReassoc , "Number of reassociations"); 78 79 Value *InstCombiner::EmitGEPOffset(User *GEP) { 80 return llvm::EmitGEPOffset(Builder, DL, GEP); 81 } 82 83 /// ShouldChangeType - Return true if it is desirable to convert a computation 84 /// from 'From' to 'To'. We don't want to convert from a legal to an illegal 85 /// type for example, or from a smaller to a larger illegal type. 86 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const { 87 assert(From->isIntegerTy() && To->isIntegerTy()); 88 89 unsigned FromWidth = From->getPrimitiveSizeInBits(); 90 unsigned ToWidth = To->getPrimitiveSizeInBits(); 91 bool FromLegal = DL.isLegalInteger(FromWidth); 92 bool ToLegal = DL.isLegalInteger(ToWidth); 93 94 // If this is a legal integer from type, and the result would be an illegal 95 // type, don't do the transformation. 96 if (FromLegal && !ToLegal) 97 return false; 98 99 // Otherwise, if both are illegal, do not increase the size of the result. We 100 // do allow things like i160 -> i64, but not i64 -> i160. 101 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 102 return false; 103 104 return true; 105 } 106 107 // Return true, if No Signed Wrap should be maintained for I. 108 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 109 // where both B and C should be ConstantInts, results in a constant that does 110 // not overflow. This function only handles the Add and Sub opcodes. For 111 // all other opcodes, the function conservatively returns false. 112 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 113 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 114 if (!OBO || !OBO->hasNoSignedWrap()) { 115 return false; 116 } 117 118 // We reason about Add and Sub Only. 119 Instruction::BinaryOps Opcode = I.getOpcode(); 120 if (Opcode != Instruction::Add && 121 Opcode != Instruction::Sub) { 122 return false; 123 } 124 125 ConstantInt *CB = dyn_cast<ConstantInt>(B); 126 ConstantInt *CC = dyn_cast<ConstantInt>(C); 127 128 if (!CB || !CC) { 129 return false; 130 } 131 132 const APInt &BVal = CB->getValue(); 133 const APInt &CVal = CC->getValue(); 134 bool Overflow = false; 135 136 if (Opcode == Instruction::Add) { 137 BVal.sadd_ov(CVal, Overflow); 138 } else { 139 BVal.ssub_ov(CVal, Overflow); 140 } 141 142 return !Overflow; 143 } 144 145 /// Conservatively clears subclassOptionalData after a reassociation or 146 /// commutation. We preserve fast-math flags when applicable as they can be 147 /// preserved. 148 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 149 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 150 if (!FPMO) { 151 I.clearSubclassOptionalData(); 152 return; 153 } 154 155 FastMathFlags FMF = I.getFastMathFlags(); 156 I.clearSubclassOptionalData(); 157 I.setFastMathFlags(FMF); 158 } 159 160 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for 161 /// operators which are associative or commutative: 162 // 163 // Commutative operators: 164 // 165 // 1. Order operands such that they are listed from right (least complex) to 166 // left (most complex). This puts constants before unary operators before 167 // binary operators. 168 // 169 // Associative operators: 170 // 171 // 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 172 // 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 173 // 174 // Associative and commutative operators: 175 // 176 // 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 177 // 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 178 // 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 179 // if C1 and C2 are constants. 180 // 181 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 182 Instruction::BinaryOps Opcode = I.getOpcode(); 183 bool Changed = false; 184 185 do { 186 // Order operands such that they are listed from right (least complex) to 187 // left (most complex). This puts constants before unary operators before 188 // binary operators. 189 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 190 getComplexity(I.getOperand(1))) 191 Changed = !I.swapOperands(); 192 193 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 194 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 195 196 if (I.isAssociative()) { 197 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 198 if (Op0 && Op0->getOpcode() == Opcode) { 199 Value *A = Op0->getOperand(0); 200 Value *B = Op0->getOperand(1); 201 Value *C = I.getOperand(1); 202 203 // Does "B op C" simplify? 204 if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) { 205 // It simplifies to V. Form "A op V". 206 I.setOperand(0, A); 207 I.setOperand(1, V); 208 // Conservatively clear the optional flags, since they may not be 209 // preserved by the reassociation. 210 if (MaintainNoSignedWrap(I, B, C) && 211 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { 212 // Note: this is only valid because SimplifyBinOp doesn't look at 213 // the operands to Op0. 214 I.clearSubclassOptionalData(); 215 I.setHasNoSignedWrap(true); 216 } else { 217 ClearSubclassDataAfterReassociation(I); 218 } 219 220 Changed = true; 221 ++NumReassoc; 222 continue; 223 } 224 } 225 226 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 227 if (Op1 && Op1->getOpcode() == Opcode) { 228 Value *A = I.getOperand(0); 229 Value *B = Op1->getOperand(0); 230 Value *C = Op1->getOperand(1); 231 232 // Does "A op B" simplify? 233 if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) { 234 // It simplifies to V. Form "V op C". 235 I.setOperand(0, V); 236 I.setOperand(1, C); 237 // Conservatively clear the optional flags, since they may not be 238 // preserved by the reassociation. 239 ClearSubclassDataAfterReassociation(I); 240 Changed = true; 241 ++NumReassoc; 242 continue; 243 } 244 } 245 } 246 247 if (I.isAssociative() && I.isCommutative()) { 248 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 249 if (Op0 && Op0->getOpcode() == Opcode) { 250 Value *A = Op0->getOperand(0); 251 Value *B = Op0->getOperand(1); 252 Value *C = I.getOperand(1); 253 254 // Does "C op A" simplify? 255 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) { 256 // It simplifies to V. Form "V op B". 257 I.setOperand(0, V); 258 I.setOperand(1, B); 259 // Conservatively clear the optional flags, since they may not be 260 // preserved by the reassociation. 261 ClearSubclassDataAfterReassociation(I); 262 Changed = true; 263 ++NumReassoc; 264 continue; 265 } 266 } 267 268 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 269 if (Op1 && Op1->getOpcode() == Opcode) { 270 Value *A = I.getOperand(0); 271 Value *B = Op1->getOperand(0); 272 Value *C = Op1->getOperand(1); 273 274 // Does "C op A" simplify? 275 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) { 276 // It simplifies to V. Form "B op V". 277 I.setOperand(0, B); 278 I.setOperand(1, V); 279 // Conservatively clear the optional flags, since they may not be 280 // preserved by the reassociation. 281 ClearSubclassDataAfterReassociation(I); 282 Changed = true; 283 ++NumReassoc; 284 continue; 285 } 286 } 287 288 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 289 // if C1 and C2 are constants. 290 if (Op0 && Op1 && 291 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 292 isa<Constant>(Op0->getOperand(1)) && 293 isa<Constant>(Op1->getOperand(1)) && 294 Op0->hasOneUse() && Op1->hasOneUse()) { 295 Value *A = Op0->getOperand(0); 296 Constant *C1 = cast<Constant>(Op0->getOperand(1)); 297 Value *B = Op1->getOperand(0); 298 Constant *C2 = cast<Constant>(Op1->getOperand(1)); 299 300 Constant *Folded = ConstantExpr::get(Opcode, C1, C2); 301 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B); 302 if (isa<FPMathOperator>(New)) { 303 FastMathFlags Flags = I.getFastMathFlags(); 304 Flags &= Op0->getFastMathFlags(); 305 Flags &= Op1->getFastMathFlags(); 306 New->setFastMathFlags(Flags); 307 } 308 InsertNewInstWith(New, I); 309 New->takeName(Op1); 310 I.setOperand(0, New); 311 I.setOperand(1, Folded); 312 // Conservatively clear the optional flags, since they may not be 313 // preserved by the reassociation. 314 ClearSubclassDataAfterReassociation(I); 315 316 Changed = true; 317 continue; 318 } 319 } 320 321 // No further simplifications. 322 return Changed; 323 } while (1); 324 } 325 326 /// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to 327 /// "(X LOp Y) ROp (X LOp Z)". 328 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp, 329 Instruction::BinaryOps ROp) { 330 switch (LOp) { 331 default: 332 return false; 333 334 case Instruction::And: 335 // And distributes over Or and Xor. 336 switch (ROp) { 337 default: 338 return false; 339 case Instruction::Or: 340 case Instruction::Xor: 341 return true; 342 } 343 344 case Instruction::Mul: 345 // Multiplication distributes over addition and subtraction. 346 switch (ROp) { 347 default: 348 return false; 349 case Instruction::Add: 350 case Instruction::Sub: 351 return true; 352 } 353 354 case Instruction::Or: 355 // Or distributes over And. 356 switch (ROp) { 357 default: 358 return false; 359 case Instruction::And: 360 return true; 361 } 362 } 363 } 364 365 /// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to 366 /// "(X ROp Z) LOp (Y ROp Z)". 367 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp, 368 Instruction::BinaryOps ROp) { 369 if (Instruction::isCommutative(ROp)) 370 return LeftDistributesOverRight(ROp, LOp); 371 372 switch (LOp) { 373 default: 374 return false; 375 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts. 376 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts. 377 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts. 378 case Instruction::And: 379 case Instruction::Or: 380 case Instruction::Xor: 381 switch (ROp) { 382 default: 383 return false; 384 case Instruction::Shl: 385 case Instruction::LShr: 386 case Instruction::AShr: 387 return true; 388 } 389 } 390 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 391 // but this requires knowing that the addition does not overflow and other 392 // such subtleties. 393 return false; 394 } 395 396 /// This function returns identity value for given opcode, which can be used to 397 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 398 static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) { 399 if (isa<Constant>(V)) 400 return nullptr; 401 402 if (OpCode == Instruction::Mul) 403 return ConstantInt::get(V->getType(), 1); 404 405 // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc. 406 407 return nullptr; 408 } 409 410 /// This function factors binary ops which can be combined using distributive 411 /// laws. This function tries to transform 'Op' based TopLevelOpcode to enable 412 /// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called 413 /// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms 414 /// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and 415 /// RHS to 4. 416 static Instruction::BinaryOps 417 getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode, 418 BinaryOperator *Op, Value *&LHS, Value *&RHS) { 419 if (!Op) 420 return Instruction::BinaryOpsEnd; 421 422 LHS = Op->getOperand(0); 423 RHS = Op->getOperand(1); 424 425 switch (TopLevelOpcode) { 426 default: 427 return Op->getOpcode(); 428 429 case Instruction::Add: 430 case Instruction::Sub: 431 if (Op->getOpcode() == Instruction::Shl) { 432 if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) { 433 // The multiplier is really 1 << CST. 434 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST); 435 return Instruction::Mul; 436 } 437 } 438 return Op->getOpcode(); 439 } 440 441 // TODO: We can add other conversions e.g. shr => div etc. 442 } 443 444 /// This tries to simplify binary operations by factorizing out common terms 445 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 446 static Value *tryFactorization(InstCombiner::BuilderTy *Builder, 447 const DataLayout &DL, BinaryOperator &I, 448 Instruction::BinaryOps InnerOpcode, Value *A, 449 Value *B, Value *C, Value *D) { 450 451 // If any of A, B, C, D are null, we can not factor I, return early. 452 // Checking A and C should be enough. 453 if (!A || !C || !B || !D) 454 return nullptr; 455 456 Value *V = nullptr; 457 Value *SimplifiedInst = nullptr; 458 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 459 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 460 461 // Does "X op' Y" always equal "Y op' X"? 462 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 463 464 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 465 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 466 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 467 // commutative case, "(A op' B) op (C op' A)"? 468 if (A == C || (InnerCommutative && A == D)) { 469 if (A != C) 470 std::swap(C, D); 471 // Consider forming "A op' (B op D)". 472 // If "B op D" simplifies then it can be formed with no cost. 473 V = SimplifyBinOp(TopLevelOpcode, B, D, DL); 474 // If "B op D" doesn't simplify then only go on if both of the existing 475 // operations "A op' B" and "C op' D" will be zapped as no longer used. 476 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 477 V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 478 if (V) { 479 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V); 480 } 481 } 482 483 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 484 if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 485 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 486 // commutative case, "(A op' B) op (B op' D)"? 487 if (B == D || (InnerCommutative && B == C)) { 488 if (B != D) 489 std::swap(C, D); 490 // Consider forming "(A op C) op' B". 491 // If "A op C" simplifies then it can be formed with no cost. 492 V = SimplifyBinOp(TopLevelOpcode, A, C, DL); 493 494 // If "A op C" doesn't simplify then only go on if both of the existing 495 // operations "A op' B" and "C op' D" will be zapped as no longer used. 496 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 497 V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 498 if (V) { 499 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B); 500 } 501 } 502 503 if (SimplifiedInst) { 504 ++NumFactor; 505 SimplifiedInst->takeName(&I); 506 507 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag. 508 // TODO: Check for NUW. 509 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 510 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 511 bool HasNSW = false; 512 if (isa<OverflowingBinaryOperator>(&I)) 513 HasNSW = I.hasNoSignedWrap(); 514 515 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 516 if (isa<OverflowingBinaryOperator>(Op0)) 517 HasNSW &= Op0->hasNoSignedWrap(); 518 519 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 520 if (isa<OverflowingBinaryOperator>(Op1)) 521 HasNSW &= Op1->hasNoSignedWrap(); 522 523 // We can propagate 'nsw' if we know that 524 // %Y = mul nsw i16 %X, C 525 // %Z = add nsw i16 %Y, %X 526 // => 527 // %Z = mul nsw i16 %X, C+1 528 // 529 // iff C+1 isn't INT_MIN 530 const APInt *CInt; 531 if (TopLevelOpcode == Instruction::Add && 532 InnerOpcode == Instruction::Mul) 533 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) 534 BO->setHasNoSignedWrap(HasNSW); 535 } 536 } 537 } 538 return SimplifiedInst; 539 } 540 541 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations 542 /// which some other binary operation distributes over either by factorizing 543 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this 544 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is 545 /// a win). Returns the simplified value, or null if it didn't simplify. 546 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 547 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 548 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 549 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 550 551 // Factorization. 552 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 553 auto TopLevelOpcode = I.getOpcode(); 554 auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 555 auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 556 557 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 558 // a common term. 559 if (LHSOpcode == RHSOpcode) { 560 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D)) 561 return V; 562 } 563 564 // The instruction has the form "(A op' B) op (C)". Try to factorize common 565 // term. 566 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS, 567 getIdentityValue(LHSOpcode, RHS))) 568 return V; 569 570 // The instruction has the form "(B) op (C op' D)". Try to factorize common 571 // term. 572 if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS, 573 getIdentityValue(RHSOpcode, LHS), C, D)) 574 return V; 575 576 // Expansion. 577 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 578 // The instruction has the form "(A op' B) op C". See if expanding it out 579 // to "(A op C) op' (B op C)" results in simplifications. 580 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 581 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 582 583 // Do "A op C" and "B op C" both simplify? 584 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL)) 585 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) { 586 // They do! Return "L op' R". 587 ++NumExpand; 588 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 589 if ((L == A && R == B) || 590 (Instruction::isCommutative(InnerOpcode) && L == B && R == A)) 591 return Op0; 592 // Otherwise return "L op' R" if it simplifies. 593 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL)) 594 return V; 595 // Otherwise, create a new instruction. 596 C = Builder->CreateBinOp(InnerOpcode, L, R); 597 C->takeName(&I); 598 return C; 599 } 600 } 601 602 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 603 // The instruction has the form "A op (B op' C)". See if expanding it out 604 // to "(A op B) op' (A op C)" results in simplifications. 605 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 606 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 607 608 // Do "A op B" and "A op C" both simplify? 609 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL)) 610 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) { 611 // They do! Return "L op' R". 612 ++NumExpand; 613 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 614 if ((L == B && R == C) || 615 (Instruction::isCommutative(InnerOpcode) && L == C && R == B)) 616 return Op1; 617 // Otherwise return "L op' R" if it simplifies. 618 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL)) 619 return V; 620 // Otherwise, create a new instruction. 621 A = Builder->CreateBinOp(InnerOpcode, L, R); 622 A->takeName(&I); 623 return A; 624 } 625 } 626 627 // (op (select (a, c, b)), (select (a, d, b))) -> (select (a, (op c, d), 0)) 628 // (op (select (a, b, c)), (select (a, b, d))) -> (select (a, 0, (op c, d))) 629 if (auto *SI0 = dyn_cast<SelectInst>(LHS)) { 630 if (auto *SI1 = dyn_cast<SelectInst>(RHS)) { 631 if (SI0->getCondition() == SI1->getCondition()) { 632 Value *SI = nullptr; 633 if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getFalseValue(), 634 SI1->getFalseValue(), DL, TLI, DT, AC)) 635 SI = Builder->CreateSelect(SI0->getCondition(), 636 Builder->CreateBinOp(TopLevelOpcode, 637 SI0->getTrueValue(), 638 SI1->getTrueValue()), 639 V); 640 if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getTrueValue(), 641 SI1->getTrueValue(), DL, TLI, DT, AC)) 642 SI = Builder->CreateSelect( 643 SI0->getCondition(), V, 644 Builder->CreateBinOp(TopLevelOpcode, SI0->getFalseValue(), 645 SI1->getFalseValue())); 646 if (SI) { 647 SI->takeName(&I); 648 return SI; 649 } 650 } 651 } 652 } 653 654 return nullptr; 655 } 656 657 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction 658 // if the LHS is a constant zero (which is the 'negate' form). 659 // 660 Value *InstCombiner::dyn_castNegVal(Value *V) const { 661 if (BinaryOperator::isNeg(V)) 662 return BinaryOperator::getNegArgument(V); 663 664 // Constants can be considered to be negated values if they can be folded. 665 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 666 return ConstantExpr::getNeg(C); 667 668 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 669 if (C->getType()->getElementType()->isIntegerTy()) 670 return ConstantExpr::getNeg(C); 671 672 return nullptr; 673 } 674 675 // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the 676 // instruction if the LHS is a constant negative zero (which is the 'negate' 677 // form). 678 // 679 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const { 680 if (BinaryOperator::isFNeg(V, IgnoreZeroSign)) 681 return BinaryOperator::getFNegArgument(V); 682 683 // Constants can be considered to be negated values if they can be folded. 684 if (ConstantFP *C = dyn_cast<ConstantFP>(V)) 685 return ConstantExpr::getFNeg(C); 686 687 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 688 if (C->getType()->getElementType()->isFloatingPointTy()) 689 return ConstantExpr::getFNeg(C); 690 691 return nullptr; 692 } 693 694 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO, 695 InstCombiner *IC) { 696 if (CastInst *CI = dyn_cast<CastInst>(&I)) { 697 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType()); 698 } 699 700 // Figure out if the constant is the left or the right argument. 701 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 702 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 703 704 if (Constant *SOC = dyn_cast<Constant>(SO)) { 705 if (ConstIsRHS) 706 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 707 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 708 } 709 710 Value *Op0 = SO, *Op1 = ConstOperand; 711 if (!ConstIsRHS) 712 std::swap(Op0, Op1); 713 714 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) { 715 Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1, 716 SO->getName()+".op"); 717 Instruction *FPInst = dyn_cast<Instruction>(RI); 718 if (FPInst && isa<FPMathOperator>(FPInst)) 719 FPInst->copyFastMathFlags(BO); 720 return RI; 721 } 722 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I)) 723 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, 724 SO->getName()+".cmp"); 725 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I)) 726 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, 727 SO->getName()+".cmp"); 728 llvm_unreachable("Unknown binary instruction type!"); 729 } 730 731 // FoldOpIntoSelect - Given an instruction with a select as one operand and a 732 // constant as the other operand, try to fold the binary operator into the 733 // select arguments. This also works for Cast instructions, which obviously do 734 // not have a second operand. 735 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 736 // Don't modify shared select instructions 737 if (!SI->hasOneUse()) return nullptr; 738 Value *TV = SI->getOperand(1); 739 Value *FV = SI->getOperand(2); 740 741 if (isa<Constant>(TV) || isa<Constant>(FV)) { 742 // Bool selects with constant operands can be folded to logical ops. 743 if (SI->getType()->isIntegerTy(1)) return nullptr; 744 745 // If it's a bitcast involving vectors, make sure it has the same number of 746 // elements on both sides. 747 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) { 748 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 749 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 750 751 // Verify that either both or neither are vectors. 752 if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr; 753 // If vectors, verify that they have the same number of elements. 754 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 755 return nullptr; 756 } 757 758 // Test if a CmpInst instruction is used exclusively by a select as 759 // part of a minimum or maximum operation. If so, refrain from doing 760 // any other folding. This helps out other analyses which understand 761 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 762 // and CodeGen. And in this case, at least one of the comparison 763 // operands has at least one user besides the compare (the select), 764 // which would often largely negate the benefit of folding anyway. 765 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 766 if (CI->hasOneUse()) { 767 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 768 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 769 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 770 return nullptr; 771 } 772 } 773 774 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this); 775 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this); 776 777 return SelectInst::Create(SI->getCondition(), 778 SelectTrueVal, SelectFalseVal); 779 } 780 return nullptr; 781 } 782 783 /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which 784 /// has a PHI node as operand #0, see if we can fold the instruction into the 785 /// PHI (which is only possible if all operands to the PHI are constants). 786 /// 787 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { 788 PHINode *PN = cast<PHINode>(I.getOperand(0)); 789 unsigned NumPHIValues = PN->getNumIncomingValues(); 790 if (NumPHIValues == 0) 791 return nullptr; 792 793 // We normally only transform phis with a single use. However, if a PHI has 794 // multiple uses and they are all the same operation, we can fold *all* of the 795 // uses into the PHI. 796 if (!PN->hasOneUse()) { 797 // Walk the use list for the instruction, comparing them to I. 798 for (User *U : PN->users()) { 799 Instruction *UI = cast<Instruction>(U); 800 if (UI != &I && !I.isIdenticalTo(UI)) 801 return nullptr; 802 } 803 // Otherwise, we can replace *all* users with the new PHI we form. 804 } 805 806 // Check to see if all of the operands of the PHI are simple constants 807 // (constantint/constantfp/undef). If there is one non-constant value, 808 // remember the BB it is in. If there is more than one or if *it* is a PHI, 809 // bail out. We don't do arbitrary constant expressions here because moving 810 // their computation can be expensive without a cost model. 811 BasicBlock *NonConstBB = nullptr; 812 for (unsigned i = 0; i != NumPHIValues; ++i) { 813 Value *InVal = PN->getIncomingValue(i); 814 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 815 continue; 816 817 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 818 if (NonConstBB) return nullptr; // More than one non-const value. 819 820 NonConstBB = PN->getIncomingBlock(i); 821 822 // If the InVal is an invoke at the end of the pred block, then we can't 823 // insert a computation after it without breaking the edge. 824 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal)) 825 if (II->getParent() == NonConstBB) 826 return nullptr; 827 828 // If the incoming non-constant value is in I's block, we will remove one 829 // instruction, but insert another equivalent one, leading to infinite 830 // instcombine. 831 if (isPotentiallyReachable(I.getParent(), NonConstBB, DT, LI)) 832 return nullptr; 833 } 834 835 // If there is exactly one non-constant value, we can insert a copy of the 836 // operation in that block. However, if this is a critical edge, we would be 837 // inserting the computation on some other paths (e.g. inside a loop). Only 838 // do this if the pred block is unconditionally branching into the phi block. 839 if (NonConstBB != nullptr) { 840 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 841 if (!BI || !BI->isUnconditional()) return nullptr; 842 } 843 844 // Okay, we can do the transformation: create the new PHI node. 845 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 846 InsertNewInstBefore(NewPN, *PN); 847 NewPN->takeName(PN); 848 849 // If we are going to have to insert a new computation, do so right before the 850 // predecessor's terminator. 851 if (NonConstBB) 852 Builder->SetInsertPoint(NonConstBB->getTerminator()); 853 854 // Next, add all of the operands to the PHI. 855 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 856 // We only currently try to fold the condition of a select when it is a phi, 857 // not the true/false values. 858 Value *TrueV = SI->getTrueValue(); 859 Value *FalseV = SI->getFalseValue(); 860 BasicBlock *PhiTransBB = PN->getParent(); 861 for (unsigned i = 0; i != NumPHIValues; ++i) { 862 BasicBlock *ThisBB = PN->getIncomingBlock(i); 863 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 864 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 865 Value *InV = nullptr; 866 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 867 // even if currently isNullValue gives false. 868 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 869 if (InC && !isa<ConstantExpr>(InC)) 870 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 871 else 872 InV = Builder->CreateSelect(PN->getIncomingValue(i), 873 TrueVInPred, FalseVInPred, "phitmp"); 874 NewPN->addIncoming(InV, ThisBB); 875 } 876 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 877 Constant *C = cast<Constant>(I.getOperand(1)); 878 for (unsigned i = 0; i != NumPHIValues; ++i) { 879 Value *InV = nullptr; 880 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 881 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 882 else if (isa<ICmpInst>(CI)) 883 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 884 C, "phitmp"); 885 else 886 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 887 C, "phitmp"); 888 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 889 } 890 } else if (I.getNumOperands() == 2) { 891 Constant *C = cast<Constant>(I.getOperand(1)); 892 for (unsigned i = 0; i != NumPHIValues; ++i) { 893 Value *InV = nullptr; 894 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 895 InV = ConstantExpr::get(I.getOpcode(), InC, C); 896 else 897 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 898 PN->getIncomingValue(i), C, "phitmp"); 899 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 900 } 901 } else { 902 CastInst *CI = cast<CastInst>(&I); 903 Type *RetTy = CI->getType(); 904 for (unsigned i = 0; i != NumPHIValues; ++i) { 905 Value *InV; 906 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 907 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 908 else 909 InV = Builder->CreateCast(CI->getOpcode(), 910 PN->getIncomingValue(i), I.getType(), "phitmp"); 911 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 912 } 913 } 914 915 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 916 Instruction *User = cast<Instruction>(*UI++); 917 if (User == &I) continue; 918 ReplaceInstUsesWith(*User, NewPN); 919 EraseInstFromFunction(*User); 920 } 921 return ReplaceInstUsesWith(I, NewPN); 922 } 923 924 /// FindElementAtOffset - Given a pointer type and a constant offset, determine 925 /// whether or not there is a sequence of GEP indices into the pointed type that 926 /// will land us at the specified offset. If so, fill them into NewIndices and 927 /// return the resultant element type, otherwise return null. 928 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 929 SmallVectorImpl<Value *> &NewIndices) { 930 Type *Ty = PtrTy->getElementType(); 931 if (!Ty->isSized()) 932 return nullptr; 933 934 // Start with the index over the outer type. Note that the type size 935 // might be zero (even if the offset isn't zero) if the indexed type 936 // is something like [0 x {int, int}] 937 Type *IntPtrTy = DL.getIntPtrType(PtrTy); 938 int64_t FirstIdx = 0; 939 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 940 FirstIdx = Offset/TySize; 941 Offset -= FirstIdx*TySize; 942 943 // Handle hosts where % returns negative instead of values [0..TySize). 944 if (Offset < 0) { 945 --FirstIdx; 946 Offset += TySize; 947 assert(Offset >= 0); 948 } 949 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 950 } 951 952 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx)); 953 954 // Index into the types. If we fail, set OrigBase to null. 955 while (Offset) { 956 // Indexing into tail padding between struct/array elements. 957 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 958 return nullptr; 959 960 if (StructType *STy = dyn_cast<StructType>(Ty)) { 961 const StructLayout *SL = DL.getStructLayout(STy); 962 assert(Offset < (int64_t)SL->getSizeInBytes() && 963 "Offset must stay within the indexed type"); 964 965 unsigned Elt = SL->getElementContainingOffset(Offset); 966 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 967 Elt)); 968 969 Offset -= SL->getElementOffset(Elt); 970 Ty = STy->getElementType(Elt); 971 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 972 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 973 assert(EltSize && "Cannot index into a zero-sized array"); 974 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize)); 975 Offset %= EltSize; 976 Ty = AT->getElementType(); 977 } else { 978 // Otherwise, we can't index into the middle of this atomic type, bail. 979 return nullptr; 980 } 981 } 982 983 return Ty; 984 } 985 986 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 987 // If this GEP has only 0 indices, it is the same pointer as 988 // Src. If Src is not a trivial GEP too, don't combine 989 // the indices. 990 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 991 !Src.hasOneUse()) 992 return false; 993 return true; 994 } 995 996 /// Descale - Return a value X such that Val = X * Scale, or null if none. If 997 /// the multiplication is known not to overflow then NoSignedWrap is set. 998 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 999 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1000 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1001 Scale.getBitWidth() && "Scale not compatible with value!"); 1002 1003 // If Val is zero or Scale is one then Val = Val * Scale. 1004 if (match(Val, m_Zero()) || Scale == 1) { 1005 NoSignedWrap = true; 1006 return Val; 1007 } 1008 1009 // If Scale is zero then it does not divide Val. 1010 if (Scale.isMinValue()) 1011 return nullptr; 1012 1013 // Look through chains of multiplications, searching for a constant that is 1014 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1015 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1016 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1017 // down from Val: 1018 // 1019 // Val = M1 * X || Analysis starts here and works down 1020 // M1 = M2 * Y || Doesn't descend into terms with more 1021 // M2 = Z * 4 \/ than one use 1022 // 1023 // Then to modify a term at the bottom: 1024 // 1025 // Val = M1 * X 1026 // M1 = Z * Y || Replaced M2 with Z 1027 // 1028 // Then to work back up correcting nsw flags. 1029 1030 // Op - the term we are currently analyzing. Starts at Val then drills down. 1031 // Replaced with its descaled value before exiting from the drill down loop. 1032 Value *Op = Val; 1033 1034 // Parent - initially null, but after drilling down notes where Op came from. 1035 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1036 // 0'th operand of Val. 1037 std::pair<Instruction*, unsigned> Parent; 1038 1039 // RequireNoSignedWrap - Set if the transform requires a descaling at deeper 1040 // levels that doesn't overflow. 1041 bool RequireNoSignedWrap = false; 1042 1043 // logScale - log base 2 of the scale. Negative if not a power of 2. 1044 int32_t logScale = Scale.exactLogBase2(); 1045 1046 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1047 1048 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1049 // If Op is a constant divisible by Scale then descale to the quotient. 1050 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1051 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1052 if (!Remainder.isMinValue()) 1053 // Not divisible by Scale. 1054 return nullptr; 1055 // Replace with the quotient in the parent. 1056 Op = ConstantInt::get(CI->getType(), Quotient); 1057 NoSignedWrap = true; 1058 break; 1059 } 1060 1061 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1062 1063 if (BO->getOpcode() == Instruction::Mul) { 1064 // Multiplication. 1065 NoSignedWrap = BO->hasNoSignedWrap(); 1066 if (RequireNoSignedWrap && !NoSignedWrap) 1067 return nullptr; 1068 1069 // There are three cases for multiplication: multiplication by exactly 1070 // the scale, multiplication by a constant different to the scale, and 1071 // multiplication by something else. 1072 Value *LHS = BO->getOperand(0); 1073 Value *RHS = BO->getOperand(1); 1074 1075 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1076 // Multiplication by a constant. 1077 if (CI->getValue() == Scale) { 1078 // Multiplication by exactly the scale, replace the multiplication 1079 // by its left-hand side in the parent. 1080 Op = LHS; 1081 break; 1082 } 1083 1084 // Otherwise drill down into the constant. 1085 if (!Op->hasOneUse()) 1086 return nullptr; 1087 1088 Parent = std::make_pair(BO, 1); 1089 continue; 1090 } 1091 1092 // Multiplication by something else. Drill down into the left-hand side 1093 // since that's where the reassociate pass puts the good stuff. 1094 if (!Op->hasOneUse()) 1095 return nullptr; 1096 1097 Parent = std::make_pair(BO, 0); 1098 continue; 1099 } 1100 1101 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1102 isa<ConstantInt>(BO->getOperand(1))) { 1103 // Multiplication by a power of 2. 1104 NoSignedWrap = BO->hasNoSignedWrap(); 1105 if (RequireNoSignedWrap && !NoSignedWrap) 1106 return nullptr; 1107 1108 Value *LHS = BO->getOperand(0); 1109 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1110 getLimitedValue(Scale.getBitWidth()); 1111 // Op = LHS << Amt. 1112 1113 if (Amt == logScale) { 1114 // Multiplication by exactly the scale, replace the multiplication 1115 // by its left-hand side in the parent. 1116 Op = LHS; 1117 break; 1118 } 1119 if (Amt < logScale || !Op->hasOneUse()) 1120 return nullptr; 1121 1122 // Multiplication by more than the scale. Reduce the multiplying amount 1123 // by the scale in the parent. 1124 Parent = std::make_pair(BO, 1); 1125 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1126 break; 1127 } 1128 } 1129 1130 if (!Op->hasOneUse()) 1131 return nullptr; 1132 1133 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1134 if (Cast->getOpcode() == Instruction::SExt) { 1135 // Op is sign-extended from a smaller type, descale in the smaller type. 1136 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1137 APInt SmallScale = Scale.trunc(SmallSize); 1138 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1139 // descale Op as (sext Y) * Scale. In order to have 1140 // sext (Y * SmallScale) = (sext Y) * Scale 1141 // some conditions need to hold however: SmallScale must sign-extend to 1142 // Scale and the multiplication Y * SmallScale should not overflow. 1143 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1144 // SmallScale does not sign-extend to Scale. 1145 return nullptr; 1146 assert(SmallScale.exactLogBase2() == logScale); 1147 // Require that Y * SmallScale must not overflow. 1148 RequireNoSignedWrap = true; 1149 1150 // Drill down through the cast. 1151 Parent = std::make_pair(Cast, 0); 1152 Scale = SmallScale; 1153 continue; 1154 } 1155 1156 if (Cast->getOpcode() == Instruction::Trunc) { 1157 // Op is truncated from a larger type, descale in the larger type. 1158 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1159 // trunc (Y * sext Scale) = (trunc Y) * Scale 1160 // always holds. However (trunc Y) * Scale may overflow even if 1161 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1162 // from this point up in the expression (see later). 1163 if (RequireNoSignedWrap) 1164 return nullptr; 1165 1166 // Drill down through the cast. 1167 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1168 Parent = std::make_pair(Cast, 0); 1169 Scale = Scale.sext(LargeSize); 1170 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1171 logScale = -1; 1172 assert(Scale.exactLogBase2() == logScale); 1173 continue; 1174 } 1175 } 1176 1177 // Unsupported expression, bail out. 1178 return nullptr; 1179 } 1180 1181 // If Op is zero then Val = Op * Scale. 1182 if (match(Op, m_Zero())) { 1183 NoSignedWrap = true; 1184 return Op; 1185 } 1186 1187 // We know that we can successfully descale, so from here on we can safely 1188 // modify the IR. Op holds the descaled version of the deepest term in the 1189 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1190 // not to overflow. 1191 1192 if (!Parent.first) 1193 // The expression only had one term. 1194 return Op; 1195 1196 // Rewrite the parent using the descaled version of its operand. 1197 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1198 assert(Op != Parent.first->getOperand(Parent.second) && 1199 "Descaling was a no-op?"); 1200 Parent.first->setOperand(Parent.second, Op); 1201 Worklist.Add(Parent.first); 1202 1203 // Now work back up the expression correcting nsw flags. The logic is based 1204 // on the following observation: if X * Y is known not to overflow as a signed 1205 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1206 // then X * Z will not overflow as a signed multiplication either. As we work 1207 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1208 // current level has strictly smaller absolute value than the original. 1209 Instruction *Ancestor = Parent.first; 1210 do { 1211 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1212 // If the multiplication wasn't nsw then we can't say anything about the 1213 // value of the descaled multiplication, and we have to clear nsw flags 1214 // from this point on up. 1215 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1216 NoSignedWrap &= OpNoSignedWrap; 1217 if (NoSignedWrap != OpNoSignedWrap) { 1218 BO->setHasNoSignedWrap(NoSignedWrap); 1219 Worklist.Add(Ancestor); 1220 } 1221 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1222 // The fact that the descaled input to the trunc has smaller absolute 1223 // value than the original input doesn't tell us anything useful about 1224 // the absolute values of the truncations. 1225 NoSignedWrap = false; 1226 } 1227 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1228 "Failed to keep proper track of nsw flags while drilling down?"); 1229 1230 if (Ancestor == Val) 1231 // Got to the top, all done! 1232 return Val; 1233 1234 // Move up one level in the expression. 1235 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1236 Ancestor = Ancestor->user_back(); 1237 } while (1); 1238 } 1239 1240 /// \brief Creates node of binary operation with the same attributes as the 1241 /// specified one but with other operands. 1242 static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS, 1243 InstCombiner::BuilderTy *B) { 1244 Value *BORes = B->CreateBinOp(Inst.getOpcode(), LHS, RHS); 1245 if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BORes)) { 1246 if (isa<OverflowingBinaryOperator>(NewBO)) { 1247 NewBO->setHasNoSignedWrap(Inst.hasNoSignedWrap()); 1248 NewBO->setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap()); 1249 } 1250 if (isa<PossiblyExactOperator>(NewBO)) 1251 NewBO->setIsExact(Inst.isExact()); 1252 } 1253 return BORes; 1254 } 1255 1256 /// \brief Makes transformation of binary operation specific for vector types. 1257 /// \param Inst Binary operator to transform. 1258 /// \return Pointer to node that must replace the original binary operator, or 1259 /// null pointer if no transformation was made. 1260 Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) { 1261 if (!Inst.getType()->isVectorTy()) return nullptr; 1262 1263 // It may not be safe to reorder shuffles and things like div, urem, etc. 1264 // because we may trap when executing those ops on unknown vector elements. 1265 // See PR20059. 1266 if (!isSafeToSpeculativelyExecute(&Inst)) 1267 return nullptr; 1268 1269 unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements(); 1270 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1271 assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth); 1272 assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth); 1273 1274 // If both arguments of binary operation are shuffles, which use the same 1275 // mask and shuffle within a single vector, it is worthwhile to move the 1276 // shuffle after binary operation: 1277 // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m) 1278 if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) { 1279 ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS); 1280 ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS); 1281 if (isa<UndefValue>(LShuf->getOperand(1)) && 1282 isa<UndefValue>(RShuf->getOperand(1)) && 1283 LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() && 1284 LShuf->getMask() == RShuf->getMask()) { 1285 Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0), 1286 RShuf->getOperand(0), Builder); 1287 Value *Res = Builder->CreateShuffleVector(NewBO, 1288 UndefValue::get(NewBO->getType()), LShuf->getMask()); 1289 return Res; 1290 } 1291 } 1292 1293 // If one argument is a shuffle within one vector, the other is a constant, 1294 // try moving the shuffle after the binary operation. 1295 ShuffleVectorInst *Shuffle = nullptr; 1296 Constant *C1 = nullptr; 1297 if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS); 1298 if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS); 1299 if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS); 1300 if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS); 1301 if (Shuffle && C1 && 1302 (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) && 1303 isa<UndefValue>(Shuffle->getOperand(1)) && 1304 Shuffle->getType() == Shuffle->getOperand(0)->getType()) { 1305 SmallVector<int, 16> ShMask = Shuffle->getShuffleMask(); 1306 // Find constant C2 that has property: 1307 // shuffle(C2, ShMask) = C1 1308 // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>) 1309 // reorder is not possible. 1310 SmallVector<Constant*, 16> C2M(VWidth, 1311 UndefValue::get(C1->getType()->getScalarType())); 1312 bool MayChange = true; 1313 for (unsigned I = 0; I < VWidth; ++I) { 1314 if (ShMask[I] >= 0) { 1315 assert(ShMask[I] < (int)VWidth); 1316 if (!isa<UndefValue>(C2M[ShMask[I]])) { 1317 MayChange = false; 1318 break; 1319 } 1320 C2M[ShMask[I]] = C1->getAggregateElement(I); 1321 } 1322 } 1323 if (MayChange) { 1324 Constant *C2 = ConstantVector::get(C2M); 1325 Value *NewLHS, *NewRHS; 1326 if (isa<Constant>(LHS)) { 1327 NewLHS = C2; 1328 NewRHS = Shuffle->getOperand(0); 1329 } else { 1330 NewLHS = Shuffle->getOperand(0); 1331 NewRHS = C2; 1332 } 1333 Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder); 1334 Value *Res = Builder->CreateShuffleVector(NewBO, 1335 UndefValue::get(Inst.getType()), Shuffle->getMask()); 1336 return Res; 1337 } 1338 } 1339 1340 return nullptr; 1341 } 1342 1343 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1344 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1345 1346 if (Value *V = SimplifyGEPInst(Ops, DL, TLI, DT, AC)) 1347 return ReplaceInstUsesWith(GEP, V); 1348 1349 Value *PtrOp = GEP.getOperand(0); 1350 1351 // Eliminate unneeded casts for indices, and replace indices which displace 1352 // by multiples of a zero size type with zero. 1353 bool MadeChange = false; 1354 Type *IntPtrTy = DL.getIntPtrType(GEP.getPointerOperandType()); 1355 1356 gep_type_iterator GTI = gep_type_begin(GEP); 1357 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1358 ++I, ++GTI) { 1359 // Skip indices into struct types. 1360 SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI); 1361 if (!SeqTy) 1362 continue; 1363 1364 // If the element type has zero size then any index over it is equivalent 1365 // to an index of zero, so replace it with zero if it is not zero already. 1366 if (SeqTy->getElementType()->isSized() && 1367 DL.getTypeAllocSize(SeqTy->getElementType()) == 0) 1368 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { 1369 *I = Constant::getNullValue(IntPtrTy); 1370 MadeChange = true; 1371 } 1372 1373 Type *IndexTy = (*I)->getType(); 1374 if (IndexTy != IntPtrTy) { 1375 // If we are using a wider index than needed for this platform, shrink 1376 // it to what we need. If narrower, sign-extend it to what we need. 1377 // This explicit cast can make subsequent optimizations more obvious. 1378 *I = Builder->CreateIntCast(*I, IntPtrTy, true); 1379 MadeChange = true; 1380 } 1381 } 1382 if (MadeChange) 1383 return &GEP; 1384 1385 // Check to see if the inputs to the PHI node are getelementptr instructions. 1386 if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) { 1387 GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1388 if (!Op1) 1389 return nullptr; 1390 1391 // Don't fold a GEP into itself through a PHI node. This can only happen 1392 // through the back-edge of a loop. Folding a GEP into itself means that 1393 // the value of the previous iteration needs to be stored in the meantime, 1394 // thus requiring an additional register variable to be live, but not 1395 // actually achieving anything (the GEP still needs to be executed once per 1396 // loop iteration). 1397 if (Op1 == &GEP) 1398 return nullptr; 1399 1400 signed DI = -1; 1401 1402 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1403 GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I); 1404 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1405 return nullptr; 1406 1407 // As for Op1 above, don't try to fold a GEP into itself. 1408 if (Op2 == &GEP) 1409 return nullptr; 1410 1411 // Keep track of the type as we walk the GEP. 1412 Type *CurTy = Op1->getOperand(0)->getType()->getScalarType(); 1413 1414 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1415 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1416 return nullptr; 1417 1418 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1419 if (DI == -1) { 1420 // We have not seen any differences yet in the GEPs feeding the 1421 // PHI yet, so we record this one if it is allowed to be a 1422 // variable. 1423 1424 // The first two arguments can vary for any GEP, the rest have to be 1425 // static for struct slots 1426 if (J > 1 && CurTy->isStructTy()) 1427 return nullptr; 1428 1429 DI = J; 1430 } else { 1431 // The GEP is different by more than one input. While this could be 1432 // extended to support GEPs that vary by more than one variable it 1433 // doesn't make sense since it greatly increases the complexity and 1434 // would result in an R+R+R addressing mode which no backend 1435 // directly supports and would need to be broken into several 1436 // simpler instructions anyway. 1437 return nullptr; 1438 } 1439 } 1440 1441 // Sink down a layer of the type for the next iteration. 1442 if (J > 0) { 1443 if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) { 1444 CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); 1445 } else { 1446 CurTy = nullptr; 1447 } 1448 } 1449 } 1450 } 1451 1452 GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1453 1454 if (DI == -1) { 1455 // All the GEPs feeding the PHI are identical. Clone one down into our 1456 // BB so that it can be merged with the current GEP. 1457 GEP.getParent()->getInstList().insert( 1458 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1459 } else { 1460 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1461 // into the current block so it can be merged, and create a new PHI to 1462 // set that index. 1463 Instruction *InsertPt = Builder->GetInsertPoint(); 1464 Builder->SetInsertPoint(PN); 1465 PHINode *NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(), 1466 PN->getNumOperands()); 1467 Builder->SetInsertPoint(InsertPt); 1468 1469 for (auto &I : PN->operands()) 1470 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1471 PN->getIncomingBlock(I)); 1472 1473 NewGEP->setOperand(DI, NewPN); 1474 GEP.getParent()->getInstList().insert( 1475 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1476 NewGEP->setOperand(DI, NewPN); 1477 } 1478 1479 GEP.setOperand(0, NewGEP); 1480 PtrOp = NewGEP; 1481 } 1482 1483 // Combine Indices - If the source pointer to this getelementptr instruction 1484 // is a getelementptr instruction, combine the indices of the two 1485 // getelementptr instructions into a single instruction. 1486 // 1487 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) { 1488 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1489 return nullptr; 1490 1491 // Note that if our source is a gep chain itself then we wait for that 1492 // chain to be resolved before we perform this transformation. This 1493 // avoids us creating a TON of code in some cases. 1494 if (GEPOperator *SrcGEP = 1495 dyn_cast<GEPOperator>(Src->getOperand(0))) 1496 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1497 return nullptr; // Wait until our source is folded to completion. 1498 1499 SmallVector<Value*, 8> Indices; 1500 1501 // Find out whether the last index in the source GEP is a sequential idx. 1502 bool EndsWithSequential = false; 1503 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1504 I != E; ++I) 1505 EndsWithSequential = !(*I)->isStructTy(); 1506 1507 // Can we combine the two pointer arithmetics offsets? 1508 if (EndsWithSequential) { 1509 // Replace: gep (gep %P, long B), long A, ... 1510 // With: T = long A+B; gep %P, T, ... 1511 // 1512 Value *Sum; 1513 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1514 Value *GO1 = GEP.getOperand(1); 1515 if (SO1 == Constant::getNullValue(SO1->getType())) { 1516 Sum = GO1; 1517 } else if (GO1 == Constant::getNullValue(GO1->getType())) { 1518 Sum = SO1; 1519 } else { 1520 // If they aren't the same type, then the input hasn't been processed 1521 // by the loop above yet (which canonicalizes sequential index types to 1522 // intptr_t). Just avoid transforming this until the input has been 1523 // normalized. 1524 if (SO1->getType() != GO1->getType()) 1525 return nullptr; 1526 // Only do the combine when GO1 and SO1 are both constants. Only in 1527 // this case, we are sure the cost after the merge is never more than 1528 // that before the merge. 1529 if (!isa<Constant>(GO1) || !isa<Constant>(SO1)) 1530 return nullptr; 1531 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum"); 1532 } 1533 1534 // Update the GEP in place if possible. 1535 if (Src->getNumOperands() == 2) { 1536 GEP.setOperand(0, Src->getOperand(0)); 1537 GEP.setOperand(1, Sum); 1538 return &GEP; 1539 } 1540 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1541 Indices.push_back(Sum); 1542 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1543 } else if (isa<Constant>(*GEP.idx_begin()) && 1544 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1545 Src->getNumOperands() != 1) { 1546 // Otherwise we can do the fold if the first index of the GEP is a zero 1547 Indices.append(Src->op_begin()+1, Src->op_end()); 1548 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1549 } 1550 1551 if (!Indices.empty()) 1552 return GEP.isInBounds() && Src->isInBounds() 1553 ? GetElementPtrInst::CreateInBounds( 1554 Src->getSourceElementType(), Src->getOperand(0), Indices, 1555 GEP.getName()) 1556 : GetElementPtrInst::Create(Src->getSourceElementType(), 1557 Src->getOperand(0), Indices, 1558 GEP.getName()); 1559 } 1560 1561 if (GEP.getNumIndices() == 1) { 1562 unsigned AS = GEP.getPointerAddressSpace(); 1563 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 1564 DL.getPointerSizeInBits(AS)) { 1565 Type *PtrTy = GEP.getPointerOperandType(); 1566 Type *Ty = PtrTy->getPointerElementType(); 1567 uint64_t TyAllocSize = DL.getTypeAllocSize(Ty); 1568 1569 bool Matched = false; 1570 uint64_t C; 1571 Value *V = nullptr; 1572 if (TyAllocSize == 1) { 1573 V = GEP.getOperand(1); 1574 Matched = true; 1575 } else if (match(GEP.getOperand(1), 1576 m_AShr(m_Value(V), m_ConstantInt(C)))) { 1577 if (TyAllocSize == 1ULL << C) 1578 Matched = true; 1579 } else if (match(GEP.getOperand(1), 1580 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 1581 if (TyAllocSize == C) 1582 Matched = true; 1583 } 1584 1585 if (Matched) { 1586 // Canonicalize (gep i8* X, -(ptrtoint Y)) 1587 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) 1588 // The GEP pattern is emitted by the SCEV expander for certain kinds of 1589 // pointer arithmetic. 1590 if (match(V, m_Neg(m_PtrToInt(m_Value())))) { 1591 Operator *Index = cast<Operator>(V); 1592 Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType()); 1593 Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1)); 1594 return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType()); 1595 } 1596 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) 1597 // to (bitcast Y) 1598 Value *Y; 1599 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), 1600 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) { 1601 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, 1602 GEP.getType()); 1603 } 1604 } 1605 } 1606 } 1607 1608 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 1609 Value *StrippedPtr = PtrOp->stripPointerCasts(); 1610 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType()); 1611 1612 // We do not handle pointer-vector geps here. 1613 if (!StrippedPtrTy) 1614 return nullptr; 1615 1616 if (StrippedPtr != PtrOp) { 1617 bool HasZeroPointerIndex = false; 1618 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 1619 HasZeroPointerIndex = C->isZero(); 1620 1621 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 1622 // into : GEP [10 x i8]* X, i32 0, ... 1623 // 1624 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 1625 // into : GEP i8* X, ... 1626 // 1627 // This occurs when the program declares an array extern like "int X[];" 1628 if (HasZeroPointerIndex) { 1629 PointerType *CPTy = cast<PointerType>(PtrOp->getType()); 1630 if (ArrayType *CATy = 1631 dyn_cast<ArrayType>(CPTy->getElementType())) { 1632 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 1633 if (CATy->getElementType() == StrippedPtrTy->getElementType()) { 1634 // -> GEP i8* X, ... 1635 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 1636 GetElementPtrInst *Res = GetElementPtrInst::Create( 1637 StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName()); 1638 Res->setIsInBounds(GEP.isInBounds()); 1639 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 1640 return Res; 1641 // Insert Res, and create an addrspacecast. 1642 // e.g., 1643 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 1644 // -> 1645 // %0 = GEP i8 addrspace(1)* X, ... 1646 // addrspacecast i8 addrspace(1)* %0 to i8* 1647 return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType()); 1648 } 1649 1650 if (ArrayType *XATy = 1651 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){ 1652 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 1653 if (CATy->getElementType() == XATy->getElementType()) { 1654 // -> GEP [10 x i8]* X, i32 0, ... 1655 // At this point, we know that the cast source type is a pointer 1656 // to an array of the same type as the destination pointer 1657 // array. Because the array type is never stepped over (there 1658 // is a leading zero) we can fold the cast into this GEP. 1659 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 1660 GEP.setOperand(0, StrippedPtr); 1661 GEP.setSourceElementType(XATy); 1662 return &GEP; 1663 } 1664 // Cannot replace the base pointer directly because StrippedPtr's 1665 // address space is different. Instead, create a new GEP followed by 1666 // an addrspacecast. 1667 // e.g., 1668 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 1669 // i32 0, ... 1670 // -> 1671 // %0 = GEP [10 x i8] addrspace(1)* X, ... 1672 // addrspacecast i8 addrspace(1)* %0 to i8* 1673 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 1674 Value *NewGEP = GEP.isInBounds() 1675 ? Builder->CreateInBoundsGEP( 1676 nullptr, StrippedPtr, Idx, GEP.getName()) 1677 : Builder->CreateGEP(nullptr, StrippedPtr, Idx, 1678 GEP.getName()); 1679 return new AddrSpaceCastInst(NewGEP, GEP.getType()); 1680 } 1681 } 1682 } 1683 } else if (GEP.getNumOperands() == 2) { 1684 // Transform things like: 1685 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 1686 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 1687 Type *SrcElTy = StrippedPtrTy->getElementType(); 1688 Type *ResElTy = PtrOp->getType()->getPointerElementType(); 1689 if (SrcElTy->isArrayTy() && 1690 DL.getTypeAllocSize(SrcElTy->getArrayElementType()) == 1691 DL.getTypeAllocSize(ResElTy)) { 1692 Type *IdxType = DL.getIntPtrType(GEP.getType()); 1693 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 1694 Value *NewGEP = 1695 GEP.isInBounds() 1696 ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, Idx, 1697 GEP.getName()) 1698 : Builder->CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName()); 1699 1700 // V and GEP are both pointer types --> BitCast 1701 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1702 GEP.getType()); 1703 } 1704 1705 // Transform things like: 1706 // %V = mul i64 %N, 4 1707 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 1708 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 1709 if (ResElTy->isSized() && SrcElTy->isSized()) { 1710 // Check that changing the type amounts to dividing the index by a scale 1711 // factor. 1712 uint64_t ResSize = DL.getTypeAllocSize(ResElTy); 1713 uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy); 1714 if (ResSize && SrcSize % ResSize == 0) { 1715 Value *Idx = GEP.getOperand(1); 1716 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1717 uint64_t Scale = SrcSize / ResSize; 1718 1719 // Earlier transforms ensure that the index has type IntPtrType, which 1720 // considerably simplifies the logic by eliminating implicit casts. 1721 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) && 1722 "Index not cast to pointer width?"); 1723 1724 bool NSW; 1725 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1726 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1727 // If the multiplication NewIdx * Scale may overflow then the new 1728 // GEP may not be "inbounds". 1729 Value *NewGEP = 1730 GEP.isInBounds() && NSW 1731 ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx, 1732 GEP.getName()) 1733 : Builder->CreateGEP(nullptr, StrippedPtr, NewIdx, 1734 GEP.getName()); 1735 1736 // The NewGEP must be pointer typed, so must the old one -> BitCast 1737 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1738 GEP.getType()); 1739 } 1740 } 1741 } 1742 1743 // Similarly, transform things like: 1744 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 1745 // (where tmp = 8*tmp2) into: 1746 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 1747 if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) { 1748 // Check that changing to the array element type amounts to dividing the 1749 // index by a scale factor. 1750 uint64_t ResSize = DL.getTypeAllocSize(ResElTy); 1751 uint64_t ArrayEltSize = 1752 DL.getTypeAllocSize(SrcElTy->getArrayElementType()); 1753 if (ResSize && ArrayEltSize % ResSize == 0) { 1754 Value *Idx = GEP.getOperand(1); 1755 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1756 uint64_t Scale = ArrayEltSize / ResSize; 1757 1758 // Earlier transforms ensure that the index has type IntPtrType, which 1759 // considerably simplifies the logic by eliminating implicit casts. 1760 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) && 1761 "Index not cast to pointer width?"); 1762 1763 bool NSW; 1764 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1765 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1766 // If the multiplication NewIdx * Scale may overflow then the new 1767 // GEP may not be "inbounds". 1768 Value *Off[2] = { 1769 Constant::getNullValue(DL.getIntPtrType(GEP.getType())), 1770 NewIdx}; 1771 1772 Value *NewGEP = GEP.isInBounds() && NSW 1773 ? Builder->CreateInBoundsGEP( 1774 SrcElTy, StrippedPtr, Off, GEP.getName()) 1775 : Builder->CreateGEP(SrcElTy, StrippedPtr, Off, 1776 GEP.getName()); 1777 // The NewGEP must be pointer typed, so must the old one -> BitCast 1778 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1779 GEP.getType()); 1780 } 1781 } 1782 } 1783 } 1784 } 1785 1786 // addrspacecast between types is canonicalized as a bitcast, then an 1787 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 1788 // through the addrspacecast. 1789 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 1790 // X = bitcast A addrspace(1)* to B addrspace(1)* 1791 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 1792 // Z = gep Y, <...constant indices...> 1793 // Into an addrspacecasted GEP of the struct. 1794 if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 1795 PtrOp = BC; 1796 } 1797 1798 /// See if we can simplify: 1799 /// X = bitcast A* to B* 1800 /// Y = gep X, <...constant indices...> 1801 /// into a gep of the original struct. This is important for SROA and alias 1802 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 1803 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) { 1804 Value *Operand = BCI->getOperand(0); 1805 PointerType *OpType = cast<PointerType>(Operand->getType()); 1806 unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType()); 1807 APInt Offset(OffsetBits, 0); 1808 if (!isa<BitCastInst>(Operand) && 1809 GEP.accumulateConstantOffset(DL, Offset)) { 1810 1811 // If this GEP instruction doesn't move the pointer, just replace the GEP 1812 // with a bitcast of the real input to the dest type. 1813 if (!Offset) { 1814 // If the bitcast is of an allocation, and the allocation will be 1815 // converted to match the type of the cast, don't touch this. 1816 if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) { 1817 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 1818 if (Instruction *I = visitBitCast(*BCI)) { 1819 if (I != BCI) { 1820 I->takeName(BCI); 1821 BCI->getParent()->getInstList().insert(BCI, I); 1822 ReplaceInstUsesWith(*BCI, I); 1823 } 1824 return &GEP; 1825 } 1826 } 1827 1828 if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 1829 return new AddrSpaceCastInst(Operand, GEP.getType()); 1830 return new BitCastInst(Operand, GEP.getType()); 1831 } 1832 1833 // Otherwise, if the offset is non-zero, we need to find out if there is a 1834 // field at Offset in 'A's type. If so, we can pull the cast through the 1835 // GEP. 1836 SmallVector<Value*, 8> NewIndices; 1837 if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) { 1838 Value *NGEP = 1839 GEP.isInBounds() 1840 ? Builder->CreateInBoundsGEP(nullptr, Operand, NewIndices) 1841 : Builder->CreateGEP(nullptr, Operand, NewIndices); 1842 1843 if (NGEP->getType() == GEP.getType()) 1844 return ReplaceInstUsesWith(GEP, NGEP); 1845 NGEP->takeName(&GEP); 1846 1847 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 1848 return new AddrSpaceCastInst(NGEP, GEP.getType()); 1849 return new BitCastInst(NGEP, GEP.getType()); 1850 } 1851 } 1852 } 1853 1854 return nullptr; 1855 } 1856 1857 static bool 1858 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users, 1859 const TargetLibraryInfo *TLI) { 1860 SmallVector<Instruction*, 4> Worklist; 1861 Worklist.push_back(AI); 1862 1863 do { 1864 Instruction *PI = Worklist.pop_back_val(); 1865 for (User *U : PI->users()) { 1866 Instruction *I = cast<Instruction>(U); 1867 switch (I->getOpcode()) { 1868 default: 1869 // Give up the moment we see something we can't handle. 1870 return false; 1871 1872 case Instruction::BitCast: 1873 case Instruction::GetElementPtr: 1874 Users.emplace_back(I); 1875 Worklist.push_back(I); 1876 continue; 1877 1878 case Instruction::ICmp: { 1879 ICmpInst *ICI = cast<ICmpInst>(I); 1880 // We can fold eq/ne comparisons with null to false/true, respectively. 1881 if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1))) 1882 return false; 1883 Users.emplace_back(I); 1884 continue; 1885 } 1886 1887 case Instruction::Call: 1888 // Ignore no-op and store intrinsics. 1889 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1890 switch (II->getIntrinsicID()) { 1891 default: 1892 return false; 1893 1894 case Intrinsic::memmove: 1895 case Intrinsic::memcpy: 1896 case Intrinsic::memset: { 1897 MemIntrinsic *MI = cast<MemIntrinsic>(II); 1898 if (MI->isVolatile() || MI->getRawDest() != PI) 1899 return false; 1900 } 1901 // fall through 1902 case Intrinsic::dbg_declare: 1903 case Intrinsic::dbg_value: 1904 case Intrinsic::invariant_start: 1905 case Intrinsic::invariant_end: 1906 case Intrinsic::lifetime_start: 1907 case Intrinsic::lifetime_end: 1908 case Intrinsic::objectsize: 1909 Users.emplace_back(I); 1910 continue; 1911 } 1912 } 1913 1914 if (isFreeCall(I, TLI)) { 1915 Users.emplace_back(I); 1916 continue; 1917 } 1918 return false; 1919 1920 case Instruction::Store: { 1921 StoreInst *SI = cast<StoreInst>(I); 1922 if (SI->isVolatile() || SI->getPointerOperand() != PI) 1923 return false; 1924 Users.emplace_back(I); 1925 continue; 1926 } 1927 } 1928 llvm_unreachable("missing a return?"); 1929 } 1930 } while (!Worklist.empty()); 1931 return true; 1932 } 1933 1934 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 1935 // If we have a malloc call which is only used in any amount of comparisons 1936 // to null and free calls, delete the calls and replace the comparisons with 1937 // true or false as appropriate. 1938 SmallVector<WeakVH, 64> Users; 1939 if (isAllocSiteRemovable(&MI, Users, TLI)) { 1940 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 1941 Instruction *I = cast_or_null<Instruction>(&*Users[i]); 1942 if (!I) continue; 1943 1944 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 1945 ReplaceInstUsesWith(*C, 1946 ConstantInt::get(Type::getInt1Ty(C->getContext()), 1947 C->isFalseWhenEqual())); 1948 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) { 1949 ReplaceInstUsesWith(*I, UndefValue::get(I->getType())); 1950 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1951 if (II->getIntrinsicID() == Intrinsic::objectsize) { 1952 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1953 uint64_t DontKnow = CI->isZero() ? -1ULL : 0; 1954 ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow)); 1955 } 1956 } 1957 EraseInstFromFunction(*I); 1958 } 1959 1960 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 1961 // Replace invoke with a NOP intrinsic to maintain the original CFG 1962 Module *M = II->getParent()->getParent()->getParent(); 1963 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 1964 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 1965 None, "", II->getParent()); 1966 } 1967 return EraseInstFromFunction(MI); 1968 } 1969 return nullptr; 1970 } 1971 1972 /// \brief Move the call to free before a NULL test. 1973 /// 1974 /// Check if this free is accessed after its argument has been test 1975 /// against NULL (property 0). 1976 /// If yes, it is legal to move this call in its predecessor block. 1977 /// 1978 /// The move is performed only if the block containing the call to free 1979 /// will be removed, i.e.: 1980 /// 1. it has only one predecessor P, and P has two successors 1981 /// 2. it contains the call and an unconditional branch 1982 /// 3. its successor is the same as its predecessor's successor 1983 /// 1984 /// The profitability is out-of concern here and this function should 1985 /// be called only if the caller knows this transformation would be 1986 /// profitable (e.g., for code size). 1987 static Instruction * 1988 tryToMoveFreeBeforeNullTest(CallInst &FI) { 1989 Value *Op = FI.getArgOperand(0); 1990 BasicBlock *FreeInstrBB = FI.getParent(); 1991 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 1992 1993 // Validate part of constraint #1: Only one predecessor 1994 // FIXME: We can extend the number of predecessor, but in that case, we 1995 // would duplicate the call to free in each predecessor and it may 1996 // not be profitable even for code size. 1997 if (!PredBB) 1998 return nullptr; 1999 2000 // Validate constraint #2: Does this block contains only the call to 2001 // free and an unconditional branch? 2002 // FIXME: We could check if we can speculate everything in the 2003 // predecessor block 2004 if (FreeInstrBB->size() != 2) 2005 return nullptr; 2006 BasicBlock *SuccBB; 2007 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB))) 2008 return nullptr; 2009 2010 // Validate the rest of constraint #1 by matching on the pred branch. 2011 TerminatorInst *TI = PredBB->getTerminator(); 2012 BasicBlock *TrueBB, *FalseBB; 2013 ICmpInst::Predicate Pred; 2014 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB))) 2015 return nullptr; 2016 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2017 return nullptr; 2018 2019 // Validate constraint #3: Ensure the null case just falls through. 2020 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2021 return nullptr; 2022 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2023 "Broken CFG: missing edge from predecessor to successor"); 2024 2025 FI.moveBefore(TI); 2026 return &FI; 2027 } 2028 2029 2030 Instruction *InstCombiner::visitFree(CallInst &FI) { 2031 Value *Op = FI.getArgOperand(0); 2032 2033 // free undef -> unreachable. 2034 if (isa<UndefValue>(Op)) { 2035 // Insert a new store to null because we cannot modify the CFG here. 2036 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()), 2037 UndefValue::get(Type::getInt1PtrTy(FI.getContext()))); 2038 return EraseInstFromFunction(FI); 2039 } 2040 2041 // If we have 'free null' delete the instruction. This can happen in stl code 2042 // when lots of inlining happens. 2043 if (isa<ConstantPointerNull>(Op)) 2044 return EraseInstFromFunction(FI); 2045 2046 // If we optimize for code size, try to move the call to free before the null 2047 // test so that simplify cfg can remove the empty block and dead code 2048 // elimination the branch. I.e., helps to turn something like: 2049 // if (foo) free(foo); 2050 // into 2051 // free(foo); 2052 if (MinimizeSize) 2053 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI)) 2054 return I; 2055 2056 return nullptr; 2057 } 2058 2059 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { 2060 if (RI.getNumOperands() == 0) // ret void 2061 return nullptr; 2062 2063 Value *ResultOp = RI.getOperand(0); 2064 Type *VTy = ResultOp->getType(); 2065 if (!VTy->isIntegerTy()) 2066 return nullptr; 2067 2068 // There might be assume intrinsics dominating this return that completely 2069 // determine the value. If so, constant fold it. 2070 unsigned BitWidth = VTy->getPrimitiveSizeInBits(); 2071 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 2072 computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI); 2073 if ((KnownZero|KnownOne).isAllOnesValue()) 2074 RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne)); 2075 2076 return nullptr; 2077 } 2078 2079 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 2080 // Change br (not X), label True, label False to: br X, label False, True 2081 Value *X = nullptr; 2082 BasicBlock *TrueDest; 2083 BasicBlock *FalseDest; 2084 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && 2085 !isa<Constant>(X)) { 2086 // Swap Destinations and condition... 2087 BI.setCondition(X); 2088 BI.swapSuccessors(); 2089 return &BI; 2090 } 2091 2092 // If the condition is irrelevant, remove the use so that other 2093 // transforms on the condition become more effective. 2094 if (BI.isConditional() && 2095 BI.getSuccessor(0) == BI.getSuccessor(1) && 2096 !isa<UndefValue>(BI.getCondition())) { 2097 BI.setCondition(UndefValue::get(BI.getCondition()->getType())); 2098 return &BI; 2099 } 2100 2101 // Canonicalize fcmp_one -> fcmp_oeq 2102 FCmpInst::Predicate FPred; Value *Y; 2103 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), 2104 TrueDest, FalseDest)) && 2105 BI.getCondition()->hasOneUse()) 2106 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE || 2107 FPred == FCmpInst::FCMP_OGE) { 2108 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition()); 2109 Cond->setPredicate(FCmpInst::getInversePredicate(FPred)); 2110 2111 // Swap Destinations and condition. 2112 BI.swapSuccessors(); 2113 Worklist.Add(Cond); 2114 return &BI; 2115 } 2116 2117 // Canonicalize icmp_ne -> icmp_eq 2118 ICmpInst::Predicate IPred; 2119 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)), 2120 TrueDest, FalseDest)) && 2121 BI.getCondition()->hasOneUse()) 2122 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE || 2123 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE || 2124 IPred == ICmpInst::ICMP_SGE) { 2125 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition()); 2126 Cond->setPredicate(ICmpInst::getInversePredicate(IPred)); 2127 // Swap Destinations and condition. 2128 BI.swapSuccessors(); 2129 Worklist.Add(Cond); 2130 return &BI; 2131 } 2132 2133 return nullptr; 2134 } 2135 2136 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 2137 Value *Cond = SI.getCondition(); 2138 unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth(); 2139 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 2140 computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI); 2141 unsigned LeadingKnownZeros = KnownZero.countLeadingOnes(); 2142 unsigned LeadingKnownOnes = KnownOne.countLeadingOnes(); 2143 2144 // Compute the number of leading bits we can ignore. 2145 for (auto &C : SI.cases()) { 2146 LeadingKnownZeros = std::min( 2147 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2148 LeadingKnownOnes = std::min( 2149 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2150 } 2151 2152 unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes); 2153 2154 // Truncate the condition operand if the new type is equal to or larger than 2155 // the largest legal integer type. We need to be conservative here since 2156 // x86 generates redundant zero-extension instructions if the operand is 2157 // truncated to i8 or i16. 2158 bool TruncCond = false; 2159 if (NewWidth > 0 && BitWidth > NewWidth && 2160 NewWidth >= DL.getLargestLegalIntTypeSize()) { 2161 TruncCond = true; 2162 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2163 Builder->SetInsertPoint(&SI); 2164 Value *NewCond = Builder->CreateTrunc(SI.getCondition(), Ty, "trunc"); 2165 SI.setCondition(NewCond); 2166 2167 for (auto &C : SI.cases()) 2168 static_cast<SwitchInst::CaseIt *>(&C)->setValue(ConstantInt::get( 2169 SI.getContext(), C.getCaseValue()->getValue().trunc(NewWidth))); 2170 } 2171 2172 if (Instruction *I = dyn_cast<Instruction>(Cond)) { 2173 if (I->getOpcode() == Instruction::Add) 2174 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 2175 // change 'switch (X+4) case 1:' into 'switch (X) case -3' 2176 // Skip the first item since that's the default case. 2177 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); 2178 i != e; ++i) { 2179 ConstantInt* CaseVal = i.getCaseValue(); 2180 Constant *LHS = CaseVal; 2181 if (TruncCond) 2182 LHS = LeadingKnownZeros 2183 ? ConstantExpr::getZExt(CaseVal, Cond->getType()) 2184 : ConstantExpr::getSExt(CaseVal, Cond->getType()); 2185 Constant* NewCaseVal = ConstantExpr::getSub(LHS, AddRHS); 2186 assert(isa<ConstantInt>(NewCaseVal) && 2187 "Result of expression should be constant"); 2188 i.setValue(cast<ConstantInt>(NewCaseVal)); 2189 } 2190 SI.setCondition(I->getOperand(0)); 2191 Worklist.Add(I); 2192 return &SI; 2193 } 2194 } 2195 2196 return TruncCond ? &SI : nullptr; 2197 } 2198 2199 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 2200 Value *Agg = EV.getAggregateOperand(); 2201 2202 if (!EV.hasIndices()) 2203 return ReplaceInstUsesWith(EV, Agg); 2204 2205 if (Value *V = 2206 SimplifyExtractValueInst(Agg, EV.getIndices(), DL, TLI, DT, AC)) 2207 return ReplaceInstUsesWith(EV, V); 2208 2209 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 2210 // We're extracting from an insertvalue instruction, compare the indices 2211 const unsigned *exti, *exte, *insi, *inse; 2212 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 2213 exte = EV.idx_end(), inse = IV->idx_end(); 2214 exti != exte && insi != inse; 2215 ++exti, ++insi) { 2216 if (*insi != *exti) 2217 // The insert and extract both reference distinctly different elements. 2218 // This means the extract is not influenced by the insert, and we can 2219 // replace the aggregate operand of the extract with the aggregate 2220 // operand of the insert. i.e., replace 2221 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2222 // %E = extractvalue { i32, { i32 } } %I, 0 2223 // with 2224 // %E = extractvalue { i32, { i32 } } %A, 0 2225 return ExtractValueInst::Create(IV->getAggregateOperand(), 2226 EV.getIndices()); 2227 } 2228 if (exti == exte && insi == inse) 2229 // Both iterators are at the end: Index lists are identical. Replace 2230 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2231 // %C = extractvalue { i32, { i32 } } %B, 1, 0 2232 // with "i32 42" 2233 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand()); 2234 if (exti == exte) { 2235 // The extract list is a prefix of the insert list. i.e. replace 2236 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2237 // %E = extractvalue { i32, { i32 } } %I, 1 2238 // with 2239 // %X = extractvalue { i32, { i32 } } %A, 1 2240 // %E = insertvalue { i32 } %X, i32 42, 0 2241 // by switching the order of the insert and extract (though the 2242 // insertvalue should be left in, since it may have other uses). 2243 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(), 2244 EV.getIndices()); 2245 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 2246 makeArrayRef(insi, inse)); 2247 } 2248 if (insi == inse) 2249 // The insert list is a prefix of the extract list 2250 // We can simply remove the common indices from the extract and make it 2251 // operate on the inserted value instead of the insertvalue result. 2252 // i.e., replace 2253 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2254 // %E = extractvalue { i32, { i32 } } %I, 1, 0 2255 // with 2256 // %E extractvalue { i32 } { i32 42 }, 0 2257 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 2258 makeArrayRef(exti, exte)); 2259 } 2260 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { 2261 // We're extracting from an intrinsic, see if we're the only user, which 2262 // allows us to simplify multiple result intrinsics to simpler things that 2263 // just get one value. 2264 if (II->hasOneUse()) { 2265 // Check if we're grabbing the overflow bit or the result of a 'with 2266 // overflow' intrinsic. If it's the latter we can remove the intrinsic 2267 // and replace it with a traditional binary instruction. 2268 switch (II->getIntrinsicID()) { 2269 case Intrinsic::uadd_with_overflow: 2270 case Intrinsic::sadd_with_overflow: 2271 if (*EV.idx_begin() == 0) { // Normal result. 2272 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2273 ReplaceInstUsesWith(*II, UndefValue::get(II->getType())); 2274 EraseInstFromFunction(*II); 2275 return BinaryOperator::CreateAdd(LHS, RHS); 2276 } 2277 2278 // If the normal result of the add is dead, and the RHS is a constant, 2279 // we can transform this into a range comparison. 2280 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 2281 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) 2282 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1))) 2283 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0), 2284 ConstantExpr::getNot(CI)); 2285 break; 2286 case Intrinsic::usub_with_overflow: 2287 case Intrinsic::ssub_with_overflow: 2288 if (*EV.idx_begin() == 0) { // Normal result. 2289 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2290 ReplaceInstUsesWith(*II, UndefValue::get(II->getType())); 2291 EraseInstFromFunction(*II); 2292 return BinaryOperator::CreateSub(LHS, RHS); 2293 } 2294 break; 2295 case Intrinsic::umul_with_overflow: 2296 case Intrinsic::smul_with_overflow: 2297 if (*EV.idx_begin() == 0) { // Normal result. 2298 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2299 ReplaceInstUsesWith(*II, UndefValue::get(II->getType())); 2300 EraseInstFromFunction(*II); 2301 return BinaryOperator::CreateMul(LHS, RHS); 2302 } 2303 break; 2304 default: 2305 break; 2306 } 2307 } 2308 } 2309 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2310 // If the (non-volatile) load only has one use, we can rewrite this to a 2311 // load from a GEP. This reduces the size of the load. 2312 // FIXME: If a load is used only by extractvalue instructions then this 2313 // could be done regardless of having multiple uses. 2314 if (L->isSimple() && L->hasOneUse()) { 2315 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2316 SmallVector<Value*, 4> Indices; 2317 // Prefix an i32 0 since we need the first element. 2318 Indices.push_back(Builder->getInt32(0)); 2319 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2320 I != E; ++I) 2321 Indices.push_back(Builder->getInt32(*I)); 2322 2323 // We need to insert these at the location of the old load, not at that of 2324 // the extractvalue. 2325 Builder->SetInsertPoint(L->getParent(), L); 2326 Value *GEP = Builder->CreateInBoundsGEP(L->getType(), 2327 L->getPointerOperand(), Indices); 2328 // Returning the load directly will cause the main loop to insert it in 2329 // the wrong spot, so use ReplaceInstUsesWith(). 2330 return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP)); 2331 } 2332 // We could simplify extracts from other values. Note that nested extracts may 2333 // already be simplified implicitly by the above: extract (extract (insert) ) 2334 // will be translated into extract ( insert ( extract ) ) first and then just 2335 // the value inserted, if appropriate. Similarly for extracts from single-use 2336 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2337 // and if again single-use then via load (gep (gep)) to load (gep). 2338 // However, double extracts from e.g. function arguments or return values 2339 // aren't handled yet. 2340 return nullptr; 2341 } 2342 2343 /// isCatchAll - Return 'true' if the given typeinfo will match anything. 2344 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 2345 switch (Personality) { 2346 case EHPersonality::GNU_C: 2347 // The GCC C EH personality only exists to support cleanups, so it's not 2348 // clear what the semantics of catch clauses are. 2349 return false; 2350 case EHPersonality::Unknown: 2351 return false; 2352 case EHPersonality::GNU_Ada: 2353 // While __gnat_all_others_value will match any Ada exception, it doesn't 2354 // match foreign exceptions (or didn't, before gcc-4.7). 2355 return false; 2356 case EHPersonality::GNU_CXX: 2357 case EHPersonality::GNU_ObjC: 2358 case EHPersonality::MSVC_X86SEH: 2359 case EHPersonality::MSVC_Win64SEH: 2360 case EHPersonality::MSVC_CXX: 2361 return TypeInfo->isNullValue(); 2362 } 2363 llvm_unreachable("invalid enum"); 2364 } 2365 2366 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2367 return 2368 cast<ArrayType>(LHS->getType())->getNumElements() 2369 < 2370 cast<ArrayType>(RHS->getType())->getNumElements(); 2371 } 2372 2373 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2374 // The logic here should be correct for any real-world personality function. 2375 // However if that turns out not to be true, the offending logic can always 2376 // be conditioned on the personality function, like the catch-all logic is. 2377 EHPersonality Personality = 2378 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 2379 2380 // Simplify the list of clauses, eg by removing repeated catch clauses 2381 // (these are often created by inlining). 2382 bool MakeNewInstruction = false; // If true, recreate using the following: 2383 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2384 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2385 2386 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 2387 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 2388 bool isLastClause = i + 1 == e; 2389 if (LI.isCatch(i)) { 2390 // A catch clause. 2391 Constant *CatchClause = LI.getClause(i); 2392 Constant *TypeInfo = CatchClause->stripPointerCasts(); 2393 2394 // If we already saw this clause, there is no point in having a second 2395 // copy of it. 2396 if (AlreadyCaught.insert(TypeInfo).second) { 2397 // This catch clause was not already seen. 2398 NewClauses.push_back(CatchClause); 2399 } else { 2400 // Repeated catch clause - drop the redundant copy. 2401 MakeNewInstruction = true; 2402 } 2403 2404 // If this is a catch-all then there is no point in keeping any following 2405 // clauses or marking the landingpad as having a cleanup. 2406 if (isCatchAll(Personality, TypeInfo)) { 2407 if (!isLastClause) 2408 MakeNewInstruction = true; 2409 CleanupFlag = false; 2410 break; 2411 } 2412 } else { 2413 // A filter clause. If any of the filter elements were already caught 2414 // then they can be dropped from the filter. It is tempting to try to 2415 // exploit the filter further by saying that any typeinfo that does not 2416 // occur in the filter can't be caught later (and thus can be dropped). 2417 // However this would be wrong, since typeinfos can match without being 2418 // equal (for example if one represents a C++ class, and the other some 2419 // class derived from it). 2420 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 2421 Constant *FilterClause = LI.getClause(i); 2422 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 2423 unsigned NumTypeInfos = FilterType->getNumElements(); 2424 2425 // An empty filter catches everything, so there is no point in keeping any 2426 // following clauses or marking the landingpad as having a cleanup. By 2427 // dealing with this case here the following code is made a bit simpler. 2428 if (!NumTypeInfos) { 2429 NewClauses.push_back(FilterClause); 2430 if (!isLastClause) 2431 MakeNewInstruction = true; 2432 CleanupFlag = false; 2433 break; 2434 } 2435 2436 bool MakeNewFilter = false; // If true, make a new filter. 2437 SmallVector<Constant *, 16> NewFilterElts; // New elements. 2438 if (isa<ConstantAggregateZero>(FilterClause)) { 2439 // Not an empty filter - it contains at least one null typeinfo. 2440 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 2441 Constant *TypeInfo = 2442 Constant::getNullValue(FilterType->getElementType()); 2443 // If this typeinfo is a catch-all then the filter can never match. 2444 if (isCatchAll(Personality, TypeInfo)) { 2445 // Throw the filter away. 2446 MakeNewInstruction = true; 2447 continue; 2448 } 2449 2450 // There is no point in having multiple copies of this typeinfo, so 2451 // discard all but the first copy if there is more than one. 2452 NewFilterElts.push_back(TypeInfo); 2453 if (NumTypeInfos > 1) 2454 MakeNewFilter = true; 2455 } else { 2456 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 2457 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 2458 NewFilterElts.reserve(NumTypeInfos); 2459 2460 // Remove any filter elements that were already caught or that already 2461 // occurred in the filter. While there, see if any of the elements are 2462 // catch-alls. If so, the filter can be discarded. 2463 bool SawCatchAll = false; 2464 for (unsigned j = 0; j != NumTypeInfos; ++j) { 2465 Constant *Elt = Filter->getOperand(j); 2466 Constant *TypeInfo = Elt->stripPointerCasts(); 2467 if (isCatchAll(Personality, TypeInfo)) { 2468 // This element is a catch-all. Bail out, noting this fact. 2469 SawCatchAll = true; 2470 break; 2471 } 2472 if (AlreadyCaught.count(TypeInfo)) 2473 // Already caught by an earlier clause, so having it in the filter 2474 // is pointless. 2475 continue; 2476 // There is no point in having multiple copies of the same typeinfo in 2477 // a filter, so only add it if we didn't already. 2478 if (SeenInFilter.insert(TypeInfo).second) 2479 NewFilterElts.push_back(cast<Constant>(Elt)); 2480 } 2481 // A filter containing a catch-all cannot match anything by definition. 2482 if (SawCatchAll) { 2483 // Throw the filter away. 2484 MakeNewInstruction = true; 2485 continue; 2486 } 2487 2488 // If we dropped something from the filter, make a new one. 2489 if (NewFilterElts.size() < NumTypeInfos) 2490 MakeNewFilter = true; 2491 } 2492 if (MakeNewFilter) { 2493 FilterType = ArrayType::get(FilterType->getElementType(), 2494 NewFilterElts.size()); 2495 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 2496 MakeNewInstruction = true; 2497 } 2498 2499 NewClauses.push_back(FilterClause); 2500 2501 // If the new filter is empty then it will catch everything so there is 2502 // no point in keeping any following clauses or marking the landingpad 2503 // as having a cleanup. The case of the original filter being empty was 2504 // already handled above. 2505 if (MakeNewFilter && !NewFilterElts.size()) { 2506 assert(MakeNewInstruction && "New filter but not a new instruction!"); 2507 CleanupFlag = false; 2508 break; 2509 } 2510 } 2511 } 2512 2513 // If several filters occur in a row then reorder them so that the shortest 2514 // filters come first (those with the smallest number of elements). This is 2515 // advantageous because shorter filters are more likely to match, speeding up 2516 // unwinding, but mostly because it increases the effectiveness of the other 2517 // filter optimizations below. 2518 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 2519 unsigned j; 2520 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 2521 for (j = i; j != e; ++j) 2522 if (!isa<ArrayType>(NewClauses[j]->getType())) 2523 break; 2524 2525 // Check whether the filters are already sorted by length. We need to know 2526 // if sorting them is actually going to do anything so that we only make a 2527 // new landingpad instruction if it does. 2528 for (unsigned k = i; k + 1 < j; ++k) 2529 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 2530 // Not sorted, so sort the filters now. Doing an unstable sort would be 2531 // correct too but reordering filters pointlessly might confuse users. 2532 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 2533 shorter_filter); 2534 MakeNewInstruction = true; 2535 break; 2536 } 2537 2538 // Look for the next batch of filters. 2539 i = j + 1; 2540 } 2541 2542 // If typeinfos matched if and only if equal, then the elements of a filter L 2543 // that occurs later than a filter F could be replaced by the intersection of 2544 // the elements of F and L. In reality two typeinfos can match without being 2545 // equal (for example if one represents a C++ class, and the other some class 2546 // derived from it) so it would be wrong to perform this transform in general. 2547 // However the transform is correct and useful if F is a subset of L. In that 2548 // case L can be replaced by F, and thus removed altogether since repeating a 2549 // filter is pointless. So here we look at all pairs of filters F and L where 2550 // L follows F in the list of clauses, and remove L if every element of F is 2551 // an element of L. This can occur when inlining C++ functions with exception 2552 // specifications. 2553 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 2554 // Examine each filter in turn. 2555 Value *Filter = NewClauses[i]; 2556 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 2557 if (!FTy) 2558 // Not a filter - skip it. 2559 continue; 2560 unsigned FElts = FTy->getNumElements(); 2561 // Examine each filter following this one. Doing this backwards means that 2562 // we don't have to worry about filters disappearing under us when removed. 2563 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 2564 Value *LFilter = NewClauses[j]; 2565 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 2566 if (!LTy) 2567 // Not a filter - skip it. 2568 continue; 2569 // If Filter is a subset of LFilter, i.e. every element of Filter is also 2570 // an element of LFilter, then discard LFilter. 2571 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 2572 // If Filter is empty then it is a subset of LFilter. 2573 if (!FElts) { 2574 // Discard LFilter. 2575 NewClauses.erase(J); 2576 MakeNewInstruction = true; 2577 // Move on to the next filter. 2578 continue; 2579 } 2580 unsigned LElts = LTy->getNumElements(); 2581 // If Filter is longer than LFilter then it cannot be a subset of it. 2582 if (FElts > LElts) 2583 // Move on to the next filter. 2584 continue; 2585 // At this point we know that LFilter has at least one element. 2586 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 2587 // Filter is a subset of LFilter iff Filter contains only zeros (as we 2588 // already know that Filter is not longer than LFilter). 2589 if (isa<ConstantAggregateZero>(Filter)) { 2590 assert(FElts <= LElts && "Should have handled this case earlier!"); 2591 // Discard LFilter. 2592 NewClauses.erase(J); 2593 MakeNewInstruction = true; 2594 } 2595 // Move on to the next filter. 2596 continue; 2597 } 2598 ConstantArray *LArray = cast<ConstantArray>(LFilter); 2599 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 2600 // Since Filter is non-empty and contains only zeros, it is a subset of 2601 // LFilter iff LFilter contains a zero. 2602 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 2603 for (unsigned l = 0; l != LElts; ++l) 2604 if (LArray->getOperand(l)->isNullValue()) { 2605 // LFilter contains a zero - discard it. 2606 NewClauses.erase(J); 2607 MakeNewInstruction = true; 2608 break; 2609 } 2610 // Move on to the next filter. 2611 continue; 2612 } 2613 // At this point we know that both filters are ConstantArrays. Loop over 2614 // operands to see whether every element of Filter is also an element of 2615 // LFilter. Since filters tend to be short this is probably faster than 2616 // using a method that scales nicely. 2617 ConstantArray *FArray = cast<ConstantArray>(Filter); 2618 bool AllFound = true; 2619 for (unsigned f = 0; f != FElts; ++f) { 2620 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 2621 AllFound = false; 2622 for (unsigned l = 0; l != LElts; ++l) { 2623 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 2624 if (LTypeInfo == FTypeInfo) { 2625 AllFound = true; 2626 break; 2627 } 2628 } 2629 if (!AllFound) 2630 break; 2631 } 2632 if (AllFound) { 2633 // Discard LFilter. 2634 NewClauses.erase(J); 2635 MakeNewInstruction = true; 2636 } 2637 // Move on to the next filter. 2638 } 2639 } 2640 2641 // If we changed any of the clauses, replace the old landingpad instruction 2642 // with a new one. 2643 if (MakeNewInstruction) { 2644 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 2645 NewClauses.size()); 2646 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 2647 NLI->addClause(NewClauses[i]); 2648 // A landing pad with no clauses must have the cleanup flag set. It is 2649 // theoretically possible, though highly unlikely, that we eliminated all 2650 // clauses. If so, force the cleanup flag to true. 2651 if (NewClauses.empty()) 2652 CleanupFlag = true; 2653 NLI->setCleanup(CleanupFlag); 2654 return NLI; 2655 } 2656 2657 // Even if none of the clauses changed, we may nonetheless have understood 2658 // that the cleanup flag is pointless. Clear it if so. 2659 if (LI.isCleanup() != CleanupFlag) { 2660 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 2661 LI.setCleanup(CleanupFlag); 2662 return &LI; 2663 } 2664 2665 return nullptr; 2666 } 2667 2668 /// TryToSinkInstruction - Try to move the specified instruction from its 2669 /// current block into the beginning of DestBlock, which can only happen if it's 2670 /// safe to move the instruction past all of the instructions between it and the 2671 /// end of its block. 2672 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 2673 assert(I->hasOneUse() && "Invariants didn't hold!"); 2674 2675 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 2676 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 2677 isa<TerminatorInst>(I)) 2678 return false; 2679 2680 // Do not sink alloca instructions out of the entry block. 2681 if (isa<AllocaInst>(I) && I->getParent() == 2682 &DestBlock->getParent()->getEntryBlock()) 2683 return false; 2684 2685 // We can only sink load instructions if there is nothing between the load and 2686 // the end of block that could change the value. 2687 if (I->mayReadFromMemory()) { 2688 for (BasicBlock::iterator Scan = I, E = I->getParent()->end(); 2689 Scan != E; ++Scan) 2690 if (Scan->mayWriteToMemory()) 2691 return false; 2692 } 2693 2694 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 2695 I->moveBefore(InsertPos); 2696 ++NumSunkInst; 2697 return true; 2698 } 2699 2700 bool InstCombiner::run() { 2701 while (!Worklist.isEmpty()) { 2702 Instruction *I = Worklist.RemoveOne(); 2703 if (I == nullptr) continue; // skip null values. 2704 2705 // Check to see if we can DCE the instruction. 2706 if (isInstructionTriviallyDead(I, TLI)) { 2707 DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); 2708 EraseInstFromFunction(*I); 2709 ++NumDeadInst; 2710 MadeIRChange = true; 2711 continue; 2712 } 2713 2714 // Instruction isn't dead, see if we can constant propagate it. 2715 if (!I->use_empty() && 2716 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 2717 if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) { 2718 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n'); 2719 2720 // Add operands to the worklist. 2721 ReplaceInstUsesWith(*I, C); 2722 ++NumConstProp; 2723 EraseInstFromFunction(*I); 2724 MadeIRChange = true; 2725 continue; 2726 } 2727 } 2728 2729 // See if we can trivially sink this instruction to a successor basic block. 2730 if (I->hasOneUse()) { 2731 BasicBlock *BB = I->getParent(); 2732 Instruction *UserInst = cast<Instruction>(*I->user_begin()); 2733 BasicBlock *UserParent; 2734 2735 // Get the block the use occurs in. 2736 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 2737 UserParent = PN->getIncomingBlock(*I->use_begin()); 2738 else 2739 UserParent = UserInst->getParent(); 2740 2741 if (UserParent != BB) { 2742 bool UserIsSuccessor = false; 2743 // See if the user is one of our successors. 2744 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 2745 if (*SI == UserParent) { 2746 UserIsSuccessor = true; 2747 break; 2748 } 2749 2750 // If the user is one of our immediate successors, and if that successor 2751 // only has us as a predecessors (we'd have to split the critical edge 2752 // otherwise), we can keep going. 2753 if (UserIsSuccessor && UserParent->getSinglePredecessor()) { 2754 // Okay, the CFG is simple enough, try to sink this instruction. 2755 if (TryToSinkInstruction(I, UserParent)) { 2756 MadeIRChange = true; 2757 // We'll add uses of the sunk instruction below, but since sinking 2758 // can expose opportunities for it's *operands* add them to the 2759 // worklist 2760 for (Use &U : I->operands()) 2761 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 2762 Worklist.Add(OpI); 2763 } 2764 } 2765 } 2766 } 2767 2768 // Now that we have an instruction, try combining it to simplify it. 2769 Builder->SetInsertPoint(I->getParent(), I); 2770 Builder->SetCurrentDebugLocation(I->getDebugLoc()); 2771 2772 #ifndef NDEBUG 2773 std::string OrigI; 2774 #endif 2775 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 2776 DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 2777 2778 if (Instruction *Result = visit(*I)) { 2779 ++NumCombined; 2780 // Should we replace the old instruction with a new one? 2781 if (Result != I) { 2782 DEBUG(dbgs() << "IC: Old = " << *I << '\n' 2783 << " New = " << *Result << '\n'); 2784 2785 if (I->getDebugLoc()) 2786 Result->setDebugLoc(I->getDebugLoc()); 2787 // Everything uses the new instruction now. 2788 I->replaceAllUsesWith(Result); 2789 2790 // Move the name to the new instruction first. 2791 Result->takeName(I); 2792 2793 // Push the new instruction and any users onto the worklist. 2794 Worklist.Add(Result); 2795 Worklist.AddUsersToWorkList(*Result); 2796 2797 // Insert the new instruction into the basic block... 2798 BasicBlock *InstParent = I->getParent(); 2799 BasicBlock::iterator InsertPos = I; 2800 2801 // If we replace a PHI with something that isn't a PHI, fix up the 2802 // insertion point. 2803 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 2804 InsertPos = InstParent->getFirstInsertionPt(); 2805 2806 InstParent->getInstList().insert(InsertPos, Result); 2807 2808 EraseInstFromFunction(*I); 2809 } else { 2810 #ifndef NDEBUG 2811 DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 2812 << " New = " << *I << '\n'); 2813 #endif 2814 2815 // If the instruction was modified, it's possible that it is now dead. 2816 // if so, remove it. 2817 if (isInstructionTriviallyDead(I, TLI)) { 2818 EraseInstFromFunction(*I); 2819 } else { 2820 Worklist.Add(I); 2821 Worklist.AddUsersToWorkList(*I); 2822 } 2823 } 2824 MadeIRChange = true; 2825 } 2826 } 2827 2828 Worklist.Zap(); 2829 return MadeIRChange; 2830 } 2831 2832 /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding 2833 /// all reachable code to the worklist. 2834 /// 2835 /// This has a couple of tricks to make the code faster and more powerful. In 2836 /// particular, we constant fold and DCE instructions as we go, to avoid adding 2837 /// them to the worklist (this significantly speeds up instcombine on code where 2838 /// many instructions are dead or constant). Additionally, if we find a branch 2839 /// whose condition is a known constant, we only visit the reachable successors. 2840 /// 2841 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, 2842 SmallPtrSetImpl<BasicBlock *> &Visited, 2843 InstCombineWorklist &ICWorklist, 2844 const TargetLibraryInfo *TLI) { 2845 bool MadeIRChange = false; 2846 SmallVector<BasicBlock*, 256> Worklist; 2847 Worklist.push_back(BB); 2848 2849 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 2850 DenseMap<ConstantExpr*, Constant*> FoldedConstants; 2851 2852 do { 2853 BB = Worklist.pop_back_val(); 2854 2855 // We have now visited this block! If we've already been here, ignore it. 2856 if (!Visited.insert(BB).second) 2857 continue; 2858 2859 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 2860 Instruction *Inst = BBI++; 2861 2862 // DCE instruction if trivially dead. 2863 if (isInstructionTriviallyDead(Inst, TLI)) { 2864 ++NumDeadInst; 2865 DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 2866 Inst->eraseFromParent(); 2867 continue; 2868 } 2869 2870 // ConstantProp instruction if trivially constant. 2871 if (!Inst->use_empty() && 2872 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 2873 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 2874 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " 2875 << *Inst << '\n'); 2876 Inst->replaceAllUsesWith(C); 2877 ++NumConstProp; 2878 Inst->eraseFromParent(); 2879 continue; 2880 } 2881 2882 // See if we can constant fold its operands. 2883 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); i != e; 2884 ++i) { 2885 ConstantExpr *CE = dyn_cast<ConstantExpr>(i); 2886 if (CE == nullptr) 2887 continue; 2888 2889 Constant *&FoldRes = FoldedConstants[CE]; 2890 if (!FoldRes) 2891 FoldRes = ConstantFoldConstantExpression(CE, DL, TLI); 2892 if (!FoldRes) 2893 FoldRes = CE; 2894 2895 if (FoldRes != CE) { 2896 *i = FoldRes; 2897 MadeIRChange = true; 2898 } 2899 } 2900 2901 InstrsForInstCombineWorklist.push_back(Inst); 2902 } 2903 2904 // Recursively visit successors. If this is a branch or switch on a 2905 // constant, only visit the reachable successor. 2906 TerminatorInst *TI = BB->getTerminator(); 2907 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2908 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 2909 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 2910 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 2911 Worklist.push_back(ReachableBB); 2912 continue; 2913 } 2914 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2915 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 2916 // See if this is an explicit destination. 2917 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2918 i != e; ++i) 2919 if (i.getCaseValue() == Cond) { 2920 BasicBlock *ReachableBB = i.getCaseSuccessor(); 2921 Worklist.push_back(ReachableBB); 2922 continue; 2923 } 2924 2925 // Otherwise it is the default destination. 2926 Worklist.push_back(SI->getDefaultDest()); 2927 continue; 2928 } 2929 } 2930 2931 for (BasicBlock *SuccBB : TI->successors()) 2932 Worklist.push_back(SuccBB); 2933 } while (!Worklist.empty()); 2934 2935 // Once we've found all of the instructions to add to instcombine's worklist, 2936 // add them in reverse order. This way instcombine will visit from the top 2937 // of the function down. This jives well with the way that it adds all uses 2938 // of instructions to the worklist after doing a transformation, thus avoiding 2939 // some N^2 behavior in pathological cases. 2940 ICWorklist.AddInitialGroup(&InstrsForInstCombineWorklist[0], 2941 InstrsForInstCombineWorklist.size()); 2942 2943 return MadeIRChange; 2944 } 2945 2946 /// \brief Populate the IC worklist from a function, and prune any dead basic 2947 /// blocks discovered in the process. 2948 /// 2949 /// This also does basic constant propagation and other forward fixing to make 2950 /// the combiner itself run much faster. 2951 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 2952 TargetLibraryInfo *TLI, 2953 InstCombineWorklist &ICWorklist) { 2954 bool MadeIRChange = false; 2955 2956 // Do a depth-first traversal of the function, populate the worklist with 2957 // the reachable instructions. Ignore blocks that are not reachable. Keep 2958 // track of which blocks we visit. 2959 SmallPtrSet<BasicBlock *, 64> Visited; 2960 MadeIRChange |= 2961 AddReachableCodeToWorklist(F.begin(), DL, Visited, ICWorklist, TLI); 2962 2963 // Do a quick scan over the function. If we find any blocks that are 2964 // unreachable, remove any instructions inside of them. This prevents 2965 // the instcombine code from having to deal with some bad special cases. 2966 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 2967 if (Visited.count(BB)) 2968 continue; 2969 2970 // Delete the instructions backwards, as it has a reduced likelihood of 2971 // having to update as many def-use and use-def chains. 2972 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2973 while (EndInst != BB->begin()) { 2974 // Delete the next to last instruction. 2975 BasicBlock::iterator I = EndInst; 2976 Instruction *Inst = --I; 2977 if (!Inst->use_empty()) 2978 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2979 if (Inst->isEHPad()) { 2980 EndInst = Inst; 2981 continue; 2982 } 2983 if (!isa<DbgInfoIntrinsic>(Inst)) { 2984 ++NumDeadInst; 2985 MadeIRChange = true; 2986 } 2987 Inst->eraseFromParent(); 2988 } 2989 } 2990 2991 return MadeIRChange; 2992 } 2993 2994 static bool 2995 combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist, 2996 AliasAnalysis *AA, AssumptionCache &AC, 2997 TargetLibraryInfo &TLI, DominatorTree &DT, 2998 LoopInfo *LI = nullptr) { 2999 auto &DL = F.getParent()->getDataLayout(); 3000 3001 /// Builder - This is an IRBuilder that automatically inserts new 3002 /// instructions into the worklist when they are created. 3003 IRBuilder<true, TargetFolder, InstCombineIRInserter> Builder( 3004 F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, &AC)); 3005 3006 // Lower dbg.declare intrinsics otherwise their value may be clobbered 3007 // by instcombiner. 3008 bool DbgDeclaresChanged = LowerDbgDeclare(F); 3009 3010 // Iterate while there is work to do. 3011 int Iteration = 0; 3012 for (;;) { 3013 ++Iteration; 3014 DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 3015 << F.getName() << "\n"); 3016 3017 bool Changed = false; 3018 if (prepareICWorklistFromFunction(F, DL, &TLI, Worklist)) 3019 Changed = true; 3020 3021 InstCombiner IC(Worklist, &Builder, F.optForMinSize(), 3022 AA, &AC, &TLI, &DT, DL, LI); 3023 if (IC.run()) 3024 Changed = true; 3025 3026 if (!Changed) 3027 break; 3028 } 3029 3030 return DbgDeclaresChanged || Iteration > 1; 3031 } 3032 3033 PreservedAnalyses InstCombinePass::run(Function &F, 3034 AnalysisManager<Function> *AM) { 3035 auto &AC = AM->getResult<AssumptionAnalysis>(F); 3036 auto &DT = AM->getResult<DominatorTreeAnalysis>(F); 3037 auto &TLI = AM->getResult<TargetLibraryAnalysis>(F); 3038 3039 auto *LI = AM->getCachedResult<LoopAnalysis>(F); 3040 3041 // FIXME: The AliasAnalysis is not yet supported in the new pass manager 3042 if (!combineInstructionsOverFunction(F, Worklist, nullptr, AC, TLI, DT, LI)) 3043 // No changes, all analyses are preserved. 3044 return PreservedAnalyses::all(); 3045 3046 // Mark all the analyses that instcombine updates as preserved. 3047 // FIXME: Need a way to preserve CFG analyses here! 3048 PreservedAnalyses PA; 3049 PA.preserve<DominatorTreeAnalysis>(); 3050 return PA; 3051 } 3052 3053 namespace { 3054 /// \brief The legacy pass manager's instcombine pass. 3055 /// 3056 /// This is a basic whole-function wrapper around the instcombine utility. It 3057 /// will try to combine all instructions in the function. 3058 class InstructionCombiningPass : public FunctionPass { 3059 InstCombineWorklist Worklist; 3060 3061 public: 3062 static char ID; // Pass identification, replacement for typeid 3063 3064 InstructionCombiningPass() : FunctionPass(ID) { 3065 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 3066 } 3067 3068 void getAnalysisUsage(AnalysisUsage &AU) const override; 3069 bool runOnFunction(Function &F) override; 3070 }; 3071 } 3072 3073 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 3074 AU.setPreservesCFG(); 3075 AU.addRequired<AAResultsWrapperPass>(); 3076 AU.addRequired<AssumptionCacheTracker>(); 3077 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3078 AU.addRequired<DominatorTreeWrapperPass>(); 3079 AU.addPreserved<DominatorTreeWrapperPass>(); 3080 AU.addPreserved<GlobalsAAWrapperPass>(); 3081 } 3082 3083 bool InstructionCombiningPass::runOnFunction(Function &F) { 3084 if (skipOptnoneFunction(F)) 3085 return false; 3086 3087 // Required analyses. 3088 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3089 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3090 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 3091 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3092 3093 // Optional analyses. 3094 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3095 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 3096 3097 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, LI); 3098 } 3099 3100 char InstructionCombiningPass::ID = 0; 3101 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 3102 "Combine redundant instructions", false, false) 3103 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3104 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3105 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3106 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3107 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3108 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 3109 "Combine redundant instructions", false, false) 3110 3111 // Initialization Routines 3112 void llvm::initializeInstCombine(PassRegistry &Registry) { 3113 initializeInstructionCombiningPassPass(Registry); 3114 } 3115 3116 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 3117 initializeInstructionCombiningPassPass(*unwrap(R)); 3118 } 3119 3120 FunctionPass *llvm::createInstructionCombiningPass() { 3121 return new InstructionCombiningPass(); 3122 } 3123