1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // InstructionCombining - Combine instructions to form fewer, simple 11 // instructions. This pass does not modify the CFG. This pass is where 12 // algebraic simplification happens. 13 // 14 // This pass combines things like: 15 // %Y = add i32 %X, 1 16 // %Z = add i32 %Y, 1 17 // into: 18 // %Z = add i32 %X, 2 19 // 20 // This is a simple worklist driven algorithm. 21 // 22 // This pass guarantees that the following canonicalizations are performed on 23 // the program: 24 // 1. If a binary operator has a constant operand, it is moved to the RHS 25 // 2. Bitwise operators with constant operands are always grouped so that 26 // shifts are performed first, then or's, then and's, then xor's. 27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 28 // 4. All cmp instructions on boolean values are replaced with logical ops 29 // 5. add X, X is represented as (X*2) => (X << 1) 30 // 6. Multiplies with a power-of-two constant argument are transformed into 31 // shifts. 32 // ... etc. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "InstCombineInternal.h" 37 #include "llvm-c/Initialization.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 #include "llvm/ADT/Statistic.h" 40 #include "llvm/ADT/StringSwitch.h" 41 #include "llvm/Analysis/AliasAnalysis.h" 42 #include "llvm/Analysis/AssumptionCache.h" 43 #include "llvm/Analysis/BasicAliasAnalysis.h" 44 #include "llvm/Analysis/CFG.h" 45 #include "llvm/Analysis/ConstantFolding.h" 46 #include "llvm/Analysis/EHPersonalities.h" 47 #include "llvm/Analysis/GlobalsModRef.h" 48 #include "llvm/Analysis/InstructionSimplify.h" 49 #include "llvm/Analysis/LoopInfo.h" 50 #include "llvm/Analysis/MemoryBuiltins.h" 51 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/Analysis/ValueTracking.h" 54 #include "llvm/IR/CFG.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/GetElementPtrTypeIterator.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/ValueHandle.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/InstCombine/InstCombine.h" 66 #include "llvm/Transforms/Scalar.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include <algorithm> 69 #include <climits> 70 using namespace llvm; 71 using namespace llvm::PatternMatch; 72 73 #define DEBUG_TYPE "instcombine" 74 75 STATISTIC(NumCombined , "Number of insts combined"); 76 STATISTIC(NumConstProp, "Number of constant folds"); 77 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 78 STATISTIC(NumSunkInst , "Number of instructions sunk"); 79 STATISTIC(NumExpand, "Number of expansions"); 80 STATISTIC(NumFactor , "Number of factorizations"); 81 STATISTIC(NumReassoc , "Number of reassociations"); 82 83 static cl::opt<bool> 84 EnableExpensiveCombines("expensive-combines", 85 cl::desc("Enable expensive instruction combines")); 86 87 static cl::opt<unsigned> 88 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 89 cl::desc("Maximum array size considered when doing a combine")); 90 91 Value *InstCombiner::EmitGEPOffset(User *GEP) { 92 return llvm::EmitGEPOffset(&Builder, DL, GEP); 93 } 94 95 /// Return true if it is desirable to convert an integer computation from a 96 /// given bit width to a new bit width. 97 /// We don't want to convert from a legal to an illegal type or from a smaller 98 /// to a larger illegal type. A width of '1' is always treated as a legal type 99 /// because i1 is a fundamental type in IR, and there are many specialized 100 /// optimizations for i1 types. 101 bool InstCombiner::shouldChangeType(unsigned FromWidth, 102 unsigned ToWidth) const { 103 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 104 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 105 106 // If this is a legal integer from type, and the result would be an illegal 107 // type, don't do the transformation. 108 if (FromLegal && !ToLegal) 109 return false; 110 111 // Otherwise, if both are illegal, do not increase the size of the result. We 112 // do allow things like i160 -> i64, but not i64 -> i160. 113 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 114 return false; 115 116 return true; 117 } 118 119 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 120 /// We don't want to convert from a legal to an illegal type or from a smaller 121 /// to a larger illegal type. i1 is always treated as a legal type because it is 122 /// a fundamental type in IR, and there are many specialized optimizations for 123 /// i1 types. 124 bool InstCombiner::shouldChangeType(Type *From, Type *To) const { 125 assert(From->isIntegerTy() && To->isIntegerTy()); 126 127 unsigned FromWidth = From->getPrimitiveSizeInBits(); 128 unsigned ToWidth = To->getPrimitiveSizeInBits(); 129 return shouldChangeType(FromWidth, ToWidth); 130 } 131 132 // Return true, if No Signed Wrap should be maintained for I. 133 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 134 // where both B and C should be ConstantInts, results in a constant that does 135 // not overflow. This function only handles the Add and Sub opcodes. For 136 // all other opcodes, the function conservatively returns false. 137 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 138 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 139 if (!OBO || !OBO->hasNoSignedWrap()) 140 return false; 141 142 // We reason about Add and Sub Only. 143 Instruction::BinaryOps Opcode = I.getOpcode(); 144 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 145 return false; 146 147 const APInt *BVal, *CVal; 148 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 149 return false; 150 151 bool Overflow = false; 152 if (Opcode == Instruction::Add) 153 (void)BVal->sadd_ov(*CVal, Overflow); 154 else 155 (void)BVal->ssub_ov(*CVal, Overflow); 156 157 return !Overflow; 158 } 159 160 /// Conservatively clears subclassOptionalData after a reassociation or 161 /// commutation. We preserve fast-math flags when applicable as they can be 162 /// preserved. 163 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 164 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 165 if (!FPMO) { 166 I.clearSubclassOptionalData(); 167 return; 168 } 169 170 FastMathFlags FMF = I.getFastMathFlags(); 171 I.clearSubclassOptionalData(); 172 I.setFastMathFlags(FMF); 173 } 174 175 /// Combine constant operands of associative operations either before or after a 176 /// cast to eliminate one of the associative operations: 177 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 178 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 179 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) { 180 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 181 if (!Cast || !Cast->hasOneUse()) 182 return false; 183 184 // TODO: Enhance logic for other casts and remove this check. 185 auto CastOpcode = Cast->getOpcode(); 186 if (CastOpcode != Instruction::ZExt) 187 return false; 188 189 // TODO: Enhance logic for other BinOps and remove this check. 190 if (!BinOp1->isBitwiseLogicOp()) 191 return false; 192 193 auto AssocOpcode = BinOp1->getOpcode(); 194 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 195 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 196 return false; 197 198 Constant *C1, *C2; 199 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 200 !match(BinOp2->getOperand(1), m_Constant(C2))) 201 return false; 202 203 // TODO: This assumes a zext cast. 204 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 205 // to the destination type might lose bits. 206 207 // Fold the constants together in the destination type: 208 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 209 Type *DestTy = C1->getType(); 210 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 211 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 212 Cast->setOperand(0, BinOp2->getOperand(0)); 213 BinOp1->setOperand(1, FoldedC); 214 return true; 215 } 216 217 /// This performs a few simplifications for operators that are associative or 218 /// commutative: 219 /// 220 /// Commutative operators: 221 /// 222 /// 1. Order operands such that they are listed from right (least complex) to 223 /// left (most complex). This puts constants before unary operators before 224 /// binary operators. 225 /// 226 /// Associative operators: 227 /// 228 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 229 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 230 /// 231 /// Associative and commutative operators: 232 /// 233 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 234 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 235 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 236 /// if C1 and C2 are constants. 237 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 238 Instruction::BinaryOps Opcode = I.getOpcode(); 239 bool Changed = false; 240 241 do { 242 // Order operands such that they are listed from right (least complex) to 243 // left (most complex). This puts constants before unary operators before 244 // binary operators. 245 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 246 getComplexity(I.getOperand(1))) 247 Changed = !I.swapOperands(); 248 249 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 250 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 251 252 if (I.isAssociative()) { 253 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 254 if (Op0 && Op0->getOpcode() == Opcode) { 255 Value *A = Op0->getOperand(0); 256 Value *B = Op0->getOperand(1); 257 Value *C = I.getOperand(1); 258 259 // Does "B op C" simplify? 260 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 261 // It simplifies to V. Form "A op V". 262 I.setOperand(0, A); 263 I.setOperand(1, V); 264 // Conservatively clear the optional flags, since they may not be 265 // preserved by the reassociation. 266 if (MaintainNoSignedWrap(I, B, C) && 267 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { 268 // Note: this is only valid because SimplifyBinOp doesn't look at 269 // the operands to Op0. 270 I.clearSubclassOptionalData(); 271 I.setHasNoSignedWrap(true); 272 } else { 273 ClearSubclassDataAfterReassociation(I); 274 } 275 276 Changed = true; 277 ++NumReassoc; 278 continue; 279 } 280 } 281 282 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 283 if (Op1 && Op1->getOpcode() == Opcode) { 284 Value *A = I.getOperand(0); 285 Value *B = Op1->getOperand(0); 286 Value *C = Op1->getOperand(1); 287 288 // Does "A op B" simplify? 289 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 290 // It simplifies to V. Form "V op C". 291 I.setOperand(0, V); 292 I.setOperand(1, C); 293 // Conservatively clear the optional flags, since they may not be 294 // preserved by the reassociation. 295 ClearSubclassDataAfterReassociation(I); 296 Changed = true; 297 ++NumReassoc; 298 continue; 299 } 300 } 301 } 302 303 if (I.isAssociative() && I.isCommutative()) { 304 if (simplifyAssocCastAssoc(&I)) { 305 Changed = true; 306 ++NumReassoc; 307 continue; 308 } 309 310 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 311 if (Op0 && Op0->getOpcode() == Opcode) { 312 Value *A = Op0->getOperand(0); 313 Value *B = Op0->getOperand(1); 314 Value *C = I.getOperand(1); 315 316 // Does "C op A" simplify? 317 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 318 // It simplifies to V. Form "V op B". 319 I.setOperand(0, V); 320 I.setOperand(1, B); 321 // Conservatively clear the optional flags, since they may not be 322 // preserved by the reassociation. 323 ClearSubclassDataAfterReassociation(I); 324 Changed = true; 325 ++NumReassoc; 326 continue; 327 } 328 } 329 330 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 331 if (Op1 && Op1->getOpcode() == Opcode) { 332 Value *A = I.getOperand(0); 333 Value *B = Op1->getOperand(0); 334 Value *C = Op1->getOperand(1); 335 336 // Does "C op A" simplify? 337 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 338 // It simplifies to V. Form "B op V". 339 I.setOperand(0, B); 340 I.setOperand(1, V); 341 // Conservatively clear the optional flags, since they may not be 342 // preserved by the reassociation. 343 ClearSubclassDataAfterReassociation(I); 344 Changed = true; 345 ++NumReassoc; 346 continue; 347 } 348 } 349 350 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 351 // if C1 and C2 are constants. 352 if (Op0 && Op1 && 353 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 354 isa<Constant>(Op0->getOperand(1)) && 355 isa<Constant>(Op1->getOperand(1)) && 356 Op0->hasOneUse() && Op1->hasOneUse()) { 357 Value *A = Op0->getOperand(0); 358 Constant *C1 = cast<Constant>(Op0->getOperand(1)); 359 Value *B = Op1->getOperand(0); 360 Constant *C2 = cast<Constant>(Op1->getOperand(1)); 361 362 Constant *Folded = ConstantExpr::get(Opcode, C1, C2); 363 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B); 364 if (isa<FPMathOperator>(New)) { 365 FastMathFlags Flags = I.getFastMathFlags(); 366 Flags &= Op0->getFastMathFlags(); 367 Flags &= Op1->getFastMathFlags(); 368 New->setFastMathFlags(Flags); 369 } 370 InsertNewInstWith(New, I); 371 New->takeName(Op1); 372 I.setOperand(0, New); 373 I.setOperand(1, Folded); 374 // Conservatively clear the optional flags, since they may not be 375 // preserved by the reassociation. 376 ClearSubclassDataAfterReassociation(I); 377 378 Changed = true; 379 continue; 380 } 381 } 382 383 // No further simplifications. 384 return Changed; 385 } while (1); 386 } 387 388 /// Return whether "X LOp (Y ROp Z)" is always equal to 389 /// "(X LOp Y) ROp (X LOp Z)". 390 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp, 391 Instruction::BinaryOps ROp) { 392 switch (LOp) { 393 default: 394 return false; 395 396 case Instruction::And: 397 // And distributes over Or and Xor. 398 switch (ROp) { 399 default: 400 return false; 401 case Instruction::Or: 402 case Instruction::Xor: 403 return true; 404 } 405 406 case Instruction::Mul: 407 // Multiplication distributes over addition and subtraction. 408 switch (ROp) { 409 default: 410 return false; 411 case Instruction::Add: 412 case Instruction::Sub: 413 return true; 414 } 415 416 case Instruction::Or: 417 // Or distributes over And. 418 switch (ROp) { 419 default: 420 return false; 421 case Instruction::And: 422 return true; 423 } 424 } 425 } 426 427 /// Return whether "(X LOp Y) ROp Z" is always equal to 428 /// "(X ROp Z) LOp (Y ROp Z)". 429 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp, 430 Instruction::BinaryOps ROp) { 431 if (Instruction::isCommutative(ROp)) 432 return LeftDistributesOverRight(ROp, LOp); 433 434 switch (LOp) { 435 default: 436 return false; 437 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts. 438 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts. 439 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts. 440 case Instruction::And: 441 case Instruction::Or: 442 case Instruction::Xor: 443 switch (ROp) { 444 default: 445 return false; 446 case Instruction::Shl: 447 case Instruction::LShr: 448 case Instruction::AShr: 449 return true; 450 } 451 } 452 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 453 // but this requires knowing that the addition does not overflow and other 454 // such subtleties. 455 return false; 456 } 457 458 /// This function returns identity value for given opcode, which can be used to 459 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 460 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 461 if (isa<Constant>(V)) 462 return nullptr; 463 464 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 465 } 466 467 /// This function factors binary ops which can be combined using distributive 468 /// laws. This function tries to transform 'Op' based TopLevelOpcode to enable 469 /// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called 470 /// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms 471 /// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and 472 /// RHS to 4. 473 static Instruction::BinaryOps 474 getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode, 475 BinaryOperator *Op, Value *&LHS, Value *&RHS) { 476 assert(Op && "Expected a binary operator"); 477 478 LHS = Op->getOperand(0); 479 RHS = Op->getOperand(1); 480 481 switch (TopLevelOpcode) { 482 default: 483 return Op->getOpcode(); 484 485 case Instruction::Add: 486 case Instruction::Sub: 487 if (Op->getOpcode() == Instruction::Shl) { 488 if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) { 489 // The multiplier is really 1 << CST. 490 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST); 491 return Instruction::Mul; 492 } 493 } 494 return Op->getOpcode(); 495 } 496 497 // TODO: We can add other conversions e.g. shr => div etc. 498 } 499 500 /// This tries to simplify binary operations by factorizing out common terms 501 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 502 Value *InstCombiner::tryFactorization(BinaryOperator &I, 503 Instruction::BinaryOps InnerOpcode, 504 Value *A, Value *B, Value *C, Value *D) { 505 assert(A && B && C && D && "All values must be provided"); 506 507 Value *V = nullptr; 508 Value *SimplifiedInst = nullptr; 509 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 510 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 511 512 // Does "X op' Y" always equal "Y op' X"? 513 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 514 515 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 516 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 517 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 518 // commutative case, "(A op' B) op (C op' A)"? 519 if (A == C || (InnerCommutative && A == D)) { 520 if (A != C) 521 std::swap(C, D); 522 // Consider forming "A op' (B op D)". 523 // If "B op D" simplifies then it can be formed with no cost. 524 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 525 // If "B op D" doesn't simplify then only go on if both of the existing 526 // operations "A op' B" and "C op' D" will be zapped as no longer used. 527 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 528 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 529 if (V) { 530 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 531 } 532 } 533 534 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 535 if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 536 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 537 // commutative case, "(A op' B) op (B op' D)"? 538 if (B == D || (InnerCommutative && B == C)) { 539 if (B != D) 540 std::swap(C, D); 541 // Consider forming "(A op C) op' B". 542 // If "A op C" simplifies then it can be formed with no cost. 543 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 544 545 // If "A op C" doesn't simplify then only go on if both of the existing 546 // operations "A op' B" and "C op' D" will be zapped as no longer used. 547 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 548 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 549 if (V) { 550 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 551 } 552 } 553 554 if (SimplifiedInst) { 555 ++NumFactor; 556 SimplifiedInst->takeName(&I); 557 558 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag. 559 // TODO: Check for NUW. 560 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 561 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 562 bool HasNSW = false; 563 if (isa<OverflowingBinaryOperator>(&I)) 564 HasNSW = I.hasNoSignedWrap(); 565 566 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) 567 HasNSW &= LOBO->hasNoSignedWrap(); 568 569 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) 570 HasNSW &= ROBO->hasNoSignedWrap(); 571 572 // We can propagate 'nsw' if we know that 573 // %Y = mul nsw i16 %X, C 574 // %Z = add nsw i16 %Y, %X 575 // => 576 // %Z = mul nsw i16 %X, C+1 577 // 578 // iff C+1 isn't INT_MIN 579 const APInt *CInt; 580 if (TopLevelOpcode == Instruction::Add && 581 InnerOpcode == Instruction::Mul) 582 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) 583 BO->setHasNoSignedWrap(HasNSW); 584 } 585 } 586 } 587 return SimplifiedInst; 588 } 589 590 /// This tries to simplify binary operations which some other binary operation 591 /// distributes over either by factorizing out common terms 592 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 593 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 594 /// Returns the simplified value, or null if it didn't simplify. 595 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 596 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 597 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 598 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 599 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 600 601 { 602 // Factorization. 603 Value *A, *B, *C, *D; 604 Instruction::BinaryOps LHSOpcode, RHSOpcode; 605 if (Op0) 606 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 607 if (Op1) 608 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 609 610 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 611 // a common term. 612 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 613 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 614 return V; 615 616 // The instruction has the form "(A op' B) op (C)". Try to factorize common 617 // term. 618 if (Op0) 619 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 620 if (Value *V = 621 tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 622 return V; 623 624 // The instruction has the form "(B) op (C op' D)". Try to factorize common 625 // term. 626 if (Op1) 627 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 628 if (Value *V = 629 tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 630 return V; 631 } 632 633 // Expansion. 634 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 635 // The instruction has the form "(A op' B) op C". See if expanding it out 636 // to "(A op C) op' (B op C)" results in simplifications. 637 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 638 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 639 640 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 641 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I)); 642 643 // Do "A op C" and "B op C" both simplify? 644 if (L && R) { 645 // They do! Return "L op' R". 646 ++NumExpand; 647 C = Builder.CreateBinOp(InnerOpcode, L, R); 648 C->takeName(&I); 649 return C; 650 } 651 652 // Does "A op C" simplify to the identity value for the inner opcode? 653 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 654 // They do! Return "B op C". 655 ++NumExpand; 656 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 657 C->takeName(&I); 658 return C; 659 } 660 661 // Does "B op C" simplify to the identity value for the inner opcode? 662 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 663 // They do! Return "A op C". 664 ++NumExpand; 665 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 666 C->takeName(&I); 667 return C; 668 } 669 } 670 671 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 672 // The instruction has the form "A op (B op' C)". See if expanding it out 673 // to "(A op B) op' (A op C)" results in simplifications. 674 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 675 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 676 677 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I)); 678 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 679 680 // Do "A op B" and "A op C" both simplify? 681 if (L && R) { 682 // They do! Return "L op' R". 683 ++NumExpand; 684 A = Builder.CreateBinOp(InnerOpcode, L, R); 685 A->takeName(&I); 686 return A; 687 } 688 689 // Does "A op B" simplify to the identity value for the inner opcode? 690 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 691 // They do! Return "A op C". 692 ++NumExpand; 693 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 694 A->takeName(&I); 695 return A; 696 } 697 698 // Does "A op C" simplify to the identity value for the inner opcode? 699 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 700 // They do! Return "A op B". 701 ++NumExpand; 702 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 703 A->takeName(&I); 704 return A; 705 } 706 } 707 708 // (op (select (a, c, b)), (select (a, d, b))) -> (select (a, (op c, d), 0)) 709 // (op (select (a, b, c)), (select (a, b, d))) -> (select (a, 0, (op c, d))) 710 if (auto *SI0 = dyn_cast<SelectInst>(LHS)) { 711 if (auto *SI1 = dyn_cast<SelectInst>(RHS)) { 712 if (SI0->getCondition() == SI1->getCondition()) { 713 Value *SI = nullptr; 714 if (Value *V = 715 SimplifyBinOp(TopLevelOpcode, SI0->getFalseValue(), 716 SI1->getFalseValue(), SQ.getWithInstruction(&I))) 717 SI = Builder.CreateSelect(SI0->getCondition(), 718 Builder.CreateBinOp(TopLevelOpcode, 719 SI0->getTrueValue(), 720 SI1->getTrueValue()), 721 V); 722 if (Value *V = 723 SimplifyBinOp(TopLevelOpcode, SI0->getTrueValue(), 724 SI1->getTrueValue(), SQ.getWithInstruction(&I))) 725 SI = Builder.CreateSelect( 726 SI0->getCondition(), V, 727 Builder.CreateBinOp(TopLevelOpcode, SI0->getFalseValue(), 728 SI1->getFalseValue())); 729 if (SI) { 730 SI->takeName(&I); 731 return SI; 732 } 733 } 734 } 735 } 736 737 return nullptr; 738 } 739 740 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 741 /// constant zero (which is the 'negate' form). 742 Value *InstCombiner::dyn_castNegVal(Value *V) const { 743 if (BinaryOperator::isNeg(V)) 744 return BinaryOperator::getNegArgument(V); 745 746 // Constants can be considered to be negated values if they can be folded. 747 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 748 return ConstantExpr::getNeg(C); 749 750 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 751 if (C->getType()->getElementType()->isIntegerTy()) 752 return ConstantExpr::getNeg(C); 753 754 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 755 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 756 Constant *Elt = CV->getAggregateElement(i); 757 if (!Elt) 758 return nullptr; 759 760 if (isa<UndefValue>(Elt)) 761 continue; 762 763 if (!isa<ConstantInt>(Elt)) 764 return nullptr; 765 } 766 return ConstantExpr::getNeg(CV); 767 } 768 769 return nullptr; 770 } 771 772 /// Given a 'fsub' instruction, return the RHS of the instruction if the LHS is 773 /// a constant negative zero (which is the 'negate' form). 774 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const { 775 if (BinaryOperator::isFNeg(V, IgnoreZeroSign)) 776 return BinaryOperator::getFNegArgument(V); 777 778 // Constants can be considered to be negated values if they can be folded. 779 if (ConstantFP *C = dyn_cast<ConstantFP>(V)) 780 return ConstantExpr::getFNeg(C); 781 782 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 783 if (C->getType()->getElementType()->isFloatingPointTy()) 784 return ConstantExpr::getFNeg(C); 785 786 return nullptr; 787 } 788 789 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 790 InstCombiner::BuilderTy &Builder) { 791 if (auto *Cast = dyn_cast<CastInst>(&I)) 792 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 793 794 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 795 796 // Figure out if the constant is the left or the right argument. 797 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 798 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 799 800 if (auto *SOC = dyn_cast<Constant>(SO)) { 801 if (ConstIsRHS) 802 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 803 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 804 } 805 806 Value *Op0 = SO, *Op1 = ConstOperand; 807 if (!ConstIsRHS) 808 std::swap(Op0, Op1); 809 810 auto *BO = cast<BinaryOperator>(&I); 811 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 812 SO->getName() + ".op"); 813 auto *FPInst = dyn_cast<Instruction>(RI); 814 if (FPInst && isa<FPMathOperator>(FPInst)) 815 FPInst->copyFastMathFlags(BO); 816 return RI; 817 } 818 819 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 820 // Don't modify shared select instructions. 821 if (!SI->hasOneUse()) 822 return nullptr; 823 824 Value *TV = SI->getTrueValue(); 825 Value *FV = SI->getFalseValue(); 826 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 827 return nullptr; 828 829 // Bool selects with constant operands can be folded to logical ops. 830 if (SI->getType()->isIntOrIntVectorTy(1)) 831 return nullptr; 832 833 // If it's a bitcast involving vectors, make sure it has the same number of 834 // elements on both sides. 835 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 836 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 837 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 838 839 // Verify that either both or neither are vectors. 840 if ((SrcTy == nullptr) != (DestTy == nullptr)) 841 return nullptr; 842 843 // If vectors, verify that they have the same number of elements. 844 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 845 return nullptr; 846 } 847 848 // Test if a CmpInst instruction is used exclusively by a select as 849 // part of a minimum or maximum operation. If so, refrain from doing 850 // any other folding. This helps out other analyses which understand 851 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 852 // and CodeGen. And in this case, at least one of the comparison 853 // operands has at least one user besides the compare (the select), 854 // which would often largely negate the benefit of folding anyway. 855 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 856 if (CI->hasOneUse()) { 857 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 858 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 859 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 860 return nullptr; 861 } 862 } 863 864 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 865 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 866 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 867 } 868 869 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 870 InstCombiner::BuilderTy &Builder) { 871 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 872 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 873 874 if (auto *InC = dyn_cast<Constant>(InV)) { 875 if (ConstIsRHS) 876 return ConstantExpr::get(I->getOpcode(), InC, C); 877 return ConstantExpr::get(I->getOpcode(), C, InC); 878 } 879 880 Value *Op0 = InV, *Op1 = C; 881 if (!ConstIsRHS) 882 std::swap(Op0, Op1); 883 884 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp"); 885 auto *FPInst = dyn_cast<Instruction>(RI); 886 if (FPInst && isa<FPMathOperator>(FPInst)) 887 FPInst->copyFastMathFlags(I); 888 return RI; 889 } 890 891 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) { 892 unsigned NumPHIValues = PN->getNumIncomingValues(); 893 if (NumPHIValues == 0) 894 return nullptr; 895 896 // We normally only transform phis with a single use. However, if a PHI has 897 // multiple uses and they are all the same operation, we can fold *all* of the 898 // uses into the PHI. 899 if (!PN->hasOneUse()) { 900 // Walk the use list for the instruction, comparing them to I. 901 for (User *U : PN->users()) { 902 Instruction *UI = cast<Instruction>(U); 903 if (UI != &I && !I.isIdenticalTo(UI)) 904 return nullptr; 905 } 906 // Otherwise, we can replace *all* users with the new PHI we form. 907 } 908 909 // Check to see if all of the operands of the PHI are simple constants 910 // (constantint/constantfp/undef). If there is one non-constant value, 911 // remember the BB it is in. If there is more than one or if *it* is a PHI, 912 // bail out. We don't do arbitrary constant expressions here because moving 913 // their computation can be expensive without a cost model. 914 BasicBlock *NonConstBB = nullptr; 915 for (unsigned i = 0; i != NumPHIValues; ++i) { 916 Value *InVal = PN->getIncomingValue(i); 917 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 918 continue; 919 920 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 921 if (NonConstBB) return nullptr; // More than one non-const value. 922 923 NonConstBB = PN->getIncomingBlock(i); 924 925 // If the InVal is an invoke at the end of the pred block, then we can't 926 // insert a computation after it without breaking the edge. 927 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal)) 928 if (II->getParent() == NonConstBB) 929 return nullptr; 930 931 // If the incoming non-constant value is in I's block, we will remove one 932 // instruction, but insert another equivalent one, leading to infinite 933 // instcombine. 934 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI)) 935 return nullptr; 936 } 937 938 // If there is exactly one non-constant value, we can insert a copy of the 939 // operation in that block. However, if this is a critical edge, we would be 940 // inserting the computation on some other paths (e.g. inside a loop). Only 941 // do this if the pred block is unconditionally branching into the phi block. 942 if (NonConstBB != nullptr) { 943 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 944 if (!BI || !BI->isUnconditional()) return nullptr; 945 } 946 947 // Okay, we can do the transformation: create the new PHI node. 948 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 949 InsertNewInstBefore(NewPN, *PN); 950 NewPN->takeName(PN); 951 952 // If we are going to have to insert a new computation, do so right before the 953 // predecessor's terminator. 954 if (NonConstBB) 955 Builder.SetInsertPoint(NonConstBB->getTerminator()); 956 957 // Next, add all of the operands to the PHI. 958 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 959 // We only currently try to fold the condition of a select when it is a phi, 960 // not the true/false values. 961 Value *TrueV = SI->getTrueValue(); 962 Value *FalseV = SI->getFalseValue(); 963 BasicBlock *PhiTransBB = PN->getParent(); 964 for (unsigned i = 0; i != NumPHIValues; ++i) { 965 BasicBlock *ThisBB = PN->getIncomingBlock(i); 966 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 967 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 968 Value *InV = nullptr; 969 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 970 // even if currently isNullValue gives false. 971 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 972 // For vector constants, we cannot use isNullValue to fold into 973 // FalseVInPred versus TrueVInPred. When we have individual nonzero 974 // elements in the vector, we will incorrectly fold InC to 975 // `TrueVInPred`. 976 if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC)) 977 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 978 else { 979 // Generate the select in the same block as PN's current incoming block. 980 // Note: ThisBB need not be the NonConstBB because vector constants 981 // which are constants by definition are handled here. 982 // FIXME: This can lead to an increase in IR generation because we might 983 // generate selects for vector constant phi operand, that could not be 984 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 985 // non-vector phis, this transformation was always profitable because 986 // the select would be generated exactly once in the NonConstBB. 987 Builder.SetInsertPoint(ThisBB->getTerminator()); 988 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 989 FalseVInPred, "phitmp"); 990 } 991 NewPN->addIncoming(InV, ThisBB); 992 } 993 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 994 Constant *C = cast<Constant>(I.getOperand(1)); 995 for (unsigned i = 0; i != NumPHIValues; ++i) { 996 Value *InV = nullptr; 997 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 998 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 999 else if (isa<ICmpInst>(CI)) 1000 InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 1001 C, "phitmp"); 1002 else 1003 InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 1004 C, "phitmp"); 1005 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1006 } 1007 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1008 for (unsigned i = 0; i != NumPHIValues; ++i) { 1009 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1010 Builder); 1011 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1012 } 1013 } else { 1014 CastInst *CI = cast<CastInst>(&I); 1015 Type *RetTy = CI->getType(); 1016 for (unsigned i = 0; i != NumPHIValues; ++i) { 1017 Value *InV; 1018 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1019 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1020 else 1021 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1022 I.getType(), "phitmp"); 1023 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1024 } 1025 } 1026 1027 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1028 Instruction *User = cast<Instruction>(*UI++); 1029 if (User == &I) continue; 1030 replaceInstUsesWith(*User, NewPN); 1031 eraseInstFromFunction(*User); 1032 } 1033 return replaceInstUsesWith(I, NewPN); 1034 } 1035 1036 Instruction *InstCombiner::foldOpWithConstantIntoOperand(BinaryOperator &I) { 1037 assert(isa<Constant>(I.getOperand(1)) && "Unexpected operand type"); 1038 1039 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1040 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1041 return NewSel; 1042 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1043 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1044 return NewPhi; 1045 } 1046 return nullptr; 1047 } 1048 1049 /// Given a pointer type and a constant offset, determine whether or not there 1050 /// is a sequence of GEP indices into the pointed type that will land us at the 1051 /// specified offset. If so, fill them into NewIndices and return the resultant 1052 /// element type, otherwise return null. 1053 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 1054 SmallVectorImpl<Value *> &NewIndices) { 1055 Type *Ty = PtrTy->getElementType(); 1056 if (!Ty->isSized()) 1057 return nullptr; 1058 1059 // Start with the index over the outer type. Note that the type size 1060 // might be zero (even if the offset isn't zero) if the indexed type 1061 // is something like [0 x {int, int}] 1062 Type *IntPtrTy = DL.getIntPtrType(PtrTy); 1063 int64_t FirstIdx = 0; 1064 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 1065 FirstIdx = Offset/TySize; 1066 Offset -= FirstIdx*TySize; 1067 1068 // Handle hosts where % returns negative instead of values [0..TySize). 1069 if (Offset < 0) { 1070 --FirstIdx; 1071 Offset += TySize; 1072 assert(Offset >= 0); 1073 } 1074 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 1075 } 1076 1077 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx)); 1078 1079 // Index into the types. If we fail, set OrigBase to null. 1080 while (Offset) { 1081 // Indexing into tail padding between struct/array elements. 1082 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1083 return nullptr; 1084 1085 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1086 const StructLayout *SL = DL.getStructLayout(STy); 1087 assert(Offset < (int64_t)SL->getSizeInBytes() && 1088 "Offset must stay within the indexed type"); 1089 1090 unsigned Elt = SL->getElementContainingOffset(Offset); 1091 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1092 Elt)); 1093 1094 Offset -= SL->getElementOffset(Elt); 1095 Ty = STy->getElementType(Elt); 1096 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1097 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1098 assert(EltSize && "Cannot index into a zero-sized array"); 1099 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize)); 1100 Offset %= EltSize; 1101 Ty = AT->getElementType(); 1102 } else { 1103 // Otherwise, we can't index into the middle of this atomic type, bail. 1104 return nullptr; 1105 } 1106 } 1107 1108 return Ty; 1109 } 1110 1111 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1112 // If this GEP has only 0 indices, it is the same pointer as 1113 // Src. If Src is not a trivial GEP too, don't combine 1114 // the indices. 1115 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1116 !Src.hasOneUse()) 1117 return false; 1118 return true; 1119 } 1120 1121 /// Return a value X such that Val = X * Scale, or null if none. 1122 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1123 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1124 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1125 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1126 Scale.getBitWidth() && "Scale not compatible with value!"); 1127 1128 // If Val is zero or Scale is one then Val = Val * Scale. 1129 if (match(Val, m_Zero()) || Scale == 1) { 1130 NoSignedWrap = true; 1131 return Val; 1132 } 1133 1134 // If Scale is zero then it does not divide Val. 1135 if (Scale.isMinValue()) 1136 return nullptr; 1137 1138 // Look through chains of multiplications, searching for a constant that is 1139 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1140 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1141 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1142 // down from Val: 1143 // 1144 // Val = M1 * X || Analysis starts here and works down 1145 // M1 = M2 * Y || Doesn't descend into terms with more 1146 // M2 = Z * 4 \/ than one use 1147 // 1148 // Then to modify a term at the bottom: 1149 // 1150 // Val = M1 * X 1151 // M1 = Z * Y || Replaced M2 with Z 1152 // 1153 // Then to work back up correcting nsw flags. 1154 1155 // Op - the term we are currently analyzing. Starts at Val then drills down. 1156 // Replaced with its descaled value before exiting from the drill down loop. 1157 Value *Op = Val; 1158 1159 // Parent - initially null, but after drilling down notes where Op came from. 1160 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1161 // 0'th operand of Val. 1162 std::pair<Instruction*, unsigned> Parent; 1163 1164 // Set if the transform requires a descaling at deeper levels that doesn't 1165 // overflow. 1166 bool RequireNoSignedWrap = false; 1167 1168 // Log base 2 of the scale. Negative if not a power of 2. 1169 int32_t logScale = Scale.exactLogBase2(); 1170 1171 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1172 1173 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1174 // If Op is a constant divisible by Scale then descale to the quotient. 1175 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1176 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1177 if (!Remainder.isMinValue()) 1178 // Not divisible by Scale. 1179 return nullptr; 1180 // Replace with the quotient in the parent. 1181 Op = ConstantInt::get(CI->getType(), Quotient); 1182 NoSignedWrap = true; 1183 break; 1184 } 1185 1186 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1187 1188 if (BO->getOpcode() == Instruction::Mul) { 1189 // Multiplication. 1190 NoSignedWrap = BO->hasNoSignedWrap(); 1191 if (RequireNoSignedWrap && !NoSignedWrap) 1192 return nullptr; 1193 1194 // There are three cases for multiplication: multiplication by exactly 1195 // the scale, multiplication by a constant different to the scale, and 1196 // multiplication by something else. 1197 Value *LHS = BO->getOperand(0); 1198 Value *RHS = BO->getOperand(1); 1199 1200 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1201 // Multiplication by a constant. 1202 if (CI->getValue() == Scale) { 1203 // Multiplication by exactly the scale, replace the multiplication 1204 // by its left-hand side in the parent. 1205 Op = LHS; 1206 break; 1207 } 1208 1209 // Otherwise drill down into the constant. 1210 if (!Op->hasOneUse()) 1211 return nullptr; 1212 1213 Parent = std::make_pair(BO, 1); 1214 continue; 1215 } 1216 1217 // Multiplication by something else. Drill down into the left-hand side 1218 // since that's where the reassociate pass puts the good stuff. 1219 if (!Op->hasOneUse()) 1220 return nullptr; 1221 1222 Parent = std::make_pair(BO, 0); 1223 continue; 1224 } 1225 1226 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1227 isa<ConstantInt>(BO->getOperand(1))) { 1228 // Multiplication by a power of 2. 1229 NoSignedWrap = BO->hasNoSignedWrap(); 1230 if (RequireNoSignedWrap && !NoSignedWrap) 1231 return nullptr; 1232 1233 Value *LHS = BO->getOperand(0); 1234 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1235 getLimitedValue(Scale.getBitWidth()); 1236 // Op = LHS << Amt. 1237 1238 if (Amt == logScale) { 1239 // Multiplication by exactly the scale, replace the multiplication 1240 // by its left-hand side in the parent. 1241 Op = LHS; 1242 break; 1243 } 1244 if (Amt < logScale || !Op->hasOneUse()) 1245 return nullptr; 1246 1247 // Multiplication by more than the scale. Reduce the multiplying amount 1248 // by the scale in the parent. 1249 Parent = std::make_pair(BO, 1); 1250 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1251 break; 1252 } 1253 } 1254 1255 if (!Op->hasOneUse()) 1256 return nullptr; 1257 1258 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1259 if (Cast->getOpcode() == Instruction::SExt) { 1260 // Op is sign-extended from a smaller type, descale in the smaller type. 1261 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1262 APInt SmallScale = Scale.trunc(SmallSize); 1263 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1264 // descale Op as (sext Y) * Scale. In order to have 1265 // sext (Y * SmallScale) = (sext Y) * Scale 1266 // some conditions need to hold however: SmallScale must sign-extend to 1267 // Scale and the multiplication Y * SmallScale should not overflow. 1268 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1269 // SmallScale does not sign-extend to Scale. 1270 return nullptr; 1271 assert(SmallScale.exactLogBase2() == logScale); 1272 // Require that Y * SmallScale must not overflow. 1273 RequireNoSignedWrap = true; 1274 1275 // Drill down through the cast. 1276 Parent = std::make_pair(Cast, 0); 1277 Scale = SmallScale; 1278 continue; 1279 } 1280 1281 if (Cast->getOpcode() == Instruction::Trunc) { 1282 // Op is truncated from a larger type, descale in the larger type. 1283 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1284 // trunc (Y * sext Scale) = (trunc Y) * Scale 1285 // always holds. However (trunc Y) * Scale may overflow even if 1286 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1287 // from this point up in the expression (see later). 1288 if (RequireNoSignedWrap) 1289 return nullptr; 1290 1291 // Drill down through the cast. 1292 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1293 Parent = std::make_pair(Cast, 0); 1294 Scale = Scale.sext(LargeSize); 1295 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1296 logScale = -1; 1297 assert(Scale.exactLogBase2() == logScale); 1298 continue; 1299 } 1300 } 1301 1302 // Unsupported expression, bail out. 1303 return nullptr; 1304 } 1305 1306 // If Op is zero then Val = Op * Scale. 1307 if (match(Op, m_Zero())) { 1308 NoSignedWrap = true; 1309 return Op; 1310 } 1311 1312 // We know that we can successfully descale, so from here on we can safely 1313 // modify the IR. Op holds the descaled version of the deepest term in the 1314 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1315 // not to overflow. 1316 1317 if (!Parent.first) 1318 // The expression only had one term. 1319 return Op; 1320 1321 // Rewrite the parent using the descaled version of its operand. 1322 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1323 assert(Op != Parent.first->getOperand(Parent.second) && 1324 "Descaling was a no-op?"); 1325 Parent.first->setOperand(Parent.second, Op); 1326 Worklist.Add(Parent.first); 1327 1328 // Now work back up the expression correcting nsw flags. The logic is based 1329 // on the following observation: if X * Y is known not to overflow as a signed 1330 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1331 // then X * Z will not overflow as a signed multiplication either. As we work 1332 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1333 // current level has strictly smaller absolute value than the original. 1334 Instruction *Ancestor = Parent.first; 1335 do { 1336 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1337 // If the multiplication wasn't nsw then we can't say anything about the 1338 // value of the descaled multiplication, and we have to clear nsw flags 1339 // from this point on up. 1340 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1341 NoSignedWrap &= OpNoSignedWrap; 1342 if (NoSignedWrap != OpNoSignedWrap) { 1343 BO->setHasNoSignedWrap(NoSignedWrap); 1344 Worklist.Add(Ancestor); 1345 } 1346 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1347 // The fact that the descaled input to the trunc has smaller absolute 1348 // value than the original input doesn't tell us anything useful about 1349 // the absolute values of the truncations. 1350 NoSignedWrap = false; 1351 } 1352 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1353 "Failed to keep proper track of nsw flags while drilling down?"); 1354 1355 if (Ancestor == Val) 1356 // Got to the top, all done! 1357 return Val; 1358 1359 // Move up one level in the expression. 1360 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1361 Ancestor = Ancestor->user_back(); 1362 } while (1); 1363 } 1364 1365 /// \brief Creates node of binary operation with the same attributes as the 1366 /// specified one but with other operands. 1367 static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS, 1368 InstCombiner::BuilderTy &B) { 1369 Value *BO = B.CreateBinOp(Inst.getOpcode(), LHS, RHS); 1370 // If LHS and RHS are constant, BO won't be a binary operator. 1371 if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BO)) 1372 NewBO->copyIRFlags(&Inst); 1373 return BO; 1374 } 1375 1376 /// \brief Makes transformation of binary operation specific for vector types. 1377 /// \param Inst Binary operator to transform. 1378 /// \return Pointer to node that must replace the original binary operator, or 1379 /// null pointer if no transformation was made. 1380 Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) { 1381 if (!Inst.getType()->isVectorTy()) return nullptr; 1382 1383 // It may not be safe to reorder shuffles and things like div, urem, etc. 1384 // because we may trap when executing those ops on unknown vector elements. 1385 // See PR20059. 1386 if (!isSafeToSpeculativelyExecute(&Inst)) 1387 return nullptr; 1388 1389 unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements(); 1390 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1391 assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth); 1392 assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth); 1393 1394 // If both arguments of the binary operation are shuffles that use the same 1395 // mask and shuffle within a single vector, move the shuffle after the binop: 1396 // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m) 1397 auto *LShuf = dyn_cast<ShuffleVectorInst>(LHS); 1398 auto *RShuf = dyn_cast<ShuffleVectorInst>(RHS); 1399 if (LShuf && RShuf && LShuf->getMask() == RShuf->getMask() && 1400 isa<UndefValue>(LShuf->getOperand(1)) && 1401 isa<UndefValue>(RShuf->getOperand(1)) && 1402 LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType()) { 1403 Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0), 1404 RShuf->getOperand(0), Builder); 1405 return Builder.CreateShuffleVector( 1406 NewBO, UndefValue::get(NewBO->getType()), LShuf->getMask()); 1407 } 1408 1409 // If one argument is a shuffle within one vector, the other is a constant, 1410 // try moving the shuffle after the binary operation. 1411 ShuffleVectorInst *Shuffle = nullptr; 1412 Constant *C1 = nullptr; 1413 if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS); 1414 if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS); 1415 if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS); 1416 if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS); 1417 if (Shuffle && C1 && 1418 (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) && 1419 isa<UndefValue>(Shuffle->getOperand(1)) && 1420 Shuffle->getType() == Shuffle->getOperand(0)->getType()) { 1421 SmallVector<int, 16> ShMask = Shuffle->getShuffleMask(); 1422 // Find constant C2 that has property: 1423 // shuffle(C2, ShMask) = C1 1424 // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>) 1425 // reorder is not possible. 1426 SmallVector<Constant*, 16> C2M(VWidth, 1427 UndefValue::get(C1->getType()->getScalarType())); 1428 bool MayChange = true; 1429 for (unsigned I = 0; I < VWidth; ++I) { 1430 if (ShMask[I] >= 0) { 1431 assert(ShMask[I] < (int)VWidth); 1432 if (!isa<UndefValue>(C2M[ShMask[I]])) { 1433 MayChange = false; 1434 break; 1435 } 1436 C2M[ShMask[I]] = C1->getAggregateElement(I); 1437 } 1438 } 1439 if (MayChange) { 1440 Constant *C2 = ConstantVector::get(C2M); 1441 Value *NewLHS = isa<Constant>(LHS) ? C2 : Shuffle->getOperand(0); 1442 Value *NewRHS = isa<Constant>(LHS) ? Shuffle->getOperand(0) : C2; 1443 Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder); 1444 return Builder.CreateShuffleVector(NewBO, 1445 UndefValue::get(Inst.getType()), Shuffle->getMask()); 1446 } 1447 } 1448 1449 return nullptr; 1450 } 1451 1452 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1453 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1454 1455 if (Value *V = SimplifyGEPInst(GEP.getSourceElementType(), Ops, 1456 SQ.getWithInstruction(&GEP))) 1457 return replaceInstUsesWith(GEP, V); 1458 1459 Value *PtrOp = GEP.getOperand(0); 1460 1461 // Eliminate unneeded casts for indices, and replace indices which displace 1462 // by multiples of a zero size type with zero. 1463 bool MadeChange = false; 1464 Type *IntPtrTy = 1465 DL.getIntPtrType(GEP.getPointerOperandType()->getScalarType()); 1466 1467 gep_type_iterator GTI = gep_type_begin(GEP); 1468 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1469 ++I, ++GTI) { 1470 // Skip indices into struct types. 1471 if (GTI.isStruct()) 1472 continue; 1473 1474 // Index type should have the same width as IntPtr 1475 Type *IndexTy = (*I)->getType(); 1476 Type *NewIndexType = IndexTy->isVectorTy() ? 1477 VectorType::get(IntPtrTy, IndexTy->getVectorNumElements()) : IntPtrTy; 1478 1479 // If the element type has zero size then any index over it is equivalent 1480 // to an index of zero, so replace it with zero if it is not zero already. 1481 Type *EltTy = GTI.getIndexedType(); 1482 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0) 1483 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { 1484 *I = Constant::getNullValue(NewIndexType); 1485 MadeChange = true; 1486 } 1487 1488 if (IndexTy != NewIndexType) { 1489 // If we are using a wider index than needed for this platform, shrink 1490 // it to what we need. If narrower, sign-extend it to what we need. 1491 // This explicit cast can make subsequent optimizations more obvious. 1492 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1493 MadeChange = true; 1494 } 1495 } 1496 if (MadeChange) 1497 return &GEP; 1498 1499 // Check to see if the inputs to the PHI node are getelementptr instructions. 1500 if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) { 1501 GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1502 if (!Op1) 1503 return nullptr; 1504 1505 // Don't fold a GEP into itself through a PHI node. This can only happen 1506 // through the back-edge of a loop. Folding a GEP into itself means that 1507 // the value of the previous iteration needs to be stored in the meantime, 1508 // thus requiring an additional register variable to be live, but not 1509 // actually achieving anything (the GEP still needs to be executed once per 1510 // loop iteration). 1511 if (Op1 == &GEP) 1512 return nullptr; 1513 1514 int DI = -1; 1515 1516 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1517 GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I); 1518 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1519 return nullptr; 1520 1521 // As for Op1 above, don't try to fold a GEP into itself. 1522 if (Op2 == &GEP) 1523 return nullptr; 1524 1525 // Keep track of the type as we walk the GEP. 1526 Type *CurTy = nullptr; 1527 1528 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1529 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1530 return nullptr; 1531 1532 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1533 if (DI == -1) { 1534 // We have not seen any differences yet in the GEPs feeding the 1535 // PHI yet, so we record this one if it is allowed to be a 1536 // variable. 1537 1538 // The first two arguments can vary for any GEP, the rest have to be 1539 // static for struct slots 1540 if (J > 1 && CurTy->isStructTy()) 1541 return nullptr; 1542 1543 DI = J; 1544 } else { 1545 // The GEP is different by more than one input. While this could be 1546 // extended to support GEPs that vary by more than one variable it 1547 // doesn't make sense since it greatly increases the complexity and 1548 // would result in an R+R+R addressing mode which no backend 1549 // directly supports and would need to be broken into several 1550 // simpler instructions anyway. 1551 return nullptr; 1552 } 1553 } 1554 1555 // Sink down a layer of the type for the next iteration. 1556 if (J > 0) { 1557 if (J == 1) { 1558 CurTy = Op1->getSourceElementType(); 1559 } else if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) { 1560 CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); 1561 } else { 1562 CurTy = nullptr; 1563 } 1564 } 1565 } 1566 } 1567 1568 // If not all GEPs are identical we'll have to create a new PHI node. 1569 // Check that the old PHI node has only one use so that it will get 1570 // removed. 1571 if (DI != -1 && !PN->hasOneUse()) 1572 return nullptr; 1573 1574 GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1575 if (DI == -1) { 1576 // All the GEPs feeding the PHI are identical. Clone one down into our 1577 // BB so that it can be merged with the current GEP. 1578 GEP.getParent()->getInstList().insert( 1579 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1580 } else { 1581 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1582 // into the current block so it can be merged, and create a new PHI to 1583 // set that index. 1584 PHINode *NewPN; 1585 { 1586 IRBuilderBase::InsertPointGuard Guard(Builder); 1587 Builder.SetInsertPoint(PN); 1588 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 1589 PN->getNumOperands()); 1590 } 1591 1592 for (auto &I : PN->operands()) 1593 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1594 PN->getIncomingBlock(I)); 1595 1596 NewGEP->setOperand(DI, NewPN); 1597 GEP.getParent()->getInstList().insert( 1598 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1599 NewGEP->setOperand(DI, NewPN); 1600 } 1601 1602 GEP.setOperand(0, NewGEP); 1603 PtrOp = NewGEP; 1604 } 1605 1606 // Combine Indices - If the source pointer to this getelementptr instruction 1607 // is a getelementptr instruction, combine the indices of the two 1608 // getelementptr instructions into a single instruction. 1609 // 1610 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) { 1611 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1612 return nullptr; 1613 1614 // Note that if our source is a gep chain itself then we wait for that 1615 // chain to be resolved before we perform this transformation. This 1616 // avoids us creating a TON of code in some cases. 1617 if (GEPOperator *SrcGEP = 1618 dyn_cast<GEPOperator>(Src->getOperand(0))) 1619 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1620 return nullptr; // Wait until our source is folded to completion. 1621 1622 SmallVector<Value*, 8> Indices; 1623 1624 // Find out whether the last index in the source GEP is a sequential idx. 1625 bool EndsWithSequential = false; 1626 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1627 I != E; ++I) 1628 EndsWithSequential = I.isSequential(); 1629 1630 // Can we combine the two pointer arithmetics offsets? 1631 if (EndsWithSequential) { 1632 // Replace: gep (gep %P, long B), long A, ... 1633 // With: T = long A+B; gep %P, T, ... 1634 // 1635 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1636 Value *GO1 = GEP.getOperand(1); 1637 1638 // If they aren't the same type, then the input hasn't been processed 1639 // by the loop above yet (which canonicalizes sequential index types to 1640 // intptr_t). Just avoid transforming this until the input has been 1641 // normalized. 1642 if (SO1->getType() != GO1->getType()) 1643 return nullptr; 1644 1645 Value *Sum = 1646 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 1647 // Only do the combine when we are sure the cost after the 1648 // merge is never more than that before the merge. 1649 if (Sum == nullptr) 1650 return nullptr; 1651 1652 // Update the GEP in place if possible. 1653 if (Src->getNumOperands() == 2) { 1654 GEP.setOperand(0, Src->getOperand(0)); 1655 GEP.setOperand(1, Sum); 1656 return &GEP; 1657 } 1658 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1659 Indices.push_back(Sum); 1660 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1661 } else if (isa<Constant>(*GEP.idx_begin()) && 1662 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1663 Src->getNumOperands() != 1) { 1664 // Otherwise we can do the fold if the first index of the GEP is a zero 1665 Indices.append(Src->op_begin()+1, Src->op_end()); 1666 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1667 } 1668 1669 if (!Indices.empty()) 1670 return GEP.isInBounds() && Src->isInBounds() 1671 ? GetElementPtrInst::CreateInBounds( 1672 Src->getSourceElementType(), Src->getOperand(0), Indices, 1673 GEP.getName()) 1674 : GetElementPtrInst::Create(Src->getSourceElementType(), 1675 Src->getOperand(0), Indices, 1676 GEP.getName()); 1677 } 1678 1679 if (GEP.getNumIndices() == 1) { 1680 unsigned AS = GEP.getPointerAddressSpace(); 1681 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 1682 DL.getPointerSizeInBits(AS)) { 1683 Type *Ty = GEP.getSourceElementType(); 1684 uint64_t TyAllocSize = DL.getTypeAllocSize(Ty); 1685 1686 bool Matched = false; 1687 uint64_t C; 1688 Value *V = nullptr; 1689 if (TyAllocSize == 1) { 1690 V = GEP.getOperand(1); 1691 Matched = true; 1692 } else if (match(GEP.getOperand(1), 1693 m_AShr(m_Value(V), m_ConstantInt(C)))) { 1694 if (TyAllocSize == 1ULL << C) 1695 Matched = true; 1696 } else if (match(GEP.getOperand(1), 1697 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 1698 if (TyAllocSize == C) 1699 Matched = true; 1700 } 1701 1702 if (Matched) { 1703 // Canonicalize (gep i8* X, -(ptrtoint Y)) 1704 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) 1705 // The GEP pattern is emitted by the SCEV expander for certain kinds of 1706 // pointer arithmetic. 1707 if (match(V, m_Neg(m_PtrToInt(m_Value())))) { 1708 Operator *Index = cast<Operator>(V); 1709 Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType()); 1710 Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1)); 1711 return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType()); 1712 } 1713 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) 1714 // to (bitcast Y) 1715 Value *Y; 1716 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), 1717 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) { 1718 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, 1719 GEP.getType()); 1720 } 1721 } 1722 } 1723 } 1724 1725 // We do not handle pointer-vector geps here. 1726 if (GEP.getType()->isVectorTy()) 1727 return nullptr; 1728 1729 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 1730 Value *StrippedPtr = PtrOp->stripPointerCasts(); 1731 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 1732 1733 if (StrippedPtr != PtrOp) { 1734 bool HasZeroPointerIndex = false; 1735 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 1736 HasZeroPointerIndex = C->isZero(); 1737 1738 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 1739 // into : GEP [10 x i8]* X, i32 0, ... 1740 // 1741 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 1742 // into : GEP i8* X, ... 1743 // 1744 // This occurs when the program declares an array extern like "int X[];" 1745 if (HasZeroPointerIndex) { 1746 if (ArrayType *CATy = 1747 dyn_cast<ArrayType>(GEP.getSourceElementType())) { 1748 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 1749 if (CATy->getElementType() == StrippedPtrTy->getElementType()) { 1750 // -> GEP i8* X, ... 1751 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 1752 GetElementPtrInst *Res = GetElementPtrInst::Create( 1753 StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName()); 1754 Res->setIsInBounds(GEP.isInBounds()); 1755 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 1756 return Res; 1757 // Insert Res, and create an addrspacecast. 1758 // e.g., 1759 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 1760 // -> 1761 // %0 = GEP i8 addrspace(1)* X, ... 1762 // addrspacecast i8 addrspace(1)* %0 to i8* 1763 return new AddrSpaceCastInst(Builder.Insert(Res), GEP.getType()); 1764 } 1765 1766 if (ArrayType *XATy = 1767 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){ 1768 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 1769 if (CATy->getElementType() == XATy->getElementType()) { 1770 // -> GEP [10 x i8]* X, i32 0, ... 1771 // At this point, we know that the cast source type is a pointer 1772 // to an array of the same type as the destination pointer 1773 // array. Because the array type is never stepped over (there 1774 // is a leading zero) we can fold the cast into this GEP. 1775 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 1776 GEP.setOperand(0, StrippedPtr); 1777 GEP.setSourceElementType(XATy); 1778 return &GEP; 1779 } 1780 // Cannot replace the base pointer directly because StrippedPtr's 1781 // address space is different. Instead, create a new GEP followed by 1782 // an addrspacecast. 1783 // e.g., 1784 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 1785 // i32 0, ... 1786 // -> 1787 // %0 = GEP [10 x i8] addrspace(1)* X, ... 1788 // addrspacecast i8 addrspace(1)* %0 to i8* 1789 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 1790 Value *NewGEP = GEP.isInBounds() 1791 ? Builder.CreateInBoundsGEP( 1792 nullptr, StrippedPtr, Idx, GEP.getName()) 1793 : Builder.CreateGEP(nullptr, StrippedPtr, Idx, 1794 GEP.getName()); 1795 return new AddrSpaceCastInst(NewGEP, GEP.getType()); 1796 } 1797 } 1798 } 1799 } else if (GEP.getNumOperands() == 2) { 1800 // Transform things like: 1801 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 1802 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 1803 Type *SrcElTy = StrippedPtrTy->getElementType(); 1804 Type *ResElTy = GEP.getSourceElementType(); 1805 if (SrcElTy->isArrayTy() && 1806 DL.getTypeAllocSize(SrcElTy->getArrayElementType()) == 1807 DL.getTypeAllocSize(ResElTy)) { 1808 Type *IdxType = DL.getIntPtrType(GEP.getType()); 1809 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 1810 Value *NewGEP = 1811 GEP.isInBounds() 1812 ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, Idx, 1813 GEP.getName()) 1814 : Builder.CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName()); 1815 1816 // V and GEP are both pointer types --> BitCast 1817 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1818 GEP.getType()); 1819 } 1820 1821 // Transform things like: 1822 // %V = mul i64 %N, 4 1823 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 1824 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 1825 if (ResElTy->isSized() && SrcElTy->isSized()) { 1826 // Check that changing the type amounts to dividing the index by a scale 1827 // factor. 1828 uint64_t ResSize = DL.getTypeAllocSize(ResElTy); 1829 uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy); 1830 if (ResSize && SrcSize % ResSize == 0) { 1831 Value *Idx = GEP.getOperand(1); 1832 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1833 uint64_t Scale = SrcSize / ResSize; 1834 1835 // Earlier transforms ensure that the index has type IntPtrType, which 1836 // considerably simplifies the logic by eliminating implicit casts. 1837 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) && 1838 "Index not cast to pointer width?"); 1839 1840 bool NSW; 1841 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1842 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1843 // If the multiplication NewIdx * Scale may overflow then the new 1844 // GEP may not be "inbounds". 1845 Value *NewGEP = 1846 GEP.isInBounds() && NSW 1847 ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx, 1848 GEP.getName()) 1849 : Builder.CreateGEP(nullptr, StrippedPtr, NewIdx, 1850 GEP.getName()); 1851 1852 // The NewGEP must be pointer typed, so must the old one -> BitCast 1853 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1854 GEP.getType()); 1855 } 1856 } 1857 } 1858 1859 // Similarly, transform things like: 1860 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 1861 // (where tmp = 8*tmp2) into: 1862 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 1863 if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) { 1864 // Check that changing to the array element type amounts to dividing the 1865 // index by a scale factor. 1866 uint64_t ResSize = DL.getTypeAllocSize(ResElTy); 1867 uint64_t ArrayEltSize = 1868 DL.getTypeAllocSize(SrcElTy->getArrayElementType()); 1869 if (ResSize && ArrayEltSize % ResSize == 0) { 1870 Value *Idx = GEP.getOperand(1); 1871 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1872 uint64_t Scale = ArrayEltSize / ResSize; 1873 1874 // Earlier transforms ensure that the index has type IntPtrType, which 1875 // considerably simplifies the logic by eliminating implicit casts. 1876 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) && 1877 "Index not cast to pointer width?"); 1878 1879 bool NSW; 1880 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1881 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1882 // If the multiplication NewIdx * Scale may overflow then the new 1883 // GEP may not be "inbounds". 1884 Value *Off[2] = { 1885 Constant::getNullValue(DL.getIntPtrType(GEP.getType())), 1886 NewIdx}; 1887 1888 Value *NewGEP = GEP.isInBounds() && NSW 1889 ? Builder.CreateInBoundsGEP( 1890 SrcElTy, StrippedPtr, Off, GEP.getName()) 1891 : Builder.CreateGEP(SrcElTy, StrippedPtr, Off, 1892 GEP.getName()); 1893 // The NewGEP must be pointer typed, so must the old one -> BitCast 1894 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1895 GEP.getType()); 1896 } 1897 } 1898 } 1899 } 1900 } 1901 1902 // addrspacecast between types is canonicalized as a bitcast, then an 1903 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 1904 // through the addrspacecast. 1905 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 1906 // X = bitcast A addrspace(1)* to B addrspace(1)* 1907 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 1908 // Z = gep Y, <...constant indices...> 1909 // Into an addrspacecasted GEP of the struct. 1910 if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 1911 PtrOp = BC; 1912 } 1913 1914 /// See if we can simplify: 1915 /// X = bitcast A* to B* 1916 /// Y = gep X, <...constant indices...> 1917 /// into a gep of the original struct. This is important for SROA and alias 1918 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 1919 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) { 1920 Value *Operand = BCI->getOperand(0); 1921 PointerType *OpType = cast<PointerType>(Operand->getType()); 1922 unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType()); 1923 APInt Offset(OffsetBits, 0); 1924 if (!isa<BitCastInst>(Operand) && 1925 GEP.accumulateConstantOffset(DL, Offset)) { 1926 1927 // If this GEP instruction doesn't move the pointer, just replace the GEP 1928 // with a bitcast of the real input to the dest type. 1929 if (!Offset) { 1930 // If the bitcast is of an allocation, and the allocation will be 1931 // converted to match the type of the cast, don't touch this. 1932 if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, &TLI)) { 1933 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 1934 if (Instruction *I = visitBitCast(*BCI)) { 1935 if (I != BCI) { 1936 I->takeName(BCI); 1937 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 1938 replaceInstUsesWith(*BCI, I); 1939 } 1940 return &GEP; 1941 } 1942 } 1943 1944 if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 1945 return new AddrSpaceCastInst(Operand, GEP.getType()); 1946 return new BitCastInst(Operand, GEP.getType()); 1947 } 1948 1949 // Otherwise, if the offset is non-zero, we need to find out if there is a 1950 // field at Offset in 'A's type. If so, we can pull the cast through the 1951 // GEP. 1952 SmallVector<Value*, 8> NewIndices; 1953 if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) { 1954 Value *NGEP = 1955 GEP.isInBounds() 1956 ? Builder.CreateInBoundsGEP(nullptr, Operand, NewIndices) 1957 : Builder.CreateGEP(nullptr, Operand, NewIndices); 1958 1959 if (NGEP->getType() == GEP.getType()) 1960 return replaceInstUsesWith(GEP, NGEP); 1961 NGEP->takeName(&GEP); 1962 1963 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 1964 return new AddrSpaceCastInst(NGEP, GEP.getType()); 1965 return new BitCastInst(NGEP, GEP.getType()); 1966 } 1967 } 1968 } 1969 1970 if (!GEP.isInBounds()) { 1971 unsigned PtrWidth = 1972 DL.getPointerSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 1973 APInt BasePtrOffset(PtrWidth, 0); 1974 Value *UnderlyingPtrOp = 1975 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 1976 BasePtrOffset); 1977 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 1978 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 1979 BasePtrOffset.isNonNegative()) { 1980 APInt AllocSize(PtrWidth, DL.getTypeAllocSize(AI->getAllocatedType())); 1981 if (BasePtrOffset.ule(AllocSize)) { 1982 return GetElementPtrInst::CreateInBounds( 1983 PtrOp, makeArrayRef(Ops).slice(1), GEP.getName()); 1984 } 1985 } 1986 } 1987 } 1988 1989 return nullptr; 1990 } 1991 1992 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 1993 Instruction *AI) { 1994 if (isa<ConstantPointerNull>(V)) 1995 return true; 1996 if (auto *LI = dyn_cast<LoadInst>(V)) 1997 return isa<GlobalVariable>(LI->getPointerOperand()); 1998 // Two distinct allocations will never be equal. 1999 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2000 // through bitcasts of V can cause 2001 // the result statement below to be true, even when AI and V (ex: 2002 // i8* ->i32* ->i8* of AI) are the same allocations. 2003 return isAllocLikeFn(V, TLI) && V != AI; 2004 } 2005 2006 static bool isAllocSiteRemovable(Instruction *AI, 2007 SmallVectorImpl<WeakTrackingVH> &Users, 2008 const TargetLibraryInfo *TLI) { 2009 SmallVector<Instruction*, 4> Worklist; 2010 Worklist.push_back(AI); 2011 2012 do { 2013 Instruction *PI = Worklist.pop_back_val(); 2014 for (User *U : PI->users()) { 2015 Instruction *I = cast<Instruction>(U); 2016 switch (I->getOpcode()) { 2017 default: 2018 // Give up the moment we see something we can't handle. 2019 return false; 2020 2021 case Instruction::AddrSpaceCast: 2022 case Instruction::BitCast: 2023 case Instruction::GetElementPtr: 2024 Users.emplace_back(I); 2025 Worklist.push_back(I); 2026 continue; 2027 2028 case Instruction::ICmp: { 2029 ICmpInst *ICI = cast<ICmpInst>(I); 2030 // We can fold eq/ne comparisons with null to false/true, respectively. 2031 // We also fold comparisons in some conditions provided the alloc has 2032 // not escaped (see isNeverEqualToUnescapedAlloc). 2033 if (!ICI->isEquality()) 2034 return false; 2035 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2036 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2037 return false; 2038 Users.emplace_back(I); 2039 continue; 2040 } 2041 2042 case Instruction::Call: 2043 // Ignore no-op and store intrinsics. 2044 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2045 switch (II->getIntrinsicID()) { 2046 default: 2047 return false; 2048 2049 case Intrinsic::memmove: 2050 case Intrinsic::memcpy: 2051 case Intrinsic::memset: { 2052 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2053 if (MI->isVolatile() || MI->getRawDest() != PI) 2054 return false; 2055 LLVM_FALLTHROUGH; 2056 } 2057 case Intrinsic::dbg_declare: 2058 case Intrinsic::dbg_value: 2059 case Intrinsic::invariant_start: 2060 case Intrinsic::invariant_end: 2061 case Intrinsic::lifetime_start: 2062 case Intrinsic::lifetime_end: 2063 case Intrinsic::objectsize: 2064 Users.emplace_back(I); 2065 continue; 2066 } 2067 } 2068 2069 if (isFreeCall(I, TLI)) { 2070 Users.emplace_back(I); 2071 continue; 2072 } 2073 return false; 2074 2075 case Instruction::Store: { 2076 StoreInst *SI = cast<StoreInst>(I); 2077 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2078 return false; 2079 Users.emplace_back(I); 2080 continue; 2081 } 2082 } 2083 llvm_unreachable("missing a return?"); 2084 } 2085 } while (!Worklist.empty()); 2086 return true; 2087 } 2088 2089 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 2090 // If we have a malloc call which is only used in any amount of comparisons 2091 // to null and free calls, delete the calls and replace the comparisons with 2092 // true or false as appropriate. 2093 SmallVector<WeakTrackingVH, 64> Users; 2094 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2095 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2096 // Lowering all @llvm.objectsize calls first because they may 2097 // use a bitcast/GEP of the alloca we are removing. 2098 if (!Users[i]) 2099 continue; 2100 2101 Instruction *I = cast<Instruction>(&*Users[i]); 2102 2103 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2104 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2105 ConstantInt *Result = lowerObjectSizeCall(II, DL, &TLI, 2106 /*MustSucceed=*/true); 2107 replaceInstUsesWith(*I, Result); 2108 eraseInstFromFunction(*I); 2109 Users[i] = nullptr; // Skip examining in the next loop. 2110 } 2111 } 2112 } 2113 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2114 if (!Users[i]) 2115 continue; 2116 2117 Instruction *I = cast<Instruction>(&*Users[i]); 2118 2119 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2120 replaceInstUsesWith(*C, 2121 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2122 C->isFalseWhenEqual())); 2123 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) || 2124 isa<AddrSpaceCastInst>(I)) { 2125 replaceInstUsesWith(*I, UndefValue::get(I->getType())); 2126 } 2127 eraseInstFromFunction(*I); 2128 } 2129 2130 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2131 // Replace invoke with a NOP intrinsic to maintain the original CFG 2132 Module *M = II->getModule(); 2133 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2134 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2135 None, "", II->getParent()); 2136 } 2137 return eraseInstFromFunction(MI); 2138 } 2139 return nullptr; 2140 } 2141 2142 /// \brief Move the call to free before a NULL test. 2143 /// 2144 /// Check if this free is accessed after its argument has been test 2145 /// against NULL (property 0). 2146 /// If yes, it is legal to move this call in its predecessor block. 2147 /// 2148 /// The move is performed only if the block containing the call to free 2149 /// will be removed, i.e.: 2150 /// 1. it has only one predecessor P, and P has two successors 2151 /// 2. it contains the call and an unconditional branch 2152 /// 3. its successor is the same as its predecessor's successor 2153 /// 2154 /// The profitability is out-of concern here and this function should 2155 /// be called only if the caller knows this transformation would be 2156 /// profitable (e.g., for code size). 2157 static Instruction * 2158 tryToMoveFreeBeforeNullTest(CallInst &FI) { 2159 Value *Op = FI.getArgOperand(0); 2160 BasicBlock *FreeInstrBB = FI.getParent(); 2161 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2162 2163 // Validate part of constraint #1: Only one predecessor 2164 // FIXME: We can extend the number of predecessor, but in that case, we 2165 // would duplicate the call to free in each predecessor and it may 2166 // not be profitable even for code size. 2167 if (!PredBB) 2168 return nullptr; 2169 2170 // Validate constraint #2: Does this block contains only the call to 2171 // free and an unconditional branch? 2172 // FIXME: We could check if we can speculate everything in the 2173 // predecessor block 2174 if (FreeInstrBB->size() != 2) 2175 return nullptr; 2176 BasicBlock *SuccBB; 2177 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB))) 2178 return nullptr; 2179 2180 // Validate the rest of constraint #1 by matching on the pred branch. 2181 TerminatorInst *TI = PredBB->getTerminator(); 2182 BasicBlock *TrueBB, *FalseBB; 2183 ICmpInst::Predicate Pred; 2184 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB))) 2185 return nullptr; 2186 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2187 return nullptr; 2188 2189 // Validate constraint #3: Ensure the null case just falls through. 2190 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2191 return nullptr; 2192 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2193 "Broken CFG: missing edge from predecessor to successor"); 2194 2195 FI.moveBefore(TI); 2196 return &FI; 2197 } 2198 2199 2200 Instruction *InstCombiner::visitFree(CallInst &FI) { 2201 Value *Op = FI.getArgOperand(0); 2202 2203 // free undef -> unreachable. 2204 if (isa<UndefValue>(Op)) { 2205 // Insert a new store to null because we cannot modify the CFG here. 2206 Builder.CreateStore(ConstantInt::getTrue(FI.getContext()), 2207 UndefValue::get(Type::getInt1PtrTy(FI.getContext()))); 2208 return eraseInstFromFunction(FI); 2209 } 2210 2211 // If we have 'free null' delete the instruction. This can happen in stl code 2212 // when lots of inlining happens. 2213 if (isa<ConstantPointerNull>(Op)) 2214 return eraseInstFromFunction(FI); 2215 2216 // If we optimize for code size, try to move the call to free before the null 2217 // test so that simplify cfg can remove the empty block and dead code 2218 // elimination the branch. I.e., helps to turn something like: 2219 // if (foo) free(foo); 2220 // into 2221 // free(foo); 2222 if (MinimizeSize) 2223 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI)) 2224 return I; 2225 2226 return nullptr; 2227 } 2228 2229 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { 2230 if (RI.getNumOperands() == 0) // ret void 2231 return nullptr; 2232 2233 Value *ResultOp = RI.getOperand(0); 2234 Type *VTy = ResultOp->getType(); 2235 if (!VTy->isIntegerTy()) 2236 return nullptr; 2237 2238 // There might be assume intrinsics dominating this return that completely 2239 // determine the value. If so, constant fold it. 2240 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2241 if (Known.isConstant()) 2242 RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant())); 2243 2244 return nullptr; 2245 } 2246 2247 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 2248 // Change br (not X), label True, label False to: br X, label False, True 2249 Value *X = nullptr; 2250 BasicBlock *TrueDest; 2251 BasicBlock *FalseDest; 2252 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && 2253 !isa<Constant>(X)) { 2254 // Swap Destinations and condition... 2255 BI.setCondition(X); 2256 BI.swapSuccessors(); 2257 return &BI; 2258 } 2259 2260 // If the condition is irrelevant, remove the use so that other 2261 // transforms on the condition become more effective. 2262 if (BI.isConditional() && 2263 BI.getSuccessor(0) == BI.getSuccessor(1) && 2264 !isa<UndefValue>(BI.getCondition())) { 2265 BI.setCondition(UndefValue::get(BI.getCondition()->getType())); 2266 return &BI; 2267 } 2268 2269 // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq. 2270 CmpInst::Predicate Pred; 2271 if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), TrueDest, 2272 FalseDest)) && 2273 !isCanonicalPredicate(Pred)) { 2274 // Swap destinations and condition. 2275 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 2276 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2277 BI.swapSuccessors(); 2278 Worklist.Add(Cond); 2279 return &BI; 2280 } 2281 2282 return nullptr; 2283 } 2284 2285 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 2286 Value *Cond = SI.getCondition(); 2287 Value *Op0; 2288 ConstantInt *AddRHS; 2289 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 2290 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2291 for (auto Case : SI.cases()) { 2292 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 2293 assert(isa<ConstantInt>(NewCase) && 2294 "Result of expression should be constant"); 2295 Case.setValue(cast<ConstantInt>(NewCase)); 2296 } 2297 SI.setCondition(Op0); 2298 return &SI; 2299 } 2300 2301 KnownBits Known = computeKnownBits(Cond, 0, &SI); 2302 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 2303 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 2304 2305 // Compute the number of leading bits we can ignore. 2306 // TODO: A better way to determine this would use ComputeNumSignBits(). 2307 for (auto &C : SI.cases()) { 2308 LeadingKnownZeros = std::min( 2309 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2310 LeadingKnownOnes = std::min( 2311 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2312 } 2313 2314 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 2315 2316 // Shrink the condition operand if the new type is smaller than the old type. 2317 // This may produce a non-standard type for the switch, but that's ok because 2318 // the backend should extend back to a legal type for the target. 2319 if (NewWidth > 0 && NewWidth < Known.getBitWidth()) { 2320 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2321 Builder.SetInsertPoint(&SI); 2322 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 2323 SI.setCondition(NewCond); 2324 2325 for (auto Case : SI.cases()) { 2326 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 2327 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 2328 } 2329 return &SI; 2330 } 2331 2332 return nullptr; 2333 } 2334 2335 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 2336 Value *Agg = EV.getAggregateOperand(); 2337 2338 if (!EV.hasIndices()) 2339 return replaceInstUsesWith(EV, Agg); 2340 2341 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 2342 SQ.getWithInstruction(&EV))) 2343 return replaceInstUsesWith(EV, V); 2344 2345 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 2346 // We're extracting from an insertvalue instruction, compare the indices 2347 const unsigned *exti, *exte, *insi, *inse; 2348 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 2349 exte = EV.idx_end(), inse = IV->idx_end(); 2350 exti != exte && insi != inse; 2351 ++exti, ++insi) { 2352 if (*insi != *exti) 2353 // The insert and extract both reference distinctly different elements. 2354 // This means the extract is not influenced by the insert, and we can 2355 // replace the aggregate operand of the extract with the aggregate 2356 // operand of the insert. i.e., replace 2357 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2358 // %E = extractvalue { i32, { i32 } } %I, 0 2359 // with 2360 // %E = extractvalue { i32, { i32 } } %A, 0 2361 return ExtractValueInst::Create(IV->getAggregateOperand(), 2362 EV.getIndices()); 2363 } 2364 if (exti == exte && insi == inse) 2365 // Both iterators are at the end: Index lists are identical. Replace 2366 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2367 // %C = extractvalue { i32, { i32 } } %B, 1, 0 2368 // with "i32 42" 2369 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 2370 if (exti == exte) { 2371 // The extract list is a prefix of the insert list. i.e. replace 2372 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2373 // %E = extractvalue { i32, { i32 } } %I, 1 2374 // with 2375 // %X = extractvalue { i32, { i32 } } %A, 1 2376 // %E = insertvalue { i32 } %X, i32 42, 0 2377 // by switching the order of the insert and extract (though the 2378 // insertvalue should be left in, since it may have other uses). 2379 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 2380 EV.getIndices()); 2381 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 2382 makeArrayRef(insi, inse)); 2383 } 2384 if (insi == inse) 2385 // The insert list is a prefix of the extract list 2386 // We can simply remove the common indices from the extract and make it 2387 // operate on the inserted value instead of the insertvalue result. 2388 // i.e., replace 2389 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2390 // %E = extractvalue { i32, { i32 } } %I, 1, 0 2391 // with 2392 // %E extractvalue { i32 } { i32 42 }, 0 2393 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 2394 makeArrayRef(exti, exte)); 2395 } 2396 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { 2397 // We're extracting from an intrinsic, see if we're the only user, which 2398 // allows us to simplify multiple result intrinsics to simpler things that 2399 // just get one value. 2400 if (II->hasOneUse()) { 2401 // Check if we're grabbing the overflow bit or the result of a 'with 2402 // overflow' intrinsic. If it's the latter we can remove the intrinsic 2403 // and replace it with a traditional binary instruction. 2404 switch (II->getIntrinsicID()) { 2405 case Intrinsic::uadd_with_overflow: 2406 case Intrinsic::sadd_with_overflow: 2407 if (*EV.idx_begin() == 0) { // Normal result. 2408 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2409 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2410 eraseInstFromFunction(*II); 2411 return BinaryOperator::CreateAdd(LHS, RHS); 2412 } 2413 2414 // If the normal result of the add is dead, and the RHS is a constant, 2415 // we can transform this into a range comparison. 2416 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 2417 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) 2418 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1))) 2419 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0), 2420 ConstantExpr::getNot(CI)); 2421 break; 2422 case Intrinsic::usub_with_overflow: 2423 case Intrinsic::ssub_with_overflow: 2424 if (*EV.idx_begin() == 0) { // Normal result. 2425 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2426 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2427 eraseInstFromFunction(*II); 2428 return BinaryOperator::CreateSub(LHS, RHS); 2429 } 2430 break; 2431 case Intrinsic::umul_with_overflow: 2432 case Intrinsic::smul_with_overflow: 2433 if (*EV.idx_begin() == 0) { // Normal result. 2434 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2435 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2436 eraseInstFromFunction(*II); 2437 return BinaryOperator::CreateMul(LHS, RHS); 2438 } 2439 break; 2440 default: 2441 break; 2442 } 2443 } 2444 } 2445 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2446 // If the (non-volatile) load only has one use, we can rewrite this to a 2447 // load from a GEP. This reduces the size of the load. If a load is used 2448 // only by extractvalue instructions then this either must have been 2449 // optimized before, or it is a struct with padding, in which case we 2450 // don't want to do the transformation as it loses padding knowledge. 2451 if (L->isSimple() && L->hasOneUse()) { 2452 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2453 SmallVector<Value*, 4> Indices; 2454 // Prefix an i32 0 since we need the first element. 2455 Indices.push_back(Builder.getInt32(0)); 2456 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2457 I != E; ++I) 2458 Indices.push_back(Builder.getInt32(*I)); 2459 2460 // We need to insert these at the location of the old load, not at that of 2461 // the extractvalue. 2462 Builder.SetInsertPoint(L); 2463 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 2464 L->getPointerOperand(), Indices); 2465 Instruction *NL = Builder.CreateLoad(GEP); 2466 // Whatever aliasing information we had for the orignal load must also 2467 // hold for the smaller load, so propagate the annotations. 2468 AAMDNodes Nodes; 2469 L->getAAMetadata(Nodes); 2470 NL->setAAMetadata(Nodes); 2471 // Returning the load directly will cause the main loop to insert it in 2472 // the wrong spot, so use replaceInstUsesWith(). 2473 return replaceInstUsesWith(EV, NL); 2474 } 2475 // We could simplify extracts from other values. Note that nested extracts may 2476 // already be simplified implicitly by the above: extract (extract (insert) ) 2477 // will be translated into extract ( insert ( extract ) ) first and then just 2478 // the value inserted, if appropriate. Similarly for extracts from single-use 2479 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2480 // and if again single-use then via load (gep (gep)) to load (gep). 2481 // However, double extracts from e.g. function arguments or return values 2482 // aren't handled yet. 2483 return nullptr; 2484 } 2485 2486 /// Return 'true' if the given typeinfo will match anything. 2487 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 2488 switch (Personality) { 2489 case EHPersonality::GNU_C: 2490 case EHPersonality::GNU_C_SjLj: 2491 case EHPersonality::Rust: 2492 // The GCC C EH and Rust personality only exists to support cleanups, so 2493 // it's not clear what the semantics of catch clauses are. 2494 return false; 2495 case EHPersonality::Unknown: 2496 return false; 2497 case EHPersonality::GNU_Ada: 2498 // While __gnat_all_others_value will match any Ada exception, it doesn't 2499 // match foreign exceptions (or didn't, before gcc-4.7). 2500 return false; 2501 case EHPersonality::GNU_CXX: 2502 case EHPersonality::GNU_CXX_SjLj: 2503 case EHPersonality::GNU_ObjC: 2504 case EHPersonality::MSVC_X86SEH: 2505 case EHPersonality::MSVC_Win64SEH: 2506 case EHPersonality::MSVC_CXX: 2507 case EHPersonality::CoreCLR: 2508 return TypeInfo->isNullValue(); 2509 } 2510 llvm_unreachable("invalid enum"); 2511 } 2512 2513 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2514 return 2515 cast<ArrayType>(LHS->getType())->getNumElements() 2516 < 2517 cast<ArrayType>(RHS->getType())->getNumElements(); 2518 } 2519 2520 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2521 // The logic here should be correct for any real-world personality function. 2522 // However if that turns out not to be true, the offending logic can always 2523 // be conditioned on the personality function, like the catch-all logic is. 2524 EHPersonality Personality = 2525 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 2526 2527 // Simplify the list of clauses, eg by removing repeated catch clauses 2528 // (these are often created by inlining). 2529 bool MakeNewInstruction = false; // If true, recreate using the following: 2530 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2531 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2532 2533 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 2534 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 2535 bool isLastClause = i + 1 == e; 2536 if (LI.isCatch(i)) { 2537 // A catch clause. 2538 Constant *CatchClause = LI.getClause(i); 2539 Constant *TypeInfo = CatchClause->stripPointerCasts(); 2540 2541 // If we already saw this clause, there is no point in having a second 2542 // copy of it. 2543 if (AlreadyCaught.insert(TypeInfo).second) { 2544 // This catch clause was not already seen. 2545 NewClauses.push_back(CatchClause); 2546 } else { 2547 // Repeated catch clause - drop the redundant copy. 2548 MakeNewInstruction = true; 2549 } 2550 2551 // If this is a catch-all then there is no point in keeping any following 2552 // clauses or marking the landingpad as having a cleanup. 2553 if (isCatchAll(Personality, TypeInfo)) { 2554 if (!isLastClause) 2555 MakeNewInstruction = true; 2556 CleanupFlag = false; 2557 break; 2558 } 2559 } else { 2560 // A filter clause. If any of the filter elements were already caught 2561 // then they can be dropped from the filter. It is tempting to try to 2562 // exploit the filter further by saying that any typeinfo that does not 2563 // occur in the filter can't be caught later (and thus can be dropped). 2564 // However this would be wrong, since typeinfos can match without being 2565 // equal (for example if one represents a C++ class, and the other some 2566 // class derived from it). 2567 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 2568 Constant *FilterClause = LI.getClause(i); 2569 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 2570 unsigned NumTypeInfos = FilterType->getNumElements(); 2571 2572 // An empty filter catches everything, so there is no point in keeping any 2573 // following clauses or marking the landingpad as having a cleanup. By 2574 // dealing with this case here the following code is made a bit simpler. 2575 if (!NumTypeInfos) { 2576 NewClauses.push_back(FilterClause); 2577 if (!isLastClause) 2578 MakeNewInstruction = true; 2579 CleanupFlag = false; 2580 break; 2581 } 2582 2583 bool MakeNewFilter = false; // If true, make a new filter. 2584 SmallVector<Constant *, 16> NewFilterElts; // New elements. 2585 if (isa<ConstantAggregateZero>(FilterClause)) { 2586 // Not an empty filter - it contains at least one null typeinfo. 2587 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 2588 Constant *TypeInfo = 2589 Constant::getNullValue(FilterType->getElementType()); 2590 // If this typeinfo is a catch-all then the filter can never match. 2591 if (isCatchAll(Personality, TypeInfo)) { 2592 // Throw the filter away. 2593 MakeNewInstruction = true; 2594 continue; 2595 } 2596 2597 // There is no point in having multiple copies of this typeinfo, so 2598 // discard all but the first copy if there is more than one. 2599 NewFilterElts.push_back(TypeInfo); 2600 if (NumTypeInfos > 1) 2601 MakeNewFilter = true; 2602 } else { 2603 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 2604 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 2605 NewFilterElts.reserve(NumTypeInfos); 2606 2607 // Remove any filter elements that were already caught or that already 2608 // occurred in the filter. While there, see if any of the elements are 2609 // catch-alls. If so, the filter can be discarded. 2610 bool SawCatchAll = false; 2611 for (unsigned j = 0; j != NumTypeInfos; ++j) { 2612 Constant *Elt = Filter->getOperand(j); 2613 Constant *TypeInfo = Elt->stripPointerCasts(); 2614 if (isCatchAll(Personality, TypeInfo)) { 2615 // This element is a catch-all. Bail out, noting this fact. 2616 SawCatchAll = true; 2617 break; 2618 } 2619 2620 // Even if we've seen a type in a catch clause, we don't want to 2621 // remove it from the filter. An unexpected type handler may be 2622 // set up for a call site which throws an exception of the same 2623 // type caught. In order for the exception thrown by the unexpected 2624 // handler to propagate correctly, the filter must be correctly 2625 // described for the call site. 2626 // 2627 // Example: 2628 // 2629 // void unexpected() { throw 1;} 2630 // void foo() throw (int) { 2631 // std::set_unexpected(unexpected); 2632 // try { 2633 // throw 2.0; 2634 // } catch (int i) {} 2635 // } 2636 2637 // There is no point in having multiple copies of the same typeinfo in 2638 // a filter, so only add it if we didn't already. 2639 if (SeenInFilter.insert(TypeInfo).second) 2640 NewFilterElts.push_back(cast<Constant>(Elt)); 2641 } 2642 // A filter containing a catch-all cannot match anything by definition. 2643 if (SawCatchAll) { 2644 // Throw the filter away. 2645 MakeNewInstruction = true; 2646 continue; 2647 } 2648 2649 // If we dropped something from the filter, make a new one. 2650 if (NewFilterElts.size() < NumTypeInfos) 2651 MakeNewFilter = true; 2652 } 2653 if (MakeNewFilter) { 2654 FilterType = ArrayType::get(FilterType->getElementType(), 2655 NewFilterElts.size()); 2656 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 2657 MakeNewInstruction = true; 2658 } 2659 2660 NewClauses.push_back(FilterClause); 2661 2662 // If the new filter is empty then it will catch everything so there is 2663 // no point in keeping any following clauses or marking the landingpad 2664 // as having a cleanup. The case of the original filter being empty was 2665 // already handled above. 2666 if (MakeNewFilter && !NewFilterElts.size()) { 2667 assert(MakeNewInstruction && "New filter but not a new instruction!"); 2668 CleanupFlag = false; 2669 break; 2670 } 2671 } 2672 } 2673 2674 // If several filters occur in a row then reorder them so that the shortest 2675 // filters come first (those with the smallest number of elements). This is 2676 // advantageous because shorter filters are more likely to match, speeding up 2677 // unwinding, but mostly because it increases the effectiveness of the other 2678 // filter optimizations below. 2679 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 2680 unsigned j; 2681 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 2682 for (j = i; j != e; ++j) 2683 if (!isa<ArrayType>(NewClauses[j]->getType())) 2684 break; 2685 2686 // Check whether the filters are already sorted by length. We need to know 2687 // if sorting them is actually going to do anything so that we only make a 2688 // new landingpad instruction if it does. 2689 for (unsigned k = i; k + 1 < j; ++k) 2690 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 2691 // Not sorted, so sort the filters now. Doing an unstable sort would be 2692 // correct too but reordering filters pointlessly might confuse users. 2693 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 2694 shorter_filter); 2695 MakeNewInstruction = true; 2696 break; 2697 } 2698 2699 // Look for the next batch of filters. 2700 i = j + 1; 2701 } 2702 2703 // If typeinfos matched if and only if equal, then the elements of a filter L 2704 // that occurs later than a filter F could be replaced by the intersection of 2705 // the elements of F and L. In reality two typeinfos can match without being 2706 // equal (for example if one represents a C++ class, and the other some class 2707 // derived from it) so it would be wrong to perform this transform in general. 2708 // However the transform is correct and useful if F is a subset of L. In that 2709 // case L can be replaced by F, and thus removed altogether since repeating a 2710 // filter is pointless. So here we look at all pairs of filters F and L where 2711 // L follows F in the list of clauses, and remove L if every element of F is 2712 // an element of L. This can occur when inlining C++ functions with exception 2713 // specifications. 2714 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 2715 // Examine each filter in turn. 2716 Value *Filter = NewClauses[i]; 2717 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 2718 if (!FTy) 2719 // Not a filter - skip it. 2720 continue; 2721 unsigned FElts = FTy->getNumElements(); 2722 // Examine each filter following this one. Doing this backwards means that 2723 // we don't have to worry about filters disappearing under us when removed. 2724 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 2725 Value *LFilter = NewClauses[j]; 2726 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 2727 if (!LTy) 2728 // Not a filter - skip it. 2729 continue; 2730 // If Filter is a subset of LFilter, i.e. every element of Filter is also 2731 // an element of LFilter, then discard LFilter. 2732 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 2733 // If Filter is empty then it is a subset of LFilter. 2734 if (!FElts) { 2735 // Discard LFilter. 2736 NewClauses.erase(J); 2737 MakeNewInstruction = true; 2738 // Move on to the next filter. 2739 continue; 2740 } 2741 unsigned LElts = LTy->getNumElements(); 2742 // If Filter is longer than LFilter then it cannot be a subset of it. 2743 if (FElts > LElts) 2744 // Move on to the next filter. 2745 continue; 2746 // At this point we know that LFilter has at least one element. 2747 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 2748 // Filter is a subset of LFilter iff Filter contains only zeros (as we 2749 // already know that Filter is not longer than LFilter). 2750 if (isa<ConstantAggregateZero>(Filter)) { 2751 assert(FElts <= LElts && "Should have handled this case earlier!"); 2752 // Discard LFilter. 2753 NewClauses.erase(J); 2754 MakeNewInstruction = true; 2755 } 2756 // Move on to the next filter. 2757 continue; 2758 } 2759 ConstantArray *LArray = cast<ConstantArray>(LFilter); 2760 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 2761 // Since Filter is non-empty and contains only zeros, it is a subset of 2762 // LFilter iff LFilter contains a zero. 2763 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 2764 for (unsigned l = 0; l != LElts; ++l) 2765 if (LArray->getOperand(l)->isNullValue()) { 2766 // LFilter contains a zero - discard it. 2767 NewClauses.erase(J); 2768 MakeNewInstruction = true; 2769 break; 2770 } 2771 // Move on to the next filter. 2772 continue; 2773 } 2774 // At this point we know that both filters are ConstantArrays. Loop over 2775 // operands to see whether every element of Filter is also an element of 2776 // LFilter. Since filters tend to be short this is probably faster than 2777 // using a method that scales nicely. 2778 ConstantArray *FArray = cast<ConstantArray>(Filter); 2779 bool AllFound = true; 2780 for (unsigned f = 0; f != FElts; ++f) { 2781 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 2782 AllFound = false; 2783 for (unsigned l = 0; l != LElts; ++l) { 2784 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 2785 if (LTypeInfo == FTypeInfo) { 2786 AllFound = true; 2787 break; 2788 } 2789 } 2790 if (!AllFound) 2791 break; 2792 } 2793 if (AllFound) { 2794 // Discard LFilter. 2795 NewClauses.erase(J); 2796 MakeNewInstruction = true; 2797 } 2798 // Move on to the next filter. 2799 } 2800 } 2801 2802 // If we changed any of the clauses, replace the old landingpad instruction 2803 // with a new one. 2804 if (MakeNewInstruction) { 2805 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 2806 NewClauses.size()); 2807 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 2808 NLI->addClause(NewClauses[i]); 2809 // A landing pad with no clauses must have the cleanup flag set. It is 2810 // theoretically possible, though highly unlikely, that we eliminated all 2811 // clauses. If so, force the cleanup flag to true. 2812 if (NewClauses.empty()) 2813 CleanupFlag = true; 2814 NLI->setCleanup(CleanupFlag); 2815 return NLI; 2816 } 2817 2818 // Even if none of the clauses changed, we may nonetheless have understood 2819 // that the cleanup flag is pointless. Clear it if so. 2820 if (LI.isCleanup() != CleanupFlag) { 2821 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 2822 LI.setCleanup(CleanupFlag); 2823 return &LI; 2824 } 2825 2826 return nullptr; 2827 } 2828 2829 /// Try to move the specified instruction from its current block into the 2830 /// beginning of DestBlock, which can only happen if it's safe to move the 2831 /// instruction past all of the instructions between it and the end of its 2832 /// block. 2833 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 2834 assert(I->hasOneUse() && "Invariants didn't hold!"); 2835 2836 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 2837 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 2838 isa<TerminatorInst>(I)) 2839 return false; 2840 2841 // Do not sink alloca instructions out of the entry block. 2842 if (isa<AllocaInst>(I) && I->getParent() == 2843 &DestBlock->getParent()->getEntryBlock()) 2844 return false; 2845 2846 // Do not sink into catchswitch blocks. 2847 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 2848 return false; 2849 2850 // Do not sink convergent call instructions. 2851 if (auto *CI = dyn_cast<CallInst>(I)) { 2852 if (CI->isConvergent()) 2853 return false; 2854 } 2855 // We can only sink load instructions if there is nothing between the load and 2856 // the end of block that could change the value. 2857 if (I->mayReadFromMemory()) { 2858 for (BasicBlock::iterator Scan = I->getIterator(), 2859 E = I->getParent()->end(); 2860 Scan != E; ++Scan) 2861 if (Scan->mayWriteToMemory()) 2862 return false; 2863 } 2864 2865 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 2866 I->moveBefore(&*InsertPos); 2867 ++NumSunkInst; 2868 return true; 2869 } 2870 2871 bool InstCombiner::run() { 2872 while (!Worklist.isEmpty()) { 2873 Instruction *I = Worklist.RemoveOne(); 2874 if (I == nullptr) continue; // skip null values. 2875 2876 // Check to see if we can DCE the instruction. 2877 if (isInstructionTriviallyDead(I, &TLI)) { 2878 DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); 2879 eraseInstFromFunction(*I); 2880 ++NumDeadInst; 2881 MadeIRChange = true; 2882 continue; 2883 } 2884 2885 // Instruction isn't dead, see if we can constant propagate it. 2886 if (!I->use_empty() && 2887 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 2888 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 2889 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n'); 2890 2891 // Add operands to the worklist. 2892 replaceInstUsesWith(*I, C); 2893 ++NumConstProp; 2894 if (isInstructionTriviallyDead(I, &TLI)) 2895 eraseInstFromFunction(*I); 2896 MadeIRChange = true; 2897 continue; 2898 } 2899 } 2900 2901 // In general, it is possible for computeKnownBits to determine all bits in 2902 // a value even when the operands are not all constants. 2903 Type *Ty = I->getType(); 2904 if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) { 2905 KnownBits Known = computeKnownBits(I, /*Depth*/0, I); 2906 if (Known.isConstant()) { 2907 Constant *C = ConstantInt::get(Ty, Known.getConstant()); 2908 DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C << 2909 " from: " << *I << '\n'); 2910 2911 // Add operands to the worklist. 2912 replaceInstUsesWith(*I, C); 2913 ++NumConstProp; 2914 if (isInstructionTriviallyDead(I, &TLI)) 2915 eraseInstFromFunction(*I); 2916 MadeIRChange = true; 2917 continue; 2918 } 2919 } 2920 2921 // See if we can trivially sink this instruction to a successor basic block. 2922 if (I->hasOneUse()) { 2923 BasicBlock *BB = I->getParent(); 2924 Instruction *UserInst = cast<Instruction>(*I->user_begin()); 2925 BasicBlock *UserParent; 2926 2927 // Get the block the use occurs in. 2928 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 2929 UserParent = PN->getIncomingBlock(*I->use_begin()); 2930 else 2931 UserParent = UserInst->getParent(); 2932 2933 if (UserParent != BB) { 2934 bool UserIsSuccessor = false; 2935 // See if the user is one of our successors. 2936 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 2937 if (*SI == UserParent) { 2938 UserIsSuccessor = true; 2939 break; 2940 } 2941 2942 // If the user is one of our immediate successors, and if that successor 2943 // only has us as a predecessors (we'd have to split the critical edge 2944 // otherwise), we can keep going. 2945 if (UserIsSuccessor && UserParent->getUniquePredecessor()) { 2946 // Okay, the CFG is simple enough, try to sink this instruction. 2947 if (TryToSinkInstruction(I, UserParent)) { 2948 DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 2949 MadeIRChange = true; 2950 // We'll add uses of the sunk instruction below, but since sinking 2951 // can expose opportunities for it's *operands* add them to the 2952 // worklist 2953 for (Use &U : I->operands()) 2954 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 2955 Worklist.Add(OpI); 2956 } 2957 } 2958 } 2959 } 2960 2961 // Now that we have an instruction, try combining it to simplify it. 2962 Builder.SetInsertPoint(I); 2963 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 2964 2965 #ifndef NDEBUG 2966 std::string OrigI; 2967 #endif 2968 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 2969 DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 2970 2971 if (Instruction *Result = visit(*I)) { 2972 ++NumCombined; 2973 // Should we replace the old instruction with a new one? 2974 if (Result != I) { 2975 DEBUG(dbgs() << "IC: Old = " << *I << '\n' 2976 << " New = " << *Result << '\n'); 2977 2978 if (I->getDebugLoc()) 2979 Result->setDebugLoc(I->getDebugLoc()); 2980 // Everything uses the new instruction now. 2981 I->replaceAllUsesWith(Result); 2982 2983 // Move the name to the new instruction first. 2984 Result->takeName(I); 2985 2986 // Push the new instruction and any users onto the worklist. 2987 Worklist.AddUsersToWorkList(*Result); 2988 Worklist.Add(Result); 2989 2990 // Insert the new instruction into the basic block... 2991 BasicBlock *InstParent = I->getParent(); 2992 BasicBlock::iterator InsertPos = I->getIterator(); 2993 2994 // If we replace a PHI with something that isn't a PHI, fix up the 2995 // insertion point. 2996 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 2997 InsertPos = InstParent->getFirstInsertionPt(); 2998 2999 InstParent->getInstList().insert(InsertPos, Result); 3000 3001 eraseInstFromFunction(*I); 3002 } else { 3003 DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3004 << " New = " << *I << '\n'); 3005 3006 // If the instruction was modified, it's possible that it is now dead. 3007 // if so, remove it. 3008 if (isInstructionTriviallyDead(I, &TLI)) { 3009 eraseInstFromFunction(*I); 3010 } else { 3011 Worklist.AddUsersToWorkList(*I); 3012 Worklist.Add(I); 3013 } 3014 } 3015 MadeIRChange = true; 3016 } 3017 } 3018 3019 Worklist.Zap(); 3020 return MadeIRChange; 3021 } 3022 3023 /// Walk the function in depth-first order, adding all reachable code to the 3024 /// worklist. 3025 /// 3026 /// This has a couple of tricks to make the code faster and more powerful. In 3027 /// particular, we constant fold and DCE instructions as we go, to avoid adding 3028 /// them to the worklist (this significantly speeds up instcombine on code where 3029 /// many instructions are dead or constant). Additionally, if we find a branch 3030 /// whose condition is a known constant, we only visit the reachable successors. 3031 /// 3032 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, 3033 SmallPtrSetImpl<BasicBlock *> &Visited, 3034 InstCombineWorklist &ICWorklist, 3035 const TargetLibraryInfo *TLI) { 3036 bool MadeIRChange = false; 3037 SmallVector<BasicBlock*, 256> Worklist; 3038 Worklist.push_back(BB); 3039 3040 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 3041 DenseMap<Constant *, Constant *> FoldedConstants; 3042 3043 do { 3044 BB = Worklist.pop_back_val(); 3045 3046 // We have now visited this block! If we've already been here, ignore it. 3047 if (!Visited.insert(BB).second) 3048 continue; 3049 3050 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 3051 Instruction *Inst = &*BBI++; 3052 3053 // DCE instruction if trivially dead. 3054 if (isInstructionTriviallyDead(Inst, TLI)) { 3055 ++NumDeadInst; 3056 DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 3057 Inst->eraseFromParent(); 3058 MadeIRChange = true; 3059 continue; 3060 } 3061 3062 // ConstantProp instruction if trivially constant. 3063 if (!Inst->use_empty() && 3064 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 3065 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 3066 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " 3067 << *Inst << '\n'); 3068 Inst->replaceAllUsesWith(C); 3069 ++NumConstProp; 3070 if (isInstructionTriviallyDead(Inst, TLI)) 3071 Inst->eraseFromParent(); 3072 MadeIRChange = true; 3073 continue; 3074 } 3075 3076 // See if we can constant fold its operands. 3077 for (Use &U : Inst->operands()) { 3078 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 3079 continue; 3080 3081 auto *C = cast<Constant>(U); 3082 Constant *&FoldRes = FoldedConstants[C]; 3083 if (!FoldRes) 3084 FoldRes = ConstantFoldConstant(C, DL, TLI); 3085 if (!FoldRes) 3086 FoldRes = C; 3087 3088 if (FoldRes != C) { 3089 DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst 3090 << "\n Old = " << *C 3091 << "\n New = " << *FoldRes << '\n'); 3092 U = FoldRes; 3093 MadeIRChange = true; 3094 } 3095 } 3096 3097 // Skip processing debug intrinsics in InstCombine. Processing these call instructions 3098 // consumes non-trivial amount of time and provides no value for the optimization. 3099 if (!isa<DbgInfoIntrinsic>(Inst)) 3100 InstrsForInstCombineWorklist.push_back(Inst); 3101 } 3102 3103 // Recursively visit successors. If this is a branch or switch on a 3104 // constant, only visit the reachable successor. 3105 TerminatorInst *TI = BB->getTerminator(); 3106 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3107 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 3108 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 3109 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 3110 Worklist.push_back(ReachableBB); 3111 continue; 3112 } 3113 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3114 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 3115 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 3116 continue; 3117 } 3118 } 3119 3120 for (BasicBlock *SuccBB : TI->successors()) 3121 Worklist.push_back(SuccBB); 3122 } while (!Worklist.empty()); 3123 3124 // Once we've found all of the instructions to add to instcombine's worklist, 3125 // add them in reverse order. This way instcombine will visit from the top 3126 // of the function down. This jives well with the way that it adds all uses 3127 // of instructions to the worklist after doing a transformation, thus avoiding 3128 // some N^2 behavior in pathological cases. 3129 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist); 3130 3131 return MadeIRChange; 3132 } 3133 3134 /// \brief Populate the IC worklist from a function, and prune any dead basic 3135 /// blocks discovered in the process. 3136 /// 3137 /// This also does basic constant propagation and other forward fixing to make 3138 /// the combiner itself run much faster. 3139 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 3140 TargetLibraryInfo *TLI, 3141 InstCombineWorklist &ICWorklist) { 3142 bool MadeIRChange = false; 3143 3144 // Do a depth-first traversal of the function, populate the worklist with 3145 // the reachable instructions. Ignore blocks that are not reachable. Keep 3146 // track of which blocks we visit. 3147 SmallPtrSet<BasicBlock *, 32> Visited; 3148 MadeIRChange |= 3149 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI); 3150 3151 // Do a quick scan over the function. If we find any blocks that are 3152 // unreachable, remove any instructions inside of them. This prevents 3153 // the instcombine code from having to deal with some bad special cases. 3154 for (BasicBlock &BB : F) { 3155 if (Visited.count(&BB)) 3156 continue; 3157 3158 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB); 3159 MadeIRChange |= NumDeadInstInBB > 0; 3160 NumDeadInst += NumDeadInstInBB; 3161 } 3162 3163 return MadeIRChange; 3164 } 3165 3166 static bool combineInstructionsOverFunction( 3167 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, 3168 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, 3169 OptimizationRemarkEmitter &ORE, bool ExpensiveCombines = true, 3170 LoopInfo *LI = nullptr) { 3171 auto &DL = F.getParent()->getDataLayout(); 3172 ExpensiveCombines |= EnableExpensiveCombines; 3173 3174 /// Builder - This is an IRBuilder that automatically inserts new 3175 /// instructions into the worklist when they are created. 3176 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 3177 F.getContext(), TargetFolder(DL), 3178 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 3179 Worklist.Add(I); 3180 3181 using namespace llvm::PatternMatch; 3182 if (match(I, m_Intrinsic<Intrinsic::assume>())) 3183 AC.registerAssumption(cast<CallInst>(I)); 3184 })); 3185 3186 // Lower dbg.declare intrinsics otherwise their value may be clobbered 3187 // by instcombiner. 3188 bool MadeIRChange = LowerDbgDeclare(F); 3189 3190 // Iterate while there is work to do. 3191 int Iteration = 0; 3192 for (;;) { 3193 ++Iteration; 3194 DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 3195 << F.getName() << "\n"); 3196 3197 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 3198 3199 InstCombiner IC(Worklist, Builder, F.optForMinSize(), ExpensiveCombines, AA, 3200 AC, TLI, DT, ORE, DL, LI); 3201 IC.MaxArraySizeForCombine = MaxArraySize; 3202 3203 if (!IC.run()) 3204 break; 3205 } 3206 3207 return MadeIRChange || Iteration > 1; 3208 } 3209 3210 PreservedAnalyses InstCombinePass::run(Function &F, 3211 FunctionAnalysisManager &AM) { 3212 auto &AC = AM.getResult<AssumptionAnalysis>(F); 3213 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 3214 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 3215 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3216 3217 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 3218 3219 // FIXME: The AliasAnalysis is not yet supported in the new pass manager 3220 if (!combineInstructionsOverFunction(F, Worklist, nullptr, AC, TLI, DT, ORE, 3221 ExpensiveCombines, LI)) 3222 // No changes, all analyses are preserved. 3223 return PreservedAnalyses::all(); 3224 3225 // Mark all the analyses that instcombine updates as preserved. 3226 PreservedAnalyses PA; 3227 PA.preserveSet<CFGAnalyses>(); 3228 PA.preserve<AAManager>(); 3229 PA.preserve<GlobalsAA>(); 3230 return PA; 3231 } 3232 3233 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 3234 AU.setPreservesCFG(); 3235 AU.addRequired<AAResultsWrapperPass>(); 3236 AU.addRequired<AssumptionCacheTracker>(); 3237 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3238 AU.addRequired<DominatorTreeWrapperPass>(); 3239 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3240 AU.addPreserved<DominatorTreeWrapperPass>(); 3241 AU.addPreserved<AAResultsWrapperPass>(); 3242 AU.addPreserved<BasicAAWrapperPass>(); 3243 AU.addPreserved<GlobalsAAWrapperPass>(); 3244 } 3245 3246 bool InstructionCombiningPass::runOnFunction(Function &F) { 3247 if (skipFunction(F)) 3248 return false; 3249 3250 // Required analyses. 3251 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3252 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3253 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 3254 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3255 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 3256 3257 // Optional analyses. 3258 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3259 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 3260 3261 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, 3262 ExpensiveCombines, LI); 3263 } 3264 3265 char InstructionCombiningPass::ID = 0; 3266 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 3267 "Combine redundant instructions", false, false) 3268 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3269 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3270 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3271 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3272 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3273 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3274 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 3275 "Combine redundant instructions", false, false) 3276 3277 // Initialization Routines 3278 void llvm::initializeInstCombine(PassRegistry &Registry) { 3279 initializeInstructionCombiningPassPass(Registry); 3280 } 3281 3282 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 3283 initializeInstructionCombiningPassPass(*unwrap(R)); 3284 } 3285 3286 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) { 3287 return new InstructionCombiningPass(ExpensiveCombines); 3288 } 3289