1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions.  This pass does not modify the CFG.  This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 //    %Y = add i32 %X, 1
15 //    %Z = add i32 %Y, 1
16 // into:
17 //    %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 //    1. If a binary operator has a constant operand, it is moved to the RHS
24 //    2. Bitwise operators with constant operands are always grouped so that
25 //       shifts are performed first, then or's, then and's, then xor's.
26 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 //    4. All cmp instructions on boolean values are replaced with logical ops
28 //    5. add X, X is represented as (X*2) => (X << 1)
29 //    6. Multiplies with a power-of-two constant argument are transformed into
30 //       shifts.
31 //   ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/CFG.h"
50 #include "llvm/Analysis/ConstantFolding.h"
51 #include "llvm/Analysis/EHPersonalities.h"
52 #include "llvm/Analysis/GlobalsModRef.h"
53 #include "llvm/Analysis/InstructionSimplify.h"
54 #include "llvm/Analysis/LoopInfo.h"
55 #include "llvm/Analysis/MemoryBuiltins.h"
56 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
57 #include "llvm/Analysis/TargetFolder.h"
58 #include "llvm/Analysis/TargetLibraryInfo.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/CFG.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DIBuilder.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DerivedTypes.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GetElementPtrTypeIterator.h"
70 #include "llvm/IR/IRBuilder.h"
71 #include "llvm/IR/InstrTypes.h"
72 #include "llvm/IR/Instruction.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Intrinsics.h"
76 #include "llvm/IR/LegacyPassManager.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Operator.h"
79 #include "llvm/IR/PassManager.h"
80 #include "llvm/IR/PatternMatch.h"
81 #include "llvm/IR/Type.h"
82 #include "llvm/IR/Use.h"
83 #include "llvm/IR/User.h"
84 #include "llvm/IR/Value.h"
85 #include "llvm/IR/ValueHandle.h"
86 #include "llvm/Pass.h"
87 #include "llvm/Support/CBindingWrapping.h"
88 #include "llvm/Support/Casting.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Compiler.h"
91 #include "llvm/Support/Debug.h"
92 #include "llvm/Support/DebugCounter.h"
93 #include "llvm/Support/ErrorHandling.h"
94 #include "llvm/Support/KnownBits.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include "llvm/Transforms/InstCombine/InstCombine.h"
97 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
98 #include "llvm/Transforms/Utils/Local.h"
99 #include <algorithm>
100 #include <cassert>
101 #include <cstdint>
102 #include <memory>
103 #include <string>
104 #include <utility>
105 
106 using namespace llvm;
107 using namespace llvm::PatternMatch;
108 
109 #define DEBUG_TYPE "instcombine"
110 
111 STATISTIC(NumCombined , "Number of insts combined");
112 STATISTIC(NumConstProp, "Number of constant folds");
113 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
114 STATISTIC(NumSunkInst , "Number of instructions sunk");
115 STATISTIC(NumExpand,    "Number of expansions");
116 STATISTIC(NumFactor   , "Number of factorizations");
117 STATISTIC(NumReassoc  , "Number of reassociations");
118 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
119               "Controls which instructions are visited");
120 
121 static cl::opt<bool>
122 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
123                                               cl::init(true));
124 
125 static cl::opt<bool>
126 EnableExpensiveCombines("expensive-combines",
127                         cl::desc("Enable expensive instruction combines"));
128 
129 static cl::opt<unsigned>
130 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
131              cl::desc("Maximum array size considered when doing a combine"));
132 
133 // FIXME: Remove this flag when it is no longer necessary to convert
134 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
135 // increases variable availability at the cost of accuracy. Variables that
136 // cannot be promoted by mem2reg or SROA will be described as living in memory
137 // for their entire lifetime. However, passes like DSE and instcombine can
138 // delete stores to the alloca, leading to misleading and inaccurate debug
139 // information. This flag can be removed when those passes are fixed.
140 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
141                                                cl::Hidden, cl::init(true));
142 
143 Value *InstCombiner::EmitGEPOffset(User *GEP) {
144   return llvm::EmitGEPOffset(&Builder, DL, GEP);
145 }
146 
147 /// Return true if it is desirable to convert an integer computation from a
148 /// given bit width to a new bit width.
149 /// We don't want to convert from a legal to an illegal type or from a smaller
150 /// to a larger illegal type. A width of '1' is always treated as a legal type
151 /// because i1 is a fundamental type in IR, and there are many specialized
152 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
153 /// legal to convert to, in order to open up more combining opportunities.
154 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common
155 /// from frontend languages.
156 bool InstCombiner::shouldChangeType(unsigned FromWidth,
157                                     unsigned ToWidth) const {
158   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
159   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
160 
161   // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
162   // shrink types, to prevent infinite loops.
163   if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
164     return true;
165 
166   // If this is a legal integer from type, and the result would be an illegal
167   // type, don't do the transformation.
168   if (FromLegal && !ToLegal)
169     return false;
170 
171   // Otherwise, if both are illegal, do not increase the size of the result. We
172   // do allow things like i160 -> i64, but not i64 -> i160.
173   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
174     return false;
175 
176   return true;
177 }
178 
179 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
180 /// We don't want to convert from a legal to an illegal type or from a smaller
181 /// to a larger illegal type. i1 is always treated as a legal type because it is
182 /// a fundamental type in IR, and there are many specialized optimizations for
183 /// i1 types.
184 bool InstCombiner::shouldChangeType(Type *From, Type *To) const {
185   // TODO: This could be extended to allow vectors. Datalayout changes might be
186   // needed to properly support that.
187   if (!From->isIntegerTy() || !To->isIntegerTy())
188     return false;
189 
190   unsigned FromWidth = From->getPrimitiveSizeInBits();
191   unsigned ToWidth = To->getPrimitiveSizeInBits();
192   return shouldChangeType(FromWidth, ToWidth);
193 }
194 
195 // Return true, if No Signed Wrap should be maintained for I.
196 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
197 // where both B and C should be ConstantInts, results in a constant that does
198 // not overflow. This function only handles the Add and Sub opcodes. For
199 // all other opcodes, the function conservatively returns false.
200 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
201   OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
202   if (!OBO || !OBO->hasNoSignedWrap())
203     return false;
204 
205   // We reason about Add and Sub Only.
206   Instruction::BinaryOps Opcode = I.getOpcode();
207   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
208     return false;
209 
210   const APInt *BVal, *CVal;
211   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
212     return false;
213 
214   bool Overflow = false;
215   if (Opcode == Instruction::Add)
216     (void)BVal->sadd_ov(*CVal, Overflow);
217   else
218     (void)BVal->ssub_ov(*CVal, Overflow);
219 
220   return !Overflow;
221 }
222 
223 /// Conservatively clears subclassOptionalData after a reassociation or
224 /// commutation. We preserve fast-math flags when applicable as they can be
225 /// preserved.
226 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
227   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
228   if (!FPMO) {
229     I.clearSubclassOptionalData();
230     return;
231   }
232 
233   FastMathFlags FMF = I.getFastMathFlags();
234   I.clearSubclassOptionalData();
235   I.setFastMathFlags(FMF);
236 }
237 
238 /// Combine constant operands of associative operations either before or after a
239 /// cast to eliminate one of the associative operations:
240 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
241 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
242 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) {
243   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
244   if (!Cast || !Cast->hasOneUse())
245     return false;
246 
247   // TODO: Enhance logic for other casts and remove this check.
248   auto CastOpcode = Cast->getOpcode();
249   if (CastOpcode != Instruction::ZExt)
250     return false;
251 
252   // TODO: Enhance logic for other BinOps and remove this check.
253   if (!BinOp1->isBitwiseLogicOp())
254     return false;
255 
256   auto AssocOpcode = BinOp1->getOpcode();
257   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
258   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
259     return false;
260 
261   Constant *C1, *C2;
262   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
263       !match(BinOp2->getOperand(1), m_Constant(C2)))
264     return false;
265 
266   // TODO: This assumes a zext cast.
267   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
268   // to the destination type might lose bits.
269 
270   // Fold the constants together in the destination type:
271   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
272   Type *DestTy = C1->getType();
273   Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
274   Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
275   Cast->setOperand(0, BinOp2->getOperand(0));
276   BinOp1->setOperand(1, FoldedC);
277   return true;
278 }
279 
280 /// This performs a few simplifications for operators that are associative or
281 /// commutative:
282 ///
283 ///  Commutative operators:
284 ///
285 ///  1. Order operands such that they are listed from right (least complex) to
286 ///     left (most complex).  This puts constants before unary operators before
287 ///     binary operators.
288 ///
289 ///  Associative operators:
290 ///
291 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
292 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
293 ///
294 ///  Associative and commutative operators:
295 ///
296 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
297 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
298 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
299 ///     if C1 and C2 are constants.
300 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
301   Instruction::BinaryOps Opcode = I.getOpcode();
302   bool Changed = false;
303 
304   do {
305     // Order operands such that they are listed from right (least complex) to
306     // left (most complex).  This puts constants before unary operators before
307     // binary operators.
308     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
309         getComplexity(I.getOperand(1)))
310       Changed = !I.swapOperands();
311 
312     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
313     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
314 
315     if (I.isAssociative()) {
316       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
317       if (Op0 && Op0->getOpcode() == Opcode) {
318         Value *A = Op0->getOperand(0);
319         Value *B = Op0->getOperand(1);
320         Value *C = I.getOperand(1);
321 
322         // Does "B op C" simplify?
323         if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
324           // It simplifies to V.  Form "A op V".
325           I.setOperand(0, A);
326           I.setOperand(1, V);
327           // Conservatively clear the optional flags, since they may not be
328           // preserved by the reassociation.
329           if (MaintainNoSignedWrap(I, B, C) &&
330               (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
331             // Note: this is only valid because SimplifyBinOp doesn't look at
332             // the operands to Op0.
333             I.clearSubclassOptionalData();
334             I.setHasNoSignedWrap(true);
335           } else {
336             ClearSubclassDataAfterReassociation(I);
337           }
338 
339           Changed = true;
340           ++NumReassoc;
341           continue;
342         }
343       }
344 
345       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
346       if (Op1 && Op1->getOpcode() == Opcode) {
347         Value *A = I.getOperand(0);
348         Value *B = Op1->getOperand(0);
349         Value *C = Op1->getOperand(1);
350 
351         // Does "A op B" simplify?
352         if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
353           // It simplifies to V.  Form "V op C".
354           I.setOperand(0, V);
355           I.setOperand(1, C);
356           // Conservatively clear the optional flags, since they may not be
357           // preserved by the reassociation.
358           ClearSubclassDataAfterReassociation(I);
359           Changed = true;
360           ++NumReassoc;
361           continue;
362         }
363       }
364     }
365 
366     if (I.isAssociative() && I.isCommutative()) {
367       if (simplifyAssocCastAssoc(&I)) {
368         Changed = true;
369         ++NumReassoc;
370         continue;
371       }
372 
373       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
374       if (Op0 && Op0->getOpcode() == Opcode) {
375         Value *A = Op0->getOperand(0);
376         Value *B = Op0->getOperand(1);
377         Value *C = I.getOperand(1);
378 
379         // Does "C op A" simplify?
380         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
381           // It simplifies to V.  Form "V op B".
382           I.setOperand(0, V);
383           I.setOperand(1, B);
384           // Conservatively clear the optional flags, since they may not be
385           // preserved by the reassociation.
386           ClearSubclassDataAfterReassociation(I);
387           Changed = true;
388           ++NumReassoc;
389           continue;
390         }
391       }
392 
393       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
394       if (Op1 && Op1->getOpcode() == Opcode) {
395         Value *A = I.getOperand(0);
396         Value *B = Op1->getOperand(0);
397         Value *C = Op1->getOperand(1);
398 
399         // Does "C op A" simplify?
400         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
401           // It simplifies to V.  Form "B op V".
402           I.setOperand(0, B);
403           I.setOperand(1, V);
404           // Conservatively clear the optional flags, since they may not be
405           // preserved by the reassociation.
406           ClearSubclassDataAfterReassociation(I);
407           Changed = true;
408           ++NumReassoc;
409           continue;
410         }
411       }
412 
413       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
414       // if C1 and C2 are constants.
415       Value *A, *B;
416       Constant *C1, *C2;
417       if (Op0 && Op1 &&
418           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
419           match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
420           match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
421         BinaryOperator *NewBO = BinaryOperator::Create(Opcode, A, B);
422         if (isa<FPMathOperator>(NewBO)) {
423           FastMathFlags Flags = I.getFastMathFlags();
424           Flags &= Op0->getFastMathFlags();
425           Flags &= Op1->getFastMathFlags();
426           NewBO->setFastMathFlags(Flags);
427         }
428         InsertNewInstWith(NewBO, I);
429         NewBO->takeName(Op1);
430         I.setOperand(0, NewBO);
431         I.setOperand(1, ConstantExpr::get(Opcode, C1, C2));
432         // Conservatively clear the optional flags, since they may not be
433         // preserved by the reassociation.
434         ClearSubclassDataAfterReassociation(I);
435 
436         Changed = true;
437         continue;
438       }
439     }
440 
441     // No further simplifications.
442     return Changed;
443   } while (true);
444 }
445 
446 /// Return whether "X LOp (Y ROp Z)" is always equal to
447 /// "(X LOp Y) ROp (X LOp Z)".
448 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
449                                      Instruction::BinaryOps ROp) {
450   // X & (Y | Z) <--> (X & Y) | (X & Z)
451   // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
452   if (LOp == Instruction::And)
453     return ROp == Instruction::Or || ROp == Instruction::Xor;
454 
455   // X | (Y & Z) <--> (X | Y) & (X | Z)
456   if (LOp == Instruction::Or)
457     return ROp == Instruction::And;
458 
459   // X * (Y + Z) <--> (X * Y) + (X * Z)
460   // X * (Y - Z) <--> (X * Y) - (X * Z)
461   if (LOp == Instruction::Mul)
462     return ROp == Instruction::Add || ROp == Instruction::Sub;
463 
464   return false;
465 }
466 
467 /// Return whether "(X LOp Y) ROp Z" is always equal to
468 /// "(X ROp Z) LOp (Y ROp Z)".
469 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
470                                      Instruction::BinaryOps ROp) {
471   if (Instruction::isCommutative(ROp))
472     return leftDistributesOverRight(ROp, LOp);
473 
474   // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
475   return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
476 
477   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
478   // but this requires knowing that the addition does not overflow and other
479   // such subtleties.
480 }
481 
482 /// This function returns identity value for given opcode, which can be used to
483 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
484 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
485   if (isa<Constant>(V))
486     return nullptr;
487 
488   return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
489 }
490 
491 /// This function predicates factorization using distributive laws. By default,
492 /// it just returns the 'Op' inputs. But for special-cases like
493 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
494 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
495 /// allow more factorization opportunities.
496 static Instruction::BinaryOps
497 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
498                           Value *&LHS, Value *&RHS) {
499   assert(Op && "Expected a binary operator");
500   LHS = Op->getOperand(0);
501   RHS = Op->getOperand(1);
502   if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
503     Constant *C;
504     if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
505       // X << C --> X * (1 << C)
506       RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
507       return Instruction::Mul;
508     }
509     // TODO: We can add other conversions e.g. shr => div etc.
510   }
511   return Op->getOpcode();
512 }
513 
514 /// This tries to simplify binary operations by factorizing out common terms
515 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
516 Value *InstCombiner::tryFactorization(BinaryOperator &I,
517                                       Instruction::BinaryOps InnerOpcode,
518                                       Value *A, Value *B, Value *C, Value *D) {
519   assert(A && B && C && D && "All values must be provided");
520 
521   Value *V = nullptr;
522   Value *SimplifiedInst = nullptr;
523   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
524   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
525 
526   // Does "X op' Y" always equal "Y op' X"?
527   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
528 
529   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
530   if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
531     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
532     // commutative case, "(A op' B) op (C op' A)"?
533     if (A == C || (InnerCommutative && A == D)) {
534       if (A != C)
535         std::swap(C, D);
536       // Consider forming "A op' (B op D)".
537       // If "B op D" simplifies then it can be formed with no cost.
538       V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
539       // If "B op D" doesn't simplify then only go on if both of the existing
540       // operations "A op' B" and "C op' D" will be zapped as no longer used.
541       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
542         V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
543       if (V) {
544         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
545       }
546     }
547 
548   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
549   if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
550     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
551     // commutative case, "(A op' B) op (B op' D)"?
552     if (B == D || (InnerCommutative && B == C)) {
553       if (B != D)
554         std::swap(C, D);
555       // Consider forming "(A op C) op' B".
556       // If "A op C" simplifies then it can be formed with no cost.
557       V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
558 
559       // If "A op C" doesn't simplify then only go on if both of the existing
560       // operations "A op' B" and "C op' D" will be zapped as no longer used.
561       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
562         V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
563       if (V) {
564         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
565       }
566     }
567 
568   if (SimplifiedInst) {
569     ++NumFactor;
570     SimplifiedInst->takeName(&I);
571 
572     // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
573     // TODO: Check for NUW.
574     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
575       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
576         bool HasNSW = false;
577         if (isa<OverflowingBinaryOperator>(&I))
578           HasNSW = I.hasNoSignedWrap();
579 
580         if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS))
581           HasNSW &= LOBO->hasNoSignedWrap();
582 
583         if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS))
584           HasNSW &= ROBO->hasNoSignedWrap();
585 
586         // We can propagate 'nsw' if we know that
587         //  %Y = mul nsw i16 %X, C
588         //  %Z = add nsw i16 %Y, %X
589         // =>
590         //  %Z = mul nsw i16 %X, C+1
591         //
592         // iff C+1 isn't INT_MIN
593         const APInt *CInt;
594         if (TopLevelOpcode == Instruction::Add &&
595             InnerOpcode == Instruction::Mul)
596           if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
597             BO->setHasNoSignedWrap(HasNSW);
598       }
599     }
600   }
601   return SimplifiedInst;
602 }
603 
604 /// This tries to simplify binary operations which some other binary operation
605 /// distributes over either by factorizing out common terms
606 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
607 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
608 /// Returns the simplified value, or null if it didn't simplify.
609 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
610   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
611   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
612   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
613   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
614 
615   {
616     // Factorization.
617     Value *A, *B, *C, *D;
618     Instruction::BinaryOps LHSOpcode, RHSOpcode;
619     if (Op0)
620       LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
621     if (Op1)
622       RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
623 
624     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
625     // a common term.
626     if (Op0 && Op1 && LHSOpcode == RHSOpcode)
627       if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
628         return V;
629 
630     // The instruction has the form "(A op' B) op (C)".  Try to factorize common
631     // term.
632     if (Op0)
633       if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
634         if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
635           return V;
636 
637     // The instruction has the form "(B) op (C op' D)".  Try to factorize common
638     // term.
639     if (Op1)
640       if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
641         if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
642           return V;
643   }
644 
645   // Expansion.
646   if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
647     // The instruction has the form "(A op' B) op C".  See if expanding it out
648     // to "(A op C) op' (B op C)" results in simplifications.
649     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
650     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
651 
652     Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
653     Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I));
654 
655     // Do "A op C" and "B op C" both simplify?
656     if (L && R) {
657       // They do! Return "L op' R".
658       ++NumExpand;
659       C = Builder.CreateBinOp(InnerOpcode, L, R);
660       C->takeName(&I);
661       return C;
662     }
663 
664     // Does "A op C" simplify to the identity value for the inner opcode?
665     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
666       // They do! Return "B op C".
667       ++NumExpand;
668       C = Builder.CreateBinOp(TopLevelOpcode, B, C);
669       C->takeName(&I);
670       return C;
671     }
672 
673     // Does "B op C" simplify to the identity value for the inner opcode?
674     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
675       // They do! Return "A op C".
676       ++NumExpand;
677       C = Builder.CreateBinOp(TopLevelOpcode, A, C);
678       C->takeName(&I);
679       return C;
680     }
681   }
682 
683   if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
684     // The instruction has the form "A op (B op' C)".  See if expanding it out
685     // to "(A op B) op' (A op C)" results in simplifications.
686     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
687     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
688 
689     Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I));
690     Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
691 
692     // Do "A op B" and "A op C" both simplify?
693     if (L && R) {
694       // They do! Return "L op' R".
695       ++NumExpand;
696       A = Builder.CreateBinOp(InnerOpcode, L, R);
697       A->takeName(&I);
698       return A;
699     }
700 
701     // Does "A op B" simplify to the identity value for the inner opcode?
702     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
703       // They do! Return "A op C".
704       ++NumExpand;
705       A = Builder.CreateBinOp(TopLevelOpcode, A, C);
706       A->takeName(&I);
707       return A;
708     }
709 
710     // Does "A op C" simplify to the identity value for the inner opcode?
711     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
712       // They do! Return "A op B".
713       ++NumExpand;
714       A = Builder.CreateBinOp(TopLevelOpcode, A, B);
715       A->takeName(&I);
716       return A;
717     }
718   }
719 
720   return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
721 }
722 
723 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
724                                                     Value *LHS, Value *RHS) {
725   Instruction::BinaryOps Opcode = I.getOpcode();
726   // (op (select (a, b, c)), (select (a, d, e))) -> (select (a, (op b, d), (op
727   // c, e)))
728   Value *A, *B, *C, *D, *E;
729   Value *SI = nullptr;
730   if (match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))) &&
731       match(RHS, m_Select(m_Specific(A), m_Value(D), m_Value(E)))) {
732     bool SelectsHaveOneUse = LHS->hasOneUse() && RHS->hasOneUse();
733     BuilderTy::FastMathFlagGuard Guard(Builder);
734     if (isa<FPMathOperator>(&I))
735       Builder.setFastMathFlags(I.getFastMathFlags());
736 
737     Value *V1 = SimplifyBinOp(Opcode, C, E, SQ.getWithInstruction(&I));
738     Value *V2 = SimplifyBinOp(Opcode, B, D, SQ.getWithInstruction(&I));
739     if (V1 && V2)
740       SI = Builder.CreateSelect(A, V2, V1);
741     else if (V2 && SelectsHaveOneUse)
742       SI = Builder.CreateSelect(A, V2, Builder.CreateBinOp(Opcode, C, E));
743     else if (V1 && SelectsHaveOneUse)
744       SI = Builder.CreateSelect(A, Builder.CreateBinOp(Opcode, B, D), V1);
745 
746     if (SI)
747       SI->takeName(&I);
748   }
749 
750   return SI;
751 }
752 
753 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
754 /// constant zero (which is the 'negate' form).
755 Value *InstCombiner::dyn_castNegVal(Value *V) const {
756   Value *NegV;
757   if (match(V, m_Neg(m_Value(NegV))))
758     return NegV;
759 
760   // Constants can be considered to be negated values if they can be folded.
761   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
762     return ConstantExpr::getNeg(C);
763 
764   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
765     if (C->getType()->getElementType()->isIntegerTy())
766       return ConstantExpr::getNeg(C);
767 
768   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
769     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
770       Constant *Elt = CV->getAggregateElement(i);
771       if (!Elt)
772         return nullptr;
773 
774       if (isa<UndefValue>(Elt))
775         continue;
776 
777       if (!isa<ConstantInt>(Elt))
778         return nullptr;
779     }
780     return ConstantExpr::getNeg(CV);
781   }
782 
783   return nullptr;
784 }
785 
786 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
787                                              InstCombiner::BuilderTy &Builder) {
788   if (auto *Cast = dyn_cast<CastInst>(&I))
789     return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
790 
791   assert(I.isBinaryOp() && "Unexpected opcode for select folding");
792 
793   // Figure out if the constant is the left or the right argument.
794   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
795   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
796 
797   if (auto *SOC = dyn_cast<Constant>(SO)) {
798     if (ConstIsRHS)
799       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
800     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
801   }
802 
803   Value *Op0 = SO, *Op1 = ConstOperand;
804   if (!ConstIsRHS)
805     std::swap(Op0, Op1);
806 
807   auto *BO = cast<BinaryOperator>(&I);
808   Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
809                                   SO->getName() + ".op");
810   auto *FPInst = dyn_cast<Instruction>(RI);
811   if (FPInst && isa<FPMathOperator>(FPInst))
812     FPInst->copyFastMathFlags(BO);
813   return RI;
814 }
815 
816 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
817   // Don't modify shared select instructions.
818   if (!SI->hasOneUse())
819     return nullptr;
820 
821   Value *TV = SI->getTrueValue();
822   Value *FV = SI->getFalseValue();
823   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
824     return nullptr;
825 
826   // Bool selects with constant operands can be folded to logical ops.
827   if (SI->getType()->isIntOrIntVectorTy(1))
828     return nullptr;
829 
830   // If it's a bitcast involving vectors, make sure it has the same number of
831   // elements on both sides.
832   if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
833     VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
834     VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
835 
836     // Verify that either both or neither are vectors.
837     if ((SrcTy == nullptr) != (DestTy == nullptr))
838       return nullptr;
839 
840     // If vectors, verify that they have the same number of elements.
841     if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
842       return nullptr;
843   }
844 
845   // Test if a CmpInst instruction is used exclusively by a select as
846   // part of a minimum or maximum operation. If so, refrain from doing
847   // any other folding. This helps out other analyses which understand
848   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
849   // and CodeGen. And in this case, at least one of the comparison
850   // operands has at least one user besides the compare (the select),
851   // which would often largely negate the benefit of folding anyway.
852   if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
853     if (CI->hasOneUse()) {
854       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
855       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
856           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
857         return nullptr;
858     }
859   }
860 
861   Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
862   Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
863   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
864 }
865 
866 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
867                                         InstCombiner::BuilderTy &Builder) {
868   bool ConstIsRHS = isa<Constant>(I->getOperand(1));
869   Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
870 
871   if (auto *InC = dyn_cast<Constant>(InV)) {
872     if (ConstIsRHS)
873       return ConstantExpr::get(I->getOpcode(), InC, C);
874     return ConstantExpr::get(I->getOpcode(), C, InC);
875   }
876 
877   Value *Op0 = InV, *Op1 = C;
878   if (!ConstIsRHS)
879     std::swap(Op0, Op1);
880 
881   Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp");
882   auto *FPInst = dyn_cast<Instruction>(RI);
883   if (FPInst && isa<FPMathOperator>(FPInst))
884     FPInst->copyFastMathFlags(I);
885   return RI;
886 }
887 
888 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) {
889   unsigned NumPHIValues = PN->getNumIncomingValues();
890   if (NumPHIValues == 0)
891     return nullptr;
892 
893   // We normally only transform phis with a single use.  However, if a PHI has
894   // multiple uses and they are all the same operation, we can fold *all* of the
895   // uses into the PHI.
896   if (!PN->hasOneUse()) {
897     // Walk the use list for the instruction, comparing them to I.
898     for (User *U : PN->users()) {
899       Instruction *UI = cast<Instruction>(U);
900       if (UI != &I && !I.isIdenticalTo(UI))
901         return nullptr;
902     }
903     // Otherwise, we can replace *all* users with the new PHI we form.
904   }
905 
906   // Check to see if all of the operands of the PHI are simple constants
907   // (constantint/constantfp/undef).  If there is one non-constant value,
908   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
909   // bail out.  We don't do arbitrary constant expressions here because moving
910   // their computation can be expensive without a cost model.
911   BasicBlock *NonConstBB = nullptr;
912   for (unsigned i = 0; i != NumPHIValues; ++i) {
913     Value *InVal = PN->getIncomingValue(i);
914     if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
915       continue;
916 
917     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
918     if (NonConstBB) return nullptr;  // More than one non-const value.
919 
920     NonConstBB = PN->getIncomingBlock(i);
921 
922     // If the InVal is an invoke at the end of the pred block, then we can't
923     // insert a computation after it without breaking the edge.
924     if (isa<InvokeInst>(InVal))
925       if (cast<Instruction>(InVal)->getParent() == NonConstBB)
926         return nullptr;
927 
928     // If the incoming non-constant value is in I's block, we will remove one
929     // instruction, but insert another equivalent one, leading to infinite
930     // instcombine.
931     if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
932       return nullptr;
933   }
934 
935   // If there is exactly one non-constant value, we can insert a copy of the
936   // operation in that block.  However, if this is a critical edge, we would be
937   // inserting the computation on some other paths (e.g. inside a loop).  Only
938   // do this if the pred block is unconditionally branching into the phi block.
939   if (NonConstBB != nullptr) {
940     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
941     if (!BI || !BI->isUnconditional()) return nullptr;
942   }
943 
944   // Okay, we can do the transformation: create the new PHI node.
945   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
946   InsertNewInstBefore(NewPN, *PN);
947   NewPN->takeName(PN);
948 
949   // If we are going to have to insert a new computation, do so right before the
950   // predecessor's terminator.
951   if (NonConstBB)
952     Builder.SetInsertPoint(NonConstBB->getTerminator());
953 
954   // Next, add all of the operands to the PHI.
955   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
956     // We only currently try to fold the condition of a select when it is a phi,
957     // not the true/false values.
958     Value *TrueV = SI->getTrueValue();
959     Value *FalseV = SI->getFalseValue();
960     BasicBlock *PhiTransBB = PN->getParent();
961     for (unsigned i = 0; i != NumPHIValues; ++i) {
962       BasicBlock *ThisBB = PN->getIncomingBlock(i);
963       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
964       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
965       Value *InV = nullptr;
966       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
967       // even if currently isNullValue gives false.
968       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
969       // For vector constants, we cannot use isNullValue to fold into
970       // FalseVInPred versus TrueVInPred. When we have individual nonzero
971       // elements in the vector, we will incorrectly fold InC to
972       // `TrueVInPred`.
973       if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC))
974         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
975       else {
976         // Generate the select in the same block as PN's current incoming block.
977         // Note: ThisBB need not be the NonConstBB because vector constants
978         // which are constants by definition are handled here.
979         // FIXME: This can lead to an increase in IR generation because we might
980         // generate selects for vector constant phi operand, that could not be
981         // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
982         // non-vector phis, this transformation was always profitable because
983         // the select would be generated exactly once in the NonConstBB.
984         Builder.SetInsertPoint(ThisBB->getTerminator());
985         InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
986                                    FalseVInPred, "phitmp");
987       }
988       NewPN->addIncoming(InV, ThisBB);
989     }
990   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
991     Constant *C = cast<Constant>(I.getOperand(1));
992     for (unsigned i = 0; i != NumPHIValues; ++i) {
993       Value *InV = nullptr;
994       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
995         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
996       else if (isa<ICmpInst>(CI))
997         InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
998                                  C, "phitmp");
999       else
1000         InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
1001                                  C, "phitmp");
1002       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1003     }
1004   } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1005     for (unsigned i = 0; i != NumPHIValues; ++i) {
1006       Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1007                                              Builder);
1008       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1009     }
1010   } else {
1011     CastInst *CI = cast<CastInst>(&I);
1012     Type *RetTy = CI->getType();
1013     for (unsigned i = 0; i != NumPHIValues; ++i) {
1014       Value *InV;
1015       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1016         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1017       else
1018         InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1019                                  I.getType(), "phitmp");
1020       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1021     }
1022   }
1023 
1024   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1025     Instruction *User = cast<Instruction>(*UI++);
1026     if (User == &I) continue;
1027     replaceInstUsesWith(*User, NewPN);
1028     eraseInstFromFunction(*User);
1029   }
1030   return replaceInstUsesWith(I, NewPN);
1031 }
1032 
1033 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1034   if (!isa<Constant>(I.getOperand(1)))
1035     return nullptr;
1036 
1037   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1038     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1039       return NewSel;
1040   } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1041     if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1042       return NewPhi;
1043   }
1044   return nullptr;
1045 }
1046 
1047 /// Given a pointer type and a constant offset, determine whether or not there
1048 /// is a sequence of GEP indices into the pointed type that will land us at the
1049 /// specified offset. If so, fill them into NewIndices and return the resultant
1050 /// element type, otherwise return null.
1051 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
1052                                         SmallVectorImpl<Value *> &NewIndices) {
1053   Type *Ty = PtrTy->getElementType();
1054   if (!Ty->isSized())
1055     return nullptr;
1056 
1057   // Start with the index over the outer type.  Note that the type size
1058   // might be zero (even if the offset isn't zero) if the indexed type
1059   // is something like [0 x {int, int}]
1060   Type *IndexTy = DL.getIndexType(PtrTy);
1061   int64_t FirstIdx = 0;
1062   if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
1063     FirstIdx = Offset/TySize;
1064     Offset -= FirstIdx*TySize;
1065 
1066     // Handle hosts where % returns negative instead of values [0..TySize).
1067     if (Offset < 0) {
1068       --FirstIdx;
1069       Offset += TySize;
1070       assert(Offset >= 0);
1071     }
1072     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
1073   }
1074 
1075   NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
1076 
1077   // Index into the types.  If we fail, set OrigBase to null.
1078   while (Offset) {
1079     // Indexing into tail padding between struct/array elements.
1080     if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
1081       return nullptr;
1082 
1083     if (StructType *STy = dyn_cast<StructType>(Ty)) {
1084       const StructLayout *SL = DL.getStructLayout(STy);
1085       assert(Offset < (int64_t)SL->getSizeInBytes() &&
1086              "Offset must stay within the indexed type");
1087 
1088       unsigned Elt = SL->getElementContainingOffset(Offset);
1089       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1090                                             Elt));
1091 
1092       Offset -= SL->getElementOffset(Elt);
1093       Ty = STy->getElementType(Elt);
1094     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
1095       uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
1096       assert(EltSize && "Cannot index into a zero-sized array");
1097       NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
1098       Offset %= EltSize;
1099       Ty = AT->getElementType();
1100     } else {
1101       // Otherwise, we can't index into the middle of this atomic type, bail.
1102       return nullptr;
1103     }
1104   }
1105 
1106   return Ty;
1107 }
1108 
1109 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1110   // If this GEP has only 0 indices, it is the same pointer as
1111   // Src. If Src is not a trivial GEP too, don't combine
1112   // the indices.
1113   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1114       !Src.hasOneUse())
1115     return false;
1116   return true;
1117 }
1118 
1119 /// Return a value X such that Val = X * Scale, or null if none.
1120 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1121 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1122   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1123   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1124          Scale.getBitWidth() && "Scale not compatible with value!");
1125 
1126   // If Val is zero or Scale is one then Val = Val * Scale.
1127   if (match(Val, m_Zero()) || Scale == 1) {
1128     NoSignedWrap = true;
1129     return Val;
1130   }
1131 
1132   // If Scale is zero then it does not divide Val.
1133   if (Scale.isMinValue())
1134     return nullptr;
1135 
1136   // Look through chains of multiplications, searching for a constant that is
1137   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1138   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1139   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1140   // down from Val:
1141   //
1142   //     Val = M1 * X          ||   Analysis starts here and works down
1143   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1144   //      M2 =  Z * 4          \/   than one use
1145   //
1146   // Then to modify a term at the bottom:
1147   //
1148   //     Val = M1 * X
1149   //      M1 =  Z * Y          ||   Replaced M2 with Z
1150   //
1151   // Then to work back up correcting nsw flags.
1152 
1153   // Op - the term we are currently analyzing.  Starts at Val then drills down.
1154   // Replaced with its descaled value before exiting from the drill down loop.
1155   Value *Op = Val;
1156 
1157   // Parent - initially null, but after drilling down notes where Op came from.
1158   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1159   // 0'th operand of Val.
1160   std::pair<Instruction *, unsigned> Parent;
1161 
1162   // Set if the transform requires a descaling at deeper levels that doesn't
1163   // overflow.
1164   bool RequireNoSignedWrap = false;
1165 
1166   // Log base 2 of the scale. Negative if not a power of 2.
1167   int32_t logScale = Scale.exactLogBase2();
1168 
1169   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1170     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1171       // If Op is a constant divisible by Scale then descale to the quotient.
1172       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1173       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1174       if (!Remainder.isMinValue())
1175         // Not divisible by Scale.
1176         return nullptr;
1177       // Replace with the quotient in the parent.
1178       Op = ConstantInt::get(CI->getType(), Quotient);
1179       NoSignedWrap = true;
1180       break;
1181     }
1182 
1183     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1184       if (BO->getOpcode() == Instruction::Mul) {
1185         // Multiplication.
1186         NoSignedWrap = BO->hasNoSignedWrap();
1187         if (RequireNoSignedWrap && !NoSignedWrap)
1188           return nullptr;
1189 
1190         // There are three cases for multiplication: multiplication by exactly
1191         // the scale, multiplication by a constant different to the scale, and
1192         // multiplication by something else.
1193         Value *LHS = BO->getOperand(0);
1194         Value *RHS = BO->getOperand(1);
1195 
1196         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1197           // Multiplication by a constant.
1198           if (CI->getValue() == Scale) {
1199             // Multiplication by exactly the scale, replace the multiplication
1200             // by its left-hand side in the parent.
1201             Op = LHS;
1202             break;
1203           }
1204 
1205           // Otherwise drill down into the constant.
1206           if (!Op->hasOneUse())
1207             return nullptr;
1208 
1209           Parent = std::make_pair(BO, 1);
1210           continue;
1211         }
1212 
1213         // Multiplication by something else. Drill down into the left-hand side
1214         // since that's where the reassociate pass puts the good stuff.
1215         if (!Op->hasOneUse())
1216           return nullptr;
1217 
1218         Parent = std::make_pair(BO, 0);
1219         continue;
1220       }
1221 
1222       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1223           isa<ConstantInt>(BO->getOperand(1))) {
1224         // Multiplication by a power of 2.
1225         NoSignedWrap = BO->hasNoSignedWrap();
1226         if (RequireNoSignedWrap && !NoSignedWrap)
1227           return nullptr;
1228 
1229         Value *LHS = BO->getOperand(0);
1230         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1231           getLimitedValue(Scale.getBitWidth());
1232         // Op = LHS << Amt.
1233 
1234         if (Amt == logScale) {
1235           // Multiplication by exactly the scale, replace the multiplication
1236           // by its left-hand side in the parent.
1237           Op = LHS;
1238           break;
1239         }
1240         if (Amt < logScale || !Op->hasOneUse())
1241           return nullptr;
1242 
1243         // Multiplication by more than the scale.  Reduce the multiplying amount
1244         // by the scale in the parent.
1245         Parent = std::make_pair(BO, 1);
1246         Op = ConstantInt::get(BO->getType(), Amt - logScale);
1247         break;
1248       }
1249     }
1250 
1251     if (!Op->hasOneUse())
1252       return nullptr;
1253 
1254     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1255       if (Cast->getOpcode() == Instruction::SExt) {
1256         // Op is sign-extended from a smaller type, descale in the smaller type.
1257         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1258         APInt SmallScale = Scale.trunc(SmallSize);
1259         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1260         // descale Op as (sext Y) * Scale.  In order to have
1261         //   sext (Y * SmallScale) = (sext Y) * Scale
1262         // some conditions need to hold however: SmallScale must sign-extend to
1263         // Scale and the multiplication Y * SmallScale should not overflow.
1264         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1265           // SmallScale does not sign-extend to Scale.
1266           return nullptr;
1267         assert(SmallScale.exactLogBase2() == logScale);
1268         // Require that Y * SmallScale must not overflow.
1269         RequireNoSignedWrap = true;
1270 
1271         // Drill down through the cast.
1272         Parent = std::make_pair(Cast, 0);
1273         Scale = SmallScale;
1274         continue;
1275       }
1276 
1277       if (Cast->getOpcode() == Instruction::Trunc) {
1278         // Op is truncated from a larger type, descale in the larger type.
1279         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1280         //   trunc (Y * sext Scale) = (trunc Y) * Scale
1281         // always holds.  However (trunc Y) * Scale may overflow even if
1282         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1283         // from this point up in the expression (see later).
1284         if (RequireNoSignedWrap)
1285           return nullptr;
1286 
1287         // Drill down through the cast.
1288         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1289         Parent = std::make_pair(Cast, 0);
1290         Scale = Scale.sext(LargeSize);
1291         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1292           logScale = -1;
1293         assert(Scale.exactLogBase2() == logScale);
1294         continue;
1295       }
1296     }
1297 
1298     // Unsupported expression, bail out.
1299     return nullptr;
1300   }
1301 
1302   // If Op is zero then Val = Op * Scale.
1303   if (match(Op, m_Zero())) {
1304     NoSignedWrap = true;
1305     return Op;
1306   }
1307 
1308   // We know that we can successfully descale, so from here on we can safely
1309   // modify the IR.  Op holds the descaled version of the deepest term in the
1310   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1311   // not to overflow.
1312 
1313   if (!Parent.first)
1314     // The expression only had one term.
1315     return Op;
1316 
1317   // Rewrite the parent using the descaled version of its operand.
1318   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1319   assert(Op != Parent.first->getOperand(Parent.second) &&
1320          "Descaling was a no-op?");
1321   Parent.first->setOperand(Parent.second, Op);
1322   Worklist.Add(Parent.first);
1323 
1324   // Now work back up the expression correcting nsw flags.  The logic is based
1325   // on the following observation: if X * Y is known not to overflow as a signed
1326   // multiplication, and Y is replaced by a value Z with smaller absolute value,
1327   // then X * Z will not overflow as a signed multiplication either.  As we work
1328   // our way up, having NoSignedWrap 'true' means that the descaled value at the
1329   // current level has strictly smaller absolute value than the original.
1330   Instruction *Ancestor = Parent.first;
1331   do {
1332     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1333       // If the multiplication wasn't nsw then we can't say anything about the
1334       // value of the descaled multiplication, and we have to clear nsw flags
1335       // from this point on up.
1336       bool OpNoSignedWrap = BO->hasNoSignedWrap();
1337       NoSignedWrap &= OpNoSignedWrap;
1338       if (NoSignedWrap != OpNoSignedWrap) {
1339         BO->setHasNoSignedWrap(NoSignedWrap);
1340         Worklist.Add(Ancestor);
1341       }
1342     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1343       // The fact that the descaled input to the trunc has smaller absolute
1344       // value than the original input doesn't tell us anything useful about
1345       // the absolute values of the truncations.
1346       NoSignedWrap = false;
1347     }
1348     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1349            "Failed to keep proper track of nsw flags while drilling down?");
1350 
1351     if (Ancestor == Val)
1352       // Got to the top, all done!
1353       return Val;
1354 
1355     // Move up one level in the expression.
1356     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1357     Ancestor = Ancestor->user_back();
1358   } while (true);
1359 }
1360 
1361 Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) {
1362   if (!Inst.getType()->isVectorTy()) return nullptr;
1363 
1364   BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1365   unsigned NumElts = cast<VectorType>(Inst.getType())->getNumElements();
1366   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1367   assert(cast<VectorType>(LHS->getType())->getNumElements() == NumElts);
1368   assert(cast<VectorType>(RHS->getType())->getNumElements() == NumElts);
1369 
1370   // If both operands of the binop are vector concatenations, then perform the
1371   // narrow binop on each pair of the source operands followed by concatenation
1372   // of the results.
1373   Value *L0, *L1, *R0, *R1;
1374   Constant *Mask;
1375   if (match(LHS, m_ShuffleVector(m_Value(L0), m_Value(L1), m_Constant(Mask))) &&
1376       match(RHS, m_ShuffleVector(m_Value(R0), m_Value(R1), m_Specific(Mask))) &&
1377       LHS->hasOneUse() && RHS->hasOneUse() &&
1378       cast<ShuffleVectorInst>(LHS)->isConcat() &&
1379       cast<ShuffleVectorInst>(RHS)->isConcat()) {
1380     // This transform does not have the speculative execution constraint as
1381     // below because the shuffle is a concatenation. The new binops are
1382     // operating on exactly the same elements as the existing binop.
1383     // TODO: We could ease the mask requirement to allow different undef lanes,
1384     //       but that requires an analysis of the binop-with-undef output value.
1385     Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1386     if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1387       BO->copyIRFlags(&Inst);
1388     Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1389     if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1390       BO->copyIRFlags(&Inst);
1391     return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1392   }
1393 
1394   // It may not be safe to reorder shuffles and things like div, urem, etc.
1395   // because we may trap when executing those ops on unknown vector elements.
1396   // See PR20059.
1397   if (!isSafeToSpeculativelyExecute(&Inst))
1398     return nullptr;
1399 
1400   auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) {
1401     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1402     if (auto *BO = dyn_cast<BinaryOperator>(XY))
1403       BO->copyIRFlags(&Inst);
1404     return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
1405   };
1406 
1407   // If both arguments of the binary operation are shuffles that use the same
1408   // mask and shuffle within a single vector, move the shuffle after the binop.
1409   Value *V1, *V2;
1410   if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) &&
1411       match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) &&
1412       V1->getType() == V2->getType() &&
1413       (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1414     // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1415     return createBinOpShuffle(V1, V2, Mask);
1416   }
1417 
1418   // If both arguments of a commutative binop are select-shuffles that use the
1419   // same mask with commuted operands, the shuffles are unnecessary.
1420   if (Inst.isCommutative() &&
1421       match(LHS, m_ShuffleVector(m_Value(V1), m_Value(V2), m_Constant(Mask))) &&
1422       match(RHS, m_ShuffleVector(m_Specific(V2), m_Specific(V1),
1423                                  m_Specific(Mask)))) {
1424     auto *LShuf = cast<ShuffleVectorInst>(LHS);
1425     auto *RShuf = cast<ShuffleVectorInst>(RHS);
1426     // TODO: Allow shuffles that contain undefs in the mask?
1427     //       That is legal, but it reduces undef knowledge.
1428     // TODO: Allow arbitrary shuffles by shuffling after binop?
1429     //       That might be legal, but we have to deal with poison.
1430     if (LShuf->isSelect() && !LShuf->getMask()->containsUndefElement() &&
1431         RShuf->isSelect() && !RShuf->getMask()->containsUndefElement()) {
1432       // Example:
1433       // LHS = shuffle V1, V2, <0, 5, 6, 3>
1434       // RHS = shuffle V2, V1, <0, 5, 6, 3>
1435       // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1436       Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1437       NewBO->copyIRFlags(&Inst);
1438       return NewBO;
1439     }
1440   }
1441 
1442   // If one argument is a shuffle within one vector and the other is a constant,
1443   // try moving the shuffle after the binary operation. This canonicalization
1444   // intends to move shuffles closer to other shuffles and binops closer to
1445   // other binops, so they can be folded. It may also enable demanded elements
1446   // transforms.
1447   Constant *C;
1448   if (match(&Inst, m_c_BinOp(
1449           m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))),
1450           m_Constant(C))) &&
1451       V1->getType()->getVectorNumElements() <= NumElts) {
1452     assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
1453            "Shuffle should not change scalar type");
1454 
1455     // Find constant NewC that has property:
1456     //   shuffle(NewC, ShMask) = C
1457     // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1458     // reorder is not possible. A 1-to-1 mapping is not required. Example:
1459     // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1460     bool ConstOp1 = isa<Constant>(RHS);
1461     SmallVector<int, 16> ShMask;
1462     ShuffleVectorInst::getShuffleMask(Mask, ShMask);
1463     unsigned SrcVecNumElts = V1->getType()->getVectorNumElements();
1464     UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1465     SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1466     bool MayChange = true;
1467     for (unsigned I = 0; I < NumElts; ++I) {
1468       Constant *CElt = C->getAggregateElement(I);
1469       if (ShMask[I] >= 0) {
1470         assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1471         Constant *NewCElt = NewVecC[ShMask[I]];
1472         // Bail out if:
1473         // 1. The constant vector contains a constant expression.
1474         // 2. The shuffle needs an element of the constant vector that can't
1475         //    be mapped to a new constant vector.
1476         // 3. This is a widening shuffle that copies elements of V1 into the
1477         //    extended elements (extending with undef is allowed).
1478         if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1479             I >= SrcVecNumElts) {
1480           MayChange = false;
1481           break;
1482         }
1483         NewVecC[ShMask[I]] = CElt;
1484       }
1485       // If this is a widening shuffle, we must be able to extend with undef
1486       // elements. If the original binop does not produce an undef in the high
1487       // lanes, then this transform is not safe.
1488       // TODO: We could shuffle those non-undef constant values into the
1489       //       result by using a constant vector (rather than an undef vector)
1490       //       as operand 1 of the new binop, but that might be too aggressive
1491       //       for target-independent shuffle creation.
1492       if (I >= SrcVecNumElts) {
1493         Constant *MaybeUndef =
1494             ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1495                      : ConstantExpr::get(Opcode, CElt, UndefScalar);
1496         if (!isa<UndefValue>(MaybeUndef)) {
1497           MayChange = false;
1498           break;
1499         }
1500       }
1501     }
1502     if (MayChange) {
1503       Constant *NewC = ConstantVector::get(NewVecC);
1504       // It may not be safe to execute a binop on a vector with undef elements
1505       // because the entire instruction can be folded to undef or create poison
1506       // that did not exist in the original code.
1507       if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1508         NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1509 
1510       // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1511       // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1512       Value *NewLHS = ConstOp1 ? V1 : NewC;
1513       Value *NewRHS = ConstOp1 ? NewC : V1;
1514       return createBinOpShuffle(NewLHS, NewRHS, Mask);
1515     }
1516   }
1517 
1518   return nullptr;
1519 }
1520 
1521 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1522 /// of a value. This requires a potentially expensive known bits check to make
1523 /// sure the narrow op does not overflow.
1524 Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) {
1525   // We need at least one extended operand.
1526   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1527 
1528   // If this is a sub, we swap the operands since we always want an extension
1529   // on the RHS. The LHS can be an extension or a constant.
1530   if (BO.getOpcode() == Instruction::Sub)
1531     std::swap(Op0, Op1);
1532 
1533   Value *X;
1534   bool IsSext = match(Op0, m_SExt(m_Value(X)));
1535   if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1536     return nullptr;
1537 
1538   // If both operands are the same extension from the same source type and we
1539   // can eliminate at least one (hasOneUse), this might work.
1540   CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1541   Value *Y;
1542   if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1543         cast<Operator>(Op1)->getOpcode() == CastOpc &&
1544         (Op0->hasOneUse() || Op1->hasOneUse()))) {
1545     // If that did not match, see if we have a suitable constant operand.
1546     // Truncating and extending must produce the same constant.
1547     Constant *WideC;
1548     if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1549       return nullptr;
1550     Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1551     if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1552       return nullptr;
1553     Y = NarrowC;
1554   }
1555 
1556   // Swap back now that we found our operands.
1557   if (BO.getOpcode() == Instruction::Sub)
1558     std::swap(X, Y);
1559 
1560   // Both operands have narrow versions. Last step: the math must not overflow
1561   // in the narrow width.
1562   if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1563     return nullptr;
1564 
1565   // bo (ext X), (ext Y) --> ext (bo X, Y)
1566   // bo (ext X), C       --> ext (bo X, C')
1567   Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1568   if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1569     if (IsSext)
1570       NewBinOp->setHasNoSignedWrap();
1571     else
1572       NewBinOp->setHasNoUnsignedWrap();
1573   }
1574   return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1575 }
1576 
1577 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1578   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1579   Type *GEPType = GEP.getType();
1580   Type *GEPEltType = GEP.getSourceElementType();
1581   if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
1582     return replaceInstUsesWith(GEP, V);
1583 
1584   // For vector geps, use the generic demanded vector support.
1585   if (GEP.getType()->isVectorTy()) {
1586     auto VWidth = GEP.getType()->getVectorNumElements();
1587     APInt UndefElts(VWidth, 0);
1588     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1589     if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
1590                                               UndefElts)) {
1591       if (V != &GEP)
1592         return replaceInstUsesWith(GEP, V);
1593       return &GEP;
1594     }
1595 
1596     // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
1597     // possible (decide on canonical form for pointer broadcast), 3) exploit
1598     // undef elements to decrease demanded bits
1599   }
1600 
1601   Value *PtrOp = GEP.getOperand(0);
1602 
1603   // Eliminate unneeded casts for indices, and replace indices which displace
1604   // by multiples of a zero size type with zero.
1605   bool MadeChange = false;
1606 
1607   // Index width may not be the same width as pointer width.
1608   // Data layout chooses the right type based on supported integer types.
1609   Type *NewScalarIndexTy =
1610       DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1611 
1612   gep_type_iterator GTI = gep_type_begin(GEP);
1613   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1614        ++I, ++GTI) {
1615     // Skip indices into struct types.
1616     if (GTI.isStruct())
1617       continue;
1618 
1619     Type *IndexTy = (*I)->getType();
1620     Type *NewIndexType =
1621         IndexTy->isVectorTy()
1622             ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements())
1623             : NewScalarIndexTy;
1624 
1625     // If the element type has zero size then any index over it is equivalent
1626     // to an index of zero, so replace it with zero if it is not zero already.
1627     Type *EltTy = GTI.getIndexedType();
1628     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0)
1629       if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1630         *I = Constant::getNullValue(NewIndexType);
1631         MadeChange = true;
1632       }
1633 
1634     if (IndexTy != NewIndexType) {
1635       // If we are using a wider index than needed for this platform, shrink
1636       // it to what we need.  If narrower, sign-extend it to what we need.
1637       // This explicit cast can make subsequent optimizations more obvious.
1638       *I = Builder.CreateIntCast(*I, NewIndexType, true);
1639       MadeChange = true;
1640     }
1641   }
1642   if (MadeChange)
1643     return &GEP;
1644 
1645   // Check to see if the inputs to the PHI node are getelementptr instructions.
1646   if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1647     auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1648     if (!Op1)
1649       return nullptr;
1650 
1651     // Don't fold a GEP into itself through a PHI node. This can only happen
1652     // through the back-edge of a loop. Folding a GEP into itself means that
1653     // the value of the previous iteration needs to be stored in the meantime,
1654     // thus requiring an additional register variable to be live, but not
1655     // actually achieving anything (the GEP still needs to be executed once per
1656     // loop iteration).
1657     if (Op1 == &GEP)
1658       return nullptr;
1659 
1660     int DI = -1;
1661 
1662     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1663       auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1664       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1665         return nullptr;
1666 
1667       // As for Op1 above, don't try to fold a GEP into itself.
1668       if (Op2 == &GEP)
1669         return nullptr;
1670 
1671       // Keep track of the type as we walk the GEP.
1672       Type *CurTy = nullptr;
1673 
1674       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1675         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1676           return nullptr;
1677 
1678         if (Op1->getOperand(J) != Op2->getOperand(J)) {
1679           if (DI == -1) {
1680             // We have not seen any differences yet in the GEPs feeding the
1681             // PHI yet, so we record this one if it is allowed to be a
1682             // variable.
1683 
1684             // The first two arguments can vary for any GEP, the rest have to be
1685             // static for struct slots
1686             if (J > 1 && CurTy->isStructTy())
1687               return nullptr;
1688 
1689             DI = J;
1690           } else {
1691             // The GEP is different by more than one input. While this could be
1692             // extended to support GEPs that vary by more than one variable it
1693             // doesn't make sense since it greatly increases the complexity and
1694             // would result in an R+R+R addressing mode which no backend
1695             // directly supports and would need to be broken into several
1696             // simpler instructions anyway.
1697             return nullptr;
1698           }
1699         }
1700 
1701         // Sink down a layer of the type for the next iteration.
1702         if (J > 0) {
1703           if (J == 1) {
1704             CurTy = Op1->getSourceElementType();
1705           } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) {
1706             CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
1707           } else {
1708             CurTy = nullptr;
1709           }
1710         }
1711       }
1712     }
1713 
1714     // If not all GEPs are identical we'll have to create a new PHI node.
1715     // Check that the old PHI node has only one use so that it will get
1716     // removed.
1717     if (DI != -1 && !PN->hasOneUse())
1718       return nullptr;
1719 
1720     auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1721     if (DI == -1) {
1722       // All the GEPs feeding the PHI are identical. Clone one down into our
1723       // BB so that it can be merged with the current GEP.
1724       GEP.getParent()->getInstList().insert(
1725           GEP.getParent()->getFirstInsertionPt(), NewGEP);
1726     } else {
1727       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1728       // into the current block so it can be merged, and create a new PHI to
1729       // set that index.
1730       PHINode *NewPN;
1731       {
1732         IRBuilderBase::InsertPointGuard Guard(Builder);
1733         Builder.SetInsertPoint(PN);
1734         NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
1735                                   PN->getNumOperands());
1736       }
1737 
1738       for (auto &I : PN->operands())
1739         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1740                            PN->getIncomingBlock(I));
1741 
1742       NewGEP->setOperand(DI, NewPN);
1743       GEP.getParent()->getInstList().insert(
1744           GEP.getParent()->getFirstInsertionPt(), NewGEP);
1745       NewGEP->setOperand(DI, NewPN);
1746     }
1747 
1748     GEP.setOperand(0, NewGEP);
1749     PtrOp = NewGEP;
1750   }
1751 
1752   // Combine Indices - If the source pointer to this getelementptr instruction
1753   // is a getelementptr instruction, combine the indices of the two
1754   // getelementptr instructions into a single instruction.
1755   if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
1756     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1757       return nullptr;
1758 
1759     // Try to reassociate loop invariant GEP chains to enable LICM.
1760     if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
1761         Src->hasOneUse()) {
1762       if (Loop *L = LI->getLoopFor(GEP.getParent())) {
1763         Value *GO1 = GEP.getOperand(1);
1764         Value *SO1 = Src->getOperand(1);
1765         // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
1766         // invariant: this breaks the dependence between GEPs and allows LICM
1767         // to hoist the invariant part out of the loop.
1768         if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
1769           // We have to be careful here.
1770           // We have something like:
1771           //  %src = getelementptr <ty>, <ty>* %base, <ty> %idx
1772           //  %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
1773           // If we just swap idx & idx2 then we could inadvertantly
1774           // change %src from a vector to a scalar, or vice versa.
1775           // Cases:
1776           //  1) %base a scalar & idx a scalar & idx2 a vector
1777           //      => Swapping idx & idx2 turns %src into a vector type.
1778           //  2) %base a scalar & idx a vector & idx2 a scalar
1779           //      => Swapping idx & idx2 turns %src in a scalar type
1780           //  3) %base, %idx, and %idx2 are scalars
1781           //      => %src & %gep are scalars
1782           //      => swapping idx & idx2 is safe
1783           //  4) %base a vector
1784           //      => %src is a vector
1785           //      => swapping idx & idx2 is safe.
1786           auto *SO0 = Src->getOperand(0);
1787           auto *SO0Ty = SO0->getType();
1788           if (!isa<VectorType>(GEPType) || // case 3
1789               isa<VectorType>(SO0Ty)) {    // case 4
1790             Src->setOperand(1, GO1);
1791             GEP.setOperand(1, SO1);
1792             return &GEP;
1793           } else {
1794             // Case 1 or 2
1795             // -- have to recreate %src & %gep
1796             // put NewSrc at same location as %src
1797             Builder.SetInsertPoint(cast<Instruction>(PtrOp));
1798             auto *NewSrc = cast<GetElementPtrInst>(
1799                 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()));
1800             NewSrc->setIsInBounds(Src->isInBounds());
1801             auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
1802             NewGEP->setIsInBounds(GEP.isInBounds());
1803             return NewGEP;
1804           }
1805         }
1806       }
1807     }
1808 
1809     // Note that if our source is a gep chain itself then we wait for that
1810     // chain to be resolved before we perform this transformation.  This
1811     // avoids us creating a TON of code in some cases.
1812     if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
1813       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1814         return nullptr;   // Wait until our source is folded to completion.
1815 
1816     SmallVector<Value*, 8> Indices;
1817 
1818     // Find out whether the last index in the source GEP is a sequential idx.
1819     bool EndsWithSequential = false;
1820     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1821          I != E; ++I)
1822       EndsWithSequential = I.isSequential();
1823 
1824     // Can we combine the two pointer arithmetics offsets?
1825     if (EndsWithSequential) {
1826       // Replace: gep (gep %P, long B), long A, ...
1827       // With:    T = long A+B; gep %P, T, ...
1828       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1829       Value *GO1 = GEP.getOperand(1);
1830 
1831       // If they aren't the same type, then the input hasn't been processed
1832       // by the loop above yet (which canonicalizes sequential index types to
1833       // intptr_t).  Just avoid transforming this until the input has been
1834       // normalized.
1835       if (SO1->getType() != GO1->getType())
1836         return nullptr;
1837 
1838       Value *Sum =
1839           SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
1840       // Only do the combine when we are sure the cost after the
1841       // merge is never more than that before the merge.
1842       if (Sum == nullptr)
1843         return nullptr;
1844 
1845       // Update the GEP in place if possible.
1846       if (Src->getNumOperands() == 2) {
1847         GEP.setOperand(0, Src->getOperand(0));
1848         GEP.setOperand(1, Sum);
1849         return &GEP;
1850       }
1851       Indices.append(Src->op_begin()+1, Src->op_end()-1);
1852       Indices.push_back(Sum);
1853       Indices.append(GEP.op_begin()+2, GEP.op_end());
1854     } else if (isa<Constant>(*GEP.idx_begin()) &&
1855                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1856                Src->getNumOperands() != 1) {
1857       // Otherwise we can do the fold if the first index of the GEP is a zero
1858       Indices.append(Src->op_begin()+1, Src->op_end());
1859       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1860     }
1861 
1862     if (!Indices.empty())
1863       return GEP.isInBounds() && Src->isInBounds()
1864                  ? GetElementPtrInst::CreateInBounds(
1865                        Src->getSourceElementType(), Src->getOperand(0), Indices,
1866                        GEP.getName())
1867                  : GetElementPtrInst::Create(Src->getSourceElementType(),
1868                                              Src->getOperand(0), Indices,
1869                                              GEP.getName());
1870   }
1871 
1872   if (GEP.getNumIndices() == 1) {
1873     unsigned AS = GEP.getPointerAddressSpace();
1874     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
1875         DL.getIndexSizeInBits(AS)) {
1876       uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType);
1877 
1878       bool Matched = false;
1879       uint64_t C;
1880       Value *V = nullptr;
1881       if (TyAllocSize == 1) {
1882         V = GEP.getOperand(1);
1883         Matched = true;
1884       } else if (match(GEP.getOperand(1),
1885                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
1886         if (TyAllocSize == 1ULL << C)
1887           Matched = true;
1888       } else if (match(GEP.getOperand(1),
1889                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
1890         if (TyAllocSize == C)
1891           Matched = true;
1892       }
1893 
1894       if (Matched) {
1895         // Canonicalize (gep i8* X, -(ptrtoint Y))
1896         // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
1897         // The GEP pattern is emitted by the SCEV expander for certain kinds of
1898         // pointer arithmetic.
1899         if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
1900           Operator *Index = cast<Operator>(V);
1901           Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
1902           Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
1903           return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
1904         }
1905         // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
1906         // to (bitcast Y)
1907         Value *Y;
1908         if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
1909                            m_PtrToInt(m_Specific(GEP.getOperand(0))))))
1910           return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
1911       }
1912     }
1913   }
1914 
1915   // We do not handle pointer-vector geps here.
1916   if (GEPType->isVectorTy())
1917     return nullptr;
1918 
1919   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1920   Value *StrippedPtr = PtrOp->stripPointerCasts();
1921   PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
1922 
1923   if (StrippedPtr != PtrOp) {
1924     bool HasZeroPointerIndex = false;
1925     Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
1926 
1927     if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1928       HasZeroPointerIndex = C->isZero();
1929 
1930     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1931     // into     : GEP [10 x i8]* X, i32 0, ...
1932     //
1933     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1934     //           into     : GEP i8* X, ...
1935     //
1936     // This occurs when the program declares an array extern like "int X[];"
1937     if (HasZeroPointerIndex) {
1938       if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
1939         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1940         if (CATy->getElementType() == StrippedPtrEltTy) {
1941           // -> GEP i8* X, ...
1942           SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1943           GetElementPtrInst *Res = GetElementPtrInst::Create(
1944               StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
1945           Res->setIsInBounds(GEP.isInBounds());
1946           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
1947             return Res;
1948           // Insert Res, and create an addrspacecast.
1949           // e.g.,
1950           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
1951           // ->
1952           // %0 = GEP i8 addrspace(1)* X, ...
1953           // addrspacecast i8 addrspace(1)* %0 to i8*
1954           return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
1955         }
1956 
1957         if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
1958           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
1959           if (CATy->getElementType() == XATy->getElementType()) {
1960             // -> GEP [10 x i8]* X, i32 0, ...
1961             // At this point, we know that the cast source type is a pointer
1962             // to an array of the same type as the destination pointer
1963             // array.  Because the array type is never stepped over (there
1964             // is a leading zero) we can fold the cast into this GEP.
1965             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
1966               GEP.setOperand(0, StrippedPtr);
1967               GEP.setSourceElementType(XATy);
1968               return &GEP;
1969             }
1970             // Cannot replace the base pointer directly because StrippedPtr's
1971             // address space is different. Instead, create a new GEP followed by
1972             // an addrspacecast.
1973             // e.g.,
1974             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
1975             //   i32 0, ...
1976             // ->
1977             // %0 = GEP [10 x i8] addrspace(1)* X, ...
1978             // addrspacecast i8 addrspace(1)* %0 to i8*
1979             SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
1980             Value *NewGEP =
1981                 GEP.isInBounds()
1982                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
1983                                                 Idx, GEP.getName())
1984                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
1985                                         GEP.getName());
1986             return new AddrSpaceCastInst(NewGEP, GEPType);
1987           }
1988         }
1989       }
1990     } else if (GEP.getNumOperands() == 2) {
1991       // Transform things like:
1992       // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1993       // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
1994       if (StrippedPtrEltTy->isArrayTy() &&
1995           DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
1996               DL.getTypeAllocSize(GEPEltType)) {
1997         Type *IdxType = DL.getIndexType(GEPType);
1998         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
1999         Value *NewGEP =
2000             GEP.isInBounds()
2001                 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2002                                             GEP.getName())
2003                 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2004                                     GEP.getName());
2005 
2006         // V and GEP are both pointer types --> BitCast
2007         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2008       }
2009 
2010       // Transform things like:
2011       // %V = mul i64 %N, 4
2012       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2013       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
2014       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2015         // Check that changing the type amounts to dividing the index by a scale
2016         // factor.
2017         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
2018         uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy);
2019         if (ResSize && SrcSize % ResSize == 0) {
2020           Value *Idx = GEP.getOperand(1);
2021           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2022           uint64_t Scale = SrcSize / ResSize;
2023 
2024           // Earlier transforms ensure that the index has the right type
2025           // according to Data Layout, which considerably simplifies the
2026           // logic by eliminating implicit casts.
2027           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2028                  "Index type does not match the Data Layout preferences");
2029 
2030           bool NSW;
2031           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2032             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2033             // If the multiplication NewIdx * Scale may overflow then the new
2034             // GEP may not be "inbounds".
2035             Value *NewGEP =
2036                 GEP.isInBounds() && NSW
2037                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2038                                                 NewIdx, GEP.getName())
2039                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2040                                         GEP.getName());
2041 
2042             // The NewGEP must be pointer typed, so must the old one -> BitCast
2043             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2044                                                                  GEPType);
2045           }
2046         }
2047       }
2048 
2049       // Similarly, transform things like:
2050       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2051       //   (where tmp = 8*tmp2) into:
2052       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2053       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2054           StrippedPtrEltTy->isArrayTy()) {
2055         // Check that changing to the array element type amounts to dividing the
2056         // index by a scale factor.
2057         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
2058         uint64_t ArrayEltSize =
2059             DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType());
2060         if (ResSize && ArrayEltSize % ResSize == 0) {
2061           Value *Idx = GEP.getOperand(1);
2062           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2063           uint64_t Scale = ArrayEltSize / ResSize;
2064 
2065           // Earlier transforms ensure that the index has the right type
2066           // according to the Data Layout, which considerably simplifies
2067           // the logic by eliminating implicit casts.
2068           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2069                  "Index type does not match the Data Layout preferences");
2070 
2071           bool NSW;
2072           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2073             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2074             // If the multiplication NewIdx * Scale may overflow then the new
2075             // GEP may not be "inbounds".
2076             Type *IndTy = DL.getIndexType(GEPType);
2077             Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2078 
2079             Value *NewGEP =
2080                 GEP.isInBounds() && NSW
2081                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2082                                                 Off, GEP.getName())
2083                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2084                                         GEP.getName());
2085             // The NewGEP must be pointer typed, so must the old one -> BitCast
2086             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2087                                                                  GEPType);
2088           }
2089         }
2090       }
2091     }
2092   }
2093 
2094   // addrspacecast between types is canonicalized as a bitcast, then an
2095   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2096   // through the addrspacecast.
2097   Value *ASCStrippedPtrOp = PtrOp;
2098   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2099     //   X = bitcast A addrspace(1)* to B addrspace(1)*
2100     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2101     //   Z = gep Y, <...constant indices...>
2102     // Into an addrspacecasted GEP of the struct.
2103     if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2104       ASCStrippedPtrOp = BC;
2105   }
2106 
2107   if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2108     Value *SrcOp = BCI->getOperand(0);
2109     PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2110     Type *SrcEltType = SrcType->getElementType();
2111 
2112     // GEP directly using the source operand if this GEP is accessing an element
2113     // of a bitcasted pointer to vector or array of the same dimensions:
2114     // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2115     // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2116     auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy) {
2117       return ArrTy->getArrayElementType() == VecTy->getVectorElementType() &&
2118              ArrTy->getArrayNumElements() == VecTy->getVectorNumElements();
2119     };
2120     if (GEP.getNumOperands() == 3 &&
2121         ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() &&
2122           areMatchingArrayAndVecTypes(GEPEltType, SrcEltType)) ||
2123          (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() &&
2124           areMatchingArrayAndVecTypes(SrcEltType, GEPEltType)))) {
2125 
2126       // Create a new GEP here, as using `setOperand()` followed by
2127       // `setSourceElementType()` won't actually update the type of the
2128       // existing GEP Value. Causing issues if this Value is accessed when
2129       // constructing an AddrSpaceCastInst
2130       Value *NGEP =
2131           GEP.isInBounds()
2132               ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
2133               : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
2134       NGEP->takeName(&GEP);
2135 
2136       // Preserve GEP address space to satisfy users
2137       if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2138         return new AddrSpaceCastInst(NGEP, GEPType);
2139 
2140       return replaceInstUsesWith(GEP, NGEP);
2141     }
2142 
2143     // See if we can simplify:
2144     //   X = bitcast A* to B*
2145     //   Y = gep X, <...constant indices...>
2146     // into a gep of the original struct. This is important for SROA and alias
2147     // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2148     unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2149     APInt Offset(OffsetBits, 0);
2150     if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
2151       // If this GEP instruction doesn't move the pointer, just replace the GEP
2152       // with a bitcast of the real input to the dest type.
2153       if (!Offset) {
2154         // If the bitcast is of an allocation, and the allocation will be
2155         // converted to match the type of the cast, don't touch this.
2156         if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
2157           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2158           if (Instruction *I = visitBitCast(*BCI)) {
2159             if (I != BCI) {
2160               I->takeName(BCI);
2161               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2162               replaceInstUsesWith(*BCI, I);
2163             }
2164             return &GEP;
2165           }
2166         }
2167 
2168         if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2169           return new AddrSpaceCastInst(SrcOp, GEPType);
2170         return new BitCastInst(SrcOp, GEPType);
2171       }
2172 
2173       // Otherwise, if the offset is non-zero, we need to find out if there is a
2174       // field at Offset in 'A's type.  If so, we can pull the cast through the
2175       // GEP.
2176       SmallVector<Value*, 8> NewIndices;
2177       if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2178         Value *NGEP =
2179             GEP.isInBounds()
2180                 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2181                 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2182 
2183         if (NGEP->getType() == GEPType)
2184           return replaceInstUsesWith(GEP, NGEP);
2185         NGEP->takeName(&GEP);
2186 
2187         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2188           return new AddrSpaceCastInst(NGEP, GEPType);
2189         return new BitCastInst(NGEP, GEPType);
2190       }
2191     }
2192   }
2193 
2194   if (!GEP.isInBounds()) {
2195     unsigned IdxWidth =
2196         DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2197     APInt BasePtrOffset(IdxWidth, 0);
2198     Value *UnderlyingPtrOp =
2199             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2200                                                              BasePtrOffset);
2201     if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2202       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2203           BasePtrOffset.isNonNegative()) {
2204         APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType()));
2205         if (BasePtrOffset.ule(AllocSize)) {
2206           return GetElementPtrInst::CreateInBounds(
2207               GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
2208               GEP.getName());
2209         }
2210       }
2211     }
2212   }
2213 
2214   return nullptr;
2215 }
2216 
2217 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
2218                                          Instruction *AI) {
2219   if (isa<ConstantPointerNull>(V))
2220     return true;
2221   if (auto *LI = dyn_cast<LoadInst>(V))
2222     return isa<GlobalVariable>(LI->getPointerOperand());
2223   // Two distinct allocations will never be equal.
2224   // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2225   // through bitcasts of V can cause
2226   // the result statement below to be true, even when AI and V (ex:
2227   // i8* ->i32* ->i8* of AI) are the same allocations.
2228   return isAllocLikeFn(V, TLI) && V != AI;
2229 }
2230 
2231 static bool isAllocSiteRemovable(Instruction *AI,
2232                                  SmallVectorImpl<WeakTrackingVH> &Users,
2233                                  const TargetLibraryInfo *TLI) {
2234   SmallVector<Instruction*, 4> Worklist;
2235   Worklist.push_back(AI);
2236 
2237   do {
2238     Instruction *PI = Worklist.pop_back_val();
2239     for (User *U : PI->users()) {
2240       Instruction *I = cast<Instruction>(U);
2241       switch (I->getOpcode()) {
2242       default:
2243         // Give up the moment we see something we can't handle.
2244         return false;
2245 
2246       case Instruction::AddrSpaceCast:
2247       case Instruction::BitCast:
2248       case Instruction::GetElementPtr:
2249         Users.emplace_back(I);
2250         Worklist.push_back(I);
2251         continue;
2252 
2253       case Instruction::ICmp: {
2254         ICmpInst *ICI = cast<ICmpInst>(I);
2255         // We can fold eq/ne comparisons with null to false/true, respectively.
2256         // We also fold comparisons in some conditions provided the alloc has
2257         // not escaped (see isNeverEqualToUnescapedAlloc).
2258         if (!ICI->isEquality())
2259           return false;
2260         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2261         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2262           return false;
2263         Users.emplace_back(I);
2264         continue;
2265       }
2266 
2267       case Instruction::Call:
2268         // Ignore no-op and store intrinsics.
2269         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2270           switch (II->getIntrinsicID()) {
2271           default:
2272             return false;
2273 
2274           case Intrinsic::memmove:
2275           case Intrinsic::memcpy:
2276           case Intrinsic::memset: {
2277             MemIntrinsic *MI = cast<MemIntrinsic>(II);
2278             if (MI->isVolatile() || MI->getRawDest() != PI)
2279               return false;
2280             LLVM_FALLTHROUGH;
2281           }
2282           case Intrinsic::invariant_start:
2283           case Intrinsic::invariant_end:
2284           case Intrinsic::lifetime_start:
2285           case Intrinsic::lifetime_end:
2286           case Intrinsic::objectsize:
2287             Users.emplace_back(I);
2288             continue;
2289           }
2290         }
2291 
2292         if (isFreeCall(I, TLI)) {
2293           Users.emplace_back(I);
2294           continue;
2295         }
2296         return false;
2297 
2298       case Instruction::Store: {
2299         StoreInst *SI = cast<StoreInst>(I);
2300         if (SI->isVolatile() || SI->getPointerOperand() != PI)
2301           return false;
2302         Users.emplace_back(I);
2303         continue;
2304       }
2305       }
2306       llvm_unreachable("missing a return?");
2307     }
2308   } while (!Worklist.empty());
2309   return true;
2310 }
2311 
2312 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
2313   // If we have a malloc call which is only used in any amount of comparisons to
2314   // null and free calls, delete the calls and replace the comparisons with true
2315   // or false as appropriate.
2316 
2317   // This is based on the principle that we can substitute our own allocation
2318   // function (which will never return null) rather than knowledge of the
2319   // specific function being called. In some sense this can change the permitted
2320   // outputs of a program (when we convert a malloc to an alloca, the fact that
2321   // the allocation is now on the stack is potentially visible, for example),
2322   // but we believe in a permissible manner.
2323   SmallVector<WeakTrackingVH, 64> Users;
2324 
2325   // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2326   // before each store.
2327   TinyPtrVector<DbgVariableIntrinsic *> DIIs;
2328   std::unique_ptr<DIBuilder> DIB;
2329   if (isa<AllocaInst>(MI)) {
2330     DIIs = FindDbgAddrUses(&MI);
2331     DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2332   }
2333 
2334   if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2335     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2336       // Lowering all @llvm.objectsize calls first because they may
2337       // use a bitcast/GEP of the alloca we are removing.
2338       if (!Users[i])
2339        continue;
2340 
2341       Instruction *I = cast<Instruction>(&*Users[i]);
2342 
2343       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2344         if (II->getIntrinsicID() == Intrinsic::objectsize) {
2345           Value *Result =
2346               lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2347           replaceInstUsesWith(*I, Result);
2348           eraseInstFromFunction(*I);
2349           Users[i] = nullptr; // Skip examining in the next loop.
2350         }
2351       }
2352     }
2353     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2354       if (!Users[i])
2355         continue;
2356 
2357       Instruction *I = cast<Instruction>(&*Users[i]);
2358 
2359       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2360         replaceInstUsesWith(*C,
2361                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
2362                                              C->isFalseWhenEqual()));
2363       } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) ||
2364                  isa<AddrSpaceCastInst>(I)) {
2365         replaceInstUsesWith(*I, UndefValue::get(I->getType()));
2366       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2367         for (auto *DII : DIIs)
2368           ConvertDebugDeclareToDebugValue(DII, SI, *DIB);
2369       }
2370       eraseInstFromFunction(*I);
2371     }
2372 
2373     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2374       // Replace invoke with a NOP intrinsic to maintain the original CFG
2375       Module *M = II->getModule();
2376       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2377       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2378                          None, "", II->getParent());
2379     }
2380 
2381     for (auto *DII : DIIs)
2382       eraseInstFromFunction(*DII);
2383 
2384     return eraseInstFromFunction(MI);
2385   }
2386   return nullptr;
2387 }
2388 
2389 /// Move the call to free before a NULL test.
2390 ///
2391 /// Check if this free is accessed after its argument has been test
2392 /// against NULL (property 0).
2393 /// If yes, it is legal to move this call in its predecessor block.
2394 ///
2395 /// The move is performed only if the block containing the call to free
2396 /// will be removed, i.e.:
2397 /// 1. it has only one predecessor P, and P has two successors
2398 /// 2. it contains the call, noops, and an unconditional branch
2399 /// 3. its successor is the same as its predecessor's successor
2400 ///
2401 /// The profitability is out-of concern here and this function should
2402 /// be called only if the caller knows this transformation would be
2403 /// profitable (e.g., for code size).
2404 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2405                                                 const DataLayout &DL) {
2406   Value *Op = FI.getArgOperand(0);
2407   BasicBlock *FreeInstrBB = FI.getParent();
2408   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2409 
2410   // Validate part of constraint #1: Only one predecessor
2411   // FIXME: We can extend the number of predecessor, but in that case, we
2412   //        would duplicate the call to free in each predecessor and it may
2413   //        not be profitable even for code size.
2414   if (!PredBB)
2415     return nullptr;
2416 
2417   // Validate constraint #2: Does this block contains only the call to
2418   //                         free, noops, and an unconditional branch?
2419   BasicBlock *SuccBB;
2420   Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2421   if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2422     return nullptr;
2423 
2424   // If there are only 2 instructions in the block, at this point,
2425   // this is the call to free and unconditional.
2426   // If there are more than 2 instructions, check that they are noops
2427   // i.e., they won't hurt the performance of the generated code.
2428   if (FreeInstrBB->size() != 2) {
2429     for (const Instruction &Inst : *FreeInstrBB) {
2430       if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2431         continue;
2432       auto *Cast = dyn_cast<CastInst>(&Inst);
2433       if (!Cast || !Cast->isNoopCast(DL))
2434         return nullptr;
2435     }
2436   }
2437   // Validate the rest of constraint #1 by matching on the pred branch.
2438   Instruction *TI = PredBB->getTerminator();
2439   BasicBlock *TrueBB, *FalseBB;
2440   ICmpInst::Predicate Pred;
2441   if (!match(TI, m_Br(m_ICmp(Pred,
2442                              m_CombineOr(m_Specific(Op),
2443                                          m_Specific(Op->stripPointerCasts())),
2444                              m_Zero()),
2445                       TrueBB, FalseBB)))
2446     return nullptr;
2447   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2448     return nullptr;
2449 
2450   // Validate constraint #3: Ensure the null case just falls through.
2451   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2452     return nullptr;
2453   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2454          "Broken CFG: missing edge from predecessor to successor");
2455 
2456   // At this point, we know that everything in FreeInstrBB can be moved
2457   // before TI.
2458   for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
2459        It != End;) {
2460     Instruction &Instr = *It++;
2461     if (&Instr == FreeInstrBBTerminator)
2462       break;
2463     Instr.moveBefore(TI);
2464   }
2465   assert(FreeInstrBB->size() == 1 &&
2466          "Only the branch instruction should remain");
2467   return &FI;
2468 }
2469 
2470 Instruction *InstCombiner::visitFree(CallInst &FI) {
2471   Value *Op = FI.getArgOperand(0);
2472 
2473   // free undef -> unreachable.
2474   if (isa<UndefValue>(Op)) {
2475     // Insert a new store to null because we cannot modify the CFG here.
2476     Builder.CreateStore(ConstantInt::getTrue(FI.getContext()),
2477                         UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
2478     return eraseInstFromFunction(FI);
2479   }
2480 
2481   // If we have 'free null' delete the instruction.  This can happen in stl code
2482   // when lots of inlining happens.
2483   if (isa<ConstantPointerNull>(Op))
2484     return eraseInstFromFunction(FI);
2485 
2486   // If we optimize for code size, try to move the call to free before the null
2487   // test so that simplify cfg can remove the empty block and dead code
2488   // elimination the branch. I.e., helps to turn something like:
2489   // if (foo) free(foo);
2490   // into
2491   // free(foo);
2492   if (MinimizeSize)
2493     if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2494       return I;
2495 
2496   return nullptr;
2497 }
2498 
2499 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
2500   if (RI.getNumOperands() == 0) // ret void
2501     return nullptr;
2502 
2503   Value *ResultOp = RI.getOperand(0);
2504   Type *VTy = ResultOp->getType();
2505   if (!VTy->isIntegerTy())
2506     return nullptr;
2507 
2508   // There might be assume intrinsics dominating this return that completely
2509   // determine the value. If so, constant fold it.
2510   KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2511   if (Known.isConstant())
2512     RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant()));
2513 
2514   return nullptr;
2515 }
2516 
2517 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2518   // Change br (not X), label True, label False to: br X, label False, True
2519   Value *X = nullptr;
2520   BasicBlock *TrueDest;
2521   BasicBlock *FalseDest;
2522   if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
2523       !isa<Constant>(X)) {
2524     // Swap Destinations and condition...
2525     BI.setCondition(X);
2526     BI.swapSuccessors();
2527     return &BI;
2528   }
2529 
2530   // If the condition is irrelevant, remove the use so that other
2531   // transforms on the condition become more effective.
2532   if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) &&
2533       BI.getSuccessor(0) == BI.getSuccessor(1)) {
2534     BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType()));
2535     return &BI;
2536   }
2537 
2538   // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq.
2539   CmpInst::Predicate Pred;
2540   if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), TrueDest,
2541                       FalseDest)) &&
2542       !isCanonicalPredicate(Pred)) {
2543     // Swap destinations and condition.
2544     CmpInst *Cond = cast<CmpInst>(BI.getCondition());
2545     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2546     BI.swapSuccessors();
2547     Worklist.Add(Cond);
2548     return &BI;
2549   }
2550 
2551   return nullptr;
2552 }
2553 
2554 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
2555   Value *Cond = SI.getCondition();
2556   Value *Op0;
2557   ConstantInt *AddRHS;
2558   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
2559     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2560     for (auto Case : SI.cases()) {
2561       Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
2562       assert(isa<ConstantInt>(NewCase) &&
2563              "Result of expression should be constant");
2564       Case.setValue(cast<ConstantInt>(NewCase));
2565     }
2566     SI.setCondition(Op0);
2567     return &SI;
2568   }
2569 
2570   KnownBits Known = computeKnownBits(Cond, 0, &SI);
2571   unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
2572   unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
2573 
2574   // Compute the number of leading bits we can ignore.
2575   // TODO: A better way to determine this would use ComputeNumSignBits().
2576   for (auto &C : SI.cases()) {
2577     LeadingKnownZeros = std::min(
2578         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2579     LeadingKnownOnes = std::min(
2580         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2581   }
2582 
2583   unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
2584 
2585   // Shrink the condition operand if the new type is smaller than the old type.
2586   // But do not shrink to a non-standard type, because backend can't generate
2587   // good code for that yet.
2588   // TODO: We can make it aggressive again after fixing PR39569.
2589   if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
2590       shouldChangeType(Known.getBitWidth(), NewWidth)) {
2591     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2592     Builder.SetInsertPoint(&SI);
2593     Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
2594     SI.setCondition(NewCond);
2595 
2596     for (auto Case : SI.cases()) {
2597       APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
2598       Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
2599     }
2600     return &SI;
2601   }
2602 
2603   return nullptr;
2604 }
2605 
2606 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
2607   Value *Agg = EV.getAggregateOperand();
2608 
2609   if (!EV.hasIndices())
2610     return replaceInstUsesWith(EV, Agg);
2611 
2612   if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
2613                                           SQ.getWithInstruction(&EV)))
2614     return replaceInstUsesWith(EV, V);
2615 
2616   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2617     // We're extracting from an insertvalue instruction, compare the indices
2618     const unsigned *exti, *exte, *insi, *inse;
2619     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2620          exte = EV.idx_end(), inse = IV->idx_end();
2621          exti != exte && insi != inse;
2622          ++exti, ++insi) {
2623       if (*insi != *exti)
2624         // The insert and extract both reference distinctly different elements.
2625         // This means the extract is not influenced by the insert, and we can
2626         // replace the aggregate operand of the extract with the aggregate
2627         // operand of the insert. i.e., replace
2628         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2629         // %E = extractvalue { i32, { i32 } } %I, 0
2630         // with
2631         // %E = extractvalue { i32, { i32 } } %A, 0
2632         return ExtractValueInst::Create(IV->getAggregateOperand(),
2633                                         EV.getIndices());
2634     }
2635     if (exti == exte && insi == inse)
2636       // Both iterators are at the end: Index lists are identical. Replace
2637       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2638       // %C = extractvalue { i32, { i32 } } %B, 1, 0
2639       // with "i32 42"
2640       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
2641     if (exti == exte) {
2642       // The extract list is a prefix of the insert list. i.e. replace
2643       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2644       // %E = extractvalue { i32, { i32 } } %I, 1
2645       // with
2646       // %X = extractvalue { i32, { i32 } } %A, 1
2647       // %E = insertvalue { i32 } %X, i32 42, 0
2648       // by switching the order of the insert and extract (though the
2649       // insertvalue should be left in, since it may have other uses).
2650       Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
2651                                                 EV.getIndices());
2652       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
2653                                      makeArrayRef(insi, inse));
2654     }
2655     if (insi == inse)
2656       // The insert list is a prefix of the extract list
2657       // We can simply remove the common indices from the extract and make it
2658       // operate on the inserted value instead of the insertvalue result.
2659       // i.e., replace
2660       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2661       // %E = extractvalue { i32, { i32 } } %I, 1, 0
2662       // with
2663       // %E extractvalue { i32 } { i32 42 }, 0
2664       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
2665                                       makeArrayRef(exti, exte));
2666   }
2667   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
2668     // We're extracting from an intrinsic, see if we're the only user, which
2669     // allows us to simplify multiple result intrinsics to simpler things that
2670     // just get one value.
2671     if (II->hasOneUse()) {
2672       // Check if we're grabbing the overflow bit or the result of a 'with
2673       // overflow' intrinsic.  If it's the latter we can remove the intrinsic
2674       // and replace it with a traditional binary instruction.
2675       switch (II->getIntrinsicID()) {
2676       case Intrinsic::uadd_with_overflow:
2677       case Intrinsic::sadd_with_overflow:
2678         if (*EV.idx_begin() == 0) {  // Normal result.
2679           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2680           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2681           eraseInstFromFunction(*II);
2682           return BinaryOperator::CreateAdd(LHS, RHS);
2683         }
2684 
2685         // If the normal result of the add is dead, and the RHS is a constant,
2686         // we can transform this into a range comparison.
2687         // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
2688         if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2689           if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
2690             return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
2691                                 ConstantExpr::getNot(CI));
2692         break;
2693       case Intrinsic::usub_with_overflow:
2694       case Intrinsic::ssub_with_overflow:
2695         if (*EV.idx_begin() == 0) {  // Normal result.
2696           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2697           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2698           eraseInstFromFunction(*II);
2699           return BinaryOperator::CreateSub(LHS, RHS);
2700         }
2701         break;
2702       case Intrinsic::umul_with_overflow:
2703       case Intrinsic::smul_with_overflow:
2704         if (*EV.idx_begin() == 0) {  // Normal result.
2705           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2706           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2707           eraseInstFromFunction(*II);
2708           return BinaryOperator::CreateMul(LHS, RHS);
2709         }
2710         break;
2711       default:
2712         break;
2713       }
2714     }
2715   }
2716   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2717     // If the (non-volatile) load only has one use, we can rewrite this to a
2718     // load from a GEP. This reduces the size of the load. If a load is used
2719     // only by extractvalue instructions then this either must have been
2720     // optimized before, or it is a struct with padding, in which case we
2721     // don't want to do the transformation as it loses padding knowledge.
2722     if (L->isSimple() && L->hasOneUse()) {
2723       // extractvalue has integer indices, getelementptr has Value*s. Convert.
2724       SmallVector<Value*, 4> Indices;
2725       // Prefix an i32 0 since we need the first element.
2726       Indices.push_back(Builder.getInt32(0));
2727       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2728             I != E; ++I)
2729         Indices.push_back(Builder.getInt32(*I));
2730 
2731       // We need to insert these at the location of the old load, not at that of
2732       // the extractvalue.
2733       Builder.SetInsertPoint(L);
2734       Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
2735                                              L->getPointerOperand(), Indices);
2736       Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
2737       // Whatever aliasing information we had for the orignal load must also
2738       // hold for the smaller load, so propagate the annotations.
2739       AAMDNodes Nodes;
2740       L->getAAMetadata(Nodes);
2741       NL->setAAMetadata(Nodes);
2742       // Returning the load directly will cause the main loop to insert it in
2743       // the wrong spot, so use replaceInstUsesWith().
2744       return replaceInstUsesWith(EV, NL);
2745     }
2746   // We could simplify extracts from other values. Note that nested extracts may
2747   // already be simplified implicitly by the above: extract (extract (insert) )
2748   // will be translated into extract ( insert ( extract ) ) first and then just
2749   // the value inserted, if appropriate. Similarly for extracts from single-use
2750   // loads: extract (extract (load)) will be translated to extract (load (gep))
2751   // and if again single-use then via load (gep (gep)) to load (gep).
2752   // However, double extracts from e.g. function arguments or return values
2753   // aren't handled yet.
2754   return nullptr;
2755 }
2756 
2757 /// Return 'true' if the given typeinfo will match anything.
2758 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
2759   switch (Personality) {
2760   case EHPersonality::GNU_C:
2761   case EHPersonality::GNU_C_SjLj:
2762   case EHPersonality::Rust:
2763     // The GCC C EH and Rust personality only exists to support cleanups, so
2764     // it's not clear what the semantics of catch clauses are.
2765     return false;
2766   case EHPersonality::Unknown:
2767     return false;
2768   case EHPersonality::GNU_Ada:
2769     // While __gnat_all_others_value will match any Ada exception, it doesn't
2770     // match foreign exceptions (or didn't, before gcc-4.7).
2771     return false;
2772   case EHPersonality::GNU_CXX:
2773   case EHPersonality::GNU_CXX_SjLj:
2774   case EHPersonality::GNU_ObjC:
2775   case EHPersonality::MSVC_X86SEH:
2776   case EHPersonality::MSVC_Win64SEH:
2777   case EHPersonality::MSVC_CXX:
2778   case EHPersonality::CoreCLR:
2779   case EHPersonality::Wasm_CXX:
2780     return TypeInfo->isNullValue();
2781   }
2782   llvm_unreachable("invalid enum");
2783 }
2784 
2785 static bool shorter_filter(const Value *LHS, const Value *RHS) {
2786   return
2787     cast<ArrayType>(LHS->getType())->getNumElements()
2788   <
2789     cast<ArrayType>(RHS->getType())->getNumElements();
2790 }
2791 
2792 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
2793   // The logic here should be correct for any real-world personality function.
2794   // However if that turns out not to be true, the offending logic can always
2795   // be conditioned on the personality function, like the catch-all logic is.
2796   EHPersonality Personality =
2797       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
2798 
2799   // Simplify the list of clauses, eg by removing repeated catch clauses
2800   // (these are often created by inlining).
2801   bool MakeNewInstruction = false; // If true, recreate using the following:
2802   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
2803   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
2804 
2805   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
2806   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
2807     bool isLastClause = i + 1 == e;
2808     if (LI.isCatch(i)) {
2809       // A catch clause.
2810       Constant *CatchClause = LI.getClause(i);
2811       Constant *TypeInfo = CatchClause->stripPointerCasts();
2812 
2813       // If we already saw this clause, there is no point in having a second
2814       // copy of it.
2815       if (AlreadyCaught.insert(TypeInfo).second) {
2816         // This catch clause was not already seen.
2817         NewClauses.push_back(CatchClause);
2818       } else {
2819         // Repeated catch clause - drop the redundant copy.
2820         MakeNewInstruction = true;
2821       }
2822 
2823       // If this is a catch-all then there is no point in keeping any following
2824       // clauses or marking the landingpad as having a cleanup.
2825       if (isCatchAll(Personality, TypeInfo)) {
2826         if (!isLastClause)
2827           MakeNewInstruction = true;
2828         CleanupFlag = false;
2829         break;
2830       }
2831     } else {
2832       // A filter clause.  If any of the filter elements were already caught
2833       // then they can be dropped from the filter.  It is tempting to try to
2834       // exploit the filter further by saying that any typeinfo that does not
2835       // occur in the filter can't be caught later (and thus can be dropped).
2836       // However this would be wrong, since typeinfos can match without being
2837       // equal (for example if one represents a C++ class, and the other some
2838       // class derived from it).
2839       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
2840       Constant *FilterClause = LI.getClause(i);
2841       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
2842       unsigned NumTypeInfos = FilterType->getNumElements();
2843 
2844       // An empty filter catches everything, so there is no point in keeping any
2845       // following clauses or marking the landingpad as having a cleanup.  By
2846       // dealing with this case here the following code is made a bit simpler.
2847       if (!NumTypeInfos) {
2848         NewClauses.push_back(FilterClause);
2849         if (!isLastClause)
2850           MakeNewInstruction = true;
2851         CleanupFlag = false;
2852         break;
2853       }
2854 
2855       bool MakeNewFilter = false; // If true, make a new filter.
2856       SmallVector<Constant *, 16> NewFilterElts; // New elements.
2857       if (isa<ConstantAggregateZero>(FilterClause)) {
2858         // Not an empty filter - it contains at least one null typeinfo.
2859         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
2860         Constant *TypeInfo =
2861           Constant::getNullValue(FilterType->getElementType());
2862         // If this typeinfo is a catch-all then the filter can never match.
2863         if (isCatchAll(Personality, TypeInfo)) {
2864           // Throw the filter away.
2865           MakeNewInstruction = true;
2866           continue;
2867         }
2868 
2869         // There is no point in having multiple copies of this typeinfo, so
2870         // discard all but the first copy if there is more than one.
2871         NewFilterElts.push_back(TypeInfo);
2872         if (NumTypeInfos > 1)
2873           MakeNewFilter = true;
2874       } else {
2875         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
2876         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
2877         NewFilterElts.reserve(NumTypeInfos);
2878 
2879         // Remove any filter elements that were already caught or that already
2880         // occurred in the filter.  While there, see if any of the elements are
2881         // catch-alls.  If so, the filter can be discarded.
2882         bool SawCatchAll = false;
2883         for (unsigned j = 0; j != NumTypeInfos; ++j) {
2884           Constant *Elt = Filter->getOperand(j);
2885           Constant *TypeInfo = Elt->stripPointerCasts();
2886           if (isCatchAll(Personality, TypeInfo)) {
2887             // This element is a catch-all.  Bail out, noting this fact.
2888             SawCatchAll = true;
2889             break;
2890           }
2891 
2892           // Even if we've seen a type in a catch clause, we don't want to
2893           // remove it from the filter.  An unexpected type handler may be
2894           // set up for a call site which throws an exception of the same
2895           // type caught.  In order for the exception thrown by the unexpected
2896           // handler to propagate correctly, the filter must be correctly
2897           // described for the call site.
2898           //
2899           // Example:
2900           //
2901           // void unexpected() { throw 1;}
2902           // void foo() throw (int) {
2903           //   std::set_unexpected(unexpected);
2904           //   try {
2905           //     throw 2.0;
2906           //   } catch (int i) {}
2907           // }
2908 
2909           // There is no point in having multiple copies of the same typeinfo in
2910           // a filter, so only add it if we didn't already.
2911           if (SeenInFilter.insert(TypeInfo).second)
2912             NewFilterElts.push_back(cast<Constant>(Elt));
2913         }
2914         // A filter containing a catch-all cannot match anything by definition.
2915         if (SawCatchAll) {
2916           // Throw the filter away.
2917           MakeNewInstruction = true;
2918           continue;
2919         }
2920 
2921         // If we dropped something from the filter, make a new one.
2922         if (NewFilterElts.size() < NumTypeInfos)
2923           MakeNewFilter = true;
2924       }
2925       if (MakeNewFilter) {
2926         FilterType = ArrayType::get(FilterType->getElementType(),
2927                                     NewFilterElts.size());
2928         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2929         MakeNewInstruction = true;
2930       }
2931 
2932       NewClauses.push_back(FilterClause);
2933 
2934       // If the new filter is empty then it will catch everything so there is
2935       // no point in keeping any following clauses or marking the landingpad
2936       // as having a cleanup.  The case of the original filter being empty was
2937       // already handled above.
2938       if (MakeNewFilter && !NewFilterElts.size()) {
2939         assert(MakeNewInstruction && "New filter but not a new instruction!");
2940         CleanupFlag = false;
2941         break;
2942       }
2943     }
2944   }
2945 
2946   // If several filters occur in a row then reorder them so that the shortest
2947   // filters come first (those with the smallest number of elements).  This is
2948   // advantageous because shorter filters are more likely to match, speeding up
2949   // unwinding, but mostly because it increases the effectiveness of the other
2950   // filter optimizations below.
2951   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2952     unsigned j;
2953     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2954     for (j = i; j != e; ++j)
2955       if (!isa<ArrayType>(NewClauses[j]->getType()))
2956         break;
2957 
2958     // Check whether the filters are already sorted by length.  We need to know
2959     // if sorting them is actually going to do anything so that we only make a
2960     // new landingpad instruction if it does.
2961     for (unsigned k = i; k + 1 < j; ++k)
2962       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2963         // Not sorted, so sort the filters now.  Doing an unstable sort would be
2964         // correct too but reordering filters pointlessly might confuse users.
2965         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2966                          shorter_filter);
2967         MakeNewInstruction = true;
2968         break;
2969       }
2970 
2971     // Look for the next batch of filters.
2972     i = j + 1;
2973   }
2974 
2975   // If typeinfos matched if and only if equal, then the elements of a filter L
2976   // that occurs later than a filter F could be replaced by the intersection of
2977   // the elements of F and L.  In reality two typeinfos can match without being
2978   // equal (for example if one represents a C++ class, and the other some class
2979   // derived from it) so it would be wrong to perform this transform in general.
2980   // However the transform is correct and useful if F is a subset of L.  In that
2981   // case L can be replaced by F, and thus removed altogether since repeating a
2982   // filter is pointless.  So here we look at all pairs of filters F and L where
2983   // L follows F in the list of clauses, and remove L if every element of F is
2984   // an element of L.  This can occur when inlining C++ functions with exception
2985   // specifications.
2986   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2987     // Examine each filter in turn.
2988     Value *Filter = NewClauses[i];
2989     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2990     if (!FTy)
2991       // Not a filter - skip it.
2992       continue;
2993     unsigned FElts = FTy->getNumElements();
2994     // Examine each filter following this one.  Doing this backwards means that
2995     // we don't have to worry about filters disappearing under us when removed.
2996     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2997       Value *LFilter = NewClauses[j];
2998       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2999       if (!LTy)
3000         // Not a filter - skip it.
3001         continue;
3002       // If Filter is a subset of LFilter, i.e. every element of Filter is also
3003       // an element of LFilter, then discard LFilter.
3004       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3005       // If Filter is empty then it is a subset of LFilter.
3006       if (!FElts) {
3007         // Discard LFilter.
3008         NewClauses.erase(J);
3009         MakeNewInstruction = true;
3010         // Move on to the next filter.
3011         continue;
3012       }
3013       unsigned LElts = LTy->getNumElements();
3014       // If Filter is longer than LFilter then it cannot be a subset of it.
3015       if (FElts > LElts)
3016         // Move on to the next filter.
3017         continue;
3018       // At this point we know that LFilter has at least one element.
3019       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3020         // Filter is a subset of LFilter iff Filter contains only zeros (as we
3021         // already know that Filter is not longer than LFilter).
3022         if (isa<ConstantAggregateZero>(Filter)) {
3023           assert(FElts <= LElts && "Should have handled this case earlier!");
3024           // Discard LFilter.
3025           NewClauses.erase(J);
3026           MakeNewInstruction = true;
3027         }
3028         // Move on to the next filter.
3029         continue;
3030       }
3031       ConstantArray *LArray = cast<ConstantArray>(LFilter);
3032       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3033         // Since Filter is non-empty and contains only zeros, it is a subset of
3034         // LFilter iff LFilter contains a zero.
3035         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3036         for (unsigned l = 0; l != LElts; ++l)
3037           if (LArray->getOperand(l)->isNullValue()) {
3038             // LFilter contains a zero - discard it.
3039             NewClauses.erase(J);
3040             MakeNewInstruction = true;
3041             break;
3042           }
3043         // Move on to the next filter.
3044         continue;
3045       }
3046       // At this point we know that both filters are ConstantArrays.  Loop over
3047       // operands to see whether every element of Filter is also an element of
3048       // LFilter.  Since filters tend to be short this is probably faster than
3049       // using a method that scales nicely.
3050       ConstantArray *FArray = cast<ConstantArray>(Filter);
3051       bool AllFound = true;
3052       for (unsigned f = 0; f != FElts; ++f) {
3053         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3054         AllFound = false;
3055         for (unsigned l = 0; l != LElts; ++l) {
3056           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3057           if (LTypeInfo == FTypeInfo) {
3058             AllFound = true;
3059             break;
3060           }
3061         }
3062         if (!AllFound)
3063           break;
3064       }
3065       if (AllFound) {
3066         // Discard LFilter.
3067         NewClauses.erase(J);
3068         MakeNewInstruction = true;
3069       }
3070       // Move on to the next filter.
3071     }
3072   }
3073 
3074   // If we changed any of the clauses, replace the old landingpad instruction
3075   // with a new one.
3076   if (MakeNewInstruction) {
3077     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3078                                                  NewClauses.size());
3079     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3080       NLI->addClause(NewClauses[i]);
3081     // A landing pad with no clauses must have the cleanup flag set.  It is
3082     // theoretically possible, though highly unlikely, that we eliminated all
3083     // clauses.  If so, force the cleanup flag to true.
3084     if (NewClauses.empty())
3085       CleanupFlag = true;
3086     NLI->setCleanup(CleanupFlag);
3087     return NLI;
3088   }
3089 
3090   // Even if none of the clauses changed, we may nonetheless have understood
3091   // that the cleanup flag is pointless.  Clear it if so.
3092   if (LI.isCleanup() != CleanupFlag) {
3093     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3094     LI.setCleanup(CleanupFlag);
3095     return &LI;
3096   }
3097 
3098   return nullptr;
3099 }
3100 
3101 /// Try to move the specified instruction from its current block into the
3102 /// beginning of DestBlock, which can only happen if it's safe to move the
3103 /// instruction past all of the instructions between it and the end of its
3104 /// block.
3105 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3106   assert(I->hasOneUse() && "Invariants didn't hold!");
3107   BasicBlock *SrcBlock = I->getParent();
3108 
3109   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3110   if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3111       I->isTerminator())
3112     return false;
3113 
3114   // Do not sink static or dynamic alloca instructions. Static allocas must
3115   // remain in the entry block, and dynamic allocas must not be sunk in between
3116   // a stacksave / stackrestore pair, which would incorrectly shorten its
3117   // lifetime.
3118   if (isa<AllocaInst>(I))
3119     return false;
3120 
3121   // Do not sink into catchswitch blocks.
3122   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3123     return false;
3124 
3125   // Do not sink convergent call instructions.
3126   if (auto *CI = dyn_cast<CallInst>(I)) {
3127     if (CI->isConvergent())
3128       return false;
3129   }
3130   // We can only sink load instructions if there is nothing between the load and
3131   // the end of block that could change the value.
3132   if (I->mayReadFromMemory()) {
3133     for (BasicBlock::iterator Scan = I->getIterator(),
3134                               E = I->getParent()->end();
3135          Scan != E; ++Scan)
3136       if (Scan->mayWriteToMemory())
3137         return false;
3138   }
3139   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3140   I->moveBefore(&*InsertPos);
3141   ++NumSunkInst;
3142 
3143   // Also sink all related debug uses from the source basic block. Otherwise we
3144   // get debug use before the def. Attempt to salvage debug uses first, to
3145   // maximise the range variables have location for. If we cannot salvage, then
3146   // mark the location undef: we know it was supposed to receive a new location
3147   // here, but that computation has been sunk.
3148   SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3149   findDbgUsers(DbgUsers, I);
3150   for (auto *DII : reverse(DbgUsers)) {
3151     if (DII->getParent() == SrcBlock) {
3152       // dbg.value is in the same basic block as the sunk inst, see if we can
3153       // salvage it. Clone a new copy of the instruction: on success we need
3154       // both salvaged and unsalvaged copies.
3155       SmallVector<DbgVariableIntrinsic *, 1> TmpUser{
3156           cast<DbgVariableIntrinsic>(DII->clone())};
3157 
3158       if (!salvageDebugInfoForDbgValues(*I, TmpUser)) {
3159         // We are unable to salvage: sink the cloned dbg.value, and mark the
3160         // original as undef, terminating any earlier variable location.
3161         LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n');
3162         TmpUser[0]->insertBefore(&*InsertPos);
3163         Value *Undef = UndefValue::get(I->getType());
3164         DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
3165                                                 ValueAsMetadata::get(Undef)));
3166       } else {
3167         // We successfully salvaged: place the salvaged dbg.value in the
3168         // original location, and move the unmodified dbg.value to sink with
3169         // the sunk inst.
3170         TmpUser[0]->insertBefore(DII);
3171         DII->moveBefore(&*InsertPos);
3172       }
3173     }
3174   }
3175   return true;
3176 }
3177 
3178 bool InstCombiner::run() {
3179   while (!Worklist.isEmpty()) {
3180     Instruction *I = Worklist.RemoveOne();
3181     if (I == nullptr) continue;  // skip null values.
3182 
3183     // Check to see if we can DCE the instruction.
3184     if (isInstructionTriviallyDead(I, &TLI)) {
3185       LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
3186       eraseInstFromFunction(*I);
3187       ++NumDeadInst;
3188       MadeIRChange = true;
3189       continue;
3190     }
3191 
3192     if (!DebugCounter::shouldExecute(VisitCounter))
3193       continue;
3194 
3195     // Instruction isn't dead, see if we can constant propagate it.
3196     if (!I->use_empty() &&
3197         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3198       if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3199         LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3200                           << '\n');
3201 
3202         // Add operands to the worklist.
3203         replaceInstUsesWith(*I, C);
3204         ++NumConstProp;
3205         if (isInstructionTriviallyDead(I, &TLI))
3206           eraseInstFromFunction(*I);
3207         MadeIRChange = true;
3208         continue;
3209       }
3210     }
3211 
3212     // In general, it is possible for computeKnownBits to determine all bits in
3213     // a value even when the operands are not all constants.
3214     Type *Ty = I->getType();
3215     if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) {
3216       KnownBits Known = computeKnownBits(I, /*Depth*/0, I);
3217       if (Known.isConstant()) {
3218         Constant *C = ConstantInt::get(Ty, Known.getConstant());
3219         LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C
3220                           << " from: " << *I << '\n');
3221 
3222         // Add operands to the worklist.
3223         replaceInstUsesWith(*I, C);
3224         ++NumConstProp;
3225         if (isInstructionTriviallyDead(I, &TLI))
3226           eraseInstFromFunction(*I);
3227         MadeIRChange = true;
3228         continue;
3229       }
3230     }
3231 
3232     // See if we can trivially sink this instruction to a successor basic block.
3233     if (EnableCodeSinking && I->hasOneUse()) {
3234       BasicBlock *BB = I->getParent();
3235       Instruction *UserInst = cast<Instruction>(*I->user_begin());
3236       BasicBlock *UserParent;
3237 
3238       // Get the block the use occurs in.
3239       if (PHINode *PN = dyn_cast<PHINode>(UserInst))
3240         UserParent = PN->getIncomingBlock(*I->use_begin());
3241       else
3242         UserParent = UserInst->getParent();
3243 
3244       if (UserParent != BB) {
3245         bool UserIsSuccessor = false;
3246         // See if the user is one of our successors.
3247         for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
3248           if (*SI == UserParent) {
3249             UserIsSuccessor = true;
3250             break;
3251           }
3252 
3253         // If the user is one of our immediate successors, and if that successor
3254         // only has us as a predecessors (we'd have to split the critical edge
3255         // otherwise), we can keep going.
3256         if (UserIsSuccessor && UserParent->getUniquePredecessor()) {
3257           // Okay, the CFG is simple enough, try to sink this instruction.
3258           if (TryToSinkInstruction(I, UserParent)) {
3259             LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3260             MadeIRChange = true;
3261             // We'll add uses of the sunk instruction below, but since sinking
3262             // can expose opportunities for it's *operands* add them to the
3263             // worklist
3264             for (Use &U : I->operands())
3265               if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3266                 Worklist.Add(OpI);
3267           }
3268         }
3269       }
3270     }
3271 
3272     // Now that we have an instruction, try combining it to simplify it.
3273     Builder.SetInsertPoint(I);
3274     Builder.SetCurrentDebugLocation(I->getDebugLoc());
3275 
3276 #ifndef NDEBUG
3277     std::string OrigI;
3278 #endif
3279     LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3280     LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3281 
3282     if (Instruction *Result = visit(*I)) {
3283       ++NumCombined;
3284       // Should we replace the old instruction with a new one?
3285       if (Result != I) {
3286         LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3287                           << "    New = " << *Result << '\n');
3288 
3289         if (I->getDebugLoc())
3290           Result->setDebugLoc(I->getDebugLoc());
3291         // Everything uses the new instruction now.
3292         I->replaceAllUsesWith(Result);
3293 
3294         // Move the name to the new instruction first.
3295         Result->takeName(I);
3296 
3297         // Push the new instruction and any users onto the worklist.
3298         Worklist.AddUsersToWorkList(*Result);
3299         Worklist.Add(Result);
3300 
3301         // Insert the new instruction into the basic block...
3302         BasicBlock *InstParent = I->getParent();
3303         BasicBlock::iterator InsertPos = I->getIterator();
3304 
3305         // If we replace a PHI with something that isn't a PHI, fix up the
3306         // insertion point.
3307         if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
3308           InsertPos = InstParent->getFirstInsertionPt();
3309 
3310         InstParent->getInstList().insert(InsertPos, Result);
3311 
3312         eraseInstFromFunction(*I);
3313       } else {
3314         LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3315                           << "    New = " << *I << '\n');
3316 
3317         // If the instruction was modified, it's possible that it is now dead.
3318         // if so, remove it.
3319         if (isInstructionTriviallyDead(I, &TLI)) {
3320           eraseInstFromFunction(*I);
3321         } else {
3322           Worklist.AddUsersToWorkList(*I);
3323           Worklist.Add(I);
3324         }
3325       }
3326       MadeIRChange = true;
3327     }
3328   }
3329 
3330   Worklist.Zap();
3331   return MadeIRChange;
3332 }
3333 
3334 /// Walk the function in depth-first order, adding all reachable code to the
3335 /// worklist.
3336 ///
3337 /// This has a couple of tricks to make the code faster and more powerful.  In
3338 /// particular, we constant fold and DCE instructions as we go, to avoid adding
3339 /// them to the worklist (this significantly speeds up instcombine on code where
3340 /// many instructions are dead or constant).  Additionally, if we find a branch
3341 /// whose condition is a known constant, we only visit the reachable successors.
3342 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
3343                                        SmallPtrSetImpl<BasicBlock *> &Visited,
3344                                        InstCombineWorklist &ICWorklist,
3345                                        const TargetLibraryInfo *TLI) {
3346   bool MadeIRChange = false;
3347   SmallVector<BasicBlock*, 256> Worklist;
3348   Worklist.push_back(BB);
3349 
3350   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
3351   DenseMap<Constant *, Constant *> FoldedConstants;
3352 
3353   do {
3354     BB = Worklist.pop_back_val();
3355 
3356     // We have now visited this block!  If we've already been here, ignore it.
3357     if (!Visited.insert(BB).second)
3358       continue;
3359 
3360     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3361       Instruction *Inst = &*BBI++;
3362 
3363       // DCE instruction if trivially dead.
3364       if (isInstructionTriviallyDead(Inst, TLI)) {
3365         ++NumDeadInst;
3366         LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
3367         if (!salvageDebugInfo(*Inst))
3368           replaceDbgUsesWithUndef(Inst);
3369         Inst->eraseFromParent();
3370         MadeIRChange = true;
3371         continue;
3372       }
3373 
3374       // ConstantProp instruction if trivially constant.
3375       if (!Inst->use_empty() &&
3376           (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
3377         if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
3378           LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
3379                             << '\n');
3380           Inst->replaceAllUsesWith(C);
3381           ++NumConstProp;
3382           if (isInstructionTriviallyDead(Inst, TLI))
3383             Inst->eraseFromParent();
3384           MadeIRChange = true;
3385           continue;
3386         }
3387 
3388       // See if we can constant fold its operands.
3389       for (Use &U : Inst->operands()) {
3390         if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
3391           continue;
3392 
3393         auto *C = cast<Constant>(U);
3394         Constant *&FoldRes = FoldedConstants[C];
3395         if (!FoldRes)
3396           FoldRes = ConstantFoldConstant(C, DL, TLI);
3397         if (!FoldRes)
3398           FoldRes = C;
3399 
3400         if (FoldRes != C) {
3401           LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
3402                             << "\n    Old = " << *C
3403                             << "\n    New = " << *FoldRes << '\n');
3404           U = FoldRes;
3405           MadeIRChange = true;
3406         }
3407       }
3408 
3409       // Skip processing debug intrinsics in InstCombine. Processing these call instructions
3410       // consumes non-trivial amount of time and provides no value for the optimization.
3411       if (!isa<DbgInfoIntrinsic>(Inst))
3412         InstrsForInstCombineWorklist.push_back(Inst);
3413     }
3414 
3415     // Recursively visit successors.  If this is a branch or switch on a
3416     // constant, only visit the reachable successor.
3417     Instruction *TI = BB->getTerminator();
3418     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3419       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
3420         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
3421         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
3422         Worklist.push_back(ReachableBB);
3423         continue;
3424       }
3425     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3426       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
3427         Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
3428         continue;
3429       }
3430     }
3431 
3432     for (BasicBlock *SuccBB : successors(TI))
3433       Worklist.push_back(SuccBB);
3434   } while (!Worklist.empty());
3435 
3436   // Once we've found all of the instructions to add to instcombine's worklist,
3437   // add them in reverse order.  This way instcombine will visit from the top
3438   // of the function down.  This jives well with the way that it adds all uses
3439   // of instructions to the worklist after doing a transformation, thus avoiding
3440   // some N^2 behavior in pathological cases.
3441   ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist);
3442 
3443   return MadeIRChange;
3444 }
3445 
3446 /// Populate the IC worklist from a function, and prune any dead basic
3447 /// blocks discovered in the process.
3448 ///
3449 /// This also does basic constant propagation and other forward fixing to make
3450 /// the combiner itself run much faster.
3451 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3452                                           TargetLibraryInfo *TLI,
3453                                           InstCombineWorklist &ICWorklist) {
3454   bool MadeIRChange = false;
3455 
3456   // Do a depth-first traversal of the function, populate the worklist with
3457   // the reachable instructions.  Ignore blocks that are not reachable.  Keep
3458   // track of which blocks we visit.
3459   SmallPtrSet<BasicBlock *, 32> Visited;
3460   MadeIRChange |=
3461       AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);
3462 
3463   // Do a quick scan over the function.  If we find any blocks that are
3464   // unreachable, remove any instructions inside of them.  This prevents
3465   // the instcombine code from having to deal with some bad special cases.
3466   for (BasicBlock &BB : F) {
3467     if (Visited.count(&BB))
3468       continue;
3469 
3470     unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
3471     MadeIRChange |= NumDeadInstInBB > 0;
3472     NumDeadInst += NumDeadInstInBB;
3473   }
3474 
3475   return MadeIRChange;
3476 }
3477 
3478 static bool combineInstructionsOverFunction(
3479     Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
3480     AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
3481     OptimizationRemarkEmitter &ORE, bool ExpensiveCombines = true,
3482     LoopInfo *LI = nullptr) {
3483   auto &DL = F.getParent()->getDataLayout();
3484   ExpensiveCombines |= EnableExpensiveCombines;
3485 
3486   /// Builder - This is an IRBuilder that automatically inserts new
3487   /// instructions into the worklist when they are created.
3488   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
3489       F.getContext(), TargetFolder(DL),
3490       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
3491         Worklist.Add(I);
3492         if (match(I, m_Intrinsic<Intrinsic::assume>()))
3493           AC.registerAssumption(cast<CallInst>(I));
3494       }));
3495 
3496   // Lower dbg.declare intrinsics otherwise their value may be clobbered
3497   // by instcombiner.
3498   bool MadeIRChange = false;
3499   if (ShouldLowerDbgDeclare)
3500     MadeIRChange = LowerDbgDeclare(F);
3501 
3502   // Iterate while there is work to do.
3503   int Iteration = 0;
3504   while (true) {
3505     ++Iteration;
3506     LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
3507                       << F.getName() << "\n");
3508 
3509     MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
3510 
3511     InstCombiner IC(Worklist, Builder, F.hasMinSize(), ExpensiveCombines, AA,
3512                     AC, TLI, DT, ORE, DL, LI);
3513     IC.MaxArraySizeForCombine = MaxArraySize;
3514 
3515     if (!IC.run())
3516       break;
3517   }
3518 
3519   return MadeIRChange || Iteration > 1;
3520 }
3521 
3522 PreservedAnalyses InstCombinePass::run(Function &F,
3523                                        FunctionAnalysisManager &AM) {
3524   auto &AC = AM.getResult<AssumptionAnalysis>(F);
3525   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3526   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3527   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
3528 
3529   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
3530 
3531   auto *AA = &AM.getResult<AAManager>(F);
3532   if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE,
3533                                        ExpensiveCombines, LI))
3534     // No changes, all analyses are preserved.
3535     return PreservedAnalyses::all();
3536 
3537   // Mark all the analyses that instcombine updates as preserved.
3538   PreservedAnalyses PA;
3539   PA.preserveSet<CFGAnalyses>();
3540   PA.preserve<AAManager>();
3541   PA.preserve<BasicAA>();
3542   PA.preserve<GlobalsAA>();
3543   return PA;
3544 }
3545 
3546 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3547   AU.setPreservesCFG();
3548   AU.addRequired<AAResultsWrapperPass>();
3549   AU.addRequired<AssumptionCacheTracker>();
3550   AU.addRequired<TargetLibraryInfoWrapperPass>();
3551   AU.addRequired<DominatorTreeWrapperPass>();
3552   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3553   AU.addPreserved<DominatorTreeWrapperPass>();
3554   AU.addPreserved<AAResultsWrapperPass>();
3555   AU.addPreserved<BasicAAWrapperPass>();
3556   AU.addPreserved<GlobalsAAWrapperPass>();
3557 }
3558 
3559 bool InstructionCombiningPass::runOnFunction(Function &F) {
3560   if (skipFunction(F))
3561     return false;
3562 
3563   // Required analyses.
3564   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3565   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3566   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
3567   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3568   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
3569 
3570   // Optional analyses.
3571   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3572   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3573 
3574   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE,
3575                                          ExpensiveCombines, LI);
3576 }
3577 
3578 char InstructionCombiningPass::ID = 0;
3579 
3580 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
3581                       "Combine redundant instructions", false, false)
3582 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3583 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3584 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3585 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3586 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3587 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3588 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
3589                     "Combine redundant instructions", false, false)
3590 
3591 // Initialization Routines
3592 void llvm::initializeInstCombine(PassRegistry &Registry) {
3593   initializeInstructionCombiningPassPass(Registry);
3594 }
3595 
3596 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
3597   initializeInstructionCombiningPassPass(*unwrap(R));
3598 }
3599 
3600 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) {
3601   return new InstructionCombiningPass(ExpensiveCombines);
3602 }
3603 
3604 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
3605   unwrap(PM)->add(createInstructionCombiningPass());
3606 }
3607