1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions.  This pass does not modify the CFG.  This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 //    %Y = add i32 %X, 1
15 //    %Z = add i32 %Y, 1
16 // into:
17 //    %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 //    1. If a binary operator has a constant operand, it is moved to the RHS
24 //    2. Bitwise operators with constant operands are always grouped so that
25 //       shifts are performed first, then or's, then and's, then xor's.
26 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 //    4. All cmp instructions on boolean values are replaced with logical ops
28 //    5. add X, X is represented as (X*2) => (X << 1)
29 //    6. Multiplies with a power-of-two constant argument are transformed into
30 //       shifts.
31 //   ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BlockFrequencyInfo.h"
50 #include "llvm/Analysis/CFG.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/EHPersonalities.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/MemoryBuiltins.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ProfileSummaryInfo.h"
60 #include "llvm/Analysis/TargetFolder.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/Analysis/VectorUtils.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DIBuilder.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GetElementPtrTypeIterator.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LegacyPassManager.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PassManager.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/Use.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/IR/ValueHandle.h"
91 #include "llvm/InitializePasses.h"
92 #include "llvm/Pass.h"
93 #include "llvm/Support/CBindingWrapping.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/DebugCounter.h"
99 #include "llvm/Support/ErrorHandling.h"
100 #include "llvm/Support/KnownBits.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Transforms/InstCombine/InstCombine.h"
103 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
104 #include "llvm/Transforms/Utils/Local.h"
105 #include <algorithm>
106 #include <cassert>
107 #include <cstdint>
108 #include <memory>
109 #include <string>
110 #include <utility>
111 
112 using namespace llvm;
113 using namespace llvm::PatternMatch;
114 
115 #define DEBUG_TYPE "instcombine"
116 
117 STATISTIC(NumWorklistIterations,
118           "Number of instruction combining iterations performed");
119 
120 STATISTIC(NumCombined , "Number of insts combined");
121 STATISTIC(NumConstProp, "Number of constant folds");
122 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
123 STATISTIC(NumSunkInst , "Number of instructions sunk");
124 STATISTIC(NumExpand,    "Number of expansions");
125 STATISTIC(NumFactor   , "Number of factorizations");
126 STATISTIC(NumReassoc  , "Number of reassociations");
127 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
128               "Controls which instructions are visited");
129 
130 // FIXME: these limits eventually should be as low as 2.
131 static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
132 #ifndef NDEBUG
133 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100;
134 #else
135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
136 #endif
137 
138 static cl::opt<bool>
139 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
140                                               cl::init(true));
141 
142 static cl::opt<unsigned> LimitMaxIterations(
143     "instcombine-max-iterations",
144     cl::desc("Limit the maximum number of instruction combining iterations"),
145     cl::init(InstCombineDefaultMaxIterations));
146 
147 static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
148     "instcombine-infinite-loop-threshold",
149     cl::desc("Number of instruction combining iterations considered an "
150              "infinite loop"),
151     cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
152 
153 static cl::opt<unsigned>
154 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
155              cl::desc("Maximum array size considered when doing a combine"));
156 
157 // FIXME: Remove this flag when it is no longer necessary to convert
158 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
159 // increases variable availability at the cost of accuracy. Variables that
160 // cannot be promoted by mem2reg or SROA will be described as living in memory
161 // for their entire lifetime. However, passes like DSE and instcombine can
162 // delete stores to the alloca, leading to misleading and inaccurate debug
163 // information. This flag can be removed when those passes are fixed.
164 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
165                                                cl::Hidden, cl::init(true));
166 
167 Optional<Instruction *>
168 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
169   // Handle target specific intrinsics
170   if (II.getCalledFunction()->isTargetIntrinsic()) {
171     return TTI.instCombineIntrinsic(*this, II);
172   }
173   return None;
174 }
175 
176 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
177     IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
178     bool &KnownBitsComputed) {
179   // Handle target specific intrinsics
180   if (II.getCalledFunction()->isTargetIntrinsic()) {
181     return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
182                                                 KnownBitsComputed);
183   }
184   return None;
185 }
186 
187 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
188     IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2,
189     APInt &UndefElts3,
190     std::function<void(Instruction *, unsigned, APInt, APInt &)>
191         SimplifyAndSetOp) {
192   // Handle target specific intrinsics
193   if (II.getCalledFunction()->isTargetIntrinsic()) {
194     return TTI.simplifyDemandedVectorEltsIntrinsic(
195         *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
196         SimplifyAndSetOp);
197   }
198   return None;
199 }
200 
201 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
202   return llvm::EmitGEPOffset(&Builder, DL, GEP);
203 }
204 
205 /// Return true if it is desirable to convert an integer computation from a
206 /// given bit width to a new bit width.
207 /// We don't want to convert from a legal to an illegal type or from a smaller
208 /// to a larger illegal type. A width of '1' is always treated as a legal type
209 /// because i1 is a fundamental type in IR, and there are many specialized
210 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
211 /// legal to convert to, in order to open up more combining opportunities.
212 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common
213 /// from frontend languages.
214 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
215                                         unsigned ToWidth) const {
216   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
217   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
218 
219   // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
220   // shrink types, to prevent infinite loops.
221   if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
222     return true;
223 
224   // If this is a legal integer from type, and the result would be an illegal
225   // type, don't do the transformation.
226   if (FromLegal && !ToLegal)
227     return false;
228 
229   // Otherwise, if both are illegal, do not increase the size of the result. We
230   // do allow things like i160 -> i64, but not i64 -> i160.
231   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
232     return false;
233 
234   return true;
235 }
236 
237 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
238 /// We don't want to convert from a legal to an illegal type or from a smaller
239 /// to a larger illegal type. i1 is always treated as a legal type because it is
240 /// a fundamental type in IR, and there are many specialized optimizations for
241 /// i1 types.
242 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
243   // TODO: This could be extended to allow vectors. Datalayout changes might be
244   // needed to properly support that.
245   if (!From->isIntegerTy() || !To->isIntegerTy())
246     return false;
247 
248   unsigned FromWidth = From->getPrimitiveSizeInBits();
249   unsigned ToWidth = To->getPrimitiveSizeInBits();
250   return shouldChangeType(FromWidth, ToWidth);
251 }
252 
253 // Return true, if No Signed Wrap should be maintained for I.
254 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
255 // where both B and C should be ConstantInts, results in a constant that does
256 // not overflow. This function only handles the Add and Sub opcodes. For
257 // all other opcodes, the function conservatively returns false.
258 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
259   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
260   if (!OBO || !OBO->hasNoSignedWrap())
261     return false;
262 
263   // We reason about Add and Sub Only.
264   Instruction::BinaryOps Opcode = I.getOpcode();
265   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
266     return false;
267 
268   const APInt *BVal, *CVal;
269   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
270     return false;
271 
272   bool Overflow = false;
273   if (Opcode == Instruction::Add)
274     (void)BVal->sadd_ov(*CVal, Overflow);
275   else
276     (void)BVal->ssub_ov(*CVal, Overflow);
277 
278   return !Overflow;
279 }
280 
281 static bool hasNoUnsignedWrap(BinaryOperator &I) {
282   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
283   return OBO && OBO->hasNoUnsignedWrap();
284 }
285 
286 static bool hasNoSignedWrap(BinaryOperator &I) {
287   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
288   return OBO && OBO->hasNoSignedWrap();
289 }
290 
291 /// Conservatively clears subclassOptionalData after a reassociation or
292 /// commutation. We preserve fast-math flags when applicable as they can be
293 /// preserved.
294 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
295   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
296   if (!FPMO) {
297     I.clearSubclassOptionalData();
298     return;
299   }
300 
301   FastMathFlags FMF = I.getFastMathFlags();
302   I.clearSubclassOptionalData();
303   I.setFastMathFlags(FMF);
304 }
305 
306 /// Combine constant operands of associative operations either before or after a
307 /// cast to eliminate one of the associative operations:
308 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
309 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
310 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
311                                    InstCombinerImpl &IC) {
312   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
313   if (!Cast || !Cast->hasOneUse())
314     return false;
315 
316   // TODO: Enhance logic for other casts and remove this check.
317   auto CastOpcode = Cast->getOpcode();
318   if (CastOpcode != Instruction::ZExt)
319     return false;
320 
321   // TODO: Enhance logic for other BinOps and remove this check.
322   if (!BinOp1->isBitwiseLogicOp())
323     return false;
324 
325   auto AssocOpcode = BinOp1->getOpcode();
326   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
327   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
328     return false;
329 
330   Constant *C1, *C2;
331   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
332       !match(BinOp2->getOperand(1), m_Constant(C2)))
333     return false;
334 
335   // TODO: This assumes a zext cast.
336   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
337   // to the destination type might lose bits.
338 
339   // Fold the constants together in the destination type:
340   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
341   Type *DestTy = C1->getType();
342   Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
343   Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
344   IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
345   IC.replaceOperand(*BinOp1, 1, FoldedC);
346   return true;
347 }
348 
349 /// This performs a few simplifications for operators that are associative or
350 /// commutative:
351 ///
352 ///  Commutative operators:
353 ///
354 ///  1. Order operands such that they are listed from right (least complex) to
355 ///     left (most complex).  This puts constants before unary operators before
356 ///     binary operators.
357 ///
358 ///  Associative operators:
359 ///
360 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
361 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
362 ///
363 ///  Associative and commutative operators:
364 ///
365 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
366 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
367 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
368 ///     if C1 and C2 are constants.
369 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
370   Instruction::BinaryOps Opcode = I.getOpcode();
371   bool Changed = false;
372 
373   do {
374     // Order operands such that they are listed from right (least complex) to
375     // left (most complex).  This puts constants before unary operators before
376     // binary operators.
377     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
378         getComplexity(I.getOperand(1)))
379       Changed = !I.swapOperands();
380 
381     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
382     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
383 
384     if (I.isAssociative()) {
385       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
386       if (Op0 && Op0->getOpcode() == Opcode) {
387         Value *A = Op0->getOperand(0);
388         Value *B = Op0->getOperand(1);
389         Value *C = I.getOperand(1);
390 
391         // Does "B op C" simplify?
392         if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
393           // It simplifies to V.  Form "A op V".
394           replaceOperand(I, 0, A);
395           replaceOperand(I, 1, V);
396           bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
397           bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
398 
399           // Conservatively clear all optional flags since they may not be
400           // preserved by the reassociation. Reset nsw/nuw based on the above
401           // analysis.
402           ClearSubclassDataAfterReassociation(I);
403 
404           // Note: this is only valid because SimplifyBinOp doesn't look at
405           // the operands to Op0.
406           if (IsNUW)
407             I.setHasNoUnsignedWrap(true);
408 
409           if (IsNSW)
410             I.setHasNoSignedWrap(true);
411 
412           Changed = true;
413           ++NumReassoc;
414           continue;
415         }
416       }
417 
418       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
419       if (Op1 && Op1->getOpcode() == Opcode) {
420         Value *A = I.getOperand(0);
421         Value *B = Op1->getOperand(0);
422         Value *C = Op1->getOperand(1);
423 
424         // Does "A op B" simplify?
425         if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
426           // It simplifies to V.  Form "V op C".
427           replaceOperand(I, 0, V);
428           replaceOperand(I, 1, C);
429           // Conservatively clear the optional flags, since they may not be
430           // preserved by the reassociation.
431           ClearSubclassDataAfterReassociation(I);
432           Changed = true;
433           ++NumReassoc;
434           continue;
435         }
436       }
437     }
438 
439     if (I.isAssociative() && I.isCommutative()) {
440       if (simplifyAssocCastAssoc(&I, *this)) {
441         Changed = true;
442         ++NumReassoc;
443         continue;
444       }
445 
446       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
447       if (Op0 && Op0->getOpcode() == Opcode) {
448         Value *A = Op0->getOperand(0);
449         Value *B = Op0->getOperand(1);
450         Value *C = I.getOperand(1);
451 
452         // Does "C op A" simplify?
453         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
454           // It simplifies to V.  Form "V op B".
455           replaceOperand(I, 0, V);
456           replaceOperand(I, 1, B);
457           // Conservatively clear the optional flags, since they may not be
458           // preserved by the reassociation.
459           ClearSubclassDataAfterReassociation(I);
460           Changed = true;
461           ++NumReassoc;
462           continue;
463         }
464       }
465 
466       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
467       if (Op1 && Op1->getOpcode() == Opcode) {
468         Value *A = I.getOperand(0);
469         Value *B = Op1->getOperand(0);
470         Value *C = Op1->getOperand(1);
471 
472         // Does "C op A" simplify?
473         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
474           // It simplifies to V.  Form "B op V".
475           replaceOperand(I, 0, B);
476           replaceOperand(I, 1, V);
477           // Conservatively clear the optional flags, since they may not be
478           // preserved by the reassociation.
479           ClearSubclassDataAfterReassociation(I);
480           Changed = true;
481           ++NumReassoc;
482           continue;
483         }
484       }
485 
486       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
487       // if C1 and C2 are constants.
488       Value *A, *B;
489       Constant *C1, *C2;
490       if (Op0 && Op1 &&
491           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
492           match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
493           match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
494         bool IsNUW = hasNoUnsignedWrap(I) &&
495            hasNoUnsignedWrap(*Op0) &&
496            hasNoUnsignedWrap(*Op1);
497          BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
498            BinaryOperator::CreateNUW(Opcode, A, B) :
499            BinaryOperator::Create(Opcode, A, B);
500 
501          if (isa<FPMathOperator>(NewBO)) {
502           FastMathFlags Flags = I.getFastMathFlags();
503           Flags &= Op0->getFastMathFlags();
504           Flags &= Op1->getFastMathFlags();
505           NewBO->setFastMathFlags(Flags);
506         }
507         InsertNewInstWith(NewBO, I);
508         NewBO->takeName(Op1);
509         replaceOperand(I, 0, NewBO);
510         replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
511         // Conservatively clear the optional flags, since they may not be
512         // preserved by the reassociation.
513         ClearSubclassDataAfterReassociation(I);
514         if (IsNUW)
515           I.setHasNoUnsignedWrap(true);
516 
517         Changed = true;
518         continue;
519       }
520     }
521 
522     // No further simplifications.
523     return Changed;
524   } while (true);
525 }
526 
527 /// Return whether "X LOp (Y ROp Z)" is always equal to
528 /// "(X LOp Y) ROp (X LOp Z)".
529 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
530                                      Instruction::BinaryOps ROp) {
531   // X & (Y | Z) <--> (X & Y) | (X & Z)
532   // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
533   if (LOp == Instruction::And)
534     return ROp == Instruction::Or || ROp == Instruction::Xor;
535 
536   // X | (Y & Z) <--> (X | Y) & (X | Z)
537   if (LOp == Instruction::Or)
538     return ROp == Instruction::And;
539 
540   // X * (Y + Z) <--> (X * Y) + (X * Z)
541   // X * (Y - Z) <--> (X * Y) - (X * Z)
542   if (LOp == Instruction::Mul)
543     return ROp == Instruction::Add || ROp == Instruction::Sub;
544 
545   return false;
546 }
547 
548 /// Return whether "(X LOp Y) ROp Z" is always equal to
549 /// "(X ROp Z) LOp (Y ROp Z)".
550 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
551                                      Instruction::BinaryOps ROp) {
552   if (Instruction::isCommutative(ROp))
553     return leftDistributesOverRight(ROp, LOp);
554 
555   // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
556   return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
557 
558   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
559   // but this requires knowing that the addition does not overflow and other
560   // such subtleties.
561 }
562 
563 /// This function returns identity value for given opcode, which can be used to
564 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
565 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
566   if (isa<Constant>(V))
567     return nullptr;
568 
569   return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
570 }
571 
572 /// This function predicates factorization using distributive laws. By default,
573 /// it just returns the 'Op' inputs. But for special-cases like
574 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
575 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
576 /// allow more factorization opportunities.
577 static Instruction::BinaryOps
578 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
579                           Value *&LHS, Value *&RHS) {
580   assert(Op && "Expected a binary operator");
581   LHS = Op->getOperand(0);
582   RHS = Op->getOperand(1);
583   if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
584     Constant *C;
585     if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
586       // X << C --> X * (1 << C)
587       RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
588       return Instruction::Mul;
589     }
590     // TODO: We can add other conversions e.g. shr => div etc.
591   }
592   return Op->getOpcode();
593 }
594 
595 /// This tries to simplify binary operations by factorizing out common terms
596 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
597 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I,
598                                           Instruction::BinaryOps InnerOpcode,
599                                           Value *A, Value *B, Value *C,
600                                           Value *D) {
601   assert(A && B && C && D && "All values must be provided");
602 
603   Value *V = nullptr;
604   Value *SimplifiedInst = nullptr;
605   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
606   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
607 
608   // Does "X op' Y" always equal "Y op' X"?
609   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
610 
611   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
612   if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
613     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
614     // commutative case, "(A op' B) op (C op' A)"?
615     if (A == C || (InnerCommutative && A == D)) {
616       if (A != C)
617         std::swap(C, D);
618       // Consider forming "A op' (B op D)".
619       // If "B op D" simplifies then it can be formed with no cost.
620       V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
621       // If "B op D" doesn't simplify then only go on if both of the existing
622       // operations "A op' B" and "C op' D" will be zapped as no longer used.
623       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
624         V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
625       if (V) {
626         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
627       }
628     }
629 
630   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
631   if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
632     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
633     // commutative case, "(A op' B) op (B op' D)"?
634     if (B == D || (InnerCommutative && B == C)) {
635       if (B != D)
636         std::swap(C, D);
637       // Consider forming "(A op C) op' B".
638       // If "A op C" simplifies then it can be formed with no cost.
639       V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
640 
641       // If "A op C" doesn't simplify then only go on if both of the existing
642       // operations "A op' B" and "C op' D" will be zapped as no longer used.
643       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
644         V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
645       if (V) {
646         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
647       }
648     }
649 
650   if (SimplifiedInst) {
651     ++NumFactor;
652     SimplifiedInst->takeName(&I);
653 
654     // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
655     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
656       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
657         bool HasNSW = false;
658         bool HasNUW = false;
659         if (isa<OverflowingBinaryOperator>(&I)) {
660           HasNSW = I.hasNoSignedWrap();
661           HasNUW = I.hasNoUnsignedWrap();
662         }
663 
664         if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
665           HasNSW &= LOBO->hasNoSignedWrap();
666           HasNUW &= LOBO->hasNoUnsignedWrap();
667         }
668 
669         if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
670           HasNSW &= ROBO->hasNoSignedWrap();
671           HasNUW &= ROBO->hasNoUnsignedWrap();
672         }
673 
674         if (TopLevelOpcode == Instruction::Add &&
675             InnerOpcode == Instruction::Mul) {
676           // We can propagate 'nsw' if we know that
677           //  %Y = mul nsw i16 %X, C
678           //  %Z = add nsw i16 %Y, %X
679           // =>
680           //  %Z = mul nsw i16 %X, C+1
681           //
682           // iff C+1 isn't INT_MIN
683           const APInt *CInt;
684           if (match(V, m_APInt(CInt))) {
685             if (!CInt->isMinSignedValue())
686               BO->setHasNoSignedWrap(HasNSW);
687           }
688 
689           // nuw can be propagated with any constant or nuw value.
690           BO->setHasNoUnsignedWrap(HasNUW);
691         }
692       }
693     }
694   }
695   return SimplifiedInst;
696 }
697 
698 /// This tries to simplify binary operations which some other binary operation
699 /// distributes over either by factorizing out common terms
700 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
701 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
702 /// Returns the simplified value, or null if it didn't simplify.
703 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
704   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
705   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
706   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
707   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
708 
709   {
710     // Factorization.
711     Value *A, *B, *C, *D;
712     Instruction::BinaryOps LHSOpcode, RHSOpcode;
713     if (Op0)
714       LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
715     if (Op1)
716       RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
717 
718     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
719     // a common term.
720     if (Op0 && Op1 && LHSOpcode == RHSOpcode)
721       if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
722         return V;
723 
724     // The instruction has the form "(A op' B) op (C)".  Try to factorize common
725     // term.
726     if (Op0)
727       if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
728         if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
729           return V;
730 
731     // The instruction has the form "(B) op (C op' D)".  Try to factorize common
732     // term.
733     if (Op1)
734       if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
735         if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
736           return V;
737   }
738 
739   // Expansion.
740   if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
741     // The instruction has the form "(A op' B) op C".  See if expanding it out
742     // to "(A op C) op' (B op C)" results in simplifications.
743     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
744     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
745 
746     // Disable the use of undef because it's not safe to distribute undef.
747     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
748     Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
749     Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
750 
751     // Do "A op C" and "B op C" both simplify?
752     if (L && R) {
753       // They do! Return "L op' R".
754       ++NumExpand;
755       C = Builder.CreateBinOp(InnerOpcode, L, R);
756       C->takeName(&I);
757       return C;
758     }
759 
760     // Does "A op C" simplify to the identity value for the inner opcode?
761     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
762       // They do! Return "B op C".
763       ++NumExpand;
764       C = Builder.CreateBinOp(TopLevelOpcode, B, C);
765       C->takeName(&I);
766       return C;
767     }
768 
769     // Does "B op C" simplify to the identity value for the inner opcode?
770     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
771       // They do! Return "A op C".
772       ++NumExpand;
773       C = Builder.CreateBinOp(TopLevelOpcode, A, C);
774       C->takeName(&I);
775       return C;
776     }
777   }
778 
779   if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
780     // The instruction has the form "A op (B op' C)".  See if expanding it out
781     // to "(A op B) op' (A op C)" results in simplifications.
782     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
783     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
784 
785     // Disable the use of undef because it's not safe to distribute undef.
786     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
787     Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
788     Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
789 
790     // Do "A op B" and "A op C" both simplify?
791     if (L && R) {
792       // They do! Return "L op' R".
793       ++NumExpand;
794       A = Builder.CreateBinOp(InnerOpcode, L, R);
795       A->takeName(&I);
796       return A;
797     }
798 
799     // Does "A op B" simplify to the identity value for the inner opcode?
800     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
801       // They do! Return "A op C".
802       ++NumExpand;
803       A = Builder.CreateBinOp(TopLevelOpcode, A, C);
804       A->takeName(&I);
805       return A;
806     }
807 
808     // Does "A op C" simplify to the identity value for the inner opcode?
809     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
810       // They do! Return "A op B".
811       ++NumExpand;
812       A = Builder.CreateBinOp(TopLevelOpcode, A, B);
813       A->takeName(&I);
814       return A;
815     }
816   }
817 
818   return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
819 }
820 
821 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
822                                                         Value *LHS,
823                                                         Value *RHS) {
824   Value *A, *B, *C, *D, *E, *F;
825   bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
826   bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
827   if (!LHSIsSelect && !RHSIsSelect)
828     return nullptr;
829 
830   FastMathFlags FMF;
831   BuilderTy::FastMathFlagGuard Guard(Builder);
832   if (isa<FPMathOperator>(&I)) {
833     FMF = I.getFastMathFlags();
834     Builder.setFastMathFlags(FMF);
835   }
836 
837   Instruction::BinaryOps Opcode = I.getOpcode();
838   SimplifyQuery Q = SQ.getWithInstruction(&I);
839 
840   Value *Cond, *True = nullptr, *False = nullptr;
841   if (LHSIsSelect && RHSIsSelect && A == D) {
842     // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
843     Cond = A;
844     True = SimplifyBinOp(Opcode, B, E, FMF, Q);
845     False = SimplifyBinOp(Opcode, C, F, FMF, Q);
846 
847     if (LHS->hasOneUse() && RHS->hasOneUse()) {
848       if (False && !True)
849         True = Builder.CreateBinOp(Opcode, B, E);
850       else if (True && !False)
851         False = Builder.CreateBinOp(Opcode, C, F);
852     }
853   } else if (LHSIsSelect && LHS->hasOneUse()) {
854     // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
855     Cond = A;
856     True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
857     False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
858   } else if (RHSIsSelect && RHS->hasOneUse()) {
859     // X op (D ? E : F) -> D ? (X op E) : (X op F)
860     Cond = D;
861     True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
862     False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
863   }
864 
865   if (!True || !False)
866     return nullptr;
867 
868   Value *SI = Builder.CreateSelect(Cond, True, False);
869   SI->takeName(&I);
870   return SI;
871 }
872 
873 /// Freely adapt every user of V as-if V was changed to !V.
874 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
875 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) {
876   for (User *U : I->users()) {
877     switch (cast<Instruction>(U)->getOpcode()) {
878     case Instruction::Select: {
879       auto *SI = cast<SelectInst>(U);
880       SI->swapValues();
881       SI->swapProfMetadata();
882       break;
883     }
884     case Instruction::Br:
885       cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
886       break;
887     case Instruction::Xor:
888       replaceInstUsesWith(cast<Instruction>(*U), I);
889       break;
890     default:
891       llvm_unreachable("Got unexpected user - out of sync with "
892                        "canFreelyInvertAllUsersOf() ?");
893     }
894   }
895 }
896 
897 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
898 /// constant zero (which is the 'negate' form).
899 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
900   Value *NegV;
901   if (match(V, m_Neg(m_Value(NegV))))
902     return NegV;
903 
904   // Constants can be considered to be negated values if they can be folded.
905   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
906     return ConstantExpr::getNeg(C);
907 
908   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
909     if (C->getType()->getElementType()->isIntegerTy())
910       return ConstantExpr::getNeg(C);
911 
912   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
913     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
914       Constant *Elt = CV->getAggregateElement(i);
915       if (!Elt)
916         return nullptr;
917 
918       if (isa<UndefValue>(Elt))
919         continue;
920 
921       if (!isa<ConstantInt>(Elt))
922         return nullptr;
923     }
924     return ConstantExpr::getNeg(CV);
925   }
926 
927   return nullptr;
928 }
929 
930 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
931                                              InstCombiner::BuilderTy &Builder) {
932   if (auto *Cast = dyn_cast<CastInst>(&I))
933     return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
934 
935   assert(I.isBinaryOp() && "Unexpected opcode for select folding");
936 
937   // Figure out if the constant is the left or the right argument.
938   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
939   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
940 
941   if (auto *SOC = dyn_cast<Constant>(SO)) {
942     if (ConstIsRHS)
943       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
944     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
945   }
946 
947   Value *Op0 = SO, *Op1 = ConstOperand;
948   if (!ConstIsRHS)
949     std::swap(Op0, Op1);
950 
951   auto *BO = cast<BinaryOperator>(&I);
952   Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
953                                   SO->getName() + ".op");
954   auto *FPInst = dyn_cast<Instruction>(RI);
955   if (FPInst && isa<FPMathOperator>(FPInst))
956     FPInst->copyFastMathFlags(BO);
957   return RI;
958 }
959 
960 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op,
961                                                 SelectInst *SI) {
962   // Don't modify shared select instructions.
963   if (!SI->hasOneUse())
964     return nullptr;
965 
966   Value *TV = SI->getTrueValue();
967   Value *FV = SI->getFalseValue();
968   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
969     return nullptr;
970 
971   // Bool selects with constant operands can be folded to logical ops.
972   if (SI->getType()->isIntOrIntVectorTy(1))
973     return nullptr;
974 
975   // If it's a bitcast involving vectors, make sure it has the same number of
976   // elements on both sides.
977   if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
978     VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
979     VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
980 
981     // Verify that either both or neither are vectors.
982     if ((SrcTy == nullptr) != (DestTy == nullptr))
983       return nullptr;
984 
985     // If vectors, verify that they have the same number of elements.
986     if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount())
987       return nullptr;
988   }
989 
990   // Test if a CmpInst instruction is used exclusively by a select as
991   // part of a minimum or maximum operation. If so, refrain from doing
992   // any other folding. This helps out other analyses which understand
993   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
994   // and CodeGen. And in this case, at least one of the comparison
995   // operands has at least one user besides the compare (the select),
996   // which would often largely negate the benefit of folding anyway.
997   if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
998     if (CI->hasOneUse()) {
999       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1000 
1001       // FIXME: This is a hack to avoid infinite looping with min/max patterns.
1002       //        We have to ensure that vector constants that only differ with
1003       //        undef elements are treated as equivalent.
1004       auto areLooselyEqual = [](Value *A, Value *B) {
1005         if (A == B)
1006           return true;
1007 
1008         // Test for vector constants.
1009         Constant *ConstA, *ConstB;
1010         if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
1011           return false;
1012 
1013         // TODO: Deal with FP constants?
1014         if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
1015           return false;
1016 
1017         // Compare for equality including undefs as equal.
1018         auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
1019         const APInt *C;
1020         return match(Cmp, m_APIntAllowUndef(C)) && C->isOneValue();
1021       };
1022 
1023       if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
1024           (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
1025         return nullptr;
1026     }
1027   }
1028 
1029   Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
1030   Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
1031   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1032 }
1033 
1034 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
1035                                         InstCombiner::BuilderTy &Builder) {
1036   bool ConstIsRHS = isa<Constant>(I->getOperand(1));
1037   Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
1038 
1039   if (auto *InC = dyn_cast<Constant>(InV)) {
1040     if (ConstIsRHS)
1041       return ConstantExpr::get(I->getOpcode(), InC, C);
1042     return ConstantExpr::get(I->getOpcode(), C, InC);
1043   }
1044 
1045   Value *Op0 = InV, *Op1 = C;
1046   if (!ConstIsRHS)
1047     std::swap(Op0, Op1);
1048 
1049   Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo");
1050   auto *FPInst = dyn_cast<Instruction>(RI);
1051   if (FPInst && isa<FPMathOperator>(FPInst))
1052     FPInst->copyFastMathFlags(I);
1053   return RI;
1054 }
1055 
1056 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1057   unsigned NumPHIValues = PN->getNumIncomingValues();
1058   if (NumPHIValues == 0)
1059     return nullptr;
1060 
1061   // We normally only transform phis with a single use.  However, if a PHI has
1062   // multiple uses and they are all the same operation, we can fold *all* of the
1063   // uses into the PHI.
1064   if (!PN->hasOneUse()) {
1065     // Walk the use list for the instruction, comparing them to I.
1066     for (User *U : PN->users()) {
1067       Instruction *UI = cast<Instruction>(U);
1068       if (UI != &I && !I.isIdenticalTo(UI))
1069         return nullptr;
1070     }
1071     // Otherwise, we can replace *all* users with the new PHI we form.
1072   }
1073 
1074   // Check to see if all of the operands of the PHI are simple constants
1075   // (constantint/constantfp/undef).  If there is one non-constant value,
1076   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
1077   // bail out.  We don't do arbitrary constant expressions here because moving
1078   // their computation can be expensive without a cost model.
1079   BasicBlock *NonConstBB = nullptr;
1080   for (unsigned i = 0; i != NumPHIValues; ++i) {
1081     Value *InVal = PN->getIncomingValue(i);
1082     // If I is a freeze instruction, count undef as a non-constant.
1083     if (match(InVal, m_ImmConstant()) &&
1084         (!isa<FreezeInst>(I) || isGuaranteedNotToBeUndefOrPoison(InVal)))
1085       continue;
1086 
1087     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
1088     if (NonConstBB) return nullptr;  // More than one non-const value.
1089 
1090     NonConstBB = PN->getIncomingBlock(i);
1091 
1092     // If the InVal is an invoke at the end of the pred block, then we can't
1093     // insert a computation after it without breaking the edge.
1094     if (isa<InvokeInst>(InVal))
1095       if (cast<Instruction>(InVal)->getParent() == NonConstBB)
1096         return nullptr;
1097 
1098     // If the incoming non-constant value is in I's block, we will remove one
1099     // instruction, but insert another equivalent one, leading to infinite
1100     // instcombine.
1101     if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
1102       return nullptr;
1103   }
1104 
1105   // If there is exactly one non-constant value, we can insert a copy of the
1106   // operation in that block.  However, if this is a critical edge, we would be
1107   // inserting the computation on some other paths (e.g. inside a loop).  Only
1108   // do this if the pred block is unconditionally branching into the phi block.
1109   // Also, make sure that the pred block is not dead code.
1110   if (NonConstBB != nullptr) {
1111     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1112     if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB))
1113       return nullptr;
1114   }
1115 
1116   // Okay, we can do the transformation: create the new PHI node.
1117   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1118   InsertNewInstBefore(NewPN, *PN);
1119   NewPN->takeName(PN);
1120 
1121   // If we are going to have to insert a new computation, do so right before the
1122   // predecessor's terminator.
1123   if (NonConstBB)
1124     Builder.SetInsertPoint(NonConstBB->getTerminator());
1125 
1126   // Next, add all of the operands to the PHI.
1127   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1128     // We only currently try to fold the condition of a select when it is a phi,
1129     // not the true/false values.
1130     Value *TrueV = SI->getTrueValue();
1131     Value *FalseV = SI->getFalseValue();
1132     BasicBlock *PhiTransBB = PN->getParent();
1133     for (unsigned i = 0; i != NumPHIValues; ++i) {
1134       BasicBlock *ThisBB = PN->getIncomingBlock(i);
1135       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1136       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1137       Value *InV = nullptr;
1138       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
1139       // even if currently isNullValue gives false.
1140       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1141       // For vector constants, we cannot use isNullValue to fold into
1142       // FalseVInPred versus TrueVInPred. When we have individual nonzero
1143       // elements in the vector, we will incorrectly fold InC to
1144       // `TrueVInPred`.
1145       if (InC && isa<ConstantInt>(InC))
1146         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1147       else {
1148         // Generate the select in the same block as PN's current incoming block.
1149         // Note: ThisBB need not be the NonConstBB because vector constants
1150         // which are constants by definition are handled here.
1151         // FIXME: This can lead to an increase in IR generation because we might
1152         // generate selects for vector constant phi operand, that could not be
1153         // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1154         // non-vector phis, this transformation was always profitable because
1155         // the select would be generated exactly once in the NonConstBB.
1156         Builder.SetInsertPoint(ThisBB->getTerminator());
1157         InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1158                                    FalseVInPred, "phi.sel");
1159       }
1160       NewPN->addIncoming(InV, ThisBB);
1161     }
1162   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1163     Constant *C = cast<Constant>(I.getOperand(1));
1164     for (unsigned i = 0; i != NumPHIValues; ++i) {
1165       Value *InV = nullptr;
1166       if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1167         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1168       else
1169         InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i),
1170                                 C, "phi.cmp");
1171       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1172     }
1173   } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1174     for (unsigned i = 0; i != NumPHIValues; ++i) {
1175       Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1176                                              Builder);
1177       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1178     }
1179   } else if (isa<FreezeInst>(&I)) {
1180     for (unsigned i = 0; i != NumPHIValues; ++i) {
1181       Value *InV;
1182       if (NonConstBB == PN->getIncomingBlock(i))
1183         InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr");
1184       else
1185         InV = PN->getIncomingValue(i);
1186       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1187     }
1188   } else {
1189     CastInst *CI = cast<CastInst>(&I);
1190     Type *RetTy = CI->getType();
1191     for (unsigned i = 0; i != NumPHIValues; ++i) {
1192       Value *InV;
1193       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1194         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1195       else
1196         InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1197                                  I.getType(), "phi.cast");
1198       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1199     }
1200   }
1201 
1202   for (User *U : make_early_inc_range(PN->users())) {
1203     Instruction *User = cast<Instruction>(U);
1204     if (User == &I) continue;
1205     replaceInstUsesWith(*User, NewPN);
1206     eraseInstFromFunction(*User);
1207   }
1208   return replaceInstUsesWith(I, NewPN);
1209 }
1210 
1211 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1212   if (!isa<Constant>(I.getOperand(1)))
1213     return nullptr;
1214 
1215   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1216     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1217       return NewSel;
1218   } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1219     if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1220       return NewPhi;
1221   }
1222   return nullptr;
1223 }
1224 
1225 /// Given a pointer type and a constant offset, determine whether or not there
1226 /// is a sequence of GEP indices into the pointed type that will land us at the
1227 /// specified offset. If so, fill them into NewIndices and return the resultant
1228 /// element type, otherwise return null.
1229 Type *
1230 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
1231                                       SmallVectorImpl<Value *> &NewIndices) {
1232   Type *Ty = PtrTy->getElementType();
1233   if (!Ty->isSized())
1234     return nullptr;
1235 
1236   // Start with the index over the outer type.  Note that the type size
1237   // might be zero (even if the offset isn't zero) if the indexed type
1238   // is something like [0 x {int, int}]
1239   Type *IndexTy = DL.getIndexType(PtrTy);
1240   int64_t FirstIdx = 0;
1241   if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
1242     FirstIdx = Offset/TySize;
1243     Offset -= FirstIdx*TySize;
1244 
1245     // Handle hosts where % returns negative instead of values [0..TySize).
1246     if (Offset < 0) {
1247       --FirstIdx;
1248       Offset += TySize;
1249       assert(Offset >= 0);
1250     }
1251     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
1252   }
1253 
1254   NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
1255 
1256   // Index into the types.  If we fail, set OrigBase to null.
1257   while (Offset) {
1258     // Indexing into tail padding between struct/array elements.
1259     if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
1260       return nullptr;
1261 
1262     if (StructType *STy = dyn_cast<StructType>(Ty)) {
1263       const StructLayout *SL = DL.getStructLayout(STy);
1264       assert(Offset < (int64_t)SL->getSizeInBytes() &&
1265              "Offset must stay within the indexed type");
1266 
1267       unsigned Elt = SL->getElementContainingOffset(Offset);
1268       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1269                                             Elt));
1270 
1271       Offset -= SL->getElementOffset(Elt);
1272       Ty = STy->getElementType(Elt);
1273     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
1274       uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
1275       assert(EltSize && "Cannot index into a zero-sized array");
1276       NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
1277       Offset %= EltSize;
1278       Ty = AT->getElementType();
1279     } else {
1280       // Otherwise, we can't index into the middle of this atomic type, bail.
1281       return nullptr;
1282     }
1283   }
1284 
1285   return Ty;
1286 }
1287 
1288 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1289   // If this GEP has only 0 indices, it is the same pointer as
1290   // Src. If Src is not a trivial GEP too, don't combine
1291   // the indices.
1292   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1293       !Src.hasOneUse())
1294     return false;
1295   return true;
1296 }
1297 
1298 /// Return a value X such that Val = X * Scale, or null if none.
1299 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1300 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1301   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1302   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1303          Scale.getBitWidth() && "Scale not compatible with value!");
1304 
1305   // If Val is zero or Scale is one then Val = Val * Scale.
1306   if (match(Val, m_Zero()) || Scale == 1) {
1307     NoSignedWrap = true;
1308     return Val;
1309   }
1310 
1311   // If Scale is zero then it does not divide Val.
1312   if (Scale.isMinValue())
1313     return nullptr;
1314 
1315   // Look through chains of multiplications, searching for a constant that is
1316   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1317   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1318   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1319   // down from Val:
1320   //
1321   //     Val = M1 * X          ||   Analysis starts here and works down
1322   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1323   //      M2 =  Z * 4          \/   than one use
1324   //
1325   // Then to modify a term at the bottom:
1326   //
1327   //     Val = M1 * X
1328   //      M1 =  Z * Y          ||   Replaced M2 with Z
1329   //
1330   // Then to work back up correcting nsw flags.
1331 
1332   // Op - the term we are currently analyzing.  Starts at Val then drills down.
1333   // Replaced with its descaled value before exiting from the drill down loop.
1334   Value *Op = Val;
1335 
1336   // Parent - initially null, but after drilling down notes where Op came from.
1337   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1338   // 0'th operand of Val.
1339   std::pair<Instruction *, unsigned> Parent;
1340 
1341   // Set if the transform requires a descaling at deeper levels that doesn't
1342   // overflow.
1343   bool RequireNoSignedWrap = false;
1344 
1345   // Log base 2 of the scale. Negative if not a power of 2.
1346   int32_t logScale = Scale.exactLogBase2();
1347 
1348   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1349     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1350       // If Op is a constant divisible by Scale then descale to the quotient.
1351       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1352       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1353       if (!Remainder.isMinValue())
1354         // Not divisible by Scale.
1355         return nullptr;
1356       // Replace with the quotient in the parent.
1357       Op = ConstantInt::get(CI->getType(), Quotient);
1358       NoSignedWrap = true;
1359       break;
1360     }
1361 
1362     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1363       if (BO->getOpcode() == Instruction::Mul) {
1364         // Multiplication.
1365         NoSignedWrap = BO->hasNoSignedWrap();
1366         if (RequireNoSignedWrap && !NoSignedWrap)
1367           return nullptr;
1368 
1369         // There are three cases for multiplication: multiplication by exactly
1370         // the scale, multiplication by a constant different to the scale, and
1371         // multiplication by something else.
1372         Value *LHS = BO->getOperand(0);
1373         Value *RHS = BO->getOperand(1);
1374 
1375         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1376           // Multiplication by a constant.
1377           if (CI->getValue() == Scale) {
1378             // Multiplication by exactly the scale, replace the multiplication
1379             // by its left-hand side in the parent.
1380             Op = LHS;
1381             break;
1382           }
1383 
1384           // Otherwise drill down into the constant.
1385           if (!Op->hasOneUse())
1386             return nullptr;
1387 
1388           Parent = std::make_pair(BO, 1);
1389           continue;
1390         }
1391 
1392         // Multiplication by something else. Drill down into the left-hand side
1393         // since that's where the reassociate pass puts the good stuff.
1394         if (!Op->hasOneUse())
1395           return nullptr;
1396 
1397         Parent = std::make_pair(BO, 0);
1398         continue;
1399       }
1400 
1401       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1402           isa<ConstantInt>(BO->getOperand(1))) {
1403         // Multiplication by a power of 2.
1404         NoSignedWrap = BO->hasNoSignedWrap();
1405         if (RequireNoSignedWrap && !NoSignedWrap)
1406           return nullptr;
1407 
1408         Value *LHS = BO->getOperand(0);
1409         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1410           getLimitedValue(Scale.getBitWidth());
1411         // Op = LHS << Amt.
1412 
1413         if (Amt == logScale) {
1414           // Multiplication by exactly the scale, replace the multiplication
1415           // by its left-hand side in the parent.
1416           Op = LHS;
1417           break;
1418         }
1419         if (Amt < logScale || !Op->hasOneUse())
1420           return nullptr;
1421 
1422         // Multiplication by more than the scale.  Reduce the multiplying amount
1423         // by the scale in the parent.
1424         Parent = std::make_pair(BO, 1);
1425         Op = ConstantInt::get(BO->getType(), Amt - logScale);
1426         break;
1427       }
1428     }
1429 
1430     if (!Op->hasOneUse())
1431       return nullptr;
1432 
1433     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1434       if (Cast->getOpcode() == Instruction::SExt) {
1435         // Op is sign-extended from a smaller type, descale in the smaller type.
1436         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1437         APInt SmallScale = Scale.trunc(SmallSize);
1438         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1439         // descale Op as (sext Y) * Scale.  In order to have
1440         //   sext (Y * SmallScale) = (sext Y) * Scale
1441         // some conditions need to hold however: SmallScale must sign-extend to
1442         // Scale and the multiplication Y * SmallScale should not overflow.
1443         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1444           // SmallScale does not sign-extend to Scale.
1445           return nullptr;
1446         assert(SmallScale.exactLogBase2() == logScale);
1447         // Require that Y * SmallScale must not overflow.
1448         RequireNoSignedWrap = true;
1449 
1450         // Drill down through the cast.
1451         Parent = std::make_pair(Cast, 0);
1452         Scale = SmallScale;
1453         continue;
1454       }
1455 
1456       if (Cast->getOpcode() == Instruction::Trunc) {
1457         // Op is truncated from a larger type, descale in the larger type.
1458         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1459         //   trunc (Y * sext Scale) = (trunc Y) * Scale
1460         // always holds.  However (trunc Y) * Scale may overflow even if
1461         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1462         // from this point up in the expression (see later).
1463         if (RequireNoSignedWrap)
1464           return nullptr;
1465 
1466         // Drill down through the cast.
1467         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1468         Parent = std::make_pair(Cast, 0);
1469         Scale = Scale.sext(LargeSize);
1470         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1471           logScale = -1;
1472         assert(Scale.exactLogBase2() == logScale);
1473         continue;
1474       }
1475     }
1476 
1477     // Unsupported expression, bail out.
1478     return nullptr;
1479   }
1480 
1481   // If Op is zero then Val = Op * Scale.
1482   if (match(Op, m_Zero())) {
1483     NoSignedWrap = true;
1484     return Op;
1485   }
1486 
1487   // We know that we can successfully descale, so from here on we can safely
1488   // modify the IR.  Op holds the descaled version of the deepest term in the
1489   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1490   // not to overflow.
1491 
1492   if (!Parent.first)
1493     // The expression only had one term.
1494     return Op;
1495 
1496   // Rewrite the parent using the descaled version of its operand.
1497   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1498   assert(Op != Parent.first->getOperand(Parent.second) &&
1499          "Descaling was a no-op?");
1500   replaceOperand(*Parent.first, Parent.second, Op);
1501   Worklist.push(Parent.first);
1502 
1503   // Now work back up the expression correcting nsw flags.  The logic is based
1504   // on the following observation: if X * Y is known not to overflow as a signed
1505   // multiplication, and Y is replaced by a value Z with smaller absolute value,
1506   // then X * Z will not overflow as a signed multiplication either.  As we work
1507   // our way up, having NoSignedWrap 'true' means that the descaled value at the
1508   // current level has strictly smaller absolute value than the original.
1509   Instruction *Ancestor = Parent.first;
1510   do {
1511     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1512       // If the multiplication wasn't nsw then we can't say anything about the
1513       // value of the descaled multiplication, and we have to clear nsw flags
1514       // from this point on up.
1515       bool OpNoSignedWrap = BO->hasNoSignedWrap();
1516       NoSignedWrap &= OpNoSignedWrap;
1517       if (NoSignedWrap != OpNoSignedWrap) {
1518         BO->setHasNoSignedWrap(NoSignedWrap);
1519         Worklist.push(Ancestor);
1520       }
1521     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1522       // The fact that the descaled input to the trunc has smaller absolute
1523       // value than the original input doesn't tell us anything useful about
1524       // the absolute values of the truncations.
1525       NoSignedWrap = false;
1526     }
1527     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1528            "Failed to keep proper track of nsw flags while drilling down?");
1529 
1530     if (Ancestor == Val)
1531       // Got to the top, all done!
1532       return Val;
1533 
1534     // Move up one level in the expression.
1535     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1536     Ancestor = Ancestor->user_back();
1537   } while (true);
1538 }
1539 
1540 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
1541   if (!isa<VectorType>(Inst.getType()))
1542     return nullptr;
1543 
1544   BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1545   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1546   assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1547          cast<VectorType>(Inst.getType())->getElementCount());
1548   assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1549          cast<VectorType>(Inst.getType())->getElementCount());
1550 
1551   // If both operands of the binop are vector concatenations, then perform the
1552   // narrow binop on each pair of the source operands followed by concatenation
1553   // of the results.
1554   Value *L0, *L1, *R0, *R1;
1555   ArrayRef<int> Mask;
1556   if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1557       match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1558       LHS->hasOneUse() && RHS->hasOneUse() &&
1559       cast<ShuffleVectorInst>(LHS)->isConcat() &&
1560       cast<ShuffleVectorInst>(RHS)->isConcat()) {
1561     // This transform does not have the speculative execution constraint as
1562     // below because the shuffle is a concatenation. The new binops are
1563     // operating on exactly the same elements as the existing binop.
1564     // TODO: We could ease the mask requirement to allow different undef lanes,
1565     //       but that requires an analysis of the binop-with-undef output value.
1566     Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1567     if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1568       BO->copyIRFlags(&Inst);
1569     Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1570     if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1571       BO->copyIRFlags(&Inst);
1572     return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1573   }
1574 
1575   // It may not be safe to reorder shuffles and things like div, urem, etc.
1576   // because we may trap when executing those ops on unknown vector elements.
1577   // See PR20059.
1578   if (!isSafeToSpeculativelyExecute(&Inst))
1579     return nullptr;
1580 
1581   auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1582     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1583     if (auto *BO = dyn_cast<BinaryOperator>(XY))
1584       BO->copyIRFlags(&Inst);
1585     return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
1586   };
1587 
1588   // If both arguments of the binary operation are shuffles that use the same
1589   // mask and shuffle within a single vector, move the shuffle after the binop.
1590   Value *V1, *V2;
1591   if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
1592       match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
1593       V1->getType() == V2->getType() &&
1594       (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1595     // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1596     return createBinOpShuffle(V1, V2, Mask);
1597   }
1598 
1599   // If both arguments of a commutative binop are select-shuffles that use the
1600   // same mask with commuted operands, the shuffles are unnecessary.
1601   if (Inst.isCommutative() &&
1602       match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1603       match(RHS,
1604             m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1605     auto *LShuf = cast<ShuffleVectorInst>(LHS);
1606     auto *RShuf = cast<ShuffleVectorInst>(RHS);
1607     // TODO: Allow shuffles that contain undefs in the mask?
1608     //       That is legal, but it reduces undef knowledge.
1609     // TODO: Allow arbitrary shuffles by shuffling after binop?
1610     //       That might be legal, but we have to deal with poison.
1611     if (LShuf->isSelect() &&
1612         !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
1613         RShuf->isSelect() &&
1614         !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
1615       // Example:
1616       // LHS = shuffle V1, V2, <0, 5, 6, 3>
1617       // RHS = shuffle V2, V1, <0, 5, 6, 3>
1618       // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1619       Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1620       NewBO->copyIRFlags(&Inst);
1621       return NewBO;
1622     }
1623   }
1624 
1625   // If one argument is a shuffle within one vector and the other is a constant,
1626   // try moving the shuffle after the binary operation. This canonicalization
1627   // intends to move shuffles closer to other shuffles and binops closer to
1628   // other binops, so they can be folded. It may also enable demanded elements
1629   // transforms.
1630   Constant *C;
1631   auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
1632   if (InstVTy &&
1633       match(&Inst,
1634             m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
1635                       m_ImmConstant(C))) &&
1636       cast<FixedVectorType>(V1->getType())->getNumElements() <=
1637           InstVTy->getNumElements()) {
1638     assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
1639            "Shuffle should not change scalar type");
1640 
1641     // Find constant NewC that has property:
1642     //   shuffle(NewC, ShMask) = C
1643     // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1644     // reorder is not possible. A 1-to-1 mapping is not required. Example:
1645     // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1646     bool ConstOp1 = isa<Constant>(RHS);
1647     ArrayRef<int> ShMask = Mask;
1648     unsigned SrcVecNumElts =
1649         cast<FixedVectorType>(V1->getType())->getNumElements();
1650     UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1651     SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1652     bool MayChange = true;
1653     unsigned NumElts = InstVTy->getNumElements();
1654     for (unsigned I = 0; I < NumElts; ++I) {
1655       Constant *CElt = C->getAggregateElement(I);
1656       if (ShMask[I] >= 0) {
1657         assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1658         Constant *NewCElt = NewVecC[ShMask[I]];
1659         // Bail out if:
1660         // 1. The constant vector contains a constant expression.
1661         // 2. The shuffle needs an element of the constant vector that can't
1662         //    be mapped to a new constant vector.
1663         // 3. This is a widening shuffle that copies elements of V1 into the
1664         //    extended elements (extending with undef is allowed).
1665         if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1666             I >= SrcVecNumElts) {
1667           MayChange = false;
1668           break;
1669         }
1670         NewVecC[ShMask[I]] = CElt;
1671       }
1672       // If this is a widening shuffle, we must be able to extend with undef
1673       // elements. If the original binop does not produce an undef in the high
1674       // lanes, then this transform is not safe.
1675       // Similarly for undef lanes due to the shuffle mask, we can only
1676       // transform binops that preserve undef.
1677       // TODO: We could shuffle those non-undef constant values into the
1678       //       result by using a constant vector (rather than an undef vector)
1679       //       as operand 1 of the new binop, but that might be too aggressive
1680       //       for target-independent shuffle creation.
1681       if (I >= SrcVecNumElts || ShMask[I] < 0) {
1682         Constant *MaybeUndef =
1683             ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1684                      : ConstantExpr::get(Opcode, CElt, UndefScalar);
1685         if (!isa<UndefValue>(MaybeUndef)) {
1686           MayChange = false;
1687           break;
1688         }
1689       }
1690     }
1691     if (MayChange) {
1692       Constant *NewC = ConstantVector::get(NewVecC);
1693       // It may not be safe to execute a binop on a vector with undef elements
1694       // because the entire instruction can be folded to undef or create poison
1695       // that did not exist in the original code.
1696       if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1697         NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1698 
1699       // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1700       // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1701       Value *NewLHS = ConstOp1 ? V1 : NewC;
1702       Value *NewRHS = ConstOp1 ? NewC : V1;
1703       return createBinOpShuffle(NewLHS, NewRHS, Mask);
1704     }
1705   }
1706 
1707   // Try to reassociate to sink a splat shuffle after a binary operation.
1708   if (Inst.isAssociative() && Inst.isCommutative()) {
1709     // Canonicalize shuffle operand as LHS.
1710     if (isa<ShuffleVectorInst>(RHS))
1711       std::swap(LHS, RHS);
1712 
1713     Value *X;
1714     ArrayRef<int> MaskC;
1715     int SplatIndex;
1716     BinaryOperator *BO;
1717     if (!match(LHS,
1718                m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
1719         !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1720         X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) ||
1721         BO->getOpcode() != Opcode)
1722       return nullptr;
1723 
1724     // FIXME: This may not be safe if the analysis allows undef elements. By
1725     //        moving 'Y' before the splat shuffle, we are implicitly assuming
1726     //        that it is not undef/poison at the splat index.
1727     Value *Y, *OtherOp;
1728     if (isSplatValue(BO->getOperand(0), SplatIndex)) {
1729       Y = BO->getOperand(0);
1730       OtherOp = BO->getOperand(1);
1731     } else if (isSplatValue(BO->getOperand(1), SplatIndex)) {
1732       Y = BO->getOperand(1);
1733       OtherOp = BO->getOperand(0);
1734     } else {
1735       return nullptr;
1736     }
1737 
1738     // X and Y are splatted values, so perform the binary operation on those
1739     // values followed by a splat followed by the 2nd binary operation:
1740     // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1741     Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1742     SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1743     Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
1744     Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1745 
1746     // Intersect FMF on both new binops. Other (poison-generating) flags are
1747     // dropped to be safe.
1748     if (isa<FPMathOperator>(R)) {
1749       R->copyFastMathFlags(&Inst);
1750       R->andIRFlags(BO);
1751     }
1752     if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1753       NewInstBO->copyIRFlags(R);
1754     return R;
1755   }
1756 
1757   return nullptr;
1758 }
1759 
1760 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1761 /// of a value. This requires a potentially expensive known bits check to make
1762 /// sure the narrow op does not overflow.
1763 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
1764   // We need at least one extended operand.
1765   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1766 
1767   // If this is a sub, we swap the operands since we always want an extension
1768   // on the RHS. The LHS can be an extension or a constant.
1769   if (BO.getOpcode() == Instruction::Sub)
1770     std::swap(Op0, Op1);
1771 
1772   Value *X;
1773   bool IsSext = match(Op0, m_SExt(m_Value(X)));
1774   if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1775     return nullptr;
1776 
1777   // If both operands are the same extension from the same source type and we
1778   // can eliminate at least one (hasOneUse), this might work.
1779   CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1780   Value *Y;
1781   if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1782         cast<Operator>(Op1)->getOpcode() == CastOpc &&
1783         (Op0->hasOneUse() || Op1->hasOneUse()))) {
1784     // If that did not match, see if we have a suitable constant operand.
1785     // Truncating and extending must produce the same constant.
1786     Constant *WideC;
1787     if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1788       return nullptr;
1789     Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1790     if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1791       return nullptr;
1792     Y = NarrowC;
1793   }
1794 
1795   // Swap back now that we found our operands.
1796   if (BO.getOpcode() == Instruction::Sub)
1797     std::swap(X, Y);
1798 
1799   // Both operands have narrow versions. Last step: the math must not overflow
1800   // in the narrow width.
1801   if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1802     return nullptr;
1803 
1804   // bo (ext X), (ext Y) --> ext (bo X, Y)
1805   // bo (ext X), C       --> ext (bo X, C')
1806   Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1807   if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1808     if (IsSext)
1809       NewBinOp->setHasNoSignedWrap();
1810     else
1811       NewBinOp->setHasNoUnsignedWrap();
1812   }
1813   return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1814 }
1815 
1816 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1817   // At least one GEP must be inbounds.
1818   if (!GEP1.isInBounds() && !GEP2.isInBounds())
1819     return false;
1820 
1821   return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1822          (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1823 }
1824 
1825 /// Thread a GEP operation with constant indices through the constant true/false
1826 /// arms of a select.
1827 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1828                                   InstCombiner::BuilderTy &Builder) {
1829   if (!GEP.hasAllConstantIndices())
1830     return nullptr;
1831 
1832   Instruction *Sel;
1833   Value *Cond;
1834   Constant *TrueC, *FalseC;
1835   if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1836       !match(Sel,
1837              m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1838     return nullptr;
1839 
1840   // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1841   // Propagate 'inbounds' and metadata from existing instructions.
1842   // Note: using IRBuilder to create the constants for efficiency.
1843   SmallVector<Value *, 4> IndexC(GEP.indices());
1844   bool IsInBounds = GEP.isInBounds();
1845   Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(TrueC, IndexC)
1846                                : Builder.CreateGEP(TrueC, IndexC);
1847   Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(FalseC, IndexC)
1848                                 : Builder.CreateGEP(FalseC, IndexC);
1849   return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1850 }
1851 
1852 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1853   SmallVector<Value *, 8> Ops(GEP.operands());
1854   Type *GEPType = GEP.getType();
1855   Type *GEPEltType = GEP.getSourceElementType();
1856   bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
1857   if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
1858     return replaceInstUsesWith(GEP, V);
1859 
1860   // For vector geps, use the generic demanded vector support.
1861   // Skip if GEP return type is scalable. The number of elements is unknown at
1862   // compile-time.
1863   if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
1864     auto VWidth = GEPFVTy->getNumElements();
1865     APInt UndefElts(VWidth, 0);
1866     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1867     if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
1868                                               UndefElts)) {
1869       if (V != &GEP)
1870         return replaceInstUsesWith(GEP, V);
1871       return &GEP;
1872     }
1873 
1874     // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
1875     // possible (decide on canonical form for pointer broadcast), 3) exploit
1876     // undef elements to decrease demanded bits
1877   }
1878 
1879   Value *PtrOp = GEP.getOperand(0);
1880 
1881   // Eliminate unneeded casts for indices, and replace indices which displace
1882   // by multiples of a zero size type with zero.
1883   bool MadeChange = false;
1884 
1885   // Index width may not be the same width as pointer width.
1886   // Data layout chooses the right type based on supported integer types.
1887   Type *NewScalarIndexTy =
1888       DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1889 
1890   gep_type_iterator GTI = gep_type_begin(GEP);
1891   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1892        ++I, ++GTI) {
1893     // Skip indices into struct types.
1894     if (GTI.isStruct())
1895       continue;
1896 
1897     Type *IndexTy = (*I)->getType();
1898     Type *NewIndexType =
1899         IndexTy->isVectorTy()
1900             ? VectorType::get(NewScalarIndexTy,
1901                               cast<VectorType>(IndexTy)->getElementCount())
1902             : NewScalarIndexTy;
1903 
1904     // If the element type has zero size then any index over it is equivalent
1905     // to an index of zero, so replace it with zero if it is not zero already.
1906     Type *EltTy = GTI.getIndexedType();
1907     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
1908       if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
1909         *I = Constant::getNullValue(NewIndexType);
1910         MadeChange = true;
1911       }
1912 
1913     if (IndexTy != NewIndexType) {
1914       // If we are using a wider index than needed for this platform, shrink
1915       // it to what we need.  If narrower, sign-extend it to what we need.
1916       // This explicit cast can make subsequent optimizations more obvious.
1917       *I = Builder.CreateIntCast(*I, NewIndexType, true);
1918       MadeChange = true;
1919     }
1920   }
1921   if (MadeChange)
1922     return &GEP;
1923 
1924   // Check to see if the inputs to the PHI node are getelementptr instructions.
1925   if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1926     auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1927     if (!Op1)
1928       return nullptr;
1929 
1930     // Don't fold a GEP into itself through a PHI node. This can only happen
1931     // through the back-edge of a loop. Folding a GEP into itself means that
1932     // the value of the previous iteration needs to be stored in the meantime,
1933     // thus requiring an additional register variable to be live, but not
1934     // actually achieving anything (the GEP still needs to be executed once per
1935     // loop iteration).
1936     if (Op1 == &GEP)
1937       return nullptr;
1938 
1939     int DI = -1;
1940 
1941     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1942       auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1943       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1944         return nullptr;
1945 
1946       // As for Op1 above, don't try to fold a GEP into itself.
1947       if (Op2 == &GEP)
1948         return nullptr;
1949 
1950       // Keep track of the type as we walk the GEP.
1951       Type *CurTy = nullptr;
1952 
1953       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1954         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1955           return nullptr;
1956 
1957         if (Op1->getOperand(J) != Op2->getOperand(J)) {
1958           if (DI == -1) {
1959             // We have not seen any differences yet in the GEPs feeding the
1960             // PHI yet, so we record this one if it is allowed to be a
1961             // variable.
1962 
1963             // The first two arguments can vary for any GEP, the rest have to be
1964             // static for struct slots
1965             if (J > 1) {
1966               assert(CurTy && "No current type?");
1967               if (CurTy->isStructTy())
1968                 return nullptr;
1969             }
1970 
1971             DI = J;
1972           } else {
1973             // The GEP is different by more than one input. While this could be
1974             // extended to support GEPs that vary by more than one variable it
1975             // doesn't make sense since it greatly increases the complexity and
1976             // would result in an R+R+R addressing mode which no backend
1977             // directly supports and would need to be broken into several
1978             // simpler instructions anyway.
1979             return nullptr;
1980           }
1981         }
1982 
1983         // Sink down a layer of the type for the next iteration.
1984         if (J > 0) {
1985           if (J == 1) {
1986             CurTy = Op1->getSourceElementType();
1987           } else {
1988             CurTy =
1989                 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
1990           }
1991         }
1992       }
1993     }
1994 
1995     // If not all GEPs are identical we'll have to create a new PHI node.
1996     // Check that the old PHI node has only one use so that it will get
1997     // removed.
1998     if (DI != -1 && !PN->hasOneUse())
1999       return nullptr;
2000 
2001     auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2002     if (DI == -1) {
2003       // All the GEPs feeding the PHI are identical. Clone one down into our
2004       // BB so that it can be merged with the current GEP.
2005     } else {
2006       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
2007       // into the current block so it can be merged, and create a new PHI to
2008       // set that index.
2009       PHINode *NewPN;
2010       {
2011         IRBuilderBase::InsertPointGuard Guard(Builder);
2012         Builder.SetInsertPoint(PN);
2013         NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
2014                                   PN->getNumOperands());
2015       }
2016 
2017       for (auto &I : PN->operands())
2018         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
2019                            PN->getIncomingBlock(I));
2020 
2021       NewGEP->setOperand(DI, NewPN);
2022     }
2023 
2024     GEP.getParent()->getInstList().insert(
2025         GEP.getParent()->getFirstInsertionPt(), NewGEP);
2026     replaceOperand(GEP, 0, NewGEP);
2027     PtrOp = NewGEP;
2028   }
2029 
2030   // Combine Indices - If the source pointer to this getelementptr instruction
2031   // is a getelementptr instruction, combine the indices of the two
2032   // getelementptr instructions into a single instruction.
2033   if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
2034     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2035       return nullptr;
2036 
2037     // Try to reassociate loop invariant GEP chains to enable LICM.
2038     if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
2039         Src->hasOneUse()) {
2040       if (Loop *L = LI->getLoopFor(GEP.getParent())) {
2041         Value *GO1 = GEP.getOperand(1);
2042         Value *SO1 = Src->getOperand(1);
2043         // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
2044         // invariant: this breaks the dependence between GEPs and allows LICM
2045         // to hoist the invariant part out of the loop.
2046         if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
2047           // We have to be careful here.
2048           // We have something like:
2049           //  %src = getelementptr <ty>, <ty>* %base, <ty> %idx
2050           //  %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
2051           // If we just swap idx & idx2 then we could inadvertantly
2052           // change %src from a vector to a scalar, or vice versa.
2053           // Cases:
2054           //  1) %base a scalar & idx a scalar & idx2 a vector
2055           //      => Swapping idx & idx2 turns %src into a vector type.
2056           //  2) %base a scalar & idx a vector & idx2 a scalar
2057           //      => Swapping idx & idx2 turns %src in a scalar type
2058           //  3) %base, %idx, and %idx2 are scalars
2059           //      => %src & %gep are scalars
2060           //      => swapping idx & idx2 is safe
2061           //  4) %base a vector
2062           //      => %src is a vector
2063           //      => swapping idx & idx2 is safe.
2064           auto *SO0 = Src->getOperand(0);
2065           auto *SO0Ty = SO0->getType();
2066           if (!isa<VectorType>(GEPType) || // case 3
2067               isa<VectorType>(SO0Ty)) {    // case 4
2068             Src->setOperand(1, GO1);
2069             GEP.setOperand(1, SO1);
2070             return &GEP;
2071           } else {
2072             // Case 1 or 2
2073             // -- have to recreate %src & %gep
2074             // put NewSrc at same location as %src
2075             Builder.SetInsertPoint(cast<Instruction>(PtrOp));
2076             auto *NewSrc = cast<GetElementPtrInst>(
2077                 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()));
2078             NewSrc->setIsInBounds(Src->isInBounds());
2079             auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
2080             NewGEP->setIsInBounds(GEP.isInBounds());
2081             return NewGEP;
2082           }
2083         }
2084       }
2085     }
2086 
2087     // Note that if our source is a gep chain itself then we wait for that
2088     // chain to be resolved before we perform this transformation.  This
2089     // avoids us creating a TON of code in some cases.
2090     if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
2091       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
2092         return nullptr;   // Wait until our source is folded to completion.
2093 
2094     SmallVector<Value*, 8> Indices;
2095 
2096     // Find out whether the last index in the source GEP is a sequential idx.
2097     bool EndsWithSequential = false;
2098     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2099          I != E; ++I)
2100       EndsWithSequential = I.isSequential();
2101 
2102     // Can we combine the two pointer arithmetics offsets?
2103     if (EndsWithSequential) {
2104       // Replace: gep (gep %P, long B), long A, ...
2105       // With:    T = long A+B; gep %P, T, ...
2106       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2107       Value *GO1 = GEP.getOperand(1);
2108 
2109       // If they aren't the same type, then the input hasn't been processed
2110       // by the loop above yet (which canonicalizes sequential index types to
2111       // intptr_t).  Just avoid transforming this until the input has been
2112       // normalized.
2113       if (SO1->getType() != GO1->getType())
2114         return nullptr;
2115 
2116       Value *Sum =
2117           SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2118       // Only do the combine when we are sure the cost after the
2119       // merge is never more than that before the merge.
2120       if (Sum == nullptr)
2121         return nullptr;
2122 
2123       // Update the GEP in place if possible.
2124       if (Src->getNumOperands() == 2) {
2125         GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2126         replaceOperand(GEP, 0, Src->getOperand(0));
2127         replaceOperand(GEP, 1, Sum);
2128         return &GEP;
2129       }
2130       Indices.append(Src->op_begin()+1, Src->op_end()-1);
2131       Indices.push_back(Sum);
2132       Indices.append(GEP.op_begin()+2, GEP.op_end());
2133     } else if (isa<Constant>(*GEP.idx_begin()) &&
2134                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2135                Src->getNumOperands() != 1) {
2136       // Otherwise we can do the fold if the first index of the GEP is a zero
2137       Indices.append(Src->op_begin()+1, Src->op_end());
2138       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2139     }
2140 
2141     if (!Indices.empty())
2142       return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2143                  ? GetElementPtrInst::CreateInBounds(
2144                        Src->getSourceElementType(), Src->getOperand(0), Indices,
2145                        GEP.getName())
2146                  : GetElementPtrInst::Create(Src->getSourceElementType(),
2147                                              Src->getOperand(0), Indices,
2148                                              GEP.getName());
2149   }
2150 
2151   // Skip if GEP source element type is scalable. The type alloc size is unknown
2152   // at compile-time.
2153   if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2154     unsigned AS = GEP.getPointerAddressSpace();
2155     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2156         DL.getIndexSizeInBits(AS)) {
2157       uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2158 
2159       bool Matched = false;
2160       uint64_t C;
2161       Value *V = nullptr;
2162       if (TyAllocSize == 1) {
2163         V = GEP.getOperand(1);
2164         Matched = true;
2165       } else if (match(GEP.getOperand(1),
2166                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
2167         if (TyAllocSize == 1ULL << C)
2168           Matched = true;
2169       } else if (match(GEP.getOperand(1),
2170                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2171         if (TyAllocSize == C)
2172           Matched = true;
2173       }
2174 
2175       if (Matched) {
2176         // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
2177         // to (bitcast Y)
2178         Value *Y;
2179         if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
2180                            m_PtrToInt(m_Specific(GEP.getOperand(0))))))
2181           return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2182       }
2183     }
2184   }
2185 
2186   // We do not handle pointer-vector geps here.
2187   if (GEPType->isVectorTy())
2188     return nullptr;
2189 
2190   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2191   Value *StrippedPtr = PtrOp->stripPointerCasts();
2192   PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2193 
2194   if (StrippedPtr != PtrOp) {
2195     bool HasZeroPointerIndex = false;
2196     Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
2197 
2198     if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2199       HasZeroPointerIndex = C->isZero();
2200 
2201     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2202     // into     : GEP [10 x i8]* X, i32 0, ...
2203     //
2204     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2205     //           into     : GEP i8* X, ...
2206     //
2207     // This occurs when the program declares an array extern like "int X[];"
2208     if (HasZeroPointerIndex) {
2209       if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2210         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2211         if (CATy->getElementType() == StrippedPtrEltTy) {
2212           // -> GEP i8* X, ...
2213           SmallVector<Value *, 8> Idx(drop_begin(GEP.indices()));
2214           GetElementPtrInst *Res = GetElementPtrInst::Create(
2215               StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2216           Res->setIsInBounds(GEP.isInBounds());
2217           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2218             return Res;
2219           // Insert Res, and create an addrspacecast.
2220           // e.g.,
2221           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2222           // ->
2223           // %0 = GEP i8 addrspace(1)* X, ...
2224           // addrspacecast i8 addrspace(1)* %0 to i8*
2225           return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2226         }
2227 
2228         if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2229           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2230           if (CATy->getElementType() == XATy->getElementType()) {
2231             // -> GEP [10 x i8]* X, i32 0, ...
2232             // At this point, we know that the cast source type is a pointer
2233             // to an array of the same type as the destination pointer
2234             // array.  Because the array type is never stepped over (there
2235             // is a leading zero) we can fold the cast into this GEP.
2236             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2237               GEP.setSourceElementType(XATy);
2238               return replaceOperand(GEP, 0, StrippedPtr);
2239             }
2240             // Cannot replace the base pointer directly because StrippedPtr's
2241             // address space is different. Instead, create a new GEP followed by
2242             // an addrspacecast.
2243             // e.g.,
2244             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2245             //   i32 0, ...
2246             // ->
2247             // %0 = GEP [10 x i8] addrspace(1)* X, ...
2248             // addrspacecast i8 addrspace(1)* %0 to i8*
2249             SmallVector<Value *, 8> Idx(GEP.indices());
2250             Value *NewGEP =
2251                 GEP.isInBounds()
2252                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2253                                                 Idx, GEP.getName())
2254                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2255                                         GEP.getName());
2256             return new AddrSpaceCastInst(NewGEP, GEPType);
2257           }
2258         }
2259       }
2260     } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
2261       // Skip if GEP source element type is scalable. The type alloc size is
2262       // unknown at compile-time.
2263       // Transform things like: %t = getelementptr i32*
2264       // bitcast ([2 x i32]* %str to i32*), i32 %V into:  %t1 = getelementptr [2
2265       // x i32]* %str, i32 0, i32 %V; bitcast
2266       if (StrippedPtrEltTy->isArrayTy() &&
2267           DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2268               DL.getTypeAllocSize(GEPEltType)) {
2269         Type *IdxType = DL.getIndexType(GEPType);
2270         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2271         Value *NewGEP =
2272             GEP.isInBounds()
2273                 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2274                                             GEP.getName())
2275                 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2276                                     GEP.getName());
2277 
2278         // V and GEP are both pointer types --> BitCast
2279         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2280       }
2281 
2282       // Transform things like:
2283       // %V = mul i64 %N, 4
2284       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2285       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
2286       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2287         // Check that changing the type amounts to dividing the index by a scale
2288         // factor.
2289         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2290         uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
2291         if (ResSize && SrcSize % ResSize == 0) {
2292           Value *Idx = GEP.getOperand(1);
2293           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2294           uint64_t Scale = SrcSize / ResSize;
2295 
2296           // Earlier transforms ensure that the index has the right type
2297           // according to Data Layout, which considerably simplifies the
2298           // logic by eliminating implicit casts.
2299           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2300                  "Index type does not match the Data Layout preferences");
2301 
2302           bool NSW;
2303           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2304             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2305             // If the multiplication NewIdx * Scale may overflow then the new
2306             // GEP may not be "inbounds".
2307             Value *NewGEP =
2308                 GEP.isInBounds() && NSW
2309                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2310                                                 NewIdx, GEP.getName())
2311                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2312                                         GEP.getName());
2313 
2314             // The NewGEP must be pointer typed, so must the old one -> BitCast
2315             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2316                                                                  GEPType);
2317           }
2318         }
2319       }
2320 
2321       // Similarly, transform things like:
2322       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2323       //   (where tmp = 8*tmp2) into:
2324       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2325       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2326           StrippedPtrEltTy->isArrayTy()) {
2327         // Check that changing to the array element type amounts to dividing the
2328         // index by a scale factor.
2329         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2330         uint64_t ArrayEltSize =
2331             DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
2332                 .getFixedSize();
2333         if (ResSize && ArrayEltSize % ResSize == 0) {
2334           Value *Idx = GEP.getOperand(1);
2335           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2336           uint64_t Scale = ArrayEltSize / ResSize;
2337 
2338           // Earlier transforms ensure that the index has the right type
2339           // according to the Data Layout, which considerably simplifies
2340           // the logic by eliminating implicit casts.
2341           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2342                  "Index type does not match the Data Layout preferences");
2343 
2344           bool NSW;
2345           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2346             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2347             // If the multiplication NewIdx * Scale may overflow then the new
2348             // GEP may not be "inbounds".
2349             Type *IndTy = DL.getIndexType(GEPType);
2350             Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2351 
2352             Value *NewGEP =
2353                 GEP.isInBounds() && NSW
2354                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2355                                                 Off, GEP.getName())
2356                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2357                                         GEP.getName());
2358             // The NewGEP must be pointer typed, so must the old one -> BitCast
2359             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2360                                                                  GEPType);
2361           }
2362         }
2363       }
2364     }
2365   }
2366 
2367   // addrspacecast between types is canonicalized as a bitcast, then an
2368   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2369   // through the addrspacecast.
2370   Value *ASCStrippedPtrOp = PtrOp;
2371   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2372     //   X = bitcast A addrspace(1)* to B addrspace(1)*
2373     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2374     //   Z = gep Y, <...constant indices...>
2375     // Into an addrspacecasted GEP of the struct.
2376     if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2377       ASCStrippedPtrOp = BC;
2378   }
2379 
2380   if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2381     Value *SrcOp = BCI->getOperand(0);
2382     PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2383     Type *SrcEltType = SrcType->getElementType();
2384 
2385     // GEP directly using the source operand if this GEP is accessing an element
2386     // of a bitcasted pointer to vector or array of the same dimensions:
2387     // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2388     // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2389     auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2390                                           const DataLayout &DL) {
2391       auto *VecVTy = cast<FixedVectorType>(VecTy);
2392       return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
2393              ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
2394              DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2395     };
2396     if (GEP.getNumOperands() == 3 &&
2397         ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) &&
2398           areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2399          (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() &&
2400           areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2401 
2402       // Create a new GEP here, as using `setOperand()` followed by
2403       // `setSourceElementType()` won't actually update the type of the
2404       // existing GEP Value. Causing issues if this Value is accessed when
2405       // constructing an AddrSpaceCastInst
2406       Value *NGEP =
2407           GEP.isInBounds()
2408               ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
2409               : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
2410       NGEP->takeName(&GEP);
2411 
2412       // Preserve GEP address space to satisfy users
2413       if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2414         return new AddrSpaceCastInst(NGEP, GEPType);
2415 
2416       return replaceInstUsesWith(GEP, NGEP);
2417     }
2418 
2419     // See if we can simplify:
2420     //   X = bitcast A* to B*
2421     //   Y = gep X, <...constant indices...>
2422     // into a gep of the original struct. This is important for SROA and alias
2423     // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2424     unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2425     APInt Offset(OffsetBits, 0);
2426     if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
2427       // If this GEP instruction doesn't move the pointer, just replace the GEP
2428       // with a bitcast of the real input to the dest type.
2429       if (!Offset) {
2430         // If the bitcast is of an allocation, and the allocation will be
2431         // converted to match the type of the cast, don't touch this.
2432         if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
2433           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2434           if (Instruction *I = visitBitCast(*BCI)) {
2435             if (I != BCI) {
2436               I->takeName(BCI);
2437               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2438               replaceInstUsesWith(*BCI, I);
2439             }
2440             return &GEP;
2441           }
2442         }
2443 
2444         if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2445           return new AddrSpaceCastInst(SrcOp, GEPType);
2446         return new BitCastInst(SrcOp, GEPType);
2447       }
2448 
2449       // Otherwise, if the offset is non-zero, we need to find out if there is a
2450       // field at Offset in 'A's type.  If so, we can pull the cast through the
2451       // GEP.
2452       SmallVector<Value*, 8> NewIndices;
2453       if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2454         Value *NGEP =
2455             GEP.isInBounds()
2456                 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2457                 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2458 
2459         if (NGEP->getType() == GEPType)
2460           return replaceInstUsesWith(GEP, NGEP);
2461         NGEP->takeName(&GEP);
2462 
2463         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2464           return new AddrSpaceCastInst(NGEP, GEPType);
2465         return new BitCastInst(NGEP, GEPType);
2466       }
2467     }
2468   }
2469 
2470   if (!GEP.isInBounds()) {
2471     unsigned IdxWidth =
2472         DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2473     APInt BasePtrOffset(IdxWidth, 0);
2474     Value *UnderlyingPtrOp =
2475             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2476                                                              BasePtrOffset);
2477     if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2478       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2479           BasePtrOffset.isNonNegative()) {
2480         APInt AllocSize(
2481             IdxWidth,
2482             DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
2483         if (BasePtrOffset.ule(AllocSize)) {
2484           return GetElementPtrInst::CreateInBounds(
2485               GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
2486               GEP.getName());
2487         }
2488       }
2489     }
2490   }
2491 
2492   if (Instruction *R = foldSelectGEP(GEP, Builder))
2493     return R;
2494 
2495   return nullptr;
2496 }
2497 
2498 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
2499                                          Instruction *AI) {
2500   if (isa<ConstantPointerNull>(V))
2501     return true;
2502   if (auto *LI = dyn_cast<LoadInst>(V))
2503     return isa<GlobalVariable>(LI->getPointerOperand());
2504   // Two distinct allocations will never be equal.
2505   // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2506   // through bitcasts of V can cause
2507   // the result statement below to be true, even when AI and V (ex:
2508   // i8* ->i32* ->i8* of AI) are the same allocations.
2509   return isAllocLikeFn(V, TLI) && V != AI;
2510 }
2511 
2512 static bool isAllocSiteRemovable(Instruction *AI,
2513                                  SmallVectorImpl<WeakTrackingVH> &Users,
2514                                  const TargetLibraryInfo *TLI) {
2515   SmallVector<Instruction*, 4> Worklist;
2516   Worklist.push_back(AI);
2517 
2518   do {
2519     Instruction *PI = Worklist.pop_back_val();
2520     for (User *U : PI->users()) {
2521       Instruction *I = cast<Instruction>(U);
2522       switch (I->getOpcode()) {
2523       default:
2524         // Give up the moment we see something we can't handle.
2525         return false;
2526 
2527       case Instruction::AddrSpaceCast:
2528       case Instruction::BitCast:
2529       case Instruction::GetElementPtr:
2530         Users.emplace_back(I);
2531         Worklist.push_back(I);
2532         continue;
2533 
2534       case Instruction::ICmp: {
2535         ICmpInst *ICI = cast<ICmpInst>(I);
2536         // We can fold eq/ne comparisons with null to false/true, respectively.
2537         // We also fold comparisons in some conditions provided the alloc has
2538         // not escaped (see isNeverEqualToUnescapedAlloc).
2539         if (!ICI->isEquality())
2540           return false;
2541         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2542         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2543           return false;
2544         Users.emplace_back(I);
2545         continue;
2546       }
2547 
2548       case Instruction::Call:
2549         // Ignore no-op and store intrinsics.
2550         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2551           switch (II->getIntrinsicID()) {
2552           default:
2553             return false;
2554 
2555           case Intrinsic::memmove:
2556           case Intrinsic::memcpy:
2557           case Intrinsic::memset: {
2558             MemIntrinsic *MI = cast<MemIntrinsic>(II);
2559             if (MI->isVolatile() || MI->getRawDest() != PI)
2560               return false;
2561             LLVM_FALLTHROUGH;
2562           }
2563           case Intrinsic::assume:
2564           case Intrinsic::invariant_start:
2565           case Intrinsic::invariant_end:
2566           case Intrinsic::lifetime_start:
2567           case Intrinsic::lifetime_end:
2568           case Intrinsic::objectsize:
2569             Users.emplace_back(I);
2570             continue;
2571           }
2572         }
2573 
2574         if (isFreeCall(I, TLI)) {
2575           Users.emplace_back(I);
2576           continue;
2577         }
2578         return false;
2579 
2580       case Instruction::Store: {
2581         StoreInst *SI = cast<StoreInst>(I);
2582         if (SI->isVolatile() || SI->getPointerOperand() != PI)
2583           return false;
2584         Users.emplace_back(I);
2585         continue;
2586       }
2587       }
2588       llvm_unreachable("missing a return?");
2589     }
2590   } while (!Worklist.empty());
2591   return true;
2592 }
2593 
2594 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
2595   // If we have a malloc call which is only used in any amount of comparisons to
2596   // null and free calls, delete the calls and replace the comparisons with true
2597   // or false as appropriate.
2598 
2599   // This is based on the principle that we can substitute our own allocation
2600   // function (which will never return null) rather than knowledge of the
2601   // specific function being called. In some sense this can change the permitted
2602   // outputs of a program (when we convert a malloc to an alloca, the fact that
2603   // the allocation is now on the stack is potentially visible, for example),
2604   // but we believe in a permissible manner.
2605   SmallVector<WeakTrackingVH, 64> Users;
2606 
2607   // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2608   // before each store.
2609   SmallVector<DbgVariableIntrinsic *, 8> DVIs;
2610   std::unique_ptr<DIBuilder> DIB;
2611   if (isa<AllocaInst>(MI)) {
2612     findDbgUsers(DVIs, &MI);
2613     DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2614   }
2615 
2616   if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2617     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2618       // Lowering all @llvm.objectsize calls first because they may
2619       // use a bitcast/GEP of the alloca we are removing.
2620       if (!Users[i])
2621        continue;
2622 
2623       Instruction *I = cast<Instruction>(&*Users[i]);
2624 
2625       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2626         if (II->getIntrinsicID() == Intrinsic::objectsize) {
2627           Value *Result =
2628               lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2629           replaceInstUsesWith(*I, Result);
2630           eraseInstFromFunction(*I);
2631           Users[i] = nullptr; // Skip examining in the next loop.
2632         }
2633       }
2634     }
2635     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2636       if (!Users[i])
2637         continue;
2638 
2639       Instruction *I = cast<Instruction>(&*Users[i]);
2640 
2641       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2642         replaceInstUsesWith(*C,
2643                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
2644                                              C->isFalseWhenEqual()));
2645       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2646         for (auto *DVI : DVIs)
2647           if (DVI->isAddressOfVariable())
2648             ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
2649       } else {
2650         // Casts, GEP, or anything else: we're about to delete this instruction,
2651         // so it can not have any valid uses.
2652         replaceInstUsesWith(*I, UndefValue::get(I->getType()));
2653       }
2654       eraseInstFromFunction(*I);
2655     }
2656 
2657     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2658       // Replace invoke with a NOP intrinsic to maintain the original CFG
2659       Module *M = II->getModule();
2660       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2661       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2662                          None, "", II->getParent());
2663     }
2664 
2665     // Remove debug intrinsics which describe the value contained within the
2666     // alloca. In addition to removing dbg.{declare,addr} which simply point to
2667     // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
2668     //
2669     // ```
2670     //   define void @foo(i32 %0) {
2671     //     %a = alloca i32                              ; Deleted.
2672     //     store i32 %0, i32* %a
2673     //     dbg.value(i32 %0, "arg0")                    ; Not deleted.
2674     //     dbg.value(i32* %a, "arg0", DW_OP_deref)      ; Deleted.
2675     //     call void @trivially_inlinable_no_op(i32* %a)
2676     //     ret void
2677     //  }
2678     // ```
2679     //
2680     // This may not be required if we stop describing the contents of allocas
2681     // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
2682     // the LowerDbgDeclare utility.
2683     //
2684     // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
2685     // "arg0" dbg.value may be stale after the call. However, failing to remove
2686     // the DW_OP_deref dbg.value causes large gaps in location coverage.
2687     for (auto *DVI : DVIs)
2688       if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
2689         DVI->eraseFromParent();
2690 
2691     return eraseInstFromFunction(MI);
2692   }
2693   return nullptr;
2694 }
2695 
2696 /// Move the call to free before a NULL test.
2697 ///
2698 /// Check if this free is accessed after its argument has been test
2699 /// against NULL (property 0).
2700 /// If yes, it is legal to move this call in its predecessor block.
2701 ///
2702 /// The move is performed only if the block containing the call to free
2703 /// will be removed, i.e.:
2704 /// 1. it has only one predecessor P, and P has two successors
2705 /// 2. it contains the call, noops, and an unconditional branch
2706 /// 3. its successor is the same as its predecessor's successor
2707 ///
2708 /// The profitability is out-of concern here and this function should
2709 /// be called only if the caller knows this transformation would be
2710 /// profitable (e.g., for code size).
2711 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2712                                                 const DataLayout &DL) {
2713   Value *Op = FI.getArgOperand(0);
2714   BasicBlock *FreeInstrBB = FI.getParent();
2715   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2716 
2717   // Validate part of constraint #1: Only one predecessor
2718   // FIXME: We can extend the number of predecessor, but in that case, we
2719   //        would duplicate the call to free in each predecessor and it may
2720   //        not be profitable even for code size.
2721   if (!PredBB)
2722     return nullptr;
2723 
2724   // Validate constraint #2: Does this block contains only the call to
2725   //                         free, noops, and an unconditional branch?
2726   BasicBlock *SuccBB;
2727   Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2728   if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2729     return nullptr;
2730 
2731   // If there are only 2 instructions in the block, at this point,
2732   // this is the call to free and unconditional.
2733   // If there are more than 2 instructions, check that they are noops
2734   // i.e., they won't hurt the performance of the generated code.
2735   if (FreeInstrBB->size() != 2) {
2736     for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2737       if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2738         continue;
2739       auto *Cast = dyn_cast<CastInst>(&Inst);
2740       if (!Cast || !Cast->isNoopCast(DL))
2741         return nullptr;
2742     }
2743   }
2744   // Validate the rest of constraint #1 by matching on the pred branch.
2745   Instruction *TI = PredBB->getTerminator();
2746   BasicBlock *TrueBB, *FalseBB;
2747   ICmpInst::Predicate Pred;
2748   if (!match(TI, m_Br(m_ICmp(Pred,
2749                              m_CombineOr(m_Specific(Op),
2750                                          m_Specific(Op->stripPointerCasts())),
2751                              m_Zero()),
2752                       TrueBB, FalseBB)))
2753     return nullptr;
2754   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2755     return nullptr;
2756 
2757   // Validate constraint #3: Ensure the null case just falls through.
2758   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2759     return nullptr;
2760   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2761          "Broken CFG: missing edge from predecessor to successor");
2762 
2763   // At this point, we know that everything in FreeInstrBB can be moved
2764   // before TI.
2765   for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
2766        It != End;) {
2767     Instruction &Instr = *It++;
2768     if (&Instr == FreeInstrBBTerminator)
2769       break;
2770     Instr.moveBefore(TI);
2771   }
2772   assert(FreeInstrBB->size() == 1 &&
2773          "Only the branch instruction should remain");
2774   return &FI;
2775 }
2776 
2777 Instruction *InstCombinerImpl::visitFree(CallInst &FI) {
2778   Value *Op = FI.getArgOperand(0);
2779 
2780   // free undef -> unreachable.
2781   if (isa<UndefValue>(Op)) {
2782     // Leave a marker since we can't modify the CFG here.
2783     CreateNonTerminatorUnreachable(&FI);
2784     return eraseInstFromFunction(FI);
2785   }
2786 
2787   // If we have 'free null' delete the instruction.  This can happen in stl code
2788   // when lots of inlining happens.
2789   if (isa<ConstantPointerNull>(Op))
2790     return eraseInstFromFunction(FI);
2791 
2792   // If we free a pointer we've been explicitly told won't be freed, this
2793   // would be full UB and thus we can conclude this is unreachable. Cases:
2794   // 1) freeing a pointer which is explicitly nofree
2795   // 2) calling free from a call site marked nofree
2796   // 3) calling free in a function scope marked nofree
2797   if (auto *A = dyn_cast<Argument>(Op->stripPointerCasts()))
2798     if (A->hasAttribute(Attribute::NoFree) ||
2799         FI.hasFnAttr(Attribute::NoFree) ||
2800         FI.getFunction()->hasFnAttribute(Attribute::NoFree)) {
2801       // Leave a marker since we can't modify the CFG here.
2802       CreateNonTerminatorUnreachable(&FI);
2803       return eraseInstFromFunction(FI);
2804     }
2805 
2806   // If we optimize for code size, try to move the call to free before the null
2807   // test so that simplify cfg can remove the empty block and dead code
2808   // elimination the branch. I.e., helps to turn something like:
2809   // if (foo) free(foo);
2810   // into
2811   // free(foo);
2812   //
2813   // Note that we can only do this for 'free' and not for any flavor of
2814   // 'operator delete'; there is no 'operator delete' symbol for which we are
2815   // permitted to invent a call, even if we're passing in a null pointer.
2816   if (MinimizeSize) {
2817     LibFunc Func;
2818     if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
2819       if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2820         return I;
2821   }
2822 
2823   return nullptr;
2824 }
2825 
2826 static bool isMustTailCall(Value *V) {
2827   if (auto *CI = dyn_cast<CallInst>(V))
2828     return CI->isMustTailCall();
2829   return false;
2830 }
2831 
2832 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
2833   if (RI.getNumOperands() == 0) // ret void
2834     return nullptr;
2835 
2836   Value *ResultOp = RI.getOperand(0);
2837   Type *VTy = ResultOp->getType();
2838   if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
2839     return nullptr;
2840 
2841   // Don't replace result of musttail calls.
2842   if (isMustTailCall(ResultOp))
2843     return nullptr;
2844 
2845   // There might be assume intrinsics dominating this return that completely
2846   // determine the value. If so, constant fold it.
2847   KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2848   if (Known.isConstant())
2849     return replaceOperand(RI, 0,
2850         Constant::getIntegerValue(VTy, Known.getConstant()));
2851 
2852   return nullptr;
2853 }
2854 
2855 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
2856   // Try to remove the previous instruction if it must lead to unreachable.
2857   // This includes instructions like stores and "llvm.assume" that may not get
2858   // removed by simple dead code elimination.
2859   Instruction *Prev = I.getPrevNonDebugInstruction();
2860   if (Prev && !Prev->isEHPad() &&
2861       isGuaranteedToTransferExecutionToSuccessor(Prev)) {
2862     // Temporarily disable removal of volatile stores preceding unreachable,
2863     // pending a potential LangRef change permitting volatile stores to trap.
2864     // TODO: Either remove this code, or properly integrate the check into
2865     // isGuaranteedToTransferExecutionToSuccessor().
2866     if (auto *SI = dyn_cast<StoreInst>(Prev))
2867       if (SI->isVolatile())
2868         return nullptr;
2869 
2870     // A value may still have uses before we process it here (for example, in
2871     // another unreachable block), so convert those to undef.
2872     replaceInstUsesWith(*Prev, UndefValue::get(Prev->getType()));
2873     eraseInstFromFunction(*Prev);
2874     return &I;
2875   }
2876   return nullptr;
2877 }
2878 
2879 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
2880   assert(BI.isUnconditional() && "Only for unconditional branches.");
2881 
2882   // If this store is the second-to-last instruction in the basic block
2883   // (excluding debug info and bitcasts of pointers) and if the block ends with
2884   // an unconditional branch, try to move the store to the successor block.
2885 
2886   auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
2887     auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
2888       return isa<DbgInfoIntrinsic>(BBI) ||
2889              (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
2890     };
2891 
2892     BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
2893     do {
2894       if (BBI != FirstInstr)
2895         --BBI;
2896     } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
2897 
2898     return dyn_cast<StoreInst>(BBI);
2899   };
2900 
2901   if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
2902     if (mergeStoreIntoSuccessor(*SI))
2903       return &BI;
2904 
2905   return nullptr;
2906 }
2907 
2908 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
2909   if (BI.isUnconditional())
2910     return visitUnconditionalBranchInst(BI);
2911 
2912   // Change br (not X), label True, label False to: br X, label False, True
2913   Value *X = nullptr;
2914   if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
2915       !isa<Constant>(X)) {
2916     // Swap Destinations and condition...
2917     BI.swapSuccessors();
2918     return replaceOperand(BI, 0, X);
2919   }
2920 
2921   // If the condition is irrelevant, remove the use so that other
2922   // transforms on the condition become more effective.
2923   if (!isa<ConstantInt>(BI.getCondition()) &&
2924       BI.getSuccessor(0) == BI.getSuccessor(1))
2925     return replaceOperand(
2926         BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
2927 
2928   // Canonicalize, for example, fcmp_one -> fcmp_oeq.
2929   CmpInst::Predicate Pred;
2930   if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())),
2931                       m_BasicBlock(), m_BasicBlock())) &&
2932       !isCanonicalPredicate(Pred)) {
2933     // Swap destinations and condition.
2934     CmpInst *Cond = cast<CmpInst>(BI.getCondition());
2935     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2936     BI.swapSuccessors();
2937     Worklist.push(Cond);
2938     return &BI;
2939   }
2940 
2941   return nullptr;
2942 }
2943 
2944 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
2945   Value *Cond = SI.getCondition();
2946   Value *Op0;
2947   ConstantInt *AddRHS;
2948   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
2949     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2950     for (auto Case : SI.cases()) {
2951       Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
2952       assert(isa<ConstantInt>(NewCase) &&
2953              "Result of expression should be constant");
2954       Case.setValue(cast<ConstantInt>(NewCase));
2955     }
2956     return replaceOperand(SI, 0, Op0);
2957   }
2958 
2959   KnownBits Known = computeKnownBits(Cond, 0, &SI);
2960   unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
2961   unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
2962 
2963   // Compute the number of leading bits we can ignore.
2964   // TODO: A better way to determine this would use ComputeNumSignBits().
2965   for (auto &C : SI.cases()) {
2966     LeadingKnownZeros = std::min(
2967         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2968     LeadingKnownOnes = std::min(
2969         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2970   }
2971 
2972   unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
2973 
2974   // Shrink the condition operand if the new type is smaller than the old type.
2975   // But do not shrink to a non-standard type, because backend can't generate
2976   // good code for that yet.
2977   // TODO: We can make it aggressive again after fixing PR39569.
2978   if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
2979       shouldChangeType(Known.getBitWidth(), NewWidth)) {
2980     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2981     Builder.SetInsertPoint(&SI);
2982     Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
2983 
2984     for (auto Case : SI.cases()) {
2985       APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
2986       Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
2987     }
2988     return replaceOperand(SI, 0, NewCond);
2989   }
2990 
2991   return nullptr;
2992 }
2993 
2994 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
2995   Value *Agg = EV.getAggregateOperand();
2996 
2997   if (!EV.hasIndices())
2998     return replaceInstUsesWith(EV, Agg);
2999 
3000   if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
3001                                           SQ.getWithInstruction(&EV)))
3002     return replaceInstUsesWith(EV, V);
3003 
3004   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
3005     // We're extracting from an insertvalue instruction, compare the indices
3006     const unsigned *exti, *exte, *insi, *inse;
3007     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
3008          exte = EV.idx_end(), inse = IV->idx_end();
3009          exti != exte && insi != inse;
3010          ++exti, ++insi) {
3011       if (*insi != *exti)
3012         // The insert and extract both reference distinctly different elements.
3013         // This means the extract is not influenced by the insert, and we can
3014         // replace the aggregate operand of the extract with the aggregate
3015         // operand of the insert. i.e., replace
3016         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3017         // %E = extractvalue { i32, { i32 } } %I, 0
3018         // with
3019         // %E = extractvalue { i32, { i32 } } %A, 0
3020         return ExtractValueInst::Create(IV->getAggregateOperand(),
3021                                         EV.getIndices());
3022     }
3023     if (exti == exte && insi == inse)
3024       // Both iterators are at the end: Index lists are identical. Replace
3025       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3026       // %C = extractvalue { i32, { i32 } } %B, 1, 0
3027       // with "i32 42"
3028       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3029     if (exti == exte) {
3030       // The extract list is a prefix of the insert list. i.e. replace
3031       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3032       // %E = extractvalue { i32, { i32 } } %I, 1
3033       // with
3034       // %X = extractvalue { i32, { i32 } } %A, 1
3035       // %E = insertvalue { i32 } %X, i32 42, 0
3036       // by switching the order of the insert and extract (though the
3037       // insertvalue should be left in, since it may have other uses).
3038       Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
3039                                                 EV.getIndices());
3040       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
3041                                      makeArrayRef(insi, inse));
3042     }
3043     if (insi == inse)
3044       // The insert list is a prefix of the extract list
3045       // We can simply remove the common indices from the extract and make it
3046       // operate on the inserted value instead of the insertvalue result.
3047       // i.e., replace
3048       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3049       // %E = extractvalue { i32, { i32 } } %I, 1, 0
3050       // with
3051       // %E extractvalue { i32 } { i32 42 }, 0
3052       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
3053                                       makeArrayRef(exti, exte));
3054   }
3055   if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
3056     // We're extracting from an overflow intrinsic, see if we're the only user,
3057     // which allows us to simplify multiple result intrinsics to simpler
3058     // things that just get one value.
3059     if (WO->hasOneUse()) {
3060       // Check if we're grabbing only the result of a 'with overflow' intrinsic
3061       // and replace it with a traditional binary instruction.
3062       if (*EV.idx_begin() == 0) {
3063         Instruction::BinaryOps BinOp = WO->getBinaryOp();
3064         Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3065         replaceInstUsesWith(*WO, UndefValue::get(WO->getType()));
3066         eraseInstFromFunction(*WO);
3067         return BinaryOperator::Create(BinOp, LHS, RHS);
3068       }
3069 
3070       // If the normal result of the add is dead, and the RHS is a constant,
3071       // we can transform this into a range comparison.
3072       // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
3073       if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow)
3074         if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS()))
3075           return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(),
3076                               ConstantExpr::getNot(CI));
3077     }
3078   }
3079   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
3080     // If the (non-volatile) load only has one use, we can rewrite this to a
3081     // load from a GEP. This reduces the size of the load. If a load is used
3082     // only by extractvalue instructions then this either must have been
3083     // optimized before, or it is a struct with padding, in which case we
3084     // don't want to do the transformation as it loses padding knowledge.
3085     if (L->isSimple() && L->hasOneUse()) {
3086       // extractvalue has integer indices, getelementptr has Value*s. Convert.
3087       SmallVector<Value*, 4> Indices;
3088       // Prefix an i32 0 since we need the first element.
3089       Indices.push_back(Builder.getInt32(0));
3090       for (unsigned Idx : EV.indices())
3091         Indices.push_back(Builder.getInt32(Idx));
3092 
3093       // We need to insert these at the location of the old load, not at that of
3094       // the extractvalue.
3095       Builder.SetInsertPoint(L);
3096       Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
3097                                              L->getPointerOperand(), Indices);
3098       Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
3099       // Whatever aliasing information we had for the orignal load must also
3100       // hold for the smaller load, so propagate the annotations.
3101       AAMDNodes Nodes;
3102       L->getAAMetadata(Nodes);
3103       NL->setAAMetadata(Nodes);
3104       // Returning the load directly will cause the main loop to insert it in
3105       // the wrong spot, so use replaceInstUsesWith().
3106       return replaceInstUsesWith(EV, NL);
3107     }
3108   // We could simplify extracts from other values. Note that nested extracts may
3109   // already be simplified implicitly by the above: extract (extract (insert) )
3110   // will be translated into extract ( insert ( extract ) ) first and then just
3111   // the value inserted, if appropriate. Similarly for extracts from single-use
3112   // loads: extract (extract (load)) will be translated to extract (load (gep))
3113   // and if again single-use then via load (gep (gep)) to load (gep).
3114   // However, double extracts from e.g. function arguments or return values
3115   // aren't handled yet.
3116   return nullptr;
3117 }
3118 
3119 /// Return 'true' if the given typeinfo will match anything.
3120 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3121   switch (Personality) {
3122   case EHPersonality::GNU_C:
3123   case EHPersonality::GNU_C_SjLj:
3124   case EHPersonality::Rust:
3125     // The GCC C EH and Rust personality only exists to support cleanups, so
3126     // it's not clear what the semantics of catch clauses are.
3127     return false;
3128   case EHPersonality::Unknown:
3129     return false;
3130   case EHPersonality::GNU_Ada:
3131     // While __gnat_all_others_value will match any Ada exception, it doesn't
3132     // match foreign exceptions (or didn't, before gcc-4.7).
3133     return false;
3134   case EHPersonality::GNU_CXX:
3135   case EHPersonality::GNU_CXX_SjLj:
3136   case EHPersonality::GNU_ObjC:
3137   case EHPersonality::MSVC_X86SEH:
3138   case EHPersonality::MSVC_TableSEH:
3139   case EHPersonality::MSVC_CXX:
3140   case EHPersonality::CoreCLR:
3141   case EHPersonality::Wasm_CXX:
3142   case EHPersonality::XL_CXX:
3143     return TypeInfo->isNullValue();
3144   }
3145   llvm_unreachable("invalid enum");
3146 }
3147 
3148 static bool shorter_filter(const Value *LHS, const Value *RHS) {
3149   return
3150     cast<ArrayType>(LHS->getType())->getNumElements()
3151   <
3152     cast<ArrayType>(RHS->getType())->getNumElements();
3153 }
3154 
3155 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
3156   // The logic here should be correct for any real-world personality function.
3157   // However if that turns out not to be true, the offending logic can always
3158   // be conditioned on the personality function, like the catch-all logic is.
3159   EHPersonality Personality =
3160       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3161 
3162   // Simplify the list of clauses, eg by removing repeated catch clauses
3163   // (these are often created by inlining).
3164   bool MakeNewInstruction = false; // If true, recreate using the following:
3165   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3166   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
3167 
3168   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3169   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3170     bool isLastClause = i + 1 == e;
3171     if (LI.isCatch(i)) {
3172       // A catch clause.
3173       Constant *CatchClause = LI.getClause(i);
3174       Constant *TypeInfo = CatchClause->stripPointerCasts();
3175 
3176       // If we already saw this clause, there is no point in having a second
3177       // copy of it.
3178       if (AlreadyCaught.insert(TypeInfo).second) {
3179         // This catch clause was not already seen.
3180         NewClauses.push_back(CatchClause);
3181       } else {
3182         // Repeated catch clause - drop the redundant copy.
3183         MakeNewInstruction = true;
3184       }
3185 
3186       // If this is a catch-all then there is no point in keeping any following
3187       // clauses or marking the landingpad as having a cleanup.
3188       if (isCatchAll(Personality, TypeInfo)) {
3189         if (!isLastClause)
3190           MakeNewInstruction = true;
3191         CleanupFlag = false;
3192         break;
3193       }
3194     } else {
3195       // A filter clause.  If any of the filter elements were already caught
3196       // then they can be dropped from the filter.  It is tempting to try to
3197       // exploit the filter further by saying that any typeinfo that does not
3198       // occur in the filter can't be caught later (and thus can be dropped).
3199       // However this would be wrong, since typeinfos can match without being
3200       // equal (for example if one represents a C++ class, and the other some
3201       // class derived from it).
3202       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3203       Constant *FilterClause = LI.getClause(i);
3204       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3205       unsigned NumTypeInfos = FilterType->getNumElements();
3206 
3207       // An empty filter catches everything, so there is no point in keeping any
3208       // following clauses or marking the landingpad as having a cleanup.  By
3209       // dealing with this case here the following code is made a bit simpler.
3210       if (!NumTypeInfos) {
3211         NewClauses.push_back(FilterClause);
3212         if (!isLastClause)
3213           MakeNewInstruction = true;
3214         CleanupFlag = false;
3215         break;
3216       }
3217 
3218       bool MakeNewFilter = false; // If true, make a new filter.
3219       SmallVector<Constant *, 16> NewFilterElts; // New elements.
3220       if (isa<ConstantAggregateZero>(FilterClause)) {
3221         // Not an empty filter - it contains at least one null typeinfo.
3222         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3223         Constant *TypeInfo =
3224           Constant::getNullValue(FilterType->getElementType());
3225         // If this typeinfo is a catch-all then the filter can never match.
3226         if (isCatchAll(Personality, TypeInfo)) {
3227           // Throw the filter away.
3228           MakeNewInstruction = true;
3229           continue;
3230         }
3231 
3232         // There is no point in having multiple copies of this typeinfo, so
3233         // discard all but the first copy if there is more than one.
3234         NewFilterElts.push_back(TypeInfo);
3235         if (NumTypeInfos > 1)
3236           MakeNewFilter = true;
3237       } else {
3238         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3239         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3240         NewFilterElts.reserve(NumTypeInfos);
3241 
3242         // Remove any filter elements that were already caught or that already
3243         // occurred in the filter.  While there, see if any of the elements are
3244         // catch-alls.  If so, the filter can be discarded.
3245         bool SawCatchAll = false;
3246         for (unsigned j = 0; j != NumTypeInfos; ++j) {
3247           Constant *Elt = Filter->getOperand(j);
3248           Constant *TypeInfo = Elt->stripPointerCasts();
3249           if (isCatchAll(Personality, TypeInfo)) {
3250             // This element is a catch-all.  Bail out, noting this fact.
3251             SawCatchAll = true;
3252             break;
3253           }
3254 
3255           // Even if we've seen a type in a catch clause, we don't want to
3256           // remove it from the filter.  An unexpected type handler may be
3257           // set up for a call site which throws an exception of the same
3258           // type caught.  In order for the exception thrown by the unexpected
3259           // handler to propagate correctly, the filter must be correctly
3260           // described for the call site.
3261           //
3262           // Example:
3263           //
3264           // void unexpected() { throw 1;}
3265           // void foo() throw (int) {
3266           //   std::set_unexpected(unexpected);
3267           //   try {
3268           //     throw 2.0;
3269           //   } catch (int i) {}
3270           // }
3271 
3272           // There is no point in having multiple copies of the same typeinfo in
3273           // a filter, so only add it if we didn't already.
3274           if (SeenInFilter.insert(TypeInfo).second)
3275             NewFilterElts.push_back(cast<Constant>(Elt));
3276         }
3277         // A filter containing a catch-all cannot match anything by definition.
3278         if (SawCatchAll) {
3279           // Throw the filter away.
3280           MakeNewInstruction = true;
3281           continue;
3282         }
3283 
3284         // If we dropped something from the filter, make a new one.
3285         if (NewFilterElts.size() < NumTypeInfos)
3286           MakeNewFilter = true;
3287       }
3288       if (MakeNewFilter) {
3289         FilterType = ArrayType::get(FilterType->getElementType(),
3290                                     NewFilterElts.size());
3291         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3292         MakeNewInstruction = true;
3293       }
3294 
3295       NewClauses.push_back(FilterClause);
3296 
3297       // If the new filter is empty then it will catch everything so there is
3298       // no point in keeping any following clauses or marking the landingpad
3299       // as having a cleanup.  The case of the original filter being empty was
3300       // already handled above.
3301       if (MakeNewFilter && !NewFilterElts.size()) {
3302         assert(MakeNewInstruction && "New filter but not a new instruction!");
3303         CleanupFlag = false;
3304         break;
3305       }
3306     }
3307   }
3308 
3309   // If several filters occur in a row then reorder them so that the shortest
3310   // filters come first (those with the smallest number of elements).  This is
3311   // advantageous because shorter filters are more likely to match, speeding up
3312   // unwinding, but mostly because it increases the effectiveness of the other
3313   // filter optimizations below.
3314   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3315     unsigned j;
3316     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3317     for (j = i; j != e; ++j)
3318       if (!isa<ArrayType>(NewClauses[j]->getType()))
3319         break;
3320 
3321     // Check whether the filters are already sorted by length.  We need to know
3322     // if sorting them is actually going to do anything so that we only make a
3323     // new landingpad instruction if it does.
3324     for (unsigned k = i; k + 1 < j; ++k)
3325       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3326         // Not sorted, so sort the filters now.  Doing an unstable sort would be
3327         // correct too but reordering filters pointlessly might confuse users.
3328         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3329                          shorter_filter);
3330         MakeNewInstruction = true;
3331         break;
3332       }
3333 
3334     // Look for the next batch of filters.
3335     i = j + 1;
3336   }
3337 
3338   // If typeinfos matched if and only if equal, then the elements of a filter L
3339   // that occurs later than a filter F could be replaced by the intersection of
3340   // the elements of F and L.  In reality two typeinfos can match without being
3341   // equal (for example if one represents a C++ class, and the other some class
3342   // derived from it) so it would be wrong to perform this transform in general.
3343   // However the transform is correct and useful if F is a subset of L.  In that
3344   // case L can be replaced by F, and thus removed altogether since repeating a
3345   // filter is pointless.  So here we look at all pairs of filters F and L where
3346   // L follows F in the list of clauses, and remove L if every element of F is
3347   // an element of L.  This can occur when inlining C++ functions with exception
3348   // specifications.
3349   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3350     // Examine each filter in turn.
3351     Value *Filter = NewClauses[i];
3352     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3353     if (!FTy)
3354       // Not a filter - skip it.
3355       continue;
3356     unsigned FElts = FTy->getNumElements();
3357     // Examine each filter following this one.  Doing this backwards means that
3358     // we don't have to worry about filters disappearing under us when removed.
3359     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3360       Value *LFilter = NewClauses[j];
3361       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3362       if (!LTy)
3363         // Not a filter - skip it.
3364         continue;
3365       // If Filter is a subset of LFilter, i.e. every element of Filter is also
3366       // an element of LFilter, then discard LFilter.
3367       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3368       // If Filter is empty then it is a subset of LFilter.
3369       if (!FElts) {
3370         // Discard LFilter.
3371         NewClauses.erase(J);
3372         MakeNewInstruction = true;
3373         // Move on to the next filter.
3374         continue;
3375       }
3376       unsigned LElts = LTy->getNumElements();
3377       // If Filter is longer than LFilter then it cannot be a subset of it.
3378       if (FElts > LElts)
3379         // Move on to the next filter.
3380         continue;
3381       // At this point we know that LFilter has at least one element.
3382       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3383         // Filter is a subset of LFilter iff Filter contains only zeros (as we
3384         // already know that Filter is not longer than LFilter).
3385         if (isa<ConstantAggregateZero>(Filter)) {
3386           assert(FElts <= LElts && "Should have handled this case earlier!");
3387           // Discard LFilter.
3388           NewClauses.erase(J);
3389           MakeNewInstruction = true;
3390         }
3391         // Move on to the next filter.
3392         continue;
3393       }
3394       ConstantArray *LArray = cast<ConstantArray>(LFilter);
3395       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3396         // Since Filter is non-empty and contains only zeros, it is a subset of
3397         // LFilter iff LFilter contains a zero.
3398         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3399         for (unsigned l = 0; l != LElts; ++l)
3400           if (LArray->getOperand(l)->isNullValue()) {
3401             // LFilter contains a zero - discard it.
3402             NewClauses.erase(J);
3403             MakeNewInstruction = true;
3404             break;
3405           }
3406         // Move on to the next filter.
3407         continue;
3408       }
3409       // At this point we know that both filters are ConstantArrays.  Loop over
3410       // operands to see whether every element of Filter is also an element of
3411       // LFilter.  Since filters tend to be short this is probably faster than
3412       // using a method that scales nicely.
3413       ConstantArray *FArray = cast<ConstantArray>(Filter);
3414       bool AllFound = true;
3415       for (unsigned f = 0; f != FElts; ++f) {
3416         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3417         AllFound = false;
3418         for (unsigned l = 0; l != LElts; ++l) {
3419           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3420           if (LTypeInfo == FTypeInfo) {
3421             AllFound = true;
3422             break;
3423           }
3424         }
3425         if (!AllFound)
3426           break;
3427       }
3428       if (AllFound) {
3429         // Discard LFilter.
3430         NewClauses.erase(J);
3431         MakeNewInstruction = true;
3432       }
3433       // Move on to the next filter.
3434     }
3435   }
3436 
3437   // If we changed any of the clauses, replace the old landingpad instruction
3438   // with a new one.
3439   if (MakeNewInstruction) {
3440     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3441                                                  NewClauses.size());
3442     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3443       NLI->addClause(NewClauses[i]);
3444     // A landing pad with no clauses must have the cleanup flag set.  It is
3445     // theoretically possible, though highly unlikely, that we eliminated all
3446     // clauses.  If so, force the cleanup flag to true.
3447     if (NewClauses.empty())
3448       CleanupFlag = true;
3449     NLI->setCleanup(CleanupFlag);
3450     return NLI;
3451   }
3452 
3453   // Even if none of the clauses changed, we may nonetheless have understood
3454   // that the cleanup flag is pointless.  Clear it if so.
3455   if (LI.isCleanup() != CleanupFlag) {
3456     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3457     LI.setCleanup(CleanupFlag);
3458     return &LI;
3459   }
3460 
3461   return nullptr;
3462 }
3463 
3464 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
3465   Value *Op0 = I.getOperand(0);
3466 
3467   if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3468     return replaceInstUsesWith(I, V);
3469 
3470   // freeze (phi const, x) --> phi const, (freeze x)
3471   if (auto *PN = dyn_cast<PHINode>(Op0)) {
3472     if (Instruction *NV = foldOpIntoPhi(I, PN))
3473       return NV;
3474   }
3475 
3476   if (match(Op0, m_Undef())) {
3477     // If I is freeze(undef), see its uses and fold it to the best constant.
3478     // - or: pick -1
3479     // - select's condition: pick the value that leads to choosing a constant
3480     // - other ops: pick 0
3481     Constant *BestValue = nullptr;
3482     Constant *NullValue = Constant::getNullValue(I.getType());
3483     for (const auto *U : I.users()) {
3484       Constant *C = NullValue;
3485 
3486       if (match(U, m_Or(m_Value(), m_Value())))
3487         C = Constant::getAllOnesValue(I.getType());
3488       else if (const auto *SI = dyn_cast<SelectInst>(U)) {
3489         if (SI->getCondition() == &I) {
3490           APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1);
3491           C = Constant::getIntegerValue(I.getType(), CondVal);
3492         }
3493       }
3494 
3495       if (!BestValue)
3496         BestValue = C;
3497       else if (BestValue != C)
3498         BestValue = NullValue;
3499     }
3500 
3501     return replaceInstUsesWith(I, BestValue);
3502   }
3503 
3504   return nullptr;
3505 }
3506 
3507 /// Try to move the specified instruction from its current block into the
3508 /// beginning of DestBlock, which can only happen if it's safe to move the
3509 /// instruction past all of the instructions between it and the end of its
3510 /// block.
3511 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3512   assert(I->getSingleUndroppableUse() && "Invariants didn't hold!");
3513   BasicBlock *SrcBlock = I->getParent();
3514 
3515   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3516   if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3517       I->isTerminator())
3518     return false;
3519 
3520   // Do not sink static or dynamic alloca instructions. Static allocas must
3521   // remain in the entry block, and dynamic allocas must not be sunk in between
3522   // a stacksave / stackrestore pair, which would incorrectly shorten its
3523   // lifetime.
3524   if (isa<AllocaInst>(I))
3525     return false;
3526 
3527   // Do not sink into catchswitch blocks.
3528   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3529     return false;
3530 
3531   // Do not sink convergent call instructions.
3532   if (auto *CI = dyn_cast<CallInst>(I)) {
3533     if (CI->isConvergent())
3534       return false;
3535   }
3536   // We can only sink load instructions if there is nothing between the load and
3537   // the end of block that could change the value.
3538   if (I->mayReadFromMemory()) {
3539     // We don't want to do any sophisticated alias analysis, so we only check
3540     // the instructions after I in I's parent block if we try to sink to its
3541     // successor block.
3542     if (DestBlock->getUniquePredecessor() != I->getParent())
3543       return false;
3544     for (BasicBlock::iterator Scan = I->getIterator(),
3545                               E = I->getParent()->end();
3546          Scan != E; ++Scan)
3547       if (Scan->mayWriteToMemory())
3548         return false;
3549   }
3550 
3551   I->dropDroppableUses([DestBlock](const Use *U) {
3552     if (auto *I = dyn_cast<Instruction>(U->getUser()))
3553       return I->getParent() != DestBlock;
3554     return true;
3555   });
3556   /// FIXME: We could remove droppable uses that are not dominated by
3557   /// the new position.
3558 
3559   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3560   I->moveBefore(&*InsertPos);
3561   ++NumSunkInst;
3562 
3563   // Also sink all related debug uses from the source basic block. Otherwise we
3564   // get debug use before the def. Attempt to salvage debug uses first, to
3565   // maximise the range variables have location for. If we cannot salvage, then
3566   // mark the location undef: we know it was supposed to receive a new location
3567   // here, but that computation has been sunk.
3568   SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3569   findDbgUsers(DbgUsers, I);
3570   // Process the sinking DbgUsers in reverse order, as we only want to clone the
3571   // last appearing debug intrinsic for each given variable.
3572   SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink;
3573   for (DbgVariableIntrinsic *DVI : DbgUsers)
3574     if (DVI->getParent() == SrcBlock)
3575       DbgUsersToSink.push_back(DVI);
3576   llvm::sort(DbgUsersToSink,
3577              [](auto *A, auto *B) { return B->comesBefore(A); });
3578 
3579   // Update the arguments of a dbg.declare instruction, so that it
3580   // does not point into a sunk instruction.
3581   auto updateDbgDeclare = [](DbgVariableIntrinsic *DII) {
3582     if (!isa<DbgDeclareInst>(DII))
3583       return false;
3584 
3585     return true;
3586   };
3587 
3588   SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
3589   SmallSet<DebugVariable, 4> SunkVariables;
3590   for (auto User : DbgUsersToSink) {
3591     // A dbg.declare instruction should not be cloned, since there can only be
3592     // one per variable fragment. It should be left in the original place
3593     // because the sunk instruction is not an alloca (otherwise we could not be
3594     // here).
3595     if (updateDbgDeclare(User))
3596       continue;
3597 
3598     DebugVariable DbgUserVariable =
3599         DebugVariable(User->getVariable(), User->getExpression(),
3600                       User->getDebugLoc()->getInlinedAt());
3601 
3602     if (!SunkVariables.insert(DbgUserVariable).second)
3603       continue;
3604 
3605     DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
3606     LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
3607   }
3608 
3609   // Perform salvaging without the clones, then sink the clones.
3610   if (!DIIClones.empty()) {
3611     salvageDebugInfoForDbgValues(*I, DbgUsers);
3612     // The clones are in reverse order of original appearance, reverse again to
3613     // maintain the original order.
3614     for (auto &DIIClone : llvm::reverse(DIIClones)) {
3615       DIIClone->insertBefore(&*InsertPos);
3616       LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
3617     }
3618   }
3619 
3620   return true;
3621 }
3622 
3623 bool InstCombinerImpl::run() {
3624   while (!Worklist.isEmpty()) {
3625     // Walk deferred instructions in reverse order, and push them to the
3626     // worklist, which means they'll end up popped from the worklist in-order.
3627     while (Instruction *I = Worklist.popDeferred()) {
3628       // Check to see if we can DCE the instruction. We do this already here to
3629       // reduce the number of uses and thus allow other folds to trigger.
3630       // Note that eraseInstFromFunction() may push additional instructions on
3631       // the deferred worklist, so this will DCE whole instruction chains.
3632       if (isInstructionTriviallyDead(I, &TLI)) {
3633         eraseInstFromFunction(*I);
3634         ++NumDeadInst;
3635         continue;
3636       }
3637 
3638       Worklist.push(I);
3639     }
3640 
3641     Instruction *I = Worklist.removeOne();
3642     if (I == nullptr) continue;  // skip null values.
3643 
3644     // Check to see if we can DCE the instruction.
3645     if (isInstructionTriviallyDead(I, &TLI)) {
3646       eraseInstFromFunction(*I);
3647       ++NumDeadInst;
3648       continue;
3649     }
3650 
3651     if (!DebugCounter::shouldExecute(VisitCounter))
3652       continue;
3653 
3654     // Instruction isn't dead, see if we can constant propagate it.
3655     if (!I->use_empty() &&
3656         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3657       if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3658         LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3659                           << '\n');
3660 
3661         // Add operands to the worklist.
3662         replaceInstUsesWith(*I, C);
3663         ++NumConstProp;
3664         if (isInstructionTriviallyDead(I, &TLI))
3665           eraseInstFromFunction(*I);
3666         MadeIRChange = true;
3667         continue;
3668       }
3669     }
3670 
3671     // See if we can trivially sink this instruction to its user if we can
3672     // prove that the successor is not executed more frequently than our block.
3673     if (EnableCodeSinking)
3674       if (Use *SingleUse = I->getSingleUndroppableUse()) {
3675         BasicBlock *BB = I->getParent();
3676         Instruction *UserInst = cast<Instruction>(SingleUse->getUser());
3677         BasicBlock *UserParent;
3678 
3679         // Get the block the use occurs in.
3680         if (PHINode *PN = dyn_cast<PHINode>(UserInst))
3681           UserParent = PN->getIncomingBlock(*SingleUse);
3682         else
3683           UserParent = UserInst->getParent();
3684 
3685         // Try sinking to another block. If that block is unreachable, then do
3686         // not bother. SimplifyCFG should handle it.
3687         if (UserParent != BB && DT.isReachableFromEntry(UserParent)) {
3688           // See if the user is one of our successors that has only one
3689           // predecessor, so that we don't have to split the critical edge.
3690           bool ShouldSink = UserParent->getUniquePredecessor() == BB;
3691           // Another option where we can sink is a block that ends with a
3692           // terminator that does not pass control to other block (such as
3693           // return or unreachable). In this case:
3694           //   - I dominates the User (by SSA form);
3695           //   - the User will be executed at most once.
3696           // So sinking I down to User is always profitable or neutral.
3697           if (!ShouldSink) {
3698             auto *Term = UserParent->getTerminator();
3699             ShouldSink = isa<ReturnInst>(Term) || isa<UnreachableInst>(Term);
3700           }
3701           if (ShouldSink) {
3702             assert(DT.dominates(BB, UserParent) &&
3703                    "Dominance relation broken?");
3704             // Okay, the CFG is simple enough, try to sink this instruction.
3705             if (TryToSinkInstruction(I, UserParent)) {
3706               LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3707               MadeIRChange = true;
3708               // We'll add uses of the sunk instruction below, but since sinking
3709               // can expose opportunities for it's *operands* add them to the
3710               // worklist
3711               for (Use &U : I->operands())
3712                 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3713                   Worklist.push(OpI);
3714             }
3715           }
3716         }
3717       }
3718 
3719     // Now that we have an instruction, try combining it to simplify it.
3720     Builder.SetInsertPoint(I);
3721     Builder.CollectMetadataToCopy(
3722         I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
3723 
3724 #ifndef NDEBUG
3725     std::string OrigI;
3726 #endif
3727     LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3728     LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3729 
3730     if (Instruction *Result = visit(*I)) {
3731       ++NumCombined;
3732       // Should we replace the old instruction with a new one?
3733       if (Result != I) {
3734         LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3735                           << "    New = " << *Result << '\n');
3736 
3737         Result->copyMetadata(*I,
3738                              {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
3739         // Everything uses the new instruction now.
3740         I->replaceAllUsesWith(Result);
3741 
3742         // Move the name to the new instruction first.
3743         Result->takeName(I);
3744 
3745         // Insert the new instruction into the basic block...
3746         BasicBlock *InstParent = I->getParent();
3747         BasicBlock::iterator InsertPos = I->getIterator();
3748 
3749         // Are we replace a PHI with something that isn't a PHI, or vice versa?
3750         if (isa<PHINode>(Result) != isa<PHINode>(I)) {
3751           // We need to fix up the insertion point.
3752           if (isa<PHINode>(I)) // PHI -> Non-PHI
3753             InsertPos = InstParent->getFirstInsertionPt();
3754           else // Non-PHI -> PHI
3755             InsertPos = InstParent->getFirstNonPHI()->getIterator();
3756         }
3757 
3758         InstParent->getInstList().insert(InsertPos, Result);
3759 
3760         // Push the new instruction and any users onto the worklist.
3761         Worklist.pushUsersToWorkList(*Result);
3762         Worklist.push(Result);
3763 
3764         eraseInstFromFunction(*I);
3765       } else {
3766         LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3767                           << "    New = " << *I << '\n');
3768 
3769         // If the instruction was modified, it's possible that it is now dead.
3770         // if so, remove it.
3771         if (isInstructionTriviallyDead(I, &TLI)) {
3772           eraseInstFromFunction(*I);
3773         } else {
3774           Worklist.pushUsersToWorkList(*I);
3775           Worklist.push(I);
3776         }
3777       }
3778       MadeIRChange = true;
3779     }
3780   }
3781 
3782   Worklist.zap();
3783   return MadeIRChange;
3784 }
3785 
3786 // Track the scopes used by !alias.scope and !noalias. In a function, a
3787 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used
3788 // by both sets. If not, the declaration of the scope can be safely omitted.
3789 // The MDNode of the scope can be omitted as well for the instructions that are
3790 // part of this function. We do not do that at this point, as this might become
3791 // too time consuming to do.
3792 class AliasScopeTracker {
3793   SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
3794   SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
3795 
3796 public:
3797   void analyse(Instruction *I) {
3798     // This seems to be faster than checking 'mayReadOrWriteMemory()'.
3799     if (!I->hasMetadataOtherThanDebugLoc())
3800       return;
3801 
3802     auto Track = [](Metadata *ScopeList, auto &Container) {
3803       const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
3804       if (!MDScopeList || !Container.insert(MDScopeList).second)
3805         return;
3806       for (auto &MDOperand : MDScopeList->operands())
3807         if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
3808           Container.insert(MDScope);
3809     };
3810 
3811     Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
3812     Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
3813   }
3814 
3815   bool isNoAliasScopeDeclDead(Instruction *Inst) {
3816     NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
3817     if (!Decl)
3818       return false;
3819 
3820     assert(Decl->use_empty() &&
3821            "llvm.experimental.noalias.scope.decl in use ?");
3822     const MDNode *MDSL = Decl->getScopeList();
3823     assert(MDSL->getNumOperands() == 1 &&
3824            "llvm.experimental.noalias.scope should refer to a single scope");
3825     auto &MDOperand = MDSL->getOperand(0);
3826     if (auto *MD = dyn_cast<MDNode>(MDOperand))
3827       return !UsedAliasScopesAndLists.contains(MD) ||
3828              !UsedNoAliasScopesAndLists.contains(MD);
3829 
3830     // Not an MDNode ? throw away.
3831     return true;
3832   }
3833 };
3834 
3835 /// Populate the IC worklist from a function, by walking it in depth-first
3836 /// order and adding all reachable code to the worklist.
3837 ///
3838 /// This has a couple of tricks to make the code faster and more powerful.  In
3839 /// particular, we constant fold and DCE instructions as we go, to avoid adding
3840 /// them to the worklist (this significantly speeds up instcombine on code where
3841 /// many instructions are dead or constant).  Additionally, if we find a branch
3842 /// whose condition is a known constant, we only visit the reachable successors.
3843 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3844                                           const TargetLibraryInfo *TLI,
3845                                           InstCombineWorklist &ICWorklist) {
3846   bool MadeIRChange = false;
3847   SmallPtrSet<BasicBlock *, 32> Visited;
3848   SmallVector<BasicBlock*, 256> Worklist;
3849   Worklist.push_back(&F.front());
3850 
3851   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
3852   DenseMap<Constant *, Constant *> FoldedConstants;
3853   AliasScopeTracker SeenAliasScopes;
3854 
3855   do {
3856     BasicBlock *BB = Worklist.pop_back_val();
3857 
3858     // We have now visited this block!  If we've already been here, ignore it.
3859     if (!Visited.insert(BB).second)
3860       continue;
3861 
3862     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3863       Instruction *Inst = &*BBI++;
3864 
3865       // ConstantProp instruction if trivially constant.
3866       if (!Inst->use_empty() &&
3867           (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
3868         if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
3869           LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
3870                             << '\n');
3871           Inst->replaceAllUsesWith(C);
3872           ++NumConstProp;
3873           if (isInstructionTriviallyDead(Inst, TLI))
3874             Inst->eraseFromParent();
3875           MadeIRChange = true;
3876           continue;
3877         }
3878 
3879       // See if we can constant fold its operands.
3880       for (Use &U : Inst->operands()) {
3881         if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
3882           continue;
3883 
3884         auto *C = cast<Constant>(U);
3885         Constant *&FoldRes = FoldedConstants[C];
3886         if (!FoldRes)
3887           FoldRes = ConstantFoldConstant(C, DL, TLI);
3888 
3889         if (FoldRes != C) {
3890           LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
3891                             << "\n    Old = " << *C
3892                             << "\n    New = " << *FoldRes << '\n');
3893           U = FoldRes;
3894           MadeIRChange = true;
3895         }
3896       }
3897 
3898       // Skip processing debug and pseudo intrinsics in InstCombine. Processing
3899       // these call instructions consumes non-trivial amount of time and
3900       // provides no value for the optimization.
3901       if (!Inst->isDebugOrPseudoInst()) {
3902         InstrsForInstCombineWorklist.push_back(Inst);
3903         SeenAliasScopes.analyse(Inst);
3904       }
3905     }
3906 
3907     // Recursively visit successors.  If this is a branch or switch on a
3908     // constant, only visit the reachable successor.
3909     Instruction *TI = BB->getTerminator();
3910     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3911       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
3912         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
3913         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
3914         Worklist.push_back(ReachableBB);
3915         continue;
3916       }
3917     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3918       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
3919         Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
3920         continue;
3921       }
3922     }
3923 
3924     append_range(Worklist, successors(TI));
3925   } while (!Worklist.empty());
3926 
3927   // Remove instructions inside unreachable blocks. This prevents the
3928   // instcombine code from having to deal with some bad special cases, and
3929   // reduces use counts of instructions.
3930   for (BasicBlock &BB : F) {
3931     if (Visited.count(&BB))
3932       continue;
3933 
3934     unsigned NumDeadInstInBB;
3935     unsigned NumDeadDbgInstInBB;
3936     std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
3937         removeAllNonTerminatorAndEHPadInstructions(&BB);
3938 
3939     MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
3940     NumDeadInst += NumDeadInstInBB;
3941   }
3942 
3943   // Once we've found all of the instructions to add to instcombine's worklist,
3944   // add them in reverse order.  This way instcombine will visit from the top
3945   // of the function down.  This jives well with the way that it adds all uses
3946   // of instructions to the worklist after doing a transformation, thus avoiding
3947   // some N^2 behavior in pathological cases.
3948   ICWorklist.reserve(InstrsForInstCombineWorklist.size());
3949   for (Instruction *Inst : reverse(InstrsForInstCombineWorklist)) {
3950     // DCE instruction if trivially dead. As we iterate in reverse program
3951     // order here, we will clean up whole chains of dead instructions.
3952     if (isInstructionTriviallyDead(Inst, TLI) ||
3953         SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
3954       ++NumDeadInst;
3955       LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
3956       salvageDebugInfo(*Inst);
3957       Inst->eraseFromParent();
3958       MadeIRChange = true;
3959       continue;
3960     }
3961 
3962     ICWorklist.push(Inst);
3963   }
3964 
3965   return MadeIRChange;
3966 }
3967 
3968 static bool combineInstructionsOverFunction(
3969     Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
3970     AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
3971     DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
3972     ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
3973   auto &DL = F.getParent()->getDataLayout();
3974   MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
3975 
3976   /// Builder - This is an IRBuilder that automatically inserts new
3977   /// instructions into the worklist when they are created.
3978   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
3979       F.getContext(), TargetFolder(DL),
3980       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
3981         Worklist.add(I);
3982         if (match(I, m_Intrinsic<Intrinsic::assume>()))
3983           AC.registerAssumption(cast<CallInst>(I));
3984       }));
3985 
3986   // Lower dbg.declare intrinsics otherwise their value may be clobbered
3987   // by instcombiner.
3988   bool MadeIRChange = false;
3989   if (ShouldLowerDbgDeclare)
3990     MadeIRChange = LowerDbgDeclare(F);
3991 
3992   // Iterate while there is work to do.
3993   unsigned Iteration = 0;
3994   while (true) {
3995     ++NumWorklistIterations;
3996     ++Iteration;
3997 
3998     if (Iteration > InfiniteLoopDetectionThreshold) {
3999       report_fatal_error(
4000           "Instruction Combining seems stuck in an infinite loop after " +
4001           Twine(InfiniteLoopDetectionThreshold) + " iterations.");
4002     }
4003 
4004     if (Iteration > MaxIterations) {
4005       LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
4006                         << " on " << F.getName()
4007                         << " reached; stopping before reaching a fixpoint\n");
4008       break;
4009     }
4010 
4011     LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
4012                       << F.getName() << "\n");
4013 
4014     MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
4015 
4016     InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
4017                         ORE, BFI, PSI, DL, LI);
4018     IC.MaxArraySizeForCombine = MaxArraySize;
4019 
4020     if (!IC.run())
4021       break;
4022 
4023     MadeIRChange = true;
4024   }
4025 
4026   return MadeIRChange;
4027 }
4028 
4029 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
4030 
4031 InstCombinePass::InstCombinePass(unsigned MaxIterations)
4032     : MaxIterations(MaxIterations) {}
4033 
4034 PreservedAnalyses InstCombinePass::run(Function &F,
4035                                        FunctionAnalysisManager &AM) {
4036   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4037   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4038   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4039   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4040   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
4041 
4042   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
4043 
4044   auto *AA = &AM.getResult<AAManager>(F);
4045   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
4046   ProfileSummaryInfo *PSI =
4047       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
4048   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
4049       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
4050 
4051   if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4052                                        BFI, PSI, MaxIterations, LI))
4053     // No changes, all analyses are preserved.
4054     return PreservedAnalyses::all();
4055 
4056   // Mark all the analyses that instcombine updates as preserved.
4057   PreservedAnalyses PA;
4058   PA.preserveSet<CFGAnalyses>();
4059   PA.preserve<AAManager>();
4060   PA.preserve<BasicAA>();
4061   PA.preserve<GlobalsAA>();
4062   return PA;
4063 }
4064 
4065 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
4066   AU.setPreservesCFG();
4067   AU.addRequired<AAResultsWrapperPass>();
4068   AU.addRequired<AssumptionCacheTracker>();
4069   AU.addRequired<TargetLibraryInfoWrapperPass>();
4070   AU.addRequired<TargetTransformInfoWrapperPass>();
4071   AU.addRequired<DominatorTreeWrapperPass>();
4072   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4073   AU.addPreserved<DominatorTreeWrapperPass>();
4074   AU.addPreserved<AAResultsWrapperPass>();
4075   AU.addPreserved<BasicAAWrapperPass>();
4076   AU.addPreserved<GlobalsAAWrapperPass>();
4077   AU.addRequired<ProfileSummaryInfoWrapperPass>();
4078   LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
4079 }
4080 
4081 bool InstructionCombiningPass::runOnFunction(Function &F) {
4082   if (skipFunction(F))
4083     return false;
4084 
4085   // Required analyses.
4086   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4087   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4088   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
4089   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4090   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4091   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4092 
4093   // Optional analyses.
4094   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
4095   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
4096   ProfileSummaryInfo *PSI =
4097       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
4098   BlockFrequencyInfo *BFI =
4099       (PSI && PSI->hasProfileSummary()) ?
4100       &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
4101       nullptr;
4102 
4103   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4104                                          BFI, PSI, MaxIterations, LI);
4105 }
4106 
4107 char InstructionCombiningPass::ID = 0;
4108 
4109 InstructionCombiningPass::InstructionCombiningPass()
4110     : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
4111   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4112 }
4113 
4114 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
4115     : FunctionPass(ID), MaxIterations(MaxIterations) {
4116   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4117 }
4118 
4119 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
4120                       "Combine redundant instructions", false, false)
4121 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4122 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4123 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4124 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4125 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4126 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4127 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
4128 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
4129 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
4130 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
4131                     "Combine redundant instructions", false, false)
4132 
4133 // Initialization Routines
4134 void llvm::initializeInstCombine(PassRegistry &Registry) {
4135   initializeInstructionCombiningPassPass(Registry);
4136 }
4137 
4138 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
4139   initializeInstructionCombiningPassPass(*unwrap(R));
4140 }
4141 
4142 FunctionPass *llvm::createInstructionCombiningPass() {
4143   return new InstructionCombiningPass();
4144 }
4145 
4146 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
4147   return new InstructionCombiningPass(MaxIterations);
4148 }
4149 
4150 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
4151   unwrap(PM)->add(createInstructionCombiningPass());
4152 }
4153