1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // InstructionCombining - Combine instructions to form fewer, simple 11 // instructions. This pass does not modify the CFG. This pass is where 12 // algebraic simplification happens. 13 // 14 // This pass combines things like: 15 // %Y = add i32 %X, 1 16 // %Z = add i32 %Y, 1 17 // into: 18 // %Z = add i32 %X, 2 19 // 20 // This is a simple worklist driven algorithm. 21 // 22 // This pass guarantees that the following canonicalizations are performed on 23 // the program: 24 // 1. If a binary operator has a constant operand, it is moved to the RHS 25 // 2. Bitwise operators with constant operands are always grouped so that 26 // shifts are performed first, then or's, then and's, then xor's. 27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 28 // 4. All cmp instructions on boolean values are replaced with logical ops 29 // 5. add X, X is represented as (X*2) => (X << 1) 30 // 6. Multiplies with a power-of-two constant argument are transformed into 31 // shifts. 32 // ... etc. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/Transforms/InstCombine/InstCombine.h" 37 #include "InstCombineInternal.h" 38 #include "llvm-c/Initialization.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/Statistic.h" 41 #include "llvm/ADT/StringSwitch.h" 42 #include "llvm/Analysis/AssumptionCache.h" 43 #include "llvm/Analysis/CFG.h" 44 #include "llvm/Analysis/ConstantFolding.h" 45 #include "llvm/Analysis/InstructionSimplify.h" 46 #include "llvm/Analysis/LibCallSemantics.h" 47 #include "llvm/Analysis/LoopInfo.h" 48 #include "llvm/Analysis/MemoryBuiltins.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Analysis/ValueTracking.h" 51 #include "llvm/IR/CFG.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/IntrinsicInst.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/ValueHandle.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/Scalar.h" 62 #include "llvm/Transforms/Utils/Local.h" 63 #include <algorithm> 64 #include <climits> 65 using namespace llvm; 66 using namespace llvm::PatternMatch; 67 68 #define DEBUG_TYPE "instcombine" 69 70 STATISTIC(NumCombined , "Number of insts combined"); 71 STATISTIC(NumConstProp, "Number of constant folds"); 72 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 73 STATISTIC(NumSunkInst , "Number of instructions sunk"); 74 STATISTIC(NumExpand, "Number of expansions"); 75 STATISTIC(NumFactor , "Number of factorizations"); 76 STATISTIC(NumReassoc , "Number of reassociations"); 77 78 Value *InstCombiner::EmitGEPOffset(User *GEP) { 79 return llvm::EmitGEPOffset(Builder, DL, GEP); 80 } 81 82 /// ShouldChangeType - Return true if it is desirable to convert a computation 83 /// from 'From' to 'To'. We don't want to convert from a legal to an illegal 84 /// type for example, or from a smaller to a larger illegal type. 85 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const { 86 assert(From->isIntegerTy() && To->isIntegerTy()); 87 88 unsigned FromWidth = From->getPrimitiveSizeInBits(); 89 unsigned ToWidth = To->getPrimitiveSizeInBits(); 90 bool FromLegal = DL.isLegalInteger(FromWidth); 91 bool ToLegal = DL.isLegalInteger(ToWidth); 92 93 // If this is a legal integer from type, and the result would be an illegal 94 // type, don't do the transformation. 95 if (FromLegal && !ToLegal) 96 return false; 97 98 // Otherwise, if both are illegal, do not increase the size of the result. We 99 // do allow things like i160 -> i64, but not i64 -> i160. 100 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 101 return false; 102 103 return true; 104 } 105 106 // Return true, if No Signed Wrap should be maintained for I. 107 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 108 // where both B and C should be ConstantInts, results in a constant that does 109 // not overflow. This function only handles the Add and Sub opcodes. For 110 // all other opcodes, the function conservatively returns false. 111 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 112 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 113 if (!OBO || !OBO->hasNoSignedWrap()) { 114 return false; 115 } 116 117 // We reason about Add and Sub Only. 118 Instruction::BinaryOps Opcode = I.getOpcode(); 119 if (Opcode != Instruction::Add && 120 Opcode != Instruction::Sub) { 121 return false; 122 } 123 124 ConstantInt *CB = dyn_cast<ConstantInt>(B); 125 ConstantInt *CC = dyn_cast<ConstantInt>(C); 126 127 if (!CB || !CC) { 128 return false; 129 } 130 131 const APInt &BVal = CB->getValue(); 132 const APInt &CVal = CC->getValue(); 133 bool Overflow = false; 134 135 if (Opcode == Instruction::Add) { 136 BVal.sadd_ov(CVal, Overflow); 137 } else { 138 BVal.ssub_ov(CVal, Overflow); 139 } 140 141 return !Overflow; 142 } 143 144 /// Conservatively clears subclassOptionalData after a reassociation or 145 /// commutation. We preserve fast-math flags when applicable as they can be 146 /// preserved. 147 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 148 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 149 if (!FPMO) { 150 I.clearSubclassOptionalData(); 151 return; 152 } 153 154 FastMathFlags FMF = I.getFastMathFlags(); 155 I.clearSubclassOptionalData(); 156 I.setFastMathFlags(FMF); 157 } 158 159 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for 160 /// operators which are associative or commutative: 161 // 162 // Commutative operators: 163 // 164 // 1. Order operands such that they are listed from right (least complex) to 165 // left (most complex). This puts constants before unary operators before 166 // binary operators. 167 // 168 // Associative operators: 169 // 170 // 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 171 // 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 172 // 173 // Associative and commutative operators: 174 // 175 // 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 176 // 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 177 // 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 178 // if C1 and C2 are constants. 179 // 180 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 181 Instruction::BinaryOps Opcode = I.getOpcode(); 182 bool Changed = false; 183 184 do { 185 // Order operands such that they are listed from right (least complex) to 186 // left (most complex). This puts constants before unary operators before 187 // binary operators. 188 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 189 getComplexity(I.getOperand(1))) 190 Changed = !I.swapOperands(); 191 192 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 193 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 194 195 if (I.isAssociative()) { 196 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 197 if (Op0 && Op0->getOpcode() == Opcode) { 198 Value *A = Op0->getOperand(0); 199 Value *B = Op0->getOperand(1); 200 Value *C = I.getOperand(1); 201 202 // Does "B op C" simplify? 203 if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) { 204 // It simplifies to V. Form "A op V". 205 I.setOperand(0, A); 206 I.setOperand(1, V); 207 // Conservatively clear the optional flags, since they may not be 208 // preserved by the reassociation. 209 if (MaintainNoSignedWrap(I, B, C) && 210 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { 211 // Note: this is only valid because SimplifyBinOp doesn't look at 212 // the operands to Op0. 213 I.clearSubclassOptionalData(); 214 I.setHasNoSignedWrap(true); 215 } else { 216 ClearSubclassDataAfterReassociation(I); 217 } 218 219 Changed = true; 220 ++NumReassoc; 221 continue; 222 } 223 } 224 225 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 226 if (Op1 && Op1->getOpcode() == Opcode) { 227 Value *A = I.getOperand(0); 228 Value *B = Op1->getOperand(0); 229 Value *C = Op1->getOperand(1); 230 231 // Does "A op B" simplify? 232 if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) { 233 // It simplifies to V. Form "V op C". 234 I.setOperand(0, V); 235 I.setOperand(1, C); 236 // Conservatively clear the optional flags, since they may not be 237 // preserved by the reassociation. 238 ClearSubclassDataAfterReassociation(I); 239 Changed = true; 240 ++NumReassoc; 241 continue; 242 } 243 } 244 } 245 246 if (I.isAssociative() && I.isCommutative()) { 247 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 248 if (Op0 && Op0->getOpcode() == Opcode) { 249 Value *A = Op0->getOperand(0); 250 Value *B = Op0->getOperand(1); 251 Value *C = I.getOperand(1); 252 253 // Does "C op A" simplify? 254 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) { 255 // It simplifies to V. Form "V op B". 256 I.setOperand(0, V); 257 I.setOperand(1, B); 258 // Conservatively clear the optional flags, since they may not be 259 // preserved by the reassociation. 260 ClearSubclassDataAfterReassociation(I); 261 Changed = true; 262 ++NumReassoc; 263 continue; 264 } 265 } 266 267 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 268 if (Op1 && Op1->getOpcode() == Opcode) { 269 Value *A = I.getOperand(0); 270 Value *B = Op1->getOperand(0); 271 Value *C = Op1->getOperand(1); 272 273 // Does "C op A" simplify? 274 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) { 275 // It simplifies to V. Form "B op V". 276 I.setOperand(0, B); 277 I.setOperand(1, V); 278 // Conservatively clear the optional flags, since they may not be 279 // preserved by the reassociation. 280 ClearSubclassDataAfterReassociation(I); 281 Changed = true; 282 ++NumReassoc; 283 continue; 284 } 285 } 286 287 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 288 // if C1 and C2 are constants. 289 if (Op0 && Op1 && 290 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 291 isa<Constant>(Op0->getOperand(1)) && 292 isa<Constant>(Op1->getOperand(1)) && 293 Op0->hasOneUse() && Op1->hasOneUse()) { 294 Value *A = Op0->getOperand(0); 295 Constant *C1 = cast<Constant>(Op0->getOperand(1)); 296 Value *B = Op1->getOperand(0); 297 Constant *C2 = cast<Constant>(Op1->getOperand(1)); 298 299 Constant *Folded = ConstantExpr::get(Opcode, C1, C2); 300 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B); 301 if (isa<FPMathOperator>(New)) { 302 FastMathFlags Flags = I.getFastMathFlags(); 303 Flags &= Op0->getFastMathFlags(); 304 Flags &= Op1->getFastMathFlags(); 305 New->setFastMathFlags(Flags); 306 } 307 InsertNewInstWith(New, I); 308 New->takeName(Op1); 309 I.setOperand(0, New); 310 I.setOperand(1, Folded); 311 // Conservatively clear the optional flags, since they may not be 312 // preserved by the reassociation. 313 ClearSubclassDataAfterReassociation(I); 314 315 Changed = true; 316 continue; 317 } 318 } 319 320 // No further simplifications. 321 return Changed; 322 } while (1); 323 } 324 325 /// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to 326 /// "(X LOp Y) ROp (X LOp Z)". 327 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp, 328 Instruction::BinaryOps ROp) { 329 switch (LOp) { 330 default: 331 return false; 332 333 case Instruction::And: 334 // And distributes over Or and Xor. 335 switch (ROp) { 336 default: 337 return false; 338 case Instruction::Or: 339 case Instruction::Xor: 340 return true; 341 } 342 343 case Instruction::Mul: 344 // Multiplication distributes over addition and subtraction. 345 switch (ROp) { 346 default: 347 return false; 348 case Instruction::Add: 349 case Instruction::Sub: 350 return true; 351 } 352 353 case Instruction::Or: 354 // Or distributes over And. 355 switch (ROp) { 356 default: 357 return false; 358 case Instruction::And: 359 return true; 360 } 361 } 362 } 363 364 /// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to 365 /// "(X ROp Z) LOp (Y ROp Z)". 366 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp, 367 Instruction::BinaryOps ROp) { 368 if (Instruction::isCommutative(ROp)) 369 return LeftDistributesOverRight(ROp, LOp); 370 371 switch (LOp) { 372 default: 373 return false; 374 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts. 375 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts. 376 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts. 377 case Instruction::And: 378 case Instruction::Or: 379 case Instruction::Xor: 380 switch (ROp) { 381 default: 382 return false; 383 case Instruction::Shl: 384 case Instruction::LShr: 385 case Instruction::AShr: 386 return true; 387 } 388 } 389 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 390 // but this requires knowing that the addition does not overflow and other 391 // such subtleties. 392 return false; 393 } 394 395 /// This function returns identity value for given opcode, which can be used to 396 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 397 static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) { 398 if (isa<Constant>(V)) 399 return nullptr; 400 401 if (OpCode == Instruction::Mul) 402 return ConstantInt::get(V->getType(), 1); 403 404 // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc. 405 406 return nullptr; 407 } 408 409 /// This function factors binary ops which can be combined using distributive 410 /// laws. This function tries to transform 'Op' based TopLevelOpcode to enable 411 /// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called 412 /// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms 413 /// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and 414 /// RHS to 4. 415 static Instruction::BinaryOps 416 getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode, 417 BinaryOperator *Op, Value *&LHS, Value *&RHS) { 418 if (!Op) 419 return Instruction::BinaryOpsEnd; 420 421 LHS = Op->getOperand(0); 422 RHS = Op->getOperand(1); 423 424 switch (TopLevelOpcode) { 425 default: 426 return Op->getOpcode(); 427 428 case Instruction::Add: 429 case Instruction::Sub: 430 if (Op->getOpcode() == Instruction::Shl) { 431 if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) { 432 // The multiplier is really 1 << CST. 433 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST); 434 return Instruction::Mul; 435 } 436 } 437 return Op->getOpcode(); 438 } 439 440 // TODO: We can add other conversions e.g. shr => div etc. 441 } 442 443 /// This tries to simplify binary operations by factorizing out common terms 444 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 445 static Value *tryFactorization(InstCombiner::BuilderTy *Builder, 446 const DataLayout &DL, BinaryOperator &I, 447 Instruction::BinaryOps InnerOpcode, Value *A, 448 Value *B, Value *C, Value *D) { 449 450 // If any of A, B, C, D are null, we can not factor I, return early. 451 // Checking A and C should be enough. 452 if (!A || !C || !B || !D) 453 return nullptr; 454 455 Value *V = nullptr; 456 Value *SimplifiedInst = nullptr; 457 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 458 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 459 460 // Does "X op' Y" always equal "Y op' X"? 461 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 462 463 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 464 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 465 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 466 // commutative case, "(A op' B) op (C op' A)"? 467 if (A == C || (InnerCommutative && A == D)) { 468 if (A != C) 469 std::swap(C, D); 470 // Consider forming "A op' (B op D)". 471 // If "B op D" simplifies then it can be formed with no cost. 472 V = SimplifyBinOp(TopLevelOpcode, B, D, DL); 473 // If "B op D" doesn't simplify then only go on if both of the existing 474 // operations "A op' B" and "C op' D" will be zapped as no longer used. 475 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 476 V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 477 if (V) { 478 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V); 479 } 480 } 481 482 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 483 if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 484 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 485 // commutative case, "(A op' B) op (B op' D)"? 486 if (B == D || (InnerCommutative && B == C)) { 487 if (B != D) 488 std::swap(C, D); 489 // Consider forming "(A op C) op' B". 490 // If "A op C" simplifies then it can be formed with no cost. 491 V = SimplifyBinOp(TopLevelOpcode, A, C, DL); 492 493 // If "A op C" doesn't simplify then only go on if both of the existing 494 // operations "A op' B" and "C op' D" will be zapped as no longer used. 495 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 496 V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 497 if (V) { 498 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B); 499 } 500 } 501 502 if (SimplifiedInst) { 503 ++NumFactor; 504 SimplifiedInst->takeName(&I); 505 506 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag. 507 // TODO: Check for NUW. 508 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 509 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 510 bool HasNSW = false; 511 if (isa<OverflowingBinaryOperator>(&I)) 512 HasNSW = I.hasNoSignedWrap(); 513 514 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 515 if (isa<OverflowingBinaryOperator>(Op0)) 516 HasNSW &= Op0->hasNoSignedWrap(); 517 518 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 519 if (isa<OverflowingBinaryOperator>(Op1)) 520 HasNSW &= Op1->hasNoSignedWrap(); 521 522 // We can propogate 'nsw' if we know that 523 // %Y = mul nsw i16 %X, C 524 // %Z = add nsw i16 %Y, %X 525 // => 526 // %Z = mul nsw i16 %X, C+1 527 // 528 // iff C+1 isn't INT_MIN 529 const APInt *CInt; 530 if (TopLevelOpcode == Instruction::Add && 531 InnerOpcode == Instruction::Mul) 532 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) 533 BO->setHasNoSignedWrap(HasNSW); 534 } 535 } 536 } 537 return SimplifiedInst; 538 } 539 540 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations 541 /// which some other binary operation distributes over either by factorizing 542 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this 543 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is 544 /// a win). Returns the simplified value, or null if it didn't simplify. 545 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 546 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 547 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 548 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 549 550 // Factorization. 551 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 552 auto TopLevelOpcode = I.getOpcode(); 553 auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 554 auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 555 556 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 557 // a common term. 558 if (LHSOpcode == RHSOpcode) { 559 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D)) 560 return V; 561 } 562 563 // The instruction has the form "(A op' B) op (C)". Try to factorize common 564 // term. 565 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS, 566 getIdentityValue(LHSOpcode, RHS))) 567 return V; 568 569 // The instruction has the form "(B) op (C op' D)". Try to factorize common 570 // term. 571 if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS, 572 getIdentityValue(RHSOpcode, LHS), C, D)) 573 return V; 574 575 // Expansion. 576 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 577 // The instruction has the form "(A op' B) op C". See if expanding it out 578 // to "(A op C) op' (B op C)" results in simplifications. 579 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 580 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 581 582 // Do "A op C" and "B op C" both simplify? 583 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL)) 584 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) { 585 // They do! Return "L op' R". 586 ++NumExpand; 587 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 588 if ((L == A && R == B) || 589 (Instruction::isCommutative(InnerOpcode) && L == B && R == A)) 590 return Op0; 591 // Otherwise return "L op' R" if it simplifies. 592 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL)) 593 return V; 594 // Otherwise, create a new instruction. 595 C = Builder->CreateBinOp(InnerOpcode, L, R); 596 C->takeName(&I); 597 return C; 598 } 599 } 600 601 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 602 // The instruction has the form "A op (B op' C)". See if expanding it out 603 // to "(A op B) op' (A op C)" results in simplifications. 604 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 605 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 606 607 // Do "A op B" and "A op C" both simplify? 608 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL)) 609 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) { 610 // They do! Return "L op' R". 611 ++NumExpand; 612 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 613 if ((L == B && R == C) || 614 (Instruction::isCommutative(InnerOpcode) && L == C && R == B)) 615 return Op1; 616 // Otherwise return "L op' R" if it simplifies. 617 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL)) 618 return V; 619 // Otherwise, create a new instruction. 620 A = Builder->CreateBinOp(InnerOpcode, L, R); 621 A->takeName(&I); 622 return A; 623 } 624 } 625 626 return nullptr; 627 } 628 629 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction 630 // if the LHS is a constant zero (which is the 'negate' form). 631 // 632 Value *InstCombiner::dyn_castNegVal(Value *V) const { 633 if (BinaryOperator::isNeg(V)) 634 return BinaryOperator::getNegArgument(V); 635 636 // Constants can be considered to be negated values if they can be folded. 637 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 638 return ConstantExpr::getNeg(C); 639 640 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 641 if (C->getType()->getElementType()->isIntegerTy()) 642 return ConstantExpr::getNeg(C); 643 644 return nullptr; 645 } 646 647 // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the 648 // instruction if the LHS is a constant negative zero (which is the 'negate' 649 // form). 650 // 651 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const { 652 if (BinaryOperator::isFNeg(V, IgnoreZeroSign)) 653 return BinaryOperator::getFNegArgument(V); 654 655 // Constants can be considered to be negated values if they can be folded. 656 if (ConstantFP *C = dyn_cast<ConstantFP>(V)) 657 return ConstantExpr::getFNeg(C); 658 659 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 660 if (C->getType()->getElementType()->isFloatingPointTy()) 661 return ConstantExpr::getFNeg(C); 662 663 return nullptr; 664 } 665 666 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO, 667 InstCombiner *IC) { 668 if (CastInst *CI = dyn_cast<CastInst>(&I)) { 669 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType()); 670 } 671 672 // Figure out if the constant is the left or the right argument. 673 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 674 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 675 676 if (Constant *SOC = dyn_cast<Constant>(SO)) { 677 if (ConstIsRHS) 678 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 679 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 680 } 681 682 Value *Op0 = SO, *Op1 = ConstOperand; 683 if (!ConstIsRHS) 684 std::swap(Op0, Op1); 685 686 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) { 687 Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1, 688 SO->getName()+".op"); 689 Instruction *FPInst = dyn_cast<Instruction>(RI); 690 if (FPInst && isa<FPMathOperator>(FPInst)) 691 FPInst->copyFastMathFlags(BO); 692 return RI; 693 } 694 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I)) 695 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, 696 SO->getName()+".cmp"); 697 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I)) 698 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, 699 SO->getName()+".cmp"); 700 llvm_unreachable("Unknown binary instruction type!"); 701 } 702 703 // FoldOpIntoSelect - Given an instruction with a select as one operand and a 704 // constant as the other operand, try to fold the binary operator into the 705 // select arguments. This also works for Cast instructions, which obviously do 706 // not have a second operand. 707 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 708 // Don't modify shared select instructions 709 if (!SI->hasOneUse()) return nullptr; 710 Value *TV = SI->getOperand(1); 711 Value *FV = SI->getOperand(2); 712 713 if (isa<Constant>(TV) || isa<Constant>(FV)) { 714 // Bool selects with constant operands can be folded to logical ops. 715 if (SI->getType()->isIntegerTy(1)) return nullptr; 716 717 // If it's a bitcast involving vectors, make sure it has the same number of 718 // elements on both sides. 719 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) { 720 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 721 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 722 723 // Verify that either both or neither are vectors. 724 if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr; 725 // If vectors, verify that they have the same number of elements. 726 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 727 return nullptr; 728 } 729 730 // Test if a CmpInst instruction is used exclusively by a select as 731 // part of a minimum or maximum operation. If so, refrain from doing 732 // any other folding. This helps out other analyses which understand 733 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 734 // and CodeGen. And in this case, at least one of the comparison 735 // operands has at least one user besides the compare (the select), 736 // which would often largely negate the benefit of folding anyway. 737 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 738 if (CI->hasOneUse()) { 739 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 740 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 741 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 742 return nullptr; 743 } 744 } 745 746 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this); 747 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this); 748 749 return SelectInst::Create(SI->getCondition(), 750 SelectTrueVal, SelectFalseVal); 751 } 752 return nullptr; 753 } 754 755 /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which 756 /// has a PHI node as operand #0, see if we can fold the instruction into the 757 /// PHI (which is only possible if all operands to the PHI are constants). 758 /// 759 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { 760 PHINode *PN = cast<PHINode>(I.getOperand(0)); 761 unsigned NumPHIValues = PN->getNumIncomingValues(); 762 if (NumPHIValues == 0) 763 return nullptr; 764 765 // We normally only transform phis with a single use. However, if a PHI has 766 // multiple uses and they are all the same operation, we can fold *all* of the 767 // uses into the PHI. 768 if (!PN->hasOneUse()) { 769 // Walk the use list for the instruction, comparing them to I. 770 for (User *U : PN->users()) { 771 Instruction *UI = cast<Instruction>(U); 772 if (UI != &I && !I.isIdenticalTo(UI)) 773 return nullptr; 774 } 775 // Otherwise, we can replace *all* users with the new PHI we form. 776 } 777 778 // Check to see if all of the operands of the PHI are simple constants 779 // (constantint/constantfp/undef). If there is one non-constant value, 780 // remember the BB it is in. If there is more than one or if *it* is a PHI, 781 // bail out. We don't do arbitrary constant expressions here because moving 782 // their computation can be expensive without a cost model. 783 BasicBlock *NonConstBB = nullptr; 784 for (unsigned i = 0; i != NumPHIValues; ++i) { 785 Value *InVal = PN->getIncomingValue(i); 786 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 787 continue; 788 789 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 790 if (NonConstBB) return nullptr; // More than one non-const value. 791 792 NonConstBB = PN->getIncomingBlock(i); 793 794 // If the InVal is an invoke at the end of the pred block, then we can't 795 // insert a computation after it without breaking the edge. 796 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal)) 797 if (II->getParent() == NonConstBB) 798 return nullptr; 799 800 // If the incoming non-constant value is in I's block, we will remove one 801 // instruction, but insert another equivalent one, leading to infinite 802 // instcombine. 803 if (isPotentiallyReachable(I.getParent(), NonConstBB, DT, LI)) 804 return nullptr; 805 } 806 807 // If there is exactly one non-constant value, we can insert a copy of the 808 // operation in that block. However, if this is a critical edge, we would be 809 // inserting the computation on some other paths (e.g. inside a loop). Only 810 // do this if the pred block is unconditionally branching into the phi block. 811 if (NonConstBB != nullptr) { 812 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 813 if (!BI || !BI->isUnconditional()) return nullptr; 814 } 815 816 // Okay, we can do the transformation: create the new PHI node. 817 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 818 InsertNewInstBefore(NewPN, *PN); 819 NewPN->takeName(PN); 820 821 // If we are going to have to insert a new computation, do so right before the 822 // predecessors terminator. 823 if (NonConstBB) 824 Builder->SetInsertPoint(NonConstBB->getTerminator()); 825 826 // Next, add all of the operands to the PHI. 827 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 828 // We only currently try to fold the condition of a select when it is a phi, 829 // not the true/false values. 830 Value *TrueV = SI->getTrueValue(); 831 Value *FalseV = SI->getFalseValue(); 832 BasicBlock *PhiTransBB = PN->getParent(); 833 for (unsigned i = 0; i != NumPHIValues; ++i) { 834 BasicBlock *ThisBB = PN->getIncomingBlock(i); 835 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 836 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 837 Value *InV = nullptr; 838 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 839 // even if currently isNullValue gives false. 840 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 841 if (InC && !isa<ConstantExpr>(InC)) 842 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 843 else 844 InV = Builder->CreateSelect(PN->getIncomingValue(i), 845 TrueVInPred, FalseVInPred, "phitmp"); 846 NewPN->addIncoming(InV, ThisBB); 847 } 848 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 849 Constant *C = cast<Constant>(I.getOperand(1)); 850 for (unsigned i = 0; i != NumPHIValues; ++i) { 851 Value *InV = nullptr; 852 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 853 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 854 else if (isa<ICmpInst>(CI)) 855 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 856 C, "phitmp"); 857 else 858 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 859 C, "phitmp"); 860 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 861 } 862 } else if (I.getNumOperands() == 2) { 863 Constant *C = cast<Constant>(I.getOperand(1)); 864 for (unsigned i = 0; i != NumPHIValues; ++i) { 865 Value *InV = nullptr; 866 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 867 InV = ConstantExpr::get(I.getOpcode(), InC, C); 868 else 869 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 870 PN->getIncomingValue(i), C, "phitmp"); 871 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 872 } 873 } else { 874 CastInst *CI = cast<CastInst>(&I); 875 Type *RetTy = CI->getType(); 876 for (unsigned i = 0; i != NumPHIValues; ++i) { 877 Value *InV; 878 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 879 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 880 else 881 InV = Builder->CreateCast(CI->getOpcode(), 882 PN->getIncomingValue(i), I.getType(), "phitmp"); 883 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 884 } 885 } 886 887 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 888 Instruction *User = cast<Instruction>(*UI++); 889 if (User == &I) continue; 890 ReplaceInstUsesWith(*User, NewPN); 891 EraseInstFromFunction(*User); 892 } 893 return ReplaceInstUsesWith(I, NewPN); 894 } 895 896 /// FindElementAtOffset - Given a pointer type and a constant offset, determine 897 /// whether or not there is a sequence of GEP indices into the pointed type that 898 /// will land us at the specified offset. If so, fill them into NewIndices and 899 /// return the resultant element type, otherwise return null. 900 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 901 SmallVectorImpl<Value *> &NewIndices) { 902 Type *Ty = PtrTy->getElementType(); 903 if (!Ty->isSized()) 904 return nullptr; 905 906 // Start with the index over the outer type. Note that the type size 907 // might be zero (even if the offset isn't zero) if the indexed type 908 // is something like [0 x {int, int}] 909 Type *IntPtrTy = DL.getIntPtrType(PtrTy); 910 int64_t FirstIdx = 0; 911 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 912 FirstIdx = Offset/TySize; 913 Offset -= FirstIdx*TySize; 914 915 // Handle hosts where % returns negative instead of values [0..TySize). 916 if (Offset < 0) { 917 --FirstIdx; 918 Offset += TySize; 919 assert(Offset >= 0); 920 } 921 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 922 } 923 924 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx)); 925 926 // Index into the types. If we fail, set OrigBase to null. 927 while (Offset) { 928 // Indexing into tail padding between struct/array elements. 929 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 930 return nullptr; 931 932 if (StructType *STy = dyn_cast<StructType>(Ty)) { 933 const StructLayout *SL = DL.getStructLayout(STy); 934 assert(Offset < (int64_t)SL->getSizeInBytes() && 935 "Offset must stay within the indexed type"); 936 937 unsigned Elt = SL->getElementContainingOffset(Offset); 938 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 939 Elt)); 940 941 Offset -= SL->getElementOffset(Elt); 942 Ty = STy->getElementType(Elt); 943 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 944 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 945 assert(EltSize && "Cannot index into a zero-sized array"); 946 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize)); 947 Offset %= EltSize; 948 Ty = AT->getElementType(); 949 } else { 950 // Otherwise, we can't index into the middle of this atomic type, bail. 951 return nullptr; 952 } 953 } 954 955 return Ty; 956 } 957 958 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 959 // If this GEP has only 0 indices, it is the same pointer as 960 // Src. If Src is not a trivial GEP too, don't combine 961 // the indices. 962 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 963 !Src.hasOneUse()) 964 return false; 965 return true; 966 } 967 968 /// Descale - Return a value X such that Val = X * Scale, or null if none. If 969 /// the multiplication is known not to overflow then NoSignedWrap is set. 970 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 971 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 972 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 973 Scale.getBitWidth() && "Scale not compatible with value!"); 974 975 // If Val is zero or Scale is one then Val = Val * Scale. 976 if (match(Val, m_Zero()) || Scale == 1) { 977 NoSignedWrap = true; 978 return Val; 979 } 980 981 // If Scale is zero then it does not divide Val. 982 if (Scale.isMinValue()) 983 return nullptr; 984 985 // Look through chains of multiplications, searching for a constant that is 986 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 987 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 988 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 989 // down from Val: 990 // 991 // Val = M1 * X || Analysis starts here and works down 992 // M1 = M2 * Y || Doesn't descend into terms with more 993 // M2 = Z * 4 \/ than one use 994 // 995 // Then to modify a term at the bottom: 996 // 997 // Val = M1 * X 998 // M1 = Z * Y || Replaced M2 with Z 999 // 1000 // Then to work back up correcting nsw flags. 1001 1002 // Op - the term we are currently analyzing. Starts at Val then drills down. 1003 // Replaced with its descaled value before exiting from the drill down loop. 1004 Value *Op = Val; 1005 1006 // Parent - initially null, but after drilling down notes where Op came from. 1007 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1008 // 0'th operand of Val. 1009 std::pair<Instruction*, unsigned> Parent; 1010 1011 // RequireNoSignedWrap - Set if the transform requires a descaling at deeper 1012 // levels that doesn't overflow. 1013 bool RequireNoSignedWrap = false; 1014 1015 // logScale - log base 2 of the scale. Negative if not a power of 2. 1016 int32_t logScale = Scale.exactLogBase2(); 1017 1018 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1019 1020 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1021 // If Op is a constant divisible by Scale then descale to the quotient. 1022 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1023 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1024 if (!Remainder.isMinValue()) 1025 // Not divisible by Scale. 1026 return nullptr; 1027 // Replace with the quotient in the parent. 1028 Op = ConstantInt::get(CI->getType(), Quotient); 1029 NoSignedWrap = true; 1030 break; 1031 } 1032 1033 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1034 1035 if (BO->getOpcode() == Instruction::Mul) { 1036 // Multiplication. 1037 NoSignedWrap = BO->hasNoSignedWrap(); 1038 if (RequireNoSignedWrap && !NoSignedWrap) 1039 return nullptr; 1040 1041 // There are three cases for multiplication: multiplication by exactly 1042 // the scale, multiplication by a constant different to the scale, and 1043 // multiplication by something else. 1044 Value *LHS = BO->getOperand(0); 1045 Value *RHS = BO->getOperand(1); 1046 1047 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1048 // Multiplication by a constant. 1049 if (CI->getValue() == Scale) { 1050 // Multiplication by exactly the scale, replace the multiplication 1051 // by its left-hand side in the parent. 1052 Op = LHS; 1053 break; 1054 } 1055 1056 // Otherwise drill down into the constant. 1057 if (!Op->hasOneUse()) 1058 return nullptr; 1059 1060 Parent = std::make_pair(BO, 1); 1061 continue; 1062 } 1063 1064 // Multiplication by something else. Drill down into the left-hand side 1065 // since that's where the reassociate pass puts the good stuff. 1066 if (!Op->hasOneUse()) 1067 return nullptr; 1068 1069 Parent = std::make_pair(BO, 0); 1070 continue; 1071 } 1072 1073 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1074 isa<ConstantInt>(BO->getOperand(1))) { 1075 // Multiplication by a power of 2. 1076 NoSignedWrap = BO->hasNoSignedWrap(); 1077 if (RequireNoSignedWrap && !NoSignedWrap) 1078 return nullptr; 1079 1080 Value *LHS = BO->getOperand(0); 1081 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1082 getLimitedValue(Scale.getBitWidth()); 1083 // Op = LHS << Amt. 1084 1085 if (Amt == logScale) { 1086 // Multiplication by exactly the scale, replace the multiplication 1087 // by its left-hand side in the parent. 1088 Op = LHS; 1089 break; 1090 } 1091 if (Amt < logScale || !Op->hasOneUse()) 1092 return nullptr; 1093 1094 // Multiplication by more than the scale. Reduce the multiplying amount 1095 // by the scale in the parent. 1096 Parent = std::make_pair(BO, 1); 1097 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1098 break; 1099 } 1100 } 1101 1102 if (!Op->hasOneUse()) 1103 return nullptr; 1104 1105 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1106 if (Cast->getOpcode() == Instruction::SExt) { 1107 // Op is sign-extended from a smaller type, descale in the smaller type. 1108 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1109 APInt SmallScale = Scale.trunc(SmallSize); 1110 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1111 // descale Op as (sext Y) * Scale. In order to have 1112 // sext (Y * SmallScale) = (sext Y) * Scale 1113 // some conditions need to hold however: SmallScale must sign-extend to 1114 // Scale and the multiplication Y * SmallScale should not overflow. 1115 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1116 // SmallScale does not sign-extend to Scale. 1117 return nullptr; 1118 assert(SmallScale.exactLogBase2() == logScale); 1119 // Require that Y * SmallScale must not overflow. 1120 RequireNoSignedWrap = true; 1121 1122 // Drill down through the cast. 1123 Parent = std::make_pair(Cast, 0); 1124 Scale = SmallScale; 1125 continue; 1126 } 1127 1128 if (Cast->getOpcode() == Instruction::Trunc) { 1129 // Op is truncated from a larger type, descale in the larger type. 1130 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1131 // trunc (Y * sext Scale) = (trunc Y) * Scale 1132 // always holds. However (trunc Y) * Scale may overflow even if 1133 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1134 // from this point up in the expression (see later). 1135 if (RequireNoSignedWrap) 1136 return nullptr; 1137 1138 // Drill down through the cast. 1139 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1140 Parent = std::make_pair(Cast, 0); 1141 Scale = Scale.sext(LargeSize); 1142 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1143 logScale = -1; 1144 assert(Scale.exactLogBase2() == logScale); 1145 continue; 1146 } 1147 } 1148 1149 // Unsupported expression, bail out. 1150 return nullptr; 1151 } 1152 1153 // If Op is zero then Val = Op * Scale. 1154 if (match(Op, m_Zero())) { 1155 NoSignedWrap = true; 1156 return Op; 1157 } 1158 1159 // We know that we can successfully descale, so from here on we can safely 1160 // modify the IR. Op holds the descaled version of the deepest term in the 1161 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1162 // not to overflow. 1163 1164 if (!Parent.first) 1165 // The expression only had one term. 1166 return Op; 1167 1168 // Rewrite the parent using the descaled version of its operand. 1169 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1170 assert(Op != Parent.first->getOperand(Parent.second) && 1171 "Descaling was a no-op?"); 1172 Parent.first->setOperand(Parent.second, Op); 1173 Worklist.Add(Parent.first); 1174 1175 // Now work back up the expression correcting nsw flags. The logic is based 1176 // on the following observation: if X * Y is known not to overflow as a signed 1177 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1178 // then X * Z will not overflow as a signed multiplication either. As we work 1179 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1180 // current level has strictly smaller absolute value than the original. 1181 Instruction *Ancestor = Parent.first; 1182 do { 1183 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1184 // If the multiplication wasn't nsw then we can't say anything about the 1185 // value of the descaled multiplication, and we have to clear nsw flags 1186 // from this point on up. 1187 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1188 NoSignedWrap &= OpNoSignedWrap; 1189 if (NoSignedWrap != OpNoSignedWrap) { 1190 BO->setHasNoSignedWrap(NoSignedWrap); 1191 Worklist.Add(Ancestor); 1192 } 1193 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1194 // The fact that the descaled input to the trunc has smaller absolute 1195 // value than the original input doesn't tell us anything useful about 1196 // the absolute values of the truncations. 1197 NoSignedWrap = false; 1198 } 1199 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1200 "Failed to keep proper track of nsw flags while drilling down?"); 1201 1202 if (Ancestor == Val) 1203 // Got to the top, all done! 1204 return Val; 1205 1206 // Move up one level in the expression. 1207 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1208 Ancestor = Ancestor->user_back(); 1209 } while (1); 1210 } 1211 1212 /// \brief Creates node of binary operation with the same attributes as the 1213 /// specified one but with other operands. 1214 static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS, 1215 InstCombiner::BuilderTy *B) { 1216 Value *BORes = B->CreateBinOp(Inst.getOpcode(), LHS, RHS); 1217 if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BORes)) { 1218 if (isa<OverflowingBinaryOperator>(NewBO)) { 1219 NewBO->setHasNoSignedWrap(Inst.hasNoSignedWrap()); 1220 NewBO->setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap()); 1221 } 1222 if (isa<PossiblyExactOperator>(NewBO)) 1223 NewBO->setIsExact(Inst.isExact()); 1224 } 1225 return BORes; 1226 } 1227 1228 /// \brief Makes transformation of binary operation specific for vector types. 1229 /// \param Inst Binary operator to transform. 1230 /// \return Pointer to node that must replace the original binary operator, or 1231 /// null pointer if no transformation was made. 1232 Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) { 1233 if (!Inst.getType()->isVectorTy()) return nullptr; 1234 1235 // It may not be safe to reorder shuffles and things like div, urem, etc. 1236 // because we may trap when executing those ops on unknown vector elements. 1237 // See PR20059. 1238 if (!isSafeToSpeculativelyExecute(&Inst)) 1239 return nullptr; 1240 1241 unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements(); 1242 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1243 assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth); 1244 assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth); 1245 1246 // If both arguments of binary operation are shuffles, which use the same 1247 // mask and shuffle within a single vector, it is worthwhile to move the 1248 // shuffle after binary operation: 1249 // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m) 1250 if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) { 1251 ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS); 1252 ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS); 1253 if (isa<UndefValue>(LShuf->getOperand(1)) && 1254 isa<UndefValue>(RShuf->getOperand(1)) && 1255 LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() && 1256 LShuf->getMask() == RShuf->getMask()) { 1257 Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0), 1258 RShuf->getOperand(0), Builder); 1259 Value *Res = Builder->CreateShuffleVector(NewBO, 1260 UndefValue::get(NewBO->getType()), LShuf->getMask()); 1261 return Res; 1262 } 1263 } 1264 1265 // If one argument is a shuffle within one vector, the other is a constant, 1266 // try moving the shuffle after the binary operation. 1267 ShuffleVectorInst *Shuffle = nullptr; 1268 Constant *C1 = nullptr; 1269 if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS); 1270 if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS); 1271 if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS); 1272 if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS); 1273 if (Shuffle && C1 && 1274 (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) && 1275 isa<UndefValue>(Shuffle->getOperand(1)) && 1276 Shuffle->getType() == Shuffle->getOperand(0)->getType()) { 1277 SmallVector<int, 16> ShMask = Shuffle->getShuffleMask(); 1278 // Find constant C2 that has property: 1279 // shuffle(C2, ShMask) = C1 1280 // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>) 1281 // reorder is not possible. 1282 SmallVector<Constant*, 16> C2M(VWidth, 1283 UndefValue::get(C1->getType()->getScalarType())); 1284 bool MayChange = true; 1285 for (unsigned I = 0; I < VWidth; ++I) { 1286 if (ShMask[I] >= 0) { 1287 assert(ShMask[I] < (int)VWidth); 1288 if (!isa<UndefValue>(C2M[ShMask[I]])) { 1289 MayChange = false; 1290 break; 1291 } 1292 C2M[ShMask[I]] = C1->getAggregateElement(I); 1293 } 1294 } 1295 if (MayChange) { 1296 Constant *C2 = ConstantVector::get(C2M); 1297 Value *NewLHS, *NewRHS; 1298 if (isa<Constant>(LHS)) { 1299 NewLHS = C2; 1300 NewRHS = Shuffle->getOperand(0); 1301 } else { 1302 NewLHS = Shuffle->getOperand(0); 1303 NewRHS = C2; 1304 } 1305 Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder); 1306 Value *Res = Builder->CreateShuffleVector(NewBO, 1307 UndefValue::get(Inst.getType()), Shuffle->getMask()); 1308 return Res; 1309 } 1310 } 1311 1312 return nullptr; 1313 } 1314 1315 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1316 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1317 1318 if (Value *V = SimplifyGEPInst(Ops, DL, TLI, DT, AC)) 1319 return ReplaceInstUsesWith(GEP, V); 1320 1321 Value *PtrOp = GEP.getOperand(0); 1322 1323 // Eliminate unneeded casts for indices, and replace indices which displace 1324 // by multiples of a zero size type with zero. 1325 bool MadeChange = false; 1326 Type *IntPtrTy = DL.getIntPtrType(GEP.getPointerOperandType()); 1327 1328 gep_type_iterator GTI = gep_type_begin(GEP); 1329 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1330 ++I, ++GTI) { 1331 // Skip indices into struct types. 1332 SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI); 1333 if (!SeqTy) 1334 continue; 1335 1336 // If the element type has zero size then any index over it is equivalent 1337 // to an index of zero, so replace it with zero if it is not zero already. 1338 if (SeqTy->getElementType()->isSized() && 1339 DL.getTypeAllocSize(SeqTy->getElementType()) == 0) 1340 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { 1341 *I = Constant::getNullValue(IntPtrTy); 1342 MadeChange = true; 1343 } 1344 1345 Type *IndexTy = (*I)->getType(); 1346 if (IndexTy != IntPtrTy) { 1347 // If we are using a wider index than needed for this platform, shrink 1348 // it to what we need. If narrower, sign-extend it to what we need. 1349 // This explicit cast can make subsequent optimizations more obvious. 1350 *I = Builder->CreateIntCast(*I, IntPtrTy, true); 1351 MadeChange = true; 1352 } 1353 } 1354 if (MadeChange) 1355 return &GEP; 1356 1357 // Check to see if the inputs to the PHI node are getelementptr instructions. 1358 if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) { 1359 GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1360 if (!Op1) 1361 return nullptr; 1362 1363 // Don't fold a GEP into itself through a PHI node. This can only happen 1364 // through the back-edge of a loop. Folding a GEP into itself means that 1365 // the value of the previous iteration needs to be stored in the meantime, 1366 // thus requiring an additional register variable to be live, but not 1367 // actually achieving anything (the GEP still needs to be executed once per 1368 // loop iteration). 1369 if (Op1 == &GEP) 1370 return nullptr; 1371 1372 signed DI = -1; 1373 1374 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1375 GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I); 1376 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1377 return nullptr; 1378 1379 // As for Op1 above, don't try to fold a GEP into itself. 1380 if (Op2 == &GEP) 1381 return nullptr; 1382 1383 // Keep track of the type as we walk the GEP. 1384 Type *CurTy = Op1->getOperand(0)->getType()->getScalarType(); 1385 1386 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1387 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1388 return nullptr; 1389 1390 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1391 if (DI == -1) { 1392 // We have not seen any differences yet in the GEPs feeding the 1393 // PHI yet, so we record this one if it is allowed to be a 1394 // variable. 1395 1396 // The first two arguments can vary for any GEP, the rest have to be 1397 // static for struct slots 1398 if (J > 1 && CurTy->isStructTy()) 1399 return nullptr; 1400 1401 DI = J; 1402 } else { 1403 // The GEP is different by more than one input. While this could be 1404 // extended to support GEPs that vary by more than one variable it 1405 // doesn't make sense since it greatly increases the complexity and 1406 // would result in an R+R+R addressing mode which no backend 1407 // directly supports and would need to be broken into several 1408 // simpler instructions anyway. 1409 return nullptr; 1410 } 1411 } 1412 1413 // Sink down a layer of the type for the next iteration. 1414 if (J > 0) { 1415 if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) { 1416 CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); 1417 } else { 1418 CurTy = nullptr; 1419 } 1420 } 1421 } 1422 } 1423 1424 GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1425 1426 if (DI == -1) { 1427 // All the GEPs feeding the PHI are identical. Clone one down into our 1428 // BB so that it can be merged with the current GEP. 1429 GEP.getParent()->getInstList().insert( 1430 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1431 } else { 1432 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1433 // into the current block so it can be merged, and create a new PHI to 1434 // set that index. 1435 Instruction *InsertPt = Builder->GetInsertPoint(); 1436 Builder->SetInsertPoint(PN); 1437 PHINode *NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(), 1438 PN->getNumOperands()); 1439 Builder->SetInsertPoint(InsertPt); 1440 1441 for (auto &I : PN->operands()) 1442 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1443 PN->getIncomingBlock(I)); 1444 1445 NewGEP->setOperand(DI, NewPN); 1446 GEP.getParent()->getInstList().insert( 1447 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1448 NewGEP->setOperand(DI, NewPN); 1449 } 1450 1451 GEP.setOperand(0, NewGEP); 1452 PtrOp = NewGEP; 1453 } 1454 1455 // Combine Indices - If the source pointer to this getelementptr instruction 1456 // is a getelementptr instruction, combine the indices of the two 1457 // getelementptr instructions into a single instruction. 1458 // 1459 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) { 1460 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1461 return nullptr; 1462 1463 // Note that if our source is a gep chain itself then we wait for that 1464 // chain to be resolved before we perform this transformation. This 1465 // avoids us creating a TON of code in some cases. 1466 if (GEPOperator *SrcGEP = 1467 dyn_cast<GEPOperator>(Src->getOperand(0))) 1468 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1469 return nullptr; // Wait until our source is folded to completion. 1470 1471 SmallVector<Value*, 8> Indices; 1472 1473 // Find out whether the last index in the source GEP is a sequential idx. 1474 bool EndsWithSequential = false; 1475 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1476 I != E; ++I) 1477 EndsWithSequential = !(*I)->isStructTy(); 1478 1479 // Can we combine the two pointer arithmetics offsets? 1480 if (EndsWithSequential) { 1481 // Replace: gep (gep %P, long B), long A, ... 1482 // With: T = long A+B; gep %P, T, ... 1483 // 1484 Value *Sum; 1485 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1486 Value *GO1 = GEP.getOperand(1); 1487 if (SO1 == Constant::getNullValue(SO1->getType())) { 1488 Sum = GO1; 1489 } else if (GO1 == Constant::getNullValue(GO1->getType())) { 1490 Sum = SO1; 1491 } else { 1492 // If they aren't the same type, then the input hasn't been processed 1493 // by the loop above yet (which canonicalizes sequential index types to 1494 // intptr_t). Just avoid transforming this until the input has been 1495 // normalized. 1496 if (SO1->getType() != GO1->getType()) 1497 return nullptr; 1498 // Only do the combine when GO1 and SO1 are both constants. Only in 1499 // this case, we are sure the cost after the merge is never more than 1500 // that before the merge. 1501 if (!isa<Constant>(GO1) || !isa<Constant>(SO1)) 1502 return nullptr; 1503 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum"); 1504 } 1505 1506 // Update the GEP in place if possible. 1507 if (Src->getNumOperands() == 2) { 1508 GEP.setOperand(0, Src->getOperand(0)); 1509 GEP.setOperand(1, Sum); 1510 return &GEP; 1511 } 1512 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1513 Indices.push_back(Sum); 1514 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1515 } else if (isa<Constant>(*GEP.idx_begin()) && 1516 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1517 Src->getNumOperands() != 1) { 1518 // Otherwise we can do the fold if the first index of the GEP is a zero 1519 Indices.append(Src->op_begin()+1, Src->op_end()); 1520 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1521 } 1522 1523 if (!Indices.empty()) 1524 return GEP.isInBounds() && Src->isInBounds() 1525 ? GetElementPtrInst::CreateInBounds( 1526 Src->getSourceElementType(), Src->getOperand(0), Indices, 1527 GEP.getName()) 1528 : GetElementPtrInst::Create(Src->getSourceElementType(), 1529 Src->getOperand(0), Indices, 1530 GEP.getName()); 1531 } 1532 1533 if (GEP.getNumIndices() == 1) { 1534 unsigned AS = GEP.getPointerAddressSpace(); 1535 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 1536 DL.getPointerSizeInBits(AS)) { 1537 Type *PtrTy = GEP.getPointerOperandType(); 1538 Type *Ty = PtrTy->getPointerElementType(); 1539 uint64_t TyAllocSize = DL.getTypeAllocSize(Ty); 1540 1541 bool Matched = false; 1542 uint64_t C; 1543 Value *V = nullptr; 1544 if (TyAllocSize == 1) { 1545 V = GEP.getOperand(1); 1546 Matched = true; 1547 } else if (match(GEP.getOperand(1), 1548 m_AShr(m_Value(V), m_ConstantInt(C)))) { 1549 if (TyAllocSize == 1ULL << C) 1550 Matched = true; 1551 } else if (match(GEP.getOperand(1), 1552 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 1553 if (TyAllocSize == C) 1554 Matched = true; 1555 } 1556 1557 if (Matched) { 1558 // Canonicalize (gep i8* X, -(ptrtoint Y)) 1559 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) 1560 // The GEP pattern is emitted by the SCEV expander for certain kinds of 1561 // pointer arithmetic. 1562 if (match(V, m_Neg(m_PtrToInt(m_Value())))) { 1563 Operator *Index = cast<Operator>(V); 1564 Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType()); 1565 Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1)); 1566 return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType()); 1567 } 1568 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) 1569 // to (bitcast Y) 1570 Value *Y; 1571 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), 1572 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) { 1573 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, 1574 GEP.getType()); 1575 } 1576 } 1577 } 1578 } 1579 1580 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 1581 Value *StrippedPtr = PtrOp->stripPointerCasts(); 1582 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType()); 1583 1584 // We do not handle pointer-vector geps here. 1585 if (!StrippedPtrTy) 1586 return nullptr; 1587 1588 if (StrippedPtr != PtrOp) { 1589 bool HasZeroPointerIndex = false; 1590 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 1591 HasZeroPointerIndex = C->isZero(); 1592 1593 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 1594 // into : GEP [10 x i8]* X, i32 0, ... 1595 // 1596 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 1597 // into : GEP i8* X, ... 1598 // 1599 // This occurs when the program declares an array extern like "int X[];" 1600 if (HasZeroPointerIndex) { 1601 PointerType *CPTy = cast<PointerType>(PtrOp->getType()); 1602 if (ArrayType *CATy = 1603 dyn_cast<ArrayType>(CPTy->getElementType())) { 1604 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 1605 if (CATy->getElementType() == StrippedPtrTy->getElementType()) { 1606 // -> GEP i8* X, ... 1607 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 1608 GetElementPtrInst *Res = GetElementPtrInst::Create( 1609 StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName()); 1610 Res->setIsInBounds(GEP.isInBounds()); 1611 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 1612 return Res; 1613 // Insert Res, and create an addrspacecast. 1614 // e.g., 1615 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 1616 // -> 1617 // %0 = GEP i8 addrspace(1)* X, ... 1618 // addrspacecast i8 addrspace(1)* %0 to i8* 1619 return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType()); 1620 } 1621 1622 if (ArrayType *XATy = 1623 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){ 1624 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 1625 if (CATy->getElementType() == XATy->getElementType()) { 1626 // -> GEP [10 x i8]* X, i32 0, ... 1627 // At this point, we know that the cast source type is a pointer 1628 // to an array of the same type as the destination pointer 1629 // array. Because the array type is never stepped over (there 1630 // is a leading zero) we can fold the cast into this GEP. 1631 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 1632 GEP.setOperand(0, StrippedPtr); 1633 GEP.setSourceElementType(XATy); 1634 return &GEP; 1635 } 1636 // Cannot replace the base pointer directly because StrippedPtr's 1637 // address space is different. Instead, create a new GEP followed by 1638 // an addrspacecast. 1639 // e.g., 1640 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 1641 // i32 0, ... 1642 // -> 1643 // %0 = GEP [10 x i8] addrspace(1)* X, ... 1644 // addrspacecast i8 addrspace(1)* %0 to i8* 1645 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 1646 Value *NewGEP = GEP.isInBounds() 1647 ? Builder->CreateInBoundsGEP( 1648 nullptr, StrippedPtr, Idx, GEP.getName()) 1649 : Builder->CreateGEP(nullptr, StrippedPtr, Idx, 1650 GEP.getName()); 1651 return new AddrSpaceCastInst(NewGEP, GEP.getType()); 1652 } 1653 } 1654 } 1655 } else if (GEP.getNumOperands() == 2) { 1656 // Transform things like: 1657 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 1658 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 1659 Type *SrcElTy = StrippedPtrTy->getElementType(); 1660 Type *ResElTy = PtrOp->getType()->getPointerElementType(); 1661 if (SrcElTy->isArrayTy() && 1662 DL.getTypeAllocSize(SrcElTy->getArrayElementType()) == 1663 DL.getTypeAllocSize(ResElTy)) { 1664 Type *IdxType = DL.getIntPtrType(GEP.getType()); 1665 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 1666 Value *NewGEP = 1667 GEP.isInBounds() 1668 ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, Idx, 1669 GEP.getName()) 1670 : Builder->CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName()); 1671 1672 // V and GEP are both pointer types --> BitCast 1673 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1674 GEP.getType()); 1675 } 1676 1677 // Transform things like: 1678 // %V = mul i64 %N, 4 1679 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 1680 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 1681 if (ResElTy->isSized() && SrcElTy->isSized()) { 1682 // Check that changing the type amounts to dividing the index by a scale 1683 // factor. 1684 uint64_t ResSize = DL.getTypeAllocSize(ResElTy); 1685 uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy); 1686 if (ResSize && SrcSize % ResSize == 0) { 1687 Value *Idx = GEP.getOperand(1); 1688 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1689 uint64_t Scale = SrcSize / ResSize; 1690 1691 // Earlier transforms ensure that the index has type IntPtrType, which 1692 // considerably simplifies the logic by eliminating implicit casts. 1693 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) && 1694 "Index not cast to pointer width?"); 1695 1696 bool NSW; 1697 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1698 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1699 // If the multiplication NewIdx * Scale may overflow then the new 1700 // GEP may not be "inbounds". 1701 Value *NewGEP = 1702 GEP.isInBounds() && NSW 1703 ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx, 1704 GEP.getName()) 1705 : Builder->CreateGEP(nullptr, StrippedPtr, NewIdx, 1706 GEP.getName()); 1707 1708 // The NewGEP must be pointer typed, so must the old one -> BitCast 1709 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1710 GEP.getType()); 1711 } 1712 } 1713 } 1714 1715 // Similarly, transform things like: 1716 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 1717 // (where tmp = 8*tmp2) into: 1718 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 1719 if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) { 1720 // Check that changing to the array element type amounts to dividing the 1721 // index by a scale factor. 1722 uint64_t ResSize = DL.getTypeAllocSize(ResElTy); 1723 uint64_t ArrayEltSize = 1724 DL.getTypeAllocSize(SrcElTy->getArrayElementType()); 1725 if (ResSize && ArrayEltSize % ResSize == 0) { 1726 Value *Idx = GEP.getOperand(1); 1727 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1728 uint64_t Scale = ArrayEltSize / ResSize; 1729 1730 // Earlier transforms ensure that the index has type IntPtrType, which 1731 // considerably simplifies the logic by eliminating implicit casts. 1732 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) && 1733 "Index not cast to pointer width?"); 1734 1735 bool NSW; 1736 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1737 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1738 // If the multiplication NewIdx * Scale may overflow then the new 1739 // GEP may not be "inbounds". 1740 Value *Off[2] = { 1741 Constant::getNullValue(DL.getIntPtrType(GEP.getType())), 1742 NewIdx}; 1743 1744 Value *NewGEP = GEP.isInBounds() && NSW 1745 ? Builder->CreateInBoundsGEP( 1746 SrcElTy, StrippedPtr, Off, GEP.getName()) 1747 : Builder->CreateGEP(SrcElTy, StrippedPtr, Off, 1748 GEP.getName()); 1749 // The NewGEP must be pointer typed, so must the old one -> BitCast 1750 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1751 GEP.getType()); 1752 } 1753 } 1754 } 1755 } 1756 } 1757 1758 // addrspacecast between types is canonicalized as a bitcast, then an 1759 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 1760 // through the addrspacecast. 1761 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 1762 // X = bitcast A addrspace(1)* to B addrspace(1)* 1763 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 1764 // Z = gep Y, <...constant indices...> 1765 // Into an addrspacecasted GEP of the struct. 1766 if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 1767 PtrOp = BC; 1768 } 1769 1770 /// See if we can simplify: 1771 /// X = bitcast A* to B* 1772 /// Y = gep X, <...constant indices...> 1773 /// into a gep of the original struct. This is important for SROA and alias 1774 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 1775 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) { 1776 Value *Operand = BCI->getOperand(0); 1777 PointerType *OpType = cast<PointerType>(Operand->getType()); 1778 unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType()); 1779 APInt Offset(OffsetBits, 0); 1780 if (!isa<BitCastInst>(Operand) && 1781 GEP.accumulateConstantOffset(DL, Offset)) { 1782 1783 // If this GEP instruction doesn't move the pointer, just replace the GEP 1784 // with a bitcast of the real input to the dest type. 1785 if (!Offset) { 1786 // If the bitcast is of an allocation, and the allocation will be 1787 // converted to match the type of the cast, don't touch this. 1788 if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) { 1789 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 1790 if (Instruction *I = visitBitCast(*BCI)) { 1791 if (I != BCI) { 1792 I->takeName(BCI); 1793 BCI->getParent()->getInstList().insert(BCI, I); 1794 ReplaceInstUsesWith(*BCI, I); 1795 } 1796 return &GEP; 1797 } 1798 } 1799 1800 if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 1801 return new AddrSpaceCastInst(Operand, GEP.getType()); 1802 return new BitCastInst(Operand, GEP.getType()); 1803 } 1804 1805 // Otherwise, if the offset is non-zero, we need to find out if there is a 1806 // field at Offset in 'A's type. If so, we can pull the cast through the 1807 // GEP. 1808 SmallVector<Value*, 8> NewIndices; 1809 if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) { 1810 Value *NGEP = 1811 GEP.isInBounds() 1812 ? Builder->CreateInBoundsGEP(nullptr, Operand, NewIndices) 1813 : Builder->CreateGEP(nullptr, Operand, NewIndices); 1814 1815 if (NGEP->getType() == GEP.getType()) 1816 return ReplaceInstUsesWith(GEP, NGEP); 1817 NGEP->takeName(&GEP); 1818 1819 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 1820 return new AddrSpaceCastInst(NGEP, GEP.getType()); 1821 return new BitCastInst(NGEP, GEP.getType()); 1822 } 1823 } 1824 } 1825 1826 return nullptr; 1827 } 1828 1829 static bool 1830 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users, 1831 const TargetLibraryInfo *TLI) { 1832 SmallVector<Instruction*, 4> Worklist; 1833 Worklist.push_back(AI); 1834 1835 do { 1836 Instruction *PI = Worklist.pop_back_val(); 1837 for (User *U : PI->users()) { 1838 Instruction *I = cast<Instruction>(U); 1839 switch (I->getOpcode()) { 1840 default: 1841 // Give up the moment we see something we can't handle. 1842 return false; 1843 1844 case Instruction::BitCast: 1845 case Instruction::GetElementPtr: 1846 Users.emplace_back(I); 1847 Worklist.push_back(I); 1848 continue; 1849 1850 case Instruction::ICmp: { 1851 ICmpInst *ICI = cast<ICmpInst>(I); 1852 // We can fold eq/ne comparisons with null to false/true, respectively. 1853 if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1))) 1854 return false; 1855 Users.emplace_back(I); 1856 continue; 1857 } 1858 1859 case Instruction::Call: 1860 // Ignore no-op and store intrinsics. 1861 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1862 switch (II->getIntrinsicID()) { 1863 default: 1864 return false; 1865 1866 case Intrinsic::memmove: 1867 case Intrinsic::memcpy: 1868 case Intrinsic::memset: { 1869 MemIntrinsic *MI = cast<MemIntrinsic>(II); 1870 if (MI->isVolatile() || MI->getRawDest() != PI) 1871 return false; 1872 } 1873 // fall through 1874 case Intrinsic::dbg_declare: 1875 case Intrinsic::dbg_value: 1876 case Intrinsic::invariant_start: 1877 case Intrinsic::invariant_end: 1878 case Intrinsic::lifetime_start: 1879 case Intrinsic::lifetime_end: 1880 case Intrinsic::objectsize: 1881 Users.emplace_back(I); 1882 continue; 1883 } 1884 } 1885 1886 if (isFreeCall(I, TLI)) { 1887 Users.emplace_back(I); 1888 continue; 1889 } 1890 return false; 1891 1892 case Instruction::Store: { 1893 StoreInst *SI = cast<StoreInst>(I); 1894 if (SI->isVolatile() || SI->getPointerOperand() != PI) 1895 return false; 1896 Users.emplace_back(I); 1897 continue; 1898 } 1899 } 1900 llvm_unreachable("missing a return?"); 1901 } 1902 } while (!Worklist.empty()); 1903 return true; 1904 } 1905 1906 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 1907 // If we have a malloc call which is only used in any amount of comparisons 1908 // to null and free calls, delete the calls and replace the comparisons with 1909 // true or false as appropriate. 1910 SmallVector<WeakVH, 64> Users; 1911 if (isAllocSiteRemovable(&MI, Users, TLI)) { 1912 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 1913 Instruction *I = cast_or_null<Instruction>(&*Users[i]); 1914 if (!I) continue; 1915 1916 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 1917 ReplaceInstUsesWith(*C, 1918 ConstantInt::get(Type::getInt1Ty(C->getContext()), 1919 C->isFalseWhenEqual())); 1920 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) { 1921 ReplaceInstUsesWith(*I, UndefValue::get(I->getType())); 1922 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1923 if (II->getIntrinsicID() == Intrinsic::objectsize) { 1924 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1925 uint64_t DontKnow = CI->isZero() ? -1ULL : 0; 1926 ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow)); 1927 } 1928 } 1929 EraseInstFromFunction(*I); 1930 } 1931 1932 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 1933 // Replace invoke with a NOP intrinsic to maintain the original CFG 1934 Module *M = II->getParent()->getParent()->getParent(); 1935 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 1936 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 1937 None, "", II->getParent()); 1938 } 1939 return EraseInstFromFunction(MI); 1940 } 1941 return nullptr; 1942 } 1943 1944 /// \brief Move the call to free before a NULL test. 1945 /// 1946 /// Check if this free is accessed after its argument has been test 1947 /// against NULL (property 0). 1948 /// If yes, it is legal to move this call in its predecessor block. 1949 /// 1950 /// The move is performed only if the block containing the call to free 1951 /// will be removed, i.e.: 1952 /// 1. it has only one predecessor P, and P has two successors 1953 /// 2. it contains the call and an unconditional branch 1954 /// 3. its successor is the same as its predecessor's successor 1955 /// 1956 /// The profitability is out-of concern here and this function should 1957 /// be called only if the caller knows this transformation would be 1958 /// profitable (e.g., for code size). 1959 static Instruction * 1960 tryToMoveFreeBeforeNullTest(CallInst &FI) { 1961 Value *Op = FI.getArgOperand(0); 1962 BasicBlock *FreeInstrBB = FI.getParent(); 1963 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 1964 1965 // Validate part of constraint #1: Only one predecessor 1966 // FIXME: We can extend the number of predecessor, but in that case, we 1967 // would duplicate the call to free in each predecessor and it may 1968 // not be profitable even for code size. 1969 if (!PredBB) 1970 return nullptr; 1971 1972 // Validate constraint #2: Does this block contains only the call to 1973 // free and an unconditional branch? 1974 // FIXME: We could check if we can speculate everything in the 1975 // predecessor block 1976 if (FreeInstrBB->size() != 2) 1977 return nullptr; 1978 BasicBlock *SuccBB; 1979 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB))) 1980 return nullptr; 1981 1982 // Validate the rest of constraint #1 by matching on the pred branch. 1983 TerminatorInst *TI = PredBB->getTerminator(); 1984 BasicBlock *TrueBB, *FalseBB; 1985 ICmpInst::Predicate Pred; 1986 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB))) 1987 return nullptr; 1988 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 1989 return nullptr; 1990 1991 // Validate constraint #3: Ensure the null case just falls through. 1992 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 1993 return nullptr; 1994 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 1995 "Broken CFG: missing edge from predecessor to successor"); 1996 1997 FI.moveBefore(TI); 1998 return &FI; 1999 } 2000 2001 2002 Instruction *InstCombiner::visitFree(CallInst &FI) { 2003 Value *Op = FI.getArgOperand(0); 2004 2005 // free undef -> unreachable. 2006 if (isa<UndefValue>(Op)) { 2007 // Insert a new store to null because we cannot modify the CFG here. 2008 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()), 2009 UndefValue::get(Type::getInt1PtrTy(FI.getContext()))); 2010 return EraseInstFromFunction(FI); 2011 } 2012 2013 // If we have 'free null' delete the instruction. This can happen in stl code 2014 // when lots of inlining happens. 2015 if (isa<ConstantPointerNull>(Op)) 2016 return EraseInstFromFunction(FI); 2017 2018 // If we optimize for code size, try to move the call to free before the null 2019 // test so that simplify cfg can remove the empty block and dead code 2020 // elimination the branch. I.e., helps to turn something like: 2021 // if (foo) free(foo); 2022 // into 2023 // free(foo); 2024 if (MinimizeSize) 2025 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI)) 2026 return I; 2027 2028 return nullptr; 2029 } 2030 2031 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { 2032 if (RI.getNumOperands() == 0) // ret void 2033 return nullptr; 2034 2035 Value *ResultOp = RI.getOperand(0); 2036 Type *VTy = ResultOp->getType(); 2037 if (!VTy->isIntegerTy()) 2038 return nullptr; 2039 2040 // There might be assume intrinsics dominating this return that completely 2041 // determine the value. If so, constant fold it. 2042 unsigned BitWidth = VTy->getPrimitiveSizeInBits(); 2043 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 2044 computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI); 2045 if ((KnownZero|KnownOne).isAllOnesValue()) 2046 RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne)); 2047 2048 return nullptr; 2049 } 2050 2051 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 2052 // Change br (not X), label True, label False to: br X, label False, True 2053 Value *X = nullptr; 2054 BasicBlock *TrueDest; 2055 BasicBlock *FalseDest; 2056 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && 2057 !isa<Constant>(X)) { 2058 // Swap Destinations and condition... 2059 BI.setCondition(X); 2060 BI.swapSuccessors(); 2061 return &BI; 2062 } 2063 2064 // If the condition is irrelevant, remove the use so that other 2065 // transforms on the condition become more effective. 2066 if (BI.isConditional() && 2067 BI.getSuccessor(0) == BI.getSuccessor(1) && 2068 !isa<UndefValue>(BI.getCondition())) { 2069 BI.setCondition(UndefValue::get(BI.getCondition()->getType())); 2070 return &BI; 2071 } 2072 2073 // Canonicalize fcmp_one -> fcmp_oeq 2074 FCmpInst::Predicate FPred; Value *Y; 2075 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), 2076 TrueDest, FalseDest)) && 2077 BI.getCondition()->hasOneUse()) 2078 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE || 2079 FPred == FCmpInst::FCMP_OGE) { 2080 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition()); 2081 Cond->setPredicate(FCmpInst::getInversePredicate(FPred)); 2082 2083 // Swap Destinations and condition. 2084 BI.swapSuccessors(); 2085 Worklist.Add(Cond); 2086 return &BI; 2087 } 2088 2089 // Canonicalize icmp_ne -> icmp_eq 2090 ICmpInst::Predicate IPred; 2091 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)), 2092 TrueDest, FalseDest)) && 2093 BI.getCondition()->hasOneUse()) 2094 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE || 2095 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE || 2096 IPred == ICmpInst::ICMP_SGE) { 2097 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition()); 2098 Cond->setPredicate(ICmpInst::getInversePredicate(IPred)); 2099 // Swap Destinations and condition. 2100 BI.swapSuccessors(); 2101 Worklist.Add(Cond); 2102 return &BI; 2103 } 2104 2105 return nullptr; 2106 } 2107 2108 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 2109 Value *Cond = SI.getCondition(); 2110 unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth(); 2111 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 2112 computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI); 2113 unsigned LeadingKnownZeros = KnownZero.countLeadingOnes(); 2114 unsigned LeadingKnownOnes = KnownOne.countLeadingOnes(); 2115 2116 // Compute the number of leading bits we can ignore. 2117 for (auto &C : SI.cases()) { 2118 LeadingKnownZeros = std::min( 2119 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2120 LeadingKnownOnes = std::min( 2121 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2122 } 2123 2124 unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes); 2125 2126 // Truncate the condition operand if the new type is equal to or larger than 2127 // the largest legal integer type. We need to be conservative here since 2128 // x86 generates redundant zero-extension instructions if the operand is 2129 // truncated to i8 or i16. 2130 bool TruncCond = false; 2131 if (NewWidth > 0 && BitWidth > NewWidth && 2132 NewWidth >= DL.getLargestLegalIntTypeSize()) { 2133 TruncCond = true; 2134 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2135 Builder->SetInsertPoint(&SI); 2136 Value *NewCond = Builder->CreateTrunc(SI.getCondition(), Ty, "trunc"); 2137 SI.setCondition(NewCond); 2138 2139 for (auto &C : SI.cases()) 2140 static_cast<SwitchInst::CaseIt *>(&C)->setValue(ConstantInt::get( 2141 SI.getContext(), C.getCaseValue()->getValue().trunc(NewWidth))); 2142 } 2143 2144 if (Instruction *I = dyn_cast<Instruction>(Cond)) { 2145 if (I->getOpcode() == Instruction::Add) 2146 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 2147 // change 'switch (X+4) case 1:' into 'switch (X) case -3' 2148 // Skip the first item since that's the default case. 2149 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); 2150 i != e; ++i) { 2151 ConstantInt* CaseVal = i.getCaseValue(); 2152 Constant *LHS = CaseVal; 2153 if (TruncCond) 2154 LHS = LeadingKnownZeros 2155 ? ConstantExpr::getZExt(CaseVal, Cond->getType()) 2156 : ConstantExpr::getSExt(CaseVal, Cond->getType()); 2157 Constant* NewCaseVal = ConstantExpr::getSub(LHS, AddRHS); 2158 assert(isa<ConstantInt>(NewCaseVal) && 2159 "Result of expression should be constant"); 2160 i.setValue(cast<ConstantInt>(NewCaseVal)); 2161 } 2162 SI.setCondition(I->getOperand(0)); 2163 Worklist.Add(I); 2164 return &SI; 2165 } 2166 } 2167 2168 return TruncCond ? &SI : nullptr; 2169 } 2170 2171 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 2172 Value *Agg = EV.getAggregateOperand(); 2173 2174 if (!EV.hasIndices()) 2175 return ReplaceInstUsesWith(EV, Agg); 2176 2177 if (Constant *C = dyn_cast<Constant>(Agg)) { 2178 if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) { 2179 if (EV.getNumIndices() == 0) 2180 return ReplaceInstUsesWith(EV, C2); 2181 // Extract the remaining indices out of the constant indexed by the 2182 // first index 2183 return ExtractValueInst::Create(C2, EV.getIndices().slice(1)); 2184 } 2185 return nullptr; // Can't handle other constants 2186 } 2187 2188 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 2189 // We're extracting from an insertvalue instruction, compare the indices 2190 const unsigned *exti, *exte, *insi, *inse; 2191 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 2192 exte = EV.idx_end(), inse = IV->idx_end(); 2193 exti != exte && insi != inse; 2194 ++exti, ++insi) { 2195 if (*insi != *exti) 2196 // The insert and extract both reference distinctly different elements. 2197 // This means the extract is not influenced by the insert, and we can 2198 // replace the aggregate operand of the extract with the aggregate 2199 // operand of the insert. i.e., replace 2200 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2201 // %E = extractvalue { i32, { i32 } } %I, 0 2202 // with 2203 // %E = extractvalue { i32, { i32 } } %A, 0 2204 return ExtractValueInst::Create(IV->getAggregateOperand(), 2205 EV.getIndices()); 2206 } 2207 if (exti == exte && insi == inse) 2208 // Both iterators are at the end: Index lists are identical. Replace 2209 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2210 // %C = extractvalue { i32, { i32 } } %B, 1, 0 2211 // with "i32 42" 2212 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand()); 2213 if (exti == exte) { 2214 // The extract list is a prefix of the insert list. i.e. replace 2215 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2216 // %E = extractvalue { i32, { i32 } } %I, 1 2217 // with 2218 // %X = extractvalue { i32, { i32 } } %A, 1 2219 // %E = insertvalue { i32 } %X, i32 42, 0 2220 // by switching the order of the insert and extract (though the 2221 // insertvalue should be left in, since it may have other uses). 2222 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(), 2223 EV.getIndices()); 2224 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 2225 makeArrayRef(insi, inse)); 2226 } 2227 if (insi == inse) 2228 // The insert list is a prefix of the extract list 2229 // We can simply remove the common indices from the extract and make it 2230 // operate on the inserted value instead of the insertvalue result. 2231 // i.e., replace 2232 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2233 // %E = extractvalue { i32, { i32 } } %I, 1, 0 2234 // with 2235 // %E extractvalue { i32 } { i32 42 }, 0 2236 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 2237 makeArrayRef(exti, exte)); 2238 } 2239 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { 2240 // We're extracting from an intrinsic, see if we're the only user, which 2241 // allows us to simplify multiple result intrinsics to simpler things that 2242 // just get one value. 2243 if (II->hasOneUse()) { 2244 // Check if we're grabbing the overflow bit or the result of a 'with 2245 // overflow' intrinsic. If it's the latter we can remove the intrinsic 2246 // and replace it with a traditional binary instruction. 2247 switch (II->getIntrinsicID()) { 2248 case Intrinsic::uadd_with_overflow: 2249 case Intrinsic::sadd_with_overflow: 2250 if (*EV.idx_begin() == 0) { // Normal result. 2251 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2252 ReplaceInstUsesWith(*II, UndefValue::get(II->getType())); 2253 EraseInstFromFunction(*II); 2254 return BinaryOperator::CreateAdd(LHS, RHS); 2255 } 2256 2257 // If the normal result of the add is dead, and the RHS is a constant, 2258 // we can transform this into a range comparison. 2259 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 2260 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) 2261 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1))) 2262 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0), 2263 ConstantExpr::getNot(CI)); 2264 break; 2265 case Intrinsic::usub_with_overflow: 2266 case Intrinsic::ssub_with_overflow: 2267 if (*EV.idx_begin() == 0) { // Normal result. 2268 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2269 ReplaceInstUsesWith(*II, UndefValue::get(II->getType())); 2270 EraseInstFromFunction(*II); 2271 return BinaryOperator::CreateSub(LHS, RHS); 2272 } 2273 break; 2274 case Intrinsic::umul_with_overflow: 2275 case Intrinsic::smul_with_overflow: 2276 if (*EV.idx_begin() == 0) { // Normal result. 2277 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2278 ReplaceInstUsesWith(*II, UndefValue::get(II->getType())); 2279 EraseInstFromFunction(*II); 2280 return BinaryOperator::CreateMul(LHS, RHS); 2281 } 2282 break; 2283 default: 2284 break; 2285 } 2286 } 2287 } 2288 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2289 // If the (non-volatile) load only has one use, we can rewrite this to a 2290 // load from a GEP. This reduces the size of the load. 2291 // FIXME: If a load is used only by extractvalue instructions then this 2292 // could be done regardless of having multiple uses. 2293 if (L->isSimple() && L->hasOneUse()) { 2294 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2295 SmallVector<Value*, 4> Indices; 2296 // Prefix an i32 0 since we need the first element. 2297 Indices.push_back(Builder->getInt32(0)); 2298 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2299 I != E; ++I) 2300 Indices.push_back(Builder->getInt32(*I)); 2301 2302 // We need to insert these at the location of the old load, not at that of 2303 // the extractvalue. 2304 Builder->SetInsertPoint(L->getParent(), L); 2305 Value *GEP = Builder->CreateInBoundsGEP(L->getType(), 2306 L->getPointerOperand(), Indices); 2307 // Returning the load directly will cause the main loop to insert it in 2308 // the wrong spot, so use ReplaceInstUsesWith(). 2309 return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP)); 2310 } 2311 // We could simplify extracts from other values. Note that nested extracts may 2312 // already be simplified implicitly by the above: extract (extract (insert) ) 2313 // will be translated into extract ( insert ( extract ) ) first and then just 2314 // the value inserted, if appropriate. Similarly for extracts from single-use 2315 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2316 // and if again single-use then via load (gep (gep)) to load (gep). 2317 // However, double extracts from e.g. function arguments or return values 2318 // aren't handled yet. 2319 return nullptr; 2320 } 2321 2322 /// isCatchAll - Return 'true' if the given typeinfo will match anything. 2323 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 2324 switch (Personality) { 2325 case EHPersonality::GNU_C: 2326 // The GCC C EH personality only exists to support cleanups, so it's not 2327 // clear what the semantics of catch clauses are. 2328 return false; 2329 case EHPersonality::Unknown: 2330 return false; 2331 case EHPersonality::GNU_Ada: 2332 // While __gnat_all_others_value will match any Ada exception, it doesn't 2333 // match foreign exceptions (or didn't, before gcc-4.7). 2334 return false; 2335 case EHPersonality::GNU_CXX: 2336 case EHPersonality::GNU_ObjC: 2337 case EHPersonality::MSVC_X86SEH: 2338 case EHPersonality::MSVC_Win64SEH: 2339 case EHPersonality::MSVC_CXX: 2340 return TypeInfo->isNullValue(); 2341 } 2342 llvm_unreachable("invalid enum"); 2343 } 2344 2345 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2346 return 2347 cast<ArrayType>(LHS->getType())->getNumElements() 2348 < 2349 cast<ArrayType>(RHS->getType())->getNumElements(); 2350 } 2351 2352 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2353 // The logic here should be correct for any real-world personality function. 2354 // However if that turns out not to be true, the offending logic can always 2355 // be conditioned on the personality function, like the catch-all logic is. 2356 EHPersonality Personality = 2357 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 2358 2359 // Simplify the list of clauses, eg by removing repeated catch clauses 2360 // (these are often created by inlining). 2361 bool MakeNewInstruction = false; // If true, recreate using the following: 2362 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2363 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2364 2365 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 2366 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 2367 bool isLastClause = i + 1 == e; 2368 if (LI.isCatch(i)) { 2369 // A catch clause. 2370 Constant *CatchClause = LI.getClause(i); 2371 Constant *TypeInfo = CatchClause->stripPointerCasts(); 2372 2373 // If we already saw this clause, there is no point in having a second 2374 // copy of it. 2375 if (AlreadyCaught.insert(TypeInfo).second) { 2376 // This catch clause was not already seen. 2377 NewClauses.push_back(CatchClause); 2378 } else { 2379 // Repeated catch clause - drop the redundant copy. 2380 MakeNewInstruction = true; 2381 } 2382 2383 // If this is a catch-all then there is no point in keeping any following 2384 // clauses or marking the landingpad as having a cleanup. 2385 if (isCatchAll(Personality, TypeInfo)) { 2386 if (!isLastClause) 2387 MakeNewInstruction = true; 2388 CleanupFlag = false; 2389 break; 2390 } 2391 } else { 2392 // A filter clause. If any of the filter elements were already caught 2393 // then they can be dropped from the filter. It is tempting to try to 2394 // exploit the filter further by saying that any typeinfo that does not 2395 // occur in the filter can't be caught later (and thus can be dropped). 2396 // However this would be wrong, since typeinfos can match without being 2397 // equal (for example if one represents a C++ class, and the other some 2398 // class derived from it). 2399 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 2400 Constant *FilterClause = LI.getClause(i); 2401 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 2402 unsigned NumTypeInfos = FilterType->getNumElements(); 2403 2404 // An empty filter catches everything, so there is no point in keeping any 2405 // following clauses or marking the landingpad as having a cleanup. By 2406 // dealing with this case here the following code is made a bit simpler. 2407 if (!NumTypeInfos) { 2408 NewClauses.push_back(FilterClause); 2409 if (!isLastClause) 2410 MakeNewInstruction = true; 2411 CleanupFlag = false; 2412 break; 2413 } 2414 2415 bool MakeNewFilter = false; // If true, make a new filter. 2416 SmallVector<Constant *, 16> NewFilterElts; // New elements. 2417 if (isa<ConstantAggregateZero>(FilterClause)) { 2418 // Not an empty filter - it contains at least one null typeinfo. 2419 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 2420 Constant *TypeInfo = 2421 Constant::getNullValue(FilterType->getElementType()); 2422 // If this typeinfo is a catch-all then the filter can never match. 2423 if (isCatchAll(Personality, TypeInfo)) { 2424 // Throw the filter away. 2425 MakeNewInstruction = true; 2426 continue; 2427 } 2428 2429 // There is no point in having multiple copies of this typeinfo, so 2430 // discard all but the first copy if there is more than one. 2431 NewFilterElts.push_back(TypeInfo); 2432 if (NumTypeInfos > 1) 2433 MakeNewFilter = true; 2434 } else { 2435 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 2436 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 2437 NewFilterElts.reserve(NumTypeInfos); 2438 2439 // Remove any filter elements that were already caught or that already 2440 // occurred in the filter. While there, see if any of the elements are 2441 // catch-alls. If so, the filter can be discarded. 2442 bool SawCatchAll = false; 2443 for (unsigned j = 0; j != NumTypeInfos; ++j) { 2444 Constant *Elt = Filter->getOperand(j); 2445 Constant *TypeInfo = Elt->stripPointerCasts(); 2446 if (isCatchAll(Personality, TypeInfo)) { 2447 // This element is a catch-all. Bail out, noting this fact. 2448 SawCatchAll = true; 2449 break; 2450 } 2451 if (AlreadyCaught.count(TypeInfo)) 2452 // Already caught by an earlier clause, so having it in the filter 2453 // is pointless. 2454 continue; 2455 // There is no point in having multiple copies of the same typeinfo in 2456 // a filter, so only add it if we didn't already. 2457 if (SeenInFilter.insert(TypeInfo).second) 2458 NewFilterElts.push_back(cast<Constant>(Elt)); 2459 } 2460 // A filter containing a catch-all cannot match anything by definition. 2461 if (SawCatchAll) { 2462 // Throw the filter away. 2463 MakeNewInstruction = true; 2464 continue; 2465 } 2466 2467 // If we dropped something from the filter, make a new one. 2468 if (NewFilterElts.size() < NumTypeInfos) 2469 MakeNewFilter = true; 2470 } 2471 if (MakeNewFilter) { 2472 FilterType = ArrayType::get(FilterType->getElementType(), 2473 NewFilterElts.size()); 2474 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 2475 MakeNewInstruction = true; 2476 } 2477 2478 NewClauses.push_back(FilterClause); 2479 2480 // If the new filter is empty then it will catch everything so there is 2481 // no point in keeping any following clauses or marking the landingpad 2482 // as having a cleanup. The case of the original filter being empty was 2483 // already handled above. 2484 if (MakeNewFilter && !NewFilterElts.size()) { 2485 assert(MakeNewInstruction && "New filter but not a new instruction!"); 2486 CleanupFlag = false; 2487 break; 2488 } 2489 } 2490 } 2491 2492 // If several filters occur in a row then reorder them so that the shortest 2493 // filters come first (those with the smallest number of elements). This is 2494 // advantageous because shorter filters are more likely to match, speeding up 2495 // unwinding, but mostly because it increases the effectiveness of the other 2496 // filter optimizations below. 2497 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 2498 unsigned j; 2499 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 2500 for (j = i; j != e; ++j) 2501 if (!isa<ArrayType>(NewClauses[j]->getType())) 2502 break; 2503 2504 // Check whether the filters are already sorted by length. We need to know 2505 // if sorting them is actually going to do anything so that we only make a 2506 // new landingpad instruction if it does. 2507 for (unsigned k = i; k + 1 < j; ++k) 2508 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 2509 // Not sorted, so sort the filters now. Doing an unstable sort would be 2510 // correct too but reordering filters pointlessly might confuse users. 2511 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 2512 shorter_filter); 2513 MakeNewInstruction = true; 2514 break; 2515 } 2516 2517 // Look for the next batch of filters. 2518 i = j + 1; 2519 } 2520 2521 // If typeinfos matched if and only if equal, then the elements of a filter L 2522 // that occurs later than a filter F could be replaced by the intersection of 2523 // the elements of F and L. In reality two typeinfos can match without being 2524 // equal (for example if one represents a C++ class, and the other some class 2525 // derived from it) so it would be wrong to perform this transform in general. 2526 // However the transform is correct and useful if F is a subset of L. In that 2527 // case L can be replaced by F, and thus removed altogether since repeating a 2528 // filter is pointless. So here we look at all pairs of filters F and L where 2529 // L follows F in the list of clauses, and remove L if every element of F is 2530 // an element of L. This can occur when inlining C++ functions with exception 2531 // specifications. 2532 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 2533 // Examine each filter in turn. 2534 Value *Filter = NewClauses[i]; 2535 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 2536 if (!FTy) 2537 // Not a filter - skip it. 2538 continue; 2539 unsigned FElts = FTy->getNumElements(); 2540 // Examine each filter following this one. Doing this backwards means that 2541 // we don't have to worry about filters disappearing under us when removed. 2542 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 2543 Value *LFilter = NewClauses[j]; 2544 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 2545 if (!LTy) 2546 // Not a filter - skip it. 2547 continue; 2548 // If Filter is a subset of LFilter, i.e. every element of Filter is also 2549 // an element of LFilter, then discard LFilter. 2550 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 2551 // If Filter is empty then it is a subset of LFilter. 2552 if (!FElts) { 2553 // Discard LFilter. 2554 NewClauses.erase(J); 2555 MakeNewInstruction = true; 2556 // Move on to the next filter. 2557 continue; 2558 } 2559 unsigned LElts = LTy->getNumElements(); 2560 // If Filter is longer than LFilter then it cannot be a subset of it. 2561 if (FElts > LElts) 2562 // Move on to the next filter. 2563 continue; 2564 // At this point we know that LFilter has at least one element. 2565 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 2566 // Filter is a subset of LFilter iff Filter contains only zeros (as we 2567 // already know that Filter is not longer than LFilter). 2568 if (isa<ConstantAggregateZero>(Filter)) { 2569 assert(FElts <= LElts && "Should have handled this case earlier!"); 2570 // Discard LFilter. 2571 NewClauses.erase(J); 2572 MakeNewInstruction = true; 2573 } 2574 // Move on to the next filter. 2575 continue; 2576 } 2577 ConstantArray *LArray = cast<ConstantArray>(LFilter); 2578 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 2579 // Since Filter is non-empty and contains only zeros, it is a subset of 2580 // LFilter iff LFilter contains a zero. 2581 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 2582 for (unsigned l = 0; l != LElts; ++l) 2583 if (LArray->getOperand(l)->isNullValue()) { 2584 // LFilter contains a zero - discard it. 2585 NewClauses.erase(J); 2586 MakeNewInstruction = true; 2587 break; 2588 } 2589 // Move on to the next filter. 2590 continue; 2591 } 2592 // At this point we know that both filters are ConstantArrays. Loop over 2593 // operands to see whether every element of Filter is also an element of 2594 // LFilter. Since filters tend to be short this is probably faster than 2595 // using a method that scales nicely. 2596 ConstantArray *FArray = cast<ConstantArray>(Filter); 2597 bool AllFound = true; 2598 for (unsigned f = 0; f != FElts; ++f) { 2599 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 2600 AllFound = false; 2601 for (unsigned l = 0; l != LElts; ++l) { 2602 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 2603 if (LTypeInfo == FTypeInfo) { 2604 AllFound = true; 2605 break; 2606 } 2607 } 2608 if (!AllFound) 2609 break; 2610 } 2611 if (AllFound) { 2612 // Discard LFilter. 2613 NewClauses.erase(J); 2614 MakeNewInstruction = true; 2615 } 2616 // Move on to the next filter. 2617 } 2618 } 2619 2620 // If we changed any of the clauses, replace the old landingpad instruction 2621 // with a new one. 2622 if (MakeNewInstruction) { 2623 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 2624 NewClauses.size()); 2625 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 2626 NLI->addClause(NewClauses[i]); 2627 // A landing pad with no clauses must have the cleanup flag set. It is 2628 // theoretically possible, though highly unlikely, that we eliminated all 2629 // clauses. If so, force the cleanup flag to true. 2630 if (NewClauses.empty()) 2631 CleanupFlag = true; 2632 NLI->setCleanup(CleanupFlag); 2633 return NLI; 2634 } 2635 2636 // Even if none of the clauses changed, we may nonetheless have understood 2637 // that the cleanup flag is pointless. Clear it if so. 2638 if (LI.isCleanup() != CleanupFlag) { 2639 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 2640 LI.setCleanup(CleanupFlag); 2641 return &LI; 2642 } 2643 2644 return nullptr; 2645 } 2646 2647 /// TryToSinkInstruction - Try to move the specified instruction from its 2648 /// current block into the beginning of DestBlock, which can only happen if it's 2649 /// safe to move the instruction past all of the instructions between it and the 2650 /// end of its block. 2651 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 2652 assert(I->hasOneUse() && "Invariants didn't hold!"); 2653 2654 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 2655 if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() || 2656 isa<TerminatorInst>(I)) 2657 return false; 2658 2659 // Do not sink alloca instructions out of the entry block. 2660 if (isa<AllocaInst>(I) && I->getParent() == 2661 &DestBlock->getParent()->getEntryBlock()) 2662 return false; 2663 2664 // We can only sink load instructions if there is nothing between the load and 2665 // the end of block that could change the value. 2666 if (I->mayReadFromMemory()) { 2667 for (BasicBlock::iterator Scan = I, E = I->getParent()->end(); 2668 Scan != E; ++Scan) 2669 if (Scan->mayWriteToMemory()) 2670 return false; 2671 } 2672 2673 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 2674 I->moveBefore(InsertPos); 2675 ++NumSunkInst; 2676 return true; 2677 } 2678 2679 bool InstCombiner::run() { 2680 while (!Worklist.isEmpty()) { 2681 Instruction *I = Worklist.RemoveOne(); 2682 if (I == nullptr) continue; // skip null values. 2683 2684 // Check to see if we can DCE the instruction. 2685 if (isInstructionTriviallyDead(I, TLI)) { 2686 DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); 2687 EraseInstFromFunction(*I); 2688 ++NumDeadInst; 2689 MadeIRChange = true; 2690 continue; 2691 } 2692 2693 // Instruction isn't dead, see if we can constant propagate it. 2694 if (!I->use_empty() && 2695 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 2696 if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) { 2697 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n'); 2698 2699 // Add operands to the worklist. 2700 ReplaceInstUsesWith(*I, C); 2701 ++NumConstProp; 2702 EraseInstFromFunction(*I); 2703 MadeIRChange = true; 2704 continue; 2705 } 2706 } 2707 2708 // See if we can trivially sink this instruction to a successor basic block. 2709 if (I->hasOneUse()) { 2710 BasicBlock *BB = I->getParent(); 2711 Instruction *UserInst = cast<Instruction>(*I->user_begin()); 2712 BasicBlock *UserParent; 2713 2714 // Get the block the use occurs in. 2715 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 2716 UserParent = PN->getIncomingBlock(*I->use_begin()); 2717 else 2718 UserParent = UserInst->getParent(); 2719 2720 if (UserParent != BB) { 2721 bool UserIsSuccessor = false; 2722 // See if the user is one of our successors. 2723 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 2724 if (*SI == UserParent) { 2725 UserIsSuccessor = true; 2726 break; 2727 } 2728 2729 // If the user is one of our immediate successors, and if that successor 2730 // only has us as a predecessors (we'd have to split the critical edge 2731 // otherwise), we can keep going. 2732 if (UserIsSuccessor && UserParent->getSinglePredecessor()) { 2733 // Okay, the CFG is simple enough, try to sink this instruction. 2734 if (TryToSinkInstruction(I, UserParent)) { 2735 MadeIRChange = true; 2736 // We'll add uses of the sunk instruction below, but since sinking 2737 // can expose opportunities for it's *operands* add them to the 2738 // worklist 2739 for (Use &U : I->operands()) 2740 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 2741 Worklist.Add(OpI); 2742 } 2743 } 2744 } 2745 } 2746 2747 // Now that we have an instruction, try combining it to simplify it. 2748 Builder->SetInsertPoint(I->getParent(), I); 2749 Builder->SetCurrentDebugLocation(I->getDebugLoc()); 2750 2751 #ifndef NDEBUG 2752 std::string OrigI; 2753 #endif 2754 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 2755 DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 2756 2757 if (Instruction *Result = visit(*I)) { 2758 ++NumCombined; 2759 // Should we replace the old instruction with a new one? 2760 if (Result != I) { 2761 DEBUG(dbgs() << "IC: Old = " << *I << '\n' 2762 << " New = " << *Result << '\n'); 2763 2764 if (I->getDebugLoc()) 2765 Result->setDebugLoc(I->getDebugLoc()); 2766 // Everything uses the new instruction now. 2767 I->replaceAllUsesWith(Result); 2768 2769 // Move the name to the new instruction first. 2770 Result->takeName(I); 2771 2772 // Push the new instruction and any users onto the worklist. 2773 Worklist.Add(Result); 2774 Worklist.AddUsersToWorkList(*Result); 2775 2776 // Insert the new instruction into the basic block... 2777 BasicBlock *InstParent = I->getParent(); 2778 BasicBlock::iterator InsertPos = I; 2779 2780 // If we replace a PHI with something that isn't a PHI, fix up the 2781 // insertion point. 2782 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 2783 InsertPos = InstParent->getFirstInsertionPt(); 2784 2785 InstParent->getInstList().insert(InsertPos, Result); 2786 2787 EraseInstFromFunction(*I); 2788 } else { 2789 #ifndef NDEBUG 2790 DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 2791 << " New = " << *I << '\n'); 2792 #endif 2793 2794 // If the instruction was modified, it's possible that it is now dead. 2795 // if so, remove it. 2796 if (isInstructionTriviallyDead(I, TLI)) { 2797 EraseInstFromFunction(*I); 2798 } else { 2799 Worklist.Add(I); 2800 Worklist.AddUsersToWorkList(*I); 2801 } 2802 } 2803 MadeIRChange = true; 2804 } 2805 } 2806 2807 Worklist.Zap(); 2808 return MadeIRChange; 2809 } 2810 2811 /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding 2812 /// all reachable code to the worklist. 2813 /// 2814 /// This has a couple of tricks to make the code faster and more powerful. In 2815 /// particular, we constant fold and DCE instructions as we go, to avoid adding 2816 /// them to the worklist (this significantly speeds up instcombine on code where 2817 /// many instructions are dead or constant). Additionally, if we find a branch 2818 /// whose condition is a known constant, we only visit the reachable successors. 2819 /// 2820 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, 2821 SmallPtrSetImpl<BasicBlock *> &Visited, 2822 InstCombineWorklist &ICWorklist, 2823 const TargetLibraryInfo *TLI) { 2824 bool MadeIRChange = false; 2825 SmallVector<BasicBlock*, 256> Worklist; 2826 Worklist.push_back(BB); 2827 2828 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 2829 DenseMap<ConstantExpr*, Constant*> FoldedConstants; 2830 2831 do { 2832 BB = Worklist.pop_back_val(); 2833 2834 // We have now visited this block! If we've already been here, ignore it. 2835 if (!Visited.insert(BB).second) 2836 continue; 2837 2838 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 2839 Instruction *Inst = BBI++; 2840 2841 // DCE instruction if trivially dead. 2842 if (isInstructionTriviallyDead(Inst, TLI)) { 2843 ++NumDeadInst; 2844 DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 2845 Inst->eraseFromParent(); 2846 continue; 2847 } 2848 2849 // ConstantProp instruction if trivially constant. 2850 if (!Inst->use_empty() && 2851 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 2852 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 2853 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " 2854 << *Inst << '\n'); 2855 Inst->replaceAllUsesWith(C); 2856 ++NumConstProp; 2857 Inst->eraseFromParent(); 2858 continue; 2859 } 2860 2861 // See if we can constant fold its operands. 2862 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); i != e; 2863 ++i) { 2864 ConstantExpr *CE = dyn_cast<ConstantExpr>(i); 2865 if (CE == nullptr) 2866 continue; 2867 2868 Constant *&FoldRes = FoldedConstants[CE]; 2869 if (!FoldRes) 2870 FoldRes = ConstantFoldConstantExpression(CE, DL, TLI); 2871 if (!FoldRes) 2872 FoldRes = CE; 2873 2874 if (FoldRes != CE) { 2875 *i = FoldRes; 2876 MadeIRChange = true; 2877 } 2878 } 2879 2880 InstrsForInstCombineWorklist.push_back(Inst); 2881 } 2882 2883 // Recursively visit successors. If this is a branch or switch on a 2884 // constant, only visit the reachable successor. 2885 TerminatorInst *TI = BB->getTerminator(); 2886 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2887 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 2888 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 2889 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 2890 Worklist.push_back(ReachableBB); 2891 continue; 2892 } 2893 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2894 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 2895 // See if this is an explicit destination. 2896 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2897 i != e; ++i) 2898 if (i.getCaseValue() == Cond) { 2899 BasicBlock *ReachableBB = i.getCaseSuccessor(); 2900 Worklist.push_back(ReachableBB); 2901 continue; 2902 } 2903 2904 // Otherwise it is the default destination. 2905 Worklist.push_back(SI->getDefaultDest()); 2906 continue; 2907 } 2908 } 2909 2910 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 2911 Worklist.push_back(TI->getSuccessor(i)); 2912 } while (!Worklist.empty()); 2913 2914 // Once we've found all of the instructions to add to instcombine's worklist, 2915 // add them in reverse order. This way instcombine will visit from the top 2916 // of the function down. This jives well with the way that it adds all uses 2917 // of instructions to the worklist after doing a transformation, thus avoiding 2918 // some N^2 behavior in pathological cases. 2919 ICWorklist.AddInitialGroup(&InstrsForInstCombineWorklist[0], 2920 InstrsForInstCombineWorklist.size()); 2921 2922 return MadeIRChange; 2923 } 2924 2925 /// \brief Populate the IC worklist from a function, and prune any dead basic 2926 /// blocks discovered in the process. 2927 /// 2928 /// This also does basic constant propagation and other forward fixing to make 2929 /// the combiner itself run much faster. 2930 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 2931 TargetLibraryInfo *TLI, 2932 InstCombineWorklist &ICWorklist) { 2933 bool MadeIRChange = false; 2934 2935 // Do a depth-first traversal of the function, populate the worklist with 2936 // the reachable instructions. Ignore blocks that are not reachable. Keep 2937 // track of which blocks we visit. 2938 SmallPtrSet<BasicBlock *, 64> Visited; 2939 MadeIRChange |= 2940 AddReachableCodeToWorklist(F.begin(), DL, Visited, ICWorklist, TLI); 2941 2942 // Do a quick scan over the function. If we find any blocks that are 2943 // unreachable, remove any instructions inside of them. This prevents 2944 // the instcombine code from having to deal with some bad special cases. 2945 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 2946 if (Visited.count(BB)) 2947 continue; 2948 2949 // Delete the instructions backwards, as it has a reduced likelihood of 2950 // having to update as many def-use and use-def chains. 2951 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2952 while (EndInst != BB->begin()) { 2953 // Delete the next to last instruction. 2954 BasicBlock::iterator I = EndInst; 2955 Instruction *Inst = --I; 2956 if (!Inst->use_empty()) 2957 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2958 if (isa<LandingPadInst>(Inst)) { 2959 EndInst = Inst; 2960 continue; 2961 } 2962 if (!isa<DbgInfoIntrinsic>(Inst)) { 2963 ++NumDeadInst; 2964 MadeIRChange = true; 2965 } 2966 Inst->eraseFromParent(); 2967 } 2968 } 2969 2970 return MadeIRChange; 2971 } 2972 2973 static bool 2974 combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist, 2975 AliasAnalysis *AA, AssumptionCache &AC, 2976 TargetLibraryInfo &TLI, DominatorTree &DT, 2977 LoopInfo *LI = nullptr) { 2978 // Minimizing size? 2979 bool MinimizeSize = F.hasFnAttribute(Attribute::MinSize); 2980 auto &DL = F.getParent()->getDataLayout(); 2981 2982 /// Builder - This is an IRBuilder that automatically inserts new 2983 /// instructions into the worklist when they are created. 2984 IRBuilder<true, TargetFolder, InstCombineIRInserter> Builder( 2985 F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, &AC)); 2986 2987 // Lower dbg.declare intrinsics otherwise their value may be clobbered 2988 // by instcombiner. 2989 bool DbgDeclaresChanged = LowerDbgDeclare(F); 2990 2991 // Iterate while there is work to do. 2992 int Iteration = 0; 2993 for (;;) { 2994 ++Iteration; 2995 DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 2996 << F.getName() << "\n"); 2997 2998 bool Changed = false; 2999 if (prepareICWorklistFromFunction(F, DL, &TLI, Worklist)) 3000 Changed = true; 3001 3002 InstCombiner IC(Worklist, &Builder, MinimizeSize, 3003 AA, &AC, &TLI, &DT, DL, LI); 3004 if (IC.run()) 3005 Changed = true; 3006 3007 if (!Changed) 3008 break; 3009 } 3010 3011 return DbgDeclaresChanged || Iteration > 1; 3012 } 3013 3014 PreservedAnalyses InstCombinePass::run(Function &F, 3015 AnalysisManager<Function> *AM) { 3016 auto &AC = AM->getResult<AssumptionAnalysis>(F); 3017 auto &DT = AM->getResult<DominatorTreeAnalysis>(F); 3018 auto &TLI = AM->getResult<TargetLibraryAnalysis>(F); 3019 3020 auto *LI = AM->getCachedResult<LoopAnalysis>(F); 3021 3022 // FIXME: The AliasAnalysis is not yet supported in the new pass manager 3023 if (!combineInstructionsOverFunction(F, Worklist, nullptr, AC, TLI, DT, LI)) 3024 // No changes, all analyses are preserved. 3025 return PreservedAnalyses::all(); 3026 3027 // Mark all the analyses that instcombine updates as preserved. 3028 // FIXME: Need a way to preserve CFG analyses here! 3029 PreservedAnalyses PA; 3030 PA.preserve<DominatorTreeAnalysis>(); 3031 return PA; 3032 } 3033 3034 namespace { 3035 /// \brief The legacy pass manager's instcombine pass. 3036 /// 3037 /// This is a basic whole-function wrapper around the instcombine utility. It 3038 /// will try to combine all instructions in the function. 3039 class InstructionCombiningPass : public FunctionPass { 3040 InstCombineWorklist Worklist; 3041 3042 public: 3043 static char ID; // Pass identification, replacement for typeid 3044 3045 InstructionCombiningPass() : FunctionPass(ID) { 3046 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 3047 } 3048 3049 void getAnalysisUsage(AnalysisUsage &AU) const override; 3050 bool runOnFunction(Function &F) override; 3051 }; 3052 } 3053 3054 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 3055 AU.setPreservesCFG(); 3056 AU.addRequired<AliasAnalysis>(); 3057 AU.addRequired<AssumptionCacheTracker>(); 3058 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3059 AU.addRequired<DominatorTreeWrapperPass>(); 3060 AU.addPreserved<DominatorTreeWrapperPass>(); 3061 } 3062 3063 bool InstructionCombiningPass::runOnFunction(Function &F) { 3064 if (skipOptnoneFunction(F)) 3065 return false; 3066 3067 // Required analyses. 3068 auto AA = &getAnalysis<AliasAnalysis>(); 3069 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3070 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 3071 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3072 3073 // Optional analyses. 3074 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3075 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 3076 3077 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, LI); 3078 } 3079 3080 char InstructionCombiningPass::ID = 0; 3081 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 3082 "Combine redundant instructions", false, false) 3083 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3084 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3085 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3086 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 3087 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 3088 "Combine redundant instructions", false, false) 3089 3090 // Initialization Routines 3091 void llvm::initializeInstCombine(PassRegistry &Registry) { 3092 initializeInstructionCombiningPassPass(Registry); 3093 } 3094 3095 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 3096 initializeInstructionCombiningPassPass(*unwrap(R)); 3097 } 3098 3099 FunctionPass *llvm::createInstructionCombiningPass() { 3100 return new InstructionCombiningPass(); 3101 } 3102