1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/TinyPtrVector.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/CFG.h" 50 #include "llvm/Analysis/ConstantFolding.h" 51 #include "llvm/Analysis/EHPersonalities.h" 52 #include "llvm/Analysis/GlobalsModRef.h" 53 #include "llvm/Analysis/InstructionSimplify.h" 54 #include "llvm/Analysis/LoopInfo.h" 55 #include "llvm/Analysis/MemoryBuiltins.h" 56 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 57 #include "llvm/Analysis/TargetFolder.h" 58 #include "llvm/Analysis/TargetLibraryInfo.h" 59 #include "llvm/Analysis/ValueTracking.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/Constants.h" 64 #include "llvm/IR/DIBuilder.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DerivedTypes.h" 67 #include "llvm/IR/Dominators.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GetElementPtrTypeIterator.h" 70 #include "llvm/IR/IRBuilder.h" 71 #include "llvm/IR/InstrTypes.h" 72 #include "llvm/IR/Instruction.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/Intrinsics.h" 76 #include "llvm/IR/LegacyPassManager.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Operator.h" 79 #include "llvm/IR/PassManager.h" 80 #include "llvm/IR/PatternMatch.h" 81 #include "llvm/IR/Type.h" 82 #include "llvm/IR/Use.h" 83 #include "llvm/IR/User.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/IR/ValueHandle.h" 86 #include "llvm/Pass.h" 87 #include "llvm/Support/CBindingWrapping.h" 88 #include "llvm/Support/Casting.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Compiler.h" 91 #include "llvm/Support/Debug.h" 92 #include "llvm/Support/DebugCounter.h" 93 #include "llvm/Support/ErrorHandling.h" 94 #include "llvm/Support/KnownBits.h" 95 #include "llvm/Support/raw_ostream.h" 96 #include "llvm/Transforms/InstCombine/InstCombine.h" 97 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 98 #include "llvm/Transforms/Utils/Local.h" 99 #include <algorithm> 100 #include <cassert> 101 #include <cstdint> 102 #include <memory> 103 #include <string> 104 #include <utility> 105 106 using namespace llvm; 107 using namespace llvm::PatternMatch; 108 109 #define DEBUG_TYPE "instcombine" 110 111 STATISTIC(NumCombined , "Number of insts combined"); 112 STATISTIC(NumConstProp, "Number of constant folds"); 113 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 114 STATISTIC(NumSunkInst , "Number of instructions sunk"); 115 STATISTIC(NumExpand, "Number of expansions"); 116 STATISTIC(NumFactor , "Number of factorizations"); 117 STATISTIC(NumReassoc , "Number of reassociations"); 118 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 119 "Controls which instructions are visited"); 120 121 static cl::opt<bool> 122 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 123 cl::init(true)); 124 125 static cl::opt<bool> 126 EnableExpensiveCombines("expensive-combines", 127 cl::desc("Enable expensive instruction combines")); 128 129 static cl::opt<unsigned> 130 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 131 cl::desc("Maximum array size considered when doing a combine")); 132 133 // FIXME: Remove this flag when it is no longer necessary to convert 134 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 135 // increases variable availability at the cost of accuracy. Variables that 136 // cannot be promoted by mem2reg or SROA will be described as living in memory 137 // for their entire lifetime. However, passes like DSE and instcombine can 138 // delete stores to the alloca, leading to misleading and inaccurate debug 139 // information. This flag can be removed when those passes are fixed. 140 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 141 cl::Hidden, cl::init(true)); 142 143 Value *InstCombiner::EmitGEPOffset(User *GEP) { 144 return llvm::EmitGEPOffset(&Builder, DL, GEP); 145 } 146 147 /// Return true if it is desirable to convert an integer computation from a 148 /// given bit width to a new bit width. 149 /// We don't want to convert from a legal to an illegal type or from a smaller 150 /// to a larger illegal type. A width of '1' is always treated as a legal type 151 /// because i1 is a fundamental type in IR, and there are many specialized 152 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as 153 /// legal to convert to, in order to open up more combining opportunities. 154 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common 155 /// from frontend languages. 156 bool InstCombiner::shouldChangeType(unsigned FromWidth, 157 unsigned ToWidth) const { 158 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 159 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 160 161 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only 162 // shrink types, to prevent infinite loops. 163 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32)) 164 return true; 165 166 // If this is a legal integer from type, and the result would be an illegal 167 // type, don't do the transformation. 168 if (FromLegal && !ToLegal) 169 return false; 170 171 // Otherwise, if both are illegal, do not increase the size of the result. We 172 // do allow things like i160 -> i64, but not i64 -> i160. 173 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 174 return false; 175 176 return true; 177 } 178 179 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 180 /// We don't want to convert from a legal to an illegal type or from a smaller 181 /// to a larger illegal type. i1 is always treated as a legal type because it is 182 /// a fundamental type in IR, and there are many specialized optimizations for 183 /// i1 types. 184 bool InstCombiner::shouldChangeType(Type *From, Type *To) const { 185 // TODO: This could be extended to allow vectors. Datalayout changes might be 186 // needed to properly support that. 187 if (!From->isIntegerTy() || !To->isIntegerTy()) 188 return false; 189 190 unsigned FromWidth = From->getPrimitiveSizeInBits(); 191 unsigned ToWidth = To->getPrimitiveSizeInBits(); 192 return shouldChangeType(FromWidth, ToWidth); 193 } 194 195 // Return true, if No Signed Wrap should be maintained for I. 196 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 197 // where both B and C should be ConstantInts, results in a constant that does 198 // not overflow. This function only handles the Add and Sub opcodes. For 199 // all other opcodes, the function conservatively returns false. 200 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 201 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 202 if (!OBO || !OBO->hasNoSignedWrap()) 203 return false; 204 205 // We reason about Add and Sub Only. 206 Instruction::BinaryOps Opcode = I.getOpcode(); 207 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 208 return false; 209 210 const APInt *BVal, *CVal; 211 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 212 return false; 213 214 bool Overflow = false; 215 if (Opcode == Instruction::Add) 216 (void)BVal->sadd_ov(*CVal, Overflow); 217 else 218 (void)BVal->ssub_ov(*CVal, Overflow); 219 220 return !Overflow; 221 } 222 223 /// Conservatively clears subclassOptionalData after a reassociation or 224 /// commutation. We preserve fast-math flags when applicable as they can be 225 /// preserved. 226 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 227 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 228 if (!FPMO) { 229 I.clearSubclassOptionalData(); 230 return; 231 } 232 233 FastMathFlags FMF = I.getFastMathFlags(); 234 I.clearSubclassOptionalData(); 235 I.setFastMathFlags(FMF); 236 } 237 238 /// Combine constant operands of associative operations either before or after a 239 /// cast to eliminate one of the associative operations: 240 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 241 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 242 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) { 243 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 244 if (!Cast || !Cast->hasOneUse()) 245 return false; 246 247 // TODO: Enhance logic for other casts and remove this check. 248 auto CastOpcode = Cast->getOpcode(); 249 if (CastOpcode != Instruction::ZExt) 250 return false; 251 252 // TODO: Enhance logic for other BinOps and remove this check. 253 if (!BinOp1->isBitwiseLogicOp()) 254 return false; 255 256 auto AssocOpcode = BinOp1->getOpcode(); 257 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 258 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 259 return false; 260 261 Constant *C1, *C2; 262 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 263 !match(BinOp2->getOperand(1), m_Constant(C2))) 264 return false; 265 266 // TODO: This assumes a zext cast. 267 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 268 // to the destination type might lose bits. 269 270 // Fold the constants together in the destination type: 271 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 272 Type *DestTy = C1->getType(); 273 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 274 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 275 Cast->setOperand(0, BinOp2->getOperand(0)); 276 BinOp1->setOperand(1, FoldedC); 277 return true; 278 } 279 280 /// This performs a few simplifications for operators that are associative or 281 /// commutative: 282 /// 283 /// Commutative operators: 284 /// 285 /// 1. Order operands such that they are listed from right (least complex) to 286 /// left (most complex). This puts constants before unary operators before 287 /// binary operators. 288 /// 289 /// Associative operators: 290 /// 291 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 292 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 293 /// 294 /// Associative and commutative operators: 295 /// 296 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 297 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 298 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 299 /// if C1 and C2 are constants. 300 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 301 Instruction::BinaryOps Opcode = I.getOpcode(); 302 bool Changed = false; 303 304 do { 305 // Order operands such that they are listed from right (least complex) to 306 // left (most complex). This puts constants before unary operators before 307 // binary operators. 308 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 309 getComplexity(I.getOperand(1))) 310 Changed = !I.swapOperands(); 311 312 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 313 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 314 315 if (I.isAssociative()) { 316 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 317 if (Op0 && Op0->getOpcode() == Opcode) { 318 Value *A = Op0->getOperand(0); 319 Value *B = Op0->getOperand(1); 320 Value *C = I.getOperand(1); 321 322 // Does "B op C" simplify? 323 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 324 // It simplifies to V. Form "A op V". 325 I.setOperand(0, A); 326 I.setOperand(1, V); 327 // Conservatively clear the optional flags, since they may not be 328 // preserved by the reassociation. 329 if (MaintainNoSignedWrap(I, B, C) && 330 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { 331 // Note: this is only valid because SimplifyBinOp doesn't look at 332 // the operands to Op0. 333 I.clearSubclassOptionalData(); 334 I.setHasNoSignedWrap(true); 335 } else { 336 ClearSubclassDataAfterReassociation(I); 337 } 338 339 Changed = true; 340 ++NumReassoc; 341 continue; 342 } 343 } 344 345 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 346 if (Op1 && Op1->getOpcode() == Opcode) { 347 Value *A = I.getOperand(0); 348 Value *B = Op1->getOperand(0); 349 Value *C = Op1->getOperand(1); 350 351 // Does "A op B" simplify? 352 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 353 // It simplifies to V. Form "V op C". 354 I.setOperand(0, V); 355 I.setOperand(1, C); 356 // Conservatively clear the optional flags, since they may not be 357 // preserved by the reassociation. 358 ClearSubclassDataAfterReassociation(I); 359 Changed = true; 360 ++NumReassoc; 361 continue; 362 } 363 } 364 } 365 366 if (I.isAssociative() && I.isCommutative()) { 367 if (simplifyAssocCastAssoc(&I)) { 368 Changed = true; 369 ++NumReassoc; 370 continue; 371 } 372 373 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 374 if (Op0 && Op0->getOpcode() == Opcode) { 375 Value *A = Op0->getOperand(0); 376 Value *B = Op0->getOperand(1); 377 Value *C = I.getOperand(1); 378 379 // Does "C op A" simplify? 380 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 381 // It simplifies to V. Form "V op B". 382 I.setOperand(0, V); 383 I.setOperand(1, B); 384 // Conservatively clear the optional flags, since they may not be 385 // preserved by the reassociation. 386 ClearSubclassDataAfterReassociation(I); 387 Changed = true; 388 ++NumReassoc; 389 continue; 390 } 391 } 392 393 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 394 if (Op1 && Op1->getOpcode() == Opcode) { 395 Value *A = I.getOperand(0); 396 Value *B = Op1->getOperand(0); 397 Value *C = Op1->getOperand(1); 398 399 // Does "C op A" simplify? 400 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 401 // It simplifies to V. Form "B op V". 402 I.setOperand(0, B); 403 I.setOperand(1, V); 404 // Conservatively clear the optional flags, since they may not be 405 // preserved by the reassociation. 406 ClearSubclassDataAfterReassociation(I); 407 Changed = true; 408 ++NumReassoc; 409 continue; 410 } 411 } 412 413 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 414 // if C1 and C2 are constants. 415 Value *A, *B; 416 Constant *C1, *C2; 417 if (Op0 && Op1 && 418 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 419 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 420 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 421 BinaryOperator *NewBO = BinaryOperator::Create(Opcode, A, B); 422 if (isa<FPMathOperator>(NewBO)) { 423 FastMathFlags Flags = I.getFastMathFlags(); 424 Flags &= Op0->getFastMathFlags(); 425 Flags &= Op1->getFastMathFlags(); 426 NewBO->setFastMathFlags(Flags); 427 } 428 InsertNewInstWith(NewBO, I); 429 NewBO->takeName(Op1); 430 I.setOperand(0, NewBO); 431 I.setOperand(1, ConstantExpr::get(Opcode, C1, C2)); 432 // Conservatively clear the optional flags, since they may not be 433 // preserved by the reassociation. 434 ClearSubclassDataAfterReassociation(I); 435 436 Changed = true; 437 continue; 438 } 439 } 440 441 // No further simplifications. 442 return Changed; 443 } while (true); 444 } 445 446 /// Return whether "X LOp (Y ROp Z)" is always equal to 447 /// "(X LOp Y) ROp (X LOp Z)". 448 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 449 Instruction::BinaryOps ROp) { 450 // X & (Y | Z) <--> (X & Y) | (X & Z) 451 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 452 if (LOp == Instruction::And) 453 return ROp == Instruction::Or || ROp == Instruction::Xor; 454 455 // X | (Y & Z) <--> (X | Y) & (X | Z) 456 if (LOp == Instruction::Or) 457 return ROp == Instruction::And; 458 459 // X * (Y + Z) <--> (X * Y) + (X * Z) 460 // X * (Y - Z) <--> (X * Y) - (X * Z) 461 if (LOp == Instruction::Mul) 462 return ROp == Instruction::Add || ROp == Instruction::Sub; 463 464 return false; 465 } 466 467 /// Return whether "(X LOp Y) ROp Z" is always equal to 468 /// "(X ROp Z) LOp (Y ROp Z)". 469 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 470 Instruction::BinaryOps ROp) { 471 if (Instruction::isCommutative(ROp)) 472 return leftDistributesOverRight(ROp, LOp); 473 474 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 475 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 476 477 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 478 // but this requires knowing that the addition does not overflow and other 479 // such subtleties. 480 } 481 482 /// This function returns identity value for given opcode, which can be used to 483 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 484 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 485 if (isa<Constant>(V)) 486 return nullptr; 487 488 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 489 } 490 491 /// This function predicates factorization using distributive laws. By default, 492 /// it just returns the 'Op' inputs. But for special-cases like 493 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 494 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 495 /// allow more factorization opportunities. 496 static Instruction::BinaryOps 497 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 498 Value *&LHS, Value *&RHS) { 499 assert(Op && "Expected a binary operator"); 500 LHS = Op->getOperand(0); 501 RHS = Op->getOperand(1); 502 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 503 Constant *C; 504 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 505 // X << C --> X * (1 << C) 506 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 507 return Instruction::Mul; 508 } 509 // TODO: We can add other conversions e.g. shr => div etc. 510 } 511 return Op->getOpcode(); 512 } 513 514 /// This tries to simplify binary operations by factorizing out common terms 515 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 516 Value *InstCombiner::tryFactorization(BinaryOperator &I, 517 Instruction::BinaryOps InnerOpcode, 518 Value *A, Value *B, Value *C, Value *D) { 519 assert(A && B && C && D && "All values must be provided"); 520 521 Value *V = nullptr; 522 Value *SimplifiedInst = nullptr; 523 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 524 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 525 526 // Does "X op' Y" always equal "Y op' X"? 527 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 528 529 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 530 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 531 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 532 // commutative case, "(A op' B) op (C op' A)"? 533 if (A == C || (InnerCommutative && A == D)) { 534 if (A != C) 535 std::swap(C, D); 536 // Consider forming "A op' (B op D)". 537 // If "B op D" simplifies then it can be formed with no cost. 538 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 539 // If "B op D" doesn't simplify then only go on if both of the existing 540 // operations "A op' B" and "C op' D" will be zapped as no longer used. 541 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 542 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 543 if (V) { 544 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 545 } 546 } 547 548 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 549 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 550 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 551 // commutative case, "(A op' B) op (B op' D)"? 552 if (B == D || (InnerCommutative && B == C)) { 553 if (B != D) 554 std::swap(C, D); 555 // Consider forming "(A op C) op' B". 556 // If "A op C" simplifies then it can be formed with no cost. 557 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 558 559 // If "A op C" doesn't simplify then only go on if both of the existing 560 // operations "A op' B" and "C op' D" will be zapped as no longer used. 561 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 562 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 563 if (V) { 564 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 565 } 566 } 567 568 if (SimplifiedInst) { 569 ++NumFactor; 570 SimplifiedInst->takeName(&I); 571 572 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag. 573 // TODO: Check for NUW. 574 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 575 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 576 bool HasNSW = false; 577 if (isa<OverflowingBinaryOperator>(&I)) 578 HasNSW = I.hasNoSignedWrap(); 579 580 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) 581 HasNSW &= LOBO->hasNoSignedWrap(); 582 583 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) 584 HasNSW &= ROBO->hasNoSignedWrap(); 585 586 // We can propagate 'nsw' if we know that 587 // %Y = mul nsw i16 %X, C 588 // %Z = add nsw i16 %Y, %X 589 // => 590 // %Z = mul nsw i16 %X, C+1 591 // 592 // iff C+1 isn't INT_MIN 593 const APInt *CInt; 594 if (TopLevelOpcode == Instruction::Add && 595 InnerOpcode == Instruction::Mul) 596 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) 597 BO->setHasNoSignedWrap(HasNSW); 598 } 599 } 600 } 601 return SimplifiedInst; 602 } 603 604 /// This tries to simplify binary operations which some other binary operation 605 /// distributes over either by factorizing out common terms 606 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 607 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 608 /// Returns the simplified value, or null if it didn't simplify. 609 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 610 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 611 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 612 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 613 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 614 615 { 616 // Factorization. 617 Value *A, *B, *C, *D; 618 Instruction::BinaryOps LHSOpcode, RHSOpcode; 619 if (Op0) 620 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 621 if (Op1) 622 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 623 624 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 625 // a common term. 626 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 627 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 628 return V; 629 630 // The instruction has the form "(A op' B) op (C)". Try to factorize common 631 // term. 632 if (Op0) 633 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 634 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 635 return V; 636 637 // The instruction has the form "(B) op (C op' D)". Try to factorize common 638 // term. 639 if (Op1) 640 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 641 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 642 return V; 643 } 644 645 // Expansion. 646 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 647 // The instruction has the form "(A op' B) op C". See if expanding it out 648 // to "(A op C) op' (B op C)" results in simplifications. 649 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 650 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 651 652 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 653 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I)); 654 655 // Do "A op C" and "B op C" both simplify? 656 if (L && R) { 657 // They do! Return "L op' R". 658 ++NumExpand; 659 C = Builder.CreateBinOp(InnerOpcode, L, R); 660 C->takeName(&I); 661 return C; 662 } 663 664 // Does "A op C" simplify to the identity value for the inner opcode? 665 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 666 // They do! Return "B op C". 667 ++NumExpand; 668 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 669 C->takeName(&I); 670 return C; 671 } 672 673 // Does "B op C" simplify to the identity value for the inner opcode? 674 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 675 // They do! Return "A op C". 676 ++NumExpand; 677 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 678 C->takeName(&I); 679 return C; 680 } 681 } 682 683 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 684 // The instruction has the form "A op (B op' C)". See if expanding it out 685 // to "(A op B) op' (A op C)" results in simplifications. 686 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 687 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 688 689 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I)); 690 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 691 692 // Do "A op B" and "A op C" both simplify? 693 if (L && R) { 694 // They do! Return "L op' R". 695 ++NumExpand; 696 A = Builder.CreateBinOp(InnerOpcode, L, R); 697 A->takeName(&I); 698 return A; 699 } 700 701 // Does "A op B" simplify to the identity value for the inner opcode? 702 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 703 // They do! Return "A op C". 704 ++NumExpand; 705 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 706 A->takeName(&I); 707 return A; 708 } 709 710 // Does "A op C" simplify to the identity value for the inner opcode? 711 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 712 // They do! Return "A op B". 713 ++NumExpand; 714 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 715 A->takeName(&I); 716 return A; 717 } 718 } 719 720 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 721 } 722 723 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 724 Value *LHS, Value *RHS) { 725 Instruction::BinaryOps Opcode = I.getOpcode(); 726 // (op (select (a, b, c)), (select (a, d, e))) -> (select (a, (op b, d), (op 727 // c, e))) 728 Value *A, *B, *C, *D, *E; 729 Value *SI = nullptr; 730 if (match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))) && 731 match(RHS, m_Select(m_Specific(A), m_Value(D), m_Value(E)))) { 732 bool SelectsHaveOneUse = LHS->hasOneUse() && RHS->hasOneUse(); 733 BuilderTy::FastMathFlagGuard Guard(Builder); 734 if (isa<FPMathOperator>(&I)) 735 Builder.setFastMathFlags(I.getFastMathFlags()); 736 737 Value *V1 = SimplifyBinOp(Opcode, C, E, SQ.getWithInstruction(&I)); 738 Value *V2 = SimplifyBinOp(Opcode, B, D, SQ.getWithInstruction(&I)); 739 if (V1 && V2) 740 SI = Builder.CreateSelect(A, V2, V1); 741 else if (V2 && SelectsHaveOneUse) 742 SI = Builder.CreateSelect(A, V2, Builder.CreateBinOp(Opcode, C, E)); 743 else if (V1 && SelectsHaveOneUse) 744 SI = Builder.CreateSelect(A, Builder.CreateBinOp(Opcode, B, D), V1); 745 746 if (SI) 747 SI->takeName(&I); 748 } 749 750 return SI; 751 } 752 753 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 754 /// constant zero (which is the 'negate' form). 755 Value *InstCombiner::dyn_castNegVal(Value *V) const { 756 Value *NegV; 757 if (match(V, m_Neg(m_Value(NegV)))) 758 return NegV; 759 760 // Constants can be considered to be negated values if they can be folded. 761 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 762 return ConstantExpr::getNeg(C); 763 764 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 765 if (C->getType()->getElementType()->isIntegerTy()) 766 return ConstantExpr::getNeg(C); 767 768 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 769 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 770 Constant *Elt = CV->getAggregateElement(i); 771 if (!Elt) 772 return nullptr; 773 774 if (isa<UndefValue>(Elt)) 775 continue; 776 777 if (!isa<ConstantInt>(Elt)) 778 return nullptr; 779 } 780 return ConstantExpr::getNeg(CV); 781 } 782 783 return nullptr; 784 } 785 786 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 787 InstCombiner::BuilderTy &Builder) { 788 if (auto *Cast = dyn_cast<CastInst>(&I)) 789 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 790 791 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 792 793 // Figure out if the constant is the left or the right argument. 794 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 795 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 796 797 if (auto *SOC = dyn_cast<Constant>(SO)) { 798 if (ConstIsRHS) 799 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 800 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 801 } 802 803 Value *Op0 = SO, *Op1 = ConstOperand; 804 if (!ConstIsRHS) 805 std::swap(Op0, Op1); 806 807 auto *BO = cast<BinaryOperator>(&I); 808 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 809 SO->getName() + ".op"); 810 auto *FPInst = dyn_cast<Instruction>(RI); 811 if (FPInst && isa<FPMathOperator>(FPInst)) 812 FPInst->copyFastMathFlags(BO); 813 return RI; 814 } 815 816 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 817 // Don't modify shared select instructions. 818 if (!SI->hasOneUse()) 819 return nullptr; 820 821 Value *TV = SI->getTrueValue(); 822 Value *FV = SI->getFalseValue(); 823 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 824 return nullptr; 825 826 // Bool selects with constant operands can be folded to logical ops. 827 if (SI->getType()->isIntOrIntVectorTy(1)) 828 return nullptr; 829 830 // If it's a bitcast involving vectors, make sure it has the same number of 831 // elements on both sides. 832 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 833 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 834 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 835 836 // Verify that either both or neither are vectors. 837 if ((SrcTy == nullptr) != (DestTy == nullptr)) 838 return nullptr; 839 840 // If vectors, verify that they have the same number of elements. 841 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 842 return nullptr; 843 } 844 845 // Test if a CmpInst instruction is used exclusively by a select as 846 // part of a minimum or maximum operation. If so, refrain from doing 847 // any other folding. This helps out other analyses which understand 848 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 849 // and CodeGen. And in this case, at least one of the comparison 850 // operands has at least one user besides the compare (the select), 851 // which would often largely negate the benefit of folding anyway. 852 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 853 if (CI->hasOneUse()) { 854 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 855 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 856 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 857 return nullptr; 858 } 859 } 860 861 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 862 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 863 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 864 } 865 866 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 867 InstCombiner::BuilderTy &Builder) { 868 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 869 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 870 871 if (auto *InC = dyn_cast<Constant>(InV)) { 872 if (ConstIsRHS) 873 return ConstantExpr::get(I->getOpcode(), InC, C); 874 return ConstantExpr::get(I->getOpcode(), C, InC); 875 } 876 877 Value *Op0 = InV, *Op1 = C; 878 if (!ConstIsRHS) 879 std::swap(Op0, Op1); 880 881 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp"); 882 auto *FPInst = dyn_cast<Instruction>(RI); 883 if (FPInst && isa<FPMathOperator>(FPInst)) 884 FPInst->copyFastMathFlags(I); 885 return RI; 886 } 887 888 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) { 889 unsigned NumPHIValues = PN->getNumIncomingValues(); 890 if (NumPHIValues == 0) 891 return nullptr; 892 893 // We normally only transform phis with a single use. However, if a PHI has 894 // multiple uses and they are all the same operation, we can fold *all* of the 895 // uses into the PHI. 896 if (!PN->hasOneUse()) { 897 // Walk the use list for the instruction, comparing them to I. 898 for (User *U : PN->users()) { 899 Instruction *UI = cast<Instruction>(U); 900 if (UI != &I && !I.isIdenticalTo(UI)) 901 return nullptr; 902 } 903 // Otherwise, we can replace *all* users with the new PHI we form. 904 } 905 906 // Check to see if all of the operands of the PHI are simple constants 907 // (constantint/constantfp/undef). If there is one non-constant value, 908 // remember the BB it is in. If there is more than one or if *it* is a PHI, 909 // bail out. We don't do arbitrary constant expressions here because moving 910 // their computation can be expensive without a cost model. 911 BasicBlock *NonConstBB = nullptr; 912 for (unsigned i = 0; i != NumPHIValues; ++i) { 913 Value *InVal = PN->getIncomingValue(i); 914 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 915 continue; 916 917 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 918 if (NonConstBB) return nullptr; // More than one non-const value. 919 920 NonConstBB = PN->getIncomingBlock(i); 921 922 // If the InVal is an invoke at the end of the pred block, then we can't 923 // insert a computation after it without breaking the edge. 924 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal)) 925 if (II->getParent() == NonConstBB) 926 return nullptr; 927 928 // If the incoming non-constant value is in I's block, we will remove one 929 // instruction, but insert another equivalent one, leading to infinite 930 // instcombine. 931 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI)) 932 return nullptr; 933 } 934 935 // If there is exactly one non-constant value, we can insert a copy of the 936 // operation in that block. However, if this is a critical edge, we would be 937 // inserting the computation on some other paths (e.g. inside a loop). Only 938 // do this if the pred block is unconditionally branching into the phi block. 939 if (NonConstBB != nullptr) { 940 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 941 if (!BI || !BI->isUnconditional()) return nullptr; 942 } 943 944 // Okay, we can do the transformation: create the new PHI node. 945 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 946 InsertNewInstBefore(NewPN, *PN); 947 NewPN->takeName(PN); 948 949 // If we are going to have to insert a new computation, do so right before the 950 // predecessor's terminator. 951 if (NonConstBB) 952 Builder.SetInsertPoint(NonConstBB->getTerminator()); 953 954 // Next, add all of the operands to the PHI. 955 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 956 // We only currently try to fold the condition of a select when it is a phi, 957 // not the true/false values. 958 Value *TrueV = SI->getTrueValue(); 959 Value *FalseV = SI->getFalseValue(); 960 BasicBlock *PhiTransBB = PN->getParent(); 961 for (unsigned i = 0; i != NumPHIValues; ++i) { 962 BasicBlock *ThisBB = PN->getIncomingBlock(i); 963 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 964 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 965 Value *InV = nullptr; 966 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 967 // even if currently isNullValue gives false. 968 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 969 // For vector constants, we cannot use isNullValue to fold into 970 // FalseVInPred versus TrueVInPred. When we have individual nonzero 971 // elements in the vector, we will incorrectly fold InC to 972 // `TrueVInPred`. 973 if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC)) 974 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 975 else { 976 // Generate the select in the same block as PN's current incoming block. 977 // Note: ThisBB need not be the NonConstBB because vector constants 978 // which are constants by definition are handled here. 979 // FIXME: This can lead to an increase in IR generation because we might 980 // generate selects for vector constant phi operand, that could not be 981 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 982 // non-vector phis, this transformation was always profitable because 983 // the select would be generated exactly once in the NonConstBB. 984 Builder.SetInsertPoint(ThisBB->getTerminator()); 985 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 986 FalseVInPred, "phitmp"); 987 } 988 NewPN->addIncoming(InV, ThisBB); 989 } 990 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 991 Constant *C = cast<Constant>(I.getOperand(1)); 992 for (unsigned i = 0; i != NumPHIValues; ++i) { 993 Value *InV = nullptr; 994 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 995 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 996 else if (isa<ICmpInst>(CI)) 997 InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 998 C, "phitmp"); 999 else 1000 InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 1001 C, "phitmp"); 1002 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1003 } 1004 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1005 for (unsigned i = 0; i != NumPHIValues; ++i) { 1006 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1007 Builder); 1008 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1009 } 1010 } else { 1011 CastInst *CI = cast<CastInst>(&I); 1012 Type *RetTy = CI->getType(); 1013 for (unsigned i = 0; i != NumPHIValues; ++i) { 1014 Value *InV; 1015 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1016 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1017 else 1018 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1019 I.getType(), "phitmp"); 1020 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1021 } 1022 } 1023 1024 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1025 Instruction *User = cast<Instruction>(*UI++); 1026 if (User == &I) continue; 1027 replaceInstUsesWith(*User, NewPN); 1028 eraseInstFromFunction(*User); 1029 } 1030 return replaceInstUsesWith(I, NewPN); 1031 } 1032 1033 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1034 if (!isa<Constant>(I.getOperand(1))) 1035 return nullptr; 1036 1037 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1038 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1039 return NewSel; 1040 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1041 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1042 return NewPhi; 1043 } 1044 return nullptr; 1045 } 1046 1047 /// Given a pointer type and a constant offset, determine whether or not there 1048 /// is a sequence of GEP indices into the pointed type that will land us at the 1049 /// specified offset. If so, fill them into NewIndices and return the resultant 1050 /// element type, otherwise return null. 1051 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 1052 SmallVectorImpl<Value *> &NewIndices) { 1053 Type *Ty = PtrTy->getElementType(); 1054 if (!Ty->isSized()) 1055 return nullptr; 1056 1057 // Start with the index over the outer type. Note that the type size 1058 // might be zero (even if the offset isn't zero) if the indexed type 1059 // is something like [0 x {int, int}] 1060 Type *IndexTy = DL.getIndexType(PtrTy); 1061 int64_t FirstIdx = 0; 1062 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 1063 FirstIdx = Offset/TySize; 1064 Offset -= FirstIdx*TySize; 1065 1066 // Handle hosts where % returns negative instead of values [0..TySize). 1067 if (Offset < 0) { 1068 --FirstIdx; 1069 Offset += TySize; 1070 assert(Offset >= 0); 1071 } 1072 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 1073 } 1074 1075 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx)); 1076 1077 // Index into the types. If we fail, set OrigBase to null. 1078 while (Offset) { 1079 // Indexing into tail padding between struct/array elements. 1080 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1081 return nullptr; 1082 1083 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1084 const StructLayout *SL = DL.getStructLayout(STy); 1085 assert(Offset < (int64_t)SL->getSizeInBytes() && 1086 "Offset must stay within the indexed type"); 1087 1088 unsigned Elt = SL->getElementContainingOffset(Offset); 1089 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1090 Elt)); 1091 1092 Offset -= SL->getElementOffset(Elt); 1093 Ty = STy->getElementType(Elt); 1094 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1095 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1096 assert(EltSize && "Cannot index into a zero-sized array"); 1097 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize)); 1098 Offset %= EltSize; 1099 Ty = AT->getElementType(); 1100 } else { 1101 // Otherwise, we can't index into the middle of this atomic type, bail. 1102 return nullptr; 1103 } 1104 } 1105 1106 return Ty; 1107 } 1108 1109 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1110 // If this GEP has only 0 indices, it is the same pointer as 1111 // Src. If Src is not a trivial GEP too, don't combine 1112 // the indices. 1113 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1114 !Src.hasOneUse()) 1115 return false; 1116 return true; 1117 } 1118 1119 /// Return a value X such that Val = X * Scale, or null if none. 1120 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1121 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1122 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1123 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1124 Scale.getBitWidth() && "Scale not compatible with value!"); 1125 1126 // If Val is zero or Scale is one then Val = Val * Scale. 1127 if (match(Val, m_Zero()) || Scale == 1) { 1128 NoSignedWrap = true; 1129 return Val; 1130 } 1131 1132 // If Scale is zero then it does not divide Val. 1133 if (Scale.isMinValue()) 1134 return nullptr; 1135 1136 // Look through chains of multiplications, searching for a constant that is 1137 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1138 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1139 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1140 // down from Val: 1141 // 1142 // Val = M1 * X || Analysis starts here and works down 1143 // M1 = M2 * Y || Doesn't descend into terms with more 1144 // M2 = Z * 4 \/ than one use 1145 // 1146 // Then to modify a term at the bottom: 1147 // 1148 // Val = M1 * X 1149 // M1 = Z * Y || Replaced M2 with Z 1150 // 1151 // Then to work back up correcting nsw flags. 1152 1153 // Op - the term we are currently analyzing. Starts at Val then drills down. 1154 // Replaced with its descaled value before exiting from the drill down loop. 1155 Value *Op = Val; 1156 1157 // Parent - initially null, but after drilling down notes where Op came from. 1158 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1159 // 0'th operand of Val. 1160 std::pair<Instruction *, unsigned> Parent; 1161 1162 // Set if the transform requires a descaling at deeper levels that doesn't 1163 // overflow. 1164 bool RequireNoSignedWrap = false; 1165 1166 // Log base 2 of the scale. Negative if not a power of 2. 1167 int32_t logScale = Scale.exactLogBase2(); 1168 1169 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1170 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1171 // If Op is a constant divisible by Scale then descale to the quotient. 1172 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1173 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1174 if (!Remainder.isMinValue()) 1175 // Not divisible by Scale. 1176 return nullptr; 1177 // Replace with the quotient in the parent. 1178 Op = ConstantInt::get(CI->getType(), Quotient); 1179 NoSignedWrap = true; 1180 break; 1181 } 1182 1183 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1184 if (BO->getOpcode() == Instruction::Mul) { 1185 // Multiplication. 1186 NoSignedWrap = BO->hasNoSignedWrap(); 1187 if (RequireNoSignedWrap && !NoSignedWrap) 1188 return nullptr; 1189 1190 // There are three cases for multiplication: multiplication by exactly 1191 // the scale, multiplication by a constant different to the scale, and 1192 // multiplication by something else. 1193 Value *LHS = BO->getOperand(0); 1194 Value *RHS = BO->getOperand(1); 1195 1196 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1197 // Multiplication by a constant. 1198 if (CI->getValue() == Scale) { 1199 // Multiplication by exactly the scale, replace the multiplication 1200 // by its left-hand side in the parent. 1201 Op = LHS; 1202 break; 1203 } 1204 1205 // Otherwise drill down into the constant. 1206 if (!Op->hasOneUse()) 1207 return nullptr; 1208 1209 Parent = std::make_pair(BO, 1); 1210 continue; 1211 } 1212 1213 // Multiplication by something else. Drill down into the left-hand side 1214 // since that's where the reassociate pass puts the good stuff. 1215 if (!Op->hasOneUse()) 1216 return nullptr; 1217 1218 Parent = std::make_pair(BO, 0); 1219 continue; 1220 } 1221 1222 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1223 isa<ConstantInt>(BO->getOperand(1))) { 1224 // Multiplication by a power of 2. 1225 NoSignedWrap = BO->hasNoSignedWrap(); 1226 if (RequireNoSignedWrap && !NoSignedWrap) 1227 return nullptr; 1228 1229 Value *LHS = BO->getOperand(0); 1230 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1231 getLimitedValue(Scale.getBitWidth()); 1232 // Op = LHS << Amt. 1233 1234 if (Amt == logScale) { 1235 // Multiplication by exactly the scale, replace the multiplication 1236 // by its left-hand side in the parent. 1237 Op = LHS; 1238 break; 1239 } 1240 if (Amt < logScale || !Op->hasOneUse()) 1241 return nullptr; 1242 1243 // Multiplication by more than the scale. Reduce the multiplying amount 1244 // by the scale in the parent. 1245 Parent = std::make_pair(BO, 1); 1246 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1247 break; 1248 } 1249 } 1250 1251 if (!Op->hasOneUse()) 1252 return nullptr; 1253 1254 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1255 if (Cast->getOpcode() == Instruction::SExt) { 1256 // Op is sign-extended from a smaller type, descale in the smaller type. 1257 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1258 APInt SmallScale = Scale.trunc(SmallSize); 1259 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1260 // descale Op as (sext Y) * Scale. In order to have 1261 // sext (Y * SmallScale) = (sext Y) * Scale 1262 // some conditions need to hold however: SmallScale must sign-extend to 1263 // Scale and the multiplication Y * SmallScale should not overflow. 1264 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1265 // SmallScale does not sign-extend to Scale. 1266 return nullptr; 1267 assert(SmallScale.exactLogBase2() == logScale); 1268 // Require that Y * SmallScale must not overflow. 1269 RequireNoSignedWrap = true; 1270 1271 // Drill down through the cast. 1272 Parent = std::make_pair(Cast, 0); 1273 Scale = SmallScale; 1274 continue; 1275 } 1276 1277 if (Cast->getOpcode() == Instruction::Trunc) { 1278 // Op is truncated from a larger type, descale in the larger type. 1279 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1280 // trunc (Y * sext Scale) = (trunc Y) * Scale 1281 // always holds. However (trunc Y) * Scale may overflow even if 1282 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1283 // from this point up in the expression (see later). 1284 if (RequireNoSignedWrap) 1285 return nullptr; 1286 1287 // Drill down through the cast. 1288 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1289 Parent = std::make_pair(Cast, 0); 1290 Scale = Scale.sext(LargeSize); 1291 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1292 logScale = -1; 1293 assert(Scale.exactLogBase2() == logScale); 1294 continue; 1295 } 1296 } 1297 1298 // Unsupported expression, bail out. 1299 return nullptr; 1300 } 1301 1302 // If Op is zero then Val = Op * Scale. 1303 if (match(Op, m_Zero())) { 1304 NoSignedWrap = true; 1305 return Op; 1306 } 1307 1308 // We know that we can successfully descale, so from here on we can safely 1309 // modify the IR. Op holds the descaled version of the deepest term in the 1310 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1311 // not to overflow. 1312 1313 if (!Parent.first) 1314 // The expression only had one term. 1315 return Op; 1316 1317 // Rewrite the parent using the descaled version of its operand. 1318 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1319 assert(Op != Parent.first->getOperand(Parent.second) && 1320 "Descaling was a no-op?"); 1321 Parent.first->setOperand(Parent.second, Op); 1322 Worklist.Add(Parent.first); 1323 1324 // Now work back up the expression correcting nsw flags. The logic is based 1325 // on the following observation: if X * Y is known not to overflow as a signed 1326 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1327 // then X * Z will not overflow as a signed multiplication either. As we work 1328 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1329 // current level has strictly smaller absolute value than the original. 1330 Instruction *Ancestor = Parent.first; 1331 do { 1332 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1333 // If the multiplication wasn't nsw then we can't say anything about the 1334 // value of the descaled multiplication, and we have to clear nsw flags 1335 // from this point on up. 1336 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1337 NoSignedWrap &= OpNoSignedWrap; 1338 if (NoSignedWrap != OpNoSignedWrap) { 1339 BO->setHasNoSignedWrap(NoSignedWrap); 1340 Worklist.Add(Ancestor); 1341 } 1342 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1343 // The fact that the descaled input to the trunc has smaller absolute 1344 // value than the original input doesn't tell us anything useful about 1345 // the absolute values of the truncations. 1346 NoSignedWrap = false; 1347 } 1348 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1349 "Failed to keep proper track of nsw flags while drilling down?"); 1350 1351 if (Ancestor == Val) 1352 // Got to the top, all done! 1353 return Val; 1354 1355 // Move up one level in the expression. 1356 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1357 Ancestor = Ancestor->user_back(); 1358 } while (true); 1359 } 1360 1361 Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) { 1362 if (!Inst.getType()->isVectorTy()) return nullptr; 1363 1364 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1365 unsigned NumElts = cast<VectorType>(Inst.getType())->getNumElements(); 1366 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1367 assert(cast<VectorType>(LHS->getType())->getNumElements() == NumElts); 1368 assert(cast<VectorType>(RHS->getType())->getNumElements() == NumElts); 1369 1370 // If both operands of the binop are vector concatenations, then perform the 1371 // narrow binop on each pair of the source operands followed by concatenation 1372 // of the results. 1373 Value *L0, *L1, *R0, *R1; 1374 Constant *Mask; 1375 if (match(LHS, m_ShuffleVector(m_Value(L0), m_Value(L1), m_Constant(Mask))) && 1376 match(RHS, m_ShuffleVector(m_Value(R0), m_Value(R1), m_Specific(Mask))) && 1377 LHS->hasOneUse() && RHS->hasOneUse() && 1378 cast<ShuffleVectorInst>(LHS)->isConcat()) { 1379 // This transform does not have the speculative execution constraint as 1380 // below because the shuffle is a concatenation. The new binops are 1381 // operating on exactly the same elements as the existing binop. 1382 // TODO: We could ease the mask requirement to allow different undef lanes, 1383 // but that requires an analysis of the binop-with-undef output value. 1384 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1385 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1386 BO->copyIRFlags(&Inst); 1387 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1388 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1389 BO->copyIRFlags(&Inst); 1390 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1391 } 1392 1393 // It may not be safe to reorder shuffles and things like div, urem, etc. 1394 // because we may trap when executing those ops on unknown vector elements. 1395 // See PR20059. 1396 if (!isSafeToSpeculativelyExecute(&Inst)) 1397 return nullptr; 1398 1399 auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) { 1400 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1401 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1402 BO->copyIRFlags(&Inst); 1403 return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M); 1404 }; 1405 1406 // If both arguments of the binary operation are shuffles that use the same 1407 // mask and shuffle within a single vector, move the shuffle after the binop. 1408 Value *V1, *V2; 1409 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) && 1410 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) && 1411 V1->getType() == V2->getType() && 1412 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1413 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1414 return createBinOpShuffle(V1, V2, Mask); 1415 } 1416 1417 // If one argument is a shuffle within one vector and the other is a constant, 1418 // try moving the shuffle after the binary operation. This canonicalization 1419 // intends to move shuffles closer to other shuffles and binops closer to 1420 // other binops, so they can be folded. It may also enable demanded elements 1421 // transforms. 1422 Constant *C; 1423 if (match(&Inst, m_c_BinOp( 1424 m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))), 1425 m_Constant(C))) && 1426 V1->getType()->getVectorNumElements() <= NumElts) { 1427 assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() && 1428 "Shuffle should not change scalar type"); 1429 1430 // Find constant NewC that has property: 1431 // shuffle(NewC, ShMask) = C 1432 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1433 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1434 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1435 bool ConstOp1 = isa<Constant>(RHS); 1436 SmallVector<int, 16> ShMask; 1437 ShuffleVectorInst::getShuffleMask(Mask, ShMask); 1438 unsigned SrcVecNumElts = V1->getType()->getVectorNumElements(); 1439 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1440 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1441 bool MayChange = true; 1442 for (unsigned I = 0; I < NumElts; ++I) { 1443 Constant *CElt = C->getAggregateElement(I); 1444 if (ShMask[I] >= 0) { 1445 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1446 Constant *NewCElt = NewVecC[ShMask[I]]; 1447 // Bail out if: 1448 // 1. The constant vector contains a constant expression. 1449 // 2. The shuffle needs an element of the constant vector that can't 1450 // be mapped to a new constant vector. 1451 // 3. This is a widening shuffle that copies elements of V1 into the 1452 // extended elements (extending with undef is allowed). 1453 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1454 I >= SrcVecNumElts) { 1455 MayChange = false; 1456 break; 1457 } 1458 NewVecC[ShMask[I]] = CElt; 1459 } 1460 // If this is a widening shuffle, we must be able to extend with undef 1461 // elements. If the original binop does not produce an undef in the high 1462 // lanes, then this transform is not safe. 1463 // TODO: We could shuffle those non-undef constant values into the 1464 // result by using a constant vector (rather than an undef vector) 1465 // as operand 1 of the new binop, but that might be too aggressive 1466 // for target-independent shuffle creation. 1467 if (I >= SrcVecNumElts) { 1468 Constant *MaybeUndef = 1469 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1470 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1471 if (!isa<UndefValue>(MaybeUndef)) { 1472 MayChange = false; 1473 break; 1474 } 1475 } 1476 } 1477 if (MayChange) { 1478 Constant *NewC = ConstantVector::get(NewVecC); 1479 // It may not be safe to execute a binop on a vector with undef elements 1480 // because the entire instruction can be folded to undef or create poison 1481 // that did not exist in the original code. 1482 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1483 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1484 1485 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1486 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1487 Value *NewLHS = ConstOp1 ? V1 : NewC; 1488 Value *NewRHS = ConstOp1 ? NewC : V1; 1489 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1490 } 1491 } 1492 1493 return nullptr; 1494 } 1495 1496 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1497 /// of a value. This requires a potentially expensive known bits check to make 1498 /// sure the narrow op does not overflow. 1499 Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) { 1500 // We need at least one extended operand. 1501 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1502 1503 // If this is a sub, we swap the operands since we always want an extension 1504 // on the RHS. The LHS can be an extension or a constant. 1505 if (BO.getOpcode() == Instruction::Sub) 1506 std::swap(Op0, Op1); 1507 1508 Value *X; 1509 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1510 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1511 return nullptr; 1512 1513 // If both operands are the same extension from the same source type and we 1514 // can eliminate at least one (hasOneUse), this might work. 1515 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1516 Value *Y; 1517 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1518 cast<Operator>(Op1)->getOpcode() == CastOpc && 1519 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1520 // If that did not match, see if we have a suitable constant operand. 1521 // Truncating and extending must produce the same constant. 1522 Constant *WideC; 1523 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1524 return nullptr; 1525 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1526 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1527 return nullptr; 1528 Y = NarrowC; 1529 } 1530 1531 // Swap back now that we found our operands. 1532 if (BO.getOpcode() == Instruction::Sub) 1533 std::swap(X, Y); 1534 1535 // Both operands have narrow versions. Last step: the math must not overflow 1536 // in the narrow width. 1537 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1538 return nullptr; 1539 1540 // bo (ext X), (ext Y) --> ext (bo X, Y) 1541 // bo (ext X), C --> ext (bo X, C') 1542 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1543 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1544 if (IsSext) 1545 NewBinOp->setHasNoSignedWrap(); 1546 else 1547 NewBinOp->setHasNoUnsignedWrap(); 1548 } 1549 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1550 } 1551 1552 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1553 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1554 Type *GEPType = GEP.getType(); 1555 Type *GEPEltType = GEP.getSourceElementType(); 1556 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP))) 1557 return replaceInstUsesWith(GEP, V); 1558 1559 Value *PtrOp = GEP.getOperand(0); 1560 1561 // Eliminate unneeded casts for indices, and replace indices which displace 1562 // by multiples of a zero size type with zero. 1563 bool MadeChange = false; 1564 1565 // Index width may not be the same width as pointer width. 1566 // Data layout chooses the right type based on supported integer types. 1567 Type *NewScalarIndexTy = 1568 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 1569 1570 gep_type_iterator GTI = gep_type_begin(GEP); 1571 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1572 ++I, ++GTI) { 1573 // Skip indices into struct types. 1574 if (GTI.isStruct()) 1575 continue; 1576 1577 Type *IndexTy = (*I)->getType(); 1578 Type *NewIndexType = 1579 IndexTy->isVectorTy() 1580 ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements()) 1581 : NewScalarIndexTy; 1582 1583 // If the element type has zero size then any index over it is equivalent 1584 // to an index of zero, so replace it with zero if it is not zero already. 1585 Type *EltTy = GTI.getIndexedType(); 1586 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0) 1587 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { 1588 *I = Constant::getNullValue(NewIndexType); 1589 MadeChange = true; 1590 } 1591 1592 if (IndexTy != NewIndexType) { 1593 // If we are using a wider index than needed for this platform, shrink 1594 // it to what we need. If narrower, sign-extend it to what we need. 1595 // This explicit cast can make subsequent optimizations more obvious. 1596 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1597 MadeChange = true; 1598 } 1599 } 1600 if (MadeChange) 1601 return &GEP; 1602 1603 // Check to see if the inputs to the PHI node are getelementptr instructions. 1604 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 1605 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1606 if (!Op1) 1607 return nullptr; 1608 1609 // Don't fold a GEP into itself through a PHI node. This can only happen 1610 // through the back-edge of a loop. Folding a GEP into itself means that 1611 // the value of the previous iteration needs to be stored in the meantime, 1612 // thus requiring an additional register variable to be live, but not 1613 // actually achieving anything (the GEP still needs to be executed once per 1614 // loop iteration). 1615 if (Op1 == &GEP) 1616 return nullptr; 1617 1618 int DI = -1; 1619 1620 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1621 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 1622 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1623 return nullptr; 1624 1625 // As for Op1 above, don't try to fold a GEP into itself. 1626 if (Op2 == &GEP) 1627 return nullptr; 1628 1629 // Keep track of the type as we walk the GEP. 1630 Type *CurTy = nullptr; 1631 1632 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1633 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1634 return nullptr; 1635 1636 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1637 if (DI == -1) { 1638 // We have not seen any differences yet in the GEPs feeding the 1639 // PHI yet, so we record this one if it is allowed to be a 1640 // variable. 1641 1642 // The first two arguments can vary for any GEP, the rest have to be 1643 // static for struct slots 1644 if (J > 1 && CurTy->isStructTy()) 1645 return nullptr; 1646 1647 DI = J; 1648 } else { 1649 // The GEP is different by more than one input. While this could be 1650 // extended to support GEPs that vary by more than one variable it 1651 // doesn't make sense since it greatly increases the complexity and 1652 // would result in an R+R+R addressing mode which no backend 1653 // directly supports and would need to be broken into several 1654 // simpler instructions anyway. 1655 return nullptr; 1656 } 1657 } 1658 1659 // Sink down a layer of the type for the next iteration. 1660 if (J > 0) { 1661 if (J == 1) { 1662 CurTy = Op1->getSourceElementType(); 1663 } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) { 1664 CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); 1665 } else { 1666 CurTy = nullptr; 1667 } 1668 } 1669 } 1670 } 1671 1672 // If not all GEPs are identical we'll have to create a new PHI node. 1673 // Check that the old PHI node has only one use so that it will get 1674 // removed. 1675 if (DI != -1 && !PN->hasOneUse()) 1676 return nullptr; 1677 1678 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1679 if (DI == -1) { 1680 // All the GEPs feeding the PHI are identical. Clone one down into our 1681 // BB so that it can be merged with the current GEP. 1682 GEP.getParent()->getInstList().insert( 1683 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1684 } else { 1685 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1686 // into the current block so it can be merged, and create a new PHI to 1687 // set that index. 1688 PHINode *NewPN; 1689 { 1690 IRBuilderBase::InsertPointGuard Guard(Builder); 1691 Builder.SetInsertPoint(PN); 1692 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 1693 PN->getNumOperands()); 1694 } 1695 1696 for (auto &I : PN->operands()) 1697 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1698 PN->getIncomingBlock(I)); 1699 1700 NewGEP->setOperand(DI, NewPN); 1701 GEP.getParent()->getInstList().insert( 1702 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1703 NewGEP->setOperand(DI, NewPN); 1704 } 1705 1706 GEP.setOperand(0, NewGEP); 1707 PtrOp = NewGEP; 1708 } 1709 1710 // Combine Indices - If the source pointer to this getelementptr instruction 1711 // is a getelementptr instruction, combine the indices of the two 1712 // getelementptr instructions into a single instruction. 1713 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { 1714 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1715 return nullptr; 1716 1717 // Try to reassociate loop invariant GEP chains to enable LICM. 1718 if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1719 Src->hasOneUse()) { 1720 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1721 Value *GO1 = GEP.getOperand(1); 1722 Value *SO1 = Src->getOperand(1); 1723 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1724 // invariant: this breaks the dependence between GEPs and allows LICM 1725 // to hoist the invariant part out of the loop. 1726 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1727 // We have to be careful here. 1728 // We have something like: 1729 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 1730 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 1731 // If we just swap idx & idx2 then we could inadvertantly 1732 // change %src from a vector to a scalar, or vice versa. 1733 // Cases: 1734 // 1) %base a scalar & idx a scalar & idx2 a vector 1735 // => Swapping idx & idx2 turns %src into a vector type. 1736 // 2) %base a scalar & idx a vector & idx2 a scalar 1737 // => Swapping idx & idx2 turns %src in a scalar type 1738 // 3) %base, %idx, and %idx2 are scalars 1739 // => %src & %gep are scalars 1740 // => swapping idx & idx2 is safe 1741 // 4) %base a vector 1742 // => %src is a vector 1743 // => swapping idx & idx2 is safe. 1744 auto *SO0 = Src->getOperand(0); 1745 auto *SO0Ty = SO0->getType(); 1746 if (!isa<VectorType>(GEPType) || // case 3 1747 isa<VectorType>(SO0Ty)) { // case 4 1748 Src->setOperand(1, GO1); 1749 GEP.setOperand(1, SO1); 1750 return &GEP; 1751 } else { 1752 // Case 1 or 2 1753 // -- have to recreate %src & %gep 1754 // put NewSrc at same location as %src 1755 Builder.SetInsertPoint(cast<Instruction>(PtrOp)); 1756 auto *NewSrc = cast<GetElementPtrInst>( 1757 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName())); 1758 NewSrc->setIsInBounds(Src->isInBounds()); 1759 auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1}); 1760 NewGEP->setIsInBounds(GEP.isInBounds()); 1761 return NewGEP; 1762 } 1763 } 1764 } 1765 } 1766 1767 // Note that if our source is a gep chain itself then we wait for that 1768 // chain to be resolved before we perform this transformation. This 1769 // avoids us creating a TON of code in some cases. 1770 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 1771 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1772 return nullptr; // Wait until our source is folded to completion. 1773 1774 SmallVector<Value*, 8> Indices; 1775 1776 // Find out whether the last index in the source GEP is a sequential idx. 1777 bool EndsWithSequential = false; 1778 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1779 I != E; ++I) 1780 EndsWithSequential = I.isSequential(); 1781 1782 // Can we combine the two pointer arithmetics offsets? 1783 if (EndsWithSequential) { 1784 // Replace: gep (gep %P, long B), long A, ... 1785 // With: T = long A+B; gep %P, T, ... 1786 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1787 Value *GO1 = GEP.getOperand(1); 1788 1789 // If they aren't the same type, then the input hasn't been processed 1790 // by the loop above yet (which canonicalizes sequential index types to 1791 // intptr_t). Just avoid transforming this until the input has been 1792 // normalized. 1793 if (SO1->getType() != GO1->getType()) 1794 return nullptr; 1795 1796 Value *Sum = 1797 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 1798 // Only do the combine when we are sure the cost after the 1799 // merge is never more than that before the merge. 1800 if (Sum == nullptr) 1801 return nullptr; 1802 1803 // Update the GEP in place if possible. 1804 if (Src->getNumOperands() == 2) { 1805 GEP.setOperand(0, Src->getOperand(0)); 1806 GEP.setOperand(1, Sum); 1807 return &GEP; 1808 } 1809 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1810 Indices.push_back(Sum); 1811 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1812 } else if (isa<Constant>(*GEP.idx_begin()) && 1813 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1814 Src->getNumOperands() != 1) { 1815 // Otherwise we can do the fold if the first index of the GEP is a zero 1816 Indices.append(Src->op_begin()+1, Src->op_end()); 1817 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1818 } 1819 1820 if (!Indices.empty()) 1821 return GEP.isInBounds() && Src->isInBounds() 1822 ? GetElementPtrInst::CreateInBounds( 1823 Src->getSourceElementType(), Src->getOperand(0), Indices, 1824 GEP.getName()) 1825 : GetElementPtrInst::Create(Src->getSourceElementType(), 1826 Src->getOperand(0), Indices, 1827 GEP.getName()); 1828 } 1829 1830 if (GEP.getNumIndices() == 1) { 1831 unsigned AS = GEP.getPointerAddressSpace(); 1832 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 1833 DL.getIndexSizeInBits(AS)) { 1834 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType); 1835 1836 bool Matched = false; 1837 uint64_t C; 1838 Value *V = nullptr; 1839 if (TyAllocSize == 1) { 1840 V = GEP.getOperand(1); 1841 Matched = true; 1842 } else if (match(GEP.getOperand(1), 1843 m_AShr(m_Value(V), m_ConstantInt(C)))) { 1844 if (TyAllocSize == 1ULL << C) 1845 Matched = true; 1846 } else if (match(GEP.getOperand(1), 1847 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 1848 if (TyAllocSize == C) 1849 Matched = true; 1850 } 1851 1852 if (Matched) { 1853 // Canonicalize (gep i8* X, -(ptrtoint Y)) 1854 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) 1855 // The GEP pattern is emitted by the SCEV expander for certain kinds of 1856 // pointer arithmetic. 1857 if (match(V, m_Neg(m_PtrToInt(m_Value())))) { 1858 Operator *Index = cast<Operator>(V); 1859 Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType()); 1860 Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1)); 1861 return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType); 1862 } 1863 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) 1864 // to (bitcast Y) 1865 Value *Y; 1866 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), 1867 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) 1868 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 1869 } 1870 } 1871 } 1872 1873 // We do not handle pointer-vector geps here. 1874 if (GEPType->isVectorTy()) 1875 return nullptr; 1876 1877 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 1878 Value *StrippedPtr = PtrOp->stripPointerCasts(); 1879 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 1880 1881 if (StrippedPtr != PtrOp) { 1882 bool HasZeroPointerIndex = false; 1883 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType(); 1884 1885 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 1886 HasZeroPointerIndex = C->isZero(); 1887 1888 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 1889 // into : GEP [10 x i8]* X, i32 0, ... 1890 // 1891 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 1892 // into : GEP i8* X, ... 1893 // 1894 // This occurs when the program declares an array extern like "int X[];" 1895 if (HasZeroPointerIndex) { 1896 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 1897 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 1898 if (CATy->getElementType() == StrippedPtrEltTy) { 1899 // -> GEP i8* X, ... 1900 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 1901 GetElementPtrInst *Res = GetElementPtrInst::Create( 1902 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 1903 Res->setIsInBounds(GEP.isInBounds()); 1904 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 1905 return Res; 1906 // Insert Res, and create an addrspacecast. 1907 // e.g., 1908 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 1909 // -> 1910 // %0 = GEP i8 addrspace(1)* X, ... 1911 // addrspacecast i8 addrspace(1)* %0 to i8* 1912 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 1913 } 1914 1915 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 1916 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 1917 if (CATy->getElementType() == XATy->getElementType()) { 1918 // -> GEP [10 x i8]* X, i32 0, ... 1919 // At this point, we know that the cast source type is a pointer 1920 // to an array of the same type as the destination pointer 1921 // array. Because the array type is never stepped over (there 1922 // is a leading zero) we can fold the cast into this GEP. 1923 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 1924 GEP.setOperand(0, StrippedPtr); 1925 GEP.setSourceElementType(XATy); 1926 return &GEP; 1927 } 1928 // Cannot replace the base pointer directly because StrippedPtr's 1929 // address space is different. Instead, create a new GEP followed by 1930 // an addrspacecast. 1931 // e.g., 1932 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 1933 // i32 0, ... 1934 // -> 1935 // %0 = GEP [10 x i8] addrspace(1)* X, ... 1936 // addrspacecast i8 addrspace(1)* %0 to i8* 1937 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 1938 Value *NewGEP = 1939 GEP.isInBounds() 1940 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 1941 Idx, GEP.getName()) 1942 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 1943 GEP.getName()); 1944 return new AddrSpaceCastInst(NewGEP, GEPType); 1945 } 1946 } 1947 } 1948 } else if (GEP.getNumOperands() == 2) { 1949 // Transform things like: 1950 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 1951 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 1952 if (StrippedPtrEltTy->isArrayTy() && 1953 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 1954 DL.getTypeAllocSize(GEPEltType)) { 1955 Type *IdxType = DL.getIndexType(GEPType); 1956 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 1957 Value *NewGEP = 1958 GEP.isInBounds() 1959 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, 1960 GEP.getName()) 1961 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 1962 GEP.getName()); 1963 1964 // V and GEP are both pointer types --> BitCast 1965 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 1966 } 1967 1968 // Transform things like: 1969 // %V = mul i64 %N, 4 1970 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 1971 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 1972 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 1973 // Check that changing the type amounts to dividing the index by a scale 1974 // factor. 1975 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 1976 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy); 1977 if (ResSize && SrcSize % ResSize == 0) { 1978 Value *Idx = GEP.getOperand(1); 1979 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1980 uint64_t Scale = SrcSize / ResSize; 1981 1982 // Earlier transforms ensure that the index has the right type 1983 // according to Data Layout, which considerably simplifies the 1984 // logic by eliminating implicit casts. 1985 assert(Idx->getType() == DL.getIndexType(GEPType) && 1986 "Index type does not match the Data Layout preferences"); 1987 1988 bool NSW; 1989 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1990 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1991 // If the multiplication NewIdx * Scale may overflow then the new 1992 // GEP may not be "inbounds". 1993 Value *NewGEP = 1994 GEP.isInBounds() && NSW 1995 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 1996 NewIdx, GEP.getName()) 1997 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 1998 GEP.getName()); 1999 2000 // The NewGEP must be pointer typed, so must the old one -> BitCast 2001 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2002 GEPType); 2003 } 2004 } 2005 } 2006 2007 // Similarly, transform things like: 2008 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2009 // (where tmp = 8*tmp2) into: 2010 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2011 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2012 StrippedPtrEltTy->isArrayTy()) { 2013 // Check that changing to the array element type amounts to dividing the 2014 // index by a scale factor. 2015 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 2016 uint64_t ArrayEltSize = 2017 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()); 2018 if (ResSize && ArrayEltSize % ResSize == 0) { 2019 Value *Idx = GEP.getOperand(1); 2020 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2021 uint64_t Scale = ArrayEltSize / ResSize; 2022 2023 // Earlier transforms ensure that the index has the right type 2024 // according to the Data Layout, which considerably simplifies 2025 // the logic by eliminating implicit casts. 2026 assert(Idx->getType() == DL.getIndexType(GEPType) && 2027 "Index type does not match the Data Layout preferences"); 2028 2029 bool NSW; 2030 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2031 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2032 // If the multiplication NewIdx * Scale may overflow then the new 2033 // GEP may not be "inbounds". 2034 Type *IndTy = DL.getIndexType(GEPType); 2035 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2036 2037 Value *NewGEP = 2038 GEP.isInBounds() && NSW 2039 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2040 Off, GEP.getName()) 2041 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2042 GEP.getName()); 2043 // The NewGEP must be pointer typed, so must the old one -> BitCast 2044 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2045 GEPType); 2046 } 2047 } 2048 } 2049 } 2050 } 2051 2052 // addrspacecast between types is canonicalized as a bitcast, then an 2053 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2054 // through the addrspacecast. 2055 Value *ASCStrippedPtrOp = PtrOp; 2056 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2057 // X = bitcast A addrspace(1)* to B addrspace(1)* 2058 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2059 // Z = gep Y, <...constant indices...> 2060 // Into an addrspacecasted GEP of the struct. 2061 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2062 ASCStrippedPtrOp = BC; 2063 } 2064 2065 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 2066 Value *SrcOp = BCI->getOperand(0); 2067 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2068 Type *SrcEltType = SrcType->getElementType(); 2069 2070 // GEP directly using the source operand if this GEP is accessing an element 2071 // of a bitcasted pointer to vector or array of the same dimensions: 2072 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2073 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2074 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy) { 2075 return ArrTy->getArrayElementType() == VecTy->getVectorElementType() && 2076 ArrTy->getArrayNumElements() == VecTy->getVectorNumElements(); 2077 }; 2078 if (GEP.getNumOperands() == 3 && 2079 ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() && 2080 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType)) || 2081 (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() && 2082 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType)))) { 2083 2084 // Create a new GEP here, as using `setOperand()` followed by 2085 // `setSourceElementType()` won't actually update the type of the 2086 // existing GEP Value. Causing issues if this Value is accessed when 2087 // constructing an AddrSpaceCastInst 2088 Value *NGEP = 2089 GEP.isInBounds() 2090 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}) 2091 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}); 2092 NGEP->takeName(&GEP); 2093 2094 // Preserve GEP address space to satisfy users 2095 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2096 return new AddrSpaceCastInst(NGEP, GEPType); 2097 2098 return replaceInstUsesWith(GEP, NGEP); 2099 } 2100 2101 // See if we can simplify: 2102 // X = bitcast A* to B* 2103 // Y = gep X, <...constant indices...> 2104 // into a gep of the original struct. This is important for SROA and alias 2105 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2106 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 2107 APInt Offset(OffsetBits, 0); 2108 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) { 2109 // If this GEP instruction doesn't move the pointer, just replace the GEP 2110 // with a bitcast of the real input to the dest type. 2111 if (!Offset) { 2112 // If the bitcast is of an allocation, and the allocation will be 2113 // converted to match the type of the cast, don't touch this. 2114 if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) { 2115 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2116 if (Instruction *I = visitBitCast(*BCI)) { 2117 if (I != BCI) { 2118 I->takeName(BCI); 2119 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2120 replaceInstUsesWith(*BCI, I); 2121 } 2122 return &GEP; 2123 } 2124 } 2125 2126 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2127 return new AddrSpaceCastInst(SrcOp, GEPType); 2128 return new BitCastInst(SrcOp, GEPType); 2129 } 2130 2131 // Otherwise, if the offset is non-zero, we need to find out if there is a 2132 // field at Offset in 'A's type. If so, we can pull the cast through the 2133 // GEP. 2134 SmallVector<Value*, 8> NewIndices; 2135 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2136 Value *NGEP = 2137 GEP.isInBounds() 2138 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) 2139 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); 2140 2141 if (NGEP->getType() == GEPType) 2142 return replaceInstUsesWith(GEP, NGEP); 2143 NGEP->takeName(&GEP); 2144 2145 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2146 return new AddrSpaceCastInst(NGEP, GEPType); 2147 return new BitCastInst(NGEP, GEPType); 2148 } 2149 } 2150 } 2151 2152 if (!GEP.isInBounds()) { 2153 unsigned IdxWidth = 2154 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2155 APInt BasePtrOffset(IdxWidth, 0); 2156 Value *UnderlyingPtrOp = 2157 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2158 BasePtrOffset); 2159 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2160 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2161 BasePtrOffset.isNonNegative()) { 2162 APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType())); 2163 if (BasePtrOffset.ule(AllocSize)) { 2164 return GetElementPtrInst::CreateInBounds( 2165 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1), 2166 GEP.getName()); 2167 } 2168 } 2169 } 2170 } 2171 2172 return nullptr; 2173 } 2174 2175 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 2176 Instruction *AI) { 2177 if (isa<ConstantPointerNull>(V)) 2178 return true; 2179 if (auto *LI = dyn_cast<LoadInst>(V)) 2180 return isa<GlobalVariable>(LI->getPointerOperand()); 2181 // Two distinct allocations will never be equal. 2182 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2183 // through bitcasts of V can cause 2184 // the result statement below to be true, even when AI and V (ex: 2185 // i8* ->i32* ->i8* of AI) are the same allocations. 2186 return isAllocLikeFn(V, TLI) && V != AI; 2187 } 2188 2189 static bool isAllocSiteRemovable(Instruction *AI, 2190 SmallVectorImpl<WeakTrackingVH> &Users, 2191 const TargetLibraryInfo *TLI) { 2192 SmallVector<Instruction*, 4> Worklist; 2193 Worklist.push_back(AI); 2194 2195 do { 2196 Instruction *PI = Worklist.pop_back_val(); 2197 for (User *U : PI->users()) { 2198 Instruction *I = cast<Instruction>(U); 2199 switch (I->getOpcode()) { 2200 default: 2201 // Give up the moment we see something we can't handle. 2202 return false; 2203 2204 case Instruction::AddrSpaceCast: 2205 case Instruction::BitCast: 2206 case Instruction::GetElementPtr: 2207 Users.emplace_back(I); 2208 Worklist.push_back(I); 2209 continue; 2210 2211 case Instruction::ICmp: { 2212 ICmpInst *ICI = cast<ICmpInst>(I); 2213 // We can fold eq/ne comparisons with null to false/true, respectively. 2214 // We also fold comparisons in some conditions provided the alloc has 2215 // not escaped (see isNeverEqualToUnescapedAlloc). 2216 if (!ICI->isEquality()) 2217 return false; 2218 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2219 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2220 return false; 2221 Users.emplace_back(I); 2222 continue; 2223 } 2224 2225 case Instruction::Call: 2226 // Ignore no-op and store intrinsics. 2227 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2228 switch (II->getIntrinsicID()) { 2229 default: 2230 return false; 2231 2232 case Intrinsic::memmove: 2233 case Intrinsic::memcpy: 2234 case Intrinsic::memset: { 2235 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2236 if (MI->isVolatile() || MI->getRawDest() != PI) 2237 return false; 2238 LLVM_FALLTHROUGH; 2239 } 2240 case Intrinsic::invariant_start: 2241 case Intrinsic::invariant_end: 2242 case Intrinsic::lifetime_start: 2243 case Intrinsic::lifetime_end: 2244 case Intrinsic::objectsize: 2245 Users.emplace_back(I); 2246 continue; 2247 } 2248 } 2249 2250 if (isFreeCall(I, TLI)) { 2251 Users.emplace_back(I); 2252 continue; 2253 } 2254 return false; 2255 2256 case Instruction::Store: { 2257 StoreInst *SI = cast<StoreInst>(I); 2258 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2259 return false; 2260 Users.emplace_back(I); 2261 continue; 2262 } 2263 } 2264 llvm_unreachable("missing a return?"); 2265 } 2266 } while (!Worklist.empty()); 2267 return true; 2268 } 2269 2270 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 2271 // If we have a malloc call which is only used in any amount of comparisons to 2272 // null and free calls, delete the calls and replace the comparisons with true 2273 // or false as appropriate. 2274 2275 // This is based on the principle that we can substitute our own allocation 2276 // function (which will never return null) rather than knowledge of the 2277 // specific function being called. In some sense this can change the permitted 2278 // outputs of a program (when we convert a malloc to an alloca, the fact that 2279 // the allocation is now on the stack is potentially visible, for example), 2280 // but we believe in a permissible manner. 2281 SmallVector<WeakTrackingVH, 64> Users; 2282 2283 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2284 // before each store. 2285 TinyPtrVector<DbgVariableIntrinsic *> DIIs; 2286 std::unique_ptr<DIBuilder> DIB; 2287 if (isa<AllocaInst>(MI)) { 2288 DIIs = FindDbgAddrUses(&MI); 2289 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2290 } 2291 2292 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2293 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2294 // Lowering all @llvm.objectsize calls first because they may 2295 // use a bitcast/GEP of the alloca we are removing. 2296 if (!Users[i]) 2297 continue; 2298 2299 Instruction *I = cast<Instruction>(&*Users[i]); 2300 2301 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2302 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2303 Value *Result = 2304 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); 2305 replaceInstUsesWith(*I, Result); 2306 eraseInstFromFunction(*I); 2307 Users[i] = nullptr; // Skip examining in the next loop. 2308 } 2309 } 2310 } 2311 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2312 if (!Users[i]) 2313 continue; 2314 2315 Instruction *I = cast<Instruction>(&*Users[i]); 2316 2317 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2318 replaceInstUsesWith(*C, 2319 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2320 C->isFalseWhenEqual())); 2321 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) || 2322 isa<AddrSpaceCastInst>(I)) { 2323 replaceInstUsesWith(*I, UndefValue::get(I->getType())); 2324 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2325 for (auto *DII : DIIs) 2326 ConvertDebugDeclareToDebugValue(DII, SI, *DIB); 2327 } 2328 eraseInstFromFunction(*I); 2329 } 2330 2331 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2332 // Replace invoke with a NOP intrinsic to maintain the original CFG 2333 Module *M = II->getModule(); 2334 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2335 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2336 None, "", II->getParent()); 2337 } 2338 2339 for (auto *DII : DIIs) 2340 eraseInstFromFunction(*DII); 2341 2342 return eraseInstFromFunction(MI); 2343 } 2344 return nullptr; 2345 } 2346 2347 /// Move the call to free before a NULL test. 2348 /// 2349 /// Check if this free is accessed after its argument has been test 2350 /// against NULL (property 0). 2351 /// If yes, it is legal to move this call in its predecessor block. 2352 /// 2353 /// The move is performed only if the block containing the call to free 2354 /// will be removed, i.e.: 2355 /// 1. it has only one predecessor P, and P has two successors 2356 /// 2. it contains the call, noops, and an unconditional branch 2357 /// 3. its successor is the same as its predecessor's successor 2358 /// 2359 /// The profitability is out-of concern here and this function should 2360 /// be called only if the caller knows this transformation would be 2361 /// profitable (e.g., for code size). 2362 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2363 const DataLayout &DL) { 2364 Value *Op = FI.getArgOperand(0); 2365 BasicBlock *FreeInstrBB = FI.getParent(); 2366 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2367 2368 // Validate part of constraint #1: Only one predecessor 2369 // FIXME: We can extend the number of predecessor, but in that case, we 2370 // would duplicate the call to free in each predecessor and it may 2371 // not be profitable even for code size. 2372 if (!PredBB) 2373 return nullptr; 2374 2375 // Validate constraint #2: Does this block contains only the call to 2376 // free, noops, and an unconditional branch? 2377 BasicBlock *SuccBB; 2378 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2379 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2380 return nullptr; 2381 2382 // If there are only 2 instructions in the block, at this point, 2383 // this is the call to free and unconditional. 2384 // If there are more than 2 instructions, check that they are noops 2385 // i.e., they won't hurt the performance of the generated code. 2386 if (FreeInstrBB->size() != 2) { 2387 for (const Instruction &Inst : *FreeInstrBB) { 2388 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2389 continue; 2390 auto *Cast = dyn_cast<CastInst>(&Inst); 2391 if (!Cast || !Cast->isNoopCast(DL)) 2392 return nullptr; 2393 } 2394 } 2395 // Validate the rest of constraint #1 by matching on the pred branch. 2396 Instruction *TI = PredBB->getTerminator(); 2397 BasicBlock *TrueBB, *FalseBB; 2398 ICmpInst::Predicate Pred; 2399 if (!match(TI, m_Br(m_ICmp(Pred, 2400 m_CombineOr(m_Specific(Op), 2401 m_Specific(Op->stripPointerCasts())), 2402 m_Zero()), 2403 TrueBB, FalseBB))) 2404 return nullptr; 2405 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2406 return nullptr; 2407 2408 // Validate constraint #3: Ensure the null case just falls through. 2409 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2410 return nullptr; 2411 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2412 "Broken CFG: missing edge from predecessor to successor"); 2413 2414 // At this point, we know that everything in FreeInstrBB can be moved 2415 // before TI. 2416 for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end(); 2417 It != End;) { 2418 Instruction &Instr = *It++; 2419 if (&Instr == FreeInstrBBTerminator) 2420 break; 2421 Instr.moveBefore(TI); 2422 } 2423 assert(FreeInstrBB->size() == 1 && 2424 "Only the branch instruction should remain"); 2425 return &FI; 2426 } 2427 2428 Instruction *InstCombiner::visitFree(CallInst &FI) { 2429 Value *Op = FI.getArgOperand(0); 2430 2431 // free undef -> unreachable. 2432 if (isa<UndefValue>(Op)) { 2433 // Insert a new store to null because we cannot modify the CFG here. 2434 Builder.CreateStore(ConstantInt::getTrue(FI.getContext()), 2435 UndefValue::get(Type::getInt1PtrTy(FI.getContext()))); 2436 return eraseInstFromFunction(FI); 2437 } 2438 2439 // If we have 'free null' delete the instruction. This can happen in stl code 2440 // when lots of inlining happens. 2441 if (isa<ConstantPointerNull>(Op)) 2442 return eraseInstFromFunction(FI); 2443 2444 // If we optimize for code size, try to move the call to free before the null 2445 // test so that simplify cfg can remove the empty block and dead code 2446 // elimination the branch. I.e., helps to turn something like: 2447 // if (foo) free(foo); 2448 // into 2449 // free(foo); 2450 if (MinimizeSize) 2451 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 2452 return I; 2453 2454 return nullptr; 2455 } 2456 2457 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { 2458 if (RI.getNumOperands() == 0) // ret void 2459 return nullptr; 2460 2461 Value *ResultOp = RI.getOperand(0); 2462 Type *VTy = ResultOp->getType(); 2463 if (!VTy->isIntegerTy()) 2464 return nullptr; 2465 2466 // There might be assume intrinsics dominating this return that completely 2467 // determine the value. If so, constant fold it. 2468 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2469 if (Known.isConstant()) 2470 RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant())); 2471 2472 return nullptr; 2473 } 2474 2475 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 2476 // Change br (not X), label True, label False to: br X, label False, True 2477 Value *X = nullptr; 2478 BasicBlock *TrueDest; 2479 BasicBlock *FalseDest; 2480 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && 2481 !isa<Constant>(X)) { 2482 // Swap Destinations and condition... 2483 BI.setCondition(X); 2484 BI.swapSuccessors(); 2485 return &BI; 2486 } 2487 2488 // If the condition is irrelevant, remove the use so that other 2489 // transforms on the condition become more effective. 2490 if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) && 2491 BI.getSuccessor(0) == BI.getSuccessor(1)) { 2492 BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType())); 2493 return &BI; 2494 } 2495 2496 // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq. 2497 CmpInst::Predicate Pred; 2498 if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), TrueDest, 2499 FalseDest)) && 2500 !isCanonicalPredicate(Pred)) { 2501 // Swap destinations and condition. 2502 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 2503 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2504 BI.swapSuccessors(); 2505 Worklist.Add(Cond); 2506 return &BI; 2507 } 2508 2509 return nullptr; 2510 } 2511 2512 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 2513 Value *Cond = SI.getCondition(); 2514 Value *Op0; 2515 ConstantInt *AddRHS; 2516 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 2517 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2518 for (auto Case : SI.cases()) { 2519 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 2520 assert(isa<ConstantInt>(NewCase) && 2521 "Result of expression should be constant"); 2522 Case.setValue(cast<ConstantInt>(NewCase)); 2523 } 2524 SI.setCondition(Op0); 2525 return &SI; 2526 } 2527 2528 KnownBits Known = computeKnownBits(Cond, 0, &SI); 2529 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 2530 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 2531 2532 // Compute the number of leading bits we can ignore. 2533 // TODO: A better way to determine this would use ComputeNumSignBits(). 2534 for (auto &C : SI.cases()) { 2535 LeadingKnownZeros = std::min( 2536 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2537 LeadingKnownOnes = std::min( 2538 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2539 } 2540 2541 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 2542 2543 // Shrink the condition operand if the new type is smaller than the old type. 2544 // But do not shrink to a non-standard type, because backend can't generate 2545 // good code for that yet. 2546 // TODO: We can make it aggressive again after fixing PR39569. 2547 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 2548 shouldChangeType(Known.getBitWidth(), NewWidth)) { 2549 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2550 Builder.SetInsertPoint(&SI); 2551 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 2552 SI.setCondition(NewCond); 2553 2554 for (auto Case : SI.cases()) { 2555 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 2556 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 2557 } 2558 return &SI; 2559 } 2560 2561 return nullptr; 2562 } 2563 2564 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 2565 Value *Agg = EV.getAggregateOperand(); 2566 2567 if (!EV.hasIndices()) 2568 return replaceInstUsesWith(EV, Agg); 2569 2570 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 2571 SQ.getWithInstruction(&EV))) 2572 return replaceInstUsesWith(EV, V); 2573 2574 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 2575 // We're extracting from an insertvalue instruction, compare the indices 2576 const unsigned *exti, *exte, *insi, *inse; 2577 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 2578 exte = EV.idx_end(), inse = IV->idx_end(); 2579 exti != exte && insi != inse; 2580 ++exti, ++insi) { 2581 if (*insi != *exti) 2582 // The insert and extract both reference distinctly different elements. 2583 // This means the extract is not influenced by the insert, and we can 2584 // replace the aggregate operand of the extract with the aggregate 2585 // operand of the insert. i.e., replace 2586 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2587 // %E = extractvalue { i32, { i32 } } %I, 0 2588 // with 2589 // %E = extractvalue { i32, { i32 } } %A, 0 2590 return ExtractValueInst::Create(IV->getAggregateOperand(), 2591 EV.getIndices()); 2592 } 2593 if (exti == exte && insi == inse) 2594 // Both iterators are at the end: Index lists are identical. Replace 2595 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2596 // %C = extractvalue { i32, { i32 } } %B, 1, 0 2597 // with "i32 42" 2598 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 2599 if (exti == exte) { 2600 // The extract list is a prefix of the insert list. i.e. replace 2601 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2602 // %E = extractvalue { i32, { i32 } } %I, 1 2603 // with 2604 // %X = extractvalue { i32, { i32 } } %A, 1 2605 // %E = insertvalue { i32 } %X, i32 42, 0 2606 // by switching the order of the insert and extract (though the 2607 // insertvalue should be left in, since it may have other uses). 2608 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 2609 EV.getIndices()); 2610 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 2611 makeArrayRef(insi, inse)); 2612 } 2613 if (insi == inse) 2614 // The insert list is a prefix of the extract list 2615 // We can simply remove the common indices from the extract and make it 2616 // operate on the inserted value instead of the insertvalue result. 2617 // i.e., replace 2618 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2619 // %E = extractvalue { i32, { i32 } } %I, 1, 0 2620 // with 2621 // %E extractvalue { i32 } { i32 42 }, 0 2622 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 2623 makeArrayRef(exti, exte)); 2624 } 2625 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { 2626 // We're extracting from an intrinsic, see if we're the only user, which 2627 // allows us to simplify multiple result intrinsics to simpler things that 2628 // just get one value. 2629 if (II->hasOneUse()) { 2630 // Check if we're grabbing the overflow bit or the result of a 'with 2631 // overflow' intrinsic. If it's the latter we can remove the intrinsic 2632 // and replace it with a traditional binary instruction. 2633 switch (II->getIntrinsicID()) { 2634 case Intrinsic::uadd_with_overflow: 2635 case Intrinsic::sadd_with_overflow: 2636 if (*EV.idx_begin() == 0) { // Normal result. 2637 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2638 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2639 eraseInstFromFunction(*II); 2640 return BinaryOperator::CreateAdd(LHS, RHS); 2641 } 2642 2643 // If the normal result of the add is dead, and the RHS is a constant, 2644 // we can transform this into a range comparison. 2645 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 2646 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) 2647 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1))) 2648 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0), 2649 ConstantExpr::getNot(CI)); 2650 break; 2651 case Intrinsic::usub_with_overflow: 2652 case Intrinsic::ssub_with_overflow: 2653 if (*EV.idx_begin() == 0) { // Normal result. 2654 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2655 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2656 eraseInstFromFunction(*II); 2657 return BinaryOperator::CreateSub(LHS, RHS); 2658 } 2659 break; 2660 case Intrinsic::umul_with_overflow: 2661 case Intrinsic::smul_with_overflow: 2662 if (*EV.idx_begin() == 0) { // Normal result. 2663 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2664 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2665 eraseInstFromFunction(*II); 2666 return BinaryOperator::CreateMul(LHS, RHS); 2667 } 2668 break; 2669 default: 2670 break; 2671 } 2672 } 2673 } 2674 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2675 // If the (non-volatile) load only has one use, we can rewrite this to a 2676 // load from a GEP. This reduces the size of the load. If a load is used 2677 // only by extractvalue instructions then this either must have been 2678 // optimized before, or it is a struct with padding, in which case we 2679 // don't want to do the transformation as it loses padding knowledge. 2680 if (L->isSimple() && L->hasOneUse()) { 2681 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2682 SmallVector<Value*, 4> Indices; 2683 // Prefix an i32 0 since we need the first element. 2684 Indices.push_back(Builder.getInt32(0)); 2685 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2686 I != E; ++I) 2687 Indices.push_back(Builder.getInt32(*I)); 2688 2689 // We need to insert these at the location of the old load, not at that of 2690 // the extractvalue. 2691 Builder.SetInsertPoint(L); 2692 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 2693 L->getPointerOperand(), Indices); 2694 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 2695 // Whatever aliasing information we had for the orignal load must also 2696 // hold for the smaller load, so propagate the annotations. 2697 AAMDNodes Nodes; 2698 L->getAAMetadata(Nodes); 2699 NL->setAAMetadata(Nodes); 2700 // Returning the load directly will cause the main loop to insert it in 2701 // the wrong spot, so use replaceInstUsesWith(). 2702 return replaceInstUsesWith(EV, NL); 2703 } 2704 // We could simplify extracts from other values. Note that nested extracts may 2705 // already be simplified implicitly by the above: extract (extract (insert) ) 2706 // will be translated into extract ( insert ( extract ) ) first and then just 2707 // the value inserted, if appropriate. Similarly for extracts from single-use 2708 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2709 // and if again single-use then via load (gep (gep)) to load (gep). 2710 // However, double extracts from e.g. function arguments or return values 2711 // aren't handled yet. 2712 return nullptr; 2713 } 2714 2715 /// Return 'true' if the given typeinfo will match anything. 2716 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 2717 switch (Personality) { 2718 case EHPersonality::GNU_C: 2719 case EHPersonality::GNU_C_SjLj: 2720 case EHPersonality::Rust: 2721 // The GCC C EH and Rust personality only exists to support cleanups, so 2722 // it's not clear what the semantics of catch clauses are. 2723 return false; 2724 case EHPersonality::Unknown: 2725 return false; 2726 case EHPersonality::GNU_Ada: 2727 // While __gnat_all_others_value will match any Ada exception, it doesn't 2728 // match foreign exceptions (or didn't, before gcc-4.7). 2729 return false; 2730 case EHPersonality::GNU_CXX: 2731 case EHPersonality::GNU_CXX_SjLj: 2732 case EHPersonality::GNU_ObjC: 2733 case EHPersonality::MSVC_X86SEH: 2734 case EHPersonality::MSVC_Win64SEH: 2735 case EHPersonality::MSVC_CXX: 2736 case EHPersonality::CoreCLR: 2737 case EHPersonality::Wasm_CXX: 2738 return TypeInfo->isNullValue(); 2739 } 2740 llvm_unreachable("invalid enum"); 2741 } 2742 2743 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2744 return 2745 cast<ArrayType>(LHS->getType())->getNumElements() 2746 < 2747 cast<ArrayType>(RHS->getType())->getNumElements(); 2748 } 2749 2750 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2751 // The logic here should be correct for any real-world personality function. 2752 // However if that turns out not to be true, the offending logic can always 2753 // be conditioned on the personality function, like the catch-all logic is. 2754 EHPersonality Personality = 2755 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 2756 2757 // Simplify the list of clauses, eg by removing repeated catch clauses 2758 // (these are often created by inlining). 2759 bool MakeNewInstruction = false; // If true, recreate using the following: 2760 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2761 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2762 2763 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 2764 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 2765 bool isLastClause = i + 1 == e; 2766 if (LI.isCatch(i)) { 2767 // A catch clause. 2768 Constant *CatchClause = LI.getClause(i); 2769 Constant *TypeInfo = CatchClause->stripPointerCasts(); 2770 2771 // If we already saw this clause, there is no point in having a second 2772 // copy of it. 2773 if (AlreadyCaught.insert(TypeInfo).second) { 2774 // This catch clause was not already seen. 2775 NewClauses.push_back(CatchClause); 2776 } else { 2777 // Repeated catch clause - drop the redundant copy. 2778 MakeNewInstruction = true; 2779 } 2780 2781 // If this is a catch-all then there is no point in keeping any following 2782 // clauses or marking the landingpad as having a cleanup. 2783 if (isCatchAll(Personality, TypeInfo)) { 2784 if (!isLastClause) 2785 MakeNewInstruction = true; 2786 CleanupFlag = false; 2787 break; 2788 } 2789 } else { 2790 // A filter clause. If any of the filter elements were already caught 2791 // then they can be dropped from the filter. It is tempting to try to 2792 // exploit the filter further by saying that any typeinfo that does not 2793 // occur in the filter can't be caught later (and thus can be dropped). 2794 // However this would be wrong, since typeinfos can match without being 2795 // equal (for example if one represents a C++ class, and the other some 2796 // class derived from it). 2797 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 2798 Constant *FilterClause = LI.getClause(i); 2799 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 2800 unsigned NumTypeInfos = FilterType->getNumElements(); 2801 2802 // An empty filter catches everything, so there is no point in keeping any 2803 // following clauses or marking the landingpad as having a cleanup. By 2804 // dealing with this case here the following code is made a bit simpler. 2805 if (!NumTypeInfos) { 2806 NewClauses.push_back(FilterClause); 2807 if (!isLastClause) 2808 MakeNewInstruction = true; 2809 CleanupFlag = false; 2810 break; 2811 } 2812 2813 bool MakeNewFilter = false; // If true, make a new filter. 2814 SmallVector<Constant *, 16> NewFilterElts; // New elements. 2815 if (isa<ConstantAggregateZero>(FilterClause)) { 2816 // Not an empty filter - it contains at least one null typeinfo. 2817 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 2818 Constant *TypeInfo = 2819 Constant::getNullValue(FilterType->getElementType()); 2820 // If this typeinfo is a catch-all then the filter can never match. 2821 if (isCatchAll(Personality, TypeInfo)) { 2822 // Throw the filter away. 2823 MakeNewInstruction = true; 2824 continue; 2825 } 2826 2827 // There is no point in having multiple copies of this typeinfo, so 2828 // discard all but the first copy if there is more than one. 2829 NewFilterElts.push_back(TypeInfo); 2830 if (NumTypeInfos > 1) 2831 MakeNewFilter = true; 2832 } else { 2833 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 2834 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 2835 NewFilterElts.reserve(NumTypeInfos); 2836 2837 // Remove any filter elements that were already caught or that already 2838 // occurred in the filter. While there, see if any of the elements are 2839 // catch-alls. If so, the filter can be discarded. 2840 bool SawCatchAll = false; 2841 for (unsigned j = 0; j != NumTypeInfos; ++j) { 2842 Constant *Elt = Filter->getOperand(j); 2843 Constant *TypeInfo = Elt->stripPointerCasts(); 2844 if (isCatchAll(Personality, TypeInfo)) { 2845 // This element is a catch-all. Bail out, noting this fact. 2846 SawCatchAll = true; 2847 break; 2848 } 2849 2850 // Even if we've seen a type in a catch clause, we don't want to 2851 // remove it from the filter. An unexpected type handler may be 2852 // set up for a call site which throws an exception of the same 2853 // type caught. In order for the exception thrown by the unexpected 2854 // handler to propagate correctly, the filter must be correctly 2855 // described for the call site. 2856 // 2857 // Example: 2858 // 2859 // void unexpected() { throw 1;} 2860 // void foo() throw (int) { 2861 // std::set_unexpected(unexpected); 2862 // try { 2863 // throw 2.0; 2864 // } catch (int i) {} 2865 // } 2866 2867 // There is no point in having multiple copies of the same typeinfo in 2868 // a filter, so only add it if we didn't already. 2869 if (SeenInFilter.insert(TypeInfo).second) 2870 NewFilterElts.push_back(cast<Constant>(Elt)); 2871 } 2872 // A filter containing a catch-all cannot match anything by definition. 2873 if (SawCatchAll) { 2874 // Throw the filter away. 2875 MakeNewInstruction = true; 2876 continue; 2877 } 2878 2879 // If we dropped something from the filter, make a new one. 2880 if (NewFilterElts.size() < NumTypeInfos) 2881 MakeNewFilter = true; 2882 } 2883 if (MakeNewFilter) { 2884 FilterType = ArrayType::get(FilterType->getElementType(), 2885 NewFilterElts.size()); 2886 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 2887 MakeNewInstruction = true; 2888 } 2889 2890 NewClauses.push_back(FilterClause); 2891 2892 // If the new filter is empty then it will catch everything so there is 2893 // no point in keeping any following clauses or marking the landingpad 2894 // as having a cleanup. The case of the original filter being empty was 2895 // already handled above. 2896 if (MakeNewFilter && !NewFilterElts.size()) { 2897 assert(MakeNewInstruction && "New filter but not a new instruction!"); 2898 CleanupFlag = false; 2899 break; 2900 } 2901 } 2902 } 2903 2904 // If several filters occur in a row then reorder them so that the shortest 2905 // filters come first (those with the smallest number of elements). This is 2906 // advantageous because shorter filters are more likely to match, speeding up 2907 // unwinding, but mostly because it increases the effectiveness of the other 2908 // filter optimizations below. 2909 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 2910 unsigned j; 2911 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 2912 for (j = i; j != e; ++j) 2913 if (!isa<ArrayType>(NewClauses[j]->getType())) 2914 break; 2915 2916 // Check whether the filters are already sorted by length. We need to know 2917 // if sorting them is actually going to do anything so that we only make a 2918 // new landingpad instruction if it does. 2919 for (unsigned k = i; k + 1 < j; ++k) 2920 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 2921 // Not sorted, so sort the filters now. Doing an unstable sort would be 2922 // correct too but reordering filters pointlessly might confuse users. 2923 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 2924 shorter_filter); 2925 MakeNewInstruction = true; 2926 break; 2927 } 2928 2929 // Look for the next batch of filters. 2930 i = j + 1; 2931 } 2932 2933 // If typeinfos matched if and only if equal, then the elements of a filter L 2934 // that occurs later than a filter F could be replaced by the intersection of 2935 // the elements of F and L. In reality two typeinfos can match without being 2936 // equal (for example if one represents a C++ class, and the other some class 2937 // derived from it) so it would be wrong to perform this transform in general. 2938 // However the transform is correct and useful if F is a subset of L. In that 2939 // case L can be replaced by F, and thus removed altogether since repeating a 2940 // filter is pointless. So here we look at all pairs of filters F and L where 2941 // L follows F in the list of clauses, and remove L if every element of F is 2942 // an element of L. This can occur when inlining C++ functions with exception 2943 // specifications. 2944 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 2945 // Examine each filter in turn. 2946 Value *Filter = NewClauses[i]; 2947 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 2948 if (!FTy) 2949 // Not a filter - skip it. 2950 continue; 2951 unsigned FElts = FTy->getNumElements(); 2952 // Examine each filter following this one. Doing this backwards means that 2953 // we don't have to worry about filters disappearing under us when removed. 2954 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 2955 Value *LFilter = NewClauses[j]; 2956 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 2957 if (!LTy) 2958 // Not a filter - skip it. 2959 continue; 2960 // If Filter is a subset of LFilter, i.e. every element of Filter is also 2961 // an element of LFilter, then discard LFilter. 2962 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 2963 // If Filter is empty then it is a subset of LFilter. 2964 if (!FElts) { 2965 // Discard LFilter. 2966 NewClauses.erase(J); 2967 MakeNewInstruction = true; 2968 // Move on to the next filter. 2969 continue; 2970 } 2971 unsigned LElts = LTy->getNumElements(); 2972 // If Filter is longer than LFilter then it cannot be a subset of it. 2973 if (FElts > LElts) 2974 // Move on to the next filter. 2975 continue; 2976 // At this point we know that LFilter has at least one element. 2977 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 2978 // Filter is a subset of LFilter iff Filter contains only zeros (as we 2979 // already know that Filter is not longer than LFilter). 2980 if (isa<ConstantAggregateZero>(Filter)) { 2981 assert(FElts <= LElts && "Should have handled this case earlier!"); 2982 // Discard LFilter. 2983 NewClauses.erase(J); 2984 MakeNewInstruction = true; 2985 } 2986 // Move on to the next filter. 2987 continue; 2988 } 2989 ConstantArray *LArray = cast<ConstantArray>(LFilter); 2990 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 2991 // Since Filter is non-empty and contains only zeros, it is a subset of 2992 // LFilter iff LFilter contains a zero. 2993 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 2994 for (unsigned l = 0; l != LElts; ++l) 2995 if (LArray->getOperand(l)->isNullValue()) { 2996 // LFilter contains a zero - discard it. 2997 NewClauses.erase(J); 2998 MakeNewInstruction = true; 2999 break; 3000 } 3001 // Move on to the next filter. 3002 continue; 3003 } 3004 // At this point we know that both filters are ConstantArrays. Loop over 3005 // operands to see whether every element of Filter is also an element of 3006 // LFilter. Since filters tend to be short this is probably faster than 3007 // using a method that scales nicely. 3008 ConstantArray *FArray = cast<ConstantArray>(Filter); 3009 bool AllFound = true; 3010 for (unsigned f = 0; f != FElts; ++f) { 3011 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3012 AllFound = false; 3013 for (unsigned l = 0; l != LElts; ++l) { 3014 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3015 if (LTypeInfo == FTypeInfo) { 3016 AllFound = true; 3017 break; 3018 } 3019 } 3020 if (!AllFound) 3021 break; 3022 } 3023 if (AllFound) { 3024 // Discard LFilter. 3025 NewClauses.erase(J); 3026 MakeNewInstruction = true; 3027 } 3028 // Move on to the next filter. 3029 } 3030 } 3031 3032 // If we changed any of the clauses, replace the old landingpad instruction 3033 // with a new one. 3034 if (MakeNewInstruction) { 3035 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3036 NewClauses.size()); 3037 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3038 NLI->addClause(NewClauses[i]); 3039 // A landing pad with no clauses must have the cleanup flag set. It is 3040 // theoretically possible, though highly unlikely, that we eliminated all 3041 // clauses. If so, force the cleanup flag to true. 3042 if (NewClauses.empty()) 3043 CleanupFlag = true; 3044 NLI->setCleanup(CleanupFlag); 3045 return NLI; 3046 } 3047 3048 // Even if none of the clauses changed, we may nonetheless have understood 3049 // that the cleanup flag is pointless. Clear it if so. 3050 if (LI.isCleanup() != CleanupFlag) { 3051 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3052 LI.setCleanup(CleanupFlag); 3053 return &LI; 3054 } 3055 3056 return nullptr; 3057 } 3058 3059 /// Try to move the specified instruction from its current block into the 3060 /// beginning of DestBlock, which can only happen if it's safe to move the 3061 /// instruction past all of the instructions between it and the end of its 3062 /// block. 3063 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 3064 assert(I->hasOneUse() && "Invariants didn't hold!"); 3065 BasicBlock *SrcBlock = I->getParent(); 3066 3067 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3068 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 3069 I->isTerminator()) 3070 return false; 3071 3072 // Do not sink static or dynamic alloca instructions. Static allocas must 3073 // remain in the entry block, and dynamic allocas must not be sunk in between 3074 // a stacksave / stackrestore pair, which would incorrectly shorten its 3075 // lifetime. 3076 if (isa<AllocaInst>(I)) 3077 return false; 3078 3079 // Do not sink into catchswitch blocks. 3080 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 3081 return false; 3082 3083 // Do not sink convergent call instructions. 3084 if (auto *CI = dyn_cast<CallInst>(I)) { 3085 if (CI->isConvergent()) 3086 return false; 3087 } 3088 // We can only sink load instructions if there is nothing between the load and 3089 // the end of block that could change the value. 3090 if (I->mayReadFromMemory()) { 3091 for (BasicBlock::iterator Scan = I->getIterator(), 3092 E = I->getParent()->end(); 3093 Scan != E; ++Scan) 3094 if (Scan->mayWriteToMemory()) 3095 return false; 3096 } 3097 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 3098 I->moveBefore(&*InsertPos); 3099 ++NumSunkInst; 3100 3101 // Also sink all related debug uses from the source basic block. Otherwise we 3102 // get debug use before the def. 3103 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 3104 findDbgUsers(DbgUsers, I); 3105 for (auto *DII : DbgUsers) { 3106 if (DII->getParent() == SrcBlock) { 3107 DII->moveBefore(&*InsertPos); 3108 LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n'); 3109 } 3110 } 3111 return true; 3112 } 3113 3114 bool InstCombiner::run() { 3115 while (!Worklist.isEmpty()) { 3116 Instruction *I = Worklist.RemoveOne(); 3117 if (I == nullptr) continue; // skip null values. 3118 3119 // Check to see if we can DCE the instruction. 3120 if (isInstructionTriviallyDead(I, &TLI)) { 3121 LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); 3122 eraseInstFromFunction(*I); 3123 ++NumDeadInst; 3124 MadeIRChange = true; 3125 continue; 3126 } 3127 3128 if (!DebugCounter::shouldExecute(VisitCounter)) 3129 continue; 3130 3131 // Instruction isn't dead, see if we can constant propagate it. 3132 if (!I->use_empty() && 3133 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 3134 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 3135 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 3136 << '\n'); 3137 3138 // Add operands to the worklist. 3139 replaceInstUsesWith(*I, C); 3140 ++NumConstProp; 3141 if (isInstructionTriviallyDead(I, &TLI)) 3142 eraseInstFromFunction(*I); 3143 MadeIRChange = true; 3144 continue; 3145 } 3146 } 3147 3148 // In general, it is possible for computeKnownBits to determine all bits in 3149 // a value even when the operands are not all constants. 3150 Type *Ty = I->getType(); 3151 if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) { 3152 KnownBits Known = computeKnownBits(I, /*Depth*/0, I); 3153 if (Known.isConstant()) { 3154 Constant *C = ConstantInt::get(Ty, Known.getConstant()); 3155 LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C 3156 << " from: " << *I << '\n'); 3157 3158 // Add operands to the worklist. 3159 replaceInstUsesWith(*I, C); 3160 ++NumConstProp; 3161 if (isInstructionTriviallyDead(I, &TLI)) 3162 eraseInstFromFunction(*I); 3163 MadeIRChange = true; 3164 continue; 3165 } 3166 } 3167 3168 // See if we can trivially sink this instruction to a successor basic block. 3169 if (EnableCodeSinking && I->hasOneUse()) { 3170 BasicBlock *BB = I->getParent(); 3171 Instruction *UserInst = cast<Instruction>(*I->user_begin()); 3172 BasicBlock *UserParent; 3173 3174 // Get the block the use occurs in. 3175 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 3176 UserParent = PN->getIncomingBlock(*I->use_begin()); 3177 else 3178 UserParent = UserInst->getParent(); 3179 3180 if (UserParent != BB) { 3181 bool UserIsSuccessor = false; 3182 // See if the user is one of our successors. 3183 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 3184 if (*SI == UserParent) { 3185 UserIsSuccessor = true; 3186 break; 3187 } 3188 3189 // If the user is one of our immediate successors, and if that successor 3190 // only has us as a predecessors (we'd have to split the critical edge 3191 // otherwise), we can keep going. 3192 if (UserIsSuccessor && UserParent->getUniquePredecessor()) { 3193 // Okay, the CFG is simple enough, try to sink this instruction. 3194 if (TryToSinkInstruction(I, UserParent)) { 3195 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3196 MadeIRChange = true; 3197 // We'll add uses of the sunk instruction below, but since sinking 3198 // can expose opportunities for it's *operands* add them to the 3199 // worklist 3200 for (Use &U : I->operands()) 3201 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3202 Worklist.Add(OpI); 3203 } 3204 } 3205 } 3206 } 3207 3208 // Now that we have an instruction, try combining it to simplify it. 3209 Builder.SetInsertPoint(I); 3210 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 3211 3212 #ifndef NDEBUG 3213 std::string OrigI; 3214 #endif 3215 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 3216 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 3217 3218 if (Instruction *Result = visit(*I)) { 3219 ++NumCombined; 3220 // Should we replace the old instruction with a new one? 3221 if (Result != I) { 3222 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 3223 << " New = " << *Result << '\n'); 3224 3225 if (I->getDebugLoc()) 3226 Result->setDebugLoc(I->getDebugLoc()); 3227 // Everything uses the new instruction now. 3228 I->replaceAllUsesWith(Result); 3229 3230 // Move the name to the new instruction first. 3231 Result->takeName(I); 3232 3233 // Push the new instruction and any users onto the worklist. 3234 Worklist.AddUsersToWorkList(*Result); 3235 Worklist.Add(Result); 3236 3237 // Insert the new instruction into the basic block... 3238 BasicBlock *InstParent = I->getParent(); 3239 BasicBlock::iterator InsertPos = I->getIterator(); 3240 3241 // If we replace a PHI with something that isn't a PHI, fix up the 3242 // insertion point. 3243 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 3244 InsertPos = InstParent->getFirstInsertionPt(); 3245 3246 InstParent->getInstList().insert(InsertPos, Result); 3247 3248 eraseInstFromFunction(*I); 3249 } else { 3250 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3251 << " New = " << *I << '\n'); 3252 3253 // If the instruction was modified, it's possible that it is now dead. 3254 // if so, remove it. 3255 if (isInstructionTriviallyDead(I, &TLI)) { 3256 eraseInstFromFunction(*I); 3257 } else { 3258 Worklist.AddUsersToWorkList(*I); 3259 Worklist.Add(I); 3260 } 3261 } 3262 MadeIRChange = true; 3263 } 3264 } 3265 3266 Worklist.Zap(); 3267 return MadeIRChange; 3268 } 3269 3270 /// Walk the function in depth-first order, adding all reachable code to the 3271 /// worklist. 3272 /// 3273 /// This has a couple of tricks to make the code faster and more powerful. In 3274 /// particular, we constant fold and DCE instructions as we go, to avoid adding 3275 /// them to the worklist (this significantly speeds up instcombine on code where 3276 /// many instructions are dead or constant). Additionally, if we find a branch 3277 /// whose condition is a known constant, we only visit the reachable successors. 3278 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, 3279 SmallPtrSetImpl<BasicBlock *> &Visited, 3280 InstCombineWorklist &ICWorklist, 3281 const TargetLibraryInfo *TLI) { 3282 bool MadeIRChange = false; 3283 SmallVector<BasicBlock*, 256> Worklist; 3284 Worklist.push_back(BB); 3285 3286 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 3287 DenseMap<Constant *, Constant *> FoldedConstants; 3288 3289 do { 3290 BB = Worklist.pop_back_val(); 3291 3292 // We have now visited this block! If we've already been here, ignore it. 3293 if (!Visited.insert(BB).second) 3294 continue; 3295 3296 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 3297 Instruction *Inst = &*BBI++; 3298 3299 // DCE instruction if trivially dead. 3300 if (isInstructionTriviallyDead(Inst, TLI)) { 3301 ++NumDeadInst; 3302 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 3303 salvageDebugInfo(*Inst); 3304 Inst->eraseFromParent(); 3305 MadeIRChange = true; 3306 continue; 3307 } 3308 3309 // ConstantProp instruction if trivially constant. 3310 if (!Inst->use_empty() && 3311 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 3312 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 3313 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst 3314 << '\n'); 3315 Inst->replaceAllUsesWith(C); 3316 ++NumConstProp; 3317 if (isInstructionTriviallyDead(Inst, TLI)) 3318 Inst->eraseFromParent(); 3319 MadeIRChange = true; 3320 continue; 3321 } 3322 3323 // See if we can constant fold its operands. 3324 for (Use &U : Inst->operands()) { 3325 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 3326 continue; 3327 3328 auto *C = cast<Constant>(U); 3329 Constant *&FoldRes = FoldedConstants[C]; 3330 if (!FoldRes) 3331 FoldRes = ConstantFoldConstant(C, DL, TLI); 3332 if (!FoldRes) 3333 FoldRes = C; 3334 3335 if (FoldRes != C) { 3336 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst 3337 << "\n Old = " << *C 3338 << "\n New = " << *FoldRes << '\n'); 3339 U = FoldRes; 3340 MadeIRChange = true; 3341 } 3342 } 3343 3344 // Skip processing debug intrinsics in InstCombine. Processing these call instructions 3345 // consumes non-trivial amount of time and provides no value for the optimization. 3346 if (!isa<DbgInfoIntrinsic>(Inst)) 3347 InstrsForInstCombineWorklist.push_back(Inst); 3348 } 3349 3350 // Recursively visit successors. If this is a branch or switch on a 3351 // constant, only visit the reachable successor. 3352 Instruction *TI = BB->getTerminator(); 3353 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3354 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 3355 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 3356 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 3357 Worklist.push_back(ReachableBB); 3358 continue; 3359 } 3360 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3361 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 3362 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 3363 continue; 3364 } 3365 } 3366 3367 for (BasicBlock *SuccBB : successors(TI)) 3368 Worklist.push_back(SuccBB); 3369 } while (!Worklist.empty()); 3370 3371 // Once we've found all of the instructions to add to instcombine's worklist, 3372 // add them in reverse order. This way instcombine will visit from the top 3373 // of the function down. This jives well with the way that it adds all uses 3374 // of instructions to the worklist after doing a transformation, thus avoiding 3375 // some N^2 behavior in pathological cases. 3376 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist); 3377 3378 return MadeIRChange; 3379 } 3380 3381 /// Populate the IC worklist from a function, and prune any dead basic 3382 /// blocks discovered in the process. 3383 /// 3384 /// This also does basic constant propagation and other forward fixing to make 3385 /// the combiner itself run much faster. 3386 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 3387 TargetLibraryInfo *TLI, 3388 InstCombineWorklist &ICWorklist) { 3389 bool MadeIRChange = false; 3390 3391 // Do a depth-first traversal of the function, populate the worklist with 3392 // the reachable instructions. Ignore blocks that are not reachable. Keep 3393 // track of which blocks we visit. 3394 SmallPtrSet<BasicBlock *, 32> Visited; 3395 MadeIRChange |= 3396 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI); 3397 3398 // Do a quick scan over the function. If we find any blocks that are 3399 // unreachable, remove any instructions inside of them. This prevents 3400 // the instcombine code from having to deal with some bad special cases. 3401 for (BasicBlock &BB : F) { 3402 if (Visited.count(&BB)) 3403 continue; 3404 3405 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB); 3406 MadeIRChange |= NumDeadInstInBB > 0; 3407 NumDeadInst += NumDeadInstInBB; 3408 } 3409 3410 return MadeIRChange; 3411 } 3412 3413 static bool combineInstructionsOverFunction( 3414 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, 3415 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, 3416 OptimizationRemarkEmitter &ORE, bool ExpensiveCombines = true, 3417 LoopInfo *LI = nullptr) { 3418 auto &DL = F.getParent()->getDataLayout(); 3419 ExpensiveCombines |= EnableExpensiveCombines; 3420 3421 /// Builder - This is an IRBuilder that automatically inserts new 3422 /// instructions into the worklist when they are created. 3423 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 3424 F.getContext(), TargetFolder(DL), 3425 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 3426 Worklist.Add(I); 3427 if (match(I, m_Intrinsic<Intrinsic::assume>())) 3428 AC.registerAssumption(cast<CallInst>(I)); 3429 })); 3430 3431 // Lower dbg.declare intrinsics otherwise their value may be clobbered 3432 // by instcombiner. 3433 bool MadeIRChange = false; 3434 if (ShouldLowerDbgDeclare) 3435 MadeIRChange = LowerDbgDeclare(F); 3436 3437 // Iterate while there is work to do. 3438 int Iteration = 0; 3439 while (true) { 3440 ++Iteration; 3441 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 3442 << F.getName() << "\n"); 3443 3444 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 3445 3446 InstCombiner IC(Worklist, Builder, F.optForMinSize(), ExpensiveCombines, AA, 3447 AC, TLI, DT, ORE, DL, LI); 3448 IC.MaxArraySizeForCombine = MaxArraySize; 3449 3450 if (!IC.run()) 3451 break; 3452 } 3453 3454 return MadeIRChange || Iteration > 1; 3455 } 3456 3457 PreservedAnalyses InstCombinePass::run(Function &F, 3458 FunctionAnalysisManager &AM) { 3459 auto &AC = AM.getResult<AssumptionAnalysis>(F); 3460 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 3461 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 3462 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3463 3464 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 3465 3466 auto *AA = &AM.getResult<AAManager>(F); 3467 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, 3468 ExpensiveCombines, LI)) 3469 // No changes, all analyses are preserved. 3470 return PreservedAnalyses::all(); 3471 3472 // Mark all the analyses that instcombine updates as preserved. 3473 PreservedAnalyses PA; 3474 PA.preserveSet<CFGAnalyses>(); 3475 PA.preserve<AAManager>(); 3476 PA.preserve<BasicAA>(); 3477 PA.preserve<GlobalsAA>(); 3478 return PA; 3479 } 3480 3481 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 3482 AU.setPreservesCFG(); 3483 AU.addRequired<AAResultsWrapperPass>(); 3484 AU.addRequired<AssumptionCacheTracker>(); 3485 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3486 AU.addRequired<DominatorTreeWrapperPass>(); 3487 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3488 AU.addPreserved<DominatorTreeWrapperPass>(); 3489 AU.addPreserved<AAResultsWrapperPass>(); 3490 AU.addPreserved<BasicAAWrapperPass>(); 3491 AU.addPreserved<GlobalsAAWrapperPass>(); 3492 } 3493 3494 bool InstructionCombiningPass::runOnFunction(Function &F) { 3495 if (skipFunction(F)) 3496 return false; 3497 3498 // Required analyses. 3499 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3500 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3501 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 3502 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3503 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 3504 3505 // Optional analyses. 3506 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3507 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 3508 3509 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, 3510 ExpensiveCombines, LI); 3511 } 3512 3513 char InstructionCombiningPass::ID = 0; 3514 3515 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 3516 "Combine redundant instructions", false, false) 3517 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3518 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3519 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3520 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3521 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3522 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3523 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 3524 "Combine redundant instructions", false, false) 3525 3526 // Initialization Routines 3527 void llvm::initializeInstCombine(PassRegistry &Registry) { 3528 initializeInstructionCombiningPassPass(Registry); 3529 } 3530 3531 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 3532 initializeInstructionCombiningPassPass(*unwrap(R)); 3533 } 3534 3535 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) { 3536 return new InstructionCombiningPass(ExpensiveCombines); 3537 } 3538 3539 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 3540 unwrap(PM)->add(createInstructionCombiningPass()); 3541 } 3542