1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // InstructionCombining - Combine instructions to form fewer, simple 11 // instructions. This pass does not modify the CFG. This pass is where 12 // algebraic simplification happens. 13 // 14 // This pass combines things like: 15 // %Y = add i32 %X, 1 16 // %Z = add i32 %Y, 1 17 // into: 18 // %Z = add i32 %X, 2 19 // 20 // This is a simple worklist driven algorithm. 21 // 22 // This pass guarantees that the following canonicalizations are performed on 23 // the program: 24 // 1. If a binary operator has a constant operand, it is moved to the RHS 25 // 2. Bitwise operators with constant operands are always grouped so that 26 // shifts are performed first, then or's, then and's, then xor's. 27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 28 // 4. All cmp instructions on boolean values are replaced with logical ops 29 // 5. add X, X is represented as (X*2) => (X << 1) 30 // 6. Multiplies with a power-of-two constant argument are transformed into 31 // shifts. 32 // ... etc. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/Transforms/InstCombine/InstCombine.h" 37 #include "InstCombineInternal.h" 38 #include "llvm-c/Initialization.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/Statistic.h" 41 #include "llvm/ADT/StringSwitch.h" 42 #include "llvm/Analysis/AliasAnalysis.h" 43 #include "llvm/Analysis/AssumptionCache.h" 44 #include "llvm/Analysis/BasicAliasAnalysis.h" 45 #include "llvm/Analysis/CFG.h" 46 #include "llvm/Analysis/ConstantFolding.h" 47 #include "llvm/Analysis/EHPersonalities.h" 48 #include "llvm/Analysis/GlobalsModRef.h" 49 #include "llvm/Analysis/InstructionSimplify.h" 50 #include "llvm/Analysis/LoopInfo.h" 51 #include "llvm/Analysis/MemoryBuiltins.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/Analysis/ValueTracking.h" 54 #include "llvm/IR/CFG.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/GetElementPtrTypeIterator.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/ValueHandle.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Scalar.h" 65 #include "llvm/Transforms/Utils/Local.h" 66 #include <algorithm> 67 #include <climits> 68 using namespace llvm; 69 using namespace llvm::PatternMatch; 70 71 #define DEBUG_TYPE "instcombine" 72 73 STATISTIC(NumCombined , "Number of insts combined"); 74 STATISTIC(NumConstProp, "Number of constant folds"); 75 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 76 STATISTIC(NumSunkInst , "Number of instructions sunk"); 77 STATISTIC(NumExpand, "Number of expansions"); 78 STATISTIC(NumFactor , "Number of factorizations"); 79 STATISTIC(NumReassoc , "Number of reassociations"); 80 81 static cl::opt<bool> 82 EnableExpensiveCombines("expensive-combines", 83 cl::desc("Enable expensive instruction combines")); 84 85 Value *InstCombiner::EmitGEPOffset(User *GEP) { 86 return llvm::EmitGEPOffset(Builder, DL, GEP); 87 } 88 89 /// Return true if it is desirable to convert an integer computation from a 90 /// given bit width to a new bit width. 91 /// We don't want to convert from a legal to an illegal type for example or from 92 /// a smaller to a larger illegal type. 93 bool InstCombiner::ShouldChangeType(unsigned FromWidth, 94 unsigned ToWidth) const { 95 bool FromLegal = DL.isLegalInteger(FromWidth); 96 bool ToLegal = DL.isLegalInteger(ToWidth); 97 98 // If this is a legal integer from type, and the result would be an illegal 99 // type, don't do the transformation. 100 if (FromLegal && !ToLegal) 101 return false; 102 103 // Otherwise, if both are illegal, do not increase the size of the result. We 104 // do allow things like i160 -> i64, but not i64 -> i160. 105 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 106 return false; 107 108 return true; 109 } 110 111 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 112 /// We don't want to convert from a legal to an illegal type for example or from 113 /// a smaller to a larger illegal type. 114 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const { 115 assert(From->isIntegerTy() && To->isIntegerTy()); 116 117 unsigned FromWidth = From->getPrimitiveSizeInBits(); 118 unsigned ToWidth = To->getPrimitiveSizeInBits(); 119 return ShouldChangeType(FromWidth, ToWidth); 120 } 121 122 // Return true, if No Signed Wrap should be maintained for I. 123 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 124 // where both B and C should be ConstantInts, results in a constant that does 125 // not overflow. This function only handles the Add and Sub opcodes. For 126 // all other opcodes, the function conservatively returns false. 127 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 128 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 129 if (!OBO || !OBO->hasNoSignedWrap()) 130 return false; 131 132 // We reason about Add and Sub Only. 133 Instruction::BinaryOps Opcode = I.getOpcode(); 134 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 135 return false; 136 137 const APInt *BVal, *CVal; 138 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 139 return false; 140 141 bool Overflow = false; 142 if (Opcode == Instruction::Add) 143 BVal->sadd_ov(*CVal, Overflow); 144 else 145 BVal->ssub_ov(*CVal, Overflow); 146 147 return !Overflow; 148 } 149 150 /// Conservatively clears subclassOptionalData after a reassociation or 151 /// commutation. We preserve fast-math flags when applicable as they can be 152 /// preserved. 153 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 154 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 155 if (!FPMO) { 156 I.clearSubclassOptionalData(); 157 return; 158 } 159 160 FastMathFlags FMF = I.getFastMathFlags(); 161 I.clearSubclassOptionalData(); 162 I.setFastMathFlags(FMF); 163 } 164 165 /// Combine constant operands of associative operations either before or after a 166 /// cast to eliminate one of the associative operations: 167 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 168 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 169 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) { 170 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 171 if (!Cast || !Cast->hasOneUse()) 172 return false; 173 174 // TODO: Enhance logic for other casts and remove this check. 175 auto CastOpcode = Cast->getOpcode(); 176 if (CastOpcode != Instruction::ZExt) 177 return false; 178 179 // TODO: Enhance logic for other BinOps and remove this check. 180 auto AssocOpcode = BinOp1->getOpcode(); 181 if (AssocOpcode != Instruction::Xor && AssocOpcode != Instruction::And && 182 AssocOpcode != Instruction::Or) 183 return false; 184 185 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 186 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 187 return false; 188 189 Constant *C1, *C2; 190 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 191 !match(BinOp2->getOperand(1), m_Constant(C2))) 192 return false; 193 194 // TODO: This assumes a zext cast. 195 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 196 // to the destination type might lose bits. 197 198 // Fold the constants together in the destination type: 199 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 200 Type *DestTy = C1->getType(); 201 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 202 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 203 Cast->setOperand(0, BinOp2->getOperand(0)); 204 BinOp1->setOperand(1, FoldedC); 205 return true; 206 } 207 208 /// This performs a few simplifications for operators that are associative or 209 /// commutative: 210 /// 211 /// Commutative operators: 212 /// 213 /// 1. Order operands such that they are listed from right (least complex) to 214 /// left (most complex). This puts constants before unary operators before 215 /// binary operators. 216 /// 217 /// Associative operators: 218 /// 219 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 220 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 221 /// 222 /// Associative and commutative operators: 223 /// 224 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 225 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 226 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 227 /// if C1 and C2 are constants. 228 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 229 Instruction::BinaryOps Opcode = I.getOpcode(); 230 bool Changed = false; 231 232 do { 233 // Order operands such that they are listed from right (least complex) to 234 // left (most complex). This puts constants before unary operators before 235 // binary operators. 236 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 237 getComplexity(I.getOperand(1))) 238 Changed = !I.swapOperands(); 239 240 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 241 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 242 243 if (I.isAssociative()) { 244 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 245 if (Op0 && Op0->getOpcode() == Opcode) { 246 Value *A = Op0->getOperand(0); 247 Value *B = Op0->getOperand(1); 248 Value *C = I.getOperand(1); 249 250 // Does "B op C" simplify? 251 if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) { 252 // It simplifies to V. Form "A op V". 253 I.setOperand(0, A); 254 I.setOperand(1, V); 255 // Conservatively clear the optional flags, since they may not be 256 // preserved by the reassociation. 257 if (MaintainNoSignedWrap(I, B, C) && 258 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { 259 // Note: this is only valid because SimplifyBinOp doesn't look at 260 // the operands to Op0. 261 I.clearSubclassOptionalData(); 262 I.setHasNoSignedWrap(true); 263 } else { 264 ClearSubclassDataAfterReassociation(I); 265 } 266 267 Changed = true; 268 ++NumReassoc; 269 continue; 270 } 271 } 272 273 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 274 if (Op1 && Op1->getOpcode() == Opcode) { 275 Value *A = I.getOperand(0); 276 Value *B = Op1->getOperand(0); 277 Value *C = Op1->getOperand(1); 278 279 // Does "A op B" simplify? 280 if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) { 281 // It simplifies to V. Form "V op C". 282 I.setOperand(0, V); 283 I.setOperand(1, C); 284 // Conservatively clear the optional flags, since they may not be 285 // preserved by the reassociation. 286 ClearSubclassDataAfterReassociation(I); 287 Changed = true; 288 ++NumReassoc; 289 continue; 290 } 291 } 292 } 293 294 if (I.isAssociative() && I.isCommutative()) { 295 if (simplifyAssocCastAssoc(&I)) { 296 Changed = true; 297 ++NumReassoc; 298 continue; 299 } 300 301 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 302 if (Op0 && Op0->getOpcode() == Opcode) { 303 Value *A = Op0->getOperand(0); 304 Value *B = Op0->getOperand(1); 305 Value *C = I.getOperand(1); 306 307 // Does "C op A" simplify? 308 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) { 309 // It simplifies to V. Form "V op B". 310 I.setOperand(0, V); 311 I.setOperand(1, B); 312 // Conservatively clear the optional flags, since they may not be 313 // preserved by the reassociation. 314 ClearSubclassDataAfterReassociation(I); 315 Changed = true; 316 ++NumReassoc; 317 continue; 318 } 319 } 320 321 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 322 if (Op1 && Op1->getOpcode() == Opcode) { 323 Value *A = I.getOperand(0); 324 Value *B = Op1->getOperand(0); 325 Value *C = Op1->getOperand(1); 326 327 // Does "C op A" simplify? 328 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) { 329 // It simplifies to V. Form "B op V". 330 I.setOperand(0, B); 331 I.setOperand(1, V); 332 // Conservatively clear the optional flags, since they may not be 333 // preserved by the reassociation. 334 ClearSubclassDataAfterReassociation(I); 335 Changed = true; 336 ++NumReassoc; 337 continue; 338 } 339 } 340 341 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 342 // if C1 and C2 are constants. 343 if (Op0 && Op1 && 344 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 345 isa<Constant>(Op0->getOperand(1)) && 346 isa<Constant>(Op1->getOperand(1)) && 347 Op0->hasOneUse() && Op1->hasOneUse()) { 348 Value *A = Op0->getOperand(0); 349 Constant *C1 = cast<Constant>(Op0->getOperand(1)); 350 Value *B = Op1->getOperand(0); 351 Constant *C2 = cast<Constant>(Op1->getOperand(1)); 352 353 Constant *Folded = ConstantExpr::get(Opcode, C1, C2); 354 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B); 355 if (isa<FPMathOperator>(New)) { 356 FastMathFlags Flags = I.getFastMathFlags(); 357 Flags &= Op0->getFastMathFlags(); 358 Flags &= Op1->getFastMathFlags(); 359 New->setFastMathFlags(Flags); 360 } 361 InsertNewInstWith(New, I); 362 New->takeName(Op1); 363 I.setOperand(0, New); 364 I.setOperand(1, Folded); 365 // Conservatively clear the optional flags, since they may not be 366 // preserved by the reassociation. 367 ClearSubclassDataAfterReassociation(I); 368 369 Changed = true; 370 continue; 371 } 372 } 373 374 // No further simplifications. 375 return Changed; 376 } while (1); 377 } 378 379 /// Return whether "X LOp (Y ROp Z)" is always equal to 380 /// "(X LOp Y) ROp (X LOp Z)". 381 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp, 382 Instruction::BinaryOps ROp) { 383 switch (LOp) { 384 default: 385 return false; 386 387 case Instruction::And: 388 // And distributes over Or and Xor. 389 switch (ROp) { 390 default: 391 return false; 392 case Instruction::Or: 393 case Instruction::Xor: 394 return true; 395 } 396 397 case Instruction::Mul: 398 // Multiplication distributes over addition and subtraction. 399 switch (ROp) { 400 default: 401 return false; 402 case Instruction::Add: 403 case Instruction::Sub: 404 return true; 405 } 406 407 case Instruction::Or: 408 // Or distributes over And. 409 switch (ROp) { 410 default: 411 return false; 412 case Instruction::And: 413 return true; 414 } 415 } 416 } 417 418 /// Return whether "(X LOp Y) ROp Z" is always equal to 419 /// "(X ROp Z) LOp (Y ROp Z)". 420 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp, 421 Instruction::BinaryOps ROp) { 422 if (Instruction::isCommutative(ROp)) 423 return LeftDistributesOverRight(ROp, LOp); 424 425 switch (LOp) { 426 default: 427 return false; 428 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts. 429 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts. 430 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts. 431 case Instruction::And: 432 case Instruction::Or: 433 case Instruction::Xor: 434 switch (ROp) { 435 default: 436 return false; 437 case Instruction::Shl: 438 case Instruction::LShr: 439 case Instruction::AShr: 440 return true; 441 } 442 } 443 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 444 // but this requires knowing that the addition does not overflow and other 445 // such subtleties. 446 return false; 447 } 448 449 /// This function returns identity value for given opcode, which can be used to 450 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 451 static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) { 452 if (isa<Constant>(V)) 453 return nullptr; 454 455 if (OpCode == Instruction::Mul) 456 return ConstantInt::get(V->getType(), 1); 457 458 // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc. 459 460 return nullptr; 461 } 462 463 /// This function factors binary ops which can be combined using distributive 464 /// laws. This function tries to transform 'Op' based TopLevelOpcode to enable 465 /// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called 466 /// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms 467 /// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and 468 /// RHS to 4. 469 static Instruction::BinaryOps 470 getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode, 471 BinaryOperator *Op, Value *&LHS, Value *&RHS) { 472 if (!Op) 473 return Instruction::BinaryOpsEnd; 474 475 LHS = Op->getOperand(0); 476 RHS = Op->getOperand(1); 477 478 switch (TopLevelOpcode) { 479 default: 480 return Op->getOpcode(); 481 482 case Instruction::Add: 483 case Instruction::Sub: 484 if (Op->getOpcode() == Instruction::Shl) { 485 if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) { 486 // The multiplier is really 1 << CST. 487 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST); 488 return Instruction::Mul; 489 } 490 } 491 return Op->getOpcode(); 492 } 493 494 // TODO: We can add other conversions e.g. shr => div etc. 495 } 496 497 /// This tries to simplify binary operations by factorizing out common terms 498 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 499 static Value *tryFactorization(InstCombiner::BuilderTy *Builder, 500 const DataLayout &DL, BinaryOperator &I, 501 Instruction::BinaryOps InnerOpcode, Value *A, 502 Value *B, Value *C, Value *D) { 503 504 // If any of A, B, C, D are null, we can not factor I, return early. 505 // Checking A and C should be enough. 506 if (!A || !C || !B || !D) 507 return nullptr; 508 509 Value *V = nullptr; 510 Value *SimplifiedInst = nullptr; 511 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 512 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 513 514 // Does "X op' Y" always equal "Y op' X"? 515 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 516 517 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 518 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 519 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 520 // commutative case, "(A op' B) op (C op' A)"? 521 if (A == C || (InnerCommutative && A == D)) { 522 if (A != C) 523 std::swap(C, D); 524 // Consider forming "A op' (B op D)". 525 // If "B op D" simplifies then it can be formed with no cost. 526 V = SimplifyBinOp(TopLevelOpcode, B, D, DL); 527 // If "B op D" doesn't simplify then only go on if both of the existing 528 // operations "A op' B" and "C op' D" will be zapped as no longer used. 529 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 530 V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 531 if (V) { 532 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V); 533 } 534 } 535 536 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 537 if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 538 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 539 // commutative case, "(A op' B) op (B op' D)"? 540 if (B == D || (InnerCommutative && B == C)) { 541 if (B != D) 542 std::swap(C, D); 543 // Consider forming "(A op C) op' B". 544 // If "A op C" simplifies then it can be formed with no cost. 545 V = SimplifyBinOp(TopLevelOpcode, A, C, DL); 546 547 // If "A op C" doesn't simplify then only go on if both of the existing 548 // operations "A op' B" and "C op' D" will be zapped as no longer used. 549 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 550 V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 551 if (V) { 552 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B); 553 } 554 } 555 556 if (SimplifiedInst) { 557 ++NumFactor; 558 SimplifiedInst->takeName(&I); 559 560 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag. 561 // TODO: Check for NUW. 562 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 563 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 564 bool HasNSW = false; 565 if (isa<OverflowingBinaryOperator>(&I)) 566 HasNSW = I.hasNoSignedWrap(); 567 568 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 569 if (isa<OverflowingBinaryOperator>(Op0)) 570 HasNSW &= Op0->hasNoSignedWrap(); 571 572 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 573 if (isa<OverflowingBinaryOperator>(Op1)) 574 HasNSW &= Op1->hasNoSignedWrap(); 575 576 // We can propagate 'nsw' if we know that 577 // %Y = mul nsw i16 %X, C 578 // %Z = add nsw i16 %Y, %X 579 // => 580 // %Z = mul nsw i16 %X, C+1 581 // 582 // iff C+1 isn't INT_MIN 583 const APInt *CInt; 584 if (TopLevelOpcode == Instruction::Add && 585 InnerOpcode == Instruction::Mul) 586 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) 587 BO->setHasNoSignedWrap(HasNSW); 588 } 589 } 590 } 591 return SimplifiedInst; 592 } 593 594 /// This tries to simplify binary operations which some other binary operation 595 /// distributes over either by factorizing out common terms 596 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 597 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 598 /// Returns the simplified value, or null if it didn't simplify. 599 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 600 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 601 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 602 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 603 604 // Factorization. 605 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 606 auto TopLevelOpcode = I.getOpcode(); 607 auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 608 auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 609 610 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 611 // a common term. 612 if (LHSOpcode == RHSOpcode) { 613 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D)) 614 return V; 615 } 616 617 // The instruction has the form "(A op' B) op (C)". Try to factorize common 618 // term. 619 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS, 620 getIdentityValue(LHSOpcode, RHS))) 621 return V; 622 623 // The instruction has the form "(B) op (C op' D)". Try to factorize common 624 // term. 625 if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS, 626 getIdentityValue(RHSOpcode, LHS), C, D)) 627 return V; 628 629 // Expansion. 630 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 631 // The instruction has the form "(A op' B) op C". See if expanding it out 632 // to "(A op C) op' (B op C)" results in simplifications. 633 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 634 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 635 636 // Do "A op C" and "B op C" both simplify? 637 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL)) 638 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) { 639 // They do! Return "L op' R". 640 ++NumExpand; 641 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 642 if ((L == A && R == B) || 643 (Instruction::isCommutative(InnerOpcode) && L == B && R == A)) 644 return Op0; 645 // Otherwise return "L op' R" if it simplifies. 646 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL)) 647 return V; 648 // Otherwise, create a new instruction. 649 C = Builder->CreateBinOp(InnerOpcode, L, R); 650 C->takeName(&I); 651 return C; 652 } 653 } 654 655 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 656 // The instruction has the form "A op (B op' C)". See if expanding it out 657 // to "(A op B) op' (A op C)" results in simplifications. 658 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 659 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 660 661 // Do "A op B" and "A op C" both simplify? 662 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL)) 663 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) { 664 // They do! Return "L op' R". 665 ++NumExpand; 666 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 667 if ((L == B && R == C) || 668 (Instruction::isCommutative(InnerOpcode) && L == C && R == B)) 669 return Op1; 670 // Otherwise return "L op' R" if it simplifies. 671 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL)) 672 return V; 673 // Otherwise, create a new instruction. 674 A = Builder->CreateBinOp(InnerOpcode, L, R); 675 A->takeName(&I); 676 return A; 677 } 678 } 679 680 // (op (select (a, c, b)), (select (a, d, b))) -> (select (a, (op c, d), 0)) 681 // (op (select (a, b, c)), (select (a, b, d))) -> (select (a, 0, (op c, d))) 682 if (auto *SI0 = dyn_cast<SelectInst>(LHS)) { 683 if (auto *SI1 = dyn_cast<SelectInst>(RHS)) { 684 if (SI0->getCondition() == SI1->getCondition()) { 685 Value *SI = nullptr; 686 if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getFalseValue(), 687 SI1->getFalseValue(), DL, TLI, DT, AC)) 688 SI = Builder->CreateSelect(SI0->getCondition(), 689 Builder->CreateBinOp(TopLevelOpcode, 690 SI0->getTrueValue(), 691 SI1->getTrueValue()), 692 V); 693 if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getTrueValue(), 694 SI1->getTrueValue(), DL, TLI, DT, AC)) 695 SI = Builder->CreateSelect( 696 SI0->getCondition(), V, 697 Builder->CreateBinOp(TopLevelOpcode, SI0->getFalseValue(), 698 SI1->getFalseValue())); 699 if (SI) { 700 SI->takeName(&I); 701 return SI; 702 } 703 } 704 } 705 } 706 707 return nullptr; 708 } 709 710 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 711 /// constant zero (which is the 'negate' form). 712 Value *InstCombiner::dyn_castNegVal(Value *V) const { 713 if (BinaryOperator::isNeg(V)) 714 return BinaryOperator::getNegArgument(V); 715 716 // Constants can be considered to be negated values if they can be folded. 717 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 718 return ConstantExpr::getNeg(C); 719 720 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 721 if (C->getType()->getElementType()->isIntegerTy()) 722 return ConstantExpr::getNeg(C); 723 724 return nullptr; 725 } 726 727 /// Given a 'fsub' instruction, return the RHS of the instruction if the LHS is 728 /// a constant negative zero (which is the 'negate' form). 729 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const { 730 if (BinaryOperator::isFNeg(V, IgnoreZeroSign)) 731 return BinaryOperator::getFNegArgument(V); 732 733 // Constants can be considered to be negated values if they can be folded. 734 if (ConstantFP *C = dyn_cast<ConstantFP>(V)) 735 return ConstantExpr::getFNeg(C); 736 737 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 738 if (C->getType()->getElementType()->isFloatingPointTy()) 739 return ConstantExpr::getFNeg(C); 740 741 return nullptr; 742 } 743 744 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO, 745 InstCombiner *IC) { 746 if (CastInst *CI = dyn_cast<CastInst>(&I)) { 747 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType()); 748 } 749 750 // Figure out if the constant is the left or the right argument. 751 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 752 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 753 754 if (Constant *SOC = dyn_cast<Constant>(SO)) { 755 if (ConstIsRHS) 756 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 757 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 758 } 759 760 Value *Op0 = SO, *Op1 = ConstOperand; 761 if (!ConstIsRHS) 762 std::swap(Op0, Op1); 763 764 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) { 765 Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1, 766 SO->getName()+".op"); 767 Instruction *FPInst = dyn_cast<Instruction>(RI); 768 if (FPInst && isa<FPMathOperator>(FPInst)) 769 FPInst->copyFastMathFlags(BO); 770 return RI; 771 } 772 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I)) 773 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, 774 SO->getName()+".cmp"); 775 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I)) 776 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, 777 SO->getName()+".cmp"); 778 llvm_unreachable("Unknown binary instruction type!"); 779 } 780 781 /// Given an instruction with a select as one operand and a constant as the 782 /// other operand, try to fold the binary operator into the select arguments. 783 /// This also works for Cast instructions, which obviously do not have a second 784 /// operand. 785 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 786 // Don't modify shared select instructions 787 if (!SI->hasOneUse()) return nullptr; 788 Value *TV = SI->getOperand(1); 789 Value *FV = SI->getOperand(2); 790 791 if (isa<Constant>(TV) || isa<Constant>(FV)) { 792 // Bool selects with constant operands can be folded to logical ops. 793 if (SI->getType()->isIntegerTy(1)) return nullptr; 794 795 // If it's a bitcast involving vectors, make sure it has the same number of 796 // elements on both sides. 797 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) { 798 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 799 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 800 801 // Verify that either both or neither are vectors. 802 if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr; 803 // If vectors, verify that they have the same number of elements. 804 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 805 return nullptr; 806 } 807 808 // Test if a CmpInst instruction is used exclusively by a select as 809 // part of a minimum or maximum operation. If so, refrain from doing 810 // any other folding. This helps out other analyses which understand 811 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 812 // and CodeGen. And in this case, at least one of the comparison 813 // operands has at least one user besides the compare (the select), 814 // which would often largely negate the benefit of folding anyway. 815 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 816 if (CI->hasOneUse()) { 817 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 818 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 819 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 820 return nullptr; 821 } 822 } 823 824 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this); 825 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this); 826 827 return SelectInst::Create(SI->getCondition(), 828 SelectTrueVal, SelectFalseVal); 829 } 830 return nullptr; 831 } 832 833 /// Given a binary operator, cast instruction, or select which has a PHI node as 834 /// operand #0, see if we can fold the instruction into the PHI (which is only 835 /// possible if all operands to the PHI are constants). 836 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { 837 PHINode *PN = cast<PHINode>(I.getOperand(0)); 838 unsigned NumPHIValues = PN->getNumIncomingValues(); 839 if (NumPHIValues == 0) 840 return nullptr; 841 842 // We normally only transform phis with a single use. However, if a PHI has 843 // multiple uses and they are all the same operation, we can fold *all* of the 844 // uses into the PHI. 845 if (!PN->hasOneUse()) { 846 // Walk the use list for the instruction, comparing them to I. 847 for (User *U : PN->users()) { 848 Instruction *UI = cast<Instruction>(U); 849 if (UI != &I && !I.isIdenticalTo(UI)) 850 return nullptr; 851 } 852 // Otherwise, we can replace *all* users with the new PHI we form. 853 } 854 855 // Check to see if all of the operands of the PHI are simple constants 856 // (constantint/constantfp/undef). If there is one non-constant value, 857 // remember the BB it is in. If there is more than one or if *it* is a PHI, 858 // bail out. We don't do arbitrary constant expressions here because moving 859 // their computation can be expensive without a cost model. 860 BasicBlock *NonConstBB = nullptr; 861 for (unsigned i = 0; i != NumPHIValues; ++i) { 862 Value *InVal = PN->getIncomingValue(i); 863 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 864 continue; 865 866 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 867 if (NonConstBB) return nullptr; // More than one non-const value. 868 869 NonConstBB = PN->getIncomingBlock(i); 870 871 // If the InVal is an invoke at the end of the pred block, then we can't 872 // insert a computation after it without breaking the edge. 873 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal)) 874 if (II->getParent() == NonConstBB) 875 return nullptr; 876 877 // If the incoming non-constant value is in I's block, we will remove one 878 // instruction, but insert another equivalent one, leading to infinite 879 // instcombine. 880 if (isPotentiallyReachable(I.getParent(), NonConstBB, DT, LI)) 881 return nullptr; 882 } 883 884 // If there is exactly one non-constant value, we can insert a copy of the 885 // operation in that block. However, if this is a critical edge, we would be 886 // inserting the computation on some other paths (e.g. inside a loop). Only 887 // do this if the pred block is unconditionally branching into the phi block. 888 if (NonConstBB != nullptr) { 889 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 890 if (!BI || !BI->isUnconditional()) return nullptr; 891 } 892 893 // Okay, we can do the transformation: create the new PHI node. 894 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 895 InsertNewInstBefore(NewPN, *PN); 896 NewPN->takeName(PN); 897 898 // If we are going to have to insert a new computation, do so right before the 899 // predecessor's terminator. 900 if (NonConstBB) 901 Builder->SetInsertPoint(NonConstBB->getTerminator()); 902 903 // Next, add all of the operands to the PHI. 904 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 905 // We only currently try to fold the condition of a select when it is a phi, 906 // not the true/false values. 907 Value *TrueV = SI->getTrueValue(); 908 Value *FalseV = SI->getFalseValue(); 909 BasicBlock *PhiTransBB = PN->getParent(); 910 for (unsigned i = 0; i != NumPHIValues; ++i) { 911 BasicBlock *ThisBB = PN->getIncomingBlock(i); 912 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 913 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 914 Value *InV = nullptr; 915 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 916 // even if currently isNullValue gives false. 917 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 918 if (InC && !isa<ConstantExpr>(InC)) 919 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 920 else 921 InV = Builder->CreateSelect(PN->getIncomingValue(i), 922 TrueVInPred, FalseVInPred, "phitmp"); 923 NewPN->addIncoming(InV, ThisBB); 924 } 925 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 926 Constant *C = cast<Constant>(I.getOperand(1)); 927 for (unsigned i = 0; i != NumPHIValues; ++i) { 928 Value *InV = nullptr; 929 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 930 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 931 else if (isa<ICmpInst>(CI)) 932 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 933 C, "phitmp"); 934 else 935 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 936 C, "phitmp"); 937 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 938 } 939 } else if (I.getNumOperands() == 2) { 940 Constant *C = cast<Constant>(I.getOperand(1)); 941 for (unsigned i = 0; i != NumPHIValues; ++i) { 942 Value *InV = nullptr; 943 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 944 InV = ConstantExpr::get(I.getOpcode(), InC, C); 945 else 946 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 947 PN->getIncomingValue(i), C, "phitmp"); 948 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 949 } 950 } else { 951 CastInst *CI = cast<CastInst>(&I); 952 Type *RetTy = CI->getType(); 953 for (unsigned i = 0; i != NumPHIValues; ++i) { 954 Value *InV; 955 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 956 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 957 else 958 InV = Builder->CreateCast(CI->getOpcode(), 959 PN->getIncomingValue(i), I.getType(), "phitmp"); 960 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 961 } 962 } 963 964 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 965 Instruction *User = cast<Instruction>(*UI++); 966 if (User == &I) continue; 967 replaceInstUsesWith(*User, NewPN); 968 eraseInstFromFunction(*User); 969 } 970 return replaceInstUsesWith(I, NewPN); 971 } 972 973 /// Given a pointer type and a constant offset, determine whether or not there 974 /// is a sequence of GEP indices into the pointed type that will land us at the 975 /// specified offset. If so, fill them into NewIndices and return the resultant 976 /// element type, otherwise return null. 977 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 978 SmallVectorImpl<Value *> &NewIndices) { 979 Type *Ty = PtrTy->getElementType(); 980 if (!Ty->isSized()) 981 return nullptr; 982 983 // Start with the index over the outer type. Note that the type size 984 // might be zero (even if the offset isn't zero) if the indexed type 985 // is something like [0 x {int, int}] 986 Type *IntPtrTy = DL.getIntPtrType(PtrTy); 987 int64_t FirstIdx = 0; 988 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 989 FirstIdx = Offset/TySize; 990 Offset -= FirstIdx*TySize; 991 992 // Handle hosts where % returns negative instead of values [0..TySize). 993 if (Offset < 0) { 994 --FirstIdx; 995 Offset += TySize; 996 assert(Offset >= 0); 997 } 998 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 999 } 1000 1001 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx)); 1002 1003 // Index into the types. If we fail, set OrigBase to null. 1004 while (Offset) { 1005 // Indexing into tail padding between struct/array elements. 1006 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1007 return nullptr; 1008 1009 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1010 const StructLayout *SL = DL.getStructLayout(STy); 1011 assert(Offset < (int64_t)SL->getSizeInBytes() && 1012 "Offset must stay within the indexed type"); 1013 1014 unsigned Elt = SL->getElementContainingOffset(Offset); 1015 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1016 Elt)); 1017 1018 Offset -= SL->getElementOffset(Elt); 1019 Ty = STy->getElementType(Elt); 1020 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1021 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1022 assert(EltSize && "Cannot index into a zero-sized array"); 1023 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize)); 1024 Offset %= EltSize; 1025 Ty = AT->getElementType(); 1026 } else { 1027 // Otherwise, we can't index into the middle of this atomic type, bail. 1028 return nullptr; 1029 } 1030 } 1031 1032 return Ty; 1033 } 1034 1035 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1036 // If this GEP has only 0 indices, it is the same pointer as 1037 // Src. If Src is not a trivial GEP too, don't combine 1038 // the indices. 1039 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1040 !Src.hasOneUse()) 1041 return false; 1042 return true; 1043 } 1044 1045 /// Return a value X such that Val = X * Scale, or null if none. 1046 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1047 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1048 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1049 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1050 Scale.getBitWidth() && "Scale not compatible with value!"); 1051 1052 // If Val is zero or Scale is one then Val = Val * Scale. 1053 if (match(Val, m_Zero()) || Scale == 1) { 1054 NoSignedWrap = true; 1055 return Val; 1056 } 1057 1058 // If Scale is zero then it does not divide Val. 1059 if (Scale.isMinValue()) 1060 return nullptr; 1061 1062 // Look through chains of multiplications, searching for a constant that is 1063 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1064 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1065 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1066 // down from Val: 1067 // 1068 // Val = M1 * X || Analysis starts here and works down 1069 // M1 = M2 * Y || Doesn't descend into terms with more 1070 // M2 = Z * 4 \/ than one use 1071 // 1072 // Then to modify a term at the bottom: 1073 // 1074 // Val = M1 * X 1075 // M1 = Z * Y || Replaced M2 with Z 1076 // 1077 // Then to work back up correcting nsw flags. 1078 1079 // Op - the term we are currently analyzing. Starts at Val then drills down. 1080 // Replaced with its descaled value before exiting from the drill down loop. 1081 Value *Op = Val; 1082 1083 // Parent - initially null, but after drilling down notes where Op came from. 1084 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1085 // 0'th operand of Val. 1086 std::pair<Instruction*, unsigned> Parent; 1087 1088 // Set if the transform requires a descaling at deeper levels that doesn't 1089 // overflow. 1090 bool RequireNoSignedWrap = false; 1091 1092 // Log base 2 of the scale. Negative if not a power of 2. 1093 int32_t logScale = Scale.exactLogBase2(); 1094 1095 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1096 1097 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1098 // If Op is a constant divisible by Scale then descale to the quotient. 1099 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1100 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1101 if (!Remainder.isMinValue()) 1102 // Not divisible by Scale. 1103 return nullptr; 1104 // Replace with the quotient in the parent. 1105 Op = ConstantInt::get(CI->getType(), Quotient); 1106 NoSignedWrap = true; 1107 break; 1108 } 1109 1110 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1111 1112 if (BO->getOpcode() == Instruction::Mul) { 1113 // Multiplication. 1114 NoSignedWrap = BO->hasNoSignedWrap(); 1115 if (RequireNoSignedWrap && !NoSignedWrap) 1116 return nullptr; 1117 1118 // There are three cases for multiplication: multiplication by exactly 1119 // the scale, multiplication by a constant different to the scale, and 1120 // multiplication by something else. 1121 Value *LHS = BO->getOperand(0); 1122 Value *RHS = BO->getOperand(1); 1123 1124 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1125 // Multiplication by a constant. 1126 if (CI->getValue() == Scale) { 1127 // Multiplication by exactly the scale, replace the multiplication 1128 // by its left-hand side in the parent. 1129 Op = LHS; 1130 break; 1131 } 1132 1133 // Otherwise drill down into the constant. 1134 if (!Op->hasOneUse()) 1135 return nullptr; 1136 1137 Parent = std::make_pair(BO, 1); 1138 continue; 1139 } 1140 1141 // Multiplication by something else. Drill down into the left-hand side 1142 // since that's where the reassociate pass puts the good stuff. 1143 if (!Op->hasOneUse()) 1144 return nullptr; 1145 1146 Parent = std::make_pair(BO, 0); 1147 continue; 1148 } 1149 1150 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1151 isa<ConstantInt>(BO->getOperand(1))) { 1152 // Multiplication by a power of 2. 1153 NoSignedWrap = BO->hasNoSignedWrap(); 1154 if (RequireNoSignedWrap && !NoSignedWrap) 1155 return nullptr; 1156 1157 Value *LHS = BO->getOperand(0); 1158 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1159 getLimitedValue(Scale.getBitWidth()); 1160 // Op = LHS << Amt. 1161 1162 if (Amt == logScale) { 1163 // Multiplication by exactly the scale, replace the multiplication 1164 // by its left-hand side in the parent. 1165 Op = LHS; 1166 break; 1167 } 1168 if (Amt < logScale || !Op->hasOneUse()) 1169 return nullptr; 1170 1171 // Multiplication by more than the scale. Reduce the multiplying amount 1172 // by the scale in the parent. 1173 Parent = std::make_pair(BO, 1); 1174 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1175 break; 1176 } 1177 } 1178 1179 if (!Op->hasOneUse()) 1180 return nullptr; 1181 1182 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1183 if (Cast->getOpcode() == Instruction::SExt) { 1184 // Op is sign-extended from a smaller type, descale in the smaller type. 1185 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1186 APInt SmallScale = Scale.trunc(SmallSize); 1187 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1188 // descale Op as (sext Y) * Scale. In order to have 1189 // sext (Y * SmallScale) = (sext Y) * Scale 1190 // some conditions need to hold however: SmallScale must sign-extend to 1191 // Scale and the multiplication Y * SmallScale should not overflow. 1192 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1193 // SmallScale does not sign-extend to Scale. 1194 return nullptr; 1195 assert(SmallScale.exactLogBase2() == logScale); 1196 // Require that Y * SmallScale must not overflow. 1197 RequireNoSignedWrap = true; 1198 1199 // Drill down through the cast. 1200 Parent = std::make_pair(Cast, 0); 1201 Scale = SmallScale; 1202 continue; 1203 } 1204 1205 if (Cast->getOpcode() == Instruction::Trunc) { 1206 // Op is truncated from a larger type, descale in the larger type. 1207 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1208 // trunc (Y * sext Scale) = (trunc Y) * Scale 1209 // always holds. However (trunc Y) * Scale may overflow even if 1210 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1211 // from this point up in the expression (see later). 1212 if (RequireNoSignedWrap) 1213 return nullptr; 1214 1215 // Drill down through the cast. 1216 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1217 Parent = std::make_pair(Cast, 0); 1218 Scale = Scale.sext(LargeSize); 1219 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1220 logScale = -1; 1221 assert(Scale.exactLogBase2() == logScale); 1222 continue; 1223 } 1224 } 1225 1226 // Unsupported expression, bail out. 1227 return nullptr; 1228 } 1229 1230 // If Op is zero then Val = Op * Scale. 1231 if (match(Op, m_Zero())) { 1232 NoSignedWrap = true; 1233 return Op; 1234 } 1235 1236 // We know that we can successfully descale, so from here on we can safely 1237 // modify the IR. Op holds the descaled version of the deepest term in the 1238 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1239 // not to overflow. 1240 1241 if (!Parent.first) 1242 // The expression only had one term. 1243 return Op; 1244 1245 // Rewrite the parent using the descaled version of its operand. 1246 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1247 assert(Op != Parent.first->getOperand(Parent.second) && 1248 "Descaling was a no-op?"); 1249 Parent.first->setOperand(Parent.second, Op); 1250 Worklist.Add(Parent.first); 1251 1252 // Now work back up the expression correcting nsw flags. The logic is based 1253 // on the following observation: if X * Y is known not to overflow as a signed 1254 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1255 // then X * Z will not overflow as a signed multiplication either. As we work 1256 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1257 // current level has strictly smaller absolute value than the original. 1258 Instruction *Ancestor = Parent.first; 1259 do { 1260 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1261 // If the multiplication wasn't nsw then we can't say anything about the 1262 // value of the descaled multiplication, and we have to clear nsw flags 1263 // from this point on up. 1264 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1265 NoSignedWrap &= OpNoSignedWrap; 1266 if (NoSignedWrap != OpNoSignedWrap) { 1267 BO->setHasNoSignedWrap(NoSignedWrap); 1268 Worklist.Add(Ancestor); 1269 } 1270 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1271 // The fact that the descaled input to the trunc has smaller absolute 1272 // value than the original input doesn't tell us anything useful about 1273 // the absolute values of the truncations. 1274 NoSignedWrap = false; 1275 } 1276 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1277 "Failed to keep proper track of nsw flags while drilling down?"); 1278 1279 if (Ancestor == Val) 1280 // Got to the top, all done! 1281 return Val; 1282 1283 // Move up one level in the expression. 1284 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1285 Ancestor = Ancestor->user_back(); 1286 } while (1); 1287 } 1288 1289 /// \brief Creates node of binary operation with the same attributes as the 1290 /// specified one but with other operands. 1291 static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS, 1292 InstCombiner::BuilderTy *B) { 1293 Value *BO = B->CreateBinOp(Inst.getOpcode(), LHS, RHS); 1294 // If LHS and RHS are constant, BO won't be a binary operator. 1295 if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BO)) 1296 NewBO->copyIRFlags(&Inst); 1297 return BO; 1298 } 1299 1300 /// \brief Makes transformation of binary operation specific for vector types. 1301 /// \param Inst Binary operator to transform. 1302 /// \return Pointer to node that must replace the original binary operator, or 1303 /// null pointer if no transformation was made. 1304 Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) { 1305 if (!Inst.getType()->isVectorTy()) return nullptr; 1306 1307 // It may not be safe to reorder shuffles and things like div, urem, etc. 1308 // because we may trap when executing those ops on unknown vector elements. 1309 // See PR20059. 1310 if (!isSafeToSpeculativelyExecute(&Inst)) 1311 return nullptr; 1312 1313 unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements(); 1314 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1315 assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth); 1316 assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth); 1317 1318 // If both arguments of binary operation are shuffles, which use the same 1319 // mask and shuffle within a single vector, it is worthwhile to move the 1320 // shuffle after binary operation: 1321 // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m) 1322 if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) { 1323 ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS); 1324 ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS); 1325 if (isa<UndefValue>(LShuf->getOperand(1)) && 1326 isa<UndefValue>(RShuf->getOperand(1)) && 1327 LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() && 1328 LShuf->getMask() == RShuf->getMask()) { 1329 Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0), 1330 RShuf->getOperand(0), Builder); 1331 return Builder->CreateShuffleVector(NewBO, 1332 UndefValue::get(NewBO->getType()), LShuf->getMask()); 1333 } 1334 } 1335 1336 // If one argument is a shuffle within one vector, the other is a constant, 1337 // try moving the shuffle after the binary operation. 1338 ShuffleVectorInst *Shuffle = nullptr; 1339 Constant *C1 = nullptr; 1340 if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS); 1341 if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS); 1342 if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS); 1343 if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS); 1344 if (Shuffle && C1 && 1345 (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) && 1346 isa<UndefValue>(Shuffle->getOperand(1)) && 1347 Shuffle->getType() == Shuffle->getOperand(0)->getType()) { 1348 SmallVector<int, 16> ShMask = Shuffle->getShuffleMask(); 1349 // Find constant C2 that has property: 1350 // shuffle(C2, ShMask) = C1 1351 // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>) 1352 // reorder is not possible. 1353 SmallVector<Constant*, 16> C2M(VWidth, 1354 UndefValue::get(C1->getType()->getScalarType())); 1355 bool MayChange = true; 1356 for (unsigned I = 0; I < VWidth; ++I) { 1357 if (ShMask[I] >= 0) { 1358 assert(ShMask[I] < (int)VWidth); 1359 if (!isa<UndefValue>(C2M[ShMask[I]])) { 1360 MayChange = false; 1361 break; 1362 } 1363 C2M[ShMask[I]] = C1->getAggregateElement(I); 1364 } 1365 } 1366 if (MayChange) { 1367 Constant *C2 = ConstantVector::get(C2M); 1368 Value *NewLHS = isa<Constant>(LHS) ? C2 : Shuffle->getOperand(0); 1369 Value *NewRHS = isa<Constant>(LHS) ? Shuffle->getOperand(0) : C2; 1370 Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder); 1371 return Builder->CreateShuffleVector(NewBO, 1372 UndefValue::get(Inst.getType()), Shuffle->getMask()); 1373 } 1374 } 1375 1376 return nullptr; 1377 } 1378 1379 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1380 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1381 1382 if (Value *V = SimplifyGEPInst(GEP.getSourceElementType(), Ops, DL, TLI, DT, AC)) 1383 return replaceInstUsesWith(GEP, V); 1384 1385 Value *PtrOp = GEP.getOperand(0); 1386 1387 // Eliminate unneeded casts for indices, and replace indices which displace 1388 // by multiples of a zero size type with zero. 1389 bool MadeChange = false; 1390 Type *IntPtrTy = 1391 DL.getIntPtrType(GEP.getPointerOperandType()->getScalarType()); 1392 1393 gep_type_iterator GTI = gep_type_begin(GEP); 1394 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1395 ++I, ++GTI) { 1396 // Skip indices into struct types. 1397 if (isa<StructType>(*GTI)) 1398 continue; 1399 1400 // Index type should have the same width as IntPtr 1401 Type *IndexTy = (*I)->getType(); 1402 Type *NewIndexType = IndexTy->isVectorTy() ? 1403 VectorType::get(IntPtrTy, IndexTy->getVectorNumElements()) : IntPtrTy; 1404 1405 // If the element type has zero size then any index over it is equivalent 1406 // to an index of zero, so replace it with zero if it is not zero already. 1407 Type *EltTy = GTI.getIndexedType(); 1408 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0) 1409 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { 1410 *I = Constant::getNullValue(NewIndexType); 1411 MadeChange = true; 1412 } 1413 1414 if (IndexTy != NewIndexType) { 1415 // If we are using a wider index than needed for this platform, shrink 1416 // it to what we need. If narrower, sign-extend it to what we need. 1417 // This explicit cast can make subsequent optimizations more obvious. 1418 *I = Builder->CreateIntCast(*I, NewIndexType, true); 1419 MadeChange = true; 1420 } 1421 } 1422 if (MadeChange) 1423 return &GEP; 1424 1425 // Check to see if the inputs to the PHI node are getelementptr instructions. 1426 if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) { 1427 GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1428 if (!Op1) 1429 return nullptr; 1430 1431 // Don't fold a GEP into itself through a PHI node. This can only happen 1432 // through the back-edge of a loop. Folding a GEP into itself means that 1433 // the value of the previous iteration needs to be stored in the meantime, 1434 // thus requiring an additional register variable to be live, but not 1435 // actually achieving anything (the GEP still needs to be executed once per 1436 // loop iteration). 1437 if (Op1 == &GEP) 1438 return nullptr; 1439 1440 int DI = -1; 1441 1442 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1443 GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I); 1444 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1445 return nullptr; 1446 1447 // As for Op1 above, don't try to fold a GEP into itself. 1448 if (Op2 == &GEP) 1449 return nullptr; 1450 1451 // Keep track of the type as we walk the GEP. 1452 Type *CurTy = nullptr; 1453 1454 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1455 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1456 return nullptr; 1457 1458 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1459 if (DI == -1) { 1460 // We have not seen any differences yet in the GEPs feeding the 1461 // PHI yet, so we record this one if it is allowed to be a 1462 // variable. 1463 1464 // The first two arguments can vary for any GEP, the rest have to be 1465 // static for struct slots 1466 if (J > 1 && CurTy->isStructTy()) 1467 return nullptr; 1468 1469 DI = J; 1470 } else { 1471 // The GEP is different by more than one input. While this could be 1472 // extended to support GEPs that vary by more than one variable it 1473 // doesn't make sense since it greatly increases the complexity and 1474 // would result in an R+R+R addressing mode which no backend 1475 // directly supports and would need to be broken into several 1476 // simpler instructions anyway. 1477 return nullptr; 1478 } 1479 } 1480 1481 // Sink down a layer of the type for the next iteration. 1482 if (J > 0) { 1483 if (J == 1) { 1484 CurTy = Op1->getSourceElementType(); 1485 } else if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) { 1486 CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); 1487 } else { 1488 CurTy = nullptr; 1489 } 1490 } 1491 } 1492 } 1493 1494 // If not all GEPs are identical we'll have to create a new PHI node. 1495 // Check that the old PHI node has only one use so that it will get 1496 // removed. 1497 if (DI != -1 && !PN->hasOneUse()) 1498 return nullptr; 1499 1500 GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1501 if (DI == -1) { 1502 // All the GEPs feeding the PHI are identical. Clone one down into our 1503 // BB so that it can be merged with the current GEP. 1504 GEP.getParent()->getInstList().insert( 1505 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1506 } else { 1507 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1508 // into the current block so it can be merged, and create a new PHI to 1509 // set that index. 1510 PHINode *NewPN; 1511 { 1512 IRBuilderBase::InsertPointGuard Guard(*Builder); 1513 Builder->SetInsertPoint(PN); 1514 NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(), 1515 PN->getNumOperands()); 1516 } 1517 1518 for (auto &I : PN->operands()) 1519 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1520 PN->getIncomingBlock(I)); 1521 1522 NewGEP->setOperand(DI, NewPN); 1523 GEP.getParent()->getInstList().insert( 1524 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1525 NewGEP->setOperand(DI, NewPN); 1526 } 1527 1528 GEP.setOperand(0, NewGEP); 1529 PtrOp = NewGEP; 1530 } 1531 1532 // Combine Indices - If the source pointer to this getelementptr instruction 1533 // is a getelementptr instruction, combine the indices of the two 1534 // getelementptr instructions into a single instruction. 1535 // 1536 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) { 1537 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1538 return nullptr; 1539 1540 // Note that if our source is a gep chain itself then we wait for that 1541 // chain to be resolved before we perform this transformation. This 1542 // avoids us creating a TON of code in some cases. 1543 if (GEPOperator *SrcGEP = 1544 dyn_cast<GEPOperator>(Src->getOperand(0))) 1545 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1546 return nullptr; // Wait until our source is folded to completion. 1547 1548 SmallVector<Value*, 8> Indices; 1549 1550 // Find out whether the last index in the source GEP is a sequential idx. 1551 bool EndsWithSequential = false; 1552 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1553 I != E; ++I) 1554 EndsWithSequential = !(*I)->isStructTy(); 1555 1556 // Can we combine the two pointer arithmetics offsets? 1557 if (EndsWithSequential) { 1558 // Replace: gep (gep %P, long B), long A, ... 1559 // With: T = long A+B; gep %P, T, ... 1560 // 1561 Value *Sum; 1562 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1563 Value *GO1 = GEP.getOperand(1); 1564 if (SO1 == Constant::getNullValue(SO1->getType())) { 1565 Sum = GO1; 1566 } else if (GO1 == Constant::getNullValue(GO1->getType())) { 1567 Sum = SO1; 1568 } else { 1569 // If they aren't the same type, then the input hasn't been processed 1570 // by the loop above yet (which canonicalizes sequential index types to 1571 // intptr_t). Just avoid transforming this until the input has been 1572 // normalized. 1573 if (SO1->getType() != GO1->getType()) 1574 return nullptr; 1575 // Only do the combine when GO1 and SO1 are both constants. Only in 1576 // this case, we are sure the cost after the merge is never more than 1577 // that before the merge. 1578 if (!isa<Constant>(GO1) || !isa<Constant>(SO1)) 1579 return nullptr; 1580 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum"); 1581 } 1582 1583 // Update the GEP in place if possible. 1584 if (Src->getNumOperands() == 2) { 1585 GEP.setOperand(0, Src->getOperand(0)); 1586 GEP.setOperand(1, Sum); 1587 return &GEP; 1588 } 1589 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1590 Indices.push_back(Sum); 1591 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1592 } else if (isa<Constant>(*GEP.idx_begin()) && 1593 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1594 Src->getNumOperands() != 1) { 1595 // Otherwise we can do the fold if the first index of the GEP is a zero 1596 Indices.append(Src->op_begin()+1, Src->op_end()); 1597 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1598 } 1599 1600 if (!Indices.empty()) 1601 return GEP.isInBounds() && Src->isInBounds() 1602 ? GetElementPtrInst::CreateInBounds( 1603 Src->getSourceElementType(), Src->getOperand(0), Indices, 1604 GEP.getName()) 1605 : GetElementPtrInst::Create(Src->getSourceElementType(), 1606 Src->getOperand(0), Indices, 1607 GEP.getName()); 1608 } 1609 1610 if (GEP.getNumIndices() == 1) { 1611 unsigned AS = GEP.getPointerAddressSpace(); 1612 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 1613 DL.getPointerSizeInBits(AS)) { 1614 Type *Ty = GEP.getSourceElementType(); 1615 uint64_t TyAllocSize = DL.getTypeAllocSize(Ty); 1616 1617 bool Matched = false; 1618 uint64_t C; 1619 Value *V = nullptr; 1620 if (TyAllocSize == 1) { 1621 V = GEP.getOperand(1); 1622 Matched = true; 1623 } else if (match(GEP.getOperand(1), 1624 m_AShr(m_Value(V), m_ConstantInt(C)))) { 1625 if (TyAllocSize == 1ULL << C) 1626 Matched = true; 1627 } else if (match(GEP.getOperand(1), 1628 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 1629 if (TyAllocSize == C) 1630 Matched = true; 1631 } 1632 1633 if (Matched) { 1634 // Canonicalize (gep i8* X, -(ptrtoint Y)) 1635 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) 1636 // The GEP pattern is emitted by the SCEV expander for certain kinds of 1637 // pointer arithmetic. 1638 if (match(V, m_Neg(m_PtrToInt(m_Value())))) { 1639 Operator *Index = cast<Operator>(V); 1640 Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType()); 1641 Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1)); 1642 return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType()); 1643 } 1644 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) 1645 // to (bitcast Y) 1646 Value *Y; 1647 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), 1648 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) { 1649 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, 1650 GEP.getType()); 1651 } 1652 } 1653 } 1654 } 1655 1656 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 1657 Value *StrippedPtr = PtrOp->stripPointerCasts(); 1658 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType()); 1659 1660 // We do not handle pointer-vector geps here. 1661 if (!StrippedPtrTy) 1662 return nullptr; 1663 1664 if (StrippedPtr != PtrOp) { 1665 bool HasZeroPointerIndex = false; 1666 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 1667 HasZeroPointerIndex = C->isZero(); 1668 1669 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 1670 // into : GEP [10 x i8]* X, i32 0, ... 1671 // 1672 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 1673 // into : GEP i8* X, ... 1674 // 1675 // This occurs when the program declares an array extern like "int X[];" 1676 if (HasZeroPointerIndex) { 1677 if (ArrayType *CATy = 1678 dyn_cast<ArrayType>(GEP.getSourceElementType())) { 1679 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 1680 if (CATy->getElementType() == StrippedPtrTy->getElementType()) { 1681 // -> GEP i8* X, ... 1682 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 1683 GetElementPtrInst *Res = GetElementPtrInst::Create( 1684 StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName()); 1685 Res->setIsInBounds(GEP.isInBounds()); 1686 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 1687 return Res; 1688 // Insert Res, and create an addrspacecast. 1689 // e.g., 1690 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 1691 // -> 1692 // %0 = GEP i8 addrspace(1)* X, ... 1693 // addrspacecast i8 addrspace(1)* %0 to i8* 1694 return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType()); 1695 } 1696 1697 if (ArrayType *XATy = 1698 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){ 1699 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 1700 if (CATy->getElementType() == XATy->getElementType()) { 1701 // -> GEP [10 x i8]* X, i32 0, ... 1702 // At this point, we know that the cast source type is a pointer 1703 // to an array of the same type as the destination pointer 1704 // array. Because the array type is never stepped over (there 1705 // is a leading zero) we can fold the cast into this GEP. 1706 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 1707 GEP.setOperand(0, StrippedPtr); 1708 GEP.setSourceElementType(XATy); 1709 return &GEP; 1710 } 1711 // Cannot replace the base pointer directly because StrippedPtr's 1712 // address space is different. Instead, create a new GEP followed by 1713 // an addrspacecast. 1714 // e.g., 1715 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 1716 // i32 0, ... 1717 // -> 1718 // %0 = GEP [10 x i8] addrspace(1)* X, ... 1719 // addrspacecast i8 addrspace(1)* %0 to i8* 1720 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 1721 Value *NewGEP = GEP.isInBounds() 1722 ? Builder->CreateInBoundsGEP( 1723 nullptr, StrippedPtr, Idx, GEP.getName()) 1724 : Builder->CreateGEP(nullptr, StrippedPtr, Idx, 1725 GEP.getName()); 1726 return new AddrSpaceCastInst(NewGEP, GEP.getType()); 1727 } 1728 } 1729 } 1730 } else if (GEP.getNumOperands() == 2) { 1731 // Transform things like: 1732 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 1733 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 1734 Type *SrcElTy = StrippedPtrTy->getElementType(); 1735 Type *ResElTy = GEP.getSourceElementType(); 1736 if (SrcElTy->isArrayTy() && 1737 DL.getTypeAllocSize(SrcElTy->getArrayElementType()) == 1738 DL.getTypeAllocSize(ResElTy)) { 1739 Type *IdxType = DL.getIntPtrType(GEP.getType()); 1740 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 1741 Value *NewGEP = 1742 GEP.isInBounds() 1743 ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, Idx, 1744 GEP.getName()) 1745 : Builder->CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName()); 1746 1747 // V and GEP are both pointer types --> BitCast 1748 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1749 GEP.getType()); 1750 } 1751 1752 // Transform things like: 1753 // %V = mul i64 %N, 4 1754 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 1755 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 1756 if (ResElTy->isSized() && SrcElTy->isSized()) { 1757 // Check that changing the type amounts to dividing the index by a scale 1758 // factor. 1759 uint64_t ResSize = DL.getTypeAllocSize(ResElTy); 1760 uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy); 1761 if (ResSize && SrcSize % ResSize == 0) { 1762 Value *Idx = GEP.getOperand(1); 1763 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1764 uint64_t Scale = SrcSize / ResSize; 1765 1766 // Earlier transforms ensure that the index has type IntPtrType, which 1767 // considerably simplifies the logic by eliminating implicit casts. 1768 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) && 1769 "Index not cast to pointer width?"); 1770 1771 bool NSW; 1772 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1773 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1774 // If the multiplication NewIdx * Scale may overflow then the new 1775 // GEP may not be "inbounds". 1776 Value *NewGEP = 1777 GEP.isInBounds() && NSW 1778 ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx, 1779 GEP.getName()) 1780 : Builder->CreateGEP(nullptr, StrippedPtr, NewIdx, 1781 GEP.getName()); 1782 1783 // The NewGEP must be pointer typed, so must the old one -> BitCast 1784 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1785 GEP.getType()); 1786 } 1787 } 1788 } 1789 1790 // Similarly, transform things like: 1791 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 1792 // (where tmp = 8*tmp2) into: 1793 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 1794 if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) { 1795 // Check that changing to the array element type amounts to dividing the 1796 // index by a scale factor. 1797 uint64_t ResSize = DL.getTypeAllocSize(ResElTy); 1798 uint64_t ArrayEltSize = 1799 DL.getTypeAllocSize(SrcElTy->getArrayElementType()); 1800 if (ResSize && ArrayEltSize % ResSize == 0) { 1801 Value *Idx = GEP.getOperand(1); 1802 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1803 uint64_t Scale = ArrayEltSize / ResSize; 1804 1805 // Earlier transforms ensure that the index has type IntPtrType, which 1806 // considerably simplifies the logic by eliminating implicit casts. 1807 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) && 1808 "Index not cast to pointer width?"); 1809 1810 bool NSW; 1811 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1812 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1813 // If the multiplication NewIdx * Scale may overflow then the new 1814 // GEP may not be "inbounds". 1815 Value *Off[2] = { 1816 Constant::getNullValue(DL.getIntPtrType(GEP.getType())), 1817 NewIdx}; 1818 1819 Value *NewGEP = GEP.isInBounds() && NSW 1820 ? Builder->CreateInBoundsGEP( 1821 SrcElTy, StrippedPtr, Off, GEP.getName()) 1822 : Builder->CreateGEP(SrcElTy, StrippedPtr, Off, 1823 GEP.getName()); 1824 // The NewGEP must be pointer typed, so must the old one -> BitCast 1825 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1826 GEP.getType()); 1827 } 1828 } 1829 } 1830 } 1831 } 1832 1833 // addrspacecast between types is canonicalized as a bitcast, then an 1834 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 1835 // through the addrspacecast. 1836 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 1837 // X = bitcast A addrspace(1)* to B addrspace(1)* 1838 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 1839 // Z = gep Y, <...constant indices...> 1840 // Into an addrspacecasted GEP of the struct. 1841 if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 1842 PtrOp = BC; 1843 } 1844 1845 /// See if we can simplify: 1846 /// X = bitcast A* to B* 1847 /// Y = gep X, <...constant indices...> 1848 /// into a gep of the original struct. This is important for SROA and alias 1849 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 1850 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) { 1851 Value *Operand = BCI->getOperand(0); 1852 PointerType *OpType = cast<PointerType>(Operand->getType()); 1853 unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType()); 1854 APInt Offset(OffsetBits, 0); 1855 if (!isa<BitCastInst>(Operand) && 1856 GEP.accumulateConstantOffset(DL, Offset)) { 1857 1858 // If this GEP instruction doesn't move the pointer, just replace the GEP 1859 // with a bitcast of the real input to the dest type. 1860 if (!Offset) { 1861 // If the bitcast is of an allocation, and the allocation will be 1862 // converted to match the type of the cast, don't touch this. 1863 if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) { 1864 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 1865 if (Instruction *I = visitBitCast(*BCI)) { 1866 if (I != BCI) { 1867 I->takeName(BCI); 1868 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 1869 replaceInstUsesWith(*BCI, I); 1870 } 1871 return &GEP; 1872 } 1873 } 1874 1875 if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 1876 return new AddrSpaceCastInst(Operand, GEP.getType()); 1877 return new BitCastInst(Operand, GEP.getType()); 1878 } 1879 1880 // Otherwise, if the offset is non-zero, we need to find out if there is a 1881 // field at Offset in 'A's type. If so, we can pull the cast through the 1882 // GEP. 1883 SmallVector<Value*, 8> NewIndices; 1884 if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) { 1885 Value *NGEP = 1886 GEP.isInBounds() 1887 ? Builder->CreateInBoundsGEP(nullptr, Operand, NewIndices) 1888 : Builder->CreateGEP(nullptr, Operand, NewIndices); 1889 1890 if (NGEP->getType() == GEP.getType()) 1891 return replaceInstUsesWith(GEP, NGEP); 1892 NGEP->takeName(&GEP); 1893 1894 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 1895 return new AddrSpaceCastInst(NGEP, GEP.getType()); 1896 return new BitCastInst(NGEP, GEP.getType()); 1897 } 1898 } 1899 } 1900 1901 return nullptr; 1902 } 1903 1904 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 1905 Instruction *AI) { 1906 if (isa<ConstantPointerNull>(V)) 1907 return true; 1908 if (auto *LI = dyn_cast<LoadInst>(V)) 1909 return isa<GlobalVariable>(LI->getPointerOperand()); 1910 // Two distinct allocations will never be equal. 1911 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 1912 // through bitcasts of V can cause 1913 // the result statement below to be true, even when AI and V (ex: 1914 // i8* ->i32* ->i8* of AI) are the same allocations. 1915 return isAllocLikeFn(V, TLI) && V != AI; 1916 } 1917 1918 static bool 1919 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users, 1920 const TargetLibraryInfo *TLI) { 1921 SmallVector<Instruction*, 4> Worklist; 1922 Worklist.push_back(AI); 1923 1924 do { 1925 Instruction *PI = Worklist.pop_back_val(); 1926 for (User *U : PI->users()) { 1927 Instruction *I = cast<Instruction>(U); 1928 switch (I->getOpcode()) { 1929 default: 1930 // Give up the moment we see something we can't handle. 1931 return false; 1932 1933 case Instruction::BitCast: 1934 case Instruction::GetElementPtr: 1935 Users.emplace_back(I); 1936 Worklist.push_back(I); 1937 continue; 1938 1939 case Instruction::ICmp: { 1940 ICmpInst *ICI = cast<ICmpInst>(I); 1941 // We can fold eq/ne comparisons with null to false/true, respectively. 1942 // We also fold comparisons in some conditions provided the alloc has 1943 // not escaped (see isNeverEqualToUnescapedAlloc). 1944 if (!ICI->isEquality()) 1945 return false; 1946 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 1947 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 1948 return false; 1949 Users.emplace_back(I); 1950 continue; 1951 } 1952 1953 case Instruction::Call: 1954 // Ignore no-op and store intrinsics. 1955 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1956 switch (II->getIntrinsicID()) { 1957 default: 1958 return false; 1959 1960 case Intrinsic::memmove: 1961 case Intrinsic::memcpy: 1962 case Intrinsic::memset: { 1963 MemIntrinsic *MI = cast<MemIntrinsic>(II); 1964 if (MI->isVolatile() || MI->getRawDest() != PI) 1965 return false; 1966 } 1967 // fall through 1968 case Intrinsic::dbg_declare: 1969 case Intrinsic::dbg_value: 1970 case Intrinsic::invariant_start: 1971 case Intrinsic::invariant_end: 1972 case Intrinsic::lifetime_start: 1973 case Intrinsic::lifetime_end: 1974 case Intrinsic::objectsize: 1975 Users.emplace_back(I); 1976 continue; 1977 } 1978 } 1979 1980 if (isFreeCall(I, TLI)) { 1981 Users.emplace_back(I); 1982 continue; 1983 } 1984 return false; 1985 1986 case Instruction::Store: { 1987 StoreInst *SI = cast<StoreInst>(I); 1988 if (SI->isVolatile() || SI->getPointerOperand() != PI) 1989 return false; 1990 Users.emplace_back(I); 1991 continue; 1992 } 1993 } 1994 llvm_unreachable("missing a return?"); 1995 } 1996 } while (!Worklist.empty()); 1997 return true; 1998 } 1999 2000 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 2001 // If we have a malloc call which is only used in any amount of comparisons 2002 // to null and free calls, delete the calls and replace the comparisons with 2003 // true or false as appropriate. 2004 SmallVector<WeakVH, 64> Users; 2005 if (isAllocSiteRemovable(&MI, Users, TLI)) { 2006 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2007 // Lowering all @llvm.objectsize calls first because they may 2008 // use a bitcast/GEP of the alloca we are removing. 2009 if (!Users[i]) 2010 continue; 2011 2012 Instruction *I = cast<Instruction>(&*Users[i]); 2013 2014 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2015 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2016 uint64_t Size; 2017 if (!getObjectSize(II->getArgOperand(0), Size, DL, TLI)) { 2018 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 2019 Size = CI->isZero() ? -1ULL : 0; 2020 } 2021 replaceInstUsesWith(*I, ConstantInt::get(I->getType(), Size)); 2022 eraseInstFromFunction(*I); 2023 Users[i] = nullptr; // Skip examining in the next loop. 2024 } 2025 } 2026 } 2027 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2028 if (!Users[i]) 2029 continue; 2030 2031 Instruction *I = cast<Instruction>(&*Users[i]); 2032 2033 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2034 replaceInstUsesWith(*C, 2035 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2036 C->isFalseWhenEqual())); 2037 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) { 2038 replaceInstUsesWith(*I, UndefValue::get(I->getType())); 2039 } 2040 eraseInstFromFunction(*I); 2041 } 2042 2043 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2044 // Replace invoke with a NOP intrinsic to maintain the original CFG 2045 Module *M = II->getModule(); 2046 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2047 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2048 None, "", II->getParent()); 2049 } 2050 return eraseInstFromFunction(MI); 2051 } 2052 return nullptr; 2053 } 2054 2055 /// \brief Move the call to free before a NULL test. 2056 /// 2057 /// Check if this free is accessed after its argument has been test 2058 /// against NULL (property 0). 2059 /// If yes, it is legal to move this call in its predecessor block. 2060 /// 2061 /// The move is performed only if the block containing the call to free 2062 /// will be removed, i.e.: 2063 /// 1. it has only one predecessor P, and P has two successors 2064 /// 2. it contains the call and an unconditional branch 2065 /// 3. its successor is the same as its predecessor's successor 2066 /// 2067 /// The profitability is out-of concern here and this function should 2068 /// be called only if the caller knows this transformation would be 2069 /// profitable (e.g., for code size). 2070 static Instruction * 2071 tryToMoveFreeBeforeNullTest(CallInst &FI) { 2072 Value *Op = FI.getArgOperand(0); 2073 BasicBlock *FreeInstrBB = FI.getParent(); 2074 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2075 2076 // Validate part of constraint #1: Only one predecessor 2077 // FIXME: We can extend the number of predecessor, but in that case, we 2078 // would duplicate the call to free in each predecessor and it may 2079 // not be profitable even for code size. 2080 if (!PredBB) 2081 return nullptr; 2082 2083 // Validate constraint #2: Does this block contains only the call to 2084 // free and an unconditional branch? 2085 // FIXME: We could check if we can speculate everything in the 2086 // predecessor block 2087 if (FreeInstrBB->size() != 2) 2088 return nullptr; 2089 BasicBlock *SuccBB; 2090 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB))) 2091 return nullptr; 2092 2093 // Validate the rest of constraint #1 by matching on the pred branch. 2094 TerminatorInst *TI = PredBB->getTerminator(); 2095 BasicBlock *TrueBB, *FalseBB; 2096 ICmpInst::Predicate Pred; 2097 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB))) 2098 return nullptr; 2099 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2100 return nullptr; 2101 2102 // Validate constraint #3: Ensure the null case just falls through. 2103 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2104 return nullptr; 2105 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2106 "Broken CFG: missing edge from predecessor to successor"); 2107 2108 FI.moveBefore(TI); 2109 return &FI; 2110 } 2111 2112 2113 Instruction *InstCombiner::visitFree(CallInst &FI) { 2114 Value *Op = FI.getArgOperand(0); 2115 2116 // free undef -> unreachable. 2117 if (isa<UndefValue>(Op)) { 2118 // Insert a new store to null because we cannot modify the CFG here. 2119 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()), 2120 UndefValue::get(Type::getInt1PtrTy(FI.getContext()))); 2121 return eraseInstFromFunction(FI); 2122 } 2123 2124 // If we have 'free null' delete the instruction. This can happen in stl code 2125 // when lots of inlining happens. 2126 if (isa<ConstantPointerNull>(Op)) 2127 return eraseInstFromFunction(FI); 2128 2129 // If we optimize for code size, try to move the call to free before the null 2130 // test so that simplify cfg can remove the empty block and dead code 2131 // elimination the branch. I.e., helps to turn something like: 2132 // if (foo) free(foo); 2133 // into 2134 // free(foo); 2135 if (MinimizeSize) 2136 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI)) 2137 return I; 2138 2139 return nullptr; 2140 } 2141 2142 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { 2143 if (RI.getNumOperands() == 0) // ret void 2144 return nullptr; 2145 2146 Value *ResultOp = RI.getOperand(0); 2147 Type *VTy = ResultOp->getType(); 2148 if (!VTy->isIntegerTy()) 2149 return nullptr; 2150 2151 // There might be assume intrinsics dominating this return that completely 2152 // determine the value. If so, constant fold it. 2153 unsigned BitWidth = VTy->getPrimitiveSizeInBits(); 2154 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 2155 computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI); 2156 if ((KnownZero|KnownOne).isAllOnesValue()) 2157 RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne)); 2158 2159 return nullptr; 2160 } 2161 2162 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 2163 // Change br (not X), label True, label False to: br X, label False, True 2164 Value *X = nullptr; 2165 BasicBlock *TrueDest; 2166 BasicBlock *FalseDest; 2167 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && 2168 !isa<Constant>(X)) { 2169 // Swap Destinations and condition... 2170 BI.setCondition(X); 2171 BI.swapSuccessors(); 2172 return &BI; 2173 } 2174 2175 // If the condition is irrelevant, remove the use so that other 2176 // transforms on the condition become more effective. 2177 if (BI.isConditional() && 2178 BI.getSuccessor(0) == BI.getSuccessor(1) && 2179 !isa<UndefValue>(BI.getCondition())) { 2180 BI.setCondition(UndefValue::get(BI.getCondition()->getType())); 2181 return &BI; 2182 } 2183 2184 // Canonicalize fcmp_one -> fcmp_oeq 2185 FCmpInst::Predicate FPred; Value *Y; 2186 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), 2187 TrueDest, FalseDest)) && 2188 BI.getCondition()->hasOneUse()) 2189 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE || 2190 FPred == FCmpInst::FCMP_OGE) { 2191 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition()); 2192 Cond->setPredicate(FCmpInst::getInversePredicate(FPred)); 2193 2194 // Swap Destinations and condition. 2195 BI.swapSuccessors(); 2196 Worklist.Add(Cond); 2197 return &BI; 2198 } 2199 2200 // Canonicalize icmp_ne -> icmp_eq 2201 ICmpInst::Predicate IPred; 2202 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)), 2203 TrueDest, FalseDest)) && 2204 BI.getCondition()->hasOneUse()) 2205 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE || 2206 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE || 2207 IPred == ICmpInst::ICMP_SGE) { 2208 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition()); 2209 Cond->setPredicate(ICmpInst::getInversePredicate(IPred)); 2210 // Swap Destinations and condition. 2211 BI.swapSuccessors(); 2212 Worklist.Add(Cond); 2213 return &BI; 2214 } 2215 2216 return nullptr; 2217 } 2218 2219 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 2220 Value *Cond = SI.getCondition(); 2221 unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth(); 2222 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 2223 computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI); 2224 unsigned LeadingKnownZeros = KnownZero.countLeadingOnes(); 2225 unsigned LeadingKnownOnes = KnownOne.countLeadingOnes(); 2226 2227 // Compute the number of leading bits we can ignore. 2228 // TODO: A better way to determine this would use ComputeNumSignBits(). 2229 for (auto &C : SI.cases()) { 2230 LeadingKnownZeros = std::min( 2231 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2232 LeadingKnownOnes = std::min( 2233 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2234 } 2235 2236 unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes); 2237 2238 // Shrink the condition operand if the new type is smaller than the old type. 2239 // This may produce a non-standard type for the switch, but that's ok because 2240 // the backend should extend back to a legal type for the target. 2241 bool TruncCond = false; 2242 if (NewWidth > 0 && NewWidth < BitWidth) { 2243 TruncCond = true; 2244 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2245 Builder->SetInsertPoint(&SI); 2246 Value *NewCond = Builder->CreateTrunc(Cond, Ty, "trunc"); 2247 SI.setCondition(NewCond); 2248 2249 for (auto &C : SI.cases()) 2250 static_cast<SwitchInst::CaseIt *>(&C)->setValue(ConstantInt::get( 2251 SI.getContext(), C.getCaseValue()->getValue().trunc(NewWidth))); 2252 } 2253 2254 ConstantInt *AddRHS = nullptr; 2255 if (match(Cond, m_Add(m_Value(), m_ConstantInt(AddRHS)))) { 2256 Instruction *I = cast<Instruction>(Cond); 2257 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2258 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; 2259 ++i) { 2260 ConstantInt *CaseVal = i.getCaseValue(); 2261 Constant *LHS = CaseVal; 2262 if (TruncCond) { 2263 LHS = LeadingKnownZeros 2264 ? ConstantExpr::getZExt(CaseVal, Cond->getType()) 2265 : ConstantExpr::getSExt(CaseVal, Cond->getType()); 2266 } 2267 Constant *NewCaseVal = ConstantExpr::getSub(LHS, AddRHS); 2268 assert(isa<ConstantInt>(NewCaseVal) && 2269 "Result of expression should be constant"); 2270 i.setValue(cast<ConstantInt>(NewCaseVal)); 2271 } 2272 SI.setCondition(I->getOperand(0)); 2273 Worklist.Add(I); 2274 return &SI; 2275 } 2276 2277 return TruncCond ? &SI : nullptr; 2278 } 2279 2280 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 2281 Value *Agg = EV.getAggregateOperand(); 2282 2283 if (!EV.hasIndices()) 2284 return replaceInstUsesWith(EV, Agg); 2285 2286 if (Value *V = 2287 SimplifyExtractValueInst(Agg, EV.getIndices(), DL, TLI, DT, AC)) 2288 return replaceInstUsesWith(EV, V); 2289 2290 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 2291 // We're extracting from an insertvalue instruction, compare the indices 2292 const unsigned *exti, *exte, *insi, *inse; 2293 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 2294 exte = EV.idx_end(), inse = IV->idx_end(); 2295 exti != exte && insi != inse; 2296 ++exti, ++insi) { 2297 if (*insi != *exti) 2298 // The insert and extract both reference distinctly different elements. 2299 // This means the extract is not influenced by the insert, and we can 2300 // replace the aggregate operand of the extract with the aggregate 2301 // operand of the insert. i.e., replace 2302 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2303 // %E = extractvalue { i32, { i32 } } %I, 0 2304 // with 2305 // %E = extractvalue { i32, { i32 } } %A, 0 2306 return ExtractValueInst::Create(IV->getAggregateOperand(), 2307 EV.getIndices()); 2308 } 2309 if (exti == exte && insi == inse) 2310 // Both iterators are at the end: Index lists are identical. Replace 2311 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2312 // %C = extractvalue { i32, { i32 } } %B, 1, 0 2313 // with "i32 42" 2314 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 2315 if (exti == exte) { 2316 // The extract list is a prefix of the insert list. i.e. replace 2317 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2318 // %E = extractvalue { i32, { i32 } } %I, 1 2319 // with 2320 // %X = extractvalue { i32, { i32 } } %A, 1 2321 // %E = insertvalue { i32 } %X, i32 42, 0 2322 // by switching the order of the insert and extract (though the 2323 // insertvalue should be left in, since it may have other uses). 2324 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(), 2325 EV.getIndices()); 2326 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 2327 makeArrayRef(insi, inse)); 2328 } 2329 if (insi == inse) 2330 // The insert list is a prefix of the extract list 2331 // We can simply remove the common indices from the extract and make it 2332 // operate on the inserted value instead of the insertvalue result. 2333 // i.e., replace 2334 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2335 // %E = extractvalue { i32, { i32 } } %I, 1, 0 2336 // with 2337 // %E extractvalue { i32 } { i32 42 }, 0 2338 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 2339 makeArrayRef(exti, exte)); 2340 } 2341 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { 2342 // We're extracting from an intrinsic, see if we're the only user, which 2343 // allows us to simplify multiple result intrinsics to simpler things that 2344 // just get one value. 2345 if (II->hasOneUse()) { 2346 // Check if we're grabbing the overflow bit or the result of a 'with 2347 // overflow' intrinsic. If it's the latter we can remove the intrinsic 2348 // and replace it with a traditional binary instruction. 2349 switch (II->getIntrinsicID()) { 2350 case Intrinsic::uadd_with_overflow: 2351 case Intrinsic::sadd_with_overflow: 2352 if (*EV.idx_begin() == 0) { // Normal result. 2353 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2354 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2355 eraseInstFromFunction(*II); 2356 return BinaryOperator::CreateAdd(LHS, RHS); 2357 } 2358 2359 // If the normal result of the add is dead, and the RHS is a constant, 2360 // we can transform this into a range comparison. 2361 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 2362 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) 2363 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1))) 2364 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0), 2365 ConstantExpr::getNot(CI)); 2366 break; 2367 case Intrinsic::usub_with_overflow: 2368 case Intrinsic::ssub_with_overflow: 2369 if (*EV.idx_begin() == 0) { // Normal result. 2370 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2371 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2372 eraseInstFromFunction(*II); 2373 return BinaryOperator::CreateSub(LHS, RHS); 2374 } 2375 break; 2376 case Intrinsic::umul_with_overflow: 2377 case Intrinsic::smul_with_overflow: 2378 if (*EV.idx_begin() == 0) { // Normal result. 2379 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2380 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2381 eraseInstFromFunction(*II); 2382 return BinaryOperator::CreateMul(LHS, RHS); 2383 } 2384 break; 2385 default: 2386 break; 2387 } 2388 } 2389 } 2390 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2391 // If the (non-volatile) load only has one use, we can rewrite this to a 2392 // load from a GEP. This reduces the size of the load. If a load is used 2393 // only by extractvalue instructions then this either must have been 2394 // optimized before, or it is a struct with padding, in which case we 2395 // don't want to do the transformation as it loses padding knowledge. 2396 if (L->isSimple() && L->hasOneUse()) { 2397 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2398 SmallVector<Value*, 4> Indices; 2399 // Prefix an i32 0 since we need the first element. 2400 Indices.push_back(Builder->getInt32(0)); 2401 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2402 I != E; ++I) 2403 Indices.push_back(Builder->getInt32(*I)); 2404 2405 // We need to insert these at the location of the old load, not at that of 2406 // the extractvalue. 2407 Builder->SetInsertPoint(L); 2408 Value *GEP = Builder->CreateInBoundsGEP(L->getType(), 2409 L->getPointerOperand(), Indices); 2410 // Returning the load directly will cause the main loop to insert it in 2411 // the wrong spot, so use replaceInstUsesWith(). 2412 return replaceInstUsesWith(EV, Builder->CreateLoad(GEP)); 2413 } 2414 // We could simplify extracts from other values. Note that nested extracts may 2415 // already be simplified implicitly by the above: extract (extract (insert) ) 2416 // will be translated into extract ( insert ( extract ) ) first and then just 2417 // the value inserted, if appropriate. Similarly for extracts from single-use 2418 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2419 // and if again single-use then via load (gep (gep)) to load (gep). 2420 // However, double extracts from e.g. function arguments or return values 2421 // aren't handled yet. 2422 return nullptr; 2423 } 2424 2425 /// Return 'true' if the given typeinfo will match anything. 2426 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 2427 switch (Personality) { 2428 case EHPersonality::GNU_C: 2429 case EHPersonality::GNU_C_SjLj: 2430 case EHPersonality::Rust: 2431 // The GCC C EH and Rust personality only exists to support cleanups, so 2432 // it's not clear what the semantics of catch clauses are. 2433 return false; 2434 case EHPersonality::Unknown: 2435 return false; 2436 case EHPersonality::GNU_Ada: 2437 // While __gnat_all_others_value will match any Ada exception, it doesn't 2438 // match foreign exceptions (or didn't, before gcc-4.7). 2439 return false; 2440 case EHPersonality::GNU_CXX: 2441 case EHPersonality::GNU_CXX_SjLj: 2442 case EHPersonality::GNU_ObjC: 2443 case EHPersonality::MSVC_X86SEH: 2444 case EHPersonality::MSVC_Win64SEH: 2445 case EHPersonality::MSVC_CXX: 2446 case EHPersonality::CoreCLR: 2447 return TypeInfo->isNullValue(); 2448 } 2449 llvm_unreachable("invalid enum"); 2450 } 2451 2452 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2453 return 2454 cast<ArrayType>(LHS->getType())->getNumElements() 2455 < 2456 cast<ArrayType>(RHS->getType())->getNumElements(); 2457 } 2458 2459 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2460 // The logic here should be correct for any real-world personality function. 2461 // However if that turns out not to be true, the offending logic can always 2462 // be conditioned on the personality function, like the catch-all logic is. 2463 EHPersonality Personality = 2464 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 2465 2466 // Simplify the list of clauses, eg by removing repeated catch clauses 2467 // (these are often created by inlining). 2468 bool MakeNewInstruction = false; // If true, recreate using the following: 2469 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2470 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2471 2472 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 2473 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 2474 bool isLastClause = i + 1 == e; 2475 if (LI.isCatch(i)) { 2476 // A catch clause. 2477 Constant *CatchClause = LI.getClause(i); 2478 Constant *TypeInfo = CatchClause->stripPointerCasts(); 2479 2480 // If we already saw this clause, there is no point in having a second 2481 // copy of it. 2482 if (AlreadyCaught.insert(TypeInfo).second) { 2483 // This catch clause was not already seen. 2484 NewClauses.push_back(CatchClause); 2485 } else { 2486 // Repeated catch clause - drop the redundant copy. 2487 MakeNewInstruction = true; 2488 } 2489 2490 // If this is a catch-all then there is no point in keeping any following 2491 // clauses or marking the landingpad as having a cleanup. 2492 if (isCatchAll(Personality, TypeInfo)) { 2493 if (!isLastClause) 2494 MakeNewInstruction = true; 2495 CleanupFlag = false; 2496 break; 2497 } 2498 } else { 2499 // A filter clause. If any of the filter elements were already caught 2500 // then they can be dropped from the filter. It is tempting to try to 2501 // exploit the filter further by saying that any typeinfo that does not 2502 // occur in the filter can't be caught later (and thus can be dropped). 2503 // However this would be wrong, since typeinfos can match without being 2504 // equal (for example if one represents a C++ class, and the other some 2505 // class derived from it). 2506 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 2507 Constant *FilterClause = LI.getClause(i); 2508 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 2509 unsigned NumTypeInfos = FilterType->getNumElements(); 2510 2511 // An empty filter catches everything, so there is no point in keeping any 2512 // following clauses or marking the landingpad as having a cleanup. By 2513 // dealing with this case here the following code is made a bit simpler. 2514 if (!NumTypeInfos) { 2515 NewClauses.push_back(FilterClause); 2516 if (!isLastClause) 2517 MakeNewInstruction = true; 2518 CleanupFlag = false; 2519 break; 2520 } 2521 2522 bool MakeNewFilter = false; // If true, make a new filter. 2523 SmallVector<Constant *, 16> NewFilterElts; // New elements. 2524 if (isa<ConstantAggregateZero>(FilterClause)) { 2525 // Not an empty filter - it contains at least one null typeinfo. 2526 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 2527 Constant *TypeInfo = 2528 Constant::getNullValue(FilterType->getElementType()); 2529 // If this typeinfo is a catch-all then the filter can never match. 2530 if (isCatchAll(Personality, TypeInfo)) { 2531 // Throw the filter away. 2532 MakeNewInstruction = true; 2533 continue; 2534 } 2535 2536 // There is no point in having multiple copies of this typeinfo, so 2537 // discard all but the first copy if there is more than one. 2538 NewFilterElts.push_back(TypeInfo); 2539 if (NumTypeInfos > 1) 2540 MakeNewFilter = true; 2541 } else { 2542 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 2543 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 2544 NewFilterElts.reserve(NumTypeInfos); 2545 2546 // Remove any filter elements that were already caught or that already 2547 // occurred in the filter. While there, see if any of the elements are 2548 // catch-alls. If so, the filter can be discarded. 2549 bool SawCatchAll = false; 2550 for (unsigned j = 0; j != NumTypeInfos; ++j) { 2551 Constant *Elt = Filter->getOperand(j); 2552 Constant *TypeInfo = Elt->stripPointerCasts(); 2553 if (isCatchAll(Personality, TypeInfo)) { 2554 // This element is a catch-all. Bail out, noting this fact. 2555 SawCatchAll = true; 2556 break; 2557 } 2558 2559 // Even if we've seen a type in a catch clause, we don't want to 2560 // remove it from the filter. An unexpected type handler may be 2561 // set up for a call site which throws an exception of the same 2562 // type caught. In order for the exception thrown by the unexpected 2563 // handler to propogate correctly, the filter must be correctly 2564 // described for the call site. 2565 // 2566 // Example: 2567 // 2568 // void unexpected() { throw 1;} 2569 // void foo() throw (int) { 2570 // std::set_unexpected(unexpected); 2571 // try { 2572 // throw 2.0; 2573 // } catch (int i) {} 2574 // } 2575 2576 // There is no point in having multiple copies of the same typeinfo in 2577 // a filter, so only add it if we didn't already. 2578 if (SeenInFilter.insert(TypeInfo).second) 2579 NewFilterElts.push_back(cast<Constant>(Elt)); 2580 } 2581 // A filter containing a catch-all cannot match anything by definition. 2582 if (SawCatchAll) { 2583 // Throw the filter away. 2584 MakeNewInstruction = true; 2585 continue; 2586 } 2587 2588 // If we dropped something from the filter, make a new one. 2589 if (NewFilterElts.size() < NumTypeInfos) 2590 MakeNewFilter = true; 2591 } 2592 if (MakeNewFilter) { 2593 FilterType = ArrayType::get(FilterType->getElementType(), 2594 NewFilterElts.size()); 2595 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 2596 MakeNewInstruction = true; 2597 } 2598 2599 NewClauses.push_back(FilterClause); 2600 2601 // If the new filter is empty then it will catch everything so there is 2602 // no point in keeping any following clauses or marking the landingpad 2603 // as having a cleanup. The case of the original filter being empty was 2604 // already handled above. 2605 if (MakeNewFilter && !NewFilterElts.size()) { 2606 assert(MakeNewInstruction && "New filter but not a new instruction!"); 2607 CleanupFlag = false; 2608 break; 2609 } 2610 } 2611 } 2612 2613 // If several filters occur in a row then reorder them so that the shortest 2614 // filters come first (those with the smallest number of elements). This is 2615 // advantageous because shorter filters are more likely to match, speeding up 2616 // unwinding, but mostly because it increases the effectiveness of the other 2617 // filter optimizations below. 2618 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 2619 unsigned j; 2620 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 2621 for (j = i; j != e; ++j) 2622 if (!isa<ArrayType>(NewClauses[j]->getType())) 2623 break; 2624 2625 // Check whether the filters are already sorted by length. We need to know 2626 // if sorting them is actually going to do anything so that we only make a 2627 // new landingpad instruction if it does. 2628 for (unsigned k = i; k + 1 < j; ++k) 2629 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 2630 // Not sorted, so sort the filters now. Doing an unstable sort would be 2631 // correct too but reordering filters pointlessly might confuse users. 2632 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 2633 shorter_filter); 2634 MakeNewInstruction = true; 2635 break; 2636 } 2637 2638 // Look for the next batch of filters. 2639 i = j + 1; 2640 } 2641 2642 // If typeinfos matched if and only if equal, then the elements of a filter L 2643 // that occurs later than a filter F could be replaced by the intersection of 2644 // the elements of F and L. In reality two typeinfos can match without being 2645 // equal (for example if one represents a C++ class, and the other some class 2646 // derived from it) so it would be wrong to perform this transform in general. 2647 // However the transform is correct and useful if F is a subset of L. In that 2648 // case L can be replaced by F, and thus removed altogether since repeating a 2649 // filter is pointless. So here we look at all pairs of filters F and L where 2650 // L follows F in the list of clauses, and remove L if every element of F is 2651 // an element of L. This can occur when inlining C++ functions with exception 2652 // specifications. 2653 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 2654 // Examine each filter in turn. 2655 Value *Filter = NewClauses[i]; 2656 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 2657 if (!FTy) 2658 // Not a filter - skip it. 2659 continue; 2660 unsigned FElts = FTy->getNumElements(); 2661 // Examine each filter following this one. Doing this backwards means that 2662 // we don't have to worry about filters disappearing under us when removed. 2663 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 2664 Value *LFilter = NewClauses[j]; 2665 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 2666 if (!LTy) 2667 // Not a filter - skip it. 2668 continue; 2669 // If Filter is a subset of LFilter, i.e. every element of Filter is also 2670 // an element of LFilter, then discard LFilter. 2671 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 2672 // If Filter is empty then it is a subset of LFilter. 2673 if (!FElts) { 2674 // Discard LFilter. 2675 NewClauses.erase(J); 2676 MakeNewInstruction = true; 2677 // Move on to the next filter. 2678 continue; 2679 } 2680 unsigned LElts = LTy->getNumElements(); 2681 // If Filter is longer than LFilter then it cannot be a subset of it. 2682 if (FElts > LElts) 2683 // Move on to the next filter. 2684 continue; 2685 // At this point we know that LFilter has at least one element. 2686 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 2687 // Filter is a subset of LFilter iff Filter contains only zeros (as we 2688 // already know that Filter is not longer than LFilter). 2689 if (isa<ConstantAggregateZero>(Filter)) { 2690 assert(FElts <= LElts && "Should have handled this case earlier!"); 2691 // Discard LFilter. 2692 NewClauses.erase(J); 2693 MakeNewInstruction = true; 2694 } 2695 // Move on to the next filter. 2696 continue; 2697 } 2698 ConstantArray *LArray = cast<ConstantArray>(LFilter); 2699 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 2700 // Since Filter is non-empty and contains only zeros, it is a subset of 2701 // LFilter iff LFilter contains a zero. 2702 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 2703 for (unsigned l = 0; l != LElts; ++l) 2704 if (LArray->getOperand(l)->isNullValue()) { 2705 // LFilter contains a zero - discard it. 2706 NewClauses.erase(J); 2707 MakeNewInstruction = true; 2708 break; 2709 } 2710 // Move on to the next filter. 2711 continue; 2712 } 2713 // At this point we know that both filters are ConstantArrays. Loop over 2714 // operands to see whether every element of Filter is also an element of 2715 // LFilter. Since filters tend to be short this is probably faster than 2716 // using a method that scales nicely. 2717 ConstantArray *FArray = cast<ConstantArray>(Filter); 2718 bool AllFound = true; 2719 for (unsigned f = 0; f != FElts; ++f) { 2720 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 2721 AllFound = false; 2722 for (unsigned l = 0; l != LElts; ++l) { 2723 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 2724 if (LTypeInfo == FTypeInfo) { 2725 AllFound = true; 2726 break; 2727 } 2728 } 2729 if (!AllFound) 2730 break; 2731 } 2732 if (AllFound) { 2733 // Discard LFilter. 2734 NewClauses.erase(J); 2735 MakeNewInstruction = true; 2736 } 2737 // Move on to the next filter. 2738 } 2739 } 2740 2741 // If we changed any of the clauses, replace the old landingpad instruction 2742 // with a new one. 2743 if (MakeNewInstruction) { 2744 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 2745 NewClauses.size()); 2746 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 2747 NLI->addClause(NewClauses[i]); 2748 // A landing pad with no clauses must have the cleanup flag set. It is 2749 // theoretically possible, though highly unlikely, that we eliminated all 2750 // clauses. If so, force the cleanup flag to true. 2751 if (NewClauses.empty()) 2752 CleanupFlag = true; 2753 NLI->setCleanup(CleanupFlag); 2754 return NLI; 2755 } 2756 2757 // Even if none of the clauses changed, we may nonetheless have understood 2758 // that the cleanup flag is pointless. Clear it if so. 2759 if (LI.isCleanup() != CleanupFlag) { 2760 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 2761 LI.setCleanup(CleanupFlag); 2762 return &LI; 2763 } 2764 2765 return nullptr; 2766 } 2767 2768 /// Try to move the specified instruction from its current block into the 2769 /// beginning of DestBlock, which can only happen if it's safe to move the 2770 /// instruction past all of the instructions between it and the end of its 2771 /// block. 2772 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 2773 assert(I->hasOneUse() && "Invariants didn't hold!"); 2774 2775 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 2776 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 2777 isa<TerminatorInst>(I)) 2778 return false; 2779 2780 // Do not sink alloca instructions out of the entry block. 2781 if (isa<AllocaInst>(I) && I->getParent() == 2782 &DestBlock->getParent()->getEntryBlock()) 2783 return false; 2784 2785 // Do not sink into catchswitch blocks. 2786 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 2787 return false; 2788 2789 // Do not sink convergent call instructions. 2790 if (auto *CI = dyn_cast<CallInst>(I)) { 2791 if (CI->isConvergent()) 2792 return false; 2793 } 2794 // We can only sink load instructions if there is nothing between the load and 2795 // the end of block that could change the value. 2796 if (I->mayReadFromMemory()) { 2797 for (BasicBlock::iterator Scan = I->getIterator(), 2798 E = I->getParent()->end(); 2799 Scan != E; ++Scan) 2800 if (Scan->mayWriteToMemory()) 2801 return false; 2802 } 2803 2804 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 2805 I->moveBefore(&*InsertPos); 2806 ++NumSunkInst; 2807 return true; 2808 } 2809 2810 bool InstCombiner::run() { 2811 while (!Worklist.isEmpty()) { 2812 Instruction *I = Worklist.RemoveOne(); 2813 if (I == nullptr) continue; // skip null values. 2814 2815 // Check to see if we can DCE the instruction. 2816 if (isInstructionTriviallyDead(I, TLI)) { 2817 DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); 2818 eraseInstFromFunction(*I); 2819 ++NumDeadInst; 2820 MadeIRChange = true; 2821 continue; 2822 } 2823 2824 // Instruction isn't dead, see if we can constant propagate it. 2825 if (!I->use_empty() && 2826 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 2827 if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) { 2828 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n'); 2829 2830 // Add operands to the worklist. 2831 replaceInstUsesWith(*I, C); 2832 ++NumConstProp; 2833 if (isInstructionTriviallyDead(I, TLI)) 2834 eraseInstFromFunction(*I); 2835 MadeIRChange = true; 2836 continue; 2837 } 2838 } 2839 2840 // In general, it is possible for computeKnownBits to determine all bits in 2841 // a value even when the operands are not all constants. 2842 if (ExpensiveCombines && !I->use_empty() && I->getType()->isIntegerTy()) { 2843 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 2844 APInt KnownZero(BitWidth, 0); 2845 APInt KnownOne(BitWidth, 0); 2846 computeKnownBits(I, KnownZero, KnownOne, /*Depth*/0, I); 2847 if ((KnownZero | KnownOne).isAllOnesValue()) { 2848 Constant *C = ConstantInt::get(I->getContext(), KnownOne); 2849 DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C << 2850 " from: " << *I << '\n'); 2851 2852 // Add operands to the worklist. 2853 replaceInstUsesWith(*I, C); 2854 ++NumConstProp; 2855 if (isInstructionTriviallyDead(I, TLI)) 2856 eraseInstFromFunction(*I); 2857 MadeIRChange = true; 2858 continue; 2859 } 2860 } 2861 2862 // See if we can trivially sink this instruction to a successor basic block. 2863 if (I->hasOneUse()) { 2864 BasicBlock *BB = I->getParent(); 2865 Instruction *UserInst = cast<Instruction>(*I->user_begin()); 2866 BasicBlock *UserParent; 2867 2868 // Get the block the use occurs in. 2869 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 2870 UserParent = PN->getIncomingBlock(*I->use_begin()); 2871 else 2872 UserParent = UserInst->getParent(); 2873 2874 if (UserParent != BB) { 2875 bool UserIsSuccessor = false; 2876 // See if the user is one of our successors. 2877 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 2878 if (*SI == UserParent) { 2879 UserIsSuccessor = true; 2880 break; 2881 } 2882 2883 // If the user is one of our immediate successors, and if that successor 2884 // only has us as a predecessors (we'd have to split the critical edge 2885 // otherwise), we can keep going. 2886 if (UserIsSuccessor && UserParent->getSinglePredecessor()) { 2887 // Okay, the CFG is simple enough, try to sink this instruction. 2888 if (TryToSinkInstruction(I, UserParent)) { 2889 DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 2890 MadeIRChange = true; 2891 // We'll add uses of the sunk instruction below, but since sinking 2892 // can expose opportunities for it's *operands* add them to the 2893 // worklist 2894 for (Use &U : I->operands()) 2895 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 2896 Worklist.Add(OpI); 2897 } 2898 } 2899 } 2900 } 2901 2902 // Now that we have an instruction, try combining it to simplify it. 2903 Builder->SetInsertPoint(I); 2904 Builder->SetCurrentDebugLocation(I->getDebugLoc()); 2905 2906 #ifndef NDEBUG 2907 std::string OrigI; 2908 #endif 2909 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 2910 DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 2911 2912 if (Instruction *Result = visit(*I)) { 2913 ++NumCombined; 2914 // Should we replace the old instruction with a new one? 2915 if (Result != I) { 2916 DEBUG(dbgs() << "IC: Old = " << *I << '\n' 2917 << " New = " << *Result << '\n'); 2918 2919 if (I->getDebugLoc()) 2920 Result->setDebugLoc(I->getDebugLoc()); 2921 // Everything uses the new instruction now. 2922 I->replaceAllUsesWith(Result); 2923 2924 // Move the name to the new instruction first. 2925 Result->takeName(I); 2926 2927 // Push the new instruction and any users onto the worklist. 2928 Worklist.Add(Result); 2929 Worklist.AddUsersToWorkList(*Result); 2930 2931 // Insert the new instruction into the basic block... 2932 BasicBlock *InstParent = I->getParent(); 2933 BasicBlock::iterator InsertPos = I->getIterator(); 2934 2935 // If we replace a PHI with something that isn't a PHI, fix up the 2936 // insertion point. 2937 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 2938 InsertPos = InstParent->getFirstInsertionPt(); 2939 2940 InstParent->getInstList().insert(InsertPos, Result); 2941 2942 eraseInstFromFunction(*I); 2943 } else { 2944 #ifndef NDEBUG 2945 DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 2946 << " New = " << *I << '\n'); 2947 #endif 2948 2949 // If the instruction was modified, it's possible that it is now dead. 2950 // if so, remove it. 2951 if (isInstructionTriviallyDead(I, TLI)) { 2952 eraseInstFromFunction(*I); 2953 } else { 2954 Worklist.Add(I); 2955 Worklist.AddUsersToWorkList(*I); 2956 } 2957 } 2958 MadeIRChange = true; 2959 } 2960 } 2961 2962 Worklist.Zap(); 2963 return MadeIRChange; 2964 } 2965 2966 /// Walk the function in depth-first order, adding all reachable code to the 2967 /// worklist. 2968 /// 2969 /// This has a couple of tricks to make the code faster and more powerful. In 2970 /// particular, we constant fold and DCE instructions as we go, to avoid adding 2971 /// them to the worklist (this significantly speeds up instcombine on code where 2972 /// many instructions are dead or constant). Additionally, if we find a branch 2973 /// whose condition is a known constant, we only visit the reachable successors. 2974 /// 2975 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, 2976 SmallPtrSetImpl<BasicBlock *> &Visited, 2977 InstCombineWorklist &ICWorklist, 2978 const TargetLibraryInfo *TLI) { 2979 bool MadeIRChange = false; 2980 SmallVector<BasicBlock*, 256> Worklist; 2981 Worklist.push_back(BB); 2982 2983 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 2984 DenseMap<ConstantExpr*, Constant*> FoldedConstants; 2985 2986 do { 2987 BB = Worklist.pop_back_val(); 2988 2989 // We have now visited this block! If we've already been here, ignore it. 2990 if (!Visited.insert(BB).second) 2991 continue; 2992 2993 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 2994 Instruction *Inst = &*BBI++; 2995 2996 // DCE instruction if trivially dead. 2997 if (isInstructionTriviallyDead(Inst, TLI)) { 2998 ++NumDeadInst; 2999 DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 3000 Inst->eraseFromParent(); 3001 continue; 3002 } 3003 3004 // ConstantProp instruction if trivially constant. 3005 if (!Inst->use_empty() && 3006 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 3007 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 3008 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " 3009 << *Inst << '\n'); 3010 Inst->replaceAllUsesWith(C); 3011 ++NumConstProp; 3012 if (isInstructionTriviallyDead(Inst, TLI)) 3013 Inst->eraseFromParent(); 3014 continue; 3015 } 3016 3017 // See if we can constant fold its operands. 3018 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); i != e; 3019 ++i) { 3020 ConstantExpr *CE = dyn_cast<ConstantExpr>(i); 3021 if (CE == nullptr) 3022 continue; 3023 3024 Constant *&FoldRes = FoldedConstants[CE]; 3025 if (!FoldRes) 3026 FoldRes = ConstantFoldConstantExpression(CE, DL, TLI); 3027 if (!FoldRes) 3028 FoldRes = CE; 3029 3030 if (FoldRes != CE) { 3031 *i = FoldRes; 3032 MadeIRChange = true; 3033 } 3034 } 3035 3036 InstrsForInstCombineWorklist.push_back(Inst); 3037 } 3038 3039 // Recursively visit successors. If this is a branch or switch on a 3040 // constant, only visit the reachable successor. 3041 TerminatorInst *TI = BB->getTerminator(); 3042 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3043 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 3044 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 3045 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 3046 Worklist.push_back(ReachableBB); 3047 continue; 3048 } 3049 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3050 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 3051 // See if this is an explicit destination. 3052 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3053 i != e; ++i) 3054 if (i.getCaseValue() == Cond) { 3055 BasicBlock *ReachableBB = i.getCaseSuccessor(); 3056 Worklist.push_back(ReachableBB); 3057 continue; 3058 } 3059 3060 // Otherwise it is the default destination. 3061 Worklist.push_back(SI->getDefaultDest()); 3062 continue; 3063 } 3064 } 3065 3066 for (BasicBlock *SuccBB : TI->successors()) 3067 Worklist.push_back(SuccBB); 3068 } while (!Worklist.empty()); 3069 3070 // Once we've found all of the instructions to add to instcombine's worklist, 3071 // add them in reverse order. This way instcombine will visit from the top 3072 // of the function down. This jives well with the way that it adds all uses 3073 // of instructions to the worklist after doing a transformation, thus avoiding 3074 // some N^2 behavior in pathological cases. 3075 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist); 3076 3077 return MadeIRChange; 3078 } 3079 3080 /// \brief Populate the IC worklist from a function, and prune any dead basic 3081 /// blocks discovered in the process. 3082 /// 3083 /// This also does basic constant propagation and other forward fixing to make 3084 /// the combiner itself run much faster. 3085 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 3086 TargetLibraryInfo *TLI, 3087 InstCombineWorklist &ICWorklist) { 3088 bool MadeIRChange = false; 3089 3090 // Do a depth-first traversal of the function, populate the worklist with 3091 // the reachable instructions. Ignore blocks that are not reachable. Keep 3092 // track of which blocks we visit. 3093 SmallPtrSet<BasicBlock *, 32> Visited; 3094 MadeIRChange |= 3095 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI); 3096 3097 // Do a quick scan over the function. If we find any blocks that are 3098 // unreachable, remove any instructions inside of them. This prevents 3099 // the instcombine code from having to deal with some bad special cases. 3100 for (BasicBlock &BB : F) { 3101 if (Visited.count(&BB)) 3102 continue; 3103 3104 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB); 3105 MadeIRChange |= NumDeadInstInBB > 0; 3106 NumDeadInst += NumDeadInstInBB; 3107 } 3108 3109 return MadeIRChange; 3110 } 3111 3112 static bool 3113 combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist, 3114 AliasAnalysis *AA, AssumptionCache &AC, 3115 TargetLibraryInfo &TLI, DominatorTree &DT, 3116 bool ExpensiveCombines = true, 3117 LoopInfo *LI = nullptr) { 3118 auto &DL = F.getParent()->getDataLayout(); 3119 ExpensiveCombines |= EnableExpensiveCombines; 3120 3121 /// Builder - This is an IRBuilder that automatically inserts new 3122 /// instructions into the worklist when they are created. 3123 IRBuilder<TargetFolder, InstCombineIRInserter> Builder( 3124 F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, &AC)); 3125 3126 // Lower dbg.declare intrinsics otherwise their value may be clobbered 3127 // by instcombiner. 3128 bool DbgDeclaresChanged = LowerDbgDeclare(F); 3129 3130 // Iterate while there is work to do. 3131 int Iteration = 0; 3132 for (;;) { 3133 ++Iteration; 3134 DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 3135 << F.getName() << "\n"); 3136 3137 bool Changed = prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 3138 3139 InstCombiner IC(Worklist, &Builder, F.optForMinSize(), ExpensiveCombines, 3140 AA, &AC, &TLI, &DT, DL, LI); 3141 Changed |= IC.run(); 3142 3143 if (!Changed) 3144 break; 3145 } 3146 3147 return DbgDeclaresChanged || Iteration > 1; 3148 } 3149 3150 PreservedAnalyses InstCombinePass::run(Function &F, 3151 AnalysisManager<Function> &AM) { 3152 auto &AC = AM.getResult<AssumptionAnalysis>(F); 3153 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 3154 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 3155 3156 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 3157 3158 // FIXME: The AliasAnalysis is not yet supported in the new pass manager 3159 if (!combineInstructionsOverFunction(F, Worklist, nullptr, AC, TLI, DT, 3160 ExpensiveCombines, LI)) 3161 // No changes, all analyses are preserved. 3162 return PreservedAnalyses::all(); 3163 3164 // Mark all the analyses that instcombine updates as preserved. 3165 // FIXME: This should also 'preserve the CFG'. 3166 PreservedAnalyses PA; 3167 PA.preserve<DominatorTreeAnalysis>(); 3168 return PA; 3169 } 3170 3171 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 3172 AU.setPreservesCFG(); 3173 AU.addRequired<AAResultsWrapperPass>(); 3174 AU.addRequired<AssumptionCacheTracker>(); 3175 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3176 AU.addRequired<DominatorTreeWrapperPass>(); 3177 AU.addPreserved<DominatorTreeWrapperPass>(); 3178 AU.addPreserved<AAResultsWrapperPass>(); 3179 AU.addPreserved<BasicAAWrapperPass>(); 3180 AU.addPreserved<GlobalsAAWrapperPass>(); 3181 } 3182 3183 bool InstructionCombiningPass::runOnFunction(Function &F) { 3184 if (skipFunction(F)) 3185 return false; 3186 3187 // Required analyses. 3188 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3189 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3190 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 3191 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3192 3193 // Optional analyses. 3194 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3195 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 3196 3197 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, 3198 ExpensiveCombines, LI); 3199 } 3200 3201 char InstructionCombiningPass::ID = 0; 3202 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 3203 "Combine redundant instructions", false, false) 3204 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3205 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3206 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3207 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3208 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3209 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 3210 "Combine redundant instructions", false, false) 3211 3212 // Initialization Routines 3213 void llvm::initializeInstCombine(PassRegistry &Registry) { 3214 initializeInstructionCombiningPassPass(Registry); 3215 } 3216 3217 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 3218 initializeInstructionCombiningPassPass(*unwrap(R)); 3219 } 3220 3221 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) { 3222 return new InstructionCombiningPass(ExpensiveCombines); 3223 } 3224