1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/TinyPtrVector.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/BlockFrequencyInfo.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/MemoryBuiltins.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ProfileSummaryInfo.h" 60 #include "llvm/Analysis/TargetFolder.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/ValueTracking.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DIBuilder.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Dominators.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/IRBuilder.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/LegacyPassManager.h" 80 #include "llvm/IR/Metadata.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PassManager.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/Use.h" 86 #include "llvm/IR/User.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/IR/ValueHandle.h" 89 #include "llvm/InitializePasses.h" 90 #include "llvm/Pass.h" 91 #include "llvm/Support/CBindingWrapping.h" 92 #include "llvm/Support/Casting.h" 93 #include "llvm/Support/CommandLine.h" 94 #include "llvm/Support/Compiler.h" 95 #include "llvm/Support/Debug.h" 96 #include "llvm/Support/DebugCounter.h" 97 #include "llvm/Support/ErrorHandling.h" 98 #include "llvm/Support/KnownBits.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Transforms/InstCombine/InstCombine.h" 101 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <algorithm> 104 #include <cassert> 105 #include <cstdint> 106 #include <memory> 107 #include <string> 108 #include <utility> 109 110 using namespace llvm; 111 using namespace llvm::PatternMatch; 112 113 #define DEBUG_TYPE "instcombine" 114 115 STATISTIC(NumCombined , "Number of insts combined"); 116 STATISTIC(NumConstProp, "Number of constant folds"); 117 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 118 STATISTIC(NumSunkInst , "Number of instructions sunk"); 119 STATISTIC(NumExpand, "Number of expansions"); 120 STATISTIC(NumFactor , "Number of factorizations"); 121 STATISTIC(NumReassoc , "Number of reassociations"); 122 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 123 "Controls which instructions are visited"); 124 125 static constexpr unsigned InstCombineDefaultMaxIterations = UINT_MAX - 1; 126 127 static cl::opt<bool> 128 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 129 cl::init(true)); 130 131 static cl::opt<bool> 132 EnableExpensiveCombines("expensive-combines", 133 cl::desc("Enable expensive instruction combines")); 134 135 static cl::opt<unsigned> LimitMaxIterations( 136 "instcombine-max-iterations", 137 cl::desc("Limit the maximum number of instruction combining iterations"), 138 cl::init(InstCombineDefaultMaxIterations)); 139 140 static cl::opt<unsigned> 141 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 142 cl::desc("Maximum array size considered when doing a combine")); 143 144 // FIXME: Remove this flag when it is no longer necessary to convert 145 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 146 // increases variable availability at the cost of accuracy. Variables that 147 // cannot be promoted by mem2reg or SROA will be described as living in memory 148 // for their entire lifetime. However, passes like DSE and instcombine can 149 // delete stores to the alloca, leading to misleading and inaccurate debug 150 // information. This flag can be removed when those passes are fixed. 151 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 152 cl::Hidden, cl::init(true)); 153 154 Value *InstCombiner::EmitGEPOffset(User *GEP) { 155 return llvm::EmitGEPOffset(&Builder, DL, GEP); 156 } 157 158 /// Return true if it is desirable to convert an integer computation from a 159 /// given bit width to a new bit width. 160 /// We don't want to convert from a legal to an illegal type or from a smaller 161 /// to a larger illegal type. A width of '1' is always treated as a legal type 162 /// because i1 is a fundamental type in IR, and there are many specialized 163 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as 164 /// legal to convert to, in order to open up more combining opportunities. 165 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common 166 /// from frontend languages. 167 bool InstCombiner::shouldChangeType(unsigned FromWidth, 168 unsigned ToWidth) const { 169 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 170 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 171 172 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only 173 // shrink types, to prevent infinite loops. 174 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32)) 175 return true; 176 177 // If this is a legal integer from type, and the result would be an illegal 178 // type, don't do the transformation. 179 if (FromLegal && !ToLegal) 180 return false; 181 182 // Otherwise, if both are illegal, do not increase the size of the result. We 183 // do allow things like i160 -> i64, but not i64 -> i160. 184 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 185 return false; 186 187 return true; 188 } 189 190 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 191 /// We don't want to convert from a legal to an illegal type or from a smaller 192 /// to a larger illegal type. i1 is always treated as a legal type because it is 193 /// a fundamental type in IR, and there are many specialized optimizations for 194 /// i1 types. 195 bool InstCombiner::shouldChangeType(Type *From, Type *To) const { 196 // TODO: This could be extended to allow vectors. Datalayout changes might be 197 // needed to properly support that. 198 if (!From->isIntegerTy() || !To->isIntegerTy()) 199 return false; 200 201 unsigned FromWidth = From->getPrimitiveSizeInBits(); 202 unsigned ToWidth = To->getPrimitiveSizeInBits(); 203 return shouldChangeType(FromWidth, ToWidth); 204 } 205 206 // Return true, if No Signed Wrap should be maintained for I. 207 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 208 // where both B and C should be ConstantInts, results in a constant that does 209 // not overflow. This function only handles the Add and Sub opcodes. For 210 // all other opcodes, the function conservatively returns false. 211 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 212 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 213 if (!OBO || !OBO->hasNoSignedWrap()) 214 return false; 215 216 // We reason about Add and Sub Only. 217 Instruction::BinaryOps Opcode = I.getOpcode(); 218 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 219 return false; 220 221 const APInt *BVal, *CVal; 222 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 223 return false; 224 225 bool Overflow = false; 226 if (Opcode == Instruction::Add) 227 (void)BVal->sadd_ov(*CVal, Overflow); 228 else 229 (void)BVal->ssub_ov(*CVal, Overflow); 230 231 return !Overflow; 232 } 233 234 static bool hasNoUnsignedWrap(BinaryOperator &I) { 235 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 236 return OBO && OBO->hasNoUnsignedWrap(); 237 } 238 239 static bool hasNoSignedWrap(BinaryOperator &I) { 240 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 241 return OBO && OBO->hasNoSignedWrap(); 242 } 243 244 /// Conservatively clears subclassOptionalData after a reassociation or 245 /// commutation. We preserve fast-math flags when applicable as they can be 246 /// preserved. 247 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 248 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 249 if (!FPMO) { 250 I.clearSubclassOptionalData(); 251 return; 252 } 253 254 FastMathFlags FMF = I.getFastMathFlags(); 255 I.clearSubclassOptionalData(); 256 I.setFastMathFlags(FMF); 257 } 258 259 /// Combine constant operands of associative operations either before or after a 260 /// cast to eliminate one of the associative operations: 261 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 262 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 263 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) { 264 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 265 if (!Cast || !Cast->hasOneUse()) 266 return false; 267 268 // TODO: Enhance logic for other casts and remove this check. 269 auto CastOpcode = Cast->getOpcode(); 270 if (CastOpcode != Instruction::ZExt) 271 return false; 272 273 // TODO: Enhance logic for other BinOps and remove this check. 274 if (!BinOp1->isBitwiseLogicOp()) 275 return false; 276 277 auto AssocOpcode = BinOp1->getOpcode(); 278 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 279 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 280 return false; 281 282 Constant *C1, *C2; 283 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 284 !match(BinOp2->getOperand(1), m_Constant(C2))) 285 return false; 286 287 // TODO: This assumes a zext cast. 288 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 289 // to the destination type might lose bits. 290 291 // Fold the constants together in the destination type: 292 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 293 Type *DestTy = C1->getType(); 294 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 295 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 296 Cast->setOperand(0, BinOp2->getOperand(0)); 297 BinOp1->setOperand(1, FoldedC); 298 return true; 299 } 300 301 /// This performs a few simplifications for operators that are associative or 302 /// commutative: 303 /// 304 /// Commutative operators: 305 /// 306 /// 1. Order operands such that they are listed from right (least complex) to 307 /// left (most complex). This puts constants before unary operators before 308 /// binary operators. 309 /// 310 /// Associative operators: 311 /// 312 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 313 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 314 /// 315 /// Associative and commutative operators: 316 /// 317 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 318 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 319 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 320 /// if C1 and C2 are constants. 321 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 322 Instruction::BinaryOps Opcode = I.getOpcode(); 323 bool Changed = false; 324 325 do { 326 // Order operands such that they are listed from right (least complex) to 327 // left (most complex). This puts constants before unary operators before 328 // binary operators. 329 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 330 getComplexity(I.getOperand(1))) 331 Changed = !I.swapOperands(); 332 333 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 334 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 335 336 if (I.isAssociative()) { 337 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 338 if (Op0 && Op0->getOpcode() == Opcode) { 339 Value *A = Op0->getOperand(0); 340 Value *B = Op0->getOperand(1); 341 Value *C = I.getOperand(1); 342 343 // Does "B op C" simplify? 344 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 345 // It simplifies to V. Form "A op V". 346 I.setOperand(0, A); 347 I.setOperand(1, V); 348 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 349 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 350 351 // Conservatively clear all optional flags since they may not be 352 // preserved by the reassociation. Reset nsw/nuw based on the above 353 // analysis. 354 ClearSubclassDataAfterReassociation(I); 355 356 // Note: this is only valid because SimplifyBinOp doesn't look at 357 // the operands to Op0. 358 if (IsNUW) 359 I.setHasNoUnsignedWrap(true); 360 361 if (IsNSW) 362 I.setHasNoSignedWrap(true); 363 364 Changed = true; 365 ++NumReassoc; 366 continue; 367 } 368 } 369 370 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 371 if (Op1 && Op1->getOpcode() == Opcode) { 372 Value *A = I.getOperand(0); 373 Value *B = Op1->getOperand(0); 374 Value *C = Op1->getOperand(1); 375 376 // Does "A op B" simplify? 377 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 378 // It simplifies to V. Form "V op C". 379 I.setOperand(0, V); 380 I.setOperand(1, C); 381 // Conservatively clear the optional flags, since they may not be 382 // preserved by the reassociation. 383 ClearSubclassDataAfterReassociation(I); 384 Changed = true; 385 ++NumReassoc; 386 continue; 387 } 388 } 389 } 390 391 if (I.isAssociative() && I.isCommutative()) { 392 if (simplifyAssocCastAssoc(&I)) { 393 Changed = true; 394 ++NumReassoc; 395 continue; 396 } 397 398 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 399 if (Op0 && Op0->getOpcode() == Opcode) { 400 Value *A = Op0->getOperand(0); 401 Value *B = Op0->getOperand(1); 402 Value *C = I.getOperand(1); 403 404 // Does "C op A" simplify? 405 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 406 // It simplifies to V. Form "V op B". 407 I.setOperand(0, V); 408 I.setOperand(1, B); 409 // Conservatively clear the optional flags, since they may not be 410 // preserved by the reassociation. 411 ClearSubclassDataAfterReassociation(I); 412 Changed = true; 413 ++NumReassoc; 414 continue; 415 } 416 } 417 418 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 419 if (Op1 && Op1->getOpcode() == Opcode) { 420 Value *A = I.getOperand(0); 421 Value *B = Op1->getOperand(0); 422 Value *C = Op1->getOperand(1); 423 424 // Does "C op A" simplify? 425 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 426 // It simplifies to V. Form "B op V". 427 I.setOperand(0, B); 428 I.setOperand(1, V); 429 // Conservatively clear the optional flags, since they may not be 430 // preserved by the reassociation. 431 ClearSubclassDataAfterReassociation(I); 432 Changed = true; 433 ++NumReassoc; 434 continue; 435 } 436 } 437 438 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 439 // if C1 and C2 are constants. 440 Value *A, *B; 441 Constant *C1, *C2; 442 if (Op0 && Op1 && 443 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 444 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 445 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 446 bool IsNUW = hasNoUnsignedWrap(I) && 447 hasNoUnsignedWrap(*Op0) && 448 hasNoUnsignedWrap(*Op1); 449 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 450 BinaryOperator::CreateNUW(Opcode, A, B) : 451 BinaryOperator::Create(Opcode, A, B); 452 453 if (isa<FPMathOperator>(NewBO)) { 454 FastMathFlags Flags = I.getFastMathFlags(); 455 Flags &= Op0->getFastMathFlags(); 456 Flags &= Op1->getFastMathFlags(); 457 NewBO->setFastMathFlags(Flags); 458 } 459 InsertNewInstWith(NewBO, I); 460 NewBO->takeName(Op1); 461 I.setOperand(0, NewBO); 462 I.setOperand(1, ConstantExpr::get(Opcode, C1, C2)); 463 // Conservatively clear the optional flags, since they may not be 464 // preserved by the reassociation. 465 ClearSubclassDataAfterReassociation(I); 466 if (IsNUW) 467 I.setHasNoUnsignedWrap(true); 468 469 Changed = true; 470 continue; 471 } 472 } 473 474 // No further simplifications. 475 return Changed; 476 } while (true); 477 } 478 479 /// Return whether "X LOp (Y ROp Z)" is always equal to 480 /// "(X LOp Y) ROp (X LOp Z)". 481 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 482 Instruction::BinaryOps ROp) { 483 // X & (Y | Z) <--> (X & Y) | (X & Z) 484 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 485 if (LOp == Instruction::And) 486 return ROp == Instruction::Or || ROp == Instruction::Xor; 487 488 // X | (Y & Z) <--> (X | Y) & (X | Z) 489 if (LOp == Instruction::Or) 490 return ROp == Instruction::And; 491 492 // X * (Y + Z) <--> (X * Y) + (X * Z) 493 // X * (Y - Z) <--> (X * Y) - (X * Z) 494 if (LOp == Instruction::Mul) 495 return ROp == Instruction::Add || ROp == Instruction::Sub; 496 497 return false; 498 } 499 500 /// Return whether "(X LOp Y) ROp Z" is always equal to 501 /// "(X ROp Z) LOp (Y ROp Z)". 502 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 503 Instruction::BinaryOps ROp) { 504 if (Instruction::isCommutative(ROp)) 505 return leftDistributesOverRight(ROp, LOp); 506 507 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 508 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 509 510 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 511 // but this requires knowing that the addition does not overflow and other 512 // such subtleties. 513 } 514 515 /// This function returns identity value for given opcode, which can be used to 516 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 517 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 518 if (isa<Constant>(V)) 519 return nullptr; 520 521 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 522 } 523 524 /// This function predicates factorization using distributive laws. By default, 525 /// it just returns the 'Op' inputs. But for special-cases like 526 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 527 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 528 /// allow more factorization opportunities. 529 static Instruction::BinaryOps 530 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 531 Value *&LHS, Value *&RHS) { 532 assert(Op && "Expected a binary operator"); 533 LHS = Op->getOperand(0); 534 RHS = Op->getOperand(1); 535 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 536 Constant *C; 537 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 538 // X << C --> X * (1 << C) 539 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 540 return Instruction::Mul; 541 } 542 // TODO: We can add other conversions e.g. shr => div etc. 543 } 544 return Op->getOpcode(); 545 } 546 547 /// This tries to simplify binary operations by factorizing out common terms 548 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 549 Value *InstCombiner::tryFactorization(BinaryOperator &I, 550 Instruction::BinaryOps InnerOpcode, 551 Value *A, Value *B, Value *C, Value *D) { 552 assert(A && B && C && D && "All values must be provided"); 553 554 Value *V = nullptr; 555 Value *SimplifiedInst = nullptr; 556 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 557 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 558 559 // Does "X op' Y" always equal "Y op' X"? 560 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 561 562 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 563 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 564 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 565 // commutative case, "(A op' B) op (C op' A)"? 566 if (A == C || (InnerCommutative && A == D)) { 567 if (A != C) 568 std::swap(C, D); 569 // Consider forming "A op' (B op D)". 570 // If "B op D" simplifies then it can be formed with no cost. 571 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 572 // If "B op D" doesn't simplify then only go on if both of the existing 573 // operations "A op' B" and "C op' D" will be zapped as no longer used. 574 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 575 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 576 if (V) { 577 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 578 } 579 } 580 581 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 582 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 583 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 584 // commutative case, "(A op' B) op (B op' D)"? 585 if (B == D || (InnerCommutative && B == C)) { 586 if (B != D) 587 std::swap(C, D); 588 // Consider forming "(A op C) op' B". 589 // If "A op C" simplifies then it can be formed with no cost. 590 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 591 592 // If "A op C" doesn't simplify then only go on if both of the existing 593 // operations "A op' B" and "C op' D" will be zapped as no longer used. 594 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 595 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 596 if (V) { 597 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 598 } 599 } 600 601 if (SimplifiedInst) { 602 ++NumFactor; 603 SimplifiedInst->takeName(&I); 604 605 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 606 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 607 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 608 bool HasNSW = false; 609 bool HasNUW = false; 610 if (isa<OverflowingBinaryOperator>(&I)) { 611 HasNSW = I.hasNoSignedWrap(); 612 HasNUW = I.hasNoUnsignedWrap(); 613 } 614 615 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 616 HasNSW &= LOBO->hasNoSignedWrap(); 617 HasNUW &= LOBO->hasNoUnsignedWrap(); 618 } 619 620 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 621 HasNSW &= ROBO->hasNoSignedWrap(); 622 HasNUW &= ROBO->hasNoUnsignedWrap(); 623 } 624 625 if (TopLevelOpcode == Instruction::Add && 626 InnerOpcode == Instruction::Mul) { 627 // We can propagate 'nsw' if we know that 628 // %Y = mul nsw i16 %X, C 629 // %Z = add nsw i16 %Y, %X 630 // => 631 // %Z = mul nsw i16 %X, C+1 632 // 633 // iff C+1 isn't INT_MIN 634 const APInt *CInt; 635 if (match(V, m_APInt(CInt))) { 636 if (!CInt->isMinSignedValue()) 637 BO->setHasNoSignedWrap(HasNSW); 638 } 639 640 // nuw can be propagated with any constant or nuw value. 641 BO->setHasNoUnsignedWrap(HasNUW); 642 } 643 } 644 } 645 } 646 return SimplifiedInst; 647 } 648 649 /// This tries to simplify binary operations which some other binary operation 650 /// distributes over either by factorizing out common terms 651 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 652 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 653 /// Returns the simplified value, or null if it didn't simplify. 654 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 655 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 656 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 657 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 658 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 659 660 { 661 // Factorization. 662 Value *A, *B, *C, *D; 663 Instruction::BinaryOps LHSOpcode, RHSOpcode; 664 if (Op0) 665 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 666 if (Op1) 667 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 668 669 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 670 // a common term. 671 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 672 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 673 return V; 674 675 // The instruction has the form "(A op' B) op (C)". Try to factorize common 676 // term. 677 if (Op0) 678 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 679 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 680 return V; 681 682 // The instruction has the form "(B) op (C op' D)". Try to factorize common 683 // term. 684 if (Op1) 685 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 686 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 687 return V; 688 } 689 690 // Expansion. 691 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 692 // The instruction has the form "(A op' B) op C". See if expanding it out 693 // to "(A op C) op' (B op C)" results in simplifications. 694 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 695 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 696 697 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 698 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I)); 699 700 // Do "A op C" and "B op C" both simplify? 701 if (L && R) { 702 // They do! Return "L op' R". 703 ++NumExpand; 704 C = Builder.CreateBinOp(InnerOpcode, L, R); 705 C->takeName(&I); 706 return C; 707 } 708 709 // Does "A op C" simplify to the identity value for the inner opcode? 710 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 711 // They do! Return "B op C". 712 ++NumExpand; 713 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 714 C->takeName(&I); 715 return C; 716 } 717 718 // Does "B op C" simplify to the identity value for the inner opcode? 719 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 720 // They do! Return "A op C". 721 ++NumExpand; 722 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 723 C->takeName(&I); 724 return C; 725 } 726 } 727 728 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 729 // The instruction has the form "A op (B op' C)". See if expanding it out 730 // to "(A op B) op' (A op C)" results in simplifications. 731 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 732 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 733 734 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I)); 735 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 736 737 // Do "A op B" and "A op C" both simplify? 738 if (L && R) { 739 // They do! Return "L op' R". 740 ++NumExpand; 741 A = Builder.CreateBinOp(InnerOpcode, L, R); 742 A->takeName(&I); 743 return A; 744 } 745 746 // Does "A op B" simplify to the identity value for the inner opcode? 747 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 748 // They do! Return "A op C". 749 ++NumExpand; 750 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 751 A->takeName(&I); 752 return A; 753 } 754 755 // Does "A op C" simplify to the identity value for the inner opcode? 756 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 757 // They do! Return "A op B". 758 ++NumExpand; 759 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 760 A->takeName(&I); 761 return A; 762 } 763 } 764 765 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 766 } 767 768 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 769 Value *LHS, Value *RHS) { 770 Value *A, *B, *C, *D, *E, *F; 771 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 772 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 773 if (!LHSIsSelect && !RHSIsSelect) 774 return nullptr; 775 776 FastMathFlags FMF; 777 BuilderTy::FastMathFlagGuard Guard(Builder); 778 if (isa<FPMathOperator>(&I)) { 779 FMF = I.getFastMathFlags(); 780 Builder.setFastMathFlags(FMF); 781 } 782 783 Instruction::BinaryOps Opcode = I.getOpcode(); 784 SimplifyQuery Q = SQ.getWithInstruction(&I); 785 786 Value *Cond, *True = nullptr, *False = nullptr; 787 if (LHSIsSelect && RHSIsSelect && A == D) { 788 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 789 Cond = A; 790 True = SimplifyBinOp(Opcode, B, E, FMF, Q); 791 False = SimplifyBinOp(Opcode, C, F, FMF, Q); 792 793 if (LHS->hasOneUse() && RHS->hasOneUse()) { 794 if (False && !True) 795 True = Builder.CreateBinOp(Opcode, B, E); 796 else if (True && !False) 797 False = Builder.CreateBinOp(Opcode, C, F); 798 } 799 } else if (LHSIsSelect && LHS->hasOneUse()) { 800 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 801 Cond = A; 802 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q); 803 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q); 804 } else if (RHSIsSelect && RHS->hasOneUse()) { 805 // X op (D ? E : F) -> D ? (X op E) : (X op F) 806 Cond = D; 807 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q); 808 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q); 809 } 810 811 if (!True || !False) 812 return nullptr; 813 814 Value *SI = Builder.CreateSelect(Cond, True, False); 815 SI->takeName(&I); 816 return SI; 817 } 818 819 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 820 /// constant zero (which is the 'negate' form). 821 Value *InstCombiner::dyn_castNegVal(Value *V) const { 822 Value *NegV; 823 if (match(V, m_Neg(m_Value(NegV)))) 824 return NegV; 825 826 // Constants can be considered to be negated values if they can be folded. 827 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 828 return ConstantExpr::getNeg(C); 829 830 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 831 if (C->getType()->getElementType()->isIntegerTy()) 832 return ConstantExpr::getNeg(C); 833 834 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 835 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 836 Constant *Elt = CV->getAggregateElement(i); 837 if (!Elt) 838 return nullptr; 839 840 if (isa<UndefValue>(Elt)) 841 continue; 842 843 if (!isa<ConstantInt>(Elt)) 844 return nullptr; 845 } 846 return ConstantExpr::getNeg(CV); 847 } 848 849 return nullptr; 850 } 851 852 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 853 InstCombiner::BuilderTy &Builder) { 854 if (auto *Cast = dyn_cast<CastInst>(&I)) 855 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 856 857 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 858 859 // Figure out if the constant is the left or the right argument. 860 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 861 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 862 863 if (auto *SOC = dyn_cast<Constant>(SO)) { 864 if (ConstIsRHS) 865 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 866 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 867 } 868 869 Value *Op0 = SO, *Op1 = ConstOperand; 870 if (!ConstIsRHS) 871 std::swap(Op0, Op1); 872 873 auto *BO = cast<BinaryOperator>(&I); 874 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 875 SO->getName() + ".op"); 876 auto *FPInst = dyn_cast<Instruction>(RI); 877 if (FPInst && isa<FPMathOperator>(FPInst)) 878 FPInst->copyFastMathFlags(BO); 879 return RI; 880 } 881 882 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 883 // Don't modify shared select instructions. 884 if (!SI->hasOneUse()) 885 return nullptr; 886 887 Value *TV = SI->getTrueValue(); 888 Value *FV = SI->getFalseValue(); 889 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 890 return nullptr; 891 892 // Bool selects with constant operands can be folded to logical ops. 893 if (SI->getType()->isIntOrIntVectorTy(1)) 894 return nullptr; 895 896 // If it's a bitcast involving vectors, make sure it has the same number of 897 // elements on both sides. 898 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 899 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 900 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 901 902 // Verify that either both or neither are vectors. 903 if ((SrcTy == nullptr) != (DestTy == nullptr)) 904 return nullptr; 905 906 // If vectors, verify that they have the same number of elements. 907 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 908 return nullptr; 909 } 910 911 // Test if a CmpInst instruction is used exclusively by a select as 912 // part of a minimum or maximum operation. If so, refrain from doing 913 // any other folding. This helps out other analyses which understand 914 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 915 // and CodeGen. And in this case, at least one of the comparison 916 // operands has at least one user besides the compare (the select), 917 // which would often largely negate the benefit of folding anyway. 918 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 919 if (CI->hasOneUse()) { 920 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 921 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 922 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 923 return nullptr; 924 } 925 } 926 927 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 928 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 929 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 930 } 931 932 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 933 InstCombiner::BuilderTy &Builder) { 934 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 935 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 936 937 if (auto *InC = dyn_cast<Constant>(InV)) { 938 if (ConstIsRHS) 939 return ConstantExpr::get(I->getOpcode(), InC, C); 940 return ConstantExpr::get(I->getOpcode(), C, InC); 941 } 942 943 Value *Op0 = InV, *Op1 = C; 944 if (!ConstIsRHS) 945 std::swap(Op0, Op1); 946 947 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp"); 948 auto *FPInst = dyn_cast<Instruction>(RI); 949 if (FPInst && isa<FPMathOperator>(FPInst)) 950 FPInst->copyFastMathFlags(I); 951 return RI; 952 } 953 954 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) { 955 unsigned NumPHIValues = PN->getNumIncomingValues(); 956 if (NumPHIValues == 0) 957 return nullptr; 958 959 // We normally only transform phis with a single use. However, if a PHI has 960 // multiple uses and they are all the same operation, we can fold *all* of the 961 // uses into the PHI. 962 if (!PN->hasOneUse()) { 963 // Walk the use list for the instruction, comparing them to I. 964 for (User *U : PN->users()) { 965 Instruction *UI = cast<Instruction>(U); 966 if (UI != &I && !I.isIdenticalTo(UI)) 967 return nullptr; 968 } 969 // Otherwise, we can replace *all* users with the new PHI we form. 970 } 971 972 // Check to see if all of the operands of the PHI are simple constants 973 // (constantint/constantfp/undef). If there is one non-constant value, 974 // remember the BB it is in. If there is more than one or if *it* is a PHI, 975 // bail out. We don't do arbitrary constant expressions here because moving 976 // their computation can be expensive without a cost model. 977 BasicBlock *NonConstBB = nullptr; 978 for (unsigned i = 0; i != NumPHIValues; ++i) { 979 Value *InVal = PN->getIncomingValue(i); 980 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 981 continue; 982 983 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 984 if (NonConstBB) return nullptr; // More than one non-const value. 985 986 NonConstBB = PN->getIncomingBlock(i); 987 988 // If the InVal is an invoke at the end of the pred block, then we can't 989 // insert a computation after it without breaking the edge. 990 if (isa<InvokeInst>(InVal)) 991 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 992 return nullptr; 993 994 // If the incoming non-constant value is in I's block, we will remove one 995 // instruction, but insert another equivalent one, leading to infinite 996 // instcombine. 997 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI)) 998 return nullptr; 999 } 1000 1001 // If there is exactly one non-constant value, we can insert a copy of the 1002 // operation in that block. However, if this is a critical edge, we would be 1003 // inserting the computation on some other paths (e.g. inside a loop). Only 1004 // do this if the pred block is unconditionally branching into the phi block. 1005 if (NonConstBB != nullptr) { 1006 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1007 if (!BI || !BI->isUnconditional()) return nullptr; 1008 } 1009 1010 // Okay, we can do the transformation: create the new PHI node. 1011 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1012 InsertNewInstBefore(NewPN, *PN); 1013 NewPN->takeName(PN); 1014 1015 // If we are going to have to insert a new computation, do so right before the 1016 // predecessor's terminator. 1017 if (NonConstBB) 1018 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1019 1020 // Next, add all of the operands to the PHI. 1021 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1022 // We only currently try to fold the condition of a select when it is a phi, 1023 // not the true/false values. 1024 Value *TrueV = SI->getTrueValue(); 1025 Value *FalseV = SI->getFalseValue(); 1026 BasicBlock *PhiTransBB = PN->getParent(); 1027 for (unsigned i = 0; i != NumPHIValues; ++i) { 1028 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1029 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1030 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1031 Value *InV = nullptr; 1032 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1033 // even if currently isNullValue gives false. 1034 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1035 // For vector constants, we cannot use isNullValue to fold into 1036 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1037 // elements in the vector, we will incorrectly fold InC to 1038 // `TrueVInPred`. 1039 if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC)) 1040 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1041 else { 1042 // Generate the select in the same block as PN's current incoming block. 1043 // Note: ThisBB need not be the NonConstBB because vector constants 1044 // which are constants by definition are handled here. 1045 // FIXME: This can lead to an increase in IR generation because we might 1046 // generate selects for vector constant phi operand, that could not be 1047 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1048 // non-vector phis, this transformation was always profitable because 1049 // the select would be generated exactly once in the NonConstBB. 1050 Builder.SetInsertPoint(ThisBB->getTerminator()); 1051 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1052 FalseVInPred, "phitmp"); 1053 } 1054 NewPN->addIncoming(InV, ThisBB); 1055 } 1056 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1057 Constant *C = cast<Constant>(I.getOperand(1)); 1058 for (unsigned i = 0; i != NumPHIValues; ++i) { 1059 Value *InV = nullptr; 1060 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1061 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1062 else if (isa<ICmpInst>(CI)) 1063 InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 1064 C, "phitmp"); 1065 else 1066 InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 1067 C, "phitmp"); 1068 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1069 } 1070 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1071 for (unsigned i = 0; i != NumPHIValues; ++i) { 1072 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1073 Builder); 1074 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1075 } 1076 } else { 1077 CastInst *CI = cast<CastInst>(&I); 1078 Type *RetTy = CI->getType(); 1079 for (unsigned i = 0; i != NumPHIValues; ++i) { 1080 Value *InV; 1081 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1082 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1083 else 1084 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1085 I.getType(), "phitmp"); 1086 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1087 } 1088 } 1089 1090 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1091 Instruction *User = cast<Instruction>(*UI++); 1092 if (User == &I) continue; 1093 replaceInstUsesWith(*User, NewPN); 1094 eraseInstFromFunction(*User); 1095 } 1096 return replaceInstUsesWith(I, NewPN); 1097 } 1098 1099 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1100 if (!isa<Constant>(I.getOperand(1))) 1101 return nullptr; 1102 1103 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1104 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1105 return NewSel; 1106 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1107 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1108 return NewPhi; 1109 } 1110 return nullptr; 1111 } 1112 1113 /// Given a pointer type and a constant offset, determine whether or not there 1114 /// is a sequence of GEP indices into the pointed type that will land us at the 1115 /// specified offset. If so, fill them into NewIndices and return the resultant 1116 /// element type, otherwise return null. 1117 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 1118 SmallVectorImpl<Value *> &NewIndices) { 1119 Type *Ty = PtrTy->getElementType(); 1120 if (!Ty->isSized()) 1121 return nullptr; 1122 1123 // Start with the index over the outer type. Note that the type size 1124 // might be zero (even if the offset isn't zero) if the indexed type 1125 // is something like [0 x {int, int}] 1126 Type *IndexTy = DL.getIndexType(PtrTy); 1127 int64_t FirstIdx = 0; 1128 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 1129 FirstIdx = Offset/TySize; 1130 Offset -= FirstIdx*TySize; 1131 1132 // Handle hosts where % returns negative instead of values [0..TySize). 1133 if (Offset < 0) { 1134 --FirstIdx; 1135 Offset += TySize; 1136 assert(Offset >= 0); 1137 } 1138 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 1139 } 1140 1141 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx)); 1142 1143 // Index into the types. If we fail, set OrigBase to null. 1144 while (Offset) { 1145 // Indexing into tail padding between struct/array elements. 1146 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1147 return nullptr; 1148 1149 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1150 const StructLayout *SL = DL.getStructLayout(STy); 1151 assert(Offset < (int64_t)SL->getSizeInBytes() && 1152 "Offset must stay within the indexed type"); 1153 1154 unsigned Elt = SL->getElementContainingOffset(Offset); 1155 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1156 Elt)); 1157 1158 Offset -= SL->getElementOffset(Elt); 1159 Ty = STy->getElementType(Elt); 1160 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1161 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1162 assert(EltSize && "Cannot index into a zero-sized array"); 1163 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize)); 1164 Offset %= EltSize; 1165 Ty = AT->getElementType(); 1166 } else { 1167 // Otherwise, we can't index into the middle of this atomic type, bail. 1168 return nullptr; 1169 } 1170 } 1171 1172 return Ty; 1173 } 1174 1175 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1176 // If this GEP has only 0 indices, it is the same pointer as 1177 // Src. If Src is not a trivial GEP too, don't combine 1178 // the indices. 1179 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1180 !Src.hasOneUse()) 1181 return false; 1182 return true; 1183 } 1184 1185 /// Return a value X such that Val = X * Scale, or null if none. 1186 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1187 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1188 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1189 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1190 Scale.getBitWidth() && "Scale not compatible with value!"); 1191 1192 // If Val is zero or Scale is one then Val = Val * Scale. 1193 if (match(Val, m_Zero()) || Scale == 1) { 1194 NoSignedWrap = true; 1195 return Val; 1196 } 1197 1198 // If Scale is zero then it does not divide Val. 1199 if (Scale.isMinValue()) 1200 return nullptr; 1201 1202 // Look through chains of multiplications, searching for a constant that is 1203 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1204 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1205 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1206 // down from Val: 1207 // 1208 // Val = M1 * X || Analysis starts here and works down 1209 // M1 = M2 * Y || Doesn't descend into terms with more 1210 // M2 = Z * 4 \/ than one use 1211 // 1212 // Then to modify a term at the bottom: 1213 // 1214 // Val = M1 * X 1215 // M1 = Z * Y || Replaced M2 with Z 1216 // 1217 // Then to work back up correcting nsw flags. 1218 1219 // Op - the term we are currently analyzing. Starts at Val then drills down. 1220 // Replaced with its descaled value before exiting from the drill down loop. 1221 Value *Op = Val; 1222 1223 // Parent - initially null, but after drilling down notes where Op came from. 1224 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1225 // 0'th operand of Val. 1226 std::pair<Instruction *, unsigned> Parent; 1227 1228 // Set if the transform requires a descaling at deeper levels that doesn't 1229 // overflow. 1230 bool RequireNoSignedWrap = false; 1231 1232 // Log base 2 of the scale. Negative if not a power of 2. 1233 int32_t logScale = Scale.exactLogBase2(); 1234 1235 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1236 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1237 // If Op is a constant divisible by Scale then descale to the quotient. 1238 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1239 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1240 if (!Remainder.isMinValue()) 1241 // Not divisible by Scale. 1242 return nullptr; 1243 // Replace with the quotient in the parent. 1244 Op = ConstantInt::get(CI->getType(), Quotient); 1245 NoSignedWrap = true; 1246 break; 1247 } 1248 1249 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1250 if (BO->getOpcode() == Instruction::Mul) { 1251 // Multiplication. 1252 NoSignedWrap = BO->hasNoSignedWrap(); 1253 if (RequireNoSignedWrap && !NoSignedWrap) 1254 return nullptr; 1255 1256 // There are three cases for multiplication: multiplication by exactly 1257 // the scale, multiplication by a constant different to the scale, and 1258 // multiplication by something else. 1259 Value *LHS = BO->getOperand(0); 1260 Value *RHS = BO->getOperand(1); 1261 1262 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1263 // Multiplication by a constant. 1264 if (CI->getValue() == Scale) { 1265 // Multiplication by exactly the scale, replace the multiplication 1266 // by its left-hand side in the parent. 1267 Op = LHS; 1268 break; 1269 } 1270 1271 // Otherwise drill down into the constant. 1272 if (!Op->hasOneUse()) 1273 return nullptr; 1274 1275 Parent = std::make_pair(BO, 1); 1276 continue; 1277 } 1278 1279 // Multiplication by something else. Drill down into the left-hand side 1280 // since that's where the reassociate pass puts the good stuff. 1281 if (!Op->hasOneUse()) 1282 return nullptr; 1283 1284 Parent = std::make_pair(BO, 0); 1285 continue; 1286 } 1287 1288 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1289 isa<ConstantInt>(BO->getOperand(1))) { 1290 // Multiplication by a power of 2. 1291 NoSignedWrap = BO->hasNoSignedWrap(); 1292 if (RequireNoSignedWrap && !NoSignedWrap) 1293 return nullptr; 1294 1295 Value *LHS = BO->getOperand(0); 1296 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1297 getLimitedValue(Scale.getBitWidth()); 1298 // Op = LHS << Amt. 1299 1300 if (Amt == logScale) { 1301 // Multiplication by exactly the scale, replace the multiplication 1302 // by its left-hand side in the parent. 1303 Op = LHS; 1304 break; 1305 } 1306 if (Amt < logScale || !Op->hasOneUse()) 1307 return nullptr; 1308 1309 // Multiplication by more than the scale. Reduce the multiplying amount 1310 // by the scale in the parent. 1311 Parent = std::make_pair(BO, 1); 1312 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1313 break; 1314 } 1315 } 1316 1317 if (!Op->hasOneUse()) 1318 return nullptr; 1319 1320 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1321 if (Cast->getOpcode() == Instruction::SExt) { 1322 // Op is sign-extended from a smaller type, descale in the smaller type. 1323 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1324 APInt SmallScale = Scale.trunc(SmallSize); 1325 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1326 // descale Op as (sext Y) * Scale. In order to have 1327 // sext (Y * SmallScale) = (sext Y) * Scale 1328 // some conditions need to hold however: SmallScale must sign-extend to 1329 // Scale and the multiplication Y * SmallScale should not overflow. 1330 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1331 // SmallScale does not sign-extend to Scale. 1332 return nullptr; 1333 assert(SmallScale.exactLogBase2() == logScale); 1334 // Require that Y * SmallScale must not overflow. 1335 RequireNoSignedWrap = true; 1336 1337 // Drill down through the cast. 1338 Parent = std::make_pair(Cast, 0); 1339 Scale = SmallScale; 1340 continue; 1341 } 1342 1343 if (Cast->getOpcode() == Instruction::Trunc) { 1344 // Op is truncated from a larger type, descale in the larger type. 1345 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1346 // trunc (Y * sext Scale) = (trunc Y) * Scale 1347 // always holds. However (trunc Y) * Scale may overflow even if 1348 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1349 // from this point up in the expression (see later). 1350 if (RequireNoSignedWrap) 1351 return nullptr; 1352 1353 // Drill down through the cast. 1354 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1355 Parent = std::make_pair(Cast, 0); 1356 Scale = Scale.sext(LargeSize); 1357 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1358 logScale = -1; 1359 assert(Scale.exactLogBase2() == logScale); 1360 continue; 1361 } 1362 } 1363 1364 // Unsupported expression, bail out. 1365 return nullptr; 1366 } 1367 1368 // If Op is zero then Val = Op * Scale. 1369 if (match(Op, m_Zero())) { 1370 NoSignedWrap = true; 1371 return Op; 1372 } 1373 1374 // We know that we can successfully descale, so from here on we can safely 1375 // modify the IR. Op holds the descaled version of the deepest term in the 1376 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1377 // not to overflow. 1378 1379 if (!Parent.first) 1380 // The expression only had one term. 1381 return Op; 1382 1383 // Rewrite the parent using the descaled version of its operand. 1384 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1385 assert(Op != Parent.first->getOperand(Parent.second) && 1386 "Descaling was a no-op?"); 1387 Parent.first->setOperand(Parent.second, Op); 1388 Worklist.Add(Parent.first); 1389 1390 // Now work back up the expression correcting nsw flags. The logic is based 1391 // on the following observation: if X * Y is known not to overflow as a signed 1392 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1393 // then X * Z will not overflow as a signed multiplication either. As we work 1394 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1395 // current level has strictly smaller absolute value than the original. 1396 Instruction *Ancestor = Parent.first; 1397 do { 1398 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1399 // If the multiplication wasn't nsw then we can't say anything about the 1400 // value of the descaled multiplication, and we have to clear nsw flags 1401 // from this point on up. 1402 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1403 NoSignedWrap &= OpNoSignedWrap; 1404 if (NoSignedWrap != OpNoSignedWrap) { 1405 BO->setHasNoSignedWrap(NoSignedWrap); 1406 Worklist.Add(Ancestor); 1407 } 1408 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1409 // The fact that the descaled input to the trunc has smaller absolute 1410 // value than the original input doesn't tell us anything useful about 1411 // the absolute values of the truncations. 1412 NoSignedWrap = false; 1413 } 1414 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1415 "Failed to keep proper track of nsw flags while drilling down?"); 1416 1417 if (Ancestor == Val) 1418 // Got to the top, all done! 1419 return Val; 1420 1421 // Move up one level in the expression. 1422 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1423 Ancestor = Ancestor->user_back(); 1424 } while (true); 1425 } 1426 1427 Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) { 1428 if (!Inst.getType()->isVectorTy()) return nullptr; 1429 1430 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1431 unsigned NumElts = cast<VectorType>(Inst.getType())->getNumElements(); 1432 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1433 assert(cast<VectorType>(LHS->getType())->getNumElements() == NumElts); 1434 assert(cast<VectorType>(RHS->getType())->getNumElements() == NumElts); 1435 1436 // If both operands of the binop are vector concatenations, then perform the 1437 // narrow binop on each pair of the source operands followed by concatenation 1438 // of the results. 1439 Value *L0, *L1, *R0, *R1; 1440 Constant *Mask; 1441 if (match(LHS, m_ShuffleVector(m_Value(L0), m_Value(L1), m_Constant(Mask))) && 1442 match(RHS, m_ShuffleVector(m_Value(R0), m_Value(R1), m_Specific(Mask))) && 1443 LHS->hasOneUse() && RHS->hasOneUse() && 1444 cast<ShuffleVectorInst>(LHS)->isConcat() && 1445 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1446 // This transform does not have the speculative execution constraint as 1447 // below because the shuffle is a concatenation. The new binops are 1448 // operating on exactly the same elements as the existing binop. 1449 // TODO: We could ease the mask requirement to allow different undef lanes, 1450 // but that requires an analysis of the binop-with-undef output value. 1451 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1452 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1453 BO->copyIRFlags(&Inst); 1454 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1455 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1456 BO->copyIRFlags(&Inst); 1457 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1458 } 1459 1460 // It may not be safe to reorder shuffles and things like div, urem, etc. 1461 // because we may trap when executing those ops on unknown vector elements. 1462 // See PR20059. 1463 if (!isSafeToSpeculativelyExecute(&Inst)) 1464 return nullptr; 1465 1466 auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) { 1467 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1468 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1469 BO->copyIRFlags(&Inst); 1470 return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M); 1471 }; 1472 1473 // If both arguments of the binary operation are shuffles that use the same 1474 // mask and shuffle within a single vector, move the shuffle after the binop. 1475 Value *V1, *V2; 1476 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) && 1477 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) && 1478 V1->getType() == V2->getType() && 1479 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1480 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1481 return createBinOpShuffle(V1, V2, Mask); 1482 } 1483 1484 // If both arguments of a commutative binop are select-shuffles that use the 1485 // same mask with commuted operands, the shuffles are unnecessary. 1486 if (Inst.isCommutative() && 1487 match(LHS, m_ShuffleVector(m_Value(V1), m_Value(V2), m_Constant(Mask))) && 1488 match(RHS, m_ShuffleVector(m_Specific(V2), m_Specific(V1), 1489 m_Specific(Mask)))) { 1490 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1491 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1492 // TODO: Allow shuffles that contain undefs in the mask? 1493 // That is legal, but it reduces undef knowledge. 1494 // TODO: Allow arbitrary shuffles by shuffling after binop? 1495 // That might be legal, but we have to deal with poison. 1496 if (LShuf->isSelect() && !LShuf->getMask()->containsUndefElement() && 1497 RShuf->isSelect() && !RShuf->getMask()->containsUndefElement()) { 1498 // Example: 1499 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1500 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1501 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1502 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1503 NewBO->copyIRFlags(&Inst); 1504 return NewBO; 1505 } 1506 } 1507 1508 // If one argument is a shuffle within one vector and the other is a constant, 1509 // try moving the shuffle after the binary operation. This canonicalization 1510 // intends to move shuffles closer to other shuffles and binops closer to 1511 // other binops, so they can be folded. It may also enable demanded elements 1512 // transforms. 1513 Constant *C; 1514 if (match(&Inst, m_c_BinOp( 1515 m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))), 1516 m_Constant(C))) && 1517 V1->getType()->getVectorNumElements() <= NumElts) { 1518 assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() && 1519 "Shuffle should not change scalar type"); 1520 1521 // Find constant NewC that has property: 1522 // shuffle(NewC, ShMask) = C 1523 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1524 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1525 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1526 bool ConstOp1 = isa<Constant>(RHS); 1527 SmallVector<int, 16> ShMask; 1528 ShuffleVectorInst::getShuffleMask(Mask, ShMask); 1529 unsigned SrcVecNumElts = V1->getType()->getVectorNumElements(); 1530 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1531 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1532 bool MayChange = true; 1533 for (unsigned I = 0; I < NumElts; ++I) { 1534 Constant *CElt = C->getAggregateElement(I); 1535 if (ShMask[I] >= 0) { 1536 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1537 Constant *NewCElt = NewVecC[ShMask[I]]; 1538 // Bail out if: 1539 // 1. The constant vector contains a constant expression. 1540 // 2. The shuffle needs an element of the constant vector that can't 1541 // be mapped to a new constant vector. 1542 // 3. This is a widening shuffle that copies elements of V1 into the 1543 // extended elements (extending with undef is allowed). 1544 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1545 I >= SrcVecNumElts) { 1546 MayChange = false; 1547 break; 1548 } 1549 NewVecC[ShMask[I]] = CElt; 1550 } 1551 // If this is a widening shuffle, we must be able to extend with undef 1552 // elements. If the original binop does not produce an undef in the high 1553 // lanes, then this transform is not safe. 1554 // Similarly for undef lanes due to the shuffle mask, we can only 1555 // transform binops that preserve undef. 1556 // TODO: We could shuffle those non-undef constant values into the 1557 // result by using a constant vector (rather than an undef vector) 1558 // as operand 1 of the new binop, but that might be too aggressive 1559 // for target-independent shuffle creation. 1560 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1561 Constant *MaybeUndef = 1562 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1563 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1564 if (!isa<UndefValue>(MaybeUndef)) { 1565 MayChange = false; 1566 break; 1567 } 1568 } 1569 } 1570 if (MayChange) { 1571 Constant *NewC = ConstantVector::get(NewVecC); 1572 // It may not be safe to execute a binop on a vector with undef elements 1573 // because the entire instruction can be folded to undef or create poison 1574 // that did not exist in the original code. 1575 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1576 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1577 1578 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1579 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1580 Value *NewLHS = ConstOp1 ? V1 : NewC; 1581 Value *NewRHS = ConstOp1 ? NewC : V1; 1582 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1583 } 1584 } 1585 1586 return nullptr; 1587 } 1588 1589 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1590 /// of a value. This requires a potentially expensive known bits check to make 1591 /// sure the narrow op does not overflow. 1592 Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) { 1593 // We need at least one extended operand. 1594 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1595 1596 // If this is a sub, we swap the operands since we always want an extension 1597 // on the RHS. The LHS can be an extension or a constant. 1598 if (BO.getOpcode() == Instruction::Sub) 1599 std::swap(Op0, Op1); 1600 1601 Value *X; 1602 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1603 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1604 return nullptr; 1605 1606 // If both operands are the same extension from the same source type and we 1607 // can eliminate at least one (hasOneUse), this might work. 1608 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1609 Value *Y; 1610 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1611 cast<Operator>(Op1)->getOpcode() == CastOpc && 1612 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1613 // If that did not match, see if we have a suitable constant operand. 1614 // Truncating and extending must produce the same constant. 1615 Constant *WideC; 1616 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1617 return nullptr; 1618 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1619 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1620 return nullptr; 1621 Y = NarrowC; 1622 } 1623 1624 // Swap back now that we found our operands. 1625 if (BO.getOpcode() == Instruction::Sub) 1626 std::swap(X, Y); 1627 1628 // Both operands have narrow versions. Last step: the math must not overflow 1629 // in the narrow width. 1630 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1631 return nullptr; 1632 1633 // bo (ext X), (ext Y) --> ext (bo X, Y) 1634 // bo (ext X), C --> ext (bo X, C') 1635 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1636 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1637 if (IsSext) 1638 NewBinOp->setHasNoSignedWrap(); 1639 else 1640 NewBinOp->setHasNoUnsignedWrap(); 1641 } 1642 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1643 } 1644 1645 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1646 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1647 Type *GEPType = GEP.getType(); 1648 Type *GEPEltType = GEP.getSourceElementType(); 1649 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP))) 1650 return replaceInstUsesWith(GEP, V); 1651 1652 // For vector geps, use the generic demanded vector support. 1653 if (GEP.getType()->isVectorTy()) { 1654 auto VWidth = GEP.getType()->getVectorNumElements(); 1655 APInt UndefElts(VWidth, 0); 1656 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1657 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 1658 UndefElts)) { 1659 if (V != &GEP) 1660 return replaceInstUsesWith(GEP, V); 1661 return &GEP; 1662 } 1663 1664 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 1665 // possible (decide on canonical form for pointer broadcast), 3) exploit 1666 // undef elements to decrease demanded bits 1667 } 1668 1669 Value *PtrOp = GEP.getOperand(0); 1670 1671 // Eliminate unneeded casts for indices, and replace indices which displace 1672 // by multiples of a zero size type with zero. 1673 bool MadeChange = false; 1674 1675 // Index width may not be the same width as pointer width. 1676 // Data layout chooses the right type based on supported integer types. 1677 Type *NewScalarIndexTy = 1678 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 1679 1680 gep_type_iterator GTI = gep_type_begin(GEP); 1681 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1682 ++I, ++GTI) { 1683 // Skip indices into struct types. 1684 if (GTI.isStruct()) 1685 continue; 1686 1687 Type *IndexTy = (*I)->getType(); 1688 Type *NewIndexType = 1689 IndexTy->isVectorTy() 1690 ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements()) 1691 : NewScalarIndexTy; 1692 1693 // If the element type has zero size then any index over it is equivalent 1694 // to an index of zero, so replace it with zero if it is not zero already. 1695 Type *EltTy = GTI.getIndexedType(); 1696 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0) 1697 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 1698 *I = Constant::getNullValue(NewIndexType); 1699 MadeChange = true; 1700 } 1701 1702 if (IndexTy != NewIndexType) { 1703 // If we are using a wider index than needed for this platform, shrink 1704 // it to what we need. If narrower, sign-extend it to what we need. 1705 // This explicit cast can make subsequent optimizations more obvious. 1706 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1707 MadeChange = true; 1708 } 1709 } 1710 if (MadeChange) 1711 return &GEP; 1712 1713 // Check to see if the inputs to the PHI node are getelementptr instructions. 1714 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 1715 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1716 if (!Op1) 1717 return nullptr; 1718 1719 // Don't fold a GEP into itself through a PHI node. This can only happen 1720 // through the back-edge of a loop. Folding a GEP into itself means that 1721 // the value of the previous iteration needs to be stored in the meantime, 1722 // thus requiring an additional register variable to be live, but not 1723 // actually achieving anything (the GEP still needs to be executed once per 1724 // loop iteration). 1725 if (Op1 == &GEP) 1726 return nullptr; 1727 1728 int DI = -1; 1729 1730 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1731 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 1732 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1733 return nullptr; 1734 1735 // As for Op1 above, don't try to fold a GEP into itself. 1736 if (Op2 == &GEP) 1737 return nullptr; 1738 1739 // Keep track of the type as we walk the GEP. 1740 Type *CurTy = nullptr; 1741 1742 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1743 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1744 return nullptr; 1745 1746 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1747 if (DI == -1) { 1748 // We have not seen any differences yet in the GEPs feeding the 1749 // PHI yet, so we record this one if it is allowed to be a 1750 // variable. 1751 1752 // The first two arguments can vary for any GEP, the rest have to be 1753 // static for struct slots 1754 if (J > 1) { 1755 assert(CurTy && "No current type?"); 1756 if (CurTy->isStructTy()) 1757 return nullptr; 1758 } 1759 1760 DI = J; 1761 } else { 1762 // The GEP is different by more than one input. While this could be 1763 // extended to support GEPs that vary by more than one variable it 1764 // doesn't make sense since it greatly increases the complexity and 1765 // would result in an R+R+R addressing mode which no backend 1766 // directly supports and would need to be broken into several 1767 // simpler instructions anyway. 1768 return nullptr; 1769 } 1770 } 1771 1772 // Sink down a layer of the type for the next iteration. 1773 if (J > 0) { 1774 if (J == 1) { 1775 CurTy = Op1->getSourceElementType(); 1776 } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) { 1777 CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); 1778 } else { 1779 CurTy = nullptr; 1780 } 1781 } 1782 } 1783 } 1784 1785 // If not all GEPs are identical we'll have to create a new PHI node. 1786 // Check that the old PHI node has only one use so that it will get 1787 // removed. 1788 if (DI != -1 && !PN->hasOneUse()) 1789 return nullptr; 1790 1791 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1792 if (DI == -1) { 1793 // All the GEPs feeding the PHI are identical. Clone one down into our 1794 // BB so that it can be merged with the current GEP. 1795 GEP.getParent()->getInstList().insert( 1796 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1797 } else { 1798 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1799 // into the current block so it can be merged, and create a new PHI to 1800 // set that index. 1801 PHINode *NewPN; 1802 { 1803 IRBuilderBase::InsertPointGuard Guard(Builder); 1804 Builder.SetInsertPoint(PN); 1805 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 1806 PN->getNumOperands()); 1807 } 1808 1809 for (auto &I : PN->operands()) 1810 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1811 PN->getIncomingBlock(I)); 1812 1813 NewGEP->setOperand(DI, NewPN); 1814 GEP.getParent()->getInstList().insert( 1815 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1816 NewGEP->setOperand(DI, NewPN); 1817 } 1818 1819 GEP.setOperand(0, NewGEP); 1820 PtrOp = NewGEP; 1821 } 1822 1823 // Combine Indices - If the source pointer to this getelementptr instruction 1824 // is a getelementptr instruction, combine the indices of the two 1825 // getelementptr instructions into a single instruction. 1826 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { 1827 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1828 return nullptr; 1829 1830 // Try to reassociate loop invariant GEP chains to enable LICM. 1831 if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1832 Src->hasOneUse()) { 1833 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1834 Value *GO1 = GEP.getOperand(1); 1835 Value *SO1 = Src->getOperand(1); 1836 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1837 // invariant: this breaks the dependence between GEPs and allows LICM 1838 // to hoist the invariant part out of the loop. 1839 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1840 // We have to be careful here. 1841 // We have something like: 1842 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 1843 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 1844 // If we just swap idx & idx2 then we could inadvertantly 1845 // change %src from a vector to a scalar, or vice versa. 1846 // Cases: 1847 // 1) %base a scalar & idx a scalar & idx2 a vector 1848 // => Swapping idx & idx2 turns %src into a vector type. 1849 // 2) %base a scalar & idx a vector & idx2 a scalar 1850 // => Swapping idx & idx2 turns %src in a scalar type 1851 // 3) %base, %idx, and %idx2 are scalars 1852 // => %src & %gep are scalars 1853 // => swapping idx & idx2 is safe 1854 // 4) %base a vector 1855 // => %src is a vector 1856 // => swapping idx & idx2 is safe. 1857 auto *SO0 = Src->getOperand(0); 1858 auto *SO0Ty = SO0->getType(); 1859 if (!isa<VectorType>(GEPType) || // case 3 1860 isa<VectorType>(SO0Ty)) { // case 4 1861 Src->setOperand(1, GO1); 1862 GEP.setOperand(1, SO1); 1863 return &GEP; 1864 } else { 1865 // Case 1 or 2 1866 // -- have to recreate %src & %gep 1867 // put NewSrc at same location as %src 1868 Builder.SetInsertPoint(cast<Instruction>(PtrOp)); 1869 auto *NewSrc = cast<GetElementPtrInst>( 1870 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName())); 1871 NewSrc->setIsInBounds(Src->isInBounds()); 1872 auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1}); 1873 NewGEP->setIsInBounds(GEP.isInBounds()); 1874 return NewGEP; 1875 } 1876 } 1877 } 1878 } 1879 1880 // Note that if our source is a gep chain itself then we wait for that 1881 // chain to be resolved before we perform this transformation. This 1882 // avoids us creating a TON of code in some cases. 1883 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 1884 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1885 return nullptr; // Wait until our source is folded to completion. 1886 1887 SmallVector<Value*, 8> Indices; 1888 1889 // Find out whether the last index in the source GEP is a sequential idx. 1890 bool EndsWithSequential = false; 1891 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1892 I != E; ++I) 1893 EndsWithSequential = I.isSequential(); 1894 1895 // Can we combine the two pointer arithmetics offsets? 1896 if (EndsWithSequential) { 1897 // Replace: gep (gep %P, long B), long A, ... 1898 // With: T = long A+B; gep %P, T, ... 1899 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1900 Value *GO1 = GEP.getOperand(1); 1901 1902 // If they aren't the same type, then the input hasn't been processed 1903 // by the loop above yet (which canonicalizes sequential index types to 1904 // intptr_t). Just avoid transforming this until the input has been 1905 // normalized. 1906 if (SO1->getType() != GO1->getType()) 1907 return nullptr; 1908 1909 Value *Sum = 1910 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 1911 // Only do the combine when we are sure the cost after the 1912 // merge is never more than that before the merge. 1913 if (Sum == nullptr) 1914 return nullptr; 1915 1916 // Update the GEP in place if possible. 1917 if (Src->getNumOperands() == 2) { 1918 GEP.setOperand(0, Src->getOperand(0)); 1919 GEP.setOperand(1, Sum); 1920 return &GEP; 1921 } 1922 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1923 Indices.push_back(Sum); 1924 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1925 } else if (isa<Constant>(*GEP.idx_begin()) && 1926 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1927 Src->getNumOperands() != 1) { 1928 // Otherwise we can do the fold if the first index of the GEP is a zero 1929 Indices.append(Src->op_begin()+1, Src->op_end()); 1930 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1931 } 1932 1933 if (!Indices.empty()) 1934 return GEP.isInBounds() && Src->isInBounds() 1935 ? GetElementPtrInst::CreateInBounds( 1936 Src->getSourceElementType(), Src->getOperand(0), Indices, 1937 GEP.getName()) 1938 : GetElementPtrInst::Create(Src->getSourceElementType(), 1939 Src->getOperand(0), Indices, 1940 GEP.getName()); 1941 } 1942 1943 if (GEP.getNumIndices() == 1) { 1944 unsigned AS = GEP.getPointerAddressSpace(); 1945 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 1946 DL.getIndexSizeInBits(AS)) { 1947 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType); 1948 1949 bool Matched = false; 1950 uint64_t C; 1951 Value *V = nullptr; 1952 if (TyAllocSize == 1) { 1953 V = GEP.getOperand(1); 1954 Matched = true; 1955 } else if (match(GEP.getOperand(1), 1956 m_AShr(m_Value(V), m_ConstantInt(C)))) { 1957 if (TyAllocSize == 1ULL << C) 1958 Matched = true; 1959 } else if (match(GEP.getOperand(1), 1960 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 1961 if (TyAllocSize == C) 1962 Matched = true; 1963 } 1964 1965 if (Matched) { 1966 // Canonicalize (gep i8* X, -(ptrtoint Y)) 1967 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) 1968 // The GEP pattern is emitted by the SCEV expander for certain kinds of 1969 // pointer arithmetic. 1970 if (match(V, m_Neg(m_PtrToInt(m_Value())))) { 1971 Operator *Index = cast<Operator>(V); 1972 Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType()); 1973 Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1)); 1974 return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType); 1975 } 1976 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) 1977 // to (bitcast Y) 1978 Value *Y; 1979 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), 1980 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) 1981 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 1982 } 1983 } 1984 } 1985 1986 // We do not handle pointer-vector geps here. 1987 if (GEPType->isVectorTy()) 1988 return nullptr; 1989 1990 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 1991 Value *StrippedPtr = PtrOp->stripPointerCasts(); 1992 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 1993 1994 if (StrippedPtr != PtrOp) { 1995 bool HasZeroPointerIndex = false; 1996 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType(); 1997 1998 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 1999 HasZeroPointerIndex = C->isZero(); 2000 2001 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2002 // into : GEP [10 x i8]* X, i32 0, ... 2003 // 2004 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2005 // into : GEP i8* X, ... 2006 // 2007 // This occurs when the program declares an array extern like "int X[];" 2008 if (HasZeroPointerIndex) { 2009 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2010 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2011 if (CATy->getElementType() == StrippedPtrEltTy) { 2012 // -> GEP i8* X, ... 2013 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 2014 GetElementPtrInst *Res = GetElementPtrInst::Create( 2015 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2016 Res->setIsInBounds(GEP.isInBounds()); 2017 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2018 return Res; 2019 // Insert Res, and create an addrspacecast. 2020 // e.g., 2021 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2022 // -> 2023 // %0 = GEP i8 addrspace(1)* X, ... 2024 // addrspacecast i8 addrspace(1)* %0 to i8* 2025 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2026 } 2027 2028 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2029 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2030 if (CATy->getElementType() == XATy->getElementType()) { 2031 // -> GEP [10 x i8]* X, i32 0, ... 2032 // At this point, we know that the cast source type is a pointer 2033 // to an array of the same type as the destination pointer 2034 // array. Because the array type is never stepped over (there 2035 // is a leading zero) we can fold the cast into this GEP. 2036 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2037 GEP.setOperand(0, StrippedPtr); 2038 GEP.setSourceElementType(XATy); 2039 return &GEP; 2040 } 2041 // Cannot replace the base pointer directly because StrippedPtr's 2042 // address space is different. Instead, create a new GEP followed by 2043 // an addrspacecast. 2044 // e.g., 2045 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2046 // i32 0, ... 2047 // -> 2048 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2049 // addrspacecast i8 addrspace(1)* %0 to i8* 2050 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 2051 Value *NewGEP = 2052 GEP.isInBounds() 2053 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2054 Idx, GEP.getName()) 2055 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2056 GEP.getName()); 2057 return new AddrSpaceCastInst(NewGEP, GEPType); 2058 } 2059 } 2060 } 2061 } else if (GEP.getNumOperands() == 2) { 2062 // Transform things like: 2063 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 2064 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 2065 if (StrippedPtrEltTy->isArrayTy() && 2066 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2067 DL.getTypeAllocSize(GEPEltType)) { 2068 Type *IdxType = DL.getIndexType(GEPType); 2069 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 2070 Value *NewGEP = 2071 GEP.isInBounds() 2072 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2073 GEP.getName()) 2074 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2075 GEP.getName()); 2076 2077 // V and GEP are both pointer types --> BitCast 2078 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2079 } 2080 2081 // Transform things like: 2082 // %V = mul i64 %N, 4 2083 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2084 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2085 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2086 // Check that changing the type amounts to dividing the index by a scale 2087 // factor. 2088 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 2089 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy); 2090 if (ResSize && SrcSize % ResSize == 0) { 2091 Value *Idx = GEP.getOperand(1); 2092 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2093 uint64_t Scale = SrcSize / ResSize; 2094 2095 // Earlier transforms ensure that the index has the right type 2096 // according to Data Layout, which considerably simplifies the 2097 // logic by eliminating implicit casts. 2098 assert(Idx->getType() == DL.getIndexType(GEPType) && 2099 "Index type does not match the Data Layout preferences"); 2100 2101 bool NSW; 2102 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2103 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2104 // If the multiplication NewIdx * Scale may overflow then the new 2105 // GEP may not be "inbounds". 2106 Value *NewGEP = 2107 GEP.isInBounds() && NSW 2108 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2109 NewIdx, GEP.getName()) 2110 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2111 GEP.getName()); 2112 2113 // The NewGEP must be pointer typed, so must the old one -> BitCast 2114 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2115 GEPType); 2116 } 2117 } 2118 } 2119 2120 // Similarly, transform things like: 2121 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2122 // (where tmp = 8*tmp2) into: 2123 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2124 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2125 StrippedPtrEltTy->isArrayTy()) { 2126 // Check that changing to the array element type amounts to dividing the 2127 // index by a scale factor. 2128 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 2129 uint64_t ArrayEltSize = 2130 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()); 2131 if (ResSize && ArrayEltSize % ResSize == 0) { 2132 Value *Idx = GEP.getOperand(1); 2133 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2134 uint64_t Scale = ArrayEltSize / ResSize; 2135 2136 // Earlier transforms ensure that the index has the right type 2137 // according to the Data Layout, which considerably simplifies 2138 // the logic by eliminating implicit casts. 2139 assert(Idx->getType() == DL.getIndexType(GEPType) && 2140 "Index type does not match the Data Layout preferences"); 2141 2142 bool NSW; 2143 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2144 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2145 // If the multiplication NewIdx * Scale may overflow then the new 2146 // GEP may not be "inbounds". 2147 Type *IndTy = DL.getIndexType(GEPType); 2148 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2149 2150 Value *NewGEP = 2151 GEP.isInBounds() && NSW 2152 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2153 Off, GEP.getName()) 2154 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2155 GEP.getName()); 2156 // The NewGEP must be pointer typed, so must the old one -> BitCast 2157 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2158 GEPType); 2159 } 2160 } 2161 } 2162 } 2163 } 2164 2165 // addrspacecast between types is canonicalized as a bitcast, then an 2166 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2167 // through the addrspacecast. 2168 Value *ASCStrippedPtrOp = PtrOp; 2169 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2170 // X = bitcast A addrspace(1)* to B addrspace(1)* 2171 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2172 // Z = gep Y, <...constant indices...> 2173 // Into an addrspacecasted GEP of the struct. 2174 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2175 ASCStrippedPtrOp = BC; 2176 } 2177 2178 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 2179 Value *SrcOp = BCI->getOperand(0); 2180 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2181 Type *SrcEltType = SrcType->getElementType(); 2182 2183 // GEP directly using the source operand if this GEP is accessing an element 2184 // of a bitcasted pointer to vector or array of the same dimensions: 2185 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2186 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2187 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy) { 2188 return ArrTy->getArrayElementType() == VecTy->getVectorElementType() && 2189 ArrTy->getArrayNumElements() == VecTy->getVectorNumElements(); 2190 }; 2191 if (GEP.getNumOperands() == 3 && 2192 ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() && 2193 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType)) || 2194 (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() && 2195 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType)))) { 2196 2197 // Create a new GEP here, as using `setOperand()` followed by 2198 // `setSourceElementType()` won't actually update the type of the 2199 // existing GEP Value. Causing issues if this Value is accessed when 2200 // constructing an AddrSpaceCastInst 2201 Value *NGEP = 2202 GEP.isInBounds() 2203 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}) 2204 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}); 2205 NGEP->takeName(&GEP); 2206 2207 // Preserve GEP address space to satisfy users 2208 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2209 return new AddrSpaceCastInst(NGEP, GEPType); 2210 2211 return replaceInstUsesWith(GEP, NGEP); 2212 } 2213 2214 // See if we can simplify: 2215 // X = bitcast A* to B* 2216 // Y = gep X, <...constant indices...> 2217 // into a gep of the original struct. This is important for SROA and alias 2218 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2219 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 2220 APInt Offset(OffsetBits, 0); 2221 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) { 2222 // If this GEP instruction doesn't move the pointer, just replace the GEP 2223 // with a bitcast of the real input to the dest type. 2224 if (!Offset) { 2225 // If the bitcast is of an allocation, and the allocation will be 2226 // converted to match the type of the cast, don't touch this. 2227 if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) { 2228 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2229 if (Instruction *I = visitBitCast(*BCI)) { 2230 if (I != BCI) { 2231 I->takeName(BCI); 2232 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2233 replaceInstUsesWith(*BCI, I); 2234 } 2235 return &GEP; 2236 } 2237 } 2238 2239 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2240 return new AddrSpaceCastInst(SrcOp, GEPType); 2241 return new BitCastInst(SrcOp, GEPType); 2242 } 2243 2244 // Otherwise, if the offset is non-zero, we need to find out if there is a 2245 // field at Offset in 'A's type. If so, we can pull the cast through the 2246 // GEP. 2247 SmallVector<Value*, 8> NewIndices; 2248 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2249 Value *NGEP = 2250 GEP.isInBounds() 2251 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) 2252 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); 2253 2254 if (NGEP->getType() == GEPType) 2255 return replaceInstUsesWith(GEP, NGEP); 2256 NGEP->takeName(&GEP); 2257 2258 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2259 return new AddrSpaceCastInst(NGEP, GEPType); 2260 return new BitCastInst(NGEP, GEPType); 2261 } 2262 } 2263 } 2264 2265 if (!GEP.isInBounds()) { 2266 unsigned IdxWidth = 2267 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2268 APInt BasePtrOffset(IdxWidth, 0); 2269 Value *UnderlyingPtrOp = 2270 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2271 BasePtrOffset); 2272 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2273 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2274 BasePtrOffset.isNonNegative()) { 2275 APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType())); 2276 if (BasePtrOffset.ule(AllocSize)) { 2277 return GetElementPtrInst::CreateInBounds( 2278 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1), 2279 GEP.getName()); 2280 } 2281 } 2282 } 2283 } 2284 2285 return nullptr; 2286 } 2287 2288 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 2289 Instruction *AI) { 2290 if (isa<ConstantPointerNull>(V)) 2291 return true; 2292 if (auto *LI = dyn_cast<LoadInst>(V)) 2293 return isa<GlobalVariable>(LI->getPointerOperand()); 2294 // Two distinct allocations will never be equal. 2295 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2296 // through bitcasts of V can cause 2297 // the result statement below to be true, even when AI and V (ex: 2298 // i8* ->i32* ->i8* of AI) are the same allocations. 2299 return isAllocLikeFn(V, TLI) && V != AI; 2300 } 2301 2302 static bool isAllocSiteRemovable(Instruction *AI, 2303 SmallVectorImpl<WeakTrackingVH> &Users, 2304 const TargetLibraryInfo *TLI) { 2305 SmallVector<Instruction*, 4> Worklist; 2306 Worklist.push_back(AI); 2307 2308 do { 2309 Instruction *PI = Worklist.pop_back_val(); 2310 for (User *U : PI->users()) { 2311 Instruction *I = cast<Instruction>(U); 2312 switch (I->getOpcode()) { 2313 default: 2314 // Give up the moment we see something we can't handle. 2315 return false; 2316 2317 case Instruction::AddrSpaceCast: 2318 case Instruction::BitCast: 2319 case Instruction::GetElementPtr: 2320 Users.emplace_back(I); 2321 Worklist.push_back(I); 2322 continue; 2323 2324 case Instruction::ICmp: { 2325 ICmpInst *ICI = cast<ICmpInst>(I); 2326 // We can fold eq/ne comparisons with null to false/true, respectively. 2327 // We also fold comparisons in some conditions provided the alloc has 2328 // not escaped (see isNeverEqualToUnescapedAlloc). 2329 if (!ICI->isEquality()) 2330 return false; 2331 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2332 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2333 return false; 2334 Users.emplace_back(I); 2335 continue; 2336 } 2337 2338 case Instruction::Call: 2339 // Ignore no-op and store intrinsics. 2340 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2341 switch (II->getIntrinsicID()) { 2342 default: 2343 return false; 2344 2345 case Intrinsic::memmove: 2346 case Intrinsic::memcpy: 2347 case Intrinsic::memset: { 2348 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2349 if (MI->isVolatile() || MI->getRawDest() != PI) 2350 return false; 2351 LLVM_FALLTHROUGH; 2352 } 2353 case Intrinsic::invariant_start: 2354 case Intrinsic::invariant_end: 2355 case Intrinsic::lifetime_start: 2356 case Intrinsic::lifetime_end: 2357 case Intrinsic::objectsize: 2358 Users.emplace_back(I); 2359 continue; 2360 } 2361 } 2362 2363 if (isFreeCall(I, TLI)) { 2364 Users.emplace_back(I); 2365 continue; 2366 } 2367 return false; 2368 2369 case Instruction::Store: { 2370 StoreInst *SI = cast<StoreInst>(I); 2371 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2372 return false; 2373 Users.emplace_back(I); 2374 continue; 2375 } 2376 } 2377 llvm_unreachable("missing a return?"); 2378 } 2379 } while (!Worklist.empty()); 2380 return true; 2381 } 2382 2383 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 2384 // If we have a malloc call which is only used in any amount of comparisons to 2385 // null and free calls, delete the calls and replace the comparisons with true 2386 // or false as appropriate. 2387 2388 // This is based on the principle that we can substitute our own allocation 2389 // function (which will never return null) rather than knowledge of the 2390 // specific function being called. In some sense this can change the permitted 2391 // outputs of a program (when we convert a malloc to an alloca, the fact that 2392 // the allocation is now on the stack is potentially visible, for example), 2393 // but we believe in a permissible manner. 2394 SmallVector<WeakTrackingVH, 64> Users; 2395 2396 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2397 // before each store. 2398 TinyPtrVector<DbgVariableIntrinsic *> DIIs; 2399 std::unique_ptr<DIBuilder> DIB; 2400 if (isa<AllocaInst>(MI)) { 2401 DIIs = FindDbgAddrUses(&MI); 2402 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2403 } 2404 2405 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2406 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2407 // Lowering all @llvm.objectsize calls first because they may 2408 // use a bitcast/GEP of the alloca we are removing. 2409 if (!Users[i]) 2410 continue; 2411 2412 Instruction *I = cast<Instruction>(&*Users[i]); 2413 2414 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2415 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2416 Value *Result = 2417 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); 2418 replaceInstUsesWith(*I, Result); 2419 eraseInstFromFunction(*I); 2420 Users[i] = nullptr; // Skip examining in the next loop. 2421 } 2422 } 2423 } 2424 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2425 if (!Users[i]) 2426 continue; 2427 2428 Instruction *I = cast<Instruction>(&*Users[i]); 2429 2430 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2431 replaceInstUsesWith(*C, 2432 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2433 C->isFalseWhenEqual())); 2434 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) || 2435 isa<AddrSpaceCastInst>(I)) { 2436 replaceInstUsesWith(*I, UndefValue::get(I->getType())); 2437 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2438 for (auto *DII : DIIs) 2439 ConvertDebugDeclareToDebugValue(DII, SI, *DIB); 2440 } 2441 eraseInstFromFunction(*I); 2442 } 2443 2444 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2445 // Replace invoke with a NOP intrinsic to maintain the original CFG 2446 Module *M = II->getModule(); 2447 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2448 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2449 None, "", II->getParent()); 2450 } 2451 2452 for (auto *DII : DIIs) 2453 eraseInstFromFunction(*DII); 2454 2455 return eraseInstFromFunction(MI); 2456 } 2457 return nullptr; 2458 } 2459 2460 /// Move the call to free before a NULL test. 2461 /// 2462 /// Check if this free is accessed after its argument has been test 2463 /// against NULL (property 0). 2464 /// If yes, it is legal to move this call in its predecessor block. 2465 /// 2466 /// The move is performed only if the block containing the call to free 2467 /// will be removed, i.e.: 2468 /// 1. it has only one predecessor P, and P has two successors 2469 /// 2. it contains the call, noops, and an unconditional branch 2470 /// 3. its successor is the same as its predecessor's successor 2471 /// 2472 /// The profitability is out-of concern here and this function should 2473 /// be called only if the caller knows this transformation would be 2474 /// profitable (e.g., for code size). 2475 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2476 const DataLayout &DL) { 2477 Value *Op = FI.getArgOperand(0); 2478 BasicBlock *FreeInstrBB = FI.getParent(); 2479 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2480 2481 // Validate part of constraint #1: Only one predecessor 2482 // FIXME: We can extend the number of predecessor, but in that case, we 2483 // would duplicate the call to free in each predecessor and it may 2484 // not be profitable even for code size. 2485 if (!PredBB) 2486 return nullptr; 2487 2488 // Validate constraint #2: Does this block contains only the call to 2489 // free, noops, and an unconditional branch? 2490 BasicBlock *SuccBB; 2491 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2492 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2493 return nullptr; 2494 2495 // If there are only 2 instructions in the block, at this point, 2496 // this is the call to free and unconditional. 2497 // If there are more than 2 instructions, check that they are noops 2498 // i.e., they won't hurt the performance of the generated code. 2499 if (FreeInstrBB->size() != 2) { 2500 for (const Instruction &Inst : *FreeInstrBB) { 2501 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2502 continue; 2503 auto *Cast = dyn_cast<CastInst>(&Inst); 2504 if (!Cast || !Cast->isNoopCast(DL)) 2505 return nullptr; 2506 } 2507 } 2508 // Validate the rest of constraint #1 by matching on the pred branch. 2509 Instruction *TI = PredBB->getTerminator(); 2510 BasicBlock *TrueBB, *FalseBB; 2511 ICmpInst::Predicate Pred; 2512 if (!match(TI, m_Br(m_ICmp(Pred, 2513 m_CombineOr(m_Specific(Op), 2514 m_Specific(Op->stripPointerCasts())), 2515 m_Zero()), 2516 TrueBB, FalseBB))) 2517 return nullptr; 2518 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2519 return nullptr; 2520 2521 // Validate constraint #3: Ensure the null case just falls through. 2522 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2523 return nullptr; 2524 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2525 "Broken CFG: missing edge from predecessor to successor"); 2526 2527 // At this point, we know that everything in FreeInstrBB can be moved 2528 // before TI. 2529 for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end(); 2530 It != End;) { 2531 Instruction &Instr = *It++; 2532 if (&Instr == FreeInstrBBTerminator) 2533 break; 2534 Instr.moveBefore(TI); 2535 } 2536 assert(FreeInstrBB->size() == 1 && 2537 "Only the branch instruction should remain"); 2538 return &FI; 2539 } 2540 2541 Instruction *InstCombiner::visitFree(CallInst &FI) { 2542 Value *Op = FI.getArgOperand(0); 2543 2544 // free undef -> unreachable. 2545 if (isa<UndefValue>(Op)) { 2546 // Leave a marker since we can't modify the CFG here. 2547 CreateNonTerminatorUnreachable(&FI); 2548 return eraseInstFromFunction(FI); 2549 } 2550 2551 // If we have 'free null' delete the instruction. This can happen in stl code 2552 // when lots of inlining happens. 2553 if (isa<ConstantPointerNull>(Op)) 2554 return eraseInstFromFunction(FI); 2555 2556 // If we optimize for code size, try to move the call to free before the null 2557 // test so that simplify cfg can remove the empty block and dead code 2558 // elimination the branch. I.e., helps to turn something like: 2559 // if (foo) free(foo); 2560 // into 2561 // free(foo); 2562 if (MinimizeSize) 2563 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 2564 return I; 2565 2566 return nullptr; 2567 } 2568 2569 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { 2570 if (RI.getNumOperands() == 0) // ret void 2571 return nullptr; 2572 2573 Value *ResultOp = RI.getOperand(0); 2574 Type *VTy = ResultOp->getType(); 2575 if (!VTy->isIntegerTy()) 2576 return nullptr; 2577 2578 // There might be assume intrinsics dominating this return that completely 2579 // determine the value. If so, constant fold it. 2580 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2581 if (Known.isConstant()) 2582 RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant())); 2583 2584 return nullptr; 2585 } 2586 2587 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 2588 // Change br (not X), label True, label False to: br X, label False, True 2589 Value *X = nullptr; 2590 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 2591 !isa<Constant>(X)) { 2592 // Swap Destinations and condition... 2593 BI.setCondition(X); 2594 BI.swapSuccessors(); 2595 return &BI; 2596 } 2597 2598 // If the condition is irrelevant, remove the use so that other 2599 // transforms on the condition become more effective. 2600 if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) && 2601 BI.getSuccessor(0) == BI.getSuccessor(1)) { 2602 BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType())); 2603 return &BI; 2604 } 2605 2606 // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq. 2607 CmpInst::Predicate Pred; 2608 if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), 2609 m_BasicBlock(), m_BasicBlock())) && 2610 !isCanonicalPredicate(Pred)) { 2611 // Swap destinations and condition. 2612 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 2613 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2614 BI.swapSuccessors(); 2615 Worklist.Add(Cond); 2616 return &BI; 2617 } 2618 2619 return nullptr; 2620 } 2621 2622 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 2623 Value *Cond = SI.getCondition(); 2624 Value *Op0; 2625 ConstantInt *AddRHS; 2626 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 2627 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2628 for (auto Case : SI.cases()) { 2629 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 2630 assert(isa<ConstantInt>(NewCase) && 2631 "Result of expression should be constant"); 2632 Case.setValue(cast<ConstantInt>(NewCase)); 2633 } 2634 SI.setCondition(Op0); 2635 return &SI; 2636 } 2637 2638 KnownBits Known = computeKnownBits(Cond, 0, &SI); 2639 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 2640 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 2641 2642 // Compute the number of leading bits we can ignore. 2643 // TODO: A better way to determine this would use ComputeNumSignBits(). 2644 for (auto &C : SI.cases()) { 2645 LeadingKnownZeros = std::min( 2646 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2647 LeadingKnownOnes = std::min( 2648 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2649 } 2650 2651 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 2652 2653 // Shrink the condition operand if the new type is smaller than the old type. 2654 // But do not shrink to a non-standard type, because backend can't generate 2655 // good code for that yet. 2656 // TODO: We can make it aggressive again after fixing PR39569. 2657 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 2658 shouldChangeType(Known.getBitWidth(), NewWidth)) { 2659 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2660 Builder.SetInsertPoint(&SI); 2661 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 2662 SI.setCondition(NewCond); 2663 2664 for (auto Case : SI.cases()) { 2665 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 2666 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 2667 } 2668 return &SI; 2669 } 2670 2671 return nullptr; 2672 } 2673 2674 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 2675 Value *Agg = EV.getAggregateOperand(); 2676 2677 if (!EV.hasIndices()) 2678 return replaceInstUsesWith(EV, Agg); 2679 2680 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 2681 SQ.getWithInstruction(&EV))) 2682 return replaceInstUsesWith(EV, V); 2683 2684 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 2685 // We're extracting from an insertvalue instruction, compare the indices 2686 const unsigned *exti, *exte, *insi, *inse; 2687 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 2688 exte = EV.idx_end(), inse = IV->idx_end(); 2689 exti != exte && insi != inse; 2690 ++exti, ++insi) { 2691 if (*insi != *exti) 2692 // The insert and extract both reference distinctly different elements. 2693 // This means the extract is not influenced by the insert, and we can 2694 // replace the aggregate operand of the extract with the aggregate 2695 // operand of the insert. i.e., replace 2696 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2697 // %E = extractvalue { i32, { i32 } } %I, 0 2698 // with 2699 // %E = extractvalue { i32, { i32 } } %A, 0 2700 return ExtractValueInst::Create(IV->getAggregateOperand(), 2701 EV.getIndices()); 2702 } 2703 if (exti == exte && insi == inse) 2704 // Both iterators are at the end: Index lists are identical. Replace 2705 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2706 // %C = extractvalue { i32, { i32 } } %B, 1, 0 2707 // with "i32 42" 2708 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 2709 if (exti == exte) { 2710 // The extract list is a prefix of the insert list. i.e. replace 2711 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2712 // %E = extractvalue { i32, { i32 } } %I, 1 2713 // with 2714 // %X = extractvalue { i32, { i32 } } %A, 1 2715 // %E = insertvalue { i32 } %X, i32 42, 0 2716 // by switching the order of the insert and extract (though the 2717 // insertvalue should be left in, since it may have other uses). 2718 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 2719 EV.getIndices()); 2720 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 2721 makeArrayRef(insi, inse)); 2722 } 2723 if (insi == inse) 2724 // The insert list is a prefix of the extract list 2725 // We can simply remove the common indices from the extract and make it 2726 // operate on the inserted value instead of the insertvalue result. 2727 // i.e., replace 2728 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2729 // %E = extractvalue { i32, { i32 } } %I, 1, 0 2730 // with 2731 // %E extractvalue { i32 } { i32 42 }, 0 2732 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 2733 makeArrayRef(exti, exte)); 2734 } 2735 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 2736 // We're extracting from an overflow intrinsic, see if we're the only user, 2737 // which allows us to simplify multiple result intrinsics to simpler 2738 // things that just get one value. 2739 if (WO->hasOneUse()) { 2740 // Check if we're grabbing only the result of a 'with overflow' intrinsic 2741 // and replace it with a traditional binary instruction. 2742 if (*EV.idx_begin() == 0) { 2743 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 2744 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 2745 replaceInstUsesWith(*WO, UndefValue::get(WO->getType())); 2746 eraseInstFromFunction(*WO); 2747 return BinaryOperator::Create(BinOp, LHS, RHS); 2748 } 2749 2750 // If the normal result of the add is dead, and the RHS is a constant, 2751 // we can transform this into a range comparison. 2752 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 2753 if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow) 2754 if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS())) 2755 return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(), 2756 ConstantExpr::getNot(CI)); 2757 } 2758 } 2759 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2760 // If the (non-volatile) load only has one use, we can rewrite this to a 2761 // load from a GEP. This reduces the size of the load. If a load is used 2762 // only by extractvalue instructions then this either must have been 2763 // optimized before, or it is a struct with padding, in which case we 2764 // don't want to do the transformation as it loses padding knowledge. 2765 if (L->isSimple() && L->hasOneUse()) { 2766 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2767 SmallVector<Value*, 4> Indices; 2768 // Prefix an i32 0 since we need the first element. 2769 Indices.push_back(Builder.getInt32(0)); 2770 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2771 I != E; ++I) 2772 Indices.push_back(Builder.getInt32(*I)); 2773 2774 // We need to insert these at the location of the old load, not at that of 2775 // the extractvalue. 2776 Builder.SetInsertPoint(L); 2777 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 2778 L->getPointerOperand(), Indices); 2779 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 2780 // Whatever aliasing information we had for the orignal load must also 2781 // hold for the smaller load, so propagate the annotations. 2782 AAMDNodes Nodes; 2783 L->getAAMetadata(Nodes); 2784 NL->setAAMetadata(Nodes); 2785 // Returning the load directly will cause the main loop to insert it in 2786 // the wrong spot, so use replaceInstUsesWith(). 2787 return replaceInstUsesWith(EV, NL); 2788 } 2789 // We could simplify extracts from other values. Note that nested extracts may 2790 // already be simplified implicitly by the above: extract (extract (insert) ) 2791 // will be translated into extract ( insert ( extract ) ) first and then just 2792 // the value inserted, if appropriate. Similarly for extracts from single-use 2793 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2794 // and if again single-use then via load (gep (gep)) to load (gep). 2795 // However, double extracts from e.g. function arguments or return values 2796 // aren't handled yet. 2797 return nullptr; 2798 } 2799 2800 /// Return 'true' if the given typeinfo will match anything. 2801 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 2802 switch (Personality) { 2803 case EHPersonality::GNU_C: 2804 case EHPersonality::GNU_C_SjLj: 2805 case EHPersonality::Rust: 2806 // The GCC C EH and Rust personality only exists to support cleanups, so 2807 // it's not clear what the semantics of catch clauses are. 2808 return false; 2809 case EHPersonality::Unknown: 2810 return false; 2811 case EHPersonality::GNU_Ada: 2812 // While __gnat_all_others_value will match any Ada exception, it doesn't 2813 // match foreign exceptions (or didn't, before gcc-4.7). 2814 return false; 2815 case EHPersonality::GNU_CXX: 2816 case EHPersonality::GNU_CXX_SjLj: 2817 case EHPersonality::GNU_ObjC: 2818 case EHPersonality::MSVC_X86SEH: 2819 case EHPersonality::MSVC_Win64SEH: 2820 case EHPersonality::MSVC_CXX: 2821 case EHPersonality::CoreCLR: 2822 case EHPersonality::Wasm_CXX: 2823 return TypeInfo->isNullValue(); 2824 } 2825 llvm_unreachable("invalid enum"); 2826 } 2827 2828 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2829 return 2830 cast<ArrayType>(LHS->getType())->getNumElements() 2831 < 2832 cast<ArrayType>(RHS->getType())->getNumElements(); 2833 } 2834 2835 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2836 // The logic here should be correct for any real-world personality function. 2837 // However if that turns out not to be true, the offending logic can always 2838 // be conditioned on the personality function, like the catch-all logic is. 2839 EHPersonality Personality = 2840 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 2841 2842 // Simplify the list of clauses, eg by removing repeated catch clauses 2843 // (these are often created by inlining). 2844 bool MakeNewInstruction = false; // If true, recreate using the following: 2845 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2846 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2847 2848 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 2849 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 2850 bool isLastClause = i + 1 == e; 2851 if (LI.isCatch(i)) { 2852 // A catch clause. 2853 Constant *CatchClause = LI.getClause(i); 2854 Constant *TypeInfo = CatchClause->stripPointerCasts(); 2855 2856 // If we already saw this clause, there is no point in having a second 2857 // copy of it. 2858 if (AlreadyCaught.insert(TypeInfo).second) { 2859 // This catch clause was not already seen. 2860 NewClauses.push_back(CatchClause); 2861 } else { 2862 // Repeated catch clause - drop the redundant copy. 2863 MakeNewInstruction = true; 2864 } 2865 2866 // If this is a catch-all then there is no point in keeping any following 2867 // clauses or marking the landingpad as having a cleanup. 2868 if (isCatchAll(Personality, TypeInfo)) { 2869 if (!isLastClause) 2870 MakeNewInstruction = true; 2871 CleanupFlag = false; 2872 break; 2873 } 2874 } else { 2875 // A filter clause. If any of the filter elements were already caught 2876 // then they can be dropped from the filter. It is tempting to try to 2877 // exploit the filter further by saying that any typeinfo that does not 2878 // occur in the filter can't be caught later (and thus can be dropped). 2879 // However this would be wrong, since typeinfos can match without being 2880 // equal (for example if one represents a C++ class, and the other some 2881 // class derived from it). 2882 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 2883 Constant *FilterClause = LI.getClause(i); 2884 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 2885 unsigned NumTypeInfos = FilterType->getNumElements(); 2886 2887 // An empty filter catches everything, so there is no point in keeping any 2888 // following clauses or marking the landingpad as having a cleanup. By 2889 // dealing with this case here the following code is made a bit simpler. 2890 if (!NumTypeInfos) { 2891 NewClauses.push_back(FilterClause); 2892 if (!isLastClause) 2893 MakeNewInstruction = true; 2894 CleanupFlag = false; 2895 break; 2896 } 2897 2898 bool MakeNewFilter = false; // If true, make a new filter. 2899 SmallVector<Constant *, 16> NewFilterElts; // New elements. 2900 if (isa<ConstantAggregateZero>(FilterClause)) { 2901 // Not an empty filter - it contains at least one null typeinfo. 2902 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 2903 Constant *TypeInfo = 2904 Constant::getNullValue(FilterType->getElementType()); 2905 // If this typeinfo is a catch-all then the filter can never match. 2906 if (isCatchAll(Personality, TypeInfo)) { 2907 // Throw the filter away. 2908 MakeNewInstruction = true; 2909 continue; 2910 } 2911 2912 // There is no point in having multiple copies of this typeinfo, so 2913 // discard all but the first copy if there is more than one. 2914 NewFilterElts.push_back(TypeInfo); 2915 if (NumTypeInfos > 1) 2916 MakeNewFilter = true; 2917 } else { 2918 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 2919 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 2920 NewFilterElts.reserve(NumTypeInfos); 2921 2922 // Remove any filter elements that were already caught or that already 2923 // occurred in the filter. While there, see if any of the elements are 2924 // catch-alls. If so, the filter can be discarded. 2925 bool SawCatchAll = false; 2926 for (unsigned j = 0; j != NumTypeInfos; ++j) { 2927 Constant *Elt = Filter->getOperand(j); 2928 Constant *TypeInfo = Elt->stripPointerCasts(); 2929 if (isCatchAll(Personality, TypeInfo)) { 2930 // This element is a catch-all. Bail out, noting this fact. 2931 SawCatchAll = true; 2932 break; 2933 } 2934 2935 // Even if we've seen a type in a catch clause, we don't want to 2936 // remove it from the filter. An unexpected type handler may be 2937 // set up for a call site which throws an exception of the same 2938 // type caught. In order for the exception thrown by the unexpected 2939 // handler to propagate correctly, the filter must be correctly 2940 // described for the call site. 2941 // 2942 // Example: 2943 // 2944 // void unexpected() { throw 1;} 2945 // void foo() throw (int) { 2946 // std::set_unexpected(unexpected); 2947 // try { 2948 // throw 2.0; 2949 // } catch (int i) {} 2950 // } 2951 2952 // There is no point in having multiple copies of the same typeinfo in 2953 // a filter, so only add it if we didn't already. 2954 if (SeenInFilter.insert(TypeInfo).second) 2955 NewFilterElts.push_back(cast<Constant>(Elt)); 2956 } 2957 // A filter containing a catch-all cannot match anything by definition. 2958 if (SawCatchAll) { 2959 // Throw the filter away. 2960 MakeNewInstruction = true; 2961 continue; 2962 } 2963 2964 // If we dropped something from the filter, make a new one. 2965 if (NewFilterElts.size() < NumTypeInfos) 2966 MakeNewFilter = true; 2967 } 2968 if (MakeNewFilter) { 2969 FilterType = ArrayType::get(FilterType->getElementType(), 2970 NewFilterElts.size()); 2971 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 2972 MakeNewInstruction = true; 2973 } 2974 2975 NewClauses.push_back(FilterClause); 2976 2977 // If the new filter is empty then it will catch everything so there is 2978 // no point in keeping any following clauses or marking the landingpad 2979 // as having a cleanup. The case of the original filter being empty was 2980 // already handled above. 2981 if (MakeNewFilter && !NewFilterElts.size()) { 2982 assert(MakeNewInstruction && "New filter but not a new instruction!"); 2983 CleanupFlag = false; 2984 break; 2985 } 2986 } 2987 } 2988 2989 // If several filters occur in a row then reorder them so that the shortest 2990 // filters come first (those with the smallest number of elements). This is 2991 // advantageous because shorter filters are more likely to match, speeding up 2992 // unwinding, but mostly because it increases the effectiveness of the other 2993 // filter optimizations below. 2994 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 2995 unsigned j; 2996 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 2997 for (j = i; j != e; ++j) 2998 if (!isa<ArrayType>(NewClauses[j]->getType())) 2999 break; 3000 3001 // Check whether the filters are already sorted by length. We need to know 3002 // if sorting them is actually going to do anything so that we only make a 3003 // new landingpad instruction if it does. 3004 for (unsigned k = i; k + 1 < j; ++k) 3005 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3006 // Not sorted, so sort the filters now. Doing an unstable sort would be 3007 // correct too but reordering filters pointlessly might confuse users. 3008 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3009 shorter_filter); 3010 MakeNewInstruction = true; 3011 break; 3012 } 3013 3014 // Look for the next batch of filters. 3015 i = j + 1; 3016 } 3017 3018 // If typeinfos matched if and only if equal, then the elements of a filter L 3019 // that occurs later than a filter F could be replaced by the intersection of 3020 // the elements of F and L. In reality two typeinfos can match without being 3021 // equal (for example if one represents a C++ class, and the other some class 3022 // derived from it) so it would be wrong to perform this transform in general. 3023 // However the transform is correct and useful if F is a subset of L. In that 3024 // case L can be replaced by F, and thus removed altogether since repeating a 3025 // filter is pointless. So here we look at all pairs of filters F and L where 3026 // L follows F in the list of clauses, and remove L if every element of F is 3027 // an element of L. This can occur when inlining C++ functions with exception 3028 // specifications. 3029 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3030 // Examine each filter in turn. 3031 Value *Filter = NewClauses[i]; 3032 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3033 if (!FTy) 3034 // Not a filter - skip it. 3035 continue; 3036 unsigned FElts = FTy->getNumElements(); 3037 // Examine each filter following this one. Doing this backwards means that 3038 // we don't have to worry about filters disappearing under us when removed. 3039 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3040 Value *LFilter = NewClauses[j]; 3041 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3042 if (!LTy) 3043 // Not a filter - skip it. 3044 continue; 3045 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3046 // an element of LFilter, then discard LFilter. 3047 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3048 // If Filter is empty then it is a subset of LFilter. 3049 if (!FElts) { 3050 // Discard LFilter. 3051 NewClauses.erase(J); 3052 MakeNewInstruction = true; 3053 // Move on to the next filter. 3054 continue; 3055 } 3056 unsigned LElts = LTy->getNumElements(); 3057 // If Filter is longer than LFilter then it cannot be a subset of it. 3058 if (FElts > LElts) 3059 // Move on to the next filter. 3060 continue; 3061 // At this point we know that LFilter has at least one element. 3062 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3063 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3064 // already know that Filter is not longer than LFilter). 3065 if (isa<ConstantAggregateZero>(Filter)) { 3066 assert(FElts <= LElts && "Should have handled this case earlier!"); 3067 // Discard LFilter. 3068 NewClauses.erase(J); 3069 MakeNewInstruction = true; 3070 } 3071 // Move on to the next filter. 3072 continue; 3073 } 3074 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3075 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3076 // Since Filter is non-empty and contains only zeros, it is a subset of 3077 // LFilter iff LFilter contains a zero. 3078 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3079 for (unsigned l = 0; l != LElts; ++l) 3080 if (LArray->getOperand(l)->isNullValue()) { 3081 // LFilter contains a zero - discard it. 3082 NewClauses.erase(J); 3083 MakeNewInstruction = true; 3084 break; 3085 } 3086 // Move on to the next filter. 3087 continue; 3088 } 3089 // At this point we know that both filters are ConstantArrays. Loop over 3090 // operands to see whether every element of Filter is also an element of 3091 // LFilter. Since filters tend to be short this is probably faster than 3092 // using a method that scales nicely. 3093 ConstantArray *FArray = cast<ConstantArray>(Filter); 3094 bool AllFound = true; 3095 for (unsigned f = 0; f != FElts; ++f) { 3096 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3097 AllFound = false; 3098 for (unsigned l = 0; l != LElts; ++l) { 3099 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3100 if (LTypeInfo == FTypeInfo) { 3101 AllFound = true; 3102 break; 3103 } 3104 } 3105 if (!AllFound) 3106 break; 3107 } 3108 if (AllFound) { 3109 // Discard LFilter. 3110 NewClauses.erase(J); 3111 MakeNewInstruction = true; 3112 } 3113 // Move on to the next filter. 3114 } 3115 } 3116 3117 // If we changed any of the clauses, replace the old landingpad instruction 3118 // with a new one. 3119 if (MakeNewInstruction) { 3120 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3121 NewClauses.size()); 3122 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3123 NLI->addClause(NewClauses[i]); 3124 // A landing pad with no clauses must have the cleanup flag set. It is 3125 // theoretically possible, though highly unlikely, that we eliminated all 3126 // clauses. If so, force the cleanup flag to true. 3127 if (NewClauses.empty()) 3128 CleanupFlag = true; 3129 NLI->setCleanup(CleanupFlag); 3130 return NLI; 3131 } 3132 3133 // Even if none of the clauses changed, we may nonetheless have understood 3134 // that the cleanup flag is pointless. Clear it if so. 3135 if (LI.isCleanup() != CleanupFlag) { 3136 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3137 LI.setCleanup(CleanupFlag); 3138 return &LI; 3139 } 3140 3141 return nullptr; 3142 } 3143 3144 Instruction *InstCombiner::visitFreeze(FreezeInst &I) { 3145 Value *Op0 = I.getOperand(0); 3146 3147 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3148 return replaceInstUsesWith(I, V); 3149 3150 return nullptr; 3151 } 3152 3153 /// Try to move the specified instruction from its current block into the 3154 /// beginning of DestBlock, which can only happen if it's safe to move the 3155 /// instruction past all of the instructions between it and the end of its 3156 /// block. 3157 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 3158 assert(I->hasOneUse() && "Invariants didn't hold!"); 3159 BasicBlock *SrcBlock = I->getParent(); 3160 3161 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3162 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 3163 I->isTerminator()) 3164 return false; 3165 3166 // Do not sink static or dynamic alloca instructions. Static allocas must 3167 // remain in the entry block, and dynamic allocas must not be sunk in between 3168 // a stacksave / stackrestore pair, which would incorrectly shorten its 3169 // lifetime. 3170 if (isa<AllocaInst>(I)) 3171 return false; 3172 3173 // Do not sink into catchswitch blocks. 3174 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 3175 return false; 3176 3177 // Do not sink convergent call instructions. 3178 if (auto *CI = dyn_cast<CallInst>(I)) { 3179 if (CI->isConvergent()) 3180 return false; 3181 } 3182 // We can only sink load instructions if there is nothing between the load and 3183 // the end of block that could change the value. 3184 if (I->mayReadFromMemory()) { 3185 for (BasicBlock::iterator Scan = I->getIterator(), 3186 E = I->getParent()->end(); 3187 Scan != E; ++Scan) 3188 if (Scan->mayWriteToMemory()) 3189 return false; 3190 } 3191 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 3192 I->moveBefore(&*InsertPos); 3193 ++NumSunkInst; 3194 3195 // Also sink all related debug uses from the source basic block. Otherwise we 3196 // get debug use before the def. Attempt to salvage debug uses first, to 3197 // maximise the range variables have location for. If we cannot salvage, then 3198 // mark the location undef: we know it was supposed to receive a new location 3199 // here, but that computation has been sunk. 3200 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 3201 findDbgUsers(DbgUsers, I); 3202 for (auto *DII : reverse(DbgUsers)) { 3203 if (DII->getParent() == SrcBlock) { 3204 if (isa<DbgDeclareInst>(DII)) { 3205 // A dbg.declare instruction should not be cloned, since there can only be 3206 // one per variable fragment. It should be left in the original place since 3207 // sunk instruction is not an alloca(otherwise we could not be here). 3208 // But we need to update arguments of dbg.declare instruction, so that it 3209 // would not point into sunk instruction. 3210 if (!isa<CastInst>(I)) 3211 continue; // dbg.declare points at something it shouldn't 3212 3213 DII->setOperand( 3214 0, MetadataAsValue::get(I->getContext(), 3215 ValueAsMetadata::get(I->getOperand(0)))); 3216 continue; 3217 } 3218 3219 // dbg.value is in the same basic block as the sunk inst, see if we can 3220 // salvage it. Clone a new copy of the instruction: on success we need 3221 // both salvaged and unsalvaged copies. 3222 SmallVector<DbgVariableIntrinsic *, 1> TmpUser{ 3223 cast<DbgVariableIntrinsic>(DII->clone())}; 3224 3225 if (!salvageDebugInfoForDbgValues(*I, TmpUser)) { 3226 // We are unable to salvage: sink the cloned dbg.value, and mark the 3227 // original as undef, terminating any earlier variable location. 3228 LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n'); 3229 TmpUser[0]->insertBefore(&*InsertPos); 3230 Value *Undef = UndefValue::get(I->getType()); 3231 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 3232 ValueAsMetadata::get(Undef))); 3233 } else { 3234 // We successfully salvaged: place the salvaged dbg.value in the 3235 // original location, and move the unmodified dbg.value to sink with 3236 // the sunk inst. 3237 TmpUser[0]->insertBefore(DII); 3238 DII->moveBefore(&*InsertPos); 3239 } 3240 } 3241 } 3242 return true; 3243 } 3244 3245 bool InstCombiner::run() { 3246 while (!Worklist.isEmpty()) { 3247 Instruction *I = Worklist.RemoveOne(); 3248 if (I == nullptr) continue; // skip null values. 3249 3250 // Check to see if we can DCE the instruction. 3251 if (isInstructionTriviallyDead(I, &TLI)) { 3252 LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); 3253 eraseInstFromFunction(*I); 3254 ++NumDeadInst; 3255 MadeIRChange = true; 3256 continue; 3257 } 3258 3259 if (!DebugCounter::shouldExecute(VisitCounter)) 3260 continue; 3261 3262 // Instruction isn't dead, see if we can constant propagate it. 3263 if (!I->use_empty() && 3264 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 3265 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 3266 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 3267 << '\n'); 3268 3269 // Add operands to the worklist. 3270 replaceInstUsesWith(*I, C); 3271 ++NumConstProp; 3272 if (isInstructionTriviallyDead(I, &TLI)) 3273 eraseInstFromFunction(*I); 3274 MadeIRChange = true; 3275 continue; 3276 } 3277 } 3278 3279 // In general, it is possible for computeKnownBits to determine all bits in 3280 // a value even when the operands are not all constants. 3281 Type *Ty = I->getType(); 3282 if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) { 3283 KnownBits Known = computeKnownBits(I, /*Depth*/0, I); 3284 if (Known.isConstant()) { 3285 Constant *C = ConstantInt::get(Ty, Known.getConstant()); 3286 LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C 3287 << " from: " << *I << '\n'); 3288 3289 // Add operands to the worklist. 3290 replaceInstUsesWith(*I, C); 3291 ++NumConstProp; 3292 if (isInstructionTriviallyDead(I, &TLI)) 3293 eraseInstFromFunction(*I); 3294 MadeIRChange = true; 3295 continue; 3296 } 3297 } 3298 3299 // See if we can trivially sink this instruction to a successor basic block. 3300 if (EnableCodeSinking && I->hasOneUse()) { 3301 BasicBlock *BB = I->getParent(); 3302 Instruction *UserInst = cast<Instruction>(*I->user_begin()); 3303 BasicBlock *UserParent; 3304 3305 // Get the block the use occurs in. 3306 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 3307 UserParent = PN->getIncomingBlock(*I->use_begin()); 3308 else 3309 UserParent = UserInst->getParent(); 3310 3311 if (UserParent != BB) { 3312 bool UserIsSuccessor = false; 3313 // See if the user is one of our successors. 3314 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 3315 if (*SI == UserParent) { 3316 UserIsSuccessor = true; 3317 break; 3318 } 3319 3320 // If the user is one of our immediate successors, and if that successor 3321 // only has us as a predecessors (we'd have to split the critical edge 3322 // otherwise), we can keep going. 3323 if (UserIsSuccessor && UserParent->getUniquePredecessor()) { 3324 // Okay, the CFG is simple enough, try to sink this instruction. 3325 if (TryToSinkInstruction(I, UserParent)) { 3326 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3327 MadeIRChange = true; 3328 // We'll add uses of the sunk instruction below, but since sinking 3329 // can expose opportunities for it's *operands* add them to the 3330 // worklist 3331 for (Use &U : I->operands()) 3332 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3333 Worklist.Add(OpI); 3334 } 3335 } 3336 } 3337 } 3338 3339 // Now that we have an instruction, try combining it to simplify it. 3340 Builder.SetInsertPoint(I); 3341 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 3342 3343 #ifndef NDEBUG 3344 std::string OrigI; 3345 #endif 3346 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 3347 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 3348 3349 if (Instruction *Result = visit(*I)) { 3350 ++NumCombined; 3351 // Should we replace the old instruction with a new one? 3352 if (Result != I) { 3353 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 3354 << " New = " << *Result << '\n'); 3355 3356 if (I->getDebugLoc()) 3357 Result->setDebugLoc(I->getDebugLoc()); 3358 // Everything uses the new instruction now. 3359 I->replaceAllUsesWith(Result); 3360 3361 // Move the name to the new instruction first. 3362 Result->takeName(I); 3363 3364 // Insert the new instruction into the basic block... 3365 BasicBlock *InstParent = I->getParent(); 3366 BasicBlock::iterator InsertPos = I->getIterator(); 3367 3368 // If we replace a PHI with something that isn't a PHI, fix up the 3369 // insertion point. 3370 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 3371 InsertPos = InstParent->getFirstInsertionPt(); 3372 3373 InstParent->getInstList().insert(InsertPos, Result); 3374 3375 // Push the new instruction and any users onto the worklist. 3376 Worklist.AddUsersToWorkList(*Result); 3377 Worklist.Add(Result); 3378 3379 eraseInstFromFunction(*I); 3380 } else { 3381 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3382 << " New = " << *I << '\n'); 3383 3384 // If the instruction was modified, it's possible that it is now dead. 3385 // if so, remove it. 3386 if (isInstructionTriviallyDead(I, &TLI)) { 3387 eraseInstFromFunction(*I); 3388 } else { 3389 Worklist.AddUsersToWorkList(*I); 3390 Worklist.Add(I); 3391 } 3392 } 3393 MadeIRChange = true; 3394 } 3395 } 3396 3397 Worklist.Zap(); 3398 return MadeIRChange; 3399 } 3400 3401 /// Walk the function in depth-first order, adding all reachable code to the 3402 /// worklist. 3403 /// 3404 /// This has a couple of tricks to make the code faster and more powerful. In 3405 /// particular, we constant fold and DCE instructions as we go, to avoid adding 3406 /// them to the worklist (this significantly speeds up instcombine on code where 3407 /// many instructions are dead or constant). Additionally, if we find a branch 3408 /// whose condition is a known constant, we only visit the reachable successors. 3409 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, 3410 SmallPtrSetImpl<BasicBlock *> &Visited, 3411 InstCombineWorklist &ICWorklist, 3412 const TargetLibraryInfo *TLI) { 3413 bool MadeIRChange = false; 3414 SmallVector<BasicBlock*, 256> Worklist; 3415 Worklist.push_back(BB); 3416 3417 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 3418 DenseMap<Constant *, Constant *> FoldedConstants; 3419 3420 do { 3421 BB = Worklist.pop_back_val(); 3422 3423 // We have now visited this block! If we've already been here, ignore it. 3424 if (!Visited.insert(BB).second) 3425 continue; 3426 3427 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 3428 Instruction *Inst = &*BBI++; 3429 3430 // DCE instruction if trivially dead. 3431 if (isInstructionTriviallyDead(Inst, TLI)) { 3432 ++NumDeadInst; 3433 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 3434 salvageDebugInfoOrMarkUndef(*Inst); 3435 Inst->eraseFromParent(); 3436 MadeIRChange = true; 3437 continue; 3438 } 3439 3440 // ConstantProp instruction if trivially constant. 3441 if (!Inst->use_empty() && 3442 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 3443 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 3444 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst 3445 << '\n'); 3446 Inst->replaceAllUsesWith(C); 3447 ++NumConstProp; 3448 if (isInstructionTriviallyDead(Inst, TLI)) 3449 Inst->eraseFromParent(); 3450 MadeIRChange = true; 3451 continue; 3452 } 3453 3454 // See if we can constant fold its operands. 3455 for (Use &U : Inst->operands()) { 3456 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 3457 continue; 3458 3459 auto *C = cast<Constant>(U); 3460 Constant *&FoldRes = FoldedConstants[C]; 3461 if (!FoldRes) 3462 FoldRes = ConstantFoldConstant(C, DL, TLI); 3463 if (!FoldRes) 3464 FoldRes = C; 3465 3466 if (FoldRes != C) { 3467 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst 3468 << "\n Old = " << *C 3469 << "\n New = " << *FoldRes << '\n'); 3470 U = FoldRes; 3471 MadeIRChange = true; 3472 } 3473 } 3474 3475 // Skip processing debug intrinsics in InstCombine. Processing these call instructions 3476 // consumes non-trivial amount of time and provides no value for the optimization. 3477 if (!isa<DbgInfoIntrinsic>(Inst)) 3478 InstrsForInstCombineWorklist.push_back(Inst); 3479 } 3480 3481 // Recursively visit successors. If this is a branch or switch on a 3482 // constant, only visit the reachable successor. 3483 Instruction *TI = BB->getTerminator(); 3484 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3485 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 3486 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 3487 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 3488 Worklist.push_back(ReachableBB); 3489 continue; 3490 } 3491 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3492 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 3493 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 3494 continue; 3495 } 3496 } 3497 3498 for (BasicBlock *SuccBB : successors(TI)) 3499 Worklist.push_back(SuccBB); 3500 } while (!Worklist.empty()); 3501 3502 // Once we've found all of the instructions to add to instcombine's worklist, 3503 // add them in reverse order. This way instcombine will visit from the top 3504 // of the function down. This jives well with the way that it adds all uses 3505 // of instructions to the worklist after doing a transformation, thus avoiding 3506 // some N^2 behavior in pathological cases. 3507 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist); 3508 3509 return MadeIRChange; 3510 } 3511 3512 /// Populate the IC worklist from a function, and prune any dead basic 3513 /// blocks discovered in the process. 3514 /// 3515 /// This also does basic constant propagation and other forward fixing to make 3516 /// the combiner itself run much faster. 3517 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 3518 TargetLibraryInfo *TLI, 3519 InstCombineWorklist &ICWorklist) { 3520 bool MadeIRChange = false; 3521 3522 // Do a depth-first traversal of the function, populate the worklist with 3523 // the reachable instructions. Ignore blocks that are not reachable. Keep 3524 // track of which blocks we visit. 3525 SmallPtrSet<BasicBlock *, 32> Visited; 3526 MadeIRChange |= 3527 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI); 3528 3529 // Do a quick scan over the function. If we find any blocks that are 3530 // unreachable, remove any instructions inside of them. This prevents 3531 // the instcombine code from having to deal with some bad special cases. 3532 for (BasicBlock &BB : F) { 3533 if (Visited.count(&BB)) 3534 continue; 3535 3536 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB); 3537 MadeIRChange |= NumDeadInstInBB > 0; 3538 NumDeadInst += NumDeadInstInBB; 3539 } 3540 3541 return MadeIRChange; 3542 } 3543 3544 static bool combineInstructionsOverFunction( 3545 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, 3546 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, 3547 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 3548 ProfileSummaryInfo *PSI, bool ExpensiveCombines, unsigned MaxIterations, 3549 LoopInfo *LI) { 3550 auto &DL = F.getParent()->getDataLayout(); 3551 ExpensiveCombines |= EnableExpensiveCombines; 3552 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 3553 3554 /// Builder - This is an IRBuilder that automatically inserts new 3555 /// instructions into the worklist when they are created. 3556 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 3557 F.getContext(), TargetFolder(DL), 3558 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 3559 Worklist.Add(I); 3560 if (match(I, m_Intrinsic<Intrinsic::assume>())) 3561 AC.registerAssumption(cast<CallInst>(I)); 3562 })); 3563 3564 // Lower dbg.declare intrinsics otherwise their value may be clobbered 3565 // by instcombiner. 3566 bool MadeIRChange = false; 3567 if (ShouldLowerDbgDeclare) 3568 MadeIRChange = LowerDbgDeclare(F); 3569 3570 // Iterate while there is work to do. 3571 unsigned Iteration = 0; 3572 while (true) { 3573 ++Iteration; 3574 if (Iteration > MaxIterations) { 3575 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 3576 << " on " << F.getName() 3577 << " reached; stopping before reaching a fixpoint\n"); 3578 LLVM_DEBUG(dbgs().flush()); 3579 assert(Iteration <= InstCombineDefaultMaxIterations && 3580 "InstCombine stuck in an infinite loop?"); 3581 break; 3582 } 3583 3584 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 3585 << F.getName() << "\n"); 3586 3587 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 3588 3589 InstCombiner IC(Worklist, Builder, F.hasMinSize(), ExpensiveCombines, AA, 3590 AC, TLI, DT, ORE, BFI, PSI, DL, LI); 3591 IC.MaxArraySizeForCombine = MaxArraySize; 3592 3593 if (!IC.run()) 3594 break; 3595 3596 MadeIRChange = true; 3597 } 3598 3599 return MadeIRChange; 3600 } 3601 3602 InstCombinePass::InstCombinePass(bool ExpensiveCombines) 3603 : ExpensiveCombines(ExpensiveCombines), MaxIterations(LimitMaxIterations) {} 3604 3605 InstCombinePass::InstCombinePass(bool ExpensiveCombines, unsigned MaxIterations) 3606 : ExpensiveCombines(ExpensiveCombines), MaxIterations(MaxIterations) {} 3607 3608 PreservedAnalyses InstCombinePass::run(Function &F, 3609 FunctionAnalysisManager &AM) { 3610 auto &AC = AM.getResult<AssumptionAnalysis>(F); 3611 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 3612 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 3613 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3614 3615 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 3616 3617 auto *AA = &AM.getResult<AAManager>(F); 3618 const ModuleAnalysisManager &MAM = 3619 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 3620 ProfileSummaryInfo *PSI = 3621 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 3622 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 3623 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 3624 3625 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI, 3626 PSI, ExpensiveCombines, MaxIterations, 3627 LI)) 3628 // No changes, all analyses are preserved. 3629 return PreservedAnalyses::all(); 3630 3631 // Mark all the analyses that instcombine updates as preserved. 3632 PreservedAnalyses PA; 3633 PA.preserveSet<CFGAnalyses>(); 3634 PA.preserve<AAManager>(); 3635 PA.preserve<BasicAA>(); 3636 PA.preserve<GlobalsAA>(); 3637 return PA; 3638 } 3639 3640 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 3641 AU.setPreservesCFG(); 3642 AU.addRequired<AAResultsWrapperPass>(); 3643 AU.addRequired<AssumptionCacheTracker>(); 3644 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3645 AU.addRequired<DominatorTreeWrapperPass>(); 3646 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3647 AU.addPreserved<DominatorTreeWrapperPass>(); 3648 AU.addPreserved<AAResultsWrapperPass>(); 3649 AU.addPreserved<BasicAAWrapperPass>(); 3650 AU.addPreserved<GlobalsAAWrapperPass>(); 3651 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 3652 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 3653 } 3654 3655 bool InstructionCombiningPass::runOnFunction(Function &F) { 3656 if (skipFunction(F)) 3657 return false; 3658 3659 // Required analyses. 3660 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3661 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3662 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 3663 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3664 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 3665 3666 // Optional analyses. 3667 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3668 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 3669 ProfileSummaryInfo *PSI = 3670 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 3671 BlockFrequencyInfo *BFI = 3672 (PSI && PSI->hasProfileSummary()) ? 3673 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 3674 nullptr; 3675 3676 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI, 3677 PSI, ExpensiveCombines, MaxIterations, 3678 LI); 3679 } 3680 3681 char InstructionCombiningPass::ID = 0; 3682 3683 InstructionCombiningPass::InstructionCombiningPass(bool ExpensiveCombines) 3684 : FunctionPass(ID), ExpensiveCombines(ExpensiveCombines), 3685 MaxIterations(InstCombineDefaultMaxIterations) { 3686 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 3687 } 3688 3689 InstructionCombiningPass::InstructionCombiningPass(bool ExpensiveCombines, 3690 unsigned MaxIterations) 3691 : FunctionPass(ID), ExpensiveCombines(ExpensiveCombines), 3692 MaxIterations(MaxIterations) { 3693 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 3694 } 3695 3696 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 3697 "Combine redundant instructions", false, false) 3698 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3699 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3700 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3701 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3702 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3703 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3704 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 3705 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 3706 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 3707 "Combine redundant instructions", false, false) 3708 3709 // Initialization Routines 3710 void llvm::initializeInstCombine(PassRegistry &Registry) { 3711 initializeInstructionCombiningPassPass(Registry); 3712 } 3713 3714 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 3715 initializeInstructionCombiningPassPass(*unwrap(R)); 3716 } 3717 3718 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) { 3719 return new InstructionCombiningPass(ExpensiveCombines); 3720 } 3721 3722 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines, 3723 unsigned MaxIterations) { 3724 return new InstructionCombiningPass(ExpensiveCombines, MaxIterations); 3725 } 3726 3727 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 3728 unwrap(PM)->add(createInstructionCombiningPass()); 3729 } 3730