1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // InstructionCombining - Combine instructions to form fewer, simple 11 // instructions. This pass does not modify the CFG. This pass is where 12 // algebraic simplification happens. 13 // 14 // This pass combines things like: 15 // %Y = add i32 %X, 1 16 // %Z = add i32 %Y, 1 17 // into: 18 // %Z = add i32 %X, 2 19 // 20 // This is a simple worklist driven algorithm. 21 // 22 // This pass guarantees that the following canonicalizations are performed on 23 // the program: 24 // 1. If a binary operator has a constant operand, it is moved to the RHS 25 // 2. Bitwise operators with constant operands are always grouped so that 26 // shifts are performed first, then or's, then and's, then xor's. 27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 28 // 4. All cmp instructions on boolean values are replaced with logical ops 29 // 5. add X, X is represented as (X*2) => (X << 1) 30 // 6. Multiplies with a power-of-two constant argument are transformed into 31 // shifts. 32 // ... etc. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "InstCombineInternal.h" 37 #include "llvm-c/Initialization.h" 38 #include "llvm-c/Transforms/InstCombine.h" 39 #include "llvm/ADT/APInt.h" 40 #include "llvm/ADT/ArrayRef.h" 41 #include "llvm/ADT/DenseMap.h" 42 #include "llvm/ADT/None.h" 43 #include "llvm/ADT/SmallPtrSet.h" 44 #include "llvm/ADT/SmallVector.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/ADT/TinyPtrVector.h" 47 #include "llvm/Analysis/AliasAnalysis.h" 48 #include "llvm/Analysis/AssumptionCache.h" 49 #include "llvm/Analysis/BasicAliasAnalysis.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LoopInfo.h" 56 #include "llvm/Analysis/MemoryBuiltins.h" 57 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 58 #include "llvm/Analysis/TargetFolder.h" 59 #include "llvm/Analysis/TargetLibraryInfo.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include "llvm/Analysis/ValueTracking.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/CFG.h" 64 #include "llvm/IR/Constant.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DIBuilder.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Dominators.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GetElementPtrTypeIterator.h" 72 #include "llvm/IR/IRBuilder.h" 73 #include "llvm/IR/InstrTypes.h" 74 #include "llvm/IR/Instruction.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Intrinsics.h" 78 #include "llvm/IR/LegacyPassManager.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Operator.h" 81 #include "llvm/IR/PassManager.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Use.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/IR/ValueHandle.h" 88 #include "llvm/Pass.h" 89 #include "llvm/Support/CBindingWrapping.h" 90 #include "llvm/Support/Casting.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Compiler.h" 93 #include "llvm/Support/Debug.h" 94 #include "llvm/Support/DebugCounter.h" 95 #include "llvm/Support/ErrorHandling.h" 96 #include "llvm/Support/KnownBits.h" 97 #include "llvm/Support/raw_ostream.h" 98 #include "llvm/Transforms/InstCombine/InstCombine.h" 99 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 100 #include <algorithm> 101 #include <cassert> 102 #include <cstdint> 103 #include <memory> 104 #include <string> 105 #include <utility> 106 107 using namespace llvm; 108 using namespace llvm::PatternMatch; 109 110 #define DEBUG_TYPE "instcombine" 111 112 STATISTIC(NumCombined , "Number of insts combined"); 113 STATISTIC(NumConstProp, "Number of constant folds"); 114 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 115 STATISTIC(NumSunkInst , "Number of instructions sunk"); 116 STATISTIC(NumExpand, "Number of expansions"); 117 STATISTIC(NumFactor , "Number of factorizations"); 118 STATISTIC(NumReassoc , "Number of reassociations"); 119 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 120 "Controls which instructions are visited"); 121 122 static cl::opt<bool> 123 EnableExpensiveCombines("expensive-combines", 124 cl::desc("Enable expensive instruction combines")); 125 126 static cl::opt<unsigned> 127 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 128 cl::desc("Maximum array size considered when doing a combine")); 129 130 // FIXME: Remove this flag when it is no longer necessary to convert 131 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 132 // increases variable availability at the cost of accuracy. Variables that 133 // cannot be promoted by mem2reg or SROA will be described as living in memory 134 // for their entire lifetime. However, passes like DSE and instcombine can 135 // delete stores to the alloca, leading to misleading and inaccurate debug 136 // information. This flag can be removed when those passes are fixed. 137 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 138 cl::Hidden, cl::init(true)); 139 140 Value *InstCombiner::EmitGEPOffset(User *GEP) { 141 return llvm::EmitGEPOffset(&Builder, DL, GEP); 142 } 143 144 /// Return true if it is desirable to convert an integer computation from a 145 /// given bit width to a new bit width. 146 /// We don't want to convert from a legal to an illegal type or from a smaller 147 /// to a larger illegal type. A width of '1' is always treated as a legal type 148 /// because i1 is a fundamental type in IR, and there are many specialized 149 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as 150 /// legal to convert to, in order to open up more combining opportunities. 151 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common 152 /// from frontend languages. 153 bool InstCombiner::shouldChangeType(unsigned FromWidth, 154 unsigned ToWidth) const { 155 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 156 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 157 158 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only 159 // shrink types, to prevent infinite loops. 160 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32)) 161 return true; 162 163 // If this is a legal integer from type, and the result would be an illegal 164 // type, don't do the transformation. 165 if (FromLegal && !ToLegal) 166 return false; 167 168 // Otherwise, if both are illegal, do not increase the size of the result. We 169 // do allow things like i160 -> i64, but not i64 -> i160. 170 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 171 return false; 172 173 return true; 174 } 175 176 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 177 /// We don't want to convert from a legal to an illegal type or from a smaller 178 /// to a larger illegal type. i1 is always treated as a legal type because it is 179 /// a fundamental type in IR, and there are many specialized optimizations for 180 /// i1 types. 181 bool InstCombiner::shouldChangeType(Type *From, Type *To) const { 182 assert(From->isIntegerTy() && To->isIntegerTy()); 183 184 unsigned FromWidth = From->getPrimitiveSizeInBits(); 185 unsigned ToWidth = To->getPrimitiveSizeInBits(); 186 return shouldChangeType(FromWidth, ToWidth); 187 } 188 189 // Return true, if No Signed Wrap should be maintained for I. 190 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 191 // where both B and C should be ConstantInts, results in a constant that does 192 // not overflow. This function only handles the Add and Sub opcodes. For 193 // all other opcodes, the function conservatively returns false. 194 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 195 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 196 if (!OBO || !OBO->hasNoSignedWrap()) 197 return false; 198 199 // We reason about Add and Sub Only. 200 Instruction::BinaryOps Opcode = I.getOpcode(); 201 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 202 return false; 203 204 const APInt *BVal, *CVal; 205 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 206 return false; 207 208 bool Overflow = false; 209 if (Opcode == Instruction::Add) 210 (void)BVal->sadd_ov(*CVal, Overflow); 211 else 212 (void)BVal->ssub_ov(*CVal, Overflow); 213 214 return !Overflow; 215 } 216 217 /// Conservatively clears subclassOptionalData after a reassociation or 218 /// commutation. We preserve fast-math flags when applicable as they can be 219 /// preserved. 220 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 221 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 222 if (!FPMO) { 223 I.clearSubclassOptionalData(); 224 return; 225 } 226 227 FastMathFlags FMF = I.getFastMathFlags(); 228 I.clearSubclassOptionalData(); 229 I.setFastMathFlags(FMF); 230 } 231 232 /// Combine constant operands of associative operations either before or after a 233 /// cast to eliminate one of the associative operations: 234 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 235 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 236 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) { 237 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 238 if (!Cast || !Cast->hasOneUse()) 239 return false; 240 241 // TODO: Enhance logic for other casts and remove this check. 242 auto CastOpcode = Cast->getOpcode(); 243 if (CastOpcode != Instruction::ZExt) 244 return false; 245 246 // TODO: Enhance logic for other BinOps and remove this check. 247 if (!BinOp1->isBitwiseLogicOp()) 248 return false; 249 250 auto AssocOpcode = BinOp1->getOpcode(); 251 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 252 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 253 return false; 254 255 Constant *C1, *C2; 256 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 257 !match(BinOp2->getOperand(1), m_Constant(C2))) 258 return false; 259 260 // TODO: This assumes a zext cast. 261 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 262 // to the destination type might lose bits. 263 264 // Fold the constants together in the destination type: 265 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 266 Type *DestTy = C1->getType(); 267 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 268 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 269 Cast->setOperand(0, BinOp2->getOperand(0)); 270 BinOp1->setOperand(1, FoldedC); 271 return true; 272 } 273 274 /// This performs a few simplifications for operators that are associative or 275 /// commutative: 276 /// 277 /// Commutative operators: 278 /// 279 /// 1. Order operands such that they are listed from right (least complex) to 280 /// left (most complex). This puts constants before unary operators before 281 /// binary operators. 282 /// 283 /// Associative operators: 284 /// 285 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 286 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 287 /// 288 /// Associative and commutative operators: 289 /// 290 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 291 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 292 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 293 /// if C1 and C2 are constants. 294 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 295 Instruction::BinaryOps Opcode = I.getOpcode(); 296 bool Changed = false; 297 298 do { 299 // Order operands such that they are listed from right (least complex) to 300 // left (most complex). This puts constants before unary operators before 301 // binary operators. 302 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 303 getComplexity(I.getOperand(1))) 304 Changed = !I.swapOperands(); 305 306 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 307 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 308 309 if (I.isAssociative()) { 310 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 311 if (Op0 && Op0->getOpcode() == Opcode) { 312 Value *A = Op0->getOperand(0); 313 Value *B = Op0->getOperand(1); 314 Value *C = I.getOperand(1); 315 316 // Does "B op C" simplify? 317 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 318 // It simplifies to V. Form "A op V". 319 I.setOperand(0, A); 320 I.setOperand(1, V); 321 // Conservatively clear the optional flags, since they may not be 322 // preserved by the reassociation. 323 if (MaintainNoSignedWrap(I, B, C) && 324 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { 325 // Note: this is only valid because SimplifyBinOp doesn't look at 326 // the operands to Op0. 327 I.clearSubclassOptionalData(); 328 I.setHasNoSignedWrap(true); 329 } else { 330 ClearSubclassDataAfterReassociation(I); 331 } 332 333 Changed = true; 334 ++NumReassoc; 335 continue; 336 } 337 } 338 339 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 340 if (Op1 && Op1->getOpcode() == Opcode) { 341 Value *A = I.getOperand(0); 342 Value *B = Op1->getOperand(0); 343 Value *C = Op1->getOperand(1); 344 345 // Does "A op B" simplify? 346 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 347 // It simplifies to V. Form "V op C". 348 I.setOperand(0, V); 349 I.setOperand(1, C); 350 // Conservatively clear the optional flags, since they may not be 351 // preserved by the reassociation. 352 ClearSubclassDataAfterReassociation(I); 353 Changed = true; 354 ++NumReassoc; 355 continue; 356 } 357 } 358 } 359 360 if (I.isAssociative() && I.isCommutative()) { 361 if (simplifyAssocCastAssoc(&I)) { 362 Changed = true; 363 ++NumReassoc; 364 continue; 365 } 366 367 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 368 if (Op0 && Op0->getOpcode() == Opcode) { 369 Value *A = Op0->getOperand(0); 370 Value *B = Op0->getOperand(1); 371 Value *C = I.getOperand(1); 372 373 // Does "C op A" simplify? 374 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 375 // It simplifies to V. Form "V op B". 376 I.setOperand(0, V); 377 I.setOperand(1, B); 378 // Conservatively clear the optional flags, since they may not be 379 // preserved by the reassociation. 380 ClearSubclassDataAfterReassociation(I); 381 Changed = true; 382 ++NumReassoc; 383 continue; 384 } 385 } 386 387 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 388 if (Op1 && Op1->getOpcode() == Opcode) { 389 Value *A = I.getOperand(0); 390 Value *B = Op1->getOperand(0); 391 Value *C = Op1->getOperand(1); 392 393 // Does "C op A" simplify? 394 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 395 // It simplifies to V. Form "B op V". 396 I.setOperand(0, B); 397 I.setOperand(1, V); 398 // Conservatively clear the optional flags, since they may not be 399 // preserved by the reassociation. 400 ClearSubclassDataAfterReassociation(I); 401 Changed = true; 402 ++NumReassoc; 403 continue; 404 } 405 } 406 407 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 408 // if C1 and C2 are constants. 409 Value *A, *B; 410 Constant *C1, *C2; 411 if (Op0 && Op1 && 412 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 413 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 414 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 415 BinaryOperator *NewBO = BinaryOperator::Create(Opcode, A, B); 416 if (isa<FPMathOperator>(NewBO)) { 417 FastMathFlags Flags = I.getFastMathFlags(); 418 Flags &= Op0->getFastMathFlags(); 419 Flags &= Op1->getFastMathFlags(); 420 NewBO->setFastMathFlags(Flags); 421 } 422 InsertNewInstWith(NewBO, I); 423 NewBO->takeName(Op1); 424 I.setOperand(0, NewBO); 425 I.setOperand(1, ConstantExpr::get(Opcode, C1, C2)); 426 // Conservatively clear the optional flags, since they may not be 427 // preserved by the reassociation. 428 ClearSubclassDataAfterReassociation(I); 429 430 Changed = true; 431 continue; 432 } 433 } 434 435 // No further simplifications. 436 return Changed; 437 } while (true); 438 } 439 440 /// Return whether "X LOp (Y ROp Z)" is always equal to 441 /// "(X LOp Y) ROp (X LOp Z)". 442 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 443 Instruction::BinaryOps ROp) { 444 // X & (Y | Z) <--> (X & Y) | (X & Z) 445 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 446 if (LOp == Instruction::And) 447 return ROp == Instruction::Or || ROp == Instruction::Xor; 448 449 // X | (Y & Z) <--> (X | Y) & (X | Z) 450 if (LOp == Instruction::Or) 451 return ROp == Instruction::And; 452 453 // X * (Y + Z) <--> (X * Y) + (X * Z) 454 // X * (Y - Z) <--> (X * Y) - (X * Z) 455 if (LOp == Instruction::Mul) 456 return ROp == Instruction::Add || ROp == Instruction::Sub; 457 458 return false; 459 } 460 461 /// Return whether "(X LOp Y) ROp Z" is always equal to 462 /// "(X ROp Z) LOp (Y ROp Z)". 463 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 464 Instruction::BinaryOps ROp) { 465 if (Instruction::isCommutative(ROp)) 466 return leftDistributesOverRight(ROp, LOp); 467 468 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 469 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 470 471 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 472 // but this requires knowing that the addition does not overflow and other 473 // such subtleties. 474 } 475 476 /// This function returns identity value for given opcode, which can be used to 477 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 478 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 479 if (isa<Constant>(V)) 480 return nullptr; 481 482 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 483 } 484 485 /// This function predicates factorization using distributive laws. By default, 486 /// it just returns the 'Op' inputs. But for special-cases like 487 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 488 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 489 /// allow more factorization opportunities. 490 static Instruction::BinaryOps 491 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 492 Value *&LHS, Value *&RHS) { 493 assert(Op && "Expected a binary operator"); 494 LHS = Op->getOperand(0); 495 RHS = Op->getOperand(1); 496 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 497 Constant *C; 498 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 499 // X << C --> X * (1 << C) 500 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 501 return Instruction::Mul; 502 } 503 // TODO: We can add other conversions e.g. shr => div etc. 504 } 505 return Op->getOpcode(); 506 } 507 508 /// This tries to simplify binary operations by factorizing out common terms 509 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 510 Value *InstCombiner::tryFactorization(BinaryOperator &I, 511 Instruction::BinaryOps InnerOpcode, 512 Value *A, Value *B, Value *C, Value *D) { 513 assert(A && B && C && D && "All values must be provided"); 514 515 Value *V = nullptr; 516 Value *SimplifiedInst = nullptr; 517 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 518 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 519 520 // Does "X op' Y" always equal "Y op' X"? 521 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 522 523 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 524 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 525 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 526 // commutative case, "(A op' B) op (C op' A)"? 527 if (A == C || (InnerCommutative && A == D)) { 528 if (A != C) 529 std::swap(C, D); 530 // Consider forming "A op' (B op D)". 531 // If "B op D" simplifies then it can be formed with no cost. 532 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 533 // If "B op D" doesn't simplify then only go on if both of the existing 534 // operations "A op' B" and "C op' D" will be zapped as no longer used. 535 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 536 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 537 if (V) { 538 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 539 } 540 } 541 542 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 543 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 544 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 545 // commutative case, "(A op' B) op (B op' D)"? 546 if (B == D || (InnerCommutative && B == C)) { 547 if (B != D) 548 std::swap(C, D); 549 // Consider forming "(A op C) op' B". 550 // If "A op C" simplifies then it can be formed with no cost. 551 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 552 553 // If "A op C" doesn't simplify then only go on if both of the existing 554 // operations "A op' B" and "C op' D" will be zapped as no longer used. 555 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 556 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 557 if (V) { 558 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 559 } 560 } 561 562 if (SimplifiedInst) { 563 ++NumFactor; 564 SimplifiedInst->takeName(&I); 565 566 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag. 567 // TODO: Check for NUW. 568 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 569 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 570 bool HasNSW = false; 571 if (isa<OverflowingBinaryOperator>(&I)) 572 HasNSW = I.hasNoSignedWrap(); 573 574 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) 575 HasNSW &= LOBO->hasNoSignedWrap(); 576 577 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) 578 HasNSW &= ROBO->hasNoSignedWrap(); 579 580 // We can propagate 'nsw' if we know that 581 // %Y = mul nsw i16 %X, C 582 // %Z = add nsw i16 %Y, %X 583 // => 584 // %Z = mul nsw i16 %X, C+1 585 // 586 // iff C+1 isn't INT_MIN 587 const APInt *CInt; 588 if (TopLevelOpcode == Instruction::Add && 589 InnerOpcode == Instruction::Mul) 590 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) 591 BO->setHasNoSignedWrap(HasNSW); 592 } 593 } 594 } 595 return SimplifiedInst; 596 } 597 598 /// This tries to simplify binary operations which some other binary operation 599 /// distributes over either by factorizing out common terms 600 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 601 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 602 /// Returns the simplified value, or null if it didn't simplify. 603 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 604 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 605 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 606 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 607 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 608 609 { 610 // Factorization. 611 Value *A, *B, *C, *D; 612 Instruction::BinaryOps LHSOpcode, RHSOpcode; 613 if (Op0) 614 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 615 if (Op1) 616 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 617 618 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 619 // a common term. 620 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 621 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 622 return V; 623 624 // The instruction has the form "(A op' B) op (C)". Try to factorize common 625 // term. 626 if (Op0) 627 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 628 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 629 return V; 630 631 // The instruction has the form "(B) op (C op' D)". Try to factorize common 632 // term. 633 if (Op1) 634 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 635 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 636 return V; 637 } 638 639 // Expansion. 640 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 641 // The instruction has the form "(A op' B) op C". See if expanding it out 642 // to "(A op C) op' (B op C)" results in simplifications. 643 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 644 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 645 646 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 647 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I)); 648 649 // Do "A op C" and "B op C" both simplify? 650 if (L && R) { 651 // They do! Return "L op' R". 652 ++NumExpand; 653 C = Builder.CreateBinOp(InnerOpcode, L, R); 654 C->takeName(&I); 655 return C; 656 } 657 658 // Does "A op C" simplify to the identity value for the inner opcode? 659 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 660 // They do! Return "B op C". 661 ++NumExpand; 662 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 663 C->takeName(&I); 664 return C; 665 } 666 667 // Does "B op C" simplify to the identity value for the inner opcode? 668 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 669 // They do! Return "A op C". 670 ++NumExpand; 671 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 672 C->takeName(&I); 673 return C; 674 } 675 } 676 677 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 678 // The instruction has the form "A op (B op' C)". See if expanding it out 679 // to "(A op B) op' (A op C)" results in simplifications. 680 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 681 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 682 683 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I)); 684 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 685 686 // Do "A op B" and "A op C" both simplify? 687 if (L && R) { 688 // They do! Return "L op' R". 689 ++NumExpand; 690 A = Builder.CreateBinOp(InnerOpcode, L, R); 691 A->takeName(&I); 692 return A; 693 } 694 695 // Does "A op B" simplify to the identity value for the inner opcode? 696 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 697 // They do! Return "A op C". 698 ++NumExpand; 699 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 700 A->takeName(&I); 701 return A; 702 } 703 704 // Does "A op C" simplify to the identity value for the inner opcode? 705 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 706 // They do! Return "A op B". 707 ++NumExpand; 708 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 709 A->takeName(&I); 710 return A; 711 } 712 } 713 714 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 715 } 716 717 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 718 Value *LHS, Value *RHS) { 719 Instruction::BinaryOps Opcode = I.getOpcode(); 720 // (op (select (a, b, c)), (select (a, d, e))) -> (select (a, (op b, d), (op 721 // c, e))) 722 Value *A, *B, *C, *D, *E; 723 Value *SI = nullptr; 724 if (match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))) && 725 match(RHS, m_Select(m_Specific(A), m_Value(D), m_Value(E)))) { 726 bool SelectsHaveOneUse = LHS->hasOneUse() && RHS->hasOneUse(); 727 BuilderTy::FastMathFlagGuard Guard(Builder); 728 if (isa<FPMathOperator>(&I)) 729 Builder.setFastMathFlags(I.getFastMathFlags()); 730 731 Value *V1 = SimplifyBinOp(Opcode, C, E, SQ.getWithInstruction(&I)); 732 Value *V2 = SimplifyBinOp(Opcode, B, D, SQ.getWithInstruction(&I)); 733 if (V1 && V2) 734 SI = Builder.CreateSelect(A, V2, V1); 735 else if (V2 && SelectsHaveOneUse) 736 SI = Builder.CreateSelect(A, V2, Builder.CreateBinOp(Opcode, C, E)); 737 else if (V1 && SelectsHaveOneUse) 738 SI = Builder.CreateSelect(A, Builder.CreateBinOp(Opcode, B, D), V1); 739 740 if (SI) 741 SI->takeName(&I); 742 } 743 744 return SI; 745 } 746 747 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 748 /// constant zero (which is the 'negate' form). 749 Value *InstCombiner::dyn_castNegVal(Value *V) const { 750 if (BinaryOperator::isNeg(V)) 751 return BinaryOperator::getNegArgument(V); 752 753 // Constants can be considered to be negated values if they can be folded. 754 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 755 return ConstantExpr::getNeg(C); 756 757 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 758 if (C->getType()->getElementType()->isIntegerTy()) 759 return ConstantExpr::getNeg(C); 760 761 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 762 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 763 Constant *Elt = CV->getAggregateElement(i); 764 if (!Elt) 765 return nullptr; 766 767 if (isa<UndefValue>(Elt)) 768 continue; 769 770 if (!isa<ConstantInt>(Elt)) 771 return nullptr; 772 } 773 return ConstantExpr::getNeg(CV); 774 } 775 776 return nullptr; 777 } 778 779 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 780 InstCombiner::BuilderTy &Builder) { 781 if (auto *Cast = dyn_cast<CastInst>(&I)) 782 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 783 784 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 785 786 // Figure out if the constant is the left or the right argument. 787 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 788 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 789 790 if (auto *SOC = dyn_cast<Constant>(SO)) { 791 if (ConstIsRHS) 792 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 793 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 794 } 795 796 Value *Op0 = SO, *Op1 = ConstOperand; 797 if (!ConstIsRHS) 798 std::swap(Op0, Op1); 799 800 auto *BO = cast<BinaryOperator>(&I); 801 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 802 SO->getName() + ".op"); 803 auto *FPInst = dyn_cast<Instruction>(RI); 804 if (FPInst && isa<FPMathOperator>(FPInst)) 805 FPInst->copyFastMathFlags(BO); 806 return RI; 807 } 808 809 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 810 // Don't modify shared select instructions. 811 if (!SI->hasOneUse()) 812 return nullptr; 813 814 Value *TV = SI->getTrueValue(); 815 Value *FV = SI->getFalseValue(); 816 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 817 return nullptr; 818 819 // Bool selects with constant operands can be folded to logical ops. 820 if (SI->getType()->isIntOrIntVectorTy(1)) 821 return nullptr; 822 823 // If it's a bitcast involving vectors, make sure it has the same number of 824 // elements on both sides. 825 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 826 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 827 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 828 829 // Verify that either both or neither are vectors. 830 if ((SrcTy == nullptr) != (DestTy == nullptr)) 831 return nullptr; 832 833 // If vectors, verify that they have the same number of elements. 834 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 835 return nullptr; 836 } 837 838 // Test if a CmpInst instruction is used exclusively by a select as 839 // part of a minimum or maximum operation. If so, refrain from doing 840 // any other folding. This helps out other analyses which understand 841 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 842 // and CodeGen. And in this case, at least one of the comparison 843 // operands has at least one user besides the compare (the select), 844 // which would often largely negate the benefit of folding anyway. 845 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 846 if (CI->hasOneUse()) { 847 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 848 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 849 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 850 return nullptr; 851 } 852 } 853 854 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 855 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 856 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 857 } 858 859 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 860 InstCombiner::BuilderTy &Builder) { 861 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 862 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 863 864 if (auto *InC = dyn_cast<Constant>(InV)) { 865 if (ConstIsRHS) 866 return ConstantExpr::get(I->getOpcode(), InC, C); 867 return ConstantExpr::get(I->getOpcode(), C, InC); 868 } 869 870 Value *Op0 = InV, *Op1 = C; 871 if (!ConstIsRHS) 872 std::swap(Op0, Op1); 873 874 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp"); 875 auto *FPInst = dyn_cast<Instruction>(RI); 876 if (FPInst && isa<FPMathOperator>(FPInst)) 877 FPInst->copyFastMathFlags(I); 878 return RI; 879 } 880 881 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) { 882 unsigned NumPHIValues = PN->getNumIncomingValues(); 883 if (NumPHIValues == 0) 884 return nullptr; 885 886 // We normally only transform phis with a single use. However, if a PHI has 887 // multiple uses and they are all the same operation, we can fold *all* of the 888 // uses into the PHI. 889 if (!PN->hasOneUse()) { 890 // Walk the use list for the instruction, comparing them to I. 891 for (User *U : PN->users()) { 892 Instruction *UI = cast<Instruction>(U); 893 if (UI != &I && !I.isIdenticalTo(UI)) 894 return nullptr; 895 } 896 // Otherwise, we can replace *all* users with the new PHI we form. 897 } 898 899 // Check to see if all of the operands of the PHI are simple constants 900 // (constantint/constantfp/undef). If there is one non-constant value, 901 // remember the BB it is in. If there is more than one or if *it* is a PHI, 902 // bail out. We don't do arbitrary constant expressions here because moving 903 // their computation can be expensive without a cost model. 904 BasicBlock *NonConstBB = nullptr; 905 for (unsigned i = 0; i != NumPHIValues; ++i) { 906 Value *InVal = PN->getIncomingValue(i); 907 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 908 continue; 909 910 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 911 if (NonConstBB) return nullptr; // More than one non-const value. 912 913 NonConstBB = PN->getIncomingBlock(i); 914 915 // If the InVal is an invoke at the end of the pred block, then we can't 916 // insert a computation after it without breaking the edge. 917 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal)) 918 if (II->getParent() == NonConstBB) 919 return nullptr; 920 921 // If the incoming non-constant value is in I's block, we will remove one 922 // instruction, but insert another equivalent one, leading to infinite 923 // instcombine. 924 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI)) 925 return nullptr; 926 } 927 928 // If there is exactly one non-constant value, we can insert a copy of the 929 // operation in that block. However, if this is a critical edge, we would be 930 // inserting the computation on some other paths (e.g. inside a loop). Only 931 // do this if the pred block is unconditionally branching into the phi block. 932 if (NonConstBB != nullptr) { 933 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 934 if (!BI || !BI->isUnconditional()) return nullptr; 935 } 936 937 // Okay, we can do the transformation: create the new PHI node. 938 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 939 InsertNewInstBefore(NewPN, *PN); 940 NewPN->takeName(PN); 941 942 // If we are going to have to insert a new computation, do so right before the 943 // predecessor's terminator. 944 if (NonConstBB) 945 Builder.SetInsertPoint(NonConstBB->getTerminator()); 946 947 // Next, add all of the operands to the PHI. 948 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 949 // We only currently try to fold the condition of a select when it is a phi, 950 // not the true/false values. 951 Value *TrueV = SI->getTrueValue(); 952 Value *FalseV = SI->getFalseValue(); 953 BasicBlock *PhiTransBB = PN->getParent(); 954 for (unsigned i = 0; i != NumPHIValues; ++i) { 955 BasicBlock *ThisBB = PN->getIncomingBlock(i); 956 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 957 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 958 Value *InV = nullptr; 959 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 960 // even if currently isNullValue gives false. 961 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 962 // For vector constants, we cannot use isNullValue to fold into 963 // FalseVInPred versus TrueVInPred. When we have individual nonzero 964 // elements in the vector, we will incorrectly fold InC to 965 // `TrueVInPred`. 966 if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC)) 967 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 968 else { 969 // Generate the select in the same block as PN's current incoming block. 970 // Note: ThisBB need not be the NonConstBB because vector constants 971 // which are constants by definition are handled here. 972 // FIXME: This can lead to an increase in IR generation because we might 973 // generate selects for vector constant phi operand, that could not be 974 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 975 // non-vector phis, this transformation was always profitable because 976 // the select would be generated exactly once in the NonConstBB. 977 Builder.SetInsertPoint(ThisBB->getTerminator()); 978 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 979 FalseVInPred, "phitmp"); 980 } 981 NewPN->addIncoming(InV, ThisBB); 982 } 983 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 984 Constant *C = cast<Constant>(I.getOperand(1)); 985 for (unsigned i = 0; i != NumPHIValues; ++i) { 986 Value *InV = nullptr; 987 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 988 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 989 else if (isa<ICmpInst>(CI)) 990 InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 991 C, "phitmp"); 992 else 993 InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 994 C, "phitmp"); 995 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 996 } 997 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 998 for (unsigned i = 0; i != NumPHIValues; ++i) { 999 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1000 Builder); 1001 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1002 } 1003 } else { 1004 CastInst *CI = cast<CastInst>(&I); 1005 Type *RetTy = CI->getType(); 1006 for (unsigned i = 0; i != NumPHIValues; ++i) { 1007 Value *InV; 1008 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1009 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1010 else 1011 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1012 I.getType(), "phitmp"); 1013 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1014 } 1015 } 1016 1017 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1018 Instruction *User = cast<Instruction>(*UI++); 1019 if (User == &I) continue; 1020 replaceInstUsesWith(*User, NewPN); 1021 eraseInstFromFunction(*User); 1022 } 1023 return replaceInstUsesWith(I, NewPN); 1024 } 1025 1026 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1027 if (!isa<Constant>(I.getOperand(1))) 1028 return nullptr; 1029 1030 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1031 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1032 return NewSel; 1033 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1034 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1035 return NewPhi; 1036 } 1037 return nullptr; 1038 } 1039 1040 /// Given a pointer type and a constant offset, determine whether or not there 1041 /// is a sequence of GEP indices into the pointed type that will land us at the 1042 /// specified offset. If so, fill them into NewIndices and return the resultant 1043 /// element type, otherwise return null. 1044 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 1045 SmallVectorImpl<Value *> &NewIndices) { 1046 Type *Ty = PtrTy->getElementType(); 1047 if (!Ty->isSized()) 1048 return nullptr; 1049 1050 // Start with the index over the outer type. Note that the type size 1051 // might be zero (even if the offset isn't zero) if the indexed type 1052 // is something like [0 x {int, int}] 1053 Type *IndexTy = DL.getIndexType(PtrTy); 1054 int64_t FirstIdx = 0; 1055 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 1056 FirstIdx = Offset/TySize; 1057 Offset -= FirstIdx*TySize; 1058 1059 // Handle hosts where % returns negative instead of values [0..TySize). 1060 if (Offset < 0) { 1061 --FirstIdx; 1062 Offset += TySize; 1063 assert(Offset >= 0); 1064 } 1065 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 1066 } 1067 1068 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx)); 1069 1070 // Index into the types. If we fail, set OrigBase to null. 1071 while (Offset) { 1072 // Indexing into tail padding between struct/array elements. 1073 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1074 return nullptr; 1075 1076 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1077 const StructLayout *SL = DL.getStructLayout(STy); 1078 assert(Offset < (int64_t)SL->getSizeInBytes() && 1079 "Offset must stay within the indexed type"); 1080 1081 unsigned Elt = SL->getElementContainingOffset(Offset); 1082 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1083 Elt)); 1084 1085 Offset -= SL->getElementOffset(Elt); 1086 Ty = STy->getElementType(Elt); 1087 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1088 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1089 assert(EltSize && "Cannot index into a zero-sized array"); 1090 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize)); 1091 Offset %= EltSize; 1092 Ty = AT->getElementType(); 1093 } else { 1094 // Otherwise, we can't index into the middle of this atomic type, bail. 1095 return nullptr; 1096 } 1097 } 1098 1099 return Ty; 1100 } 1101 1102 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1103 // If this GEP has only 0 indices, it is the same pointer as 1104 // Src. If Src is not a trivial GEP too, don't combine 1105 // the indices. 1106 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1107 !Src.hasOneUse()) 1108 return false; 1109 return true; 1110 } 1111 1112 /// Return a value X such that Val = X * Scale, or null if none. 1113 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1114 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1115 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1116 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1117 Scale.getBitWidth() && "Scale not compatible with value!"); 1118 1119 // If Val is zero or Scale is one then Val = Val * Scale. 1120 if (match(Val, m_Zero()) || Scale == 1) { 1121 NoSignedWrap = true; 1122 return Val; 1123 } 1124 1125 // If Scale is zero then it does not divide Val. 1126 if (Scale.isMinValue()) 1127 return nullptr; 1128 1129 // Look through chains of multiplications, searching for a constant that is 1130 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1131 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1132 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1133 // down from Val: 1134 // 1135 // Val = M1 * X || Analysis starts here and works down 1136 // M1 = M2 * Y || Doesn't descend into terms with more 1137 // M2 = Z * 4 \/ than one use 1138 // 1139 // Then to modify a term at the bottom: 1140 // 1141 // Val = M1 * X 1142 // M1 = Z * Y || Replaced M2 with Z 1143 // 1144 // Then to work back up correcting nsw flags. 1145 1146 // Op - the term we are currently analyzing. Starts at Val then drills down. 1147 // Replaced with its descaled value before exiting from the drill down loop. 1148 Value *Op = Val; 1149 1150 // Parent - initially null, but after drilling down notes where Op came from. 1151 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1152 // 0'th operand of Val. 1153 std::pair<Instruction *, unsigned> Parent; 1154 1155 // Set if the transform requires a descaling at deeper levels that doesn't 1156 // overflow. 1157 bool RequireNoSignedWrap = false; 1158 1159 // Log base 2 of the scale. Negative if not a power of 2. 1160 int32_t logScale = Scale.exactLogBase2(); 1161 1162 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1163 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1164 // If Op is a constant divisible by Scale then descale to the quotient. 1165 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1166 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1167 if (!Remainder.isMinValue()) 1168 // Not divisible by Scale. 1169 return nullptr; 1170 // Replace with the quotient in the parent. 1171 Op = ConstantInt::get(CI->getType(), Quotient); 1172 NoSignedWrap = true; 1173 break; 1174 } 1175 1176 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1177 if (BO->getOpcode() == Instruction::Mul) { 1178 // Multiplication. 1179 NoSignedWrap = BO->hasNoSignedWrap(); 1180 if (RequireNoSignedWrap && !NoSignedWrap) 1181 return nullptr; 1182 1183 // There are three cases for multiplication: multiplication by exactly 1184 // the scale, multiplication by a constant different to the scale, and 1185 // multiplication by something else. 1186 Value *LHS = BO->getOperand(0); 1187 Value *RHS = BO->getOperand(1); 1188 1189 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1190 // Multiplication by a constant. 1191 if (CI->getValue() == Scale) { 1192 // Multiplication by exactly the scale, replace the multiplication 1193 // by its left-hand side in the parent. 1194 Op = LHS; 1195 break; 1196 } 1197 1198 // Otherwise drill down into the constant. 1199 if (!Op->hasOneUse()) 1200 return nullptr; 1201 1202 Parent = std::make_pair(BO, 1); 1203 continue; 1204 } 1205 1206 // Multiplication by something else. Drill down into the left-hand side 1207 // since that's where the reassociate pass puts the good stuff. 1208 if (!Op->hasOneUse()) 1209 return nullptr; 1210 1211 Parent = std::make_pair(BO, 0); 1212 continue; 1213 } 1214 1215 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1216 isa<ConstantInt>(BO->getOperand(1))) { 1217 // Multiplication by a power of 2. 1218 NoSignedWrap = BO->hasNoSignedWrap(); 1219 if (RequireNoSignedWrap && !NoSignedWrap) 1220 return nullptr; 1221 1222 Value *LHS = BO->getOperand(0); 1223 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1224 getLimitedValue(Scale.getBitWidth()); 1225 // Op = LHS << Amt. 1226 1227 if (Amt == logScale) { 1228 // Multiplication by exactly the scale, replace the multiplication 1229 // by its left-hand side in the parent. 1230 Op = LHS; 1231 break; 1232 } 1233 if (Amt < logScale || !Op->hasOneUse()) 1234 return nullptr; 1235 1236 // Multiplication by more than the scale. Reduce the multiplying amount 1237 // by the scale in the parent. 1238 Parent = std::make_pair(BO, 1); 1239 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1240 break; 1241 } 1242 } 1243 1244 if (!Op->hasOneUse()) 1245 return nullptr; 1246 1247 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1248 if (Cast->getOpcode() == Instruction::SExt) { 1249 // Op is sign-extended from a smaller type, descale in the smaller type. 1250 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1251 APInt SmallScale = Scale.trunc(SmallSize); 1252 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1253 // descale Op as (sext Y) * Scale. In order to have 1254 // sext (Y * SmallScale) = (sext Y) * Scale 1255 // some conditions need to hold however: SmallScale must sign-extend to 1256 // Scale and the multiplication Y * SmallScale should not overflow. 1257 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1258 // SmallScale does not sign-extend to Scale. 1259 return nullptr; 1260 assert(SmallScale.exactLogBase2() == logScale); 1261 // Require that Y * SmallScale must not overflow. 1262 RequireNoSignedWrap = true; 1263 1264 // Drill down through the cast. 1265 Parent = std::make_pair(Cast, 0); 1266 Scale = SmallScale; 1267 continue; 1268 } 1269 1270 if (Cast->getOpcode() == Instruction::Trunc) { 1271 // Op is truncated from a larger type, descale in the larger type. 1272 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1273 // trunc (Y * sext Scale) = (trunc Y) * Scale 1274 // always holds. However (trunc Y) * Scale may overflow even if 1275 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1276 // from this point up in the expression (see later). 1277 if (RequireNoSignedWrap) 1278 return nullptr; 1279 1280 // Drill down through the cast. 1281 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1282 Parent = std::make_pair(Cast, 0); 1283 Scale = Scale.sext(LargeSize); 1284 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1285 logScale = -1; 1286 assert(Scale.exactLogBase2() == logScale); 1287 continue; 1288 } 1289 } 1290 1291 // Unsupported expression, bail out. 1292 return nullptr; 1293 } 1294 1295 // If Op is zero then Val = Op * Scale. 1296 if (match(Op, m_Zero())) { 1297 NoSignedWrap = true; 1298 return Op; 1299 } 1300 1301 // We know that we can successfully descale, so from here on we can safely 1302 // modify the IR. Op holds the descaled version of the deepest term in the 1303 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1304 // not to overflow. 1305 1306 if (!Parent.first) 1307 // The expression only had one term. 1308 return Op; 1309 1310 // Rewrite the parent using the descaled version of its operand. 1311 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1312 assert(Op != Parent.first->getOperand(Parent.second) && 1313 "Descaling was a no-op?"); 1314 Parent.first->setOperand(Parent.second, Op); 1315 Worklist.Add(Parent.first); 1316 1317 // Now work back up the expression correcting nsw flags. The logic is based 1318 // on the following observation: if X * Y is known not to overflow as a signed 1319 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1320 // then X * Z will not overflow as a signed multiplication either. As we work 1321 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1322 // current level has strictly smaller absolute value than the original. 1323 Instruction *Ancestor = Parent.first; 1324 do { 1325 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1326 // If the multiplication wasn't nsw then we can't say anything about the 1327 // value of the descaled multiplication, and we have to clear nsw flags 1328 // from this point on up. 1329 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1330 NoSignedWrap &= OpNoSignedWrap; 1331 if (NoSignedWrap != OpNoSignedWrap) { 1332 BO->setHasNoSignedWrap(NoSignedWrap); 1333 Worklist.Add(Ancestor); 1334 } 1335 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1336 // The fact that the descaled input to the trunc has smaller absolute 1337 // value than the original input doesn't tell us anything useful about 1338 // the absolute values of the truncations. 1339 NoSignedWrap = false; 1340 } 1341 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1342 "Failed to keep proper track of nsw flags while drilling down?"); 1343 1344 if (Ancestor == Val) 1345 // Got to the top, all done! 1346 return Val; 1347 1348 // Move up one level in the expression. 1349 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1350 Ancestor = Ancestor->user_back(); 1351 } while (true); 1352 } 1353 1354 Instruction *InstCombiner::foldShuffledBinop(BinaryOperator &Inst) { 1355 if (!Inst.getType()->isVectorTy()) return nullptr; 1356 1357 // It may not be safe to reorder shuffles and things like div, urem, etc. 1358 // because we may trap when executing those ops on unknown vector elements. 1359 // See PR20059. 1360 if (!isSafeToSpeculativelyExecute(&Inst)) 1361 return nullptr; 1362 1363 unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements(); 1364 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1365 assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth); 1366 assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth); 1367 1368 auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) { 1369 Value *XY = Builder.CreateBinOp(Inst.getOpcode(), X, Y); 1370 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1371 BO->copyIRFlags(&Inst); 1372 return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M); 1373 }; 1374 1375 // If both arguments of the binary operation are shuffles that use the same 1376 // mask and shuffle within a single vector, move the shuffle after the binop. 1377 Value *V1, *V2; 1378 Constant *Mask; 1379 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) && 1380 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) && 1381 V1->getType() == V2->getType() && 1382 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1383 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1384 return createBinOpShuffle(V1, V2, Mask); 1385 } 1386 1387 // If one argument is a shuffle within one vector and the other is a constant, 1388 // try moving the shuffle after the binary operation. This canonicalization 1389 // intends to move shuffles closer to other shuffles and binops closer to 1390 // other binops, so they can be folded. It may also enable demanded elements 1391 // transforms. 1392 Constant *C; 1393 if (match(&Inst, m_c_BinOp( 1394 m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))), 1395 m_Constant(C))) && 1396 V1->getType() == Inst.getType()) { 1397 // Find constant NewC that has property: 1398 // shuffle(NewC, ShMask) = C 1399 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1400 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1401 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1402 SmallVector<int, 16> ShMask; 1403 ShuffleVectorInst::getShuffleMask(Mask, ShMask); 1404 SmallVector<Constant *, 16> 1405 NewVecC(VWidth, UndefValue::get(C->getType()->getScalarType())); 1406 bool MayChange = true; 1407 for (unsigned I = 0; I < VWidth; ++I) { 1408 if (ShMask[I] >= 0) { 1409 assert(ShMask[I] < (int)VWidth); 1410 Constant *CElt = C->getAggregateElement(I); 1411 Constant *NewCElt = NewVecC[ShMask[I]]; 1412 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt)) { 1413 MayChange = false; 1414 break; 1415 } 1416 NewVecC[ShMask[I]] = CElt; 1417 } 1418 } 1419 if (MayChange) { 1420 // With integer div/rem instructions, it is not safe to use a vector with 1421 // undef elements because the entire instruction can be folded to undef. 1422 // So replace undef elements with '1' because that can never induce 1423 // undefined behavior. All other binop opcodes are always safe to 1424 // speculate, and therefore, it is fine to include undef elements for 1425 // unused lanes (and using undefs may help optimization). 1426 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1427 if (Opcode == Instruction::UDiv || Opcode == Instruction::URem || 1428 Opcode == Instruction::SDiv || Opcode == Instruction::SRem) { 1429 assert(C->getType()->getScalarType()->isIntegerTy() && 1430 "Not expecting FP opcodes/operands/constants here"); 1431 for (unsigned i = 0; i < VWidth; ++i) 1432 if (isa<UndefValue>(NewVecC[i])) 1433 NewVecC[i] = ConstantInt::get(NewVecC[i]->getType(), 1); 1434 } 1435 1436 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1437 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1438 Constant *NewC = ConstantVector::get(NewVecC); 1439 Value *NewLHS = isa<Constant>(LHS) ? NewC : V1; 1440 Value *NewRHS = isa<Constant>(LHS) ? V1 : NewC; 1441 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1442 } 1443 } 1444 1445 return nullptr; 1446 } 1447 1448 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1449 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1450 Type *GEPType = GEP.getType(); 1451 Type *GEPEltType = GEP.getSourceElementType(); 1452 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP))) 1453 return replaceInstUsesWith(GEP, V); 1454 1455 Value *PtrOp = GEP.getOperand(0); 1456 1457 // Eliminate unneeded casts for indices, and replace indices which displace 1458 // by multiples of a zero size type with zero. 1459 bool MadeChange = false; 1460 1461 // Index width may not be the same width as pointer width. 1462 // Data layout chooses the right type based on supported integer types. 1463 Type *NewScalarIndexTy = 1464 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 1465 1466 gep_type_iterator GTI = gep_type_begin(GEP); 1467 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1468 ++I, ++GTI) { 1469 // Skip indices into struct types. 1470 if (GTI.isStruct()) 1471 continue; 1472 1473 Type *IndexTy = (*I)->getType(); 1474 Type *NewIndexType = 1475 IndexTy->isVectorTy() 1476 ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements()) 1477 : NewScalarIndexTy; 1478 1479 // If the element type has zero size then any index over it is equivalent 1480 // to an index of zero, so replace it with zero if it is not zero already. 1481 Type *EltTy = GTI.getIndexedType(); 1482 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0) 1483 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { 1484 *I = Constant::getNullValue(NewIndexType); 1485 MadeChange = true; 1486 } 1487 1488 if (IndexTy != NewIndexType) { 1489 // If we are using a wider index than needed for this platform, shrink 1490 // it to what we need. If narrower, sign-extend it to what we need. 1491 // This explicit cast can make subsequent optimizations more obvious. 1492 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1493 MadeChange = true; 1494 } 1495 } 1496 if (MadeChange) 1497 return &GEP; 1498 1499 // Check to see if the inputs to the PHI node are getelementptr instructions. 1500 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 1501 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1502 if (!Op1) 1503 return nullptr; 1504 1505 // Don't fold a GEP into itself through a PHI node. This can only happen 1506 // through the back-edge of a loop. Folding a GEP into itself means that 1507 // the value of the previous iteration needs to be stored in the meantime, 1508 // thus requiring an additional register variable to be live, but not 1509 // actually achieving anything (the GEP still needs to be executed once per 1510 // loop iteration). 1511 if (Op1 == &GEP) 1512 return nullptr; 1513 1514 int DI = -1; 1515 1516 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1517 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 1518 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1519 return nullptr; 1520 1521 // As for Op1 above, don't try to fold a GEP into itself. 1522 if (Op2 == &GEP) 1523 return nullptr; 1524 1525 // Keep track of the type as we walk the GEP. 1526 Type *CurTy = nullptr; 1527 1528 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1529 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1530 return nullptr; 1531 1532 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1533 if (DI == -1) { 1534 // We have not seen any differences yet in the GEPs feeding the 1535 // PHI yet, so we record this one if it is allowed to be a 1536 // variable. 1537 1538 // The first two arguments can vary for any GEP, the rest have to be 1539 // static for struct slots 1540 if (J > 1 && CurTy->isStructTy()) 1541 return nullptr; 1542 1543 DI = J; 1544 } else { 1545 // The GEP is different by more than one input. While this could be 1546 // extended to support GEPs that vary by more than one variable it 1547 // doesn't make sense since it greatly increases the complexity and 1548 // would result in an R+R+R addressing mode which no backend 1549 // directly supports and would need to be broken into several 1550 // simpler instructions anyway. 1551 return nullptr; 1552 } 1553 } 1554 1555 // Sink down a layer of the type for the next iteration. 1556 if (J > 0) { 1557 if (J == 1) { 1558 CurTy = Op1->getSourceElementType(); 1559 } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) { 1560 CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); 1561 } else { 1562 CurTy = nullptr; 1563 } 1564 } 1565 } 1566 } 1567 1568 // If not all GEPs are identical we'll have to create a new PHI node. 1569 // Check that the old PHI node has only one use so that it will get 1570 // removed. 1571 if (DI != -1 && !PN->hasOneUse()) 1572 return nullptr; 1573 1574 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1575 if (DI == -1) { 1576 // All the GEPs feeding the PHI are identical. Clone one down into our 1577 // BB so that it can be merged with the current GEP. 1578 GEP.getParent()->getInstList().insert( 1579 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1580 } else { 1581 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1582 // into the current block so it can be merged, and create a new PHI to 1583 // set that index. 1584 PHINode *NewPN; 1585 { 1586 IRBuilderBase::InsertPointGuard Guard(Builder); 1587 Builder.SetInsertPoint(PN); 1588 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 1589 PN->getNumOperands()); 1590 } 1591 1592 for (auto &I : PN->operands()) 1593 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1594 PN->getIncomingBlock(I)); 1595 1596 NewGEP->setOperand(DI, NewPN); 1597 GEP.getParent()->getInstList().insert( 1598 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1599 NewGEP->setOperand(DI, NewPN); 1600 } 1601 1602 GEP.setOperand(0, NewGEP); 1603 PtrOp = NewGEP; 1604 } 1605 1606 // Combine Indices - If the source pointer to this getelementptr instruction 1607 // is a getelementptr instruction, combine the indices of the two 1608 // getelementptr instructions into a single instruction. 1609 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { 1610 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1611 return nullptr; 1612 1613 // Try to reassociate loop invariant GEP chains to enable LICM. 1614 if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1615 Src->hasOneUse()) { 1616 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1617 Value *GO1 = GEP.getOperand(1); 1618 Value *SO1 = Src->getOperand(1); 1619 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1620 // invariant: this breaks the dependence between GEPs and allows LICM 1621 // to hoist the invariant part out of the loop. 1622 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1623 // We have to be careful here. 1624 // We have something like: 1625 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 1626 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 1627 // If we just swap idx & idx2 then we could inadvertantly 1628 // change %src from a vector to a scalar, or vice versa. 1629 // Cases: 1630 // 1) %base a scalar & idx a scalar & idx2 a vector 1631 // => Swapping idx & idx2 turns %src into a vector type. 1632 // 2) %base a scalar & idx a vector & idx2 a scalar 1633 // => Swapping idx & idx2 turns %src in a scalar type 1634 // 3) %base, %idx, and %idx2 are scalars 1635 // => %src & %gep are scalars 1636 // => swapping idx & idx2 is safe 1637 // 4) %base a vector 1638 // => %src is a vector 1639 // => swapping idx & idx2 is safe. 1640 auto *SO0 = Src->getOperand(0); 1641 auto *SO0Ty = SO0->getType(); 1642 if (!isa<VectorType>(GEPType) || // case 3 1643 isa<VectorType>(SO0Ty)) { // case 4 1644 Src->setOperand(1, GO1); 1645 GEP.setOperand(1, SO1); 1646 return &GEP; 1647 } else { 1648 // Case 1 or 2 1649 // -- have to recreate %src & %gep 1650 // put NewSrc at same location as %src 1651 Builder.SetInsertPoint(cast<Instruction>(PtrOp)); 1652 auto *NewSrc = cast<GetElementPtrInst>( 1653 Builder.CreateGEP(SO0, GO1, Src->getName())); 1654 NewSrc->setIsInBounds(Src->isInBounds()); 1655 auto *NewGEP = GetElementPtrInst::Create(nullptr, NewSrc, {SO1}); 1656 NewGEP->setIsInBounds(GEP.isInBounds()); 1657 return NewGEP; 1658 } 1659 } 1660 } 1661 } 1662 1663 // Note that if our source is a gep chain itself then we wait for that 1664 // chain to be resolved before we perform this transformation. This 1665 // avoids us creating a TON of code in some cases. 1666 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 1667 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1668 return nullptr; // Wait until our source is folded to completion. 1669 1670 SmallVector<Value*, 8> Indices; 1671 1672 // Find out whether the last index in the source GEP is a sequential idx. 1673 bool EndsWithSequential = false; 1674 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1675 I != E; ++I) 1676 EndsWithSequential = I.isSequential(); 1677 1678 // Can we combine the two pointer arithmetics offsets? 1679 if (EndsWithSequential) { 1680 // Replace: gep (gep %P, long B), long A, ... 1681 // With: T = long A+B; gep %P, T, ... 1682 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1683 Value *GO1 = GEP.getOperand(1); 1684 1685 // If they aren't the same type, then the input hasn't been processed 1686 // by the loop above yet (which canonicalizes sequential index types to 1687 // intptr_t). Just avoid transforming this until the input has been 1688 // normalized. 1689 if (SO1->getType() != GO1->getType()) 1690 return nullptr; 1691 1692 Value *Sum = 1693 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 1694 // Only do the combine when we are sure the cost after the 1695 // merge is never more than that before the merge. 1696 if (Sum == nullptr) 1697 return nullptr; 1698 1699 // Update the GEP in place if possible. 1700 if (Src->getNumOperands() == 2) { 1701 GEP.setOperand(0, Src->getOperand(0)); 1702 GEP.setOperand(1, Sum); 1703 return &GEP; 1704 } 1705 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1706 Indices.push_back(Sum); 1707 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1708 } else if (isa<Constant>(*GEP.idx_begin()) && 1709 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1710 Src->getNumOperands() != 1) { 1711 // Otherwise we can do the fold if the first index of the GEP is a zero 1712 Indices.append(Src->op_begin()+1, Src->op_end()); 1713 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1714 } 1715 1716 if (!Indices.empty()) 1717 return GEP.isInBounds() && Src->isInBounds() 1718 ? GetElementPtrInst::CreateInBounds( 1719 Src->getSourceElementType(), Src->getOperand(0), Indices, 1720 GEP.getName()) 1721 : GetElementPtrInst::Create(Src->getSourceElementType(), 1722 Src->getOperand(0), Indices, 1723 GEP.getName()); 1724 } 1725 1726 if (GEP.getNumIndices() == 1) { 1727 unsigned AS = GEP.getPointerAddressSpace(); 1728 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 1729 DL.getIndexSizeInBits(AS)) { 1730 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType); 1731 1732 bool Matched = false; 1733 uint64_t C; 1734 Value *V = nullptr; 1735 if (TyAllocSize == 1) { 1736 V = GEP.getOperand(1); 1737 Matched = true; 1738 } else if (match(GEP.getOperand(1), 1739 m_AShr(m_Value(V), m_ConstantInt(C)))) { 1740 if (TyAllocSize == 1ULL << C) 1741 Matched = true; 1742 } else if (match(GEP.getOperand(1), 1743 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 1744 if (TyAllocSize == C) 1745 Matched = true; 1746 } 1747 1748 if (Matched) { 1749 // Canonicalize (gep i8* X, -(ptrtoint Y)) 1750 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) 1751 // The GEP pattern is emitted by the SCEV expander for certain kinds of 1752 // pointer arithmetic. 1753 if (match(V, m_Neg(m_PtrToInt(m_Value())))) { 1754 Operator *Index = cast<Operator>(V); 1755 Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType()); 1756 Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1)); 1757 return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType); 1758 } 1759 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) 1760 // to (bitcast Y) 1761 Value *Y; 1762 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), 1763 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) 1764 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 1765 } 1766 } 1767 } 1768 1769 // We do not handle pointer-vector geps here. 1770 if (GEPType->isVectorTy()) 1771 return nullptr; 1772 1773 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 1774 Value *StrippedPtr = PtrOp->stripPointerCasts(); 1775 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 1776 1777 if (StrippedPtr != PtrOp) { 1778 bool HasZeroPointerIndex = false; 1779 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 1780 HasZeroPointerIndex = C->isZero(); 1781 1782 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 1783 // into : GEP [10 x i8]* X, i32 0, ... 1784 // 1785 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 1786 // into : GEP i8* X, ... 1787 // 1788 // This occurs when the program declares an array extern like "int X[];" 1789 if (HasZeroPointerIndex) { 1790 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 1791 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 1792 if (CATy->getElementType() == StrippedPtrTy->getElementType()) { 1793 // -> GEP i8* X, ... 1794 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 1795 GetElementPtrInst *Res = GetElementPtrInst::Create( 1796 StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName()); 1797 Res->setIsInBounds(GEP.isInBounds()); 1798 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 1799 return Res; 1800 // Insert Res, and create an addrspacecast. 1801 // e.g., 1802 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 1803 // -> 1804 // %0 = GEP i8 addrspace(1)* X, ... 1805 // addrspacecast i8 addrspace(1)* %0 to i8* 1806 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 1807 } 1808 1809 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrTy->getElementType())) { 1810 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 1811 if (CATy->getElementType() == XATy->getElementType()) { 1812 // -> GEP [10 x i8]* X, i32 0, ... 1813 // At this point, we know that the cast source type is a pointer 1814 // to an array of the same type as the destination pointer 1815 // array. Because the array type is never stepped over (there 1816 // is a leading zero) we can fold the cast into this GEP. 1817 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 1818 GEP.setOperand(0, StrippedPtr); 1819 GEP.setSourceElementType(XATy); 1820 return &GEP; 1821 } 1822 // Cannot replace the base pointer directly because StrippedPtr's 1823 // address space is different. Instead, create a new GEP followed by 1824 // an addrspacecast. 1825 // e.g., 1826 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 1827 // i32 0, ... 1828 // -> 1829 // %0 = GEP [10 x i8] addrspace(1)* X, ... 1830 // addrspacecast i8 addrspace(1)* %0 to i8* 1831 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 1832 Value *NewGEP = GEP.isInBounds() 1833 ? Builder.CreateInBoundsGEP( 1834 nullptr, StrippedPtr, Idx, GEP.getName()) 1835 : Builder.CreateGEP(nullptr, StrippedPtr, Idx, 1836 GEP.getName()); 1837 return new AddrSpaceCastInst(NewGEP, GEPType); 1838 } 1839 } 1840 } 1841 } else if (GEP.getNumOperands() == 2) { 1842 // Transform things like: 1843 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 1844 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 1845 Type *SrcEltTy = StrippedPtrTy->getElementType(); 1846 if (SrcEltTy->isArrayTy() && 1847 DL.getTypeAllocSize(SrcEltTy->getArrayElementType()) == 1848 DL.getTypeAllocSize(GEPEltType)) { 1849 Type *IdxType = DL.getIndexType(GEPType); 1850 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 1851 Value *NewGEP = 1852 GEP.isInBounds() 1853 ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, Idx, 1854 GEP.getName()) 1855 : Builder.CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName()); 1856 1857 // V and GEP are both pointer types --> BitCast 1858 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 1859 } 1860 1861 // Transform things like: 1862 // %V = mul i64 %N, 4 1863 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 1864 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 1865 if (GEPEltType->isSized() && SrcEltTy->isSized()) { 1866 // Check that changing the type amounts to dividing the index by a scale 1867 // factor. 1868 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 1869 uint64_t SrcSize = DL.getTypeAllocSize(SrcEltTy); 1870 if (ResSize && SrcSize % ResSize == 0) { 1871 Value *Idx = GEP.getOperand(1); 1872 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1873 uint64_t Scale = SrcSize / ResSize; 1874 1875 // Earlier transforms ensure that the index has the right type 1876 // according to Data Layout, which considerably simplifies the 1877 // logic by eliminating implicit casts. 1878 assert(Idx->getType() == DL.getIndexType(GEPType) && 1879 "Index type does not match the Data Layout preferences"); 1880 1881 bool NSW; 1882 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1883 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1884 // If the multiplication NewIdx * Scale may overflow then the new 1885 // GEP may not be "inbounds". 1886 Value *NewGEP = 1887 GEP.isInBounds() && NSW 1888 ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx, 1889 GEP.getName()) 1890 : Builder.CreateGEP(nullptr, StrippedPtr, NewIdx, 1891 GEP.getName()); 1892 1893 // The NewGEP must be pointer typed, so must the old one -> BitCast 1894 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1895 GEPType); 1896 } 1897 } 1898 } 1899 1900 // Similarly, transform things like: 1901 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 1902 // (where tmp = 8*tmp2) into: 1903 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 1904 if (GEPEltType->isSized() && SrcEltTy->isSized() && 1905 SrcEltTy->isArrayTy()) { 1906 // Check that changing to the array element type amounts to dividing the 1907 // index by a scale factor. 1908 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 1909 uint64_t ArrayEltSize = 1910 DL.getTypeAllocSize(SrcEltTy->getArrayElementType()); 1911 if (ResSize && ArrayEltSize % ResSize == 0) { 1912 Value *Idx = GEP.getOperand(1); 1913 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 1914 uint64_t Scale = ArrayEltSize / ResSize; 1915 1916 // Earlier transforms ensure that the index has the right type 1917 // according to the Data Layout, which considerably simplifies 1918 // the logic by eliminating implicit casts. 1919 assert(Idx->getType() == DL.getIndexType(GEPType) && 1920 "Index type does not match the Data Layout preferences"); 1921 1922 bool NSW; 1923 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 1924 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 1925 // If the multiplication NewIdx * Scale may overflow then the new 1926 // GEP may not be "inbounds". 1927 Type *IndTy = DL.getIndexType(GEPType); 1928 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 1929 1930 Value *NewGEP = GEP.isInBounds() && NSW 1931 ? Builder.CreateInBoundsGEP( 1932 SrcEltTy, StrippedPtr, Off, GEP.getName()) 1933 : Builder.CreateGEP(SrcEltTy, StrippedPtr, Off, 1934 GEP.getName()); 1935 // The NewGEP must be pointer typed, so must the old one -> BitCast 1936 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 1937 GEPType); 1938 } 1939 } 1940 } 1941 } 1942 } 1943 1944 // addrspacecast between types is canonicalized as a bitcast, then an 1945 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 1946 // through the addrspacecast. 1947 Value *ASCStrippedPtrOp = PtrOp; 1948 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 1949 // X = bitcast A addrspace(1)* to B addrspace(1)* 1950 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 1951 // Z = gep Y, <...constant indices...> 1952 // Into an addrspacecasted GEP of the struct. 1953 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 1954 ASCStrippedPtrOp = BC; 1955 } 1956 1957 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 1958 Value *SrcOp = BCI->getOperand(0); 1959 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 1960 Type *SrcEltType = SrcType->getElementType(); 1961 1962 // GEP directly using the source operand if this GEP is accessing an element 1963 // of a bitcasted pointer to vector or array of the same dimensions: 1964 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 1965 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 1966 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy) { 1967 return ArrTy->getArrayElementType() == VecTy->getVectorElementType() && 1968 ArrTy->getArrayNumElements() == VecTy->getVectorNumElements(); 1969 }; 1970 if (GEP.getNumOperands() == 3 && 1971 ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() && 1972 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType)) || 1973 (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() && 1974 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType)))) { 1975 GEP.setOperand(0, SrcOp); 1976 GEP.setSourceElementType(SrcEltType); 1977 return &GEP; 1978 } 1979 1980 // See if we can simplify: 1981 // X = bitcast A* to B* 1982 // Y = gep X, <...constant indices...> 1983 // into a gep of the original struct. This is important for SROA and alias 1984 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 1985 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 1986 APInt Offset(OffsetBits, 0); 1987 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) { 1988 // If this GEP instruction doesn't move the pointer, just replace the GEP 1989 // with a bitcast of the real input to the dest type. 1990 if (!Offset) { 1991 // If the bitcast is of an allocation, and the allocation will be 1992 // converted to match the type of the cast, don't touch this. 1993 if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) { 1994 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 1995 if (Instruction *I = visitBitCast(*BCI)) { 1996 if (I != BCI) { 1997 I->takeName(BCI); 1998 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 1999 replaceInstUsesWith(*BCI, I); 2000 } 2001 return &GEP; 2002 } 2003 } 2004 2005 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2006 return new AddrSpaceCastInst(SrcOp, GEPType); 2007 return new BitCastInst(SrcOp, GEPType); 2008 } 2009 2010 // Otherwise, if the offset is non-zero, we need to find out if there is a 2011 // field at Offset in 'A's type. If so, we can pull the cast through the 2012 // GEP. 2013 SmallVector<Value*, 8> NewIndices; 2014 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2015 Value *NGEP = 2016 GEP.isInBounds() 2017 ? Builder.CreateInBoundsGEP(nullptr, SrcOp, NewIndices) 2018 : Builder.CreateGEP(nullptr, SrcOp, NewIndices); 2019 2020 if (NGEP->getType() == GEPType) 2021 return replaceInstUsesWith(GEP, NGEP); 2022 NGEP->takeName(&GEP); 2023 2024 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2025 return new AddrSpaceCastInst(NGEP, GEPType); 2026 return new BitCastInst(NGEP, GEPType); 2027 } 2028 } 2029 } 2030 2031 if (!GEP.isInBounds()) { 2032 unsigned IdxWidth = 2033 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2034 APInt BasePtrOffset(IdxWidth, 0); 2035 Value *UnderlyingPtrOp = 2036 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2037 BasePtrOffset); 2038 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2039 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2040 BasePtrOffset.isNonNegative()) { 2041 APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType())); 2042 if (BasePtrOffset.ule(AllocSize)) { 2043 return GetElementPtrInst::CreateInBounds( 2044 PtrOp, makeArrayRef(Ops).slice(1), GEP.getName()); 2045 } 2046 } 2047 } 2048 } 2049 2050 return nullptr; 2051 } 2052 2053 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 2054 Instruction *AI) { 2055 if (isa<ConstantPointerNull>(V)) 2056 return true; 2057 if (auto *LI = dyn_cast<LoadInst>(V)) 2058 return isa<GlobalVariable>(LI->getPointerOperand()); 2059 // Two distinct allocations will never be equal. 2060 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2061 // through bitcasts of V can cause 2062 // the result statement below to be true, even when AI and V (ex: 2063 // i8* ->i32* ->i8* of AI) are the same allocations. 2064 return isAllocLikeFn(V, TLI) && V != AI; 2065 } 2066 2067 static bool isAllocSiteRemovable(Instruction *AI, 2068 SmallVectorImpl<WeakTrackingVH> &Users, 2069 const TargetLibraryInfo *TLI) { 2070 SmallVector<Instruction*, 4> Worklist; 2071 Worklist.push_back(AI); 2072 2073 do { 2074 Instruction *PI = Worklist.pop_back_val(); 2075 for (User *U : PI->users()) { 2076 Instruction *I = cast<Instruction>(U); 2077 switch (I->getOpcode()) { 2078 default: 2079 // Give up the moment we see something we can't handle. 2080 return false; 2081 2082 case Instruction::AddrSpaceCast: 2083 case Instruction::BitCast: 2084 case Instruction::GetElementPtr: 2085 Users.emplace_back(I); 2086 Worklist.push_back(I); 2087 continue; 2088 2089 case Instruction::ICmp: { 2090 ICmpInst *ICI = cast<ICmpInst>(I); 2091 // We can fold eq/ne comparisons with null to false/true, respectively. 2092 // We also fold comparisons in some conditions provided the alloc has 2093 // not escaped (see isNeverEqualToUnescapedAlloc). 2094 if (!ICI->isEquality()) 2095 return false; 2096 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2097 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2098 return false; 2099 Users.emplace_back(I); 2100 continue; 2101 } 2102 2103 case Instruction::Call: 2104 // Ignore no-op and store intrinsics. 2105 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2106 switch (II->getIntrinsicID()) { 2107 default: 2108 return false; 2109 2110 case Intrinsic::memmove: 2111 case Intrinsic::memcpy: 2112 case Intrinsic::memset: { 2113 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2114 if (MI->isVolatile() || MI->getRawDest() != PI) 2115 return false; 2116 LLVM_FALLTHROUGH; 2117 } 2118 case Intrinsic::invariant_start: 2119 case Intrinsic::invariant_end: 2120 case Intrinsic::lifetime_start: 2121 case Intrinsic::lifetime_end: 2122 case Intrinsic::objectsize: 2123 Users.emplace_back(I); 2124 continue; 2125 } 2126 } 2127 2128 if (isFreeCall(I, TLI)) { 2129 Users.emplace_back(I); 2130 continue; 2131 } 2132 return false; 2133 2134 case Instruction::Store: { 2135 StoreInst *SI = cast<StoreInst>(I); 2136 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2137 return false; 2138 Users.emplace_back(I); 2139 continue; 2140 } 2141 } 2142 llvm_unreachable("missing a return?"); 2143 } 2144 } while (!Worklist.empty()); 2145 return true; 2146 } 2147 2148 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 2149 // If we have a malloc call which is only used in any amount of comparisons 2150 // to null and free calls, delete the calls and replace the comparisons with 2151 // true or false as appropriate. 2152 SmallVector<WeakTrackingVH, 64> Users; 2153 2154 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2155 // before each store. 2156 TinyPtrVector<DbgInfoIntrinsic *> DIIs; 2157 std::unique_ptr<DIBuilder> DIB; 2158 if (isa<AllocaInst>(MI)) { 2159 DIIs = FindDbgAddrUses(&MI); 2160 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2161 } 2162 2163 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2164 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2165 // Lowering all @llvm.objectsize calls first because they may 2166 // use a bitcast/GEP of the alloca we are removing. 2167 if (!Users[i]) 2168 continue; 2169 2170 Instruction *I = cast<Instruction>(&*Users[i]); 2171 2172 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2173 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2174 ConstantInt *Result = lowerObjectSizeCall(II, DL, &TLI, 2175 /*MustSucceed=*/true); 2176 replaceInstUsesWith(*I, Result); 2177 eraseInstFromFunction(*I); 2178 Users[i] = nullptr; // Skip examining in the next loop. 2179 } 2180 } 2181 } 2182 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2183 if (!Users[i]) 2184 continue; 2185 2186 Instruction *I = cast<Instruction>(&*Users[i]); 2187 2188 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2189 replaceInstUsesWith(*C, 2190 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2191 C->isFalseWhenEqual())); 2192 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) || 2193 isa<AddrSpaceCastInst>(I)) { 2194 replaceInstUsesWith(*I, UndefValue::get(I->getType())); 2195 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2196 for (auto *DII : DIIs) 2197 ConvertDebugDeclareToDebugValue(DII, SI, *DIB); 2198 } 2199 eraseInstFromFunction(*I); 2200 } 2201 2202 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2203 // Replace invoke with a NOP intrinsic to maintain the original CFG 2204 Module *M = II->getModule(); 2205 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2206 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2207 None, "", II->getParent()); 2208 } 2209 2210 for (auto *DII : DIIs) 2211 eraseInstFromFunction(*DII); 2212 2213 return eraseInstFromFunction(MI); 2214 } 2215 return nullptr; 2216 } 2217 2218 /// Move the call to free before a NULL test. 2219 /// 2220 /// Check if this free is accessed after its argument has been test 2221 /// against NULL (property 0). 2222 /// If yes, it is legal to move this call in its predecessor block. 2223 /// 2224 /// The move is performed only if the block containing the call to free 2225 /// will be removed, i.e.: 2226 /// 1. it has only one predecessor P, and P has two successors 2227 /// 2. it contains the call and an unconditional branch 2228 /// 3. its successor is the same as its predecessor's successor 2229 /// 2230 /// The profitability is out-of concern here and this function should 2231 /// be called only if the caller knows this transformation would be 2232 /// profitable (e.g., for code size). 2233 static Instruction * 2234 tryToMoveFreeBeforeNullTest(CallInst &FI) { 2235 Value *Op = FI.getArgOperand(0); 2236 BasicBlock *FreeInstrBB = FI.getParent(); 2237 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2238 2239 // Validate part of constraint #1: Only one predecessor 2240 // FIXME: We can extend the number of predecessor, but in that case, we 2241 // would duplicate the call to free in each predecessor and it may 2242 // not be profitable even for code size. 2243 if (!PredBB) 2244 return nullptr; 2245 2246 // Validate constraint #2: Does this block contains only the call to 2247 // free and an unconditional branch? 2248 // FIXME: We could check if we can speculate everything in the 2249 // predecessor block 2250 if (FreeInstrBB->size() != 2) 2251 return nullptr; 2252 BasicBlock *SuccBB; 2253 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB))) 2254 return nullptr; 2255 2256 // Validate the rest of constraint #1 by matching on the pred branch. 2257 TerminatorInst *TI = PredBB->getTerminator(); 2258 BasicBlock *TrueBB, *FalseBB; 2259 ICmpInst::Predicate Pred; 2260 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB))) 2261 return nullptr; 2262 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2263 return nullptr; 2264 2265 // Validate constraint #3: Ensure the null case just falls through. 2266 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2267 return nullptr; 2268 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2269 "Broken CFG: missing edge from predecessor to successor"); 2270 2271 FI.moveBefore(TI); 2272 return &FI; 2273 } 2274 2275 Instruction *InstCombiner::visitFree(CallInst &FI) { 2276 Value *Op = FI.getArgOperand(0); 2277 2278 // free undef -> unreachable. 2279 if (isa<UndefValue>(Op)) { 2280 // Insert a new store to null because we cannot modify the CFG here. 2281 Builder.CreateStore(ConstantInt::getTrue(FI.getContext()), 2282 UndefValue::get(Type::getInt1PtrTy(FI.getContext()))); 2283 return eraseInstFromFunction(FI); 2284 } 2285 2286 // If we have 'free null' delete the instruction. This can happen in stl code 2287 // when lots of inlining happens. 2288 if (isa<ConstantPointerNull>(Op)) 2289 return eraseInstFromFunction(FI); 2290 2291 // If we optimize for code size, try to move the call to free before the null 2292 // test so that simplify cfg can remove the empty block and dead code 2293 // elimination the branch. I.e., helps to turn something like: 2294 // if (foo) free(foo); 2295 // into 2296 // free(foo); 2297 if (MinimizeSize) 2298 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI)) 2299 return I; 2300 2301 return nullptr; 2302 } 2303 2304 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { 2305 if (RI.getNumOperands() == 0) // ret void 2306 return nullptr; 2307 2308 Value *ResultOp = RI.getOperand(0); 2309 Type *VTy = ResultOp->getType(); 2310 if (!VTy->isIntegerTy()) 2311 return nullptr; 2312 2313 // There might be assume intrinsics dominating this return that completely 2314 // determine the value. If so, constant fold it. 2315 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2316 if (Known.isConstant()) 2317 RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant())); 2318 2319 return nullptr; 2320 } 2321 2322 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 2323 // Change br (not X), label True, label False to: br X, label False, True 2324 Value *X = nullptr; 2325 BasicBlock *TrueDest; 2326 BasicBlock *FalseDest; 2327 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && 2328 !isa<Constant>(X)) { 2329 // Swap Destinations and condition... 2330 BI.setCondition(X); 2331 BI.swapSuccessors(); 2332 return &BI; 2333 } 2334 2335 // If the condition is irrelevant, remove the use so that other 2336 // transforms on the condition become more effective. 2337 if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) && 2338 BI.getSuccessor(0) == BI.getSuccessor(1)) { 2339 BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType())); 2340 return &BI; 2341 } 2342 2343 // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq. 2344 CmpInst::Predicate Pred; 2345 if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), TrueDest, 2346 FalseDest)) && 2347 !isCanonicalPredicate(Pred)) { 2348 // Swap destinations and condition. 2349 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 2350 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2351 BI.swapSuccessors(); 2352 Worklist.Add(Cond); 2353 return &BI; 2354 } 2355 2356 return nullptr; 2357 } 2358 2359 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 2360 Value *Cond = SI.getCondition(); 2361 Value *Op0; 2362 ConstantInt *AddRHS; 2363 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 2364 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2365 for (auto Case : SI.cases()) { 2366 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 2367 assert(isa<ConstantInt>(NewCase) && 2368 "Result of expression should be constant"); 2369 Case.setValue(cast<ConstantInt>(NewCase)); 2370 } 2371 SI.setCondition(Op0); 2372 return &SI; 2373 } 2374 2375 KnownBits Known = computeKnownBits(Cond, 0, &SI); 2376 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 2377 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 2378 2379 // Compute the number of leading bits we can ignore. 2380 // TODO: A better way to determine this would use ComputeNumSignBits(). 2381 for (auto &C : SI.cases()) { 2382 LeadingKnownZeros = std::min( 2383 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2384 LeadingKnownOnes = std::min( 2385 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2386 } 2387 2388 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 2389 2390 // Shrink the condition operand if the new type is smaller than the old type. 2391 // This may produce a non-standard type for the switch, but that's ok because 2392 // the backend should extend back to a legal type for the target. 2393 if (NewWidth > 0 && NewWidth < Known.getBitWidth()) { 2394 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2395 Builder.SetInsertPoint(&SI); 2396 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 2397 SI.setCondition(NewCond); 2398 2399 for (auto Case : SI.cases()) { 2400 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 2401 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 2402 } 2403 return &SI; 2404 } 2405 2406 return nullptr; 2407 } 2408 2409 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 2410 Value *Agg = EV.getAggregateOperand(); 2411 2412 if (!EV.hasIndices()) 2413 return replaceInstUsesWith(EV, Agg); 2414 2415 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 2416 SQ.getWithInstruction(&EV))) 2417 return replaceInstUsesWith(EV, V); 2418 2419 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 2420 // We're extracting from an insertvalue instruction, compare the indices 2421 const unsigned *exti, *exte, *insi, *inse; 2422 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 2423 exte = EV.idx_end(), inse = IV->idx_end(); 2424 exti != exte && insi != inse; 2425 ++exti, ++insi) { 2426 if (*insi != *exti) 2427 // The insert and extract both reference distinctly different elements. 2428 // This means the extract is not influenced by the insert, and we can 2429 // replace the aggregate operand of the extract with the aggregate 2430 // operand of the insert. i.e., replace 2431 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2432 // %E = extractvalue { i32, { i32 } } %I, 0 2433 // with 2434 // %E = extractvalue { i32, { i32 } } %A, 0 2435 return ExtractValueInst::Create(IV->getAggregateOperand(), 2436 EV.getIndices()); 2437 } 2438 if (exti == exte && insi == inse) 2439 // Both iterators are at the end: Index lists are identical. Replace 2440 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2441 // %C = extractvalue { i32, { i32 } } %B, 1, 0 2442 // with "i32 42" 2443 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 2444 if (exti == exte) { 2445 // The extract list is a prefix of the insert list. i.e. replace 2446 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2447 // %E = extractvalue { i32, { i32 } } %I, 1 2448 // with 2449 // %X = extractvalue { i32, { i32 } } %A, 1 2450 // %E = insertvalue { i32 } %X, i32 42, 0 2451 // by switching the order of the insert and extract (though the 2452 // insertvalue should be left in, since it may have other uses). 2453 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 2454 EV.getIndices()); 2455 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 2456 makeArrayRef(insi, inse)); 2457 } 2458 if (insi == inse) 2459 // The insert list is a prefix of the extract list 2460 // We can simply remove the common indices from the extract and make it 2461 // operate on the inserted value instead of the insertvalue result. 2462 // i.e., replace 2463 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2464 // %E = extractvalue { i32, { i32 } } %I, 1, 0 2465 // with 2466 // %E extractvalue { i32 } { i32 42 }, 0 2467 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 2468 makeArrayRef(exti, exte)); 2469 } 2470 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { 2471 // We're extracting from an intrinsic, see if we're the only user, which 2472 // allows us to simplify multiple result intrinsics to simpler things that 2473 // just get one value. 2474 if (II->hasOneUse()) { 2475 // Check if we're grabbing the overflow bit or the result of a 'with 2476 // overflow' intrinsic. If it's the latter we can remove the intrinsic 2477 // and replace it with a traditional binary instruction. 2478 switch (II->getIntrinsicID()) { 2479 case Intrinsic::uadd_with_overflow: 2480 case Intrinsic::sadd_with_overflow: 2481 if (*EV.idx_begin() == 0) { // Normal result. 2482 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2483 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2484 eraseInstFromFunction(*II); 2485 return BinaryOperator::CreateAdd(LHS, RHS); 2486 } 2487 2488 // If the normal result of the add is dead, and the RHS is a constant, 2489 // we can transform this into a range comparison. 2490 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 2491 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) 2492 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1))) 2493 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0), 2494 ConstantExpr::getNot(CI)); 2495 break; 2496 case Intrinsic::usub_with_overflow: 2497 case Intrinsic::ssub_with_overflow: 2498 if (*EV.idx_begin() == 0) { // Normal result. 2499 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2500 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2501 eraseInstFromFunction(*II); 2502 return BinaryOperator::CreateSub(LHS, RHS); 2503 } 2504 break; 2505 case Intrinsic::umul_with_overflow: 2506 case Intrinsic::smul_with_overflow: 2507 if (*EV.idx_begin() == 0) { // Normal result. 2508 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 2509 replaceInstUsesWith(*II, UndefValue::get(II->getType())); 2510 eraseInstFromFunction(*II); 2511 return BinaryOperator::CreateMul(LHS, RHS); 2512 } 2513 break; 2514 default: 2515 break; 2516 } 2517 } 2518 } 2519 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2520 // If the (non-volatile) load only has one use, we can rewrite this to a 2521 // load from a GEP. This reduces the size of the load. If a load is used 2522 // only by extractvalue instructions then this either must have been 2523 // optimized before, or it is a struct with padding, in which case we 2524 // don't want to do the transformation as it loses padding knowledge. 2525 if (L->isSimple() && L->hasOneUse()) { 2526 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2527 SmallVector<Value*, 4> Indices; 2528 // Prefix an i32 0 since we need the first element. 2529 Indices.push_back(Builder.getInt32(0)); 2530 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2531 I != E; ++I) 2532 Indices.push_back(Builder.getInt32(*I)); 2533 2534 // We need to insert these at the location of the old load, not at that of 2535 // the extractvalue. 2536 Builder.SetInsertPoint(L); 2537 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 2538 L->getPointerOperand(), Indices); 2539 Instruction *NL = Builder.CreateLoad(GEP); 2540 // Whatever aliasing information we had for the orignal load must also 2541 // hold for the smaller load, so propagate the annotations. 2542 AAMDNodes Nodes; 2543 L->getAAMetadata(Nodes); 2544 NL->setAAMetadata(Nodes); 2545 // Returning the load directly will cause the main loop to insert it in 2546 // the wrong spot, so use replaceInstUsesWith(). 2547 return replaceInstUsesWith(EV, NL); 2548 } 2549 // We could simplify extracts from other values. Note that nested extracts may 2550 // already be simplified implicitly by the above: extract (extract (insert) ) 2551 // will be translated into extract ( insert ( extract ) ) first and then just 2552 // the value inserted, if appropriate. Similarly for extracts from single-use 2553 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2554 // and if again single-use then via load (gep (gep)) to load (gep). 2555 // However, double extracts from e.g. function arguments or return values 2556 // aren't handled yet. 2557 return nullptr; 2558 } 2559 2560 /// Return 'true' if the given typeinfo will match anything. 2561 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 2562 switch (Personality) { 2563 case EHPersonality::GNU_C: 2564 case EHPersonality::GNU_C_SjLj: 2565 case EHPersonality::Rust: 2566 // The GCC C EH and Rust personality only exists to support cleanups, so 2567 // it's not clear what the semantics of catch clauses are. 2568 return false; 2569 case EHPersonality::Unknown: 2570 return false; 2571 case EHPersonality::GNU_Ada: 2572 // While __gnat_all_others_value will match any Ada exception, it doesn't 2573 // match foreign exceptions (or didn't, before gcc-4.7). 2574 return false; 2575 case EHPersonality::GNU_CXX: 2576 case EHPersonality::GNU_CXX_SjLj: 2577 case EHPersonality::GNU_ObjC: 2578 case EHPersonality::MSVC_X86SEH: 2579 case EHPersonality::MSVC_Win64SEH: 2580 case EHPersonality::MSVC_CXX: 2581 case EHPersonality::CoreCLR: 2582 case EHPersonality::Wasm_CXX: 2583 return TypeInfo->isNullValue(); 2584 } 2585 llvm_unreachable("invalid enum"); 2586 } 2587 2588 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2589 return 2590 cast<ArrayType>(LHS->getType())->getNumElements() 2591 < 2592 cast<ArrayType>(RHS->getType())->getNumElements(); 2593 } 2594 2595 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2596 // The logic here should be correct for any real-world personality function. 2597 // However if that turns out not to be true, the offending logic can always 2598 // be conditioned on the personality function, like the catch-all logic is. 2599 EHPersonality Personality = 2600 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 2601 2602 // Simplify the list of clauses, eg by removing repeated catch clauses 2603 // (these are often created by inlining). 2604 bool MakeNewInstruction = false; // If true, recreate using the following: 2605 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2606 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2607 2608 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 2609 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 2610 bool isLastClause = i + 1 == e; 2611 if (LI.isCatch(i)) { 2612 // A catch clause. 2613 Constant *CatchClause = LI.getClause(i); 2614 Constant *TypeInfo = CatchClause->stripPointerCasts(); 2615 2616 // If we already saw this clause, there is no point in having a second 2617 // copy of it. 2618 if (AlreadyCaught.insert(TypeInfo).second) { 2619 // This catch clause was not already seen. 2620 NewClauses.push_back(CatchClause); 2621 } else { 2622 // Repeated catch clause - drop the redundant copy. 2623 MakeNewInstruction = true; 2624 } 2625 2626 // If this is a catch-all then there is no point in keeping any following 2627 // clauses or marking the landingpad as having a cleanup. 2628 if (isCatchAll(Personality, TypeInfo)) { 2629 if (!isLastClause) 2630 MakeNewInstruction = true; 2631 CleanupFlag = false; 2632 break; 2633 } 2634 } else { 2635 // A filter clause. If any of the filter elements were already caught 2636 // then they can be dropped from the filter. It is tempting to try to 2637 // exploit the filter further by saying that any typeinfo that does not 2638 // occur in the filter can't be caught later (and thus can be dropped). 2639 // However this would be wrong, since typeinfos can match without being 2640 // equal (for example if one represents a C++ class, and the other some 2641 // class derived from it). 2642 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 2643 Constant *FilterClause = LI.getClause(i); 2644 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 2645 unsigned NumTypeInfos = FilterType->getNumElements(); 2646 2647 // An empty filter catches everything, so there is no point in keeping any 2648 // following clauses or marking the landingpad as having a cleanup. By 2649 // dealing with this case here the following code is made a bit simpler. 2650 if (!NumTypeInfos) { 2651 NewClauses.push_back(FilterClause); 2652 if (!isLastClause) 2653 MakeNewInstruction = true; 2654 CleanupFlag = false; 2655 break; 2656 } 2657 2658 bool MakeNewFilter = false; // If true, make a new filter. 2659 SmallVector<Constant *, 16> NewFilterElts; // New elements. 2660 if (isa<ConstantAggregateZero>(FilterClause)) { 2661 // Not an empty filter - it contains at least one null typeinfo. 2662 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 2663 Constant *TypeInfo = 2664 Constant::getNullValue(FilterType->getElementType()); 2665 // If this typeinfo is a catch-all then the filter can never match. 2666 if (isCatchAll(Personality, TypeInfo)) { 2667 // Throw the filter away. 2668 MakeNewInstruction = true; 2669 continue; 2670 } 2671 2672 // There is no point in having multiple copies of this typeinfo, so 2673 // discard all but the first copy if there is more than one. 2674 NewFilterElts.push_back(TypeInfo); 2675 if (NumTypeInfos > 1) 2676 MakeNewFilter = true; 2677 } else { 2678 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 2679 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 2680 NewFilterElts.reserve(NumTypeInfos); 2681 2682 // Remove any filter elements that were already caught or that already 2683 // occurred in the filter. While there, see if any of the elements are 2684 // catch-alls. If so, the filter can be discarded. 2685 bool SawCatchAll = false; 2686 for (unsigned j = 0; j != NumTypeInfos; ++j) { 2687 Constant *Elt = Filter->getOperand(j); 2688 Constant *TypeInfo = Elt->stripPointerCasts(); 2689 if (isCatchAll(Personality, TypeInfo)) { 2690 // This element is a catch-all. Bail out, noting this fact. 2691 SawCatchAll = true; 2692 break; 2693 } 2694 2695 // Even if we've seen a type in a catch clause, we don't want to 2696 // remove it from the filter. An unexpected type handler may be 2697 // set up for a call site which throws an exception of the same 2698 // type caught. In order for the exception thrown by the unexpected 2699 // handler to propagate correctly, the filter must be correctly 2700 // described for the call site. 2701 // 2702 // Example: 2703 // 2704 // void unexpected() { throw 1;} 2705 // void foo() throw (int) { 2706 // std::set_unexpected(unexpected); 2707 // try { 2708 // throw 2.0; 2709 // } catch (int i) {} 2710 // } 2711 2712 // There is no point in having multiple copies of the same typeinfo in 2713 // a filter, so only add it if we didn't already. 2714 if (SeenInFilter.insert(TypeInfo).second) 2715 NewFilterElts.push_back(cast<Constant>(Elt)); 2716 } 2717 // A filter containing a catch-all cannot match anything by definition. 2718 if (SawCatchAll) { 2719 // Throw the filter away. 2720 MakeNewInstruction = true; 2721 continue; 2722 } 2723 2724 // If we dropped something from the filter, make a new one. 2725 if (NewFilterElts.size() < NumTypeInfos) 2726 MakeNewFilter = true; 2727 } 2728 if (MakeNewFilter) { 2729 FilterType = ArrayType::get(FilterType->getElementType(), 2730 NewFilterElts.size()); 2731 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 2732 MakeNewInstruction = true; 2733 } 2734 2735 NewClauses.push_back(FilterClause); 2736 2737 // If the new filter is empty then it will catch everything so there is 2738 // no point in keeping any following clauses or marking the landingpad 2739 // as having a cleanup. The case of the original filter being empty was 2740 // already handled above. 2741 if (MakeNewFilter && !NewFilterElts.size()) { 2742 assert(MakeNewInstruction && "New filter but not a new instruction!"); 2743 CleanupFlag = false; 2744 break; 2745 } 2746 } 2747 } 2748 2749 // If several filters occur in a row then reorder them so that the shortest 2750 // filters come first (those with the smallest number of elements). This is 2751 // advantageous because shorter filters are more likely to match, speeding up 2752 // unwinding, but mostly because it increases the effectiveness of the other 2753 // filter optimizations below. 2754 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 2755 unsigned j; 2756 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 2757 for (j = i; j != e; ++j) 2758 if (!isa<ArrayType>(NewClauses[j]->getType())) 2759 break; 2760 2761 // Check whether the filters are already sorted by length. We need to know 2762 // if sorting them is actually going to do anything so that we only make a 2763 // new landingpad instruction if it does. 2764 for (unsigned k = i; k + 1 < j; ++k) 2765 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 2766 // Not sorted, so sort the filters now. Doing an unstable sort would be 2767 // correct too but reordering filters pointlessly might confuse users. 2768 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 2769 shorter_filter); 2770 MakeNewInstruction = true; 2771 break; 2772 } 2773 2774 // Look for the next batch of filters. 2775 i = j + 1; 2776 } 2777 2778 // If typeinfos matched if and only if equal, then the elements of a filter L 2779 // that occurs later than a filter F could be replaced by the intersection of 2780 // the elements of F and L. In reality two typeinfos can match without being 2781 // equal (for example if one represents a C++ class, and the other some class 2782 // derived from it) so it would be wrong to perform this transform in general. 2783 // However the transform is correct and useful if F is a subset of L. In that 2784 // case L can be replaced by F, and thus removed altogether since repeating a 2785 // filter is pointless. So here we look at all pairs of filters F and L where 2786 // L follows F in the list of clauses, and remove L if every element of F is 2787 // an element of L. This can occur when inlining C++ functions with exception 2788 // specifications. 2789 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 2790 // Examine each filter in turn. 2791 Value *Filter = NewClauses[i]; 2792 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 2793 if (!FTy) 2794 // Not a filter - skip it. 2795 continue; 2796 unsigned FElts = FTy->getNumElements(); 2797 // Examine each filter following this one. Doing this backwards means that 2798 // we don't have to worry about filters disappearing under us when removed. 2799 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 2800 Value *LFilter = NewClauses[j]; 2801 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 2802 if (!LTy) 2803 // Not a filter - skip it. 2804 continue; 2805 // If Filter is a subset of LFilter, i.e. every element of Filter is also 2806 // an element of LFilter, then discard LFilter. 2807 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 2808 // If Filter is empty then it is a subset of LFilter. 2809 if (!FElts) { 2810 // Discard LFilter. 2811 NewClauses.erase(J); 2812 MakeNewInstruction = true; 2813 // Move on to the next filter. 2814 continue; 2815 } 2816 unsigned LElts = LTy->getNumElements(); 2817 // If Filter is longer than LFilter then it cannot be a subset of it. 2818 if (FElts > LElts) 2819 // Move on to the next filter. 2820 continue; 2821 // At this point we know that LFilter has at least one element. 2822 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 2823 // Filter is a subset of LFilter iff Filter contains only zeros (as we 2824 // already know that Filter is not longer than LFilter). 2825 if (isa<ConstantAggregateZero>(Filter)) { 2826 assert(FElts <= LElts && "Should have handled this case earlier!"); 2827 // Discard LFilter. 2828 NewClauses.erase(J); 2829 MakeNewInstruction = true; 2830 } 2831 // Move on to the next filter. 2832 continue; 2833 } 2834 ConstantArray *LArray = cast<ConstantArray>(LFilter); 2835 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 2836 // Since Filter is non-empty and contains only zeros, it is a subset of 2837 // LFilter iff LFilter contains a zero. 2838 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 2839 for (unsigned l = 0; l != LElts; ++l) 2840 if (LArray->getOperand(l)->isNullValue()) { 2841 // LFilter contains a zero - discard it. 2842 NewClauses.erase(J); 2843 MakeNewInstruction = true; 2844 break; 2845 } 2846 // Move on to the next filter. 2847 continue; 2848 } 2849 // At this point we know that both filters are ConstantArrays. Loop over 2850 // operands to see whether every element of Filter is also an element of 2851 // LFilter. Since filters tend to be short this is probably faster than 2852 // using a method that scales nicely. 2853 ConstantArray *FArray = cast<ConstantArray>(Filter); 2854 bool AllFound = true; 2855 for (unsigned f = 0; f != FElts; ++f) { 2856 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 2857 AllFound = false; 2858 for (unsigned l = 0; l != LElts; ++l) { 2859 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 2860 if (LTypeInfo == FTypeInfo) { 2861 AllFound = true; 2862 break; 2863 } 2864 } 2865 if (!AllFound) 2866 break; 2867 } 2868 if (AllFound) { 2869 // Discard LFilter. 2870 NewClauses.erase(J); 2871 MakeNewInstruction = true; 2872 } 2873 // Move on to the next filter. 2874 } 2875 } 2876 2877 // If we changed any of the clauses, replace the old landingpad instruction 2878 // with a new one. 2879 if (MakeNewInstruction) { 2880 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 2881 NewClauses.size()); 2882 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 2883 NLI->addClause(NewClauses[i]); 2884 // A landing pad with no clauses must have the cleanup flag set. It is 2885 // theoretically possible, though highly unlikely, that we eliminated all 2886 // clauses. If so, force the cleanup flag to true. 2887 if (NewClauses.empty()) 2888 CleanupFlag = true; 2889 NLI->setCleanup(CleanupFlag); 2890 return NLI; 2891 } 2892 2893 // Even if none of the clauses changed, we may nonetheless have understood 2894 // that the cleanup flag is pointless. Clear it if so. 2895 if (LI.isCleanup() != CleanupFlag) { 2896 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 2897 LI.setCleanup(CleanupFlag); 2898 return &LI; 2899 } 2900 2901 return nullptr; 2902 } 2903 2904 /// Try to move the specified instruction from its current block into the 2905 /// beginning of DestBlock, which can only happen if it's safe to move the 2906 /// instruction past all of the instructions between it and the end of its 2907 /// block. 2908 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 2909 assert(I->hasOneUse() && "Invariants didn't hold!"); 2910 BasicBlock *SrcBlock = I->getParent(); 2911 2912 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 2913 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 2914 isa<TerminatorInst>(I)) 2915 return false; 2916 2917 // Do not sink alloca instructions out of the entry block. 2918 if (isa<AllocaInst>(I) && I->getParent() == 2919 &DestBlock->getParent()->getEntryBlock()) 2920 return false; 2921 2922 // Do not sink into catchswitch blocks. 2923 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 2924 return false; 2925 2926 // Do not sink convergent call instructions. 2927 if (auto *CI = dyn_cast<CallInst>(I)) { 2928 if (CI->isConvergent()) 2929 return false; 2930 } 2931 // We can only sink load instructions if there is nothing between the load and 2932 // the end of block that could change the value. 2933 if (I->mayReadFromMemory()) { 2934 for (BasicBlock::iterator Scan = I->getIterator(), 2935 E = I->getParent()->end(); 2936 Scan != E; ++Scan) 2937 if (Scan->mayWriteToMemory()) 2938 return false; 2939 } 2940 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 2941 I->moveBefore(&*InsertPos); 2942 ++NumSunkInst; 2943 2944 // Also sink all related debug uses from the source basic block. Otherwise we 2945 // get debug use before the def. 2946 SmallVector<DbgInfoIntrinsic *, 1> DbgUsers; 2947 findDbgUsers(DbgUsers, I); 2948 for (auto *DII : DbgUsers) { 2949 if (DII->getParent() == SrcBlock) { 2950 DII->moveBefore(&*InsertPos); 2951 LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n'); 2952 } 2953 } 2954 return true; 2955 } 2956 2957 bool InstCombiner::run() { 2958 while (!Worklist.isEmpty()) { 2959 Instruction *I = Worklist.RemoveOne(); 2960 if (I == nullptr) continue; // skip null values. 2961 2962 // Check to see if we can DCE the instruction. 2963 if (isInstructionTriviallyDead(I, &TLI)) { 2964 LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); 2965 eraseInstFromFunction(*I); 2966 ++NumDeadInst; 2967 MadeIRChange = true; 2968 continue; 2969 } 2970 2971 if (!DebugCounter::shouldExecute(VisitCounter)) 2972 continue; 2973 2974 // Instruction isn't dead, see if we can constant propagate it. 2975 if (!I->use_empty() && 2976 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 2977 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 2978 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 2979 << '\n'); 2980 2981 // Add operands to the worklist. 2982 replaceInstUsesWith(*I, C); 2983 ++NumConstProp; 2984 if (isInstructionTriviallyDead(I, &TLI)) 2985 eraseInstFromFunction(*I); 2986 MadeIRChange = true; 2987 continue; 2988 } 2989 } 2990 2991 // In general, it is possible for computeKnownBits to determine all bits in 2992 // a value even when the operands are not all constants. 2993 Type *Ty = I->getType(); 2994 if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) { 2995 KnownBits Known = computeKnownBits(I, /*Depth*/0, I); 2996 if (Known.isConstant()) { 2997 Constant *C = ConstantInt::get(Ty, Known.getConstant()); 2998 LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C 2999 << " from: " << *I << '\n'); 3000 3001 // Add operands to the worklist. 3002 replaceInstUsesWith(*I, C); 3003 ++NumConstProp; 3004 if (isInstructionTriviallyDead(I, &TLI)) 3005 eraseInstFromFunction(*I); 3006 MadeIRChange = true; 3007 continue; 3008 } 3009 } 3010 3011 // See if we can trivially sink this instruction to a successor basic block. 3012 if (I->hasOneUse()) { 3013 BasicBlock *BB = I->getParent(); 3014 Instruction *UserInst = cast<Instruction>(*I->user_begin()); 3015 BasicBlock *UserParent; 3016 3017 // Get the block the use occurs in. 3018 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 3019 UserParent = PN->getIncomingBlock(*I->use_begin()); 3020 else 3021 UserParent = UserInst->getParent(); 3022 3023 if (UserParent != BB) { 3024 bool UserIsSuccessor = false; 3025 // See if the user is one of our successors. 3026 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 3027 if (*SI == UserParent) { 3028 UserIsSuccessor = true; 3029 break; 3030 } 3031 3032 // If the user is one of our immediate successors, and if that successor 3033 // only has us as a predecessors (we'd have to split the critical edge 3034 // otherwise), we can keep going. 3035 if (UserIsSuccessor && UserParent->getUniquePredecessor()) { 3036 // Okay, the CFG is simple enough, try to sink this instruction. 3037 if (TryToSinkInstruction(I, UserParent)) { 3038 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3039 MadeIRChange = true; 3040 // We'll add uses of the sunk instruction below, but since sinking 3041 // can expose opportunities for it's *operands* add them to the 3042 // worklist 3043 for (Use &U : I->operands()) 3044 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3045 Worklist.Add(OpI); 3046 } 3047 } 3048 } 3049 } 3050 3051 // Now that we have an instruction, try combining it to simplify it. 3052 Builder.SetInsertPoint(I); 3053 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 3054 3055 #ifndef NDEBUG 3056 std::string OrigI; 3057 #endif 3058 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 3059 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 3060 3061 if (Instruction *Result = visit(*I)) { 3062 ++NumCombined; 3063 // Should we replace the old instruction with a new one? 3064 if (Result != I) { 3065 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 3066 << " New = " << *Result << '\n'); 3067 3068 if (I->getDebugLoc()) 3069 Result->setDebugLoc(I->getDebugLoc()); 3070 // Everything uses the new instruction now. 3071 I->replaceAllUsesWith(Result); 3072 3073 // Move the name to the new instruction first. 3074 Result->takeName(I); 3075 3076 // Push the new instruction and any users onto the worklist. 3077 Worklist.AddUsersToWorkList(*Result); 3078 Worklist.Add(Result); 3079 3080 // Insert the new instruction into the basic block... 3081 BasicBlock *InstParent = I->getParent(); 3082 BasicBlock::iterator InsertPos = I->getIterator(); 3083 3084 // If we replace a PHI with something that isn't a PHI, fix up the 3085 // insertion point. 3086 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 3087 InsertPos = InstParent->getFirstInsertionPt(); 3088 3089 InstParent->getInstList().insert(InsertPos, Result); 3090 3091 eraseInstFromFunction(*I); 3092 } else { 3093 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3094 << " New = " << *I << '\n'); 3095 3096 // If the instruction was modified, it's possible that it is now dead. 3097 // if so, remove it. 3098 if (isInstructionTriviallyDead(I, &TLI)) { 3099 eraseInstFromFunction(*I); 3100 } else { 3101 Worklist.AddUsersToWorkList(*I); 3102 Worklist.Add(I); 3103 } 3104 } 3105 MadeIRChange = true; 3106 } 3107 } 3108 3109 Worklist.Zap(); 3110 return MadeIRChange; 3111 } 3112 3113 /// Walk the function in depth-first order, adding all reachable code to the 3114 /// worklist. 3115 /// 3116 /// This has a couple of tricks to make the code faster and more powerful. In 3117 /// particular, we constant fold and DCE instructions as we go, to avoid adding 3118 /// them to the worklist (this significantly speeds up instcombine on code where 3119 /// many instructions are dead or constant). Additionally, if we find a branch 3120 /// whose condition is a known constant, we only visit the reachable successors. 3121 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, 3122 SmallPtrSetImpl<BasicBlock *> &Visited, 3123 InstCombineWorklist &ICWorklist, 3124 const TargetLibraryInfo *TLI) { 3125 bool MadeIRChange = false; 3126 SmallVector<BasicBlock*, 256> Worklist; 3127 Worklist.push_back(BB); 3128 3129 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 3130 DenseMap<Constant *, Constant *> FoldedConstants; 3131 3132 do { 3133 BB = Worklist.pop_back_val(); 3134 3135 // We have now visited this block! If we've already been here, ignore it. 3136 if (!Visited.insert(BB).second) 3137 continue; 3138 3139 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 3140 Instruction *Inst = &*BBI++; 3141 3142 // DCE instruction if trivially dead. 3143 if (isInstructionTriviallyDead(Inst, TLI)) { 3144 ++NumDeadInst; 3145 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 3146 salvageDebugInfo(*Inst); 3147 Inst->eraseFromParent(); 3148 MadeIRChange = true; 3149 continue; 3150 } 3151 3152 // ConstantProp instruction if trivially constant. 3153 if (!Inst->use_empty() && 3154 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 3155 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 3156 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst 3157 << '\n'); 3158 Inst->replaceAllUsesWith(C); 3159 ++NumConstProp; 3160 if (isInstructionTriviallyDead(Inst, TLI)) 3161 Inst->eraseFromParent(); 3162 MadeIRChange = true; 3163 continue; 3164 } 3165 3166 // See if we can constant fold its operands. 3167 for (Use &U : Inst->operands()) { 3168 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 3169 continue; 3170 3171 auto *C = cast<Constant>(U); 3172 Constant *&FoldRes = FoldedConstants[C]; 3173 if (!FoldRes) 3174 FoldRes = ConstantFoldConstant(C, DL, TLI); 3175 if (!FoldRes) 3176 FoldRes = C; 3177 3178 if (FoldRes != C) { 3179 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst 3180 << "\n Old = " << *C 3181 << "\n New = " << *FoldRes << '\n'); 3182 U = FoldRes; 3183 MadeIRChange = true; 3184 } 3185 } 3186 3187 // Skip processing debug intrinsics in InstCombine. Processing these call instructions 3188 // consumes non-trivial amount of time and provides no value for the optimization. 3189 if (!isa<DbgInfoIntrinsic>(Inst)) 3190 InstrsForInstCombineWorklist.push_back(Inst); 3191 } 3192 3193 // Recursively visit successors. If this is a branch or switch on a 3194 // constant, only visit the reachable successor. 3195 TerminatorInst *TI = BB->getTerminator(); 3196 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3197 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 3198 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 3199 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 3200 Worklist.push_back(ReachableBB); 3201 continue; 3202 } 3203 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3204 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 3205 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 3206 continue; 3207 } 3208 } 3209 3210 for (BasicBlock *SuccBB : TI->successors()) 3211 Worklist.push_back(SuccBB); 3212 } while (!Worklist.empty()); 3213 3214 // Once we've found all of the instructions to add to instcombine's worklist, 3215 // add them in reverse order. This way instcombine will visit from the top 3216 // of the function down. This jives well with the way that it adds all uses 3217 // of instructions to the worklist after doing a transformation, thus avoiding 3218 // some N^2 behavior in pathological cases. 3219 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist); 3220 3221 return MadeIRChange; 3222 } 3223 3224 /// Populate the IC worklist from a function, and prune any dead basic 3225 /// blocks discovered in the process. 3226 /// 3227 /// This also does basic constant propagation and other forward fixing to make 3228 /// the combiner itself run much faster. 3229 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 3230 TargetLibraryInfo *TLI, 3231 InstCombineWorklist &ICWorklist) { 3232 bool MadeIRChange = false; 3233 3234 // Do a depth-first traversal of the function, populate the worklist with 3235 // the reachable instructions. Ignore blocks that are not reachable. Keep 3236 // track of which blocks we visit. 3237 SmallPtrSet<BasicBlock *, 32> Visited; 3238 MadeIRChange |= 3239 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI); 3240 3241 // Do a quick scan over the function. If we find any blocks that are 3242 // unreachable, remove any instructions inside of them. This prevents 3243 // the instcombine code from having to deal with some bad special cases. 3244 for (BasicBlock &BB : F) { 3245 if (Visited.count(&BB)) 3246 continue; 3247 3248 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB); 3249 MadeIRChange |= NumDeadInstInBB > 0; 3250 NumDeadInst += NumDeadInstInBB; 3251 } 3252 3253 return MadeIRChange; 3254 } 3255 3256 static bool combineInstructionsOverFunction( 3257 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, 3258 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, 3259 OptimizationRemarkEmitter &ORE, bool ExpensiveCombines = true, 3260 LoopInfo *LI = nullptr) { 3261 auto &DL = F.getParent()->getDataLayout(); 3262 ExpensiveCombines |= EnableExpensiveCombines; 3263 3264 /// Builder - This is an IRBuilder that automatically inserts new 3265 /// instructions into the worklist when they are created. 3266 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 3267 F.getContext(), TargetFolder(DL), 3268 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 3269 Worklist.Add(I); 3270 if (match(I, m_Intrinsic<Intrinsic::assume>())) 3271 AC.registerAssumption(cast<CallInst>(I)); 3272 })); 3273 3274 // Lower dbg.declare intrinsics otherwise their value may be clobbered 3275 // by instcombiner. 3276 bool MadeIRChange = false; 3277 if (ShouldLowerDbgDeclare) 3278 MadeIRChange = LowerDbgDeclare(F); 3279 3280 // Iterate while there is work to do. 3281 int Iteration = 0; 3282 while (true) { 3283 ++Iteration; 3284 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 3285 << F.getName() << "\n"); 3286 3287 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 3288 3289 InstCombiner IC(Worklist, Builder, F.optForMinSize(), ExpensiveCombines, AA, 3290 AC, TLI, DT, ORE, DL, LI); 3291 IC.MaxArraySizeForCombine = MaxArraySize; 3292 3293 if (!IC.run()) 3294 break; 3295 } 3296 3297 return MadeIRChange || Iteration > 1; 3298 } 3299 3300 PreservedAnalyses InstCombinePass::run(Function &F, 3301 FunctionAnalysisManager &AM) { 3302 auto &AC = AM.getResult<AssumptionAnalysis>(F); 3303 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 3304 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 3305 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3306 3307 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 3308 3309 auto *AA = &AM.getResult<AAManager>(F); 3310 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, 3311 ExpensiveCombines, LI)) 3312 // No changes, all analyses are preserved. 3313 return PreservedAnalyses::all(); 3314 3315 // Mark all the analyses that instcombine updates as preserved. 3316 PreservedAnalyses PA; 3317 PA.preserveSet<CFGAnalyses>(); 3318 PA.preserve<AAManager>(); 3319 PA.preserve<BasicAA>(); 3320 PA.preserve<GlobalsAA>(); 3321 return PA; 3322 } 3323 3324 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 3325 AU.setPreservesCFG(); 3326 AU.addRequired<AAResultsWrapperPass>(); 3327 AU.addRequired<AssumptionCacheTracker>(); 3328 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3329 AU.addRequired<DominatorTreeWrapperPass>(); 3330 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3331 AU.addPreserved<DominatorTreeWrapperPass>(); 3332 AU.addPreserved<AAResultsWrapperPass>(); 3333 AU.addPreserved<BasicAAWrapperPass>(); 3334 AU.addPreserved<GlobalsAAWrapperPass>(); 3335 } 3336 3337 bool InstructionCombiningPass::runOnFunction(Function &F) { 3338 if (skipFunction(F)) 3339 return false; 3340 3341 // Required analyses. 3342 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3343 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3344 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 3345 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3346 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 3347 3348 // Optional analyses. 3349 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3350 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 3351 3352 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, 3353 ExpensiveCombines, LI); 3354 } 3355 3356 char InstructionCombiningPass::ID = 0; 3357 3358 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 3359 "Combine redundant instructions", false, false) 3360 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3361 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3362 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3363 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3364 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3365 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3366 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 3367 "Combine redundant instructions", false, false) 3368 3369 // Initialization Routines 3370 void llvm::initializeInstCombine(PassRegistry &Registry) { 3371 initializeInstructionCombiningPassPass(Registry); 3372 } 3373 3374 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 3375 initializeInstructionCombiningPassPass(*unwrap(R)); 3376 } 3377 3378 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) { 3379 return new InstructionCombiningPass(ExpensiveCombines); 3380 } 3381 3382 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 3383 unwrap(PM)->add(createInstructionCombiningPass()); 3384 } 3385