1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // InstructionCombining - Combine instructions to form fewer, simple
11 // instructions.  This pass does not modify the CFG.  This pass is where
12 // algebraic simplification happens.
13 //
14 // This pass combines things like:
15 //    %Y = add i32 %X, 1
16 //    %Z = add i32 %Y, 1
17 // into:
18 //    %Z = add i32 %X, 2
19 //
20 // This is a simple worklist driven algorithm.
21 //
22 // This pass guarantees that the following canonicalizations are performed on
23 // the program:
24 //    1. If a binary operator has a constant operand, it is moved to the RHS
25 //    2. Bitwise operators with constant operands are always grouped so that
26 //       shifts are performed first, then or's, then and's, then xor's.
27 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28 //    4. All cmp instructions on boolean values are replaced with logical ops
29 //    5. add X, X is represented as (X*2) => (X << 1)
30 //    6. Multiplies with a power-of-two constant argument are transformed into
31 //       shifts.
32 //   ... etc.
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "InstCombineInternal.h"
37 #include "llvm-c/Initialization.h"
38 #include "llvm-c/Transforms/InstCombine.h"
39 #include "llvm/ADT/APInt.h"
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/None.h"
43 #include "llvm/ADT/SmallPtrSet.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/ADT/TinyPtrVector.h"
47 #include "llvm/Analysis/AliasAnalysis.h"
48 #include "llvm/Analysis/AssumptionCache.h"
49 #include "llvm/Analysis/BasicAliasAnalysis.h"
50 #include "llvm/Analysis/CFG.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/EHPersonalities.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LoopInfo.h"
56 #include "llvm/Analysis/MemoryBuiltins.h"
57 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
58 #include "llvm/Analysis/TargetFolder.h"
59 #include "llvm/Analysis/TargetLibraryInfo.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include "llvm/Analysis/ValueTracking.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/CFG.h"
64 #include "llvm/IR/Constant.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DIBuilder.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Dominators.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GetElementPtrTypeIterator.h"
72 #include "llvm/IR/IRBuilder.h"
73 #include "llvm/IR/InstrTypes.h"
74 #include "llvm/IR/Instruction.h"
75 #include "llvm/IR/Instructions.h"
76 #include "llvm/IR/IntrinsicInst.h"
77 #include "llvm/IR/Intrinsics.h"
78 #include "llvm/IR/LegacyPassManager.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Operator.h"
81 #include "llvm/IR/PassManager.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/Use.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/IR/ValueHandle.h"
88 #include "llvm/Pass.h"
89 #include "llvm/Support/CBindingWrapping.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Compiler.h"
93 #include "llvm/Support/Debug.h"
94 #include "llvm/Support/DebugCounter.h"
95 #include "llvm/Support/ErrorHandling.h"
96 #include "llvm/Support/KnownBits.h"
97 #include "llvm/Support/raw_ostream.h"
98 #include "llvm/Transforms/InstCombine/InstCombine.h"
99 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
100 #include <algorithm>
101 #include <cassert>
102 #include <cstdint>
103 #include <memory>
104 #include <string>
105 #include <utility>
106 
107 using namespace llvm;
108 using namespace llvm::PatternMatch;
109 
110 #define DEBUG_TYPE "instcombine"
111 
112 STATISTIC(NumCombined , "Number of insts combined");
113 STATISTIC(NumConstProp, "Number of constant folds");
114 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
115 STATISTIC(NumSunkInst , "Number of instructions sunk");
116 STATISTIC(NumExpand,    "Number of expansions");
117 STATISTIC(NumFactor   , "Number of factorizations");
118 STATISTIC(NumReassoc  , "Number of reassociations");
119 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
120               "Controls which instructions are visited");
121 
122 static cl::opt<bool>
123 EnableExpensiveCombines("expensive-combines",
124                         cl::desc("Enable expensive instruction combines"));
125 
126 static cl::opt<unsigned>
127 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
128              cl::desc("Maximum array size considered when doing a combine"));
129 
130 // FIXME: Remove this flag when it is no longer necessary to convert
131 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
132 // increases variable availability at the cost of accuracy. Variables that
133 // cannot be promoted by mem2reg or SROA will be described as living in memory
134 // for their entire lifetime. However, passes like DSE and instcombine can
135 // delete stores to the alloca, leading to misleading and inaccurate debug
136 // information. This flag can be removed when those passes are fixed.
137 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
138                                                cl::Hidden, cl::init(true));
139 
140 Value *InstCombiner::EmitGEPOffset(User *GEP) {
141   return llvm::EmitGEPOffset(&Builder, DL, GEP);
142 }
143 
144 /// Return true if it is desirable to convert an integer computation from a
145 /// given bit width to a new bit width.
146 /// We don't want to convert from a legal to an illegal type or from a smaller
147 /// to a larger illegal type. A width of '1' is always treated as a legal type
148 /// because i1 is a fundamental type in IR, and there are many specialized
149 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
150 /// legal to convert to, in order to open up more combining opportunities.
151 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common
152 /// from frontend languages.
153 bool InstCombiner::shouldChangeType(unsigned FromWidth,
154                                     unsigned ToWidth) const {
155   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
156   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
157 
158   // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
159   // shrink types, to prevent infinite loops.
160   if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
161     return true;
162 
163   // If this is a legal integer from type, and the result would be an illegal
164   // type, don't do the transformation.
165   if (FromLegal && !ToLegal)
166     return false;
167 
168   // Otherwise, if both are illegal, do not increase the size of the result. We
169   // do allow things like i160 -> i64, but not i64 -> i160.
170   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
171     return false;
172 
173   return true;
174 }
175 
176 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
177 /// We don't want to convert from a legal to an illegal type or from a smaller
178 /// to a larger illegal type. i1 is always treated as a legal type because it is
179 /// a fundamental type in IR, and there are many specialized optimizations for
180 /// i1 types.
181 bool InstCombiner::shouldChangeType(Type *From, Type *To) const {
182   assert(From->isIntegerTy() && To->isIntegerTy());
183 
184   unsigned FromWidth = From->getPrimitiveSizeInBits();
185   unsigned ToWidth = To->getPrimitiveSizeInBits();
186   return shouldChangeType(FromWidth, ToWidth);
187 }
188 
189 // Return true, if No Signed Wrap should be maintained for I.
190 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
191 // where both B and C should be ConstantInts, results in a constant that does
192 // not overflow. This function only handles the Add and Sub opcodes. For
193 // all other opcodes, the function conservatively returns false.
194 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
195   OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
196   if (!OBO || !OBO->hasNoSignedWrap())
197     return false;
198 
199   // We reason about Add and Sub Only.
200   Instruction::BinaryOps Opcode = I.getOpcode();
201   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
202     return false;
203 
204   const APInt *BVal, *CVal;
205   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
206     return false;
207 
208   bool Overflow = false;
209   if (Opcode == Instruction::Add)
210     (void)BVal->sadd_ov(*CVal, Overflow);
211   else
212     (void)BVal->ssub_ov(*CVal, Overflow);
213 
214   return !Overflow;
215 }
216 
217 /// Conservatively clears subclassOptionalData after a reassociation or
218 /// commutation. We preserve fast-math flags when applicable as they can be
219 /// preserved.
220 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
221   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
222   if (!FPMO) {
223     I.clearSubclassOptionalData();
224     return;
225   }
226 
227   FastMathFlags FMF = I.getFastMathFlags();
228   I.clearSubclassOptionalData();
229   I.setFastMathFlags(FMF);
230 }
231 
232 /// Combine constant operands of associative operations either before or after a
233 /// cast to eliminate one of the associative operations:
234 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
235 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
236 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) {
237   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
238   if (!Cast || !Cast->hasOneUse())
239     return false;
240 
241   // TODO: Enhance logic for other casts and remove this check.
242   auto CastOpcode = Cast->getOpcode();
243   if (CastOpcode != Instruction::ZExt)
244     return false;
245 
246   // TODO: Enhance logic for other BinOps and remove this check.
247   if (!BinOp1->isBitwiseLogicOp())
248     return false;
249 
250   auto AssocOpcode = BinOp1->getOpcode();
251   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
252   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
253     return false;
254 
255   Constant *C1, *C2;
256   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
257       !match(BinOp2->getOperand(1), m_Constant(C2)))
258     return false;
259 
260   // TODO: This assumes a zext cast.
261   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
262   // to the destination type might lose bits.
263 
264   // Fold the constants together in the destination type:
265   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
266   Type *DestTy = C1->getType();
267   Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
268   Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
269   Cast->setOperand(0, BinOp2->getOperand(0));
270   BinOp1->setOperand(1, FoldedC);
271   return true;
272 }
273 
274 /// This performs a few simplifications for operators that are associative or
275 /// commutative:
276 ///
277 ///  Commutative operators:
278 ///
279 ///  1. Order operands such that they are listed from right (least complex) to
280 ///     left (most complex).  This puts constants before unary operators before
281 ///     binary operators.
282 ///
283 ///  Associative operators:
284 ///
285 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
286 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
287 ///
288 ///  Associative and commutative operators:
289 ///
290 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
291 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
292 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
293 ///     if C1 and C2 are constants.
294 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
295   Instruction::BinaryOps Opcode = I.getOpcode();
296   bool Changed = false;
297 
298   do {
299     // Order operands such that they are listed from right (least complex) to
300     // left (most complex).  This puts constants before unary operators before
301     // binary operators.
302     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
303         getComplexity(I.getOperand(1)))
304       Changed = !I.swapOperands();
305 
306     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
307     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
308 
309     if (I.isAssociative()) {
310       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
311       if (Op0 && Op0->getOpcode() == Opcode) {
312         Value *A = Op0->getOperand(0);
313         Value *B = Op0->getOperand(1);
314         Value *C = I.getOperand(1);
315 
316         // Does "B op C" simplify?
317         if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
318           // It simplifies to V.  Form "A op V".
319           I.setOperand(0, A);
320           I.setOperand(1, V);
321           // Conservatively clear the optional flags, since they may not be
322           // preserved by the reassociation.
323           if (MaintainNoSignedWrap(I, B, C) &&
324               (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
325             // Note: this is only valid because SimplifyBinOp doesn't look at
326             // the operands to Op0.
327             I.clearSubclassOptionalData();
328             I.setHasNoSignedWrap(true);
329           } else {
330             ClearSubclassDataAfterReassociation(I);
331           }
332 
333           Changed = true;
334           ++NumReassoc;
335           continue;
336         }
337       }
338 
339       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
340       if (Op1 && Op1->getOpcode() == Opcode) {
341         Value *A = I.getOperand(0);
342         Value *B = Op1->getOperand(0);
343         Value *C = Op1->getOperand(1);
344 
345         // Does "A op B" simplify?
346         if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
347           // It simplifies to V.  Form "V op C".
348           I.setOperand(0, V);
349           I.setOperand(1, C);
350           // Conservatively clear the optional flags, since they may not be
351           // preserved by the reassociation.
352           ClearSubclassDataAfterReassociation(I);
353           Changed = true;
354           ++NumReassoc;
355           continue;
356         }
357       }
358     }
359 
360     if (I.isAssociative() && I.isCommutative()) {
361       if (simplifyAssocCastAssoc(&I)) {
362         Changed = true;
363         ++NumReassoc;
364         continue;
365       }
366 
367       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
368       if (Op0 && Op0->getOpcode() == Opcode) {
369         Value *A = Op0->getOperand(0);
370         Value *B = Op0->getOperand(1);
371         Value *C = I.getOperand(1);
372 
373         // Does "C op A" simplify?
374         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
375           // It simplifies to V.  Form "V op B".
376           I.setOperand(0, V);
377           I.setOperand(1, B);
378           // Conservatively clear the optional flags, since they may not be
379           // preserved by the reassociation.
380           ClearSubclassDataAfterReassociation(I);
381           Changed = true;
382           ++NumReassoc;
383           continue;
384         }
385       }
386 
387       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
388       if (Op1 && Op1->getOpcode() == Opcode) {
389         Value *A = I.getOperand(0);
390         Value *B = Op1->getOperand(0);
391         Value *C = Op1->getOperand(1);
392 
393         // Does "C op A" simplify?
394         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
395           // It simplifies to V.  Form "B op V".
396           I.setOperand(0, B);
397           I.setOperand(1, V);
398           // Conservatively clear the optional flags, since they may not be
399           // preserved by the reassociation.
400           ClearSubclassDataAfterReassociation(I);
401           Changed = true;
402           ++NumReassoc;
403           continue;
404         }
405       }
406 
407       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
408       // if C1 and C2 are constants.
409       Value *A, *B;
410       Constant *C1, *C2;
411       if (Op0 && Op1 &&
412           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
413           match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
414           match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
415         BinaryOperator *NewBO = BinaryOperator::Create(Opcode, A, B);
416         if (isa<FPMathOperator>(NewBO)) {
417           FastMathFlags Flags = I.getFastMathFlags();
418           Flags &= Op0->getFastMathFlags();
419           Flags &= Op1->getFastMathFlags();
420           NewBO->setFastMathFlags(Flags);
421         }
422         InsertNewInstWith(NewBO, I);
423         NewBO->takeName(Op1);
424         I.setOperand(0, NewBO);
425         I.setOperand(1, ConstantExpr::get(Opcode, C1, C2));
426         // Conservatively clear the optional flags, since they may not be
427         // preserved by the reassociation.
428         ClearSubclassDataAfterReassociation(I);
429 
430         Changed = true;
431         continue;
432       }
433     }
434 
435     // No further simplifications.
436     return Changed;
437   } while (true);
438 }
439 
440 /// Return whether "X LOp (Y ROp Z)" is always equal to
441 /// "(X LOp Y) ROp (X LOp Z)".
442 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
443                                      Instruction::BinaryOps ROp) {
444   // X & (Y | Z) <--> (X & Y) | (X & Z)
445   // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
446   if (LOp == Instruction::And)
447     return ROp == Instruction::Or || ROp == Instruction::Xor;
448 
449   // X | (Y & Z) <--> (X | Y) & (X | Z)
450   if (LOp == Instruction::Or)
451     return ROp == Instruction::And;
452 
453   // X * (Y + Z) <--> (X * Y) + (X * Z)
454   // X * (Y - Z) <--> (X * Y) - (X * Z)
455   if (LOp == Instruction::Mul)
456     return ROp == Instruction::Add || ROp == Instruction::Sub;
457 
458   return false;
459 }
460 
461 /// Return whether "(X LOp Y) ROp Z" is always equal to
462 /// "(X ROp Z) LOp (Y ROp Z)".
463 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
464                                      Instruction::BinaryOps ROp) {
465   if (Instruction::isCommutative(ROp))
466     return leftDistributesOverRight(ROp, LOp);
467 
468   // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
469   return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
470 
471   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
472   // but this requires knowing that the addition does not overflow and other
473   // such subtleties.
474 }
475 
476 /// This function returns identity value for given opcode, which can be used to
477 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
478 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
479   if (isa<Constant>(V))
480     return nullptr;
481 
482   return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
483 }
484 
485 /// This function predicates factorization using distributive laws. By default,
486 /// it just returns the 'Op' inputs. But for special-cases like
487 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
488 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
489 /// allow more factorization opportunities.
490 static Instruction::BinaryOps
491 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
492                           Value *&LHS, Value *&RHS) {
493   assert(Op && "Expected a binary operator");
494   LHS = Op->getOperand(0);
495   RHS = Op->getOperand(1);
496   if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
497     Constant *C;
498     if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
499       // X << C --> X * (1 << C)
500       RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
501       return Instruction::Mul;
502     }
503     // TODO: We can add other conversions e.g. shr => div etc.
504   }
505   return Op->getOpcode();
506 }
507 
508 /// This tries to simplify binary operations by factorizing out common terms
509 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
510 Value *InstCombiner::tryFactorization(BinaryOperator &I,
511                                       Instruction::BinaryOps InnerOpcode,
512                                       Value *A, Value *B, Value *C, Value *D) {
513   assert(A && B && C && D && "All values must be provided");
514 
515   Value *V = nullptr;
516   Value *SimplifiedInst = nullptr;
517   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
518   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
519 
520   // Does "X op' Y" always equal "Y op' X"?
521   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
522 
523   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
524   if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
525     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
526     // commutative case, "(A op' B) op (C op' A)"?
527     if (A == C || (InnerCommutative && A == D)) {
528       if (A != C)
529         std::swap(C, D);
530       // Consider forming "A op' (B op D)".
531       // If "B op D" simplifies then it can be formed with no cost.
532       V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
533       // If "B op D" doesn't simplify then only go on if both of the existing
534       // operations "A op' B" and "C op' D" will be zapped as no longer used.
535       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
536         V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
537       if (V) {
538         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
539       }
540     }
541 
542   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
543   if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
544     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
545     // commutative case, "(A op' B) op (B op' D)"?
546     if (B == D || (InnerCommutative && B == C)) {
547       if (B != D)
548         std::swap(C, D);
549       // Consider forming "(A op C) op' B".
550       // If "A op C" simplifies then it can be formed with no cost.
551       V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
552 
553       // If "A op C" doesn't simplify then only go on if both of the existing
554       // operations "A op' B" and "C op' D" will be zapped as no longer used.
555       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
556         V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
557       if (V) {
558         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
559       }
560     }
561 
562   if (SimplifiedInst) {
563     ++NumFactor;
564     SimplifiedInst->takeName(&I);
565 
566     // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
567     // TODO: Check for NUW.
568     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
569       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
570         bool HasNSW = false;
571         if (isa<OverflowingBinaryOperator>(&I))
572           HasNSW = I.hasNoSignedWrap();
573 
574         if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS))
575           HasNSW &= LOBO->hasNoSignedWrap();
576 
577         if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS))
578           HasNSW &= ROBO->hasNoSignedWrap();
579 
580         // We can propagate 'nsw' if we know that
581         //  %Y = mul nsw i16 %X, C
582         //  %Z = add nsw i16 %Y, %X
583         // =>
584         //  %Z = mul nsw i16 %X, C+1
585         //
586         // iff C+1 isn't INT_MIN
587         const APInt *CInt;
588         if (TopLevelOpcode == Instruction::Add &&
589             InnerOpcode == Instruction::Mul)
590           if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
591             BO->setHasNoSignedWrap(HasNSW);
592       }
593     }
594   }
595   return SimplifiedInst;
596 }
597 
598 /// This tries to simplify binary operations which some other binary operation
599 /// distributes over either by factorizing out common terms
600 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
601 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
602 /// Returns the simplified value, or null if it didn't simplify.
603 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
604   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
605   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
606   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
607   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
608 
609   {
610     // Factorization.
611     Value *A, *B, *C, *D;
612     Instruction::BinaryOps LHSOpcode, RHSOpcode;
613     if (Op0)
614       LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
615     if (Op1)
616       RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
617 
618     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
619     // a common term.
620     if (Op0 && Op1 && LHSOpcode == RHSOpcode)
621       if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
622         return V;
623 
624     // The instruction has the form "(A op' B) op (C)".  Try to factorize common
625     // term.
626     if (Op0)
627       if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
628         if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
629           return V;
630 
631     // The instruction has the form "(B) op (C op' D)".  Try to factorize common
632     // term.
633     if (Op1)
634       if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
635         if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
636           return V;
637   }
638 
639   // Expansion.
640   if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
641     // The instruction has the form "(A op' B) op C".  See if expanding it out
642     // to "(A op C) op' (B op C)" results in simplifications.
643     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
644     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
645 
646     Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
647     Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I));
648 
649     // Do "A op C" and "B op C" both simplify?
650     if (L && R) {
651       // They do! Return "L op' R".
652       ++NumExpand;
653       C = Builder.CreateBinOp(InnerOpcode, L, R);
654       C->takeName(&I);
655       return C;
656     }
657 
658     // Does "A op C" simplify to the identity value for the inner opcode?
659     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
660       // They do! Return "B op C".
661       ++NumExpand;
662       C = Builder.CreateBinOp(TopLevelOpcode, B, C);
663       C->takeName(&I);
664       return C;
665     }
666 
667     // Does "B op C" simplify to the identity value for the inner opcode?
668     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
669       // They do! Return "A op C".
670       ++NumExpand;
671       C = Builder.CreateBinOp(TopLevelOpcode, A, C);
672       C->takeName(&I);
673       return C;
674     }
675   }
676 
677   if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
678     // The instruction has the form "A op (B op' C)".  See if expanding it out
679     // to "(A op B) op' (A op C)" results in simplifications.
680     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
681     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
682 
683     Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I));
684     Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
685 
686     // Do "A op B" and "A op C" both simplify?
687     if (L && R) {
688       // They do! Return "L op' R".
689       ++NumExpand;
690       A = Builder.CreateBinOp(InnerOpcode, L, R);
691       A->takeName(&I);
692       return A;
693     }
694 
695     // Does "A op B" simplify to the identity value for the inner opcode?
696     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
697       // They do! Return "A op C".
698       ++NumExpand;
699       A = Builder.CreateBinOp(TopLevelOpcode, A, C);
700       A->takeName(&I);
701       return A;
702     }
703 
704     // Does "A op C" simplify to the identity value for the inner opcode?
705     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
706       // They do! Return "A op B".
707       ++NumExpand;
708       A = Builder.CreateBinOp(TopLevelOpcode, A, B);
709       A->takeName(&I);
710       return A;
711     }
712   }
713 
714   return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
715 }
716 
717 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
718                                                     Value *LHS, Value *RHS) {
719   Instruction::BinaryOps Opcode = I.getOpcode();
720   // (op (select (a, b, c)), (select (a, d, e))) -> (select (a, (op b, d), (op
721   // c, e)))
722   Value *A, *B, *C, *D, *E;
723   Value *SI = nullptr;
724   if (match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))) &&
725       match(RHS, m_Select(m_Specific(A), m_Value(D), m_Value(E)))) {
726     bool SelectsHaveOneUse = LHS->hasOneUse() && RHS->hasOneUse();
727     BuilderTy::FastMathFlagGuard Guard(Builder);
728     if (isa<FPMathOperator>(&I))
729       Builder.setFastMathFlags(I.getFastMathFlags());
730 
731     Value *V1 = SimplifyBinOp(Opcode, C, E, SQ.getWithInstruction(&I));
732     Value *V2 = SimplifyBinOp(Opcode, B, D, SQ.getWithInstruction(&I));
733     if (V1 && V2)
734       SI = Builder.CreateSelect(A, V2, V1);
735     else if (V2 && SelectsHaveOneUse)
736       SI = Builder.CreateSelect(A, V2, Builder.CreateBinOp(Opcode, C, E));
737     else if (V1 && SelectsHaveOneUse)
738       SI = Builder.CreateSelect(A, Builder.CreateBinOp(Opcode, B, D), V1);
739 
740     if (SI)
741       SI->takeName(&I);
742   }
743 
744   return SI;
745 }
746 
747 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
748 /// constant zero (which is the 'negate' form).
749 Value *InstCombiner::dyn_castNegVal(Value *V) const {
750   if (BinaryOperator::isNeg(V))
751     return BinaryOperator::getNegArgument(V);
752 
753   // Constants can be considered to be negated values if they can be folded.
754   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
755     return ConstantExpr::getNeg(C);
756 
757   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
758     if (C->getType()->getElementType()->isIntegerTy())
759       return ConstantExpr::getNeg(C);
760 
761   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
762     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
763       Constant *Elt = CV->getAggregateElement(i);
764       if (!Elt)
765         return nullptr;
766 
767       if (isa<UndefValue>(Elt))
768         continue;
769 
770       if (!isa<ConstantInt>(Elt))
771         return nullptr;
772     }
773     return ConstantExpr::getNeg(CV);
774   }
775 
776   return nullptr;
777 }
778 
779 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
780                                              InstCombiner::BuilderTy &Builder) {
781   if (auto *Cast = dyn_cast<CastInst>(&I))
782     return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
783 
784   assert(I.isBinaryOp() && "Unexpected opcode for select folding");
785 
786   // Figure out if the constant is the left or the right argument.
787   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
788   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
789 
790   if (auto *SOC = dyn_cast<Constant>(SO)) {
791     if (ConstIsRHS)
792       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
793     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
794   }
795 
796   Value *Op0 = SO, *Op1 = ConstOperand;
797   if (!ConstIsRHS)
798     std::swap(Op0, Op1);
799 
800   auto *BO = cast<BinaryOperator>(&I);
801   Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
802                                   SO->getName() + ".op");
803   auto *FPInst = dyn_cast<Instruction>(RI);
804   if (FPInst && isa<FPMathOperator>(FPInst))
805     FPInst->copyFastMathFlags(BO);
806   return RI;
807 }
808 
809 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
810   // Don't modify shared select instructions.
811   if (!SI->hasOneUse())
812     return nullptr;
813 
814   Value *TV = SI->getTrueValue();
815   Value *FV = SI->getFalseValue();
816   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
817     return nullptr;
818 
819   // Bool selects with constant operands can be folded to logical ops.
820   if (SI->getType()->isIntOrIntVectorTy(1))
821     return nullptr;
822 
823   // If it's a bitcast involving vectors, make sure it has the same number of
824   // elements on both sides.
825   if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
826     VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
827     VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
828 
829     // Verify that either both or neither are vectors.
830     if ((SrcTy == nullptr) != (DestTy == nullptr))
831       return nullptr;
832 
833     // If vectors, verify that they have the same number of elements.
834     if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
835       return nullptr;
836   }
837 
838   // Test if a CmpInst instruction is used exclusively by a select as
839   // part of a minimum or maximum operation. If so, refrain from doing
840   // any other folding. This helps out other analyses which understand
841   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
842   // and CodeGen. And in this case, at least one of the comparison
843   // operands has at least one user besides the compare (the select),
844   // which would often largely negate the benefit of folding anyway.
845   if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
846     if (CI->hasOneUse()) {
847       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
848       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
849           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
850         return nullptr;
851     }
852   }
853 
854   Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
855   Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
856   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
857 }
858 
859 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
860                                         InstCombiner::BuilderTy &Builder) {
861   bool ConstIsRHS = isa<Constant>(I->getOperand(1));
862   Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
863 
864   if (auto *InC = dyn_cast<Constant>(InV)) {
865     if (ConstIsRHS)
866       return ConstantExpr::get(I->getOpcode(), InC, C);
867     return ConstantExpr::get(I->getOpcode(), C, InC);
868   }
869 
870   Value *Op0 = InV, *Op1 = C;
871   if (!ConstIsRHS)
872     std::swap(Op0, Op1);
873 
874   Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp");
875   auto *FPInst = dyn_cast<Instruction>(RI);
876   if (FPInst && isa<FPMathOperator>(FPInst))
877     FPInst->copyFastMathFlags(I);
878   return RI;
879 }
880 
881 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) {
882   unsigned NumPHIValues = PN->getNumIncomingValues();
883   if (NumPHIValues == 0)
884     return nullptr;
885 
886   // We normally only transform phis with a single use.  However, if a PHI has
887   // multiple uses and they are all the same operation, we can fold *all* of the
888   // uses into the PHI.
889   if (!PN->hasOneUse()) {
890     // Walk the use list for the instruction, comparing them to I.
891     for (User *U : PN->users()) {
892       Instruction *UI = cast<Instruction>(U);
893       if (UI != &I && !I.isIdenticalTo(UI))
894         return nullptr;
895     }
896     // Otherwise, we can replace *all* users with the new PHI we form.
897   }
898 
899   // Check to see if all of the operands of the PHI are simple constants
900   // (constantint/constantfp/undef).  If there is one non-constant value,
901   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
902   // bail out.  We don't do arbitrary constant expressions here because moving
903   // their computation can be expensive without a cost model.
904   BasicBlock *NonConstBB = nullptr;
905   for (unsigned i = 0; i != NumPHIValues; ++i) {
906     Value *InVal = PN->getIncomingValue(i);
907     if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
908       continue;
909 
910     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
911     if (NonConstBB) return nullptr;  // More than one non-const value.
912 
913     NonConstBB = PN->getIncomingBlock(i);
914 
915     // If the InVal is an invoke at the end of the pred block, then we can't
916     // insert a computation after it without breaking the edge.
917     if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
918       if (II->getParent() == NonConstBB)
919         return nullptr;
920 
921     // If the incoming non-constant value is in I's block, we will remove one
922     // instruction, but insert another equivalent one, leading to infinite
923     // instcombine.
924     if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
925       return nullptr;
926   }
927 
928   // If there is exactly one non-constant value, we can insert a copy of the
929   // operation in that block.  However, if this is a critical edge, we would be
930   // inserting the computation on some other paths (e.g. inside a loop).  Only
931   // do this if the pred block is unconditionally branching into the phi block.
932   if (NonConstBB != nullptr) {
933     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
934     if (!BI || !BI->isUnconditional()) return nullptr;
935   }
936 
937   // Okay, we can do the transformation: create the new PHI node.
938   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
939   InsertNewInstBefore(NewPN, *PN);
940   NewPN->takeName(PN);
941 
942   // If we are going to have to insert a new computation, do so right before the
943   // predecessor's terminator.
944   if (NonConstBB)
945     Builder.SetInsertPoint(NonConstBB->getTerminator());
946 
947   // Next, add all of the operands to the PHI.
948   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
949     // We only currently try to fold the condition of a select when it is a phi,
950     // not the true/false values.
951     Value *TrueV = SI->getTrueValue();
952     Value *FalseV = SI->getFalseValue();
953     BasicBlock *PhiTransBB = PN->getParent();
954     for (unsigned i = 0; i != NumPHIValues; ++i) {
955       BasicBlock *ThisBB = PN->getIncomingBlock(i);
956       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
957       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
958       Value *InV = nullptr;
959       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
960       // even if currently isNullValue gives false.
961       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
962       // For vector constants, we cannot use isNullValue to fold into
963       // FalseVInPred versus TrueVInPred. When we have individual nonzero
964       // elements in the vector, we will incorrectly fold InC to
965       // `TrueVInPred`.
966       if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC))
967         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
968       else {
969         // Generate the select in the same block as PN's current incoming block.
970         // Note: ThisBB need not be the NonConstBB because vector constants
971         // which are constants by definition are handled here.
972         // FIXME: This can lead to an increase in IR generation because we might
973         // generate selects for vector constant phi operand, that could not be
974         // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
975         // non-vector phis, this transformation was always profitable because
976         // the select would be generated exactly once in the NonConstBB.
977         Builder.SetInsertPoint(ThisBB->getTerminator());
978         InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
979                                    FalseVInPred, "phitmp");
980       }
981       NewPN->addIncoming(InV, ThisBB);
982     }
983   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
984     Constant *C = cast<Constant>(I.getOperand(1));
985     for (unsigned i = 0; i != NumPHIValues; ++i) {
986       Value *InV = nullptr;
987       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
988         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
989       else if (isa<ICmpInst>(CI))
990         InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
991                                  C, "phitmp");
992       else
993         InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
994                                  C, "phitmp");
995       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
996     }
997   } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
998     for (unsigned i = 0; i != NumPHIValues; ++i) {
999       Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1000                                              Builder);
1001       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1002     }
1003   } else {
1004     CastInst *CI = cast<CastInst>(&I);
1005     Type *RetTy = CI->getType();
1006     for (unsigned i = 0; i != NumPHIValues; ++i) {
1007       Value *InV;
1008       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1009         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1010       else
1011         InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1012                                  I.getType(), "phitmp");
1013       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1014     }
1015   }
1016 
1017   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1018     Instruction *User = cast<Instruction>(*UI++);
1019     if (User == &I) continue;
1020     replaceInstUsesWith(*User, NewPN);
1021     eraseInstFromFunction(*User);
1022   }
1023   return replaceInstUsesWith(I, NewPN);
1024 }
1025 
1026 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1027   if (!isa<Constant>(I.getOperand(1)))
1028     return nullptr;
1029 
1030   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1031     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1032       return NewSel;
1033   } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1034     if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1035       return NewPhi;
1036   }
1037   return nullptr;
1038 }
1039 
1040 /// Given a pointer type and a constant offset, determine whether or not there
1041 /// is a sequence of GEP indices into the pointed type that will land us at the
1042 /// specified offset. If so, fill them into NewIndices and return the resultant
1043 /// element type, otherwise return null.
1044 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
1045                                         SmallVectorImpl<Value *> &NewIndices) {
1046   Type *Ty = PtrTy->getElementType();
1047   if (!Ty->isSized())
1048     return nullptr;
1049 
1050   // Start with the index over the outer type.  Note that the type size
1051   // might be zero (even if the offset isn't zero) if the indexed type
1052   // is something like [0 x {int, int}]
1053   Type *IndexTy = DL.getIndexType(PtrTy);
1054   int64_t FirstIdx = 0;
1055   if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
1056     FirstIdx = Offset/TySize;
1057     Offset -= FirstIdx*TySize;
1058 
1059     // Handle hosts where % returns negative instead of values [0..TySize).
1060     if (Offset < 0) {
1061       --FirstIdx;
1062       Offset += TySize;
1063       assert(Offset >= 0);
1064     }
1065     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
1066   }
1067 
1068   NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
1069 
1070   // Index into the types.  If we fail, set OrigBase to null.
1071   while (Offset) {
1072     // Indexing into tail padding between struct/array elements.
1073     if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
1074       return nullptr;
1075 
1076     if (StructType *STy = dyn_cast<StructType>(Ty)) {
1077       const StructLayout *SL = DL.getStructLayout(STy);
1078       assert(Offset < (int64_t)SL->getSizeInBytes() &&
1079              "Offset must stay within the indexed type");
1080 
1081       unsigned Elt = SL->getElementContainingOffset(Offset);
1082       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1083                                             Elt));
1084 
1085       Offset -= SL->getElementOffset(Elt);
1086       Ty = STy->getElementType(Elt);
1087     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
1088       uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
1089       assert(EltSize && "Cannot index into a zero-sized array");
1090       NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
1091       Offset %= EltSize;
1092       Ty = AT->getElementType();
1093     } else {
1094       // Otherwise, we can't index into the middle of this atomic type, bail.
1095       return nullptr;
1096     }
1097   }
1098 
1099   return Ty;
1100 }
1101 
1102 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1103   // If this GEP has only 0 indices, it is the same pointer as
1104   // Src. If Src is not a trivial GEP too, don't combine
1105   // the indices.
1106   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1107       !Src.hasOneUse())
1108     return false;
1109   return true;
1110 }
1111 
1112 /// Return a value X such that Val = X * Scale, or null if none.
1113 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1114 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1115   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1116   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1117          Scale.getBitWidth() && "Scale not compatible with value!");
1118 
1119   // If Val is zero or Scale is one then Val = Val * Scale.
1120   if (match(Val, m_Zero()) || Scale == 1) {
1121     NoSignedWrap = true;
1122     return Val;
1123   }
1124 
1125   // If Scale is zero then it does not divide Val.
1126   if (Scale.isMinValue())
1127     return nullptr;
1128 
1129   // Look through chains of multiplications, searching for a constant that is
1130   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1131   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1132   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1133   // down from Val:
1134   //
1135   //     Val = M1 * X          ||   Analysis starts here and works down
1136   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1137   //      M2 =  Z * 4          \/   than one use
1138   //
1139   // Then to modify a term at the bottom:
1140   //
1141   //     Val = M1 * X
1142   //      M1 =  Z * Y          ||   Replaced M2 with Z
1143   //
1144   // Then to work back up correcting nsw flags.
1145 
1146   // Op - the term we are currently analyzing.  Starts at Val then drills down.
1147   // Replaced with its descaled value before exiting from the drill down loop.
1148   Value *Op = Val;
1149 
1150   // Parent - initially null, but after drilling down notes where Op came from.
1151   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1152   // 0'th operand of Val.
1153   std::pair<Instruction *, unsigned> Parent;
1154 
1155   // Set if the transform requires a descaling at deeper levels that doesn't
1156   // overflow.
1157   bool RequireNoSignedWrap = false;
1158 
1159   // Log base 2 of the scale. Negative if not a power of 2.
1160   int32_t logScale = Scale.exactLogBase2();
1161 
1162   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1163     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1164       // If Op is a constant divisible by Scale then descale to the quotient.
1165       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1166       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1167       if (!Remainder.isMinValue())
1168         // Not divisible by Scale.
1169         return nullptr;
1170       // Replace with the quotient in the parent.
1171       Op = ConstantInt::get(CI->getType(), Quotient);
1172       NoSignedWrap = true;
1173       break;
1174     }
1175 
1176     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1177       if (BO->getOpcode() == Instruction::Mul) {
1178         // Multiplication.
1179         NoSignedWrap = BO->hasNoSignedWrap();
1180         if (RequireNoSignedWrap && !NoSignedWrap)
1181           return nullptr;
1182 
1183         // There are three cases for multiplication: multiplication by exactly
1184         // the scale, multiplication by a constant different to the scale, and
1185         // multiplication by something else.
1186         Value *LHS = BO->getOperand(0);
1187         Value *RHS = BO->getOperand(1);
1188 
1189         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1190           // Multiplication by a constant.
1191           if (CI->getValue() == Scale) {
1192             // Multiplication by exactly the scale, replace the multiplication
1193             // by its left-hand side in the parent.
1194             Op = LHS;
1195             break;
1196           }
1197 
1198           // Otherwise drill down into the constant.
1199           if (!Op->hasOneUse())
1200             return nullptr;
1201 
1202           Parent = std::make_pair(BO, 1);
1203           continue;
1204         }
1205 
1206         // Multiplication by something else. Drill down into the left-hand side
1207         // since that's where the reassociate pass puts the good stuff.
1208         if (!Op->hasOneUse())
1209           return nullptr;
1210 
1211         Parent = std::make_pair(BO, 0);
1212         continue;
1213       }
1214 
1215       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1216           isa<ConstantInt>(BO->getOperand(1))) {
1217         // Multiplication by a power of 2.
1218         NoSignedWrap = BO->hasNoSignedWrap();
1219         if (RequireNoSignedWrap && !NoSignedWrap)
1220           return nullptr;
1221 
1222         Value *LHS = BO->getOperand(0);
1223         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1224           getLimitedValue(Scale.getBitWidth());
1225         // Op = LHS << Amt.
1226 
1227         if (Amt == logScale) {
1228           // Multiplication by exactly the scale, replace the multiplication
1229           // by its left-hand side in the parent.
1230           Op = LHS;
1231           break;
1232         }
1233         if (Amt < logScale || !Op->hasOneUse())
1234           return nullptr;
1235 
1236         // Multiplication by more than the scale.  Reduce the multiplying amount
1237         // by the scale in the parent.
1238         Parent = std::make_pair(BO, 1);
1239         Op = ConstantInt::get(BO->getType(), Amt - logScale);
1240         break;
1241       }
1242     }
1243 
1244     if (!Op->hasOneUse())
1245       return nullptr;
1246 
1247     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1248       if (Cast->getOpcode() == Instruction::SExt) {
1249         // Op is sign-extended from a smaller type, descale in the smaller type.
1250         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1251         APInt SmallScale = Scale.trunc(SmallSize);
1252         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1253         // descale Op as (sext Y) * Scale.  In order to have
1254         //   sext (Y * SmallScale) = (sext Y) * Scale
1255         // some conditions need to hold however: SmallScale must sign-extend to
1256         // Scale and the multiplication Y * SmallScale should not overflow.
1257         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1258           // SmallScale does not sign-extend to Scale.
1259           return nullptr;
1260         assert(SmallScale.exactLogBase2() == logScale);
1261         // Require that Y * SmallScale must not overflow.
1262         RequireNoSignedWrap = true;
1263 
1264         // Drill down through the cast.
1265         Parent = std::make_pair(Cast, 0);
1266         Scale = SmallScale;
1267         continue;
1268       }
1269 
1270       if (Cast->getOpcode() == Instruction::Trunc) {
1271         // Op is truncated from a larger type, descale in the larger type.
1272         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1273         //   trunc (Y * sext Scale) = (trunc Y) * Scale
1274         // always holds.  However (trunc Y) * Scale may overflow even if
1275         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1276         // from this point up in the expression (see later).
1277         if (RequireNoSignedWrap)
1278           return nullptr;
1279 
1280         // Drill down through the cast.
1281         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1282         Parent = std::make_pair(Cast, 0);
1283         Scale = Scale.sext(LargeSize);
1284         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1285           logScale = -1;
1286         assert(Scale.exactLogBase2() == logScale);
1287         continue;
1288       }
1289     }
1290 
1291     // Unsupported expression, bail out.
1292     return nullptr;
1293   }
1294 
1295   // If Op is zero then Val = Op * Scale.
1296   if (match(Op, m_Zero())) {
1297     NoSignedWrap = true;
1298     return Op;
1299   }
1300 
1301   // We know that we can successfully descale, so from here on we can safely
1302   // modify the IR.  Op holds the descaled version of the deepest term in the
1303   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1304   // not to overflow.
1305 
1306   if (!Parent.first)
1307     // The expression only had one term.
1308     return Op;
1309 
1310   // Rewrite the parent using the descaled version of its operand.
1311   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1312   assert(Op != Parent.first->getOperand(Parent.second) &&
1313          "Descaling was a no-op?");
1314   Parent.first->setOperand(Parent.second, Op);
1315   Worklist.Add(Parent.first);
1316 
1317   // Now work back up the expression correcting nsw flags.  The logic is based
1318   // on the following observation: if X * Y is known not to overflow as a signed
1319   // multiplication, and Y is replaced by a value Z with smaller absolute value,
1320   // then X * Z will not overflow as a signed multiplication either.  As we work
1321   // our way up, having NoSignedWrap 'true' means that the descaled value at the
1322   // current level has strictly smaller absolute value than the original.
1323   Instruction *Ancestor = Parent.first;
1324   do {
1325     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1326       // If the multiplication wasn't nsw then we can't say anything about the
1327       // value of the descaled multiplication, and we have to clear nsw flags
1328       // from this point on up.
1329       bool OpNoSignedWrap = BO->hasNoSignedWrap();
1330       NoSignedWrap &= OpNoSignedWrap;
1331       if (NoSignedWrap != OpNoSignedWrap) {
1332         BO->setHasNoSignedWrap(NoSignedWrap);
1333         Worklist.Add(Ancestor);
1334       }
1335     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1336       // The fact that the descaled input to the trunc has smaller absolute
1337       // value than the original input doesn't tell us anything useful about
1338       // the absolute values of the truncations.
1339       NoSignedWrap = false;
1340     }
1341     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1342            "Failed to keep proper track of nsw flags while drilling down?");
1343 
1344     if (Ancestor == Val)
1345       // Got to the top, all done!
1346       return Val;
1347 
1348     // Move up one level in the expression.
1349     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1350     Ancestor = Ancestor->user_back();
1351   } while (true);
1352 }
1353 
1354 Instruction *InstCombiner::foldShuffledBinop(BinaryOperator &Inst) {
1355   if (!Inst.getType()->isVectorTy()) return nullptr;
1356 
1357   // It may not be safe to reorder shuffles and things like div, urem, etc.
1358   // because we may trap when executing those ops on unknown vector elements.
1359   // See PR20059.
1360   if (!isSafeToSpeculativelyExecute(&Inst))
1361     return nullptr;
1362 
1363   unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
1364   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1365   assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
1366   assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
1367 
1368   auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) {
1369     Value *XY = Builder.CreateBinOp(Inst.getOpcode(), X, Y);
1370     if (auto *BO = dyn_cast<BinaryOperator>(XY))
1371       BO->copyIRFlags(&Inst);
1372     return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
1373   };
1374 
1375   // If both arguments of the binary operation are shuffles that use the same
1376   // mask and shuffle within a single vector, move the shuffle after the binop.
1377   Value *V1, *V2;
1378   Constant *Mask;
1379   if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) &&
1380       match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) &&
1381       V1->getType() == V2->getType() &&
1382       (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1383     // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1384     return createBinOpShuffle(V1, V2, Mask);
1385   }
1386 
1387   // If one argument is a shuffle within one vector and the other is a constant,
1388   // try moving the shuffle after the binary operation. This canonicalization
1389   // intends to move shuffles closer to other shuffles and binops closer to
1390   // other binops, so they can be folded. It may also enable demanded elements
1391   // transforms.
1392   Constant *C;
1393   if (match(&Inst, m_c_BinOp(
1394           m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))),
1395           m_Constant(C))) &&
1396       V1->getType() == Inst.getType()) {
1397     // Find constant NewC that has property:
1398     //   shuffle(NewC, ShMask) = C
1399     // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1400     // reorder is not possible. A 1-to-1 mapping is not required. Example:
1401     // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1402     SmallVector<int, 16> ShMask;
1403     ShuffleVectorInst::getShuffleMask(Mask, ShMask);
1404     SmallVector<Constant *, 16>
1405         NewVecC(VWidth, UndefValue::get(C->getType()->getScalarType()));
1406     bool MayChange = true;
1407     for (unsigned I = 0; I < VWidth; ++I) {
1408       if (ShMask[I] >= 0) {
1409         assert(ShMask[I] < (int)VWidth);
1410         Constant *CElt = C->getAggregateElement(I);
1411         Constant *NewCElt = NewVecC[ShMask[I]];
1412         if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt)) {
1413           MayChange = false;
1414           break;
1415         }
1416         NewVecC[ShMask[I]] = CElt;
1417       }
1418     }
1419     if (MayChange) {
1420       // With integer div/rem instructions, it is not safe to use a vector with
1421       // undef elements because the entire instruction can be folded to undef.
1422       // So replace undef elements with '1' because that can never induce
1423       // undefined behavior. All other binop opcodes are always safe to
1424       // speculate, and therefore, it is fine to include undef elements for
1425       // unused lanes (and using undefs may help optimization).
1426       BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1427       if (Opcode == Instruction::UDiv || Opcode == Instruction::URem ||
1428           Opcode == Instruction::SDiv || Opcode == Instruction::SRem) {
1429         assert(C->getType()->getScalarType()->isIntegerTy() &&
1430                "Not expecting FP opcodes/operands/constants here");
1431         for (unsigned i = 0; i < VWidth; ++i)
1432           if (isa<UndefValue>(NewVecC[i]))
1433             NewVecC[i] = ConstantInt::get(NewVecC[i]->getType(), 1);
1434       }
1435 
1436       // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1437       // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1438       Constant *NewC = ConstantVector::get(NewVecC);
1439       Value *NewLHS = isa<Constant>(LHS) ? NewC : V1;
1440       Value *NewRHS = isa<Constant>(LHS) ? V1 : NewC;
1441       return createBinOpShuffle(NewLHS, NewRHS, Mask);
1442     }
1443   }
1444 
1445   return nullptr;
1446 }
1447 
1448 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1449   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1450   Type *GEPType = GEP.getType();
1451   Type *GEPEltType = GEP.getSourceElementType();
1452   if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
1453     return replaceInstUsesWith(GEP, V);
1454 
1455   Value *PtrOp = GEP.getOperand(0);
1456 
1457   // Eliminate unneeded casts for indices, and replace indices which displace
1458   // by multiples of a zero size type with zero.
1459   bool MadeChange = false;
1460 
1461   // Index width may not be the same width as pointer width.
1462   // Data layout chooses the right type based on supported integer types.
1463   Type *NewScalarIndexTy =
1464       DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1465 
1466   gep_type_iterator GTI = gep_type_begin(GEP);
1467   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1468        ++I, ++GTI) {
1469     // Skip indices into struct types.
1470     if (GTI.isStruct())
1471       continue;
1472 
1473     Type *IndexTy = (*I)->getType();
1474     Type *NewIndexType =
1475         IndexTy->isVectorTy()
1476             ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements())
1477             : NewScalarIndexTy;
1478 
1479     // If the element type has zero size then any index over it is equivalent
1480     // to an index of zero, so replace it with zero if it is not zero already.
1481     Type *EltTy = GTI.getIndexedType();
1482     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0)
1483       if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1484         *I = Constant::getNullValue(NewIndexType);
1485         MadeChange = true;
1486       }
1487 
1488     if (IndexTy != NewIndexType) {
1489       // If we are using a wider index than needed for this platform, shrink
1490       // it to what we need.  If narrower, sign-extend it to what we need.
1491       // This explicit cast can make subsequent optimizations more obvious.
1492       *I = Builder.CreateIntCast(*I, NewIndexType, true);
1493       MadeChange = true;
1494     }
1495   }
1496   if (MadeChange)
1497     return &GEP;
1498 
1499   // Check to see if the inputs to the PHI node are getelementptr instructions.
1500   if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1501     auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1502     if (!Op1)
1503       return nullptr;
1504 
1505     // Don't fold a GEP into itself through a PHI node. This can only happen
1506     // through the back-edge of a loop. Folding a GEP into itself means that
1507     // the value of the previous iteration needs to be stored in the meantime,
1508     // thus requiring an additional register variable to be live, but not
1509     // actually achieving anything (the GEP still needs to be executed once per
1510     // loop iteration).
1511     if (Op1 == &GEP)
1512       return nullptr;
1513 
1514     int DI = -1;
1515 
1516     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1517       auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1518       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1519         return nullptr;
1520 
1521       // As for Op1 above, don't try to fold a GEP into itself.
1522       if (Op2 == &GEP)
1523         return nullptr;
1524 
1525       // Keep track of the type as we walk the GEP.
1526       Type *CurTy = nullptr;
1527 
1528       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1529         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1530           return nullptr;
1531 
1532         if (Op1->getOperand(J) != Op2->getOperand(J)) {
1533           if (DI == -1) {
1534             // We have not seen any differences yet in the GEPs feeding the
1535             // PHI yet, so we record this one if it is allowed to be a
1536             // variable.
1537 
1538             // The first two arguments can vary for any GEP, the rest have to be
1539             // static for struct slots
1540             if (J > 1 && CurTy->isStructTy())
1541               return nullptr;
1542 
1543             DI = J;
1544           } else {
1545             // The GEP is different by more than one input. While this could be
1546             // extended to support GEPs that vary by more than one variable it
1547             // doesn't make sense since it greatly increases the complexity and
1548             // would result in an R+R+R addressing mode which no backend
1549             // directly supports and would need to be broken into several
1550             // simpler instructions anyway.
1551             return nullptr;
1552           }
1553         }
1554 
1555         // Sink down a layer of the type for the next iteration.
1556         if (J > 0) {
1557           if (J == 1) {
1558             CurTy = Op1->getSourceElementType();
1559           } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) {
1560             CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
1561           } else {
1562             CurTy = nullptr;
1563           }
1564         }
1565       }
1566     }
1567 
1568     // If not all GEPs are identical we'll have to create a new PHI node.
1569     // Check that the old PHI node has only one use so that it will get
1570     // removed.
1571     if (DI != -1 && !PN->hasOneUse())
1572       return nullptr;
1573 
1574     auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1575     if (DI == -1) {
1576       // All the GEPs feeding the PHI are identical. Clone one down into our
1577       // BB so that it can be merged with the current GEP.
1578       GEP.getParent()->getInstList().insert(
1579           GEP.getParent()->getFirstInsertionPt(), NewGEP);
1580     } else {
1581       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1582       // into the current block so it can be merged, and create a new PHI to
1583       // set that index.
1584       PHINode *NewPN;
1585       {
1586         IRBuilderBase::InsertPointGuard Guard(Builder);
1587         Builder.SetInsertPoint(PN);
1588         NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
1589                                   PN->getNumOperands());
1590       }
1591 
1592       for (auto &I : PN->operands())
1593         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1594                            PN->getIncomingBlock(I));
1595 
1596       NewGEP->setOperand(DI, NewPN);
1597       GEP.getParent()->getInstList().insert(
1598           GEP.getParent()->getFirstInsertionPt(), NewGEP);
1599       NewGEP->setOperand(DI, NewPN);
1600     }
1601 
1602     GEP.setOperand(0, NewGEP);
1603     PtrOp = NewGEP;
1604   }
1605 
1606   // Combine Indices - If the source pointer to this getelementptr instruction
1607   // is a getelementptr instruction, combine the indices of the two
1608   // getelementptr instructions into a single instruction.
1609   if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
1610     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1611       return nullptr;
1612 
1613     // Try to reassociate loop invariant GEP chains to enable LICM.
1614     if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
1615         Src->hasOneUse()) {
1616       if (Loop *L = LI->getLoopFor(GEP.getParent())) {
1617         Value *GO1 = GEP.getOperand(1);
1618         Value *SO1 = Src->getOperand(1);
1619         // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
1620         // invariant: this breaks the dependence between GEPs and allows LICM
1621         // to hoist the invariant part out of the loop.
1622         if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
1623           // We have to be careful here.
1624           // We have something like:
1625           //  %src = getelementptr <ty>, <ty>* %base, <ty> %idx
1626           //  %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
1627           // If we just swap idx & idx2 then we could inadvertantly
1628           // change %src from a vector to a scalar, or vice versa.
1629           // Cases:
1630           //  1) %base a scalar & idx a scalar & idx2 a vector
1631           //      => Swapping idx & idx2 turns %src into a vector type.
1632           //  2) %base a scalar & idx a vector & idx2 a scalar
1633           //      => Swapping idx & idx2 turns %src in a scalar type
1634           //  3) %base, %idx, and %idx2 are scalars
1635           //      => %src & %gep are scalars
1636           //      => swapping idx & idx2 is safe
1637           //  4) %base a vector
1638           //      => %src is a vector
1639           //      => swapping idx & idx2 is safe.
1640           auto *SO0 = Src->getOperand(0);
1641           auto *SO0Ty = SO0->getType();
1642           if (!isa<VectorType>(GEPType) || // case 3
1643               isa<VectorType>(SO0Ty)) {    // case 4
1644             Src->setOperand(1, GO1);
1645             GEP.setOperand(1, SO1);
1646             return &GEP;
1647           } else {
1648             // Case 1 or 2
1649             // -- have to recreate %src & %gep
1650             // put NewSrc at same location as %src
1651             Builder.SetInsertPoint(cast<Instruction>(PtrOp));
1652             auto *NewSrc = cast<GetElementPtrInst>(
1653                 Builder.CreateGEP(SO0, GO1, Src->getName()));
1654             NewSrc->setIsInBounds(Src->isInBounds());
1655             auto *NewGEP = GetElementPtrInst::Create(nullptr, NewSrc, {SO1});
1656             NewGEP->setIsInBounds(GEP.isInBounds());
1657             return NewGEP;
1658           }
1659         }
1660       }
1661     }
1662 
1663     // Note that if our source is a gep chain itself then we wait for that
1664     // chain to be resolved before we perform this transformation.  This
1665     // avoids us creating a TON of code in some cases.
1666     if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
1667       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1668         return nullptr;   // Wait until our source is folded to completion.
1669 
1670     SmallVector<Value*, 8> Indices;
1671 
1672     // Find out whether the last index in the source GEP is a sequential idx.
1673     bool EndsWithSequential = false;
1674     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1675          I != E; ++I)
1676       EndsWithSequential = I.isSequential();
1677 
1678     // Can we combine the two pointer arithmetics offsets?
1679     if (EndsWithSequential) {
1680       // Replace: gep (gep %P, long B), long A, ...
1681       // With:    T = long A+B; gep %P, T, ...
1682       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1683       Value *GO1 = GEP.getOperand(1);
1684 
1685       // If they aren't the same type, then the input hasn't been processed
1686       // by the loop above yet (which canonicalizes sequential index types to
1687       // intptr_t).  Just avoid transforming this until the input has been
1688       // normalized.
1689       if (SO1->getType() != GO1->getType())
1690         return nullptr;
1691 
1692       Value *Sum =
1693           SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
1694       // Only do the combine when we are sure the cost after the
1695       // merge is never more than that before the merge.
1696       if (Sum == nullptr)
1697         return nullptr;
1698 
1699       // Update the GEP in place if possible.
1700       if (Src->getNumOperands() == 2) {
1701         GEP.setOperand(0, Src->getOperand(0));
1702         GEP.setOperand(1, Sum);
1703         return &GEP;
1704       }
1705       Indices.append(Src->op_begin()+1, Src->op_end()-1);
1706       Indices.push_back(Sum);
1707       Indices.append(GEP.op_begin()+2, GEP.op_end());
1708     } else if (isa<Constant>(*GEP.idx_begin()) &&
1709                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1710                Src->getNumOperands() != 1) {
1711       // Otherwise we can do the fold if the first index of the GEP is a zero
1712       Indices.append(Src->op_begin()+1, Src->op_end());
1713       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1714     }
1715 
1716     if (!Indices.empty())
1717       return GEP.isInBounds() && Src->isInBounds()
1718                  ? GetElementPtrInst::CreateInBounds(
1719                        Src->getSourceElementType(), Src->getOperand(0), Indices,
1720                        GEP.getName())
1721                  : GetElementPtrInst::Create(Src->getSourceElementType(),
1722                                              Src->getOperand(0), Indices,
1723                                              GEP.getName());
1724   }
1725 
1726   if (GEP.getNumIndices() == 1) {
1727     unsigned AS = GEP.getPointerAddressSpace();
1728     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
1729         DL.getIndexSizeInBits(AS)) {
1730       uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType);
1731 
1732       bool Matched = false;
1733       uint64_t C;
1734       Value *V = nullptr;
1735       if (TyAllocSize == 1) {
1736         V = GEP.getOperand(1);
1737         Matched = true;
1738       } else if (match(GEP.getOperand(1),
1739                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
1740         if (TyAllocSize == 1ULL << C)
1741           Matched = true;
1742       } else if (match(GEP.getOperand(1),
1743                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
1744         if (TyAllocSize == C)
1745           Matched = true;
1746       }
1747 
1748       if (Matched) {
1749         // Canonicalize (gep i8* X, -(ptrtoint Y))
1750         // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
1751         // The GEP pattern is emitted by the SCEV expander for certain kinds of
1752         // pointer arithmetic.
1753         if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
1754           Operator *Index = cast<Operator>(V);
1755           Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
1756           Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
1757           return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
1758         }
1759         // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
1760         // to (bitcast Y)
1761         Value *Y;
1762         if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
1763                            m_PtrToInt(m_Specific(GEP.getOperand(0))))))
1764           return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
1765       }
1766     }
1767   }
1768 
1769   // We do not handle pointer-vector geps here.
1770   if (GEPType->isVectorTy())
1771     return nullptr;
1772 
1773   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1774   Value *StrippedPtr = PtrOp->stripPointerCasts();
1775   PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
1776 
1777   if (StrippedPtr != PtrOp) {
1778     bool HasZeroPointerIndex = false;
1779     if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1780       HasZeroPointerIndex = C->isZero();
1781 
1782     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1783     // into     : GEP [10 x i8]* X, i32 0, ...
1784     //
1785     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1786     //           into     : GEP i8* X, ...
1787     //
1788     // This occurs when the program declares an array extern like "int X[];"
1789     if (HasZeroPointerIndex) {
1790       if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
1791         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1792         if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
1793           // -> GEP i8* X, ...
1794           SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1795           GetElementPtrInst *Res = GetElementPtrInst::Create(
1796               StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName());
1797           Res->setIsInBounds(GEP.isInBounds());
1798           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
1799             return Res;
1800           // Insert Res, and create an addrspacecast.
1801           // e.g.,
1802           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
1803           // ->
1804           // %0 = GEP i8 addrspace(1)* X, ...
1805           // addrspacecast i8 addrspace(1)* %0 to i8*
1806           return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
1807         }
1808 
1809         if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrTy->getElementType())) {
1810           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
1811           if (CATy->getElementType() == XATy->getElementType()) {
1812             // -> GEP [10 x i8]* X, i32 0, ...
1813             // At this point, we know that the cast source type is a pointer
1814             // to an array of the same type as the destination pointer
1815             // array.  Because the array type is never stepped over (there
1816             // is a leading zero) we can fold the cast into this GEP.
1817             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
1818               GEP.setOperand(0, StrippedPtr);
1819               GEP.setSourceElementType(XATy);
1820               return &GEP;
1821             }
1822             // Cannot replace the base pointer directly because StrippedPtr's
1823             // address space is different. Instead, create a new GEP followed by
1824             // an addrspacecast.
1825             // e.g.,
1826             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
1827             //   i32 0, ...
1828             // ->
1829             // %0 = GEP [10 x i8] addrspace(1)* X, ...
1830             // addrspacecast i8 addrspace(1)* %0 to i8*
1831             SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
1832             Value *NewGEP = GEP.isInBounds()
1833                                 ? Builder.CreateInBoundsGEP(
1834                                       nullptr, StrippedPtr, Idx, GEP.getName())
1835                                 : Builder.CreateGEP(nullptr, StrippedPtr, Idx,
1836                                                     GEP.getName());
1837             return new AddrSpaceCastInst(NewGEP, GEPType);
1838           }
1839         }
1840       }
1841     } else if (GEP.getNumOperands() == 2) {
1842       // Transform things like:
1843       // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1844       // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
1845       Type *SrcEltTy = StrippedPtrTy->getElementType();
1846       if (SrcEltTy->isArrayTy() &&
1847           DL.getTypeAllocSize(SrcEltTy->getArrayElementType()) ==
1848               DL.getTypeAllocSize(GEPEltType)) {
1849         Type *IdxType = DL.getIndexType(GEPType);
1850         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
1851         Value *NewGEP =
1852             GEP.isInBounds()
1853                 ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, Idx,
1854                                             GEP.getName())
1855                 : Builder.CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName());
1856 
1857         // V and GEP are both pointer types --> BitCast
1858         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
1859       }
1860 
1861       // Transform things like:
1862       // %V = mul i64 %N, 4
1863       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1864       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
1865       if (GEPEltType->isSized() && SrcEltTy->isSized()) {
1866         // Check that changing the type amounts to dividing the index by a scale
1867         // factor.
1868         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
1869         uint64_t SrcSize = DL.getTypeAllocSize(SrcEltTy);
1870         if (ResSize && SrcSize % ResSize == 0) {
1871           Value *Idx = GEP.getOperand(1);
1872           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1873           uint64_t Scale = SrcSize / ResSize;
1874 
1875           // Earlier transforms ensure that the index has the right type
1876           // according to Data Layout, which considerably simplifies the
1877           // logic by eliminating implicit casts.
1878           assert(Idx->getType() == DL.getIndexType(GEPType) &&
1879                  "Index type does not match the Data Layout preferences");
1880 
1881           bool NSW;
1882           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1883             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1884             // If the multiplication NewIdx * Scale may overflow then the new
1885             // GEP may not be "inbounds".
1886             Value *NewGEP =
1887                 GEP.isInBounds() && NSW
1888                     ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx,
1889                                                 GEP.getName())
1890                     : Builder.CreateGEP(nullptr, StrippedPtr, NewIdx,
1891                                         GEP.getName());
1892 
1893             // The NewGEP must be pointer typed, so must the old one -> BitCast
1894             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1895                                                                  GEPType);
1896           }
1897         }
1898       }
1899 
1900       // Similarly, transform things like:
1901       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
1902       //   (where tmp = 8*tmp2) into:
1903       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
1904       if (GEPEltType->isSized() && SrcEltTy->isSized() &&
1905           SrcEltTy->isArrayTy()) {
1906         // Check that changing to the array element type amounts to dividing the
1907         // index by a scale factor.
1908         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
1909         uint64_t ArrayEltSize =
1910             DL.getTypeAllocSize(SrcEltTy->getArrayElementType());
1911         if (ResSize && ArrayEltSize % ResSize == 0) {
1912           Value *Idx = GEP.getOperand(1);
1913           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1914           uint64_t Scale = ArrayEltSize / ResSize;
1915 
1916           // Earlier transforms ensure that the index has the right type
1917           // according to the Data Layout, which considerably simplifies
1918           // the logic by eliminating implicit casts.
1919           assert(Idx->getType() == DL.getIndexType(GEPType) &&
1920                  "Index type does not match the Data Layout preferences");
1921 
1922           bool NSW;
1923           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1924             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1925             // If the multiplication NewIdx * Scale may overflow then the new
1926             // GEP may not be "inbounds".
1927             Type *IndTy = DL.getIndexType(GEPType);
1928             Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
1929 
1930             Value *NewGEP = GEP.isInBounds() && NSW
1931                                 ? Builder.CreateInBoundsGEP(
1932                                       SrcEltTy, StrippedPtr, Off, GEP.getName())
1933                                 : Builder.CreateGEP(SrcEltTy, StrippedPtr, Off,
1934                                                     GEP.getName());
1935             // The NewGEP must be pointer typed, so must the old one -> BitCast
1936             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1937                                                                  GEPType);
1938           }
1939         }
1940       }
1941     }
1942   }
1943 
1944   // addrspacecast between types is canonicalized as a bitcast, then an
1945   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
1946   // through the addrspacecast.
1947   Value *ASCStrippedPtrOp = PtrOp;
1948   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
1949     //   X = bitcast A addrspace(1)* to B addrspace(1)*
1950     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
1951     //   Z = gep Y, <...constant indices...>
1952     // Into an addrspacecasted GEP of the struct.
1953     if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
1954       ASCStrippedPtrOp = BC;
1955   }
1956 
1957   if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
1958     Value *SrcOp = BCI->getOperand(0);
1959     PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
1960     Type *SrcEltType = SrcType->getElementType();
1961 
1962     // GEP directly using the source operand if this GEP is accessing an element
1963     // of a bitcasted pointer to vector or array of the same dimensions:
1964     // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
1965     // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
1966     auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy) {
1967       return ArrTy->getArrayElementType() == VecTy->getVectorElementType() &&
1968              ArrTy->getArrayNumElements() == VecTy->getVectorNumElements();
1969     };
1970     if (GEP.getNumOperands() == 3 &&
1971         ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() &&
1972           areMatchingArrayAndVecTypes(GEPEltType, SrcEltType)) ||
1973          (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() &&
1974           areMatchingArrayAndVecTypes(SrcEltType, GEPEltType)))) {
1975       GEP.setOperand(0, SrcOp);
1976       GEP.setSourceElementType(SrcEltType);
1977       return &GEP;
1978     }
1979 
1980     // See if we can simplify:
1981     //   X = bitcast A* to B*
1982     //   Y = gep X, <...constant indices...>
1983     // into a gep of the original struct. This is important for SROA and alias
1984     // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
1985     unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
1986     APInt Offset(OffsetBits, 0);
1987     if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
1988       // If this GEP instruction doesn't move the pointer, just replace the GEP
1989       // with a bitcast of the real input to the dest type.
1990       if (!Offset) {
1991         // If the bitcast is of an allocation, and the allocation will be
1992         // converted to match the type of the cast, don't touch this.
1993         if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
1994           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1995           if (Instruction *I = visitBitCast(*BCI)) {
1996             if (I != BCI) {
1997               I->takeName(BCI);
1998               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
1999               replaceInstUsesWith(*BCI, I);
2000             }
2001             return &GEP;
2002           }
2003         }
2004 
2005         if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2006           return new AddrSpaceCastInst(SrcOp, GEPType);
2007         return new BitCastInst(SrcOp, GEPType);
2008       }
2009 
2010       // Otherwise, if the offset is non-zero, we need to find out if there is a
2011       // field at Offset in 'A's type.  If so, we can pull the cast through the
2012       // GEP.
2013       SmallVector<Value*, 8> NewIndices;
2014       if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2015         Value *NGEP =
2016             GEP.isInBounds()
2017                 ? Builder.CreateInBoundsGEP(nullptr, SrcOp, NewIndices)
2018                 : Builder.CreateGEP(nullptr, SrcOp, NewIndices);
2019 
2020         if (NGEP->getType() == GEPType)
2021           return replaceInstUsesWith(GEP, NGEP);
2022         NGEP->takeName(&GEP);
2023 
2024         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2025           return new AddrSpaceCastInst(NGEP, GEPType);
2026         return new BitCastInst(NGEP, GEPType);
2027       }
2028     }
2029   }
2030 
2031   if (!GEP.isInBounds()) {
2032     unsigned IdxWidth =
2033         DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2034     APInt BasePtrOffset(IdxWidth, 0);
2035     Value *UnderlyingPtrOp =
2036             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2037                                                              BasePtrOffset);
2038     if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2039       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2040           BasePtrOffset.isNonNegative()) {
2041         APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType()));
2042         if (BasePtrOffset.ule(AllocSize)) {
2043           return GetElementPtrInst::CreateInBounds(
2044               PtrOp, makeArrayRef(Ops).slice(1), GEP.getName());
2045         }
2046       }
2047     }
2048   }
2049 
2050   return nullptr;
2051 }
2052 
2053 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
2054                                          Instruction *AI) {
2055   if (isa<ConstantPointerNull>(V))
2056     return true;
2057   if (auto *LI = dyn_cast<LoadInst>(V))
2058     return isa<GlobalVariable>(LI->getPointerOperand());
2059   // Two distinct allocations will never be equal.
2060   // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2061   // through bitcasts of V can cause
2062   // the result statement below to be true, even when AI and V (ex:
2063   // i8* ->i32* ->i8* of AI) are the same allocations.
2064   return isAllocLikeFn(V, TLI) && V != AI;
2065 }
2066 
2067 static bool isAllocSiteRemovable(Instruction *AI,
2068                                  SmallVectorImpl<WeakTrackingVH> &Users,
2069                                  const TargetLibraryInfo *TLI) {
2070   SmallVector<Instruction*, 4> Worklist;
2071   Worklist.push_back(AI);
2072 
2073   do {
2074     Instruction *PI = Worklist.pop_back_val();
2075     for (User *U : PI->users()) {
2076       Instruction *I = cast<Instruction>(U);
2077       switch (I->getOpcode()) {
2078       default:
2079         // Give up the moment we see something we can't handle.
2080         return false;
2081 
2082       case Instruction::AddrSpaceCast:
2083       case Instruction::BitCast:
2084       case Instruction::GetElementPtr:
2085         Users.emplace_back(I);
2086         Worklist.push_back(I);
2087         continue;
2088 
2089       case Instruction::ICmp: {
2090         ICmpInst *ICI = cast<ICmpInst>(I);
2091         // We can fold eq/ne comparisons with null to false/true, respectively.
2092         // We also fold comparisons in some conditions provided the alloc has
2093         // not escaped (see isNeverEqualToUnescapedAlloc).
2094         if (!ICI->isEquality())
2095           return false;
2096         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2097         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2098           return false;
2099         Users.emplace_back(I);
2100         continue;
2101       }
2102 
2103       case Instruction::Call:
2104         // Ignore no-op and store intrinsics.
2105         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2106           switch (II->getIntrinsicID()) {
2107           default:
2108             return false;
2109 
2110           case Intrinsic::memmove:
2111           case Intrinsic::memcpy:
2112           case Intrinsic::memset: {
2113             MemIntrinsic *MI = cast<MemIntrinsic>(II);
2114             if (MI->isVolatile() || MI->getRawDest() != PI)
2115               return false;
2116             LLVM_FALLTHROUGH;
2117           }
2118           case Intrinsic::invariant_start:
2119           case Intrinsic::invariant_end:
2120           case Intrinsic::lifetime_start:
2121           case Intrinsic::lifetime_end:
2122           case Intrinsic::objectsize:
2123             Users.emplace_back(I);
2124             continue;
2125           }
2126         }
2127 
2128         if (isFreeCall(I, TLI)) {
2129           Users.emplace_back(I);
2130           continue;
2131         }
2132         return false;
2133 
2134       case Instruction::Store: {
2135         StoreInst *SI = cast<StoreInst>(I);
2136         if (SI->isVolatile() || SI->getPointerOperand() != PI)
2137           return false;
2138         Users.emplace_back(I);
2139         continue;
2140       }
2141       }
2142       llvm_unreachable("missing a return?");
2143     }
2144   } while (!Worklist.empty());
2145   return true;
2146 }
2147 
2148 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
2149   // If we have a malloc call which is only used in any amount of comparisons
2150   // to null and free calls, delete the calls and replace the comparisons with
2151   // true or false as appropriate.
2152   SmallVector<WeakTrackingVH, 64> Users;
2153 
2154   // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2155   // before each store.
2156   TinyPtrVector<DbgInfoIntrinsic *> DIIs;
2157   std::unique_ptr<DIBuilder> DIB;
2158   if (isa<AllocaInst>(MI)) {
2159     DIIs = FindDbgAddrUses(&MI);
2160     DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2161   }
2162 
2163   if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2164     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2165       // Lowering all @llvm.objectsize calls first because they may
2166       // use a bitcast/GEP of the alloca we are removing.
2167       if (!Users[i])
2168        continue;
2169 
2170       Instruction *I = cast<Instruction>(&*Users[i]);
2171 
2172       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2173         if (II->getIntrinsicID() == Intrinsic::objectsize) {
2174           ConstantInt *Result = lowerObjectSizeCall(II, DL, &TLI,
2175                                                     /*MustSucceed=*/true);
2176           replaceInstUsesWith(*I, Result);
2177           eraseInstFromFunction(*I);
2178           Users[i] = nullptr; // Skip examining in the next loop.
2179         }
2180       }
2181     }
2182     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2183       if (!Users[i])
2184         continue;
2185 
2186       Instruction *I = cast<Instruction>(&*Users[i]);
2187 
2188       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2189         replaceInstUsesWith(*C,
2190                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
2191                                              C->isFalseWhenEqual()));
2192       } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) ||
2193                  isa<AddrSpaceCastInst>(I)) {
2194         replaceInstUsesWith(*I, UndefValue::get(I->getType()));
2195       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2196         for (auto *DII : DIIs)
2197           ConvertDebugDeclareToDebugValue(DII, SI, *DIB);
2198       }
2199       eraseInstFromFunction(*I);
2200     }
2201 
2202     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2203       // Replace invoke with a NOP intrinsic to maintain the original CFG
2204       Module *M = II->getModule();
2205       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2206       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2207                          None, "", II->getParent());
2208     }
2209 
2210     for (auto *DII : DIIs)
2211       eraseInstFromFunction(*DII);
2212 
2213     return eraseInstFromFunction(MI);
2214   }
2215   return nullptr;
2216 }
2217 
2218 /// Move the call to free before a NULL test.
2219 ///
2220 /// Check if this free is accessed after its argument has been test
2221 /// against NULL (property 0).
2222 /// If yes, it is legal to move this call in its predecessor block.
2223 ///
2224 /// The move is performed only if the block containing the call to free
2225 /// will be removed, i.e.:
2226 /// 1. it has only one predecessor P, and P has two successors
2227 /// 2. it contains the call and an unconditional branch
2228 /// 3. its successor is the same as its predecessor's successor
2229 ///
2230 /// The profitability is out-of concern here and this function should
2231 /// be called only if the caller knows this transformation would be
2232 /// profitable (e.g., for code size).
2233 static Instruction *
2234 tryToMoveFreeBeforeNullTest(CallInst &FI) {
2235   Value *Op = FI.getArgOperand(0);
2236   BasicBlock *FreeInstrBB = FI.getParent();
2237   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2238 
2239   // Validate part of constraint #1: Only one predecessor
2240   // FIXME: We can extend the number of predecessor, but in that case, we
2241   //        would duplicate the call to free in each predecessor and it may
2242   //        not be profitable even for code size.
2243   if (!PredBB)
2244     return nullptr;
2245 
2246   // Validate constraint #2: Does this block contains only the call to
2247   //                         free and an unconditional branch?
2248   // FIXME: We could check if we can speculate everything in the
2249   //        predecessor block
2250   if (FreeInstrBB->size() != 2)
2251     return nullptr;
2252   BasicBlock *SuccBB;
2253   if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
2254     return nullptr;
2255 
2256   // Validate the rest of constraint #1 by matching on the pred branch.
2257   TerminatorInst *TI = PredBB->getTerminator();
2258   BasicBlock *TrueBB, *FalseBB;
2259   ICmpInst::Predicate Pred;
2260   if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
2261     return nullptr;
2262   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2263     return nullptr;
2264 
2265   // Validate constraint #3: Ensure the null case just falls through.
2266   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2267     return nullptr;
2268   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2269          "Broken CFG: missing edge from predecessor to successor");
2270 
2271   FI.moveBefore(TI);
2272   return &FI;
2273 }
2274 
2275 Instruction *InstCombiner::visitFree(CallInst &FI) {
2276   Value *Op = FI.getArgOperand(0);
2277 
2278   // free undef -> unreachable.
2279   if (isa<UndefValue>(Op)) {
2280     // Insert a new store to null because we cannot modify the CFG here.
2281     Builder.CreateStore(ConstantInt::getTrue(FI.getContext()),
2282                         UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
2283     return eraseInstFromFunction(FI);
2284   }
2285 
2286   // If we have 'free null' delete the instruction.  This can happen in stl code
2287   // when lots of inlining happens.
2288   if (isa<ConstantPointerNull>(Op))
2289     return eraseInstFromFunction(FI);
2290 
2291   // If we optimize for code size, try to move the call to free before the null
2292   // test so that simplify cfg can remove the empty block and dead code
2293   // elimination the branch. I.e., helps to turn something like:
2294   // if (foo) free(foo);
2295   // into
2296   // free(foo);
2297   if (MinimizeSize)
2298     if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
2299       return I;
2300 
2301   return nullptr;
2302 }
2303 
2304 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
2305   if (RI.getNumOperands() == 0) // ret void
2306     return nullptr;
2307 
2308   Value *ResultOp = RI.getOperand(0);
2309   Type *VTy = ResultOp->getType();
2310   if (!VTy->isIntegerTy())
2311     return nullptr;
2312 
2313   // There might be assume intrinsics dominating this return that completely
2314   // determine the value. If so, constant fold it.
2315   KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2316   if (Known.isConstant())
2317     RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant()));
2318 
2319   return nullptr;
2320 }
2321 
2322 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2323   // Change br (not X), label True, label False to: br X, label False, True
2324   Value *X = nullptr;
2325   BasicBlock *TrueDest;
2326   BasicBlock *FalseDest;
2327   if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
2328       !isa<Constant>(X)) {
2329     // Swap Destinations and condition...
2330     BI.setCondition(X);
2331     BI.swapSuccessors();
2332     return &BI;
2333   }
2334 
2335   // If the condition is irrelevant, remove the use so that other
2336   // transforms on the condition become more effective.
2337   if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) &&
2338       BI.getSuccessor(0) == BI.getSuccessor(1)) {
2339     BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType()));
2340     return &BI;
2341   }
2342 
2343   // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq.
2344   CmpInst::Predicate Pred;
2345   if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), TrueDest,
2346                       FalseDest)) &&
2347       !isCanonicalPredicate(Pred)) {
2348     // Swap destinations and condition.
2349     CmpInst *Cond = cast<CmpInst>(BI.getCondition());
2350     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2351     BI.swapSuccessors();
2352     Worklist.Add(Cond);
2353     return &BI;
2354   }
2355 
2356   return nullptr;
2357 }
2358 
2359 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
2360   Value *Cond = SI.getCondition();
2361   Value *Op0;
2362   ConstantInt *AddRHS;
2363   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
2364     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2365     for (auto Case : SI.cases()) {
2366       Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
2367       assert(isa<ConstantInt>(NewCase) &&
2368              "Result of expression should be constant");
2369       Case.setValue(cast<ConstantInt>(NewCase));
2370     }
2371     SI.setCondition(Op0);
2372     return &SI;
2373   }
2374 
2375   KnownBits Known = computeKnownBits(Cond, 0, &SI);
2376   unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
2377   unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
2378 
2379   // Compute the number of leading bits we can ignore.
2380   // TODO: A better way to determine this would use ComputeNumSignBits().
2381   for (auto &C : SI.cases()) {
2382     LeadingKnownZeros = std::min(
2383         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2384     LeadingKnownOnes = std::min(
2385         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2386   }
2387 
2388   unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
2389 
2390   // Shrink the condition operand if the new type is smaller than the old type.
2391   // This may produce a non-standard type for the switch, but that's ok because
2392   // the backend should extend back to a legal type for the target.
2393   if (NewWidth > 0 && NewWidth < Known.getBitWidth()) {
2394     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2395     Builder.SetInsertPoint(&SI);
2396     Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
2397     SI.setCondition(NewCond);
2398 
2399     for (auto Case : SI.cases()) {
2400       APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
2401       Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
2402     }
2403     return &SI;
2404   }
2405 
2406   return nullptr;
2407 }
2408 
2409 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
2410   Value *Agg = EV.getAggregateOperand();
2411 
2412   if (!EV.hasIndices())
2413     return replaceInstUsesWith(EV, Agg);
2414 
2415   if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
2416                                           SQ.getWithInstruction(&EV)))
2417     return replaceInstUsesWith(EV, V);
2418 
2419   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2420     // We're extracting from an insertvalue instruction, compare the indices
2421     const unsigned *exti, *exte, *insi, *inse;
2422     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2423          exte = EV.idx_end(), inse = IV->idx_end();
2424          exti != exte && insi != inse;
2425          ++exti, ++insi) {
2426       if (*insi != *exti)
2427         // The insert and extract both reference distinctly different elements.
2428         // This means the extract is not influenced by the insert, and we can
2429         // replace the aggregate operand of the extract with the aggregate
2430         // operand of the insert. i.e., replace
2431         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2432         // %E = extractvalue { i32, { i32 } } %I, 0
2433         // with
2434         // %E = extractvalue { i32, { i32 } } %A, 0
2435         return ExtractValueInst::Create(IV->getAggregateOperand(),
2436                                         EV.getIndices());
2437     }
2438     if (exti == exte && insi == inse)
2439       // Both iterators are at the end: Index lists are identical. Replace
2440       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2441       // %C = extractvalue { i32, { i32 } } %B, 1, 0
2442       // with "i32 42"
2443       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
2444     if (exti == exte) {
2445       // The extract list is a prefix of the insert list. i.e. replace
2446       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2447       // %E = extractvalue { i32, { i32 } } %I, 1
2448       // with
2449       // %X = extractvalue { i32, { i32 } } %A, 1
2450       // %E = insertvalue { i32 } %X, i32 42, 0
2451       // by switching the order of the insert and extract (though the
2452       // insertvalue should be left in, since it may have other uses).
2453       Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
2454                                                 EV.getIndices());
2455       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
2456                                      makeArrayRef(insi, inse));
2457     }
2458     if (insi == inse)
2459       // The insert list is a prefix of the extract list
2460       // We can simply remove the common indices from the extract and make it
2461       // operate on the inserted value instead of the insertvalue result.
2462       // i.e., replace
2463       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2464       // %E = extractvalue { i32, { i32 } } %I, 1, 0
2465       // with
2466       // %E extractvalue { i32 } { i32 42 }, 0
2467       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
2468                                       makeArrayRef(exti, exte));
2469   }
2470   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
2471     // We're extracting from an intrinsic, see if we're the only user, which
2472     // allows us to simplify multiple result intrinsics to simpler things that
2473     // just get one value.
2474     if (II->hasOneUse()) {
2475       // Check if we're grabbing the overflow bit or the result of a 'with
2476       // overflow' intrinsic.  If it's the latter we can remove the intrinsic
2477       // and replace it with a traditional binary instruction.
2478       switch (II->getIntrinsicID()) {
2479       case Intrinsic::uadd_with_overflow:
2480       case Intrinsic::sadd_with_overflow:
2481         if (*EV.idx_begin() == 0) {  // Normal result.
2482           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2483           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2484           eraseInstFromFunction(*II);
2485           return BinaryOperator::CreateAdd(LHS, RHS);
2486         }
2487 
2488         // If the normal result of the add is dead, and the RHS is a constant,
2489         // we can transform this into a range comparison.
2490         // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
2491         if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2492           if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
2493             return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
2494                                 ConstantExpr::getNot(CI));
2495         break;
2496       case Intrinsic::usub_with_overflow:
2497       case Intrinsic::ssub_with_overflow:
2498         if (*EV.idx_begin() == 0) {  // Normal result.
2499           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2500           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2501           eraseInstFromFunction(*II);
2502           return BinaryOperator::CreateSub(LHS, RHS);
2503         }
2504         break;
2505       case Intrinsic::umul_with_overflow:
2506       case Intrinsic::smul_with_overflow:
2507         if (*EV.idx_begin() == 0) {  // Normal result.
2508           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2509           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2510           eraseInstFromFunction(*II);
2511           return BinaryOperator::CreateMul(LHS, RHS);
2512         }
2513         break;
2514       default:
2515         break;
2516       }
2517     }
2518   }
2519   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2520     // If the (non-volatile) load only has one use, we can rewrite this to a
2521     // load from a GEP. This reduces the size of the load. If a load is used
2522     // only by extractvalue instructions then this either must have been
2523     // optimized before, or it is a struct with padding, in which case we
2524     // don't want to do the transformation as it loses padding knowledge.
2525     if (L->isSimple() && L->hasOneUse()) {
2526       // extractvalue has integer indices, getelementptr has Value*s. Convert.
2527       SmallVector<Value*, 4> Indices;
2528       // Prefix an i32 0 since we need the first element.
2529       Indices.push_back(Builder.getInt32(0));
2530       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2531             I != E; ++I)
2532         Indices.push_back(Builder.getInt32(*I));
2533 
2534       // We need to insert these at the location of the old load, not at that of
2535       // the extractvalue.
2536       Builder.SetInsertPoint(L);
2537       Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
2538                                              L->getPointerOperand(), Indices);
2539       Instruction *NL = Builder.CreateLoad(GEP);
2540       // Whatever aliasing information we had for the orignal load must also
2541       // hold for the smaller load, so propagate the annotations.
2542       AAMDNodes Nodes;
2543       L->getAAMetadata(Nodes);
2544       NL->setAAMetadata(Nodes);
2545       // Returning the load directly will cause the main loop to insert it in
2546       // the wrong spot, so use replaceInstUsesWith().
2547       return replaceInstUsesWith(EV, NL);
2548     }
2549   // We could simplify extracts from other values. Note that nested extracts may
2550   // already be simplified implicitly by the above: extract (extract (insert) )
2551   // will be translated into extract ( insert ( extract ) ) first and then just
2552   // the value inserted, if appropriate. Similarly for extracts from single-use
2553   // loads: extract (extract (load)) will be translated to extract (load (gep))
2554   // and if again single-use then via load (gep (gep)) to load (gep).
2555   // However, double extracts from e.g. function arguments or return values
2556   // aren't handled yet.
2557   return nullptr;
2558 }
2559 
2560 /// Return 'true' if the given typeinfo will match anything.
2561 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
2562   switch (Personality) {
2563   case EHPersonality::GNU_C:
2564   case EHPersonality::GNU_C_SjLj:
2565   case EHPersonality::Rust:
2566     // The GCC C EH and Rust personality only exists to support cleanups, so
2567     // it's not clear what the semantics of catch clauses are.
2568     return false;
2569   case EHPersonality::Unknown:
2570     return false;
2571   case EHPersonality::GNU_Ada:
2572     // While __gnat_all_others_value will match any Ada exception, it doesn't
2573     // match foreign exceptions (or didn't, before gcc-4.7).
2574     return false;
2575   case EHPersonality::GNU_CXX:
2576   case EHPersonality::GNU_CXX_SjLj:
2577   case EHPersonality::GNU_ObjC:
2578   case EHPersonality::MSVC_X86SEH:
2579   case EHPersonality::MSVC_Win64SEH:
2580   case EHPersonality::MSVC_CXX:
2581   case EHPersonality::CoreCLR:
2582   case EHPersonality::Wasm_CXX:
2583     return TypeInfo->isNullValue();
2584   }
2585   llvm_unreachable("invalid enum");
2586 }
2587 
2588 static bool shorter_filter(const Value *LHS, const Value *RHS) {
2589   return
2590     cast<ArrayType>(LHS->getType())->getNumElements()
2591   <
2592     cast<ArrayType>(RHS->getType())->getNumElements();
2593 }
2594 
2595 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
2596   // The logic here should be correct for any real-world personality function.
2597   // However if that turns out not to be true, the offending logic can always
2598   // be conditioned on the personality function, like the catch-all logic is.
2599   EHPersonality Personality =
2600       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
2601 
2602   // Simplify the list of clauses, eg by removing repeated catch clauses
2603   // (these are often created by inlining).
2604   bool MakeNewInstruction = false; // If true, recreate using the following:
2605   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
2606   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
2607 
2608   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
2609   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
2610     bool isLastClause = i + 1 == e;
2611     if (LI.isCatch(i)) {
2612       // A catch clause.
2613       Constant *CatchClause = LI.getClause(i);
2614       Constant *TypeInfo = CatchClause->stripPointerCasts();
2615 
2616       // If we already saw this clause, there is no point in having a second
2617       // copy of it.
2618       if (AlreadyCaught.insert(TypeInfo).second) {
2619         // This catch clause was not already seen.
2620         NewClauses.push_back(CatchClause);
2621       } else {
2622         // Repeated catch clause - drop the redundant copy.
2623         MakeNewInstruction = true;
2624       }
2625 
2626       // If this is a catch-all then there is no point in keeping any following
2627       // clauses or marking the landingpad as having a cleanup.
2628       if (isCatchAll(Personality, TypeInfo)) {
2629         if (!isLastClause)
2630           MakeNewInstruction = true;
2631         CleanupFlag = false;
2632         break;
2633       }
2634     } else {
2635       // A filter clause.  If any of the filter elements were already caught
2636       // then they can be dropped from the filter.  It is tempting to try to
2637       // exploit the filter further by saying that any typeinfo that does not
2638       // occur in the filter can't be caught later (and thus can be dropped).
2639       // However this would be wrong, since typeinfos can match without being
2640       // equal (for example if one represents a C++ class, and the other some
2641       // class derived from it).
2642       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
2643       Constant *FilterClause = LI.getClause(i);
2644       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
2645       unsigned NumTypeInfos = FilterType->getNumElements();
2646 
2647       // An empty filter catches everything, so there is no point in keeping any
2648       // following clauses or marking the landingpad as having a cleanup.  By
2649       // dealing with this case here the following code is made a bit simpler.
2650       if (!NumTypeInfos) {
2651         NewClauses.push_back(FilterClause);
2652         if (!isLastClause)
2653           MakeNewInstruction = true;
2654         CleanupFlag = false;
2655         break;
2656       }
2657 
2658       bool MakeNewFilter = false; // If true, make a new filter.
2659       SmallVector<Constant *, 16> NewFilterElts; // New elements.
2660       if (isa<ConstantAggregateZero>(FilterClause)) {
2661         // Not an empty filter - it contains at least one null typeinfo.
2662         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
2663         Constant *TypeInfo =
2664           Constant::getNullValue(FilterType->getElementType());
2665         // If this typeinfo is a catch-all then the filter can never match.
2666         if (isCatchAll(Personality, TypeInfo)) {
2667           // Throw the filter away.
2668           MakeNewInstruction = true;
2669           continue;
2670         }
2671 
2672         // There is no point in having multiple copies of this typeinfo, so
2673         // discard all but the first copy if there is more than one.
2674         NewFilterElts.push_back(TypeInfo);
2675         if (NumTypeInfos > 1)
2676           MakeNewFilter = true;
2677       } else {
2678         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
2679         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
2680         NewFilterElts.reserve(NumTypeInfos);
2681 
2682         // Remove any filter elements that were already caught or that already
2683         // occurred in the filter.  While there, see if any of the elements are
2684         // catch-alls.  If so, the filter can be discarded.
2685         bool SawCatchAll = false;
2686         for (unsigned j = 0; j != NumTypeInfos; ++j) {
2687           Constant *Elt = Filter->getOperand(j);
2688           Constant *TypeInfo = Elt->stripPointerCasts();
2689           if (isCatchAll(Personality, TypeInfo)) {
2690             // This element is a catch-all.  Bail out, noting this fact.
2691             SawCatchAll = true;
2692             break;
2693           }
2694 
2695           // Even if we've seen a type in a catch clause, we don't want to
2696           // remove it from the filter.  An unexpected type handler may be
2697           // set up for a call site which throws an exception of the same
2698           // type caught.  In order for the exception thrown by the unexpected
2699           // handler to propagate correctly, the filter must be correctly
2700           // described for the call site.
2701           //
2702           // Example:
2703           //
2704           // void unexpected() { throw 1;}
2705           // void foo() throw (int) {
2706           //   std::set_unexpected(unexpected);
2707           //   try {
2708           //     throw 2.0;
2709           //   } catch (int i) {}
2710           // }
2711 
2712           // There is no point in having multiple copies of the same typeinfo in
2713           // a filter, so only add it if we didn't already.
2714           if (SeenInFilter.insert(TypeInfo).second)
2715             NewFilterElts.push_back(cast<Constant>(Elt));
2716         }
2717         // A filter containing a catch-all cannot match anything by definition.
2718         if (SawCatchAll) {
2719           // Throw the filter away.
2720           MakeNewInstruction = true;
2721           continue;
2722         }
2723 
2724         // If we dropped something from the filter, make a new one.
2725         if (NewFilterElts.size() < NumTypeInfos)
2726           MakeNewFilter = true;
2727       }
2728       if (MakeNewFilter) {
2729         FilterType = ArrayType::get(FilterType->getElementType(),
2730                                     NewFilterElts.size());
2731         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2732         MakeNewInstruction = true;
2733       }
2734 
2735       NewClauses.push_back(FilterClause);
2736 
2737       // If the new filter is empty then it will catch everything so there is
2738       // no point in keeping any following clauses or marking the landingpad
2739       // as having a cleanup.  The case of the original filter being empty was
2740       // already handled above.
2741       if (MakeNewFilter && !NewFilterElts.size()) {
2742         assert(MakeNewInstruction && "New filter but not a new instruction!");
2743         CleanupFlag = false;
2744         break;
2745       }
2746     }
2747   }
2748 
2749   // If several filters occur in a row then reorder them so that the shortest
2750   // filters come first (those with the smallest number of elements).  This is
2751   // advantageous because shorter filters are more likely to match, speeding up
2752   // unwinding, but mostly because it increases the effectiveness of the other
2753   // filter optimizations below.
2754   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2755     unsigned j;
2756     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2757     for (j = i; j != e; ++j)
2758       if (!isa<ArrayType>(NewClauses[j]->getType()))
2759         break;
2760 
2761     // Check whether the filters are already sorted by length.  We need to know
2762     // if sorting them is actually going to do anything so that we only make a
2763     // new landingpad instruction if it does.
2764     for (unsigned k = i; k + 1 < j; ++k)
2765       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2766         // Not sorted, so sort the filters now.  Doing an unstable sort would be
2767         // correct too but reordering filters pointlessly might confuse users.
2768         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2769                          shorter_filter);
2770         MakeNewInstruction = true;
2771         break;
2772       }
2773 
2774     // Look for the next batch of filters.
2775     i = j + 1;
2776   }
2777 
2778   // If typeinfos matched if and only if equal, then the elements of a filter L
2779   // that occurs later than a filter F could be replaced by the intersection of
2780   // the elements of F and L.  In reality two typeinfos can match without being
2781   // equal (for example if one represents a C++ class, and the other some class
2782   // derived from it) so it would be wrong to perform this transform in general.
2783   // However the transform is correct and useful if F is a subset of L.  In that
2784   // case L can be replaced by F, and thus removed altogether since repeating a
2785   // filter is pointless.  So here we look at all pairs of filters F and L where
2786   // L follows F in the list of clauses, and remove L if every element of F is
2787   // an element of L.  This can occur when inlining C++ functions with exception
2788   // specifications.
2789   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2790     // Examine each filter in turn.
2791     Value *Filter = NewClauses[i];
2792     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2793     if (!FTy)
2794       // Not a filter - skip it.
2795       continue;
2796     unsigned FElts = FTy->getNumElements();
2797     // Examine each filter following this one.  Doing this backwards means that
2798     // we don't have to worry about filters disappearing under us when removed.
2799     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2800       Value *LFilter = NewClauses[j];
2801       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2802       if (!LTy)
2803         // Not a filter - skip it.
2804         continue;
2805       // If Filter is a subset of LFilter, i.e. every element of Filter is also
2806       // an element of LFilter, then discard LFilter.
2807       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
2808       // If Filter is empty then it is a subset of LFilter.
2809       if (!FElts) {
2810         // Discard LFilter.
2811         NewClauses.erase(J);
2812         MakeNewInstruction = true;
2813         // Move on to the next filter.
2814         continue;
2815       }
2816       unsigned LElts = LTy->getNumElements();
2817       // If Filter is longer than LFilter then it cannot be a subset of it.
2818       if (FElts > LElts)
2819         // Move on to the next filter.
2820         continue;
2821       // At this point we know that LFilter has at least one element.
2822       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
2823         // Filter is a subset of LFilter iff Filter contains only zeros (as we
2824         // already know that Filter is not longer than LFilter).
2825         if (isa<ConstantAggregateZero>(Filter)) {
2826           assert(FElts <= LElts && "Should have handled this case earlier!");
2827           // Discard LFilter.
2828           NewClauses.erase(J);
2829           MakeNewInstruction = true;
2830         }
2831         // Move on to the next filter.
2832         continue;
2833       }
2834       ConstantArray *LArray = cast<ConstantArray>(LFilter);
2835       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2836         // Since Filter is non-empty and contains only zeros, it is a subset of
2837         // LFilter iff LFilter contains a zero.
2838         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2839         for (unsigned l = 0; l != LElts; ++l)
2840           if (LArray->getOperand(l)->isNullValue()) {
2841             // LFilter contains a zero - discard it.
2842             NewClauses.erase(J);
2843             MakeNewInstruction = true;
2844             break;
2845           }
2846         // Move on to the next filter.
2847         continue;
2848       }
2849       // At this point we know that both filters are ConstantArrays.  Loop over
2850       // operands to see whether every element of Filter is also an element of
2851       // LFilter.  Since filters tend to be short this is probably faster than
2852       // using a method that scales nicely.
2853       ConstantArray *FArray = cast<ConstantArray>(Filter);
2854       bool AllFound = true;
2855       for (unsigned f = 0; f != FElts; ++f) {
2856         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2857         AllFound = false;
2858         for (unsigned l = 0; l != LElts; ++l) {
2859           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2860           if (LTypeInfo == FTypeInfo) {
2861             AllFound = true;
2862             break;
2863           }
2864         }
2865         if (!AllFound)
2866           break;
2867       }
2868       if (AllFound) {
2869         // Discard LFilter.
2870         NewClauses.erase(J);
2871         MakeNewInstruction = true;
2872       }
2873       // Move on to the next filter.
2874     }
2875   }
2876 
2877   // If we changed any of the clauses, replace the old landingpad instruction
2878   // with a new one.
2879   if (MakeNewInstruction) {
2880     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2881                                                  NewClauses.size());
2882     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2883       NLI->addClause(NewClauses[i]);
2884     // A landing pad with no clauses must have the cleanup flag set.  It is
2885     // theoretically possible, though highly unlikely, that we eliminated all
2886     // clauses.  If so, force the cleanup flag to true.
2887     if (NewClauses.empty())
2888       CleanupFlag = true;
2889     NLI->setCleanup(CleanupFlag);
2890     return NLI;
2891   }
2892 
2893   // Even if none of the clauses changed, we may nonetheless have understood
2894   // that the cleanup flag is pointless.  Clear it if so.
2895   if (LI.isCleanup() != CleanupFlag) {
2896     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2897     LI.setCleanup(CleanupFlag);
2898     return &LI;
2899   }
2900 
2901   return nullptr;
2902 }
2903 
2904 /// Try to move the specified instruction from its current block into the
2905 /// beginning of DestBlock, which can only happen if it's safe to move the
2906 /// instruction past all of the instructions between it and the end of its
2907 /// block.
2908 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2909   assert(I->hasOneUse() && "Invariants didn't hold!");
2910   BasicBlock *SrcBlock = I->getParent();
2911 
2912   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
2913   if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
2914       isa<TerminatorInst>(I))
2915     return false;
2916 
2917   // Do not sink alloca instructions out of the entry block.
2918   if (isa<AllocaInst>(I) && I->getParent() ==
2919         &DestBlock->getParent()->getEntryBlock())
2920     return false;
2921 
2922   // Do not sink into catchswitch blocks.
2923   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
2924     return false;
2925 
2926   // Do not sink convergent call instructions.
2927   if (auto *CI = dyn_cast<CallInst>(I)) {
2928     if (CI->isConvergent())
2929       return false;
2930   }
2931   // We can only sink load instructions if there is nothing between the load and
2932   // the end of block that could change the value.
2933   if (I->mayReadFromMemory()) {
2934     for (BasicBlock::iterator Scan = I->getIterator(),
2935                               E = I->getParent()->end();
2936          Scan != E; ++Scan)
2937       if (Scan->mayWriteToMemory())
2938         return false;
2939   }
2940   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
2941   I->moveBefore(&*InsertPos);
2942   ++NumSunkInst;
2943 
2944   // Also sink all related debug uses from the source basic block. Otherwise we
2945   // get debug use before the def.
2946   SmallVector<DbgInfoIntrinsic *, 1> DbgUsers;
2947   findDbgUsers(DbgUsers, I);
2948   for (auto *DII : DbgUsers) {
2949     if (DII->getParent() == SrcBlock) {
2950       DII->moveBefore(&*InsertPos);
2951       LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n');
2952     }
2953   }
2954   return true;
2955 }
2956 
2957 bool InstCombiner::run() {
2958   while (!Worklist.isEmpty()) {
2959     Instruction *I = Worklist.RemoveOne();
2960     if (I == nullptr) continue;  // skip null values.
2961 
2962     // Check to see if we can DCE the instruction.
2963     if (isInstructionTriviallyDead(I, &TLI)) {
2964       LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
2965       eraseInstFromFunction(*I);
2966       ++NumDeadInst;
2967       MadeIRChange = true;
2968       continue;
2969     }
2970 
2971     if (!DebugCounter::shouldExecute(VisitCounter))
2972       continue;
2973 
2974     // Instruction isn't dead, see if we can constant propagate it.
2975     if (!I->use_empty() &&
2976         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
2977       if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
2978         LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
2979                           << '\n');
2980 
2981         // Add operands to the worklist.
2982         replaceInstUsesWith(*I, C);
2983         ++NumConstProp;
2984         if (isInstructionTriviallyDead(I, &TLI))
2985           eraseInstFromFunction(*I);
2986         MadeIRChange = true;
2987         continue;
2988       }
2989     }
2990 
2991     // In general, it is possible for computeKnownBits to determine all bits in
2992     // a value even when the operands are not all constants.
2993     Type *Ty = I->getType();
2994     if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) {
2995       KnownBits Known = computeKnownBits(I, /*Depth*/0, I);
2996       if (Known.isConstant()) {
2997         Constant *C = ConstantInt::get(Ty, Known.getConstant());
2998         LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C
2999                           << " from: " << *I << '\n');
3000 
3001         // Add operands to the worklist.
3002         replaceInstUsesWith(*I, C);
3003         ++NumConstProp;
3004         if (isInstructionTriviallyDead(I, &TLI))
3005           eraseInstFromFunction(*I);
3006         MadeIRChange = true;
3007         continue;
3008       }
3009     }
3010 
3011     // See if we can trivially sink this instruction to a successor basic block.
3012     if (I->hasOneUse()) {
3013       BasicBlock *BB = I->getParent();
3014       Instruction *UserInst = cast<Instruction>(*I->user_begin());
3015       BasicBlock *UserParent;
3016 
3017       // Get the block the use occurs in.
3018       if (PHINode *PN = dyn_cast<PHINode>(UserInst))
3019         UserParent = PN->getIncomingBlock(*I->use_begin());
3020       else
3021         UserParent = UserInst->getParent();
3022 
3023       if (UserParent != BB) {
3024         bool UserIsSuccessor = false;
3025         // See if the user is one of our successors.
3026         for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
3027           if (*SI == UserParent) {
3028             UserIsSuccessor = true;
3029             break;
3030           }
3031 
3032         // If the user is one of our immediate successors, and if that successor
3033         // only has us as a predecessors (we'd have to split the critical edge
3034         // otherwise), we can keep going.
3035         if (UserIsSuccessor && UserParent->getUniquePredecessor()) {
3036           // Okay, the CFG is simple enough, try to sink this instruction.
3037           if (TryToSinkInstruction(I, UserParent)) {
3038             LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3039             MadeIRChange = true;
3040             // We'll add uses of the sunk instruction below, but since sinking
3041             // can expose opportunities for it's *operands* add them to the
3042             // worklist
3043             for (Use &U : I->operands())
3044               if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3045                 Worklist.Add(OpI);
3046           }
3047         }
3048       }
3049     }
3050 
3051     // Now that we have an instruction, try combining it to simplify it.
3052     Builder.SetInsertPoint(I);
3053     Builder.SetCurrentDebugLocation(I->getDebugLoc());
3054 
3055 #ifndef NDEBUG
3056     std::string OrigI;
3057 #endif
3058     LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3059     LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3060 
3061     if (Instruction *Result = visit(*I)) {
3062       ++NumCombined;
3063       // Should we replace the old instruction with a new one?
3064       if (Result != I) {
3065         LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3066                           << "    New = " << *Result << '\n');
3067 
3068         if (I->getDebugLoc())
3069           Result->setDebugLoc(I->getDebugLoc());
3070         // Everything uses the new instruction now.
3071         I->replaceAllUsesWith(Result);
3072 
3073         // Move the name to the new instruction first.
3074         Result->takeName(I);
3075 
3076         // Push the new instruction and any users onto the worklist.
3077         Worklist.AddUsersToWorkList(*Result);
3078         Worklist.Add(Result);
3079 
3080         // Insert the new instruction into the basic block...
3081         BasicBlock *InstParent = I->getParent();
3082         BasicBlock::iterator InsertPos = I->getIterator();
3083 
3084         // If we replace a PHI with something that isn't a PHI, fix up the
3085         // insertion point.
3086         if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
3087           InsertPos = InstParent->getFirstInsertionPt();
3088 
3089         InstParent->getInstList().insert(InsertPos, Result);
3090 
3091         eraseInstFromFunction(*I);
3092       } else {
3093         LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3094                           << "    New = " << *I << '\n');
3095 
3096         // If the instruction was modified, it's possible that it is now dead.
3097         // if so, remove it.
3098         if (isInstructionTriviallyDead(I, &TLI)) {
3099           eraseInstFromFunction(*I);
3100         } else {
3101           Worklist.AddUsersToWorkList(*I);
3102           Worklist.Add(I);
3103         }
3104       }
3105       MadeIRChange = true;
3106     }
3107   }
3108 
3109   Worklist.Zap();
3110   return MadeIRChange;
3111 }
3112 
3113 /// Walk the function in depth-first order, adding all reachable code to the
3114 /// worklist.
3115 ///
3116 /// This has a couple of tricks to make the code faster and more powerful.  In
3117 /// particular, we constant fold and DCE instructions as we go, to avoid adding
3118 /// them to the worklist (this significantly speeds up instcombine on code where
3119 /// many instructions are dead or constant).  Additionally, if we find a branch
3120 /// whose condition is a known constant, we only visit the reachable successors.
3121 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
3122                                        SmallPtrSetImpl<BasicBlock *> &Visited,
3123                                        InstCombineWorklist &ICWorklist,
3124                                        const TargetLibraryInfo *TLI) {
3125   bool MadeIRChange = false;
3126   SmallVector<BasicBlock*, 256> Worklist;
3127   Worklist.push_back(BB);
3128 
3129   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
3130   DenseMap<Constant *, Constant *> FoldedConstants;
3131 
3132   do {
3133     BB = Worklist.pop_back_val();
3134 
3135     // We have now visited this block!  If we've already been here, ignore it.
3136     if (!Visited.insert(BB).second)
3137       continue;
3138 
3139     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3140       Instruction *Inst = &*BBI++;
3141 
3142       // DCE instruction if trivially dead.
3143       if (isInstructionTriviallyDead(Inst, TLI)) {
3144         ++NumDeadInst;
3145         LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
3146         salvageDebugInfo(*Inst);
3147         Inst->eraseFromParent();
3148         MadeIRChange = true;
3149         continue;
3150       }
3151 
3152       // ConstantProp instruction if trivially constant.
3153       if (!Inst->use_empty() &&
3154           (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
3155         if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
3156           LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
3157                             << '\n');
3158           Inst->replaceAllUsesWith(C);
3159           ++NumConstProp;
3160           if (isInstructionTriviallyDead(Inst, TLI))
3161             Inst->eraseFromParent();
3162           MadeIRChange = true;
3163           continue;
3164         }
3165 
3166       // See if we can constant fold its operands.
3167       for (Use &U : Inst->operands()) {
3168         if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
3169           continue;
3170 
3171         auto *C = cast<Constant>(U);
3172         Constant *&FoldRes = FoldedConstants[C];
3173         if (!FoldRes)
3174           FoldRes = ConstantFoldConstant(C, DL, TLI);
3175         if (!FoldRes)
3176           FoldRes = C;
3177 
3178         if (FoldRes != C) {
3179           LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
3180                             << "\n    Old = " << *C
3181                             << "\n    New = " << *FoldRes << '\n');
3182           U = FoldRes;
3183           MadeIRChange = true;
3184         }
3185       }
3186 
3187       // Skip processing debug intrinsics in InstCombine. Processing these call instructions
3188       // consumes non-trivial amount of time and provides no value for the optimization.
3189       if (!isa<DbgInfoIntrinsic>(Inst))
3190         InstrsForInstCombineWorklist.push_back(Inst);
3191     }
3192 
3193     // Recursively visit successors.  If this is a branch or switch on a
3194     // constant, only visit the reachable successor.
3195     TerminatorInst *TI = BB->getTerminator();
3196     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3197       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
3198         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
3199         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
3200         Worklist.push_back(ReachableBB);
3201         continue;
3202       }
3203     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3204       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
3205         Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
3206         continue;
3207       }
3208     }
3209 
3210     for (BasicBlock *SuccBB : TI->successors())
3211       Worklist.push_back(SuccBB);
3212   } while (!Worklist.empty());
3213 
3214   // Once we've found all of the instructions to add to instcombine's worklist,
3215   // add them in reverse order.  This way instcombine will visit from the top
3216   // of the function down.  This jives well with the way that it adds all uses
3217   // of instructions to the worklist after doing a transformation, thus avoiding
3218   // some N^2 behavior in pathological cases.
3219   ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist);
3220 
3221   return MadeIRChange;
3222 }
3223 
3224 /// Populate the IC worklist from a function, and prune any dead basic
3225 /// blocks discovered in the process.
3226 ///
3227 /// This also does basic constant propagation and other forward fixing to make
3228 /// the combiner itself run much faster.
3229 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3230                                           TargetLibraryInfo *TLI,
3231                                           InstCombineWorklist &ICWorklist) {
3232   bool MadeIRChange = false;
3233 
3234   // Do a depth-first traversal of the function, populate the worklist with
3235   // the reachable instructions.  Ignore blocks that are not reachable.  Keep
3236   // track of which blocks we visit.
3237   SmallPtrSet<BasicBlock *, 32> Visited;
3238   MadeIRChange |=
3239       AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);
3240 
3241   // Do a quick scan over the function.  If we find any blocks that are
3242   // unreachable, remove any instructions inside of them.  This prevents
3243   // the instcombine code from having to deal with some bad special cases.
3244   for (BasicBlock &BB : F) {
3245     if (Visited.count(&BB))
3246       continue;
3247 
3248     unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
3249     MadeIRChange |= NumDeadInstInBB > 0;
3250     NumDeadInst += NumDeadInstInBB;
3251   }
3252 
3253   return MadeIRChange;
3254 }
3255 
3256 static bool combineInstructionsOverFunction(
3257     Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
3258     AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
3259     OptimizationRemarkEmitter &ORE, bool ExpensiveCombines = true,
3260     LoopInfo *LI = nullptr) {
3261   auto &DL = F.getParent()->getDataLayout();
3262   ExpensiveCombines |= EnableExpensiveCombines;
3263 
3264   /// Builder - This is an IRBuilder that automatically inserts new
3265   /// instructions into the worklist when they are created.
3266   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
3267       F.getContext(), TargetFolder(DL),
3268       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
3269         Worklist.Add(I);
3270         if (match(I, m_Intrinsic<Intrinsic::assume>()))
3271           AC.registerAssumption(cast<CallInst>(I));
3272       }));
3273 
3274   // Lower dbg.declare intrinsics otherwise their value may be clobbered
3275   // by instcombiner.
3276   bool MadeIRChange = false;
3277   if (ShouldLowerDbgDeclare)
3278     MadeIRChange = LowerDbgDeclare(F);
3279 
3280   // Iterate while there is work to do.
3281   int Iteration = 0;
3282   while (true) {
3283     ++Iteration;
3284     LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
3285                       << F.getName() << "\n");
3286 
3287     MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
3288 
3289     InstCombiner IC(Worklist, Builder, F.optForMinSize(), ExpensiveCombines, AA,
3290                     AC, TLI, DT, ORE, DL, LI);
3291     IC.MaxArraySizeForCombine = MaxArraySize;
3292 
3293     if (!IC.run())
3294       break;
3295   }
3296 
3297   return MadeIRChange || Iteration > 1;
3298 }
3299 
3300 PreservedAnalyses InstCombinePass::run(Function &F,
3301                                        FunctionAnalysisManager &AM) {
3302   auto &AC = AM.getResult<AssumptionAnalysis>(F);
3303   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3304   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3305   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
3306 
3307   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
3308 
3309   auto *AA = &AM.getResult<AAManager>(F);
3310   if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE,
3311                                        ExpensiveCombines, LI))
3312     // No changes, all analyses are preserved.
3313     return PreservedAnalyses::all();
3314 
3315   // Mark all the analyses that instcombine updates as preserved.
3316   PreservedAnalyses PA;
3317   PA.preserveSet<CFGAnalyses>();
3318   PA.preserve<AAManager>();
3319   PA.preserve<BasicAA>();
3320   PA.preserve<GlobalsAA>();
3321   return PA;
3322 }
3323 
3324 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3325   AU.setPreservesCFG();
3326   AU.addRequired<AAResultsWrapperPass>();
3327   AU.addRequired<AssumptionCacheTracker>();
3328   AU.addRequired<TargetLibraryInfoWrapperPass>();
3329   AU.addRequired<DominatorTreeWrapperPass>();
3330   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3331   AU.addPreserved<DominatorTreeWrapperPass>();
3332   AU.addPreserved<AAResultsWrapperPass>();
3333   AU.addPreserved<BasicAAWrapperPass>();
3334   AU.addPreserved<GlobalsAAWrapperPass>();
3335 }
3336 
3337 bool InstructionCombiningPass::runOnFunction(Function &F) {
3338   if (skipFunction(F))
3339     return false;
3340 
3341   // Required analyses.
3342   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3343   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3344   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
3345   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3346   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
3347 
3348   // Optional analyses.
3349   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3350   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3351 
3352   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE,
3353                                          ExpensiveCombines, LI);
3354 }
3355 
3356 char InstructionCombiningPass::ID = 0;
3357 
3358 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
3359                       "Combine redundant instructions", false, false)
3360 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3361 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3362 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3363 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3364 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3365 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3366 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
3367                     "Combine redundant instructions", false, false)
3368 
3369 // Initialization Routines
3370 void llvm::initializeInstCombine(PassRegistry &Registry) {
3371   initializeInstructionCombiningPassPass(Registry);
3372 }
3373 
3374 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
3375   initializeInstructionCombiningPassPass(*unwrap(R));
3376 }
3377 
3378 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) {
3379   return new InstructionCombiningPass(ExpensiveCombines);
3380 }
3381 
3382 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
3383   unwrap(PM)->add(createInstructionCombiningPass());
3384 }
3385