1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions.  This pass does not modify the CFG.  This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 //    %Y = add i32 %X, 1
15 //    %Z = add i32 %Y, 1
16 // into:
17 //    %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 //    1. If a binary operator has a constant operand, it is moved to the RHS
24 //    2. Bitwise operators with constant operands are always grouped so that
25 //       shifts are performed first, then or's, then and's, then xor's.
26 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 //    4. All cmp instructions on boolean values are replaced with logical ops
28 //    5. add X, X is represented as (X*2) => (X << 1)
29 //    6. Multiplies with a power-of-two constant argument are transformed into
30 //       shifts.
31 //   ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BlockFrequencyInfo.h"
50 #include "llvm/Analysis/CFG.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/EHPersonalities.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/MemoryBuiltins.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ProfileSummaryInfo.h"
60 #include "llvm/Analysis/TargetFolder.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/ValueTracking.h"
63 #include "llvm/Analysis/VectorUtils.h"
64 #include "llvm/IR/BasicBlock.h"
65 #include "llvm/IR/CFG.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DIBuilder.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/IRBuilder.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/IntrinsicInst.h"
79 #include "llvm/IR/Intrinsics.h"
80 #include "llvm/IR/LegacyPassManager.h"
81 #include "llvm/IR/Metadata.h"
82 #include "llvm/IR/Operator.h"
83 #include "llvm/IR/PassManager.h"
84 #include "llvm/IR/PatternMatch.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/Use.h"
87 #include "llvm/IR/User.h"
88 #include "llvm/IR/Value.h"
89 #include "llvm/IR/ValueHandle.h"
90 #include "llvm/InitializePasses.h"
91 #include "llvm/Pass.h"
92 #include "llvm/Support/CBindingWrapping.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/DebugCounter.h"
98 #include "llvm/Support/ErrorHandling.h"
99 #include "llvm/Support/KnownBits.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Transforms/InstCombine/InstCombine.h"
102 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstdint>
107 #include <memory>
108 #include <string>
109 #include <utility>
110 
111 using namespace llvm;
112 using namespace llvm::PatternMatch;
113 
114 #define DEBUG_TYPE "instcombine"
115 
116 STATISTIC(NumCombined , "Number of insts combined");
117 STATISTIC(NumConstProp, "Number of constant folds");
118 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
119 STATISTIC(NumSunkInst , "Number of instructions sunk");
120 STATISTIC(NumExpand,    "Number of expansions");
121 STATISTIC(NumFactor   , "Number of factorizations");
122 STATISTIC(NumReassoc  , "Number of reassociations");
123 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
124               "Controls which instructions are visited");
125 
126 // FIXME: these limits eventually should be as low as 2.
127 static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
128 #ifndef NDEBUG
129 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100;
130 #else
131 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
132 #endif
133 
134 static cl::opt<bool>
135 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
136                                               cl::init(true));
137 
138 static cl::opt<unsigned> LimitMaxIterations(
139     "instcombine-max-iterations",
140     cl::desc("Limit the maximum number of instruction combining iterations"),
141     cl::init(InstCombineDefaultMaxIterations));
142 
143 static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
144     "instcombine-infinite-loop-threshold",
145     cl::desc("Number of instruction combining iterations considered an "
146              "infinite loop"),
147     cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
148 
149 static cl::opt<unsigned>
150 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
151              cl::desc("Maximum array size considered when doing a combine"));
152 
153 // FIXME: Remove this flag when it is no longer necessary to convert
154 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
155 // increases variable availability at the cost of accuracy. Variables that
156 // cannot be promoted by mem2reg or SROA will be described as living in memory
157 // for their entire lifetime. However, passes like DSE and instcombine can
158 // delete stores to the alloca, leading to misleading and inaccurate debug
159 // information. This flag can be removed when those passes are fixed.
160 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
161                                                cl::Hidden, cl::init(true));
162 
163 Value *InstCombiner::EmitGEPOffset(User *GEP) {
164   return llvm::EmitGEPOffset(&Builder, DL, GEP);
165 }
166 
167 /// Return true if it is desirable to convert an integer computation from a
168 /// given bit width to a new bit width.
169 /// We don't want to convert from a legal to an illegal type or from a smaller
170 /// to a larger illegal type. A width of '1' is always treated as a legal type
171 /// because i1 is a fundamental type in IR, and there are many specialized
172 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
173 /// legal to convert to, in order to open up more combining opportunities.
174 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common
175 /// from frontend languages.
176 bool InstCombiner::shouldChangeType(unsigned FromWidth,
177                                     unsigned ToWidth) const {
178   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
179   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
180 
181   // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
182   // shrink types, to prevent infinite loops.
183   if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
184     return true;
185 
186   // If this is a legal integer from type, and the result would be an illegal
187   // type, don't do the transformation.
188   if (FromLegal && !ToLegal)
189     return false;
190 
191   // Otherwise, if both are illegal, do not increase the size of the result. We
192   // do allow things like i160 -> i64, but not i64 -> i160.
193   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
194     return false;
195 
196   return true;
197 }
198 
199 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
200 /// We don't want to convert from a legal to an illegal type or from a smaller
201 /// to a larger illegal type. i1 is always treated as a legal type because it is
202 /// a fundamental type in IR, and there are many specialized optimizations for
203 /// i1 types.
204 bool InstCombiner::shouldChangeType(Type *From, Type *To) const {
205   // TODO: This could be extended to allow vectors. Datalayout changes might be
206   // needed to properly support that.
207   if (!From->isIntegerTy() || !To->isIntegerTy())
208     return false;
209 
210   unsigned FromWidth = From->getPrimitiveSizeInBits();
211   unsigned ToWidth = To->getPrimitiveSizeInBits();
212   return shouldChangeType(FromWidth, ToWidth);
213 }
214 
215 // Return true, if No Signed Wrap should be maintained for I.
216 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
217 // where both B and C should be ConstantInts, results in a constant that does
218 // not overflow. This function only handles the Add and Sub opcodes. For
219 // all other opcodes, the function conservatively returns false.
220 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
221   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
222   if (!OBO || !OBO->hasNoSignedWrap())
223     return false;
224 
225   // We reason about Add and Sub Only.
226   Instruction::BinaryOps Opcode = I.getOpcode();
227   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
228     return false;
229 
230   const APInt *BVal, *CVal;
231   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
232     return false;
233 
234   bool Overflow = false;
235   if (Opcode == Instruction::Add)
236     (void)BVal->sadd_ov(*CVal, Overflow);
237   else
238     (void)BVal->ssub_ov(*CVal, Overflow);
239 
240   return !Overflow;
241 }
242 
243 static bool hasNoUnsignedWrap(BinaryOperator &I) {
244   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
245   return OBO && OBO->hasNoUnsignedWrap();
246 }
247 
248 static bool hasNoSignedWrap(BinaryOperator &I) {
249   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
250   return OBO && OBO->hasNoSignedWrap();
251 }
252 
253 /// Conservatively clears subclassOptionalData after a reassociation or
254 /// commutation. We preserve fast-math flags when applicable as they can be
255 /// preserved.
256 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
257   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
258   if (!FPMO) {
259     I.clearSubclassOptionalData();
260     return;
261   }
262 
263   FastMathFlags FMF = I.getFastMathFlags();
264   I.clearSubclassOptionalData();
265   I.setFastMathFlags(FMF);
266 }
267 
268 /// Combine constant operands of associative operations either before or after a
269 /// cast to eliminate one of the associative operations:
270 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
271 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
272 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, InstCombiner &IC) {
273   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
274   if (!Cast || !Cast->hasOneUse())
275     return false;
276 
277   // TODO: Enhance logic for other casts and remove this check.
278   auto CastOpcode = Cast->getOpcode();
279   if (CastOpcode != Instruction::ZExt)
280     return false;
281 
282   // TODO: Enhance logic for other BinOps and remove this check.
283   if (!BinOp1->isBitwiseLogicOp())
284     return false;
285 
286   auto AssocOpcode = BinOp1->getOpcode();
287   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
288   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
289     return false;
290 
291   Constant *C1, *C2;
292   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
293       !match(BinOp2->getOperand(1), m_Constant(C2)))
294     return false;
295 
296   // TODO: This assumes a zext cast.
297   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
298   // to the destination type might lose bits.
299 
300   // Fold the constants together in the destination type:
301   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
302   Type *DestTy = C1->getType();
303   Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
304   Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
305   IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
306   IC.replaceOperand(*BinOp1, 1, FoldedC);
307   return true;
308 }
309 
310 /// This performs a few simplifications for operators that are associative or
311 /// commutative:
312 ///
313 ///  Commutative operators:
314 ///
315 ///  1. Order operands such that they are listed from right (least complex) to
316 ///     left (most complex).  This puts constants before unary operators before
317 ///     binary operators.
318 ///
319 ///  Associative operators:
320 ///
321 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
322 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
323 ///
324 ///  Associative and commutative operators:
325 ///
326 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
327 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
328 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
329 ///     if C1 and C2 are constants.
330 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
331   Instruction::BinaryOps Opcode = I.getOpcode();
332   bool Changed = false;
333 
334   do {
335     // Order operands such that they are listed from right (least complex) to
336     // left (most complex).  This puts constants before unary operators before
337     // binary operators.
338     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
339         getComplexity(I.getOperand(1)))
340       Changed = !I.swapOperands();
341 
342     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
343     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
344 
345     if (I.isAssociative()) {
346       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
347       if (Op0 && Op0->getOpcode() == Opcode) {
348         Value *A = Op0->getOperand(0);
349         Value *B = Op0->getOperand(1);
350         Value *C = I.getOperand(1);
351 
352         // Does "B op C" simplify?
353         if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
354           // It simplifies to V.  Form "A op V".
355           replaceOperand(I, 0, A);
356           replaceOperand(I, 1, V);
357           bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
358           bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
359 
360           // Conservatively clear all optional flags since they may not be
361           // preserved by the reassociation. Reset nsw/nuw based on the above
362           // analysis.
363           ClearSubclassDataAfterReassociation(I);
364 
365           // Note: this is only valid because SimplifyBinOp doesn't look at
366           // the operands to Op0.
367           if (IsNUW)
368             I.setHasNoUnsignedWrap(true);
369 
370           if (IsNSW)
371             I.setHasNoSignedWrap(true);
372 
373           Changed = true;
374           ++NumReassoc;
375           continue;
376         }
377       }
378 
379       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
380       if (Op1 && Op1->getOpcode() == Opcode) {
381         Value *A = I.getOperand(0);
382         Value *B = Op1->getOperand(0);
383         Value *C = Op1->getOperand(1);
384 
385         // Does "A op B" simplify?
386         if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
387           // It simplifies to V.  Form "V op C".
388           replaceOperand(I, 0, V);
389           replaceOperand(I, 1, C);
390           // Conservatively clear the optional flags, since they may not be
391           // preserved by the reassociation.
392           ClearSubclassDataAfterReassociation(I);
393           Changed = true;
394           ++NumReassoc;
395           continue;
396         }
397       }
398     }
399 
400     if (I.isAssociative() && I.isCommutative()) {
401       if (simplifyAssocCastAssoc(&I, *this)) {
402         Changed = true;
403         ++NumReassoc;
404         continue;
405       }
406 
407       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
408       if (Op0 && Op0->getOpcode() == Opcode) {
409         Value *A = Op0->getOperand(0);
410         Value *B = Op0->getOperand(1);
411         Value *C = I.getOperand(1);
412 
413         // Does "C op A" simplify?
414         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
415           // It simplifies to V.  Form "V op B".
416           replaceOperand(I, 0, V);
417           replaceOperand(I, 1, B);
418           // Conservatively clear the optional flags, since they may not be
419           // preserved by the reassociation.
420           ClearSubclassDataAfterReassociation(I);
421           Changed = true;
422           ++NumReassoc;
423           continue;
424         }
425       }
426 
427       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
428       if (Op1 && Op1->getOpcode() == Opcode) {
429         Value *A = I.getOperand(0);
430         Value *B = Op1->getOperand(0);
431         Value *C = Op1->getOperand(1);
432 
433         // Does "C op A" simplify?
434         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
435           // It simplifies to V.  Form "B op V".
436           replaceOperand(I, 0, B);
437           replaceOperand(I, 1, V);
438           // Conservatively clear the optional flags, since they may not be
439           // preserved by the reassociation.
440           ClearSubclassDataAfterReassociation(I);
441           Changed = true;
442           ++NumReassoc;
443           continue;
444         }
445       }
446 
447       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
448       // if C1 and C2 are constants.
449       Value *A, *B;
450       Constant *C1, *C2;
451       if (Op0 && Op1 &&
452           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
453           match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
454           match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
455         bool IsNUW = hasNoUnsignedWrap(I) &&
456            hasNoUnsignedWrap(*Op0) &&
457            hasNoUnsignedWrap(*Op1);
458          BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
459            BinaryOperator::CreateNUW(Opcode, A, B) :
460            BinaryOperator::Create(Opcode, A, B);
461 
462          if (isa<FPMathOperator>(NewBO)) {
463           FastMathFlags Flags = I.getFastMathFlags();
464           Flags &= Op0->getFastMathFlags();
465           Flags &= Op1->getFastMathFlags();
466           NewBO->setFastMathFlags(Flags);
467         }
468         InsertNewInstWith(NewBO, I);
469         NewBO->takeName(Op1);
470         replaceOperand(I, 0, NewBO);
471         replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
472         // Conservatively clear the optional flags, since they may not be
473         // preserved by the reassociation.
474         ClearSubclassDataAfterReassociation(I);
475         if (IsNUW)
476           I.setHasNoUnsignedWrap(true);
477 
478         Changed = true;
479         continue;
480       }
481     }
482 
483     // No further simplifications.
484     return Changed;
485   } while (true);
486 }
487 
488 /// Return whether "X LOp (Y ROp Z)" is always equal to
489 /// "(X LOp Y) ROp (X LOp Z)".
490 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
491                                      Instruction::BinaryOps ROp) {
492   // X & (Y | Z) <--> (X & Y) | (X & Z)
493   // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
494   if (LOp == Instruction::And)
495     return ROp == Instruction::Or || ROp == Instruction::Xor;
496 
497   // X | (Y & Z) <--> (X | Y) & (X | Z)
498   if (LOp == Instruction::Or)
499     return ROp == Instruction::And;
500 
501   // X * (Y + Z) <--> (X * Y) + (X * Z)
502   // X * (Y - Z) <--> (X * Y) - (X * Z)
503   if (LOp == Instruction::Mul)
504     return ROp == Instruction::Add || ROp == Instruction::Sub;
505 
506   return false;
507 }
508 
509 /// Return whether "(X LOp Y) ROp Z" is always equal to
510 /// "(X ROp Z) LOp (Y ROp Z)".
511 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
512                                      Instruction::BinaryOps ROp) {
513   if (Instruction::isCommutative(ROp))
514     return leftDistributesOverRight(ROp, LOp);
515 
516   // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
517   return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
518 
519   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
520   // but this requires knowing that the addition does not overflow and other
521   // such subtleties.
522 }
523 
524 /// This function returns identity value for given opcode, which can be used to
525 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
526 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
527   if (isa<Constant>(V))
528     return nullptr;
529 
530   return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
531 }
532 
533 /// This function predicates factorization using distributive laws. By default,
534 /// it just returns the 'Op' inputs. But for special-cases like
535 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
536 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
537 /// allow more factorization opportunities.
538 static Instruction::BinaryOps
539 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
540                           Value *&LHS, Value *&RHS) {
541   assert(Op && "Expected a binary operator");
542   LHS = Op->getOperand(0);
543   RHS = Op->getOperand(1);
544   if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
545     Constant *C;
546     if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
547       // X << C --> X * (1 << C)
548       RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
549       return Instruction::Mul;
550     }
551     // TODO: We can add other conversions e.g. shr => div etc.
552   }
553   return Op->getOpcode();
554 }
555 
556 /// This tries to simplify binary operations by factorizing out common terms
557 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
558 Value *InstCombiner::tryFactorization(BinaryOperator &I,
559                                       Instruction::BinaryOps InnerOpcode,
560                                       Value *A, Value *B, Value *C, Value *D) {
561   assert(A && B && C && D && "All values must be provided");
562 
563   Value *V = nullptr;
564   Value *SimplifiedInst = nullptr;
565   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
566   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
567 
568   // Does "X op' Y" always equal "Y op' X"?
569   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
570 
571   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
572   if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
573     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
574     // commutative case, "(A op' B) op (C op' A)"?
575     if (A == C || (InnerCommutative && A == D)) {
576       if (A != C)
577         std::swap(C, D);
578       // Consider forming "A op' (B op D)".
579       // If "B op D" simplifies then it can be formed with no cost.
580       V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
581       // If "B op D" doesn't simplify then only go on if both of the existing
582       // operations "A op' B" and "C op' D" will be zapped as no longer used.
583       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
584         V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
585       if (V) {
586         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
587       }
588     }
589 
590   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
591   if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
592     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
593     // commutative case, "(A op' B) op (B op' D)"?
594     if (B == D || (InnerCommutative && B == C)) {
595       if (B != D)
596         std::swap(C, D);
597       // Consider forming "(A op C) op' B".
598       // If "A op C" simplifies then it can be formed with no cost.
599       V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
600 
601       // If "A op C" doesn't simplify then only go on if both of the existing
602       // operations "A op' B" and "C op' D" will be zapped as no longer used.
603       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
604         V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
605       if (V) {
606         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
607       }
608     }
609 
610   if (SimplifiedInst) {
611     ++NumFactor;
612     SimplifiedInst->takeName(&I);
613 
614     // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
615     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
616       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
617         bool HasNSW = false;
618         bool HasNUW = false;
619         if (isa<OverflowingBinaryOperator>(&I)) {
620           HasNSW = I.hasNoSignedWrap();
621           HasNUW = I.hasNoUnsignedWrap();
622         }
623 
624         if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
625           HasNSW &= LOBO->hasNoSignedWrap();
626           HasNUW &= LOBO->hasNoUnsignedWrap();
627         }
628 
629         if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
630           HasNSW &= ROBO->hasNoSignedWrap();
631           HasNUW &= ROBO->hasNoUnsignedWrap();
632         }
633 
634         if (TopLevelOpcode == Instruction::Add &&
635             InnerOpcode == Instruction::Mul) {
636           // We can propagate 'nsw' if we know that
637           //  %Y = mul nsw i16 %X, C
638           //  %Z = add nsw i16 %Y, %X
639           // =>
640           //  %Z = mul nsw i16 %X, C+1
641           //
642           // iff C+1 isn't INT_MIN
643           const APInt *CInt;
644           if (match(V, m_APInt(CInt))) {
645             if (!CInt->isMinSignedValue())
646               BO->setHasNoSignedWrap(HasNSW);
647           }
648 
649           // nuw can be propagated with any constant or nuw value.
650           BO->setHasNoUnsignedWrap(HasNUW);
651         }
652       }
653     }
654   }
655   return SimplifiedInst;
656 }
657 
658 /// This tries to simplify binary operations which some other binary operation
659 /// distributes over either by factorizing out common terms
660 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
661 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
662 /// Returns the simplified value, or null if it didn't simplify.
663 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
664   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
665   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
666   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
667   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
668 
669   {
670     // Factorization.
671     Value *A, *B, *C, *D;
672     Instruction::BinaryOps LHSOpcode, RHSOpcode;
673     if (Op0)
674       LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
675     if (Op1)
676       RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
677 
678     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
679     // a common term.
680     if (Op0 && Op1 && LHSOpcode == RHSOpcode)
681       if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
682         return V;
683 
684     // The instruction has the form "(A op' B) op (C)".  Try to factorize common
685     // term.
686     if (Op0)
687       if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
688         if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
689           return V;
690 
691     // The instruction has the form "(B) op (C op' D)".  Try to factorize common
692     // term.
693     if (Op1)
694       if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
695         if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
696           return V;
697   }
698 
699   // Expansion.
700   if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
701     // The instruction has the form "(A op' B) op C".  See if expanding it out
702     // to "(A op C) op' (B op C)" results in simplifications.
703     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
704     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
705 
706     Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
707     Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I));
708 
709     // Do "A op C" and "B op C" both simplify?
710     if (L && R) {
711       // They do! Return "L op' R".
712       ++NumExpand;
713       C = Builder.CreateBinOp(InnerOpcode, L, R);
714       C->takeName(&I);
715       return C;
716     }
717 
718     // Does "A op C" simplify to the identity value for the inner opcode?
719     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
720       // They do! Return "B op C".
721       ++NumExpand;
722       C = Builder.CreateBinOp(TopLevelOpcode, B, C);
723       C->takeName(&I);
724       return C;
725     }
726 
727     // Does "B op C" simplify to the identity value for the inner opcode?
728     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
729       // They do! Return "A op C".
730       ++NumExpand;
731       C = Builder.CreateBinOp(TopLevelOpcode, A, C);
732       C->takeName(&I);
733       return C;
734     }
735   }
736 
737   if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
738     // The instruction has the form "A op (B op' C)".  See if expanding it out
739     // to "(A op B) op' (A op C)" results in simplifications.
740     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
741     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
742 
743     Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I));
744     Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
745 
746     // Do "A op B" and "A op C" both simplify?
747     if (L && R) {
748       // They do! Return "L op' R".
749       ++NumExpand;
750       A = Builder.CreateBinOp(InnerOpcode, L, R);
751       A->takeName(&I);
752       return A;
753     }
754 
755     // Does "A op B" simplify to the identity value for the inner opcode?
756     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
757       // They do! Return "A op C".
758       ++NumExpand;
759       A = Builder.CreateBinOp(TopLevelOpcode, A, C);
760       A->takeName(&I);
761       return A;
762     }
763 
764     // Does "A op C" simplify to the identity value for the inner opcode?
765     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
766       // They do! Return "A op B".
767       ++NumExpand;
768       A = Builder.CreateBinOp(TopLevelOpcode, A, B);
769       A->takeName(&I);
770       return A;
771     }
772   }
773 
774   return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
775 }
776 
777 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
778                                                     Value *LHS, Value *RHS) {
779   Value *A, *B, *C, *D, *E, *F;
780   bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
781   bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
782   if (!LHSIsSelect && !RHSIsSelect)
783     return nullptr;
784 
785   FastMathFlags FMF;
786   BuilderTy::FastMathFlagGuard Guard(Builder);
787   if (isa<FPMathOperator>(&I)) {
788     FMF = I.getFastMathFlags();
789     Builder.setFastMathFlags(FMF);
790   }
791 
792   Instruction::BinaryOps Opcode = I.getOpcode();
793   SimplifyQuery Q = SQ.getWithInstruction(&I);
794 
795   Value *Cond, *True = nullptr, *False = nullptr;
796   if (LHSIsSelect && RHSIsSelect && A == D) {
797     // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
798     Cond = A;
799     True = SimplifyBinOp(Opcode, B, E, FMF, Q);
800     False = SimplifyBinOp(Opcode, C, F, FMF, Q);
801 
802     if (LHS->hasOneUse() && RHS->hasOneUse()) {
803       if (False && !True)
804         True = Builder.CreateBinOp(Opcode, B, E);
805       else if (True && !False)
806         False = Builder.CreateBinOp(Opcode, C, F);
807     }
808   } else if (LHSIsSelect && LHS->hasOneUse()) {
809     // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
810     Cond = A;
811     True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
812     False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
813   } else if (RHSIsSelect && RHS->hasOneUse()) {
814     // X op (D ? E : F) -> D ? (X op E) : (X op F)
815     Cond = D;
816     True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
817     False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
818   }
819 
820   if (!True || !False)
821     return nullptr;
822 
823   Value *SI = Builder.CreateSelect(Cond, True, False);
824   SI->takeName(&I);
825   return SI;
826 }
827 
828 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
829 /// constant zero (which is the 'negate' form).
830 Value *InstCombiner::dyn_castNegVal(Value *V) const {
831   Value *NegV;
832   if (match(V, m_Neg(m_Value(NegV))))
833     return NegV;
834 
835   // Constants can be considered to be negated values if they can be folded.
836   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
837     return ConstantExpr::getNeg(C);
838 
839   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
840     if (C->getType()->getElementType()->isIntegerTy())
841       return ConstantExpr::getNeg(C);
842 
843   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
844     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
845       Constant *Elt = CV->getAggregateElement(i);
846       if (!Elt)
847         return nullptr;
848 
849       if (isa<UndefValue>(Elt))
850         continue;
851 
852       if (!isa<ConstantInt>(Elt))
853         return nullptr;
854     }
855     return ConstantExpr::getNeg(CV);
856   }
857 
858   return nullptr;
859 }
860 
861 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
862                                              InstCombiner::BuilderTy &Builder) {
863   if (auto *Cast = dyn_cast<CastInst>(&I))
864     return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
865 
866   assert(I.isBinaryOp() && "Unexpected opcode for select folding");
867 
868   // Figure out if the constant is the left or the right argument.
869   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
870   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
871 
872   if (auto *SOC = dyn_cast<Constant>(SO)) {
873     if (ConstIsRHS)
874       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
875     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
876   }
877 
878   Value *Op0 = SO, *Op1 = ConstOperand;
879   if (!ConstIsRHS)
880     std::swap(Op0, Op1);
881 
882   auto *BO = cast<BinaryOperator>(&I);
883   Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
884                                   SO->getName() + ".op");
885   auto *FPInst = dyn_cast<Instruction>(RI);
886   if (FPInst && isa<FPMathOperator>(FPInst))
887     FPInst->copyFastMathFlags(BO);
888   return RI;
889 }
890 
891 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
892   // Don't modify shared select instructions.
893   if (!SI->hasOneUse())
894     return nullptr;
895 
896   Value *TV = SI->getTrueValue();
897   Value *FV = SI->getFalseValue();
898   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
899     return nullptr;
900 
901   // Bool selects with constant operands can be folded to logical ops.
902   if (SI->getType()->isIntOrIntVectorTy(1))
903     return nullptr;
904 
905   // If it's a bitcast involving vectors, make sure it has the same number of
906   // elements on both sides.
907   if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
908     VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
909     VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
910 
911     // Verify that either both or neither are vectors.
912     if ((SrcTy == nullptr) != (DestTy == nullptr))
913       return nullptr;
914 
915     // If vectors, verify that they have the same number of elements.
916     if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
917       return nullptr;
918   }
919 
920   // Test if a CmpInst instruction is used exclusively by a select as
921   // part of a minimum or maximum operation. If so, refrain from doing
922   // any other folding. This helps out other analyses which understand
923   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
924   // and CodeGen. And in this case, at least one of the comparison
925   // operands has at least one user besides the compare (the select),
926   // which would often largely negate the benefit of folding anyway.
927   if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
928     if (CI->hasOneUse()) {
929       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
930 
931       // FIXME: This is a hack to avoid infinite looping with min/max patterns.
932       //        We have to ensure that vector constants that only differ with
933       //        undef elements are treated as equivalent.
934       auto areLooselyEqual = [](Value *A, Value *B) {
935         if (A == B)
936           return true;
937 
938         // Test for vector constants.
939         Constant *ConstA, *ConstB;
940         if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
941           return false;
942 
943         // TODO: Deal with FP constants?
944         if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
945           return false;
946 
947         // Compare for equality including undefs as equal.
948         auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
949         const APInt *C;
950         return match(Cmp, m_APIntAllowUndef(C)) && C->isOneValue();
951       };
952 
953       if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
954           (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
955         return nullptr;
956     }
957   }
958 
959   Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
960   Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
961   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
962 }
963 
964 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
965                                         InstCombiner::BuilderTy &Builder) {
966   bool ConstIsRHS = isa<Constant>(I->getOperand(1));
967   Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
968 
969   if (auto *InC = dyn_cast<Constant>(InV)) {
970     if (ConstIsRHS)
971       return ConstantExpr::get(I->getOpcode(), InC, C);
972     return ConstantExpr::get(I->getOpcode(), C, InC);
973   }
974 
975   Value *Op0 = InV, *Op1 = C;
976   if (!ConstIsRHS)
977     std::swap(Op0, Op1);
978 
979   Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo");
980   auto *FPInst = dyn_cast<Instruction>(RI);
981   if (FPInst && isa<FPMathOperator>(FPInst))
982     FPInst->copyFastMathFlags(I);
983   return RI;
984 }
985 
986 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) {
987   unsigned NumPHIValues = PN->getNumIncomingValues();
988   if (NumPHIValues == 0)
989     return nullptr;
990 
991   // We normally only transform phis with a single use.  However, if a PHI has
992   // multiple uses and they are all the same operation, we can fold *all* of the
993   // uses into the PHI.
994   if (!PN->hasOneUse()) {
995     // Walk the use list for the instruction, comparing them to I.
996     for (User *U : PN->users()) {
997       Instruction *UI = cast<Instruction>(U);
998       if (UI != &I && !I.isIdenticalTo(UI))
999         return nullptr;
1000     }
1001     // Otherwise, we can replace *all* users with the new PHI we form.
1002   }
1003 
1004   // Check to see if all of the operands of the PHI are simple constants
1005   // (constantint/constantfp/undef).  If there is one non-constant value,
1006   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
1007   // bail out.  We don't do arbitrary constant expressions here because moving
1008   // their computation can be expensive without a cost model.
1009   BasicBlock *NonConstBB = nullptr;
1010   for (unsigned i = 0; i != NumPHIValues; ++i) {
1011     Value *InVal = PN->getIncomingValue(i);
1012     if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
1013       continue;
1014 
1015     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
1016     if (NonConstBB) return nullptr;  // More than one non-const value.
1017 
1018     NonConstBB = PN->getIncomingBlock(i);
1019 
1020     // If the InVal is an invoke at the end of the pred block, then we can't
1021     // insert a computation after it without breaking the edge.
1022     if (isa<InvokeInst>(InVal))
1023       if (cast<Instruction>(InVal)->getParent() == NonConstBB)
1024         return nullptr;
1025 
1026     // If the incoming non-constant value is in I's block, we will remove one
1027     // instruction, but insert another equivalent one, leading to infinite
1028     // instcombine.
1029     if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
1030       return nullptr;
1031   }
1032 
1033   // If there is exactly one non-constant value, we can insert a copy of the
1034   // operation in that block.  However, if this is a critical edge, we would be
1035   // inserting the computation on some other paths (e.g. inside a loop).  Only
1036   // do this if the pred block is unconditionally branching into the phi block.
1037   if (NonConstBB != nullptr) {
1038     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1039     if (!BI || !BI->isUnconditional()) return nullptr;
1040   }
1041 
1042   // Okay, we can do the transformation: create the new PHI node.
1043   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1044   InsertNewInstBefore(NewPN, *PN);
1045   NewPN->takeName(PN);
1046 
1047   // If we are going to have to insert a new computation, do so right before the
1048   // predecessor's terminator.
1049   if (NonConstBB)
1050     Builder.SetInsertPoint(NonConstBB->getTerminator());
1051 
1052   // Next, add all of the operands to the PHI.
1053   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1054     // We only currently try to fold the condition of a select when it is a phi,
1055     // not the true/false values.
1056     Value *TrueV = SI->getTrueValue();
1057     Value *FalseV = SI->getFalseValue();
1058     BasicBlock *PhiTransBB = PN->getParent();
1059     for (unsigned i = 0; i != NumPHIValues; ++i) {
1060       BasicBlock *ThisBB = PN->getIncomingBlock(i);
1061       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1062       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1063       Value *InV = nullptr;
1064       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
1065       // even if currently isNullValue gives false.
1066       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1067       // For vector constants, we cannot use isNullValue to fold into
1068       // FalseVInPred versus TrueVInPred. When we have individual nonzero
1069       // elements in the vector, we will incorrectly fold InC to
1070       // `TrueVInPred`.
1071       if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC))
1072         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1073       else {
1074         // Generate the select in the same block as PN's current incoming block.
1075         // Note: ThisBB need not be the NonConstBB because vector constants
1076         // which are constants by definition are handled here.
1077         // FIXME: This can lead to an increase in IR generation because we might
1078         // generate selects for vector constant phi operand, that could not be
1079         // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1080         // non-vector phis, this transformation was always profitable because
1081         // the select would be generated exactly once in the NonConstBB.
1082         Builder.SetInsertPoint(ThisBB->getTerminator());
1083         InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1084                                    FalseVInPred, "phi.sel");
1085       }
1086       NewPN->addIncoming(InV, ThisBB);
1087     }
1088   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1089     Constant *C = cast<Constant>(I.getOperand(1));
1090     for (unsigned i = 0; i != NumPHIValues; ++i) {
1091       Value *InV = nullptr;
1092       if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1093         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1094       else
1095         InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i),
1096                                 C, "phi.cmp");
1097       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1098     }
1099   } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1100     for (unsigned i = 0; i != NumPHIValues; ++i) {
1101       Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1102                                              Builder);
1103       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1104     }
1105   } else {
1106     CastInst *CI = cast<CastInst>(&I);
1107     Type *RetTy = CI->getType();
1108     for (unsigned i = 0; i != NumPHIValues; ++i) {
1109       Value *InV;
1110       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1111         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1112       else
1113         InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1114                                  I.getType(), "phi.cast");
1115       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1116     }
1117   }
1118 
1119   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1120     Instruction *User = cast<Instruction>(*UI++);
1121     if (User == &I) continue;
1122     replaceInstUsesWith(*User, NewPN);
1123     eraseInstFromFunction(*User);
1124   }
1125   return replaceInstUsesWith(I, NewPN);
1126 }
1127 
1128 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1129   if (!isa<Constant>(I.getOperand(1)))
1130     return nullptr;
1131 
1132   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1133     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1134       return NewSel;
1135   } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1136     if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1137       return NewPhi;
1138   }
1139   return nullptr;
1140 }
1141 
1142 /// Given a pointer type and a constant offset, determine whether or not there
1143 /// is a sequence of GEP indices into the pointed type that will land us at the
1144 /// specified offset. If so, fill them into NewIndices and return the resultant
1145 /// element type, otherwise return null.
1146 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
1147                                         SmallVectorImpl<Value *> &NewIndices) {
1148   Type *Ty = PtrTy->getElementType();
1149   if (!Ty->isSized())
1150     return nullptr;
1151 
1152   // Start with the index over the outer type.  Note that the type size
1153   // might be zero (even if the offset isn't zero) if the indexed type
1154   // is something like [0 x {int, int}]
1155   Type *IndexTy = DL.getIndexType(PtrTy);
1156   int64_t FirstIdx = 0;
1157   if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
1158     FirstIdx = Offset/TySize;
1159     Offset -= FirstIdx*TySize;
1160 
1161     // Handle hosts where % returns negative instead of values [0..TySize).
1162     if (Offset < 0) {
1163       --FirstIdx;
1164       Offset += TySize;
1165       assert(Offset >= 0);
1166     }
1167     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
1168   }
1169 
1170   NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
1171 
1172   // Index into the types.  If we fail, set OrigBase to null.
1173   while (Offset) {
1174     // Indexing into tail padding between struct/array elements.
1175     if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
1176       return nullptr;
1177 
1178     if (StructType *STy = dyn_cast<StructType>(Ty)) {
1179       const StructLayout *SL = DL.getStructLayout(STy);
1180       assert(Offset < (int64_t)SL->getSizeInBytes() &&
1181              "Offset must stay within the indexed type");
1182 
1183       unsigned Elt = SL->getElementContainingOffset(Offset);
1184       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1185                                             Elt));
1186 
1187       Offset -= SL->getElementOffset(Elt);
1188       Ty = STy->getElementType(Elt);
1189     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
1190       uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
1191       assert(EltSize && "Cannot index into a zero-sized array");
1192       NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
1193       Offset %= EltSize;
1194       Ty = AT->getElementType();
1195     } else {
1196       // Otherwise, we can't index into the middle of this atomic type, bail.
1197       return nullptr;
1198     }
1199   }
1200 
1201   return Ty;
1202 }
1203 
1204 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1205   // If this GEP has only 0 indices, it is the same pointer as
1206   // Src. If Src is not a trivial GEP too, don't combine
1207   // the indices.
1208   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1209       !Src.hasOneUse())
1210     return false;
1211   return true;
1212 }
1213 
1214 /// Return a value X such that Val = X * Scale, or null if none.
1215 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1216 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1217   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1218   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1219          Scale.getBitWidth() && "Scale not compatible with value!");
1220 
1221   // If Val is zero or Scale is one then Val = Val * Scale.
1222   if (match(Val, m_Zero()) || Scale == 1) {
1223     NoSignedWrap = true;
1224     return Val;
1225   }
1226 
1227   // If Scale is zero then it does not divide Val.
1228   if (Scale.isMinValue())
1229     return nullptr;
1230 
1231   // Look through chains of multiplications, searching for a constant that is
1232   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1233   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1234   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1235   // down from Val:
1236   //
1237   //     Val = M1 * X          ||   Analysis starts here and works down
1238   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1239   //      M2 =  Z * 4          \/   than one use
1240   //
1241   // Then to modify a term at the bottom:
1242   //
1243   //     Val = M1 * X
1244   //      M1 =  Z * Y          ||   Replaced M2 with Z
1245   //
1246   // Then to work back up correcting nsw flags.
1247 
1248   // Op - the term we are currently analyzing.  Starts at Val then drills down.
1249   // Replaced with its descaled value before exiting from the drill down loop.
1250   Value *Op = Val;
1251 
1252   // Parent - initially null, but after drilling down notes where Op came from.
1253   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1254   // 0'th operand of Val.
1255   std::pair<Instruction *, unsigned> Parent;
1256 
1257   // Set if the transform requires a descaling at deeper levels that doesn't
1258   // overflow.
1259   bool RequireNoSignedWrap = false;
1260 
1261   // Log base 2 of the scale. Negative if not a power of 2.
1262   int32_t logScale = Scale.exactLogBase2();
1263 
1264   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1265     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1266       // If Op is a constant divisible by Scale then descale to the quotient.
1267       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1268       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1269       if (!Remainder.isMinValue())
1270         // Not divisible by Scale.
1271         return nullptr;
1272       // Replace with the quotient in the parent.
1273       Op = ConstantInt::get(CI->getType(), Quotient);
1274       NoSignedWrap = true;
1275       break;
1276     }
1277 
1278     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1279       if (BO->getOpcode() == Instruction::Mul) {
1280         // Multiplication.
1281         NoSignedWrap = BO->hasNoSignedWrap();
1282         if (RequireNoSignedWrap && !NoSignedWrap)
1283           return nullptr;
1284 
1285         // There are three cases for multiplication: multiplication by exactly
1286         // the scale, multiplication by a constant different to the scale, and
1287         // multiplication by something else.
1288         Value *LHS = BO->getOperand(0);
1289         Value *RHS = BO->getOperand(1);
1290 
1291         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1292           // Multiplication by a constant.
1293           if (CI->getValue() == Scale) {
1294             // Multiplication by exactly the scale, replace the multiplication
1295             // by its left-hand side in the parent.
1296             Op = LHS;
1297             break;
1298           }
1299 
1300           // Otherwise drill down into the constant.
1301           if (!Op->hasOneUse())
1302             return nullptr;
1303 
1304           Parent = std::make_pair(BO, 1);
1305           continue;
1306         }
1307 
1308         // Multiplication by something else. Drill down into the left-hand side
1309         // since that's where the reassociate pass puts the good stuff.
1310         if (!Op->hasOneUse())
1311           return nullptr;
1312 
1313         Parent = std::make_pair(BO, 0);
1314         continue;
1315       }
1316 
1317       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1318           isa<ConstantInt>(BO->getOperand(1))) {
1319         // Multiplication by a power of 2.
1320         NoSignedWrap = BO->hasNoSignedWrap();
1321         if (RequireNoSignedWrap && !NoSignedWrap)
1322           return nullptr;
1323 
1324         Value *LHS = BO->getOperand(0);
1325         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1326           getLimitedValue(Scale.getBitWidth());
1327         // Op = LHS << Amt.
1328 
1329         if (Amt == logScale) {
1330           // Multiplication by exactly the scale, replace the multiplication
1331           // by its left-hand side in the parent.
1332           Op = LHS;
1333           break;
1334         }
1335         if (Amt < logScale || !Op->hasOneUse())
1336           return nullptr;
1337 
1338         // Multiplication by more than the scale.  Reduce the multiplying amount
1339         // by the scale in the parent.
1340         Parent = std::make_pair(BO, 1);
1341         Op = ConstantInt::get(BO->getType(), Amt - logScale);
1342         break;
1343       }
1344     }
1345 
1346     if (!Op->hasOneUse())
1347       return nullptr;
1348 
1349     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1350       if (Cast->getOpcode() == Instruction::SExt) {
1351         // Op is sign-extended from a smaller type, descale in the smaller type.
1352         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1353         APInt SmallScale = Scale.trunc(SmallSize);
1354         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1355         // descale Op as (sext Y) * Scale.  In order to have
1356         //   sext (Y * SmallScale) = (sext Y) * Scale
1357         // some conditions need to hold however: SmallScale must sign-extend to
1358         // Scale and the multiplication Y * SmallScale should not overflow.
1359         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1360           // SmallScale does not sign-extend to Scale.
1361           return nullptr;
1362         assert(SmallScale.exactLogBase2() == logScale);
1363         // Require that Y * SmallScale must not overflow.
1364         RequireNoSignedWrap = true;
1365 
1366         // Drill down through the cast.
1367         Parent = std::make_pair(Cast, 0);
1368         Scale = SmallScale;
1369         continue;
1370       }
1371 
1372       if (Cast->getOpcode() == Instruction::Trunc) {
1373         // Op is truncated from a larger type, descale in the larger type.
1374         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1375         //   trunc (Y * sext Scale) = (trunc Y) * Scale
1376         // always holds.  However (trunc Y) * Scale may overflow even if
1377         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1378         // from this point up in the expression (see later).
1379         if (RequireNoSignedWrap)
1380           return nullptr;
1381 
1382         // Drill down through the cast.
1383         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1384         Parent = std::make_pair(Cast, 0);
1385         Scale = Scale.sext(LargeSize);
1386         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1387           logScale = -1;
1388         assert(Scale.exactLogBase2() == logScale);
1389         continue;
1390       }
1391     }
1392 
1393     // Unsupported expression, bail out.
1394     return nullptr;
1395   }
1396 
1397   // If Op is zero then Val = Op * Scale.
1398   if (match(Op, m_Zero())) {
1399     NoSignedWrap = true;
1400     return Op;
1401   }
1402 
1403   // We know that we can successfully descale, so from here on we can safely
1404   // modify the IR.  Op holds the descaled version of the deepest term in the
1405   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1406   // not to overflow.
1407 
1408   if (!Parent.first)
1409     // The expression only had one term.
1410     return Op;
1411 
1412   // Rewrite the parent using the descaled version of its operand.
1413   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1414   assert(Op != Parent.first->getOperand(Parent.second) &&
1415          "Descaling was a no-op?");
1416   replaceOperand(*Parent.first, Parent.second, Op);
1417   Worklist.push(Parent.first);
1418 
1419   // Now work back up the expression correcting nsw flags.  The logic is based
1420   // on the following observation: if X * Y is known not to overflow as a signed
1421   // multiplication, and Y is replaced by a value Z with smaller absolute value,
1422   // then X * Z will not overflow as a signed multiplication either.  As we work
1423   // our way up, having NoSignedWrap 'true' means that the descaled value at the
1424   // current level has strictly smaller absolute value than the original.
1425   Instruction *Ancestor = Parent.first;
1426   do {
1427     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1428       // If the multiplication wasn't nsw then we can't say anything about the
1429       // value of the descaled multiplication, and we have to clear nsw flags
1430       // from this point on up.
1431       bool OpNoSignedWrap = BO->hasNoSignedWrap();
1432       NoSignedWrap &= OpNoSignedWrap;
1433       if (NoSignedWrap != OpNoSignedWrap) {
1434         BO->setHasNoSignedWrap(NoSignedWrap);
1435         Worklist.push(Ancestor);
1436       }
1437     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1438       // The fact that the descaled input to the trunc has smaller absolute
1439       // value than the original input doesn't tell us anything useful about
1440       // the absolute values of the truncations.
1441       NoSignedWrap = false;
1442     }
1443     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1444            "Failed to keep proper track of nsw flags while drilling down?");
1445 
1446     if (Ancestor == Val)
1447       // Got to the top, all done!
1448       return Val;
1449 
1450     // Move up one level in the expression.
1451     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1452     Ancestor = Ancestor->user_back();
1453   } while (true);
1454 }
1455 
1456 Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) {
1457   // FIXME: some of this is likely fine for scalable vectors
1458   if (!isa<FixedVectorType>(Inst.getType()))
1459     return nullptr;
1460 
1461   BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1462   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1463   assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1464          cast<VectorType>(Inst.getType())->getElementCount());
1465   assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1466          cast<VectorType>(Inst.getType())->getElementCount());
1467 
1468   // If both operands of the binop are vector concatenations, then perform the
1469   // narrow binop on each pair of the source operands followed by concatenation
1470   // of the results.
1471   Value *L0, *L1, *R0, *R1;
1472   ArrayRef<int> Mask;
1473   if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1474       match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1475       LHS->hasOneUse() && RHS->hasOneUse() &&
1476       cast<ShuffleVectorInst>(LHS)->isConcat() &&
1477       cast<ShuffleVectorInst>(RHS)->isConcat()) {
1478     // This transform does not have the speculative execution constraint as
1479     // below because the shuffle is a concatenation. The new binops are
1480     // operating on exactly the same elements as the existing binop.
1481     // TODO: We could ease the mask requirement to allow different undef lanes,
1482     //       but that requires an analysis of the binop-with-undef output value.
1483     Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1484     if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1485       BO->copyIRFlags(&Inst);
1486     Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1487     if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1488       BO->copyIRFlags(&Inst);
1489     return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1490   }
1491 
1492   // It may not be safe to reorder shuffles and things like div, urem, etc.
1493   // because we may trap when executing those ops on unknown vector elements.
1494   // See PR20059.
1495   if (!isSafeToSpeculativelyExecute(&Inst))
1496     return nullptr;
1497 
1498   auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1499     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1500     if (auto *BO = dyn_cast<BinaryOperator>(XY))
1501       BO->copyIRFlags(&Inst);
1502     return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
1503   };
1504 
1505   // If both arguments of the binary operation are shuffles that use the same
1506   // mask and shuffle within a single vector, move the shuffle after the binop.
1507   Value *V1, *V2;
1508   if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
1509       match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
1510       V1->getType() == V2->getType() &&
1511       (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1512     // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1513     return createBinOpShuffle(V1, V2, Mask);
1514   }
1515 
1516   // If both arguments of a commutative binop are select-shuffles that use the
1517   // same mask with commuted operands, the shuffles are unnecessary.
1518   if (Inst.isCommutative() &&
1519       match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1520       match(RHS,
1521             m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1522     auto *LShuf = cast<ShuffleVectorInst>(LHS);
1523     auto *RShuf = cast<ShuffleVectorInst>(RHS);
1524     // TODO: Allow shuffles that contain undefs in the mask?
1525     //       That is legal, but it reduces undef knowledge.
1526     // TODO: Allow arbitrary shuffles by shuffling after binop?
1527     //       That might be legal, but we have to deal with poison.
1528     if (LShuf->isSelect() &&
1529         !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
1530         RShuf->isSelect() &&
1531         !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
1532       // Example:
1533       // LHS = shuffle V1, V2, <0, 5, 6, 3>
1534       // RHS = shuffle V2, V1, <0, 5, 6, 3>
1535       // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1536       Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1537       NewBO->copyIRFlags(&Inst);
1538       return NewBO;
1539     }
1540   }
1541 
1542   // If one argument is a shuffle within one vector and the other is a constant,
1543   // try moving the shuffle after the binary operation. This canonicalization
1544   // intends to move shuffles closer to other shuffles and binops closer to
1545   // other binops, so they can be folded. It may also enable demanded elements
1546   // transforms.
1547   unsigned NumElts = cast<FixedVectorType>(Inst.getType())->getNumElements();
1548   Constant *C;
1549   if (match(&Inst,
1550             m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
1551                       m_Constant(C))) &&
1552       cast<FixedVectorType>(V1->getType())->getNumElements() <= NumElts) {
1553     assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
1554            "Shuffle should not change scalar type");
1555 
1556     // Find constant NewC that has property:
1557     //   shuffle(NewC, ShMask) = C
1558     // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1559     // reorder is not possible. A 1-to-1 mapping is not required. Example:
1560     // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1561     bool ConstOp1 = isa<Constant>(RHS);
1562     ArrayRef<int> ShMask = Mask;
1563     unsigned SrcVecNumElts =
1564         cast<FixedVectorType>(V1->getType())->getNumElements();
1565     UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1566     SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1567     bool MayChange = true;
1568     for (unsigned I = 0; I < NumElts; ++I) {
1569       Constant *CElt = C->getAggregateElement(I);
1570       if (ShMask[I] >= 0) {
1571         assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1572         Constant *NewCElt = NewVecC[ShMask[I]];
1573         // Bail out if:
1574         // 1. The constant vector contains a constant expression.
1575         // 2. The shuffle needs an element of the constant vector that can't
1576         //    be mapped to a new constant vector.
1577         // 3. This is a widening shuffle that copies elements of V1 into the
1578         //    extended elements (extending with undef is allowed).
1579         if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1580             I >= SrcVecNumElts) {
1581           MayChange = false;
1582           break;
1583         }
1584         NewVecC[ShMask[I]] = CElt;
1585       }
1586       // If this is a widening shuffle, we must be able to extend with undef
1587       // elements. If the original binop does not produce an undef in the high
1588       // lanes, then this transform is not safe.
1589       // Similarly for undef lanes due to the shuffle mask, we can only
1590       // transform binops that preserve undef.
1591       // TODO: We could shuffle those non-undef constant values into the
1592       //       result by using a constant vector (rather than an undef vector)
1593       //       as operand 1 of the new binop, but that might be too aggressive
1594       //       for target-independent shuffle creation.
1595       if (I >= SrcVecNumElts || ShMask[I] < 0) {
1596         Constant *MaybeUndef =
1597             ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1598                      : ConstantExpr::get(Opcode, CElt, UndefScalar);
1599         if (!isa<UndefValue>(MaybeUndef)) {
1600           MayChange = false;
1601           break;
1602         }
1603       }
1604     }
1605     if (MayChange) {
1606       Constant *NewC = ConstantVector::get(NewVecC);
1607       // It may not be safe to execute a binop on a vector with undef elements
1608       // because the entire instruction can be folded to undef or create poison
1609       // that did not exist in the original code.
1610       if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1611         NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1612 
1613       // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1614       // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1615       Value *NewLHS = ConstOp1 ? V1 : NewC;
1616       Value *NewRHS = ConstOp1 ? NewC : V1;
1617       return createBinOpShuffle(NewLHS, NewRHS, Mask);
1618     }
1619   }
1620 
1621   // Try to reassociate to sink a splat shuffle after a binary operation.
1622   if (Inst.isAssociative() && Inst.isCommutative()) {
1623     // Canonicalize shuffle operand as LHS.
1624     if (isa<ShuffleVectorInst>(RHS))
1625       std::swap(LHS, RHS);
1626 
1627     Value *X;
1628     ArrayRef<int> MaskC;
1629     int SplatIndex;
1630     BinaryOperator *BO;
1631     if (!match(LHS,
1632                m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
1633         !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1634         X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) ||
1635         BO->getOpcode() != Opcode)
1636       return nullptr;
1637 
1638     // FIXME: This may not be safe if the analysis allows undef elements. By
1639     //        moving 'Y' before the splat shuffle, we are implicitly assuming
1640     //        that it is not undef/poison at the splat index.
1641     Value *Y, *OtherOp;
1642     if (isSplatValue(BO->getOperand(0), SplatIndex)) {
1643       Y = BO->getOperand(0);
1644       OtherOp = BO->getOperand(1);
1645     } else if (isSplatValue(BO->getOperand(1), SplatIndex)) {
1646       Y = BO->getOperand(1);
1647       OtherOp = BO->getOperand(0);
1648     } else {
1649       return nullptr;
1650     }
1651 
1652     // X and Y are splatted values, so perform the binary operation on those
1653     // values followed by a splat followed by the 2nd binary operation:
1654     // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1655     Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1656     UndefValue *Undef = UndefValue::get(Inst.getType());
1657     SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1658     Value *NewSplat = Builder.CreateShuffleVector(NewBO, Undef, NewMask);
1659     Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1660 
1661     // Intersect FMF on both new binops. Other (poison-generating) flags are
1662     // dropped to be safe.
1663     if (isa<FPMathOperator>(R)) {
1664       R->copyFastMathFlags(&Inst);
1665       R->andIRFlags(BO);
1666     }
1667     if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1668       NewInstBO->copyIRFlags(R);
1669     return R;
1670   }
1671 
1672   return nullptr;
1673 }
1674 
1675 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1676 /// of a value. This requires a potentially expensive known bits check to make
1677 /// sure the narrow op does not overflow.
1678 Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) {
1679   // We need at least one extended operand.
1680   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1681 
1682   // If this is a sub, we swap the operands since we always want an extension
1683   // on the RHS. The LHS can be an extension or a constant.
1684   if (BO.getOpcode() == Instruction::Sub)
1685     std::swap(Op0, Op1);
1686 
1687   Value *X;
1688   bool IsSext = match(Op0, m_SExt(m_Value(X)));
1689   if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1690     return nullptr;
1691 
1692   // If both operands are the same extension from the same source type and we
1693   // can eliminate at least one (hasOneUse), this might work.
1694   CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1695   Value *Y;
1696   if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1697         cast<Operator>(Op1)->getOpcode() == CastOpc &&
1698         (Op0->hasOneUse() || Op1->hasOneUse()))) {
1699     // If that did not match, see if we have a suitable constant operand.
1700     // Truncating and extending must produce the same constant.
1701     Constant *WideC;
1702     if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1703       return nullptr;
1704     Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1705     if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1706       return nullptr;
1707     Y = NarrowC;
1708   }
1709 
1710   // Swap back now that we found our operands.
1711   if (BO.getOpcode() == Instruction::Sub)
1712     std::swap(X, Y);
1713 
1714   // Both operands have narrow versions. Last step: the math must not overflow
1715   // in the narrow width.
1716   if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1717     return nullptr;
1718 
1719   // bo (ext X), (ext Y) --> ext (bo X, Y)
1720   // bo (ext X), C       --> ext (bo X, C')
1721   Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1722   if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1723     if (IsSext)
1724       NewBinOp->setHasNoSignedWrap();
1725     else
1726       NewBinOp->setHasNoUnsignedWrap();
1727   }
1728   return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1729 }
1730 
1731 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1732   // At least one GEP must be inbounds.
1733   if (!GEP1.isInBounds() && !GEP2.isInBounds())
1734     return false;
1735 
1736   return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1737          (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1738 }
1739 
1740 /// Thread a GEP operation with constant indices through the constant true/false
1741 /// arms of a select.
1742 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1743                                   InstCombiner::BuilderTy &Builder) {
1744   if (!GEP.hasAllConstantIndices())
1745     return nullptr;
1746 
1747   Instruction *Sel;
1748   Value *Cond;
1749   Constant *TrueC, *FalseC;
1750   if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1751       !match(Sel,
1752              m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1753     return nullptr;
1754 
1755   // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1756   // Propagate 'inbounds' and metadata from existing instructions.
1757   // Note: using IRBuilder to create the constants for efficiency.
1758   SmallVector<Value *, 4> IndexC(GEP.idx_begin(), GEP.idx_end());
1759   bool IsInBounds = GEP.isInBounds();
1760   Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(TrueC, IndexC)
1761                                : Builder.CreateGEP(TrueC, IndexC);
1762   Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(FalseC, IndexC)
1763                                 : Builder.CreateGEP(FalseC, IndexC);
1764   return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1765 }
1766 
1767 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1768   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1769   Type *GEPType = GEP.getType();
1770   Type *GEPEltType = GEP.getSourceElementType();
1771   bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
1772   if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
1773     return replaceInstUsesWith(GEP, V);
1774 
1775   // For vector geps, use the generic demanded vector support.
1776   // Skip if GEP return type is scalable. The number of elements is unknown at
1777   // compile-time.
1778   if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
1779     auto VWidth = GEPFVTy->getNumElements();
1780     APInt UndefElts(VWidth, 0);
1781     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1782     if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
1783                                               UndefElts)) {
1784       if (V != &GEP)
1785         return replaceInstUsesWith(GEP, V);
1786       return &GEP;
1787     }
1788 
1789     // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
1790     // possible (decide on canonical form for pointer broadcast), 3) exploit
1791     // undef elements to decrease demanded bits
1792   }
1793 
1794   Value *PtrOp = GEP.getOperand(0);
1795 
1796   // Eliminate unneeded casts for indices, and replace indices which displace
1797   // by multiples of a zero size type with zero.
1798   bool MadeChange = false;
1799 
1800   // Index width may not be the same width as pointer width.
1801   // Data layout chooses the right type based on supported integer types.
1802   Type *NewScalarIndexTy =
1803       DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1804 
1805   gep_type_iterator GTI = gep_type_begin(GEP);
1806   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1807        ++I, ++GTI) {
1808     // Skip indices into struct types.
1809     if (GTI.isStruct())
1810       continue;
1811 
1812     Type *IndexTy = (*I)->getType();
1813     Type *NewIndexType =
1814         IndexTy->isVectorTy()
1815             ? VectorType::get(NewScalarIndexTy,
1816                               cast<VectorType>(IndexTy)->getElementCount())
1817             : NewScalarIndexTy;
1818 
1819     // If the element type has zero size then any index over it is equivalent
1820     // to an index of zero, so replace it with zero if it is not zero already.
1821     Type *EltTy = GTI.getIndexedType();
1822     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
1823       if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
1824         *I = Constant::getNullValue(NewIndexType);
1825         MadeChange = true;
1826       }
1827 
1828     if (IndexTy != NewIndexType) {
1829       // If we are using a wider index than needed for this platform, shrink
1830       // it to what we need.  If narrower, sign-extend it to what we need.
1831       // This explicit cast can make subsequent optimizations more obvious.
1832       *I = Builder.CreateIntCast(*I, NewIndexType, true);
1833       MadeChange = true;
1834     }
1835   }
1836   if (MadeChange)
1837     return &GEP;
1838 
1839   // Check to see if the inputs to the PHI node are getelementptr instructions.
1840   if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1841     auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1842     if (!Op1)
1843       return nullptr;
1844 
1845     // Don't fold a GEP into itself through a PHI node. This can only happen
1846     // through the back-edge of a loop. Folding a GEP into itself means that
1847     // the value of the previous iteration needs to be stored in the meantime,
1848     // thus requiring an additional register variable to be live, but not
1849     // actually achieving anything (the GEP still needs to be executed once per
1850     // loop iteration).
1851     if (Op1 == &GEP)
1852       return nullptr;
1853 
1854     int DI = -1;
1855 
1856     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1857       auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1858       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1859         return nullptr;
1860 
1861       // As for Op1 above, don't try to fold a GEP into itself.
1862       if (Op2 == &GEP)
1863         return nullptr;
1864 
1865       // Keep track of the type as we walk the GEP.
1866       Type *CurTy = nullptr;
1867 
1868       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1869         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1870           return nullptr;
1871 
1872         if (Op1->getOperand(J) != Op2->getOperand(J)) {
1873           if (DI == -1) {
1874             // We have not seen any differences yet in the GEPs feeding the
1875             // PHI yet, so we record this one if it is allowed to be a
1876             // variable.
1877 
1878             // The first two arguments can vary for any GEP, the rest have to be
1879             // static for struct slots
1880             if (J > 1) {
1881               assert(CurTy && "No current type?");
1882               if (CurTy->isStructTy())
1883                 return nullptr;
1884             }
1885 
1886             DI = J;
1887           } else {
1888             // The GEP is different by more than one input. While this could be
1889             // extended to support GEPs that vary by more than one variable it
1890             // doesn't make sense since it greatly increases the complexity and
1891             // would result in an R+R+R addressing mode which no backend
1892             // directly supports and would need to be broken into several
1893             // simpler instructions anyway.
1894             return nullptr;
1895           }
1896         }
1897 
1898         // Sink down a layer of the type for the next iteration.
1899         if (J > 0) {
1900           if (J == 1) {
1901             CurTy = Op1->getSourceElementType();
1902           } else {
1903             CurTy =
1904                 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
1905           }
1906         }
1907       }
1908     }
1909 
1910     // If not all GEPs are identical we'll have to create a new PHI node.
1911     // Check that the old PHI node has only one use so that it will get
1912     // removed.
1913     if (DI != -1 && !PN->hasOneUse())
1914       return nullptr;
1915 
1916     auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1917     if (DI == -1) {
1918       // All the GEPs feeding the PHI are identical. Clone one down into our
1919       // BB so that it can be merged with the current GEP.
1920     } else {
1921       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1922       // into the current block so it can be merged, and create a new PHI to
1923       // set that index.
1924       PHINode *NewPN;
1925       {
1926         IRBuilderBase::InsertPointGuard Guard(Builder);
1927         Builder.SetInsertPoint(PN);
1928         NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
1929                                   PN->getNumOperands());
1930       }
1931 
1932       for (auto &I : PN->operands())
1933         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1934                            PN->getIncomingBlock(I));
1935 
1936       NewGEP->setOperand(DI, NewPN);
1937     }
1938 
1939     GEP.getParent()->getInstList().insert(
1940         GEP.getParent()->getFirstInsertionPt(), NewGEP);
1941     replaceOperand(GEP, 0, NewGEP);
1942     PtrOp = NewGEP;
1943   }
1944 
1945   // Combine Indices - If the source pointer to this getelementptr instruction
1946   // is a getelementptr instruction, combine the indices of the two
1947   // getelementptr instructions into a single instruction.
1948   if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
1949     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1950       return nullptr;
1951 
1952     // Try to reassociate loop invariant GEP chains to enable LICM.
1953     if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
1954         Src->hasOneUse()) {
1955       if (Loop *L = LI->getLoopFor(GEP.getParent())) {
1956         Value *GO1 = GEP.getOperand(1);
1957         Value *SO1 = Src->getOperand(1);
1958         // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
1959         // invariant: this breaks the dependence between GEPs and allows LICM
1960         // to hoist the invariant part out of the loop.
1961         if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
1962           // We have to be careful here.
1963           // We have something like:
1964           //  %src = getelementptr <ty>, <ty>* %base, <ty> %idx
1965           //  %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
1966           // If we just swap idx & idx2 then we could inadvertantly
1967           // change %src from a vector to a scalar, or vice versa.
1968           // Cases:
1969           //  1) %base a scalar & idx a scalar & idx2 a vector
1970           //      => Swapping idx & idx2 turns %src into a vector type.
1971           //  2) %base a scalar & idx a vector & idx2 a scalar
1972           //      => Swapping idx & idx2 turns %src in a scalar type
1973           //  3) %base, %idx, and %idx2 are scalars
1974           //      => %src & %gep are scalars
1975           //      => swapping idx & idx2 is safe
1976           //  4) %base a vector
1977           //      => %src is a vector
1978           //      => swapping idx & idx2 is safe.
1979           auto *SO0 = Src->getOperand(0);
1980           auto *SO0Ty = SO0->getType();
1981           if (!isa<VectorType>(GEPType) || // case 3
1982               isa<VectorType>(SO0Ty)) {    // case 4
1983             Src->setOperand(1, GO1);
1984             GEP.setOperand(1, SO1);
1985             return &GEP;
1986           } else {
1987             // Case 1 or 2
1988             // -- have to recreate %src & %gep
1989             // put NewSrc at same location as %src
1990             Builder.SetInsertPoint(cast<Instruction>(PtrOp));
1991             auto *NewSrc = cast<GetElementPtrInst>(
1992                 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()));
1993             NewSrc->setIsInBounds(Src->isInBounds());
1994             auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
1995             NewGEP->setIsInBounds(GEP.isInBounds());
1996             return NewGEP;
1997           }
1998         }
1999       }
2000     }
2001 
2002     // Note that if our source is a gep chain itself then we wait for that
2003     // chain to be resolved before we perform this transformation.  This
2004     // avoids us creating a TON of code in some cases.
2005     if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
2006       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
2007         return nullptr;   // Wait until our source is folded to completion.
2008 
2009     SmallVector<Value*, 8> Indices;
2010 
2011     // Find out whether the last index in the source GEP is a sequential idx.
2012     bool EndsWithSequential = false;
2013     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2014          I != E; ++I)
2015       EndsWithSequential = I.isSequential();
2016 
2017     // Can we combine the two pointer arithmetics offsets?
2018     if (EndsWithSequential) {
2019       // Replace: gep (gep %P, long B), long A, ...
2020       // With:    T = long A+B; gep %P, T, ...
2021       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2022       Value *GO1 = GEP.getOperand(1);
2023 
2024       // If they aren't the same type, then the input hasn't been processed
2025       // by the loop above yet (which canonicalizes sequential index types to
2026       // intptr_t).  Just avoid transforming this until the input has been
2027       // normalized.
2028       if (SO1->getType() != GO1->getType())
2029         return nullptr;
2030 
2031       Value *Sum =
2032           SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2033       // Only do the combine when we are sure the cost after the
2034       // merge is never more than that before the merge.
2035       if (Sum == nullptr)
2036         return nullptr;
2037 
2038       // Update the GEP in place if possible.
2039       if (Src->getNumOperands() == 2) {
2040         GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2041         replaceOperand(GEP, 0, Src->getOperand(0));
2042         replaceOperand(GEP, 1, Sum);
2043         return &GEP;
2044       }
2045       Indices.append(Src->op_begin()+1, Src->op_end()-1);
2046       Indices.push_back(Sum);
2047       Indices.append(GEP.op_begin()+2, GEP.op_end());
2048     } else if (isa<Constant>(*GEP.idx_begin()) &&
2049                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2050                Src->getNumOperands() != 1) {
2051       // Otherwise we can do the fold if the first index of the GEP is a zero
2052       Indices.append(Src->op_begin()+1, Src->op_end());
2053       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2054     }
2055 
2056     if (!Indices.empty())
2057       return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2058                  ? GetElementPtrInst::CreateInBounds(
2059                        Src->getSourceElementType(), Src->getOperand(0), Indices,
2060                        GEP.getName())
2061                  : GetElementPtrInst::Create(Src->getSourceElementType(),
2062                                              Src->getOperand(0), Indices,
2063                                              GEP.getName());
2064   }
2065 
2066   // Skip if GEP source element type is scalable. The type alloc size is unknown
2067   // at compile-time.
2068   if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2069     unsigned AS = GEP.getPointerAddressSpace();
2070     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2071         DL.getIndexSizeInBits(AS)) {
2072       uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2073 
2074       bool Matched = false;
2075       uint64_t C;
2076       Value *V = nullptr;
2077       if (TyAllocSize == 1) {
2078         V = GEP.getOperand(1);
2079         Matched = true;
2080       } else if (match(GEP.getOperand(1),
2081                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
2082         if (TyAllocSize == 1ULL << C)
2083           Matched = true;
2084       } else if (match(GEP.getOperand(1),
2085                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2086         if (TyAllocSize == C)
2087           Matched = true;
2088       }
2089 
2090       if (Matched) {
2091         // Canonicalize (gep i8* X, -(ptrtoint Y))
2092         // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
2093         // The GEP pattern is emitted by the SCEV expander for certain kinds of
2094         // pointer arithmetic.
2095         if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
2096           Operator *Index = cast<Operator>(V);
2097           Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
2098           Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
2099           return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
2100         }
2101         // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
2102         // to (bitcast Y)
2103         Value *Y;
2104         if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
2105                            m_PtrToInt(m_Specific(GEP.getOperand(0))))))
2106           return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2107       }
2108     }
2109   }
2110 
2111   // We do not handle pointer-vector geps here.
2112   if (GEPType->isVectorTy())
2113     return nullptr;
2114 
2115   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2116   Value *StrippedPtr = PtrOp->stripPointerCasts();
2117   PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2118 
2119   if (StrippedPtr != PtrOp) {
2120     bool HasZeroPointerIndex = false;
2121     Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
2122 
2123     if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2124       HasZeroPointerIndex = C->isZero();
2125 
2126     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2127     // into     : GEP [10 x i8]* X, i32 0, ...
2128     //
2129     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2130     //           into     : GEP i8* X, ...
2131     //
2132     // This occurs when the program declares an array extern like "int X[];"
2133     if (HasZeroPointerIndex) {
2134       if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2135         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2136         if (CATy->getElementType() == StrippedPtrEltTy) {
2137           // -> GEP i8* X, ...
2138           SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
2139           GetElementPtrInst *Res = GetElementPtrInst::Create(
2140               StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2141           Res->setIsInBounds(GEP.isInBounds());
2142           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2143             return Res;
2144           // Insert Res, and create an addrspacecast.
2145           // e.g.,
2146           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2147           // ->
2148           // %0 = GEP i8 addrspace(1)* X, ...
2149           // addrspacecast i8 addrspace(1)* %0 to i8*
2150           return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2151         }
2152 
2153         if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2154           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2155           if (CATy->getElementType() == XATy->getElementType()) {
2156             // -> GEP [10 x i8]* X, i32 0, ...
2157             // At this point, we know that the cast source type is a pointer
2158             // to an array of the same type as the destination pointer
2159             // array.  Because the array type is never stepped over (there
2160             // is a leading zero) we can fold the cast into this GEP.
2161             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2162               GEP.setSourceElementType(XATy);
2163               return replaceOperand(GEP, 0, StrippedPtr);
2164             }
2165             // Cannot replace the base pointer directly because StrippedPtr's
2166             // address space is different. Instead, create a new GEP followed by
2167             // an addrspacecast.
2168             // e.g.,
2169             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2170             //   i32 0, ...
2171             // ->
2172             // %0 = GEP [10 x i8] addrspace(1)* X, ...
2173             // addrspacecast i8 addrspace(1)* %0 to i8*
2174             SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
2175             Value *NewGEP =
2176                 GEP.isInBounds()
2177                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2178                                                 Idx, GEP.getName())
2179                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2180                                         GEP.getName());
2181             return new AddrSpaceCastInst(NewGEP, GEPType);
2182           }
2183         }
2184       }
2185     } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
2186       // Skip if GEP source element type is scalable. The type alloc size is
2187       // unknown at compile-time.
2188       // Transform things like: %t = getelementptr i32*
2189       // bitcast ([2 x i32]* %str to i32*), i32 %V into:  %t1 = getelementptr [2
2190       // x i32]* %str, i32 0, i32 %V; bitcast
2191       if (StrippedPtrEltTy->isArrayTy() &&
2192           DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2193               DL.getTypeAllocSize(GEPEltType)) {
2194         Type *IdxType = DL.getIndexType(GEPType);
2195         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2196         Value *NewGEP =
2197             GEP.isInBounds()
2198                 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2199                                             GEP.getName())
2200                 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2201                                     GEP.getName());
2202 
2203         // V and GEP are both pointer types --> BitCast
2204         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2205       }
2206 
2207       // Transform things like:
2208       // %V = mul i64 %N, 4
2209       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2210       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
2211       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2212         // Check that changing the type amounts to dividing the index by a scale
2213         // factor.
2214         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2215         uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
2216         if (ResSize && SrcSize % ResSize == 0) {
2217           Value *Idx = GEP.getOperand(1);
2218           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2219           uint64_t Scale = SrcSize / ResSize;
2220 
2221           // Earlier transforms ensure that the index has the right type
2222           // according to Data Layout, which considerably simplifies the
2223           // logic by eliminating implicit casts.
2224           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2225                  "Index type does not match the Data Layout preferences");
2226 
2227           bool NSW;
2228           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2229             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2230             // If the multiplication NewIdx * Scale may overflow then the new
2231             // GEP may not be "inbounds".
2232             Value *NewGEP =
2233                 GEP.isInBounds() && NSW
2234                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2235                                                 NewIdx, GEP.getName())
2236                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2237                                         GEP.getName());
2238 
2239             // The NewGEP must be pointer typed, so must the old one -> BitCast
2240             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2241                                                                  GEPType);
2242           }
2243         }
2244       }
2245 
2246       // Similarly, transform things like:
2247       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2248       //   (where tmp = 8*tmp2) into:
2249       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2250       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2251           StrippedPtrEltTy->isArrayTy()) {
2252         // Check that changing to the array element type amounts to dividing the
2253         // index by a scale factor.
2254         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2255         uint64_t ArrayEltSize =
2256             DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
2257                 .getFixedSize();
2258         if (ResSize && ArrayEltSize % ResSize == 0) {
2259           Value *Idx = GEP.getOperand(1);
2260           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2261           uint64_t Scale = ArrayEltSize / ResSize;
2262 
2263           // Earlier transforms ensure that the index has the right type
2264           // according to the Data Layout, which considerably simplifies
2265           // the logic by eliminating implicit casts.
2266           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2267                  "Index type does not match the Data Layout preferences");
2268 
2269           bool NSW;
2270           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2271             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2272             // If the multiplication NewIdx * Scale may overflow then the new
2273             // GEP may not be "inbounds".
2274             Type *IndTy = DL.getIndexType(GEPType);
2275             Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2276 
2277             Value *NewGEP =
2278                 GEP.isInBounds() && NSW
2279                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2280                                                 Off, GEP.getName())
2281                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2282                                         GEP.getName());
2283             // The NewGEP must be pointer typed, so must the old one -> BitCast
2284             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2285                                                                  GEPType);
2286           }
2287         }
2288       }
2289     }
2290   }
2291 
2292   // addrspacecast between types is canonicalized as a bitcast, then an
2293   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2294   // through the addrspacecast.
2295   Value *ASCStrippedPtrOp = PtrOp;
2296   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2297     //   X = bitcast A addrspace(1)* to B addrspace(1)*
2298     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2299     //   Z = gep Y, <...constant indices...>
2300     // Into an addrspacecasted GEP of the struct.
2301     if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2302       ASCStrippedPtrOp = BC;
2303   }
2304 
2305   if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2306     Value *SrcOp = BCI->getOperand(0);
2307     PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2308     Type *SrcEltType = SrcType->getElementType();
2309 
2310     // GEP directly using the source operand if this GEP is accessing an element
2311     // of a bitcasted pointer to vector or array of the same dimensions:
2312     // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2313     // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2314     auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2315                                           const DataLayout &DL) {
2316       auto *VecVTy = cast<VectorType>(VecTy);
2317       return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
2318              ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
2319              DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2320     };
2321     if (GEP.getNumOperands() == 3 &&
2322         ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() &&
2323           areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2324          (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() &&
2325           areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2326 
2327       // Create a new GEP here, as using `setOperand()` followed by
2328       // `setSourceElementType()` won't actually update the type of the
2329       // existing GEP Value. Causing issues if this Value is accessed when
2330       // constructing an AddrSpaceCastInst
2331       Value *NGEP =
2332           GEP.isInBounds()
2333               ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
2334               : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
2335       NGEP->takeName(&GEP);
2336 
2337       // Preserve GEP address space to satisfy users
2338       if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2339         return new AddrSpaceCastInst(NGEP, GEPType);
2340 
2341       return replaceInstUsesWith(GEP, NGEP);
2342     }
2343 
2344     // See if we can simplify:
2345     //   X = bitcast A* to B*
2346     //   Y = gep X, <...constant indices...>
2347     // into a gep of the original struct. This is important for SROA and alias
2348     // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2349     unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2350     APInt Offset(OffsetBits, 0);
2351     if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
2352       // If this GEP instruction doesn't move the pointer, just replace the GEP
2353       // with a bitcast of the real input to the dest type.
2354       if (!Offset) {
2355         // If the bitcast is of an allocation, and the allocation will be
2356         // converted to match the type of the cast, don't touch this.
2357         if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
2358           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2359           if (Instruction *I = visitBitCast(*BCI)) {
2360             if (I != BCI) {
2361               I->takeName(BCI);
2362               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2363               replaceInstUsesWith(*BCI, I);
2364             }
2365             return &GEP;
2366           }
2367         }
2368 
2369         if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2370           return new AddrSpaceCastInst(SrcOp, GEPType);
2371         return new BitCastInst(SrcOp, GEPType);
2372       }
2373 
2374       // Otherwise, if the offset is non-zero, we need to find out if there is a
2375       // field at Offset in 'A's type.  If so, we can pull the cast through the
2376       // GEP.
2377       SmallVector<Value*, 8> NewIndices;
2378       if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2379         Value *NGEP =
2380             GEP.isInBounds()
2381                 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2382                 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2383 
2384         if (NGEP->getType() == GEPType)
2385           return replaceInstUsesWith(GEP, NGEP);
2386         NGEP->takeName(&GEP);
2387 
2388         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2389           return new AddrSpaceCastInst(NGEP, GEPType);
2390         return new BitCastInst(NGEP, GEPType);
2391       }
2392     }
2393   }
2394 
2395   if (!GEP.isInBounds()) {
2396     unsigned IdxWidth =
2397         DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2398     APInt BasePtrOffset(IdxWidth, 0);
2399     Value *UnderlyingPtrOp =
2400             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2401                                                              BasePtrOffset);
2402     if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2403       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2404           BasePtrOffset.isNonNegative()) {
2405         APInt AllocSize(
2406             IdxWidth,
2407             DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
2408         if (BasePtrOffset.ule(AllocSize)) {
2409           return GetElementPtrInst::CreateInBounds(
2410               GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
2411               GEP.getName());
2412         }
2413       }
2414     }
2415   }
2416 
2417   if (Instruction *R = foldSelectGEP(GEP, Builder))
2418     return R;
2419 
2420   return nullptr;
2421 }
2422 
2423 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
2424                                          Instruction *AI) {
2425   if (isa<ConstantPointerNull>(V))
2426     return true;
2427   if (auto *LI = dyn_cast<LoadInst>(V))
2428     return isa<GlobalVariable>(LI->getPointerOperand());
2429   // Two distinct allocations will never be equal.
2430   // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2431   // through bitcasts of V can cause
2432   // the result statement below to be true, even when AI and V (ex:
2433   // i8* ->i32* ->i8* of AI) are the same allocations.
2434   return isAllocLikeFn(V, TLI) && V != AI;
2435 }
2436 
2437 static bool isAllocSiteRemovable(Instruction *AI,
2438                                  SmallVectorImpl<WeakTrackingVH> &Users,
2439                                  const TargetLibraryInfo *TLI) {
2440   SmallVector<Instruction*, 4> Worklist;
2441   Worklist.push_back(AI);
2442 
2443   do {
2444     Instruction *PI = Worklist.pop_back_val();
2445     for (User *U : PI->users()) {
2446       Instruction *I = cast<Instruction>(U);
2447       switch (I->getOpcode()) {
2448       default:
2449         // Give up the moment we see something we can't handle.
2450         return false;
2451 
2452       case Instruction::AddrSpaceCast:
2453       case Instruction::BitCast:
2454       case Instruction::GetElementPtr:
2455         Users.emplace_back(I);
2456         Worklist.push_back(I);
2457         continue;
2458 
2459       case Instruction::ICmp: {
2460         ICmpInst *ICI = cast<ICmpInst>(I);
2461         // We can fold eq/ne comparisons with null to false/true, respectively.
2462         // We also fold comparisons in some conditions provided the alloc has
2463         // not escaped (see isNeverEqualToUnescapedAlloc).
2464         if (!ICI->isEquality())
2465           return false;
2466         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2467         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2468           return false;
2469         Users.emplace_back(I);
2470         continue;
2471       }
2472 
2473       case Instruction::Call:
2474         // Ignore no-op and store intrinsics.
2475         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2476           switch (II->getIntrinsicID()) {
2477           default:
2478             return false;
2479 
2480           case Intrinsic::memmove:
2481           case Intrinsic::memcpy:
2482           case Intrinsic::memset: {
2483             MemIntrinsic *MI = cast<MemIntrinsic>(II);
2484             if (MI->isVolatile() || MI->getRawDest() != PI)
2485               return false;
2486             LLVM_FALLTHROUGH;
2487           }
2488           case Intrinsic::assume:
2489           case Intrinsic::invariant_start:
2490           case Intrinsic::invariant_end:
2491           case Intrinsic::lifetime_start:
2492           case Intrinsic::lifetime_end:
2493           case Intrinsic::objectsize:
2494             Users.emplace_back(I);
2495             continue;
2496           }
2497         }
2498 
2499         if (isFreeCall(I, TLI)) {
2500           Users.emplace_back(I);
2501           continue;
2502         }
2503         return false;
2504 
2505       case Instruction::Store: {
2506         StoreInst *SI = cast<StoreInst>(I);
2507         if (SI->isVolatile() || SI->getPointerOperand() != PI)
2508           return false;
2509         Users.emplace_back(I);
2510         continue;
2511       }
2512       }
2513       llvm_unreachable("missing a return?");
2514     }
2515   } while (!Worklist.empty());
2516   return true;
2517 }
2518 
2519 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
2520   // If we have a malloc call which is only used in any amount of comparisons to
2521   // null and free calls, delete the calls and replace the comparisons with true
2522   // or false as appropriate.
2523 
2524   // This is based on the principle that we can substitute our own allocation
2525   // function (which will never return null) rather than knowledge of the
2526   // specific function being called. In some sense this can change the permitted
2527   // outputs of a program (when we convert a malloc to an alloca, the fact that
2528   // the allocation is now on the stack is potentially visible, for example),
2529   // but we believe in a permissible manner.
2530   SmallVector<WeakTrackingVH, 64> Users;
2531 
2532   // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2533   // before each store.
2534   TinyPtrVector<DbgVariableIntrinsic *> DIIs;
2535   std::unique_ptr<DIBuilder> DIB;
2536   if (isa<AllocaInst>(MI)) {
2537     DIIs = FindDbgAddrUses(&MI);
2538     DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2539   }
2540 
2541   if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2542     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2543       // Lowering all @llvm.objectsize calls first because they may
2544       // use a bitcast/GEP of the alloca we are removing.
2545       if (!Users[i])
2546        continue;
2547 
2548       Instruction *I = cast<Instruction>(&*Users[i]);
2549 
2550       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2551         if (II->getIntrinsicID() == Intrinsic::objectsize) {
2552           Value *Result =
2553               lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2554           replaceInstUsesWith(*I, Result);
2555           eraseInstFromFunction(*I);
2556           Users[i] = nullptr; // Skip examining in the next loop.
2557         }
2558       }
2559     }
2560     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2561       if (!Users[i])
2562         continue;
2563 
2564       Instruction *I = cast<Instruction>(&*Users[i]);
2565 
2566       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2567         replaceInstUsesWith(*C,
2568                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
2569                                              C->isFalseWhenEqual()));
2570       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2571         for (auto *DII : DIIs)
2572           ConvertDebugDeclareToDebugValue(DII, SI, *DIB);
2573       } else {
2574         // Casts, GEP, or anything else: we're about to delete this instruction,
2575         // so it can not have any valid uses.
2576         replaceInstUsesWith(*I, UndefValue::get(I->getType()));
2577       }
2578       eraseInstFromFunction(*I);
2579     }
2580 
2581     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2582       // Replace invoke with a NOP intrinsic to maintain the original CFG
2583       Module *M = II->getModule();
2584       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2585       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2586                          None, "", II->getParent());
2587     }
2588 
2589     for (auto *DII : DIIs)
2590       eraseInstFromFunction(*DII);
2591 
2592     return eraseInstFromFunction(MI);
2593   }
2594   return nullptr;
2595 }
2596 
2597 /// Move the call to free before a NULL test.
2598 ///
2599 /// Check if this free is accessed after its argument has been test
2600 /// against NULL (property 0).
2601 /// If yes, it is legal to move this call in its predecessor block.
2602 ///
2603 /// The move is performed only if the block containing the call to free
2604 /// will be removed, i.e.:
2605 /// 1. it has only one predecessor P, and P has two successors
2606 /// 2. it contains the call, noops, and an unconditional branch
2607 /// 3. its successor is the same as its predecessor's successor
2608 ///
2609 /// The profitability is out-of concern here and this function should
2610 /// be called only if the caller knows this transformation would be
2611 /// profitable (e.g., for code size).
2612 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2613                                                 const DataLayout &DL) {
2614   Value *Op = FI.getArgOperand(0);
2615   BasicBlock *FreeInstrBB = FI.getParent();
2616   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2617 
2618   // Validate part of constraint #1: Only one predecessor
2619   // FIXME: We can extend the number of predecessor, but in that case, we
2620   //        would duplicate the call to free in each predecessor and it may
2621   //        not be profitable even for code size.
2622   if (!PredBB)
2623     return nullptr;
2624 
2625   // Validate constraint #2: Does this block contains only the call to
2626   //                         free, noops, and an unconditional branch?
2627   BasicBlock *SuccBB;
2628   Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2629   if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2630     return nullptr;
2631 
2632   // If there are only 2 instructions in the block, at this point,
2633   // this is the call to free and unconditional.
2634   // If there are more than 2 instructions, check that they are noops
2635   // i.e., they won't hurt the performance of the generated code.
2636   if (FreeInstrBB->size() != 2) {
2637     for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2638       if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2639         continue;
2640       auto *Cast = dyn_cast<CastInst>(&Inst);
2641       if (!Cast || !Cast->isNoopCast(DL))
2642         return nullptr;
2643     }
2644   }
2645   // Validate the rest of constraint #1 by matching on the pred branch.
2646   Instruction *TI = PredBB->getTerminator();
2647   BasicBlock *TrueBB, *FalseBB;
2648   ICmpInst::Predicate Pred;
2649   if (!match(TI, m_Br(m_ICmp(Pred,
2650                              m_CombineOr(m_Specific(Op),
2651                                          m_Specific(Op->stripPointerCasts())),
2652                              m_Zero()),
2653                       TrueBB, FalseBB)))
2654     return nullptr;
2655   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2656     return nullptr;
2657 
2658   // Validate constraint #3: Ensure the null case just falls through.
2659   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2660     return nullptr;
2661   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2662          "Broken CFG: missing edge from predecessor to successor");
2663 
2664   // At this point, we know that everything in FreeInstrBB can be moved
2665   // before TI.
2666   for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
2667        It != End;) {
2668     Instruction &Instr = *It++;
2669     if (&Instr == FreeInstrBBTerminator)
2670       break;
2671     Instr.moveBefore(TI);
2672   }
2673   assert(FreeInstrBB->size() == 1 &&
2674          "Only the branch instruction should remain");
2675   return &FI;
2676 }
2677 
2678 Instruction *InstCombiner::visitFree(CallInst &FI) {
2679   Value *Op = FI.getArgOperand(0);
2680 
2681   // free undef -> unreachable.
2682   if (isa<UndefValue>(Op)) {
2683     // Leave a marker since we can't modify the CFG here.
2684     CreateNonTerminatorUnreachable(&FI);
2685     return eraseInstFromFunction(FI);
2686   }
2687 
2688   // If we have 'free null' delete the instruction.  This can happen in stl code
2689   // when lots of inlining happens.
2690   if (isa<ConstantPointerNull>(Op))
2691     return eraseInstFromFunction(FI);
2692 
2693   // If we optimize for code size, try to move the call to free before the null
2694   // test so that simplify cfg can remove the empty block and dead code
2695   // elimination the branch. I.e., helps to turn something like:
2696   // if (foo) free(foo);
2697   // into
2698   // free(foo);
2699   //
2700   // Note that we can only do this for 'free' and not for any flavor of
2701   // 'operator delete'; there is no 'operator delete' symbol for which we are
2702   // permitted to invent a call, even if we're passing in a null pointer.
2703   if (MinimizeSize) {
2704     LibFunc Func;
2705     if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
2706       if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2707         return I;
2708   }
2709 
2710   return nullptr;
2711 }
2712 
2713 static bool isMustTailCall(Value *V) {
2714   if (auto *CI = dyn_cast<CallInst>(V))
2715     return CI->isMustTailCall();
2716   return false;
2717 }
2718 
2719 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
2720   if (RI.getNumOperands() == 0) // ret void
2721     return nullptr;
2722 
2723   Value *ResultOp = RI.getOperand(0);
2724   Type *VTy = ResultOp->getType();
2725   if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
2726     return nullptr;
2727 
2728   // Don't replace result of musttail calls.
2729   if (isMustTailCall(ResultOp))
2730     return nullptr;
2731 
2732   // There might be assume intrinsics dominating this return that completely
2733   // determine the value. If so, constant fold it.
2734   KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2735   if (Known.isConstant())
2736     return replaceOperand(RI, 0,
2737         Constant::getIntegerValue(VTy, Known.getConstant()));
2738 
2739   return nullptr;
2740 }
2741 
2742 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2743   // Nothing to do about unconditional branches.
2744   if (BI.isUnconditional())
2745     return nullptr;
2746 
2747   // Change br (not X), label True, label False to: br X, label False, True
2748   Value *X = nullptr;
2749   if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
2750       !isa<Constant>(X)) {
2751     // Swap Destinations and condition...
2752     BI.swapSuccessors();
2753     return replaceOperand(BI, 0, X);
2754   }
2755 
2756   // If the condition is irrelevant, remove the use so that other
2757   // transforms on the condition become more effective.
2758   if (!isa<ConstantInt>(BI.getCondition()) &&
2759       BI.getSuccessor(0) == BI.getSuccessor(1))
2760     return replaceOperand(
2761         BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
2762 
2763   // Canonicalize, for example, fcmp_one -> fcmp_oeq.
2764   CmpInst::Predicate Pred;
2765   if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())),
2766                       m_BasicBlock(), m_BasicBlock())) &&
2767       !isCanonicalPredicate(Pred)) {
2768     // Swap destinations and condition.
2769     CmpInst *Cond = cast<CmpInst>(BI.getCondition());
2770     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2771     BI.swapSuccessors();
2772     Worklist.push(Cond);
2773     return &BI;
2774   }
2775 
2776   return nullptr;
2777 }
2778 
2779 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
2780   Value *Cond = SI.getCondition();
2781   Value *Op0;
2782   ConstantInt *AddRHS;
2783   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
2784     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2785     for (auto Case : SI.cases()) {
2786       Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
2787       assert(isa<ConstantInt>(NewCase) &&
2788              "Result of expression should be constant");
2789       Case.setValue(cast<ConstantInt>(NewCase));
2790     }
2791     return replaceOperand(SI, 0, Op0);
2792   }
2793 
2794   KnownBits Known = computeKnownBits(Cond, 0, &SI);
2795   unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
2796   unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
2797 
2798   // Compute the number of leading bits we can ignore.
2799   // TODO: A better way to determine this would use ComputeNumSignBits().
2800   for (auto &C : SI.cases()) {
2801     LeadingKnownZeros = std::min(
2802         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2803     LeadingKnownOnes = std::min(
2804         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2805   }
2806 
2807   unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
2808 
2809   // Shrink the condition operand if the new type is smaller than the old type.
2810   // But do not shrink to a non-standard type, because backend can't generate
2811   // good code for that yet.
2812   // TODO: We can make it aggressive again after fixing PR39569.
2813   if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
2814       shouldChangeType(Known.getBitWidth(), NewWidth)) {
2815     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2816     Builder.SetInsertPoint(&SI);
2817     Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
2818 
2819     for (auto Case : SI.cases()) {
2820       APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
2821       Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
2822     }
2823     return replaceOperand(SI, 0, NewCond);
2824   }
2825 
2826   return nullptr;
2827 }
2828 
2829 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
2830   Value *Agg = EV.getAggregateOperand();
2831 
2832   if (!EV.hasIndices())
2833     return replaceInstUsesWith(EV, Agg);
2834 
2835   if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
2836                                           SQ.getWithInstruction(&EV)))
2837     return replaceInstUsesWith(EV, V);
2838 
2839   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2840     // We're extracting from an insertvalue instruction, compare the indices
2841     const unsigned *exti, *exte, *insi, *inse;
2842     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2843          exte = EV.idx_end(), inse = IV->idx_end();
2844          exti != exte && insi != inse;
2845          ++exti, ++insi) {
2846       if (*insi != *exti)
2847         // The insert and extract both reference distinctly different elements.
2848         // This means the extract is not influenced by the insert, and we can
2849         // replace the aggregate operand of the extract with the aggregate
2850         // operand of the insert. i.e., replace
2851         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2852         // %E = extractvalue { i32, { i32 } } %I, 0
2853         // with
2854         // %E = extractvalue { i32, { i32 } } %A, 0
2855         return ExtractValueInst::Create(IV->getAggregateOperand(),
2856                                         EV.getIndices());
2857     }
2858     if (exti == exte && insi == inse)
2859       // Both iterators are at the end: Index lists are identical. Replace
2860       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2861       // %C = extractvalue { i32, { i32 } } %B, 1, 0
2862       // with "i32 42"
2863       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
2864     if (exti == exte) {
2865       // The extract list is a prefix of the insert list. i.e. replace
2866       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2867       // %E = extractvalue { i32, { i32 } } %I, 1
2868       // with
2869       // %X = extractvalue { i32, { i32 } } %A, 1
2870       // %E = insertvalue { i32 } %X, i32 42, 0
2871       // by switching the order of the insert and extract (though the
2872       // insertvalue should be left in, since it may have other uses).
2873       Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
2874                                                 EV.getIndices());
2875       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
2876                                      makeArrayRef(insi, inse));
2877     }
2878     if (insi == inse)
2879       // The insert list is a prefix of the extract list
2880       // We can simply remove the common indices from the extract and make it
2881       // operate on the inserted value instead of the insertvalue result.
2882       // i.e., replace
2883       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2884       // %E = extractvalue { i32, { i32 } } %I, 1, 0
2885       // with
2886       // %E extractvalue { i32 } { i32 42 }, 0
2887       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
2888                                       makeArrayRef(exti, exte));
2889   }
2890   if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
2891     // We're extracting from an overflow intrinsic, see if we're the only user,
2892     // which allows us to simplify multiple result intrinsics to simpler
2893     // things that just get one value.
2894     if (WO->hasOneUse()) {
2895       // Check if we're grabbing only the result of a 'with overflow' intrinsic
2896       // and replace it with a traditional binary instruction.
2897       if (*EV.idx_begin() == 0) {
2898         Instruction::BinaryOps BinOp = WO->getBinaryOp();
2899         Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
2900         replaceInstUsesWith(*WO, UndefValue::get(WO->getType()));
2901         eraseInstFromFunction(*WO);
2902         return BinaryOperator::Create(BinOp, LHS, RHS);
2903       }
2904 
2905       // If the normal result of the add is dead, and the RHS is a constant,
2906       // we can transform this into a range comparison.
2907       // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
2908       if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2909         if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS()))
2910           return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(),
2911                               ConstantExpr::getNot(CI));
2912     }
2913   }
2914   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2915     // If the (non-volatile) load only has one use, we can rewrite this to a
2916     // load from a GEP. This reduces the size of the load. If a load is used
2917     // only by extractvalue instructions then this either must have been
2918     // optimized before, or it is a struct with padding, in which case we
2919     // don't want to do the transformation as it loses padding knowledge.
2920     if (L->isSimple() && L->hasOneUse()) {
2921       // extractvalue has integer indices, getelementptr has Value*s. Convert.
2922       SmallVector<Value*, 4> Indices;
2923       // Prefix an i32 0 since we need the first element.
2924       Indices.push_back(Builder.getInt32(0));
2925       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2926             I != E; ++I)
2927         Indices.push_back(Builder.getInt32(*I));
2928 
2929       // We need to insert these at the location of the old load, not at that of
2930       // the extractvalue.
2931       Builder.SetInsertPoint(L);
2932       Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
2933                                              L->getPointerOperand(), Indices);
2934       Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
2935       // Whatever aliasing information we had for the orignal load must also
2936       // hold for the smaller load, so propagate the annotations.
2937       AAMDNodes Nodes;
2938       L->getAAMetadata(Nodes);
2939       NL->setAAMetadata(Nodes);
2940       // Returning the load directly will cause the main loop to insert it in
2941       // the wrong spot, so use replaceInstUsesWith().
2942       return replaceInstUsesWith(EV, NL);
2943     }
2944   // We could simplify extracts from other values. Note that nested extracts may
2945   // already be simplified implicitly by the above: extract (extract (insert) )
2946   // will be translated into extract ( insert ( extract ) ) first and then just
2947   // the value inserted, if appropriate. Similarly for extracts from single-use
2948   // loads: extract (extract (load)) will be translated to extract (load (gep))
2949   // and if again single-use then via load (gep (gep)) to load (gep).
2950   // However, double extracts from e.g. function arguments or return values
2951   // aren't handled yet.
2952   return nullptr;
2953 }
2954 
2955 /// Return 'true' if the given typeinfo will match anything.
2956 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
2957   switch (Personality) {
2958   case EHPersonality::GNU_C:
2959   case EHPersonality::GNU_C_SjLj:
2960   case EHPersonality::Rust:
2961     // The GCC C EH and Rust personality only exists to support cleanups, so
2962     // it's not clear what the semantics of catch clauses are.
2963     return false;
2964   case EHPersonality::Unknown:
2965     return false;
2966   case EHPersonality::GNU_Ada:
2967     // While __gnat_all_others_value will match any Ada exception, it doesn't
2968     // match foreign exceptions (or didn't, before gcc-4.7).
2969     return false;
2970   case EHPersonality::GNU_CXX:
2971   case EHPersonality::GNU_CXX_SjLj:
2972   case EHPersonality::GNU_ObjC:
2973   case EHPersonality::MSVC_X86SEH:
2974   case EHPersonality::MSVC_Win64SEH:
2975   case EHPersonality::MSVC_CXX:
2976   case EHPersonality::CoreCLR:
2977   case EHPersonality::Wasm_CXX:
2978     return TypeInfo->isNullValue();
2979   }
2980   llvm_unreachable("invalid enum");
2981 }
2982 
2983 static bool shorter_filter(const Value *LHS, const Value *RHS) {
2984   return
2985     cast<ArrayType>(LHS->getType())->getNumElements()
2986   <
2987     cast<ArrayType>(RHS->getType())->getNumElements();
2988 }
2989 
2990 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
2991   // The logic here should be correct for any real-world personality function.
2992   // However if that turns out not to be true, the offending logic can always
2993   // be conditioned on the personality function, like the catch-all logic is.
2994   EHPersonality Personality =
2995       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
2996 
2997   // Simplify the list of clauses, eg by removing repeated catch clauses
2998   // (these are often created by inlining).
2999   bool MakeNewInstruction = false; // If true, recreate using the following:
3000   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3001   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
3002 
3003   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3004   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3005     bool isLastClause = i + 1 == e;
3006     if (LI.isCatch(i)) {
3007       // A catch clause.
3008       Constant *CatchClause = LI.getClause(i);
3009       Constant *TypeInfo = CatchClause->stripPointerCasts();
3010 
3011       // If we already saw this clause, there is no point in having a second
3012       // copy of it.
3013       if (AlreadyCaught.insert(TypeInfo).second) {
3014         // This catch clause was not already seen.
3015         NewClauses.push_back(CatchClause);
3016       } else {
3017         // Repeated catch clause - drop the redundant copy.
3018         MakeNewInstruction = true;
3019       }
3020 
3021       // If this is a catch-all then there is no point in keeping any following
3022       // clauses or marking the landingpad as having a cleanup.
3023       if (isCatchAll(Personality, TypeInfo)) {
3024         if (!isLastClause)
3025           MakeNewInstruction = true;
3026         CleanupFlag = false;
3027         break;
3028       }
3029     } else {
3030       // A filter clause.  If any of the filter elements were already caught
3031       // then they can be dropped from the filter.  It is tempting to try to
3032       // exploit the filter further by saying that any typeinfo that does not
3033       // occur in the filter can't be caught later (and thus can be dropped).
3034       // However this would be wrong, since typeinfos can match without being
3035       // equal (for example if one represents a C++ class, and the other some
3036       // class derived from it).
3037       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3038       Constant *FilterClause = LI.getClause(i);
3039       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3040       unsigned NumTypeInfos = FilterType->getNumElements();
3041 
3042       // An empty filter catches everything, so there is no point in keeping any
3043       // following clauses or marking the landingpad as having a cleanup.  By
3044       // dealing with this case here the following code is made a bit simpler.
3045       if (!NumTypeInfos) {
3046         NewClauses.push_back(FilterClause);
3047         if (!isLastClause)
3048           MakeNewInstruction = true;
3049         CleanupFlag = false;
3050         break;
3051       }
3052 
3053       bool MakeNewFilter = false; // If true, make a new filter.
3054       SmallVector<Constant *, 16> NewFilterElts; // New elements.
3055       if (isa<ConstantAggregateZero>(FilterClause)) {
3056         // Not an empty filter - it contains at least one null typeinfo.
3057         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3058         Constant *TypeInfo =
3059           Constant::getNullValue(FilterType->getElementType());
3060         // If this typeinfo is a catch-all then the filter can never match.
3061         if (isCatchAll(Personality, TypeInfo)) {
3062           // Throw the filter away.
3063           MakeNewInstruction = true;
3064           continue;
3065         }
3066 
3067         // There is no point in having multiple copies of this typeinfo, so
3068         // discard all but the first copy if there is more than one.
3069         NewFilterElts.push_back(TypeInfo);
3070         if (NumTypeInfos > 1)
3071           MakeNewFilter = true;
3072       } else {
3073         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3074         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3075         NewFilterElts.reserve(NumTypeInfos);
3076 
3077         // Remove any filter elements that were already caught or that already
3078         // occurred in the filter.  While there, see if any of the elements are
3079         // catch-alls.  If so, the filter can be discarded.
3080         bool SawCatchAll = false;
3081         for (unsigned j = 0; j != NumTypeInfos; ++j) {
3082           Constant *Elt = Filter->getOperand(j);
3083           Constant *TypeInfo = Elt->stripPointerCasts();
3084           if (isCatchAll(Personality, TypeInfo)) {
3085             // This element is a catch-all.  Bail out, noting this fact.
3086             SawCatchAll = true;
3087             break;
3088           }
3089 
3090           // Even if we've seen a type in a catch clause, we don't want to
3091           // remove it from the filter.  An unexpected type handler may be
3092           // set up for a call site which throws an exception of the same
3093           // type caught.  In order for the exception thrown by the unexpected
3094           // handler to propagate correctly, the filter must be correctly
3095           // described for the call site.
3096           //
3097           // Example:
3098           //
3099           // void unexpected() { throw 1;}
3100           // void foo() throw (int) {
3101           //   std::set_unexpected(unexpected);
3102           //   try {
3103           //     throw 2.0;
3104           //   } catch (int i) {}
3105           // }
3106 
3107           // There is no point in having multiple copies of the same typeinfo in
3108           // a filter, so only add it if we didn't already.
3109           if (SeenInFilter.insert(TypeInfo).second)
3110             NewFilterElts.push_back(cast<Constant>(Elt));
3111         }
3112         // A filter containing a catch-all cannot match anything by definition.
3113         if (SawCatchAll) {
3114           // Throw the filter away.
3115           MakeNewInstruction = true;
3116           continue;
3117         }
3118 
3119         // If we dropped something from the filter, make a new one.
3120         if (NewFilterElts.size() < NumTypeInfos)
3121           MakeNewFilter = true;
3122       }
3123       if (MakeNewFilter) {
3124         FilterType = ArrayType::get(FilterType->getElementType(),
3125                                     NewFilterElts.size());
3126         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3127         MakeNewInstruction = true;
3128       }
3129 
3130       NewClauses.push_back(FilterClause);
3131 
3132       // If the new filter is empty then it will catch everything so there is
3133       // no point in keeping any following clauses or marking the landingpad
3134       // as having a cleanup.  The case of the original filter being empty was
3135       // already handled above.
3136       if (MakeNewFilter && !NewFilterElts.size()) {
3137         assert(MakeNewInstruction && "New filter but not a new instruction!");
3138         CleanupFlag = false;
3139         break;
3140       }
3141     }
3142   }
3143 
3144   // If several filters occur in a row then reorder them so that the shortest
3145   // filters come first (those with the smallest number of elements).  This is
3146   // advantageous because shorter filters are more likely to match, speeding up
3147   // unwinding, but mostly because it increases the effectiveness of the other
3148   // filter optimizations below.
3149   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3150     unsigned j;
3151     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3152     for (j = i; j != e; ++j)
3153       if (!isa<ArrayType>(NewClauses[j]->getType()))
3154         break;
3155 
3156     // Check whether the filters are already sorted by length.  We need to know
3157     // if sorting them is actually going to do anything so that we only make a
3158     // new landingpad instruction if it does.
3159     for (unsigned k = i; k + 1 < j; ++k)
3160       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3161         // Not sorted, so sort the filters now.  Doing an unstable sort would be
3162         // correct too but reordering filters pointlessly might confuse users.
3163         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3164                          shorter_filter);
3165         MakeNewInstruction = true;
3166         break;
3167       }
3168 
3169     // Look for the next batch of filters.
3170     i = j + 1;
3171   }
3172 
3173   // If typeinfos matched if and only if equal, then the elements of a filter L
3174   // that occurs later than a filter F could be replaced by the intersection of
3175   // the elements of F and L.  In reality two typeinfos can match without being
3176   // equal (for example if one represents a C++ class, and the other some class
3177   // derived from it) so it would be wrong to perform this transform in general.
3178   // However the transform is correct and useful if F is a subset of L.  In that
3179   // case L can be replaced by F, and thus removed altogether since repeating a
3180   // filter is pointless.  So here we look at all pairs of filters F and L where
3181   // L follows F in the list of clauses, and remove L if every element of F is
3182   // an element of L.  This can occur when inlining C++ functions with exception
3183   // specifications.
3184   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3185     // Examine each filter in turn.
3186     Value *Filter = NewClauses[i];
3187     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3188     if (!FTy)
3189       // Not a filter - skip it.
3190       continue;
3191     unsigned FElts = FTy->getNumElements();
3192     // Examine each filter following this one.  Doing this backwards means that
3193     // we don't have to worry about filters disappearing under us when removed.
3194     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3195       Value *LFilter = NewClauses[j];
3196       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3197       if (!LTy)
3198         // Not a filter - skip it.
3199         continue;
3200       // If Filter is a subset of LFilter, i.e. every element of Filter is also
3201       // an element of LFilter, then discard LFilter.
3202       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3203       // If Filter is empty then it is a subset of LFilter.
3204       if (!FElts) {
3205         // Discard LFilter.
3206         NewClauses.erase(J);
3207         MakeNewInstruction = true;
3208         // Move on to the next filter.
3209         continue;
3210       }
3211       unsigned LElts = LTy->getNumElements();
3212       // If Filter is longer than LFilter then it cannot be a subset of it.
3213       if (FElts > LElts)
3214         // Move on to the next filter.
3215         continue;
3216       // At this point we know that LFilter has at least one element.
3217       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3218         // Filter is a subset of LFilter iff Filter contains only zeros (as we
3219         // already know that Filter is not longer than LFilter).
3220         if (isa<ConstantAggregateZero>(Filter)) {
3221           assert(FElts <= LElts && "Should have handled this case earlier!");
3222           // Discard LFilter.
3223           NewClauses.erase(J);
3224           MakeNewInstruction = true;
3225         }
3226         // Move on to the next filter.
3227         continue;
3228       }
3229       ConstantArray *LArray = cast<ConstantArray>(LFilter);
3230       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3231         // Since Filter is non-empty and contains only zeros, it is a subset of
3232         // LFilter iff LFilter contains a zero.
3233         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3234         for (unsigned l = 0; l != LElts; ++l)
3235           if (LArray->getOperand(l)->isNullValue()) {
3236             // LFilter contains a zero - discard it.
3237             NewClauses.erase(J);
3238             MakeNewInstruction = true;
3239             break;
3240           }
3241         // Move on to the next filter.
3242         continue;
3243       }
3244       // At this point we know that both filters are ConstantArrays.  Loop over
3245       // operands to see whether every element of Filter is also an element of
3246       // LFilter.  Since filters tend to be short this is probably faster than
3247       // using a method that scales nicely.
3248       ConstantArray *FArray = cast<ConstantArray>(Filter);
3249       bool AllFound = true;
3250       for (unsigned f = 0; f != FElts; ++f) {
3251         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3252         AllFound = false;
3253         for (unsigned l = 0; l != LElts; ++l) {
3254           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3255           if (LTypeInfo == FTypeInfo) {
3256             AllFound = true;
3257             break;
3258           }
3259         }
3260         if (!AllFound)
3261           break;
3262       }
3263       if (AllFound) {
3264         // Discard LFilter.
3265         NewClauses.erase(J);
3266         MakeNewInstruction = true;
3267       }
3268       // Move on to the next filter.
3269     }
3270   }
3271 
3272   // If we changed any of the clauses, replace the old landingpad instruction
3273   // with a new one.
3274   if (MakeNewInstruction) {
3275     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3276                                                  NewClauses.size());
3277     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3278       NLI->addClause(NewClauses[i]);
3279     // A landing pad with no clauses must have the cleanup flag set.  It is
3280     // theoretically possible, though highly unlikely, that we eliminated all
3281     // clauses.  If so, force the cleanup flag to true.
3282     if (NewClauses.empty())
3283       CleanupFlag = true;
3284     NLI->setCleanup(CleanupFlag);
3285     return NLI;
3286   }
3287 
3288   // Even if none of the clauses changed, we may nonetheless have understood
3289   // that the cleanup flag is pointless.  Clear it if so.
3290   if (LI.isCleanup() != CleanupFlag) {
3291     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3292     LI.setCleanup(CleanupFlag);
3293     return &LI;
3294   }
3295 
3296   return nullptr;
3297 }
3298 
3299 Instruction *InstCombiner::visitFreeze(FreezeInst &I) {
3300   Value *Op0 = I.getOperand(0);
3301 
3302   if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3303     return replaceInstUsesWith(I, V);
3304 
3305   return nullptr;
3306 }
3307 
3308 /// Try to move the specified instruction from its current block into the
3309 /// beginning of DestBlock, which can only happen if it's safe to move the
3310 /// instruction past all of the instructions between it and the end of its
3311 /// block.
3312 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3313   assert(I->getSingleUndroppableUse() && "Invariants didn't hold!");
3314   BasicBlock *SrcBlock = I->getParent();
3315 
3316   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3317   if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3318       I->isTerminator())
3319     return false;
3320 
3321   // Do not sink static or dynamic alloca instructions. Static allocas must
3322   // remain in the entry block, and dynamic allocas must not be sunk in between
3323   // a stacksave / stackrestore pair, which would incorrectly shorten its
3324   // lifetime.
3325   if (isa<AllocaInst>(I))
3326     return false;
3327 
3328   // Do not sink into catchswitch blocks.
3329   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3330     return false;
3331 
3332   // Do not sink convergent call instructions.
3333   if (auto *CI = dyn_cast<CallInst>(I)) {
3334     if (CI->isConvergent())
3335       return false;
3336   }
3337   // We can only sink load instructions if there is nothing between the load and
3338   // the end of block that could change the value.
3339   if (I->mayReadFromMemory()) {
3340     // We don't want to do any sophisticated alias analysis, so we only check
3341     // the instructions after I in I's parent block if we try to sink to its
3342     // successor block.
3343     if (DestBlock->getUniquePredecessor() != I->getParent())
3344       return false;
3345     for (BasicBlock::iterator Scan = I->getIterator(),
3346                               E = I->getParent()->end();
3347          Scan != E; ++Scan)
3348       if (Scan->mayWriteToMemory())
3349         return false;
3350   }
3351 
3352   I->dropDroppableUses([DestBlock](const Use *U) {
3353     if (auto *I = dyn_cast<Instruction>(U->getUser()))
3354       return I->getParent() != DestBlock;
3355     return true;
3356   });
3357   /// FIXME: We could remove droppable uses that are not dominated by
3358   /// the new position.
3359 
3360   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3361   I->moveBefore(&*InsertPos);
3362   ++NumSunkInst;
3363 
3364   // Drop the debug loc of non-inlinable instructions. This prevents
3365   // single-stepping from going backwards. See HowToUpdateDebugInfo.rst for
3366   // the full rationale.
3367   if (!isa<CallBase>(I))
3368     I->setDebugLoc(DebugLoc());
3369 
3370   // Also sink all related debug uses from the source basic block. Otherwise we
3371   // get debug use before the def. Attempt to salvage debug uses first, to
3372   // maximise the range variables have location for. If we cannot salvage, then
3373   // mark the location undef: we know it was supposed to receive a new location
3374   // here, but that computation has been sunk.
3375   SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3376   findDbgUsers(DbgUsers, I);
3377 
3378   // Update the arguments of a dbg.declare instruction, so that it
3379   // does not point into a sunk instruction.
3380   auto updateDbgDeclare = [&I](DbgVariableIntrinsic *DII) {
3381     if (!isa<DbgDeclareInst>(DII))
3382       return false;
3383 
3384     if (isa<CastInst>(I))
3385       DII->setOperand(
3386           0, MetadataAsValue::get(I->getContext(),
3387                                   ValueAsMetadata::get(I->getOperand(0))));
3388     return true;
3389   };
3390 
3391   SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
3392   for (auto User : DbgUsers) {
3393     // A dbg.declare instruction should not be cloned, since there can only be
3394     // one per variable fragment. It should be left in the original place
3395     // because the sunk instruction is not an alloca (otherwise we could not be
3396     // here).
3397     if (User->getParent() != SrcBlock || updateDbgDeclare(User))
3398       continue;
3399 
3400     DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
3401     LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
3402   }
3403 
3404   // Perform salvaging without the clones, then sink the clones.
3405   if (!DIIClones.empty()) {
3406     salvageDebugInfoForDbgValues(*I, DbgUsers);
3407     for (auto &DIIClone : DIIClones) {
3408       DIIClone->insertBefore(&*InsertPos);
3409       LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
3410     }
3411   }
3412 
3413   return true;
3414 }
3415 
3416 bool InstCombiner::run() {
3417   while (!Worklist.isEmpty()) {
3418     // Walk deferred instructions in reverse order, and push them to the
3419     // worklist, which means they'll end up popped from the worklist in-order.
3420     while (Instruction *I = Worklist.popDeferred()) {
3421       // Check to see if we can DCE the instruction. We do this already here to
3422       // reduce the number of uses and thus allow other folds to trigger.
3423       // Note that eraseInstFromFunction() may push additional instructions on
3424       // the deferred worklist, so this will DCE whole instruction chains.
3425       if (isInstructionTriviallyDead(I, &TLI)) {
3426         eraseInstFromFunction(*I);
3427         ++NumDeadInst;
3428         continue;
3429       }
3430 
3431       Worklist.push(I);
3432     }
3433 
3434     Instruction *I = Worklist.removeOne();
3435     if (I == nullptr) continue;  // skip null values.
3436 
3437     // Check to see if we can DCE the instruction.
3438     if (isInstructionTriviallyDead(I, &TLI)) {
3439       eraseInstFromFunction(*I);
3440       ++NumDeadInst;
3441       continue;
3442     }
3443 
3444     if (!DebugCounter::shouldExecute(VisitCounter))
3445       continue;
3446 
3447     // Instruction isn't dead, see if we can constant propagate it.
3448     if (!I->use_empty() &&
3449         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3450       if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3451         LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3452                           << '\n');
3453 
3454         // Add operands to the worklist.
3455         replaceInstUsesWith(*I, C);
3456         ++NumConstProp;
3457         if (isInstructionTriviallyDead(I, &TLI))
3458           eraseInstFromFunction(*I);
3459         MadeIRChange = true;
3460         continue;
3461       }
3462     }
3463 
3464     // See if we can trivially sink this instruction to its user if we can
3465     // prove that the successor is not executed more frequently than our block.
3466     if (EnableCodeSinking)
3467       if (Use *SingleUse = I->getSingleUndroppableUse()) {
3468         BasicBlock *BB = I->getParent();
3469         Instruction *UserInst = cast<Instruction>(SingleUse->getUser());
3470         BasicBlock *UserParent;
3471 
3472         // Get the block the use occurs in.
3473         if (PHINode *PN = dyn_cast<PHINode>(UserInst))
3474           UserParent = PN->getIncomingBlock(*SingleUse);
3475         else
3476           UserParent = UserInst->getParent();
3477 
3478         if (UserParent != BB) {
3479           // See if the user is one of our successors that has only one
3480           // predecessor, so that we don't have to split the critical edge.
3481           bool ShouldSink = UserParent->getUniquePredecessor() == BB;
3482           // Another option where we can sink is a block that ends with a
3483           // terminator that does not pass control to other block (such as
3484           // return or unreachable). In this case:
3485           //   - I dominates the User (by SSA form);
3486           //   - the User will be executed at most once.
3487           // So sinking I down to User is always profitable or neutral.
3488           if (!ShouldSink) {
3489             auto *Term = UserParent->getTerminator();
3490             ShouldSink = isa<ReturnInst>(Term) || isa<UnreachableInst>(Term);
3491           }
3492           if (ShouldSink) {
3493             assert(DT.dominates(BB, UserParent) &&
3494                    "Dominance relation broken?");
3495             // Okay, the CFG is simple enough, try to sink this instruction.
3496             if (TryToSinkInstruction(I, UserParent)) {
3497               LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3498               MadeIRChange = true;
3499               // We'll add uses of the sunk instruction below, but since sinking
3500               // can expose opportunities for it's *operands* add them to the
3501               // worklist
3502               for (Use &U : I->operands())
3503                 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3504                   Worklist.push(OpI);
3505             }
3506           }
3507         }
3508       }
3509 
3510     // Now that we have an instruction, try combining it to simplify it.
3511     Builder.SetInsertPoint(I);
3512     Builder.SetCurrentDebugLocation(I->getDebugLoc());
3513 
3514 #ifndef NDEBUG
3515     std::string OrigI;
3516 #endif
3517     LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3518     LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3519 
3520     if (Instruction *Result = visit(*I)) {
3521       ++NumCombined;
3522       // Should we replace the old instruction with a new one?
3523       if (Result != I) {
3524         LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3525                           << "    New = " << *Result << '\n');
3526 
3527         if (I->getDebugLoc())
3528           Result->setDebugLoc(I->getDebugLoc());
3529         // Everything uses the new instruction now.
3530         I->replaceAllUsesWith(Result);
3531 
3532         // Move the name to the new instruction first.
3533         Result->takeName(I);
3534 
3535         // Insert the new instruction into the basic block...
3536         BasicBlock *InstParent = I->getParent();
3537         BasicBlock::iterator InsertPos = I->getIterator();
3538 
3539         // If we replace a PHI with something that isn't a PHI, fix up the
3540         // insertion point.
3541         if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
3542           InsertPos = InstParent->getFirstInsertionPt();
3543 
3544         InstParent->getInstList().insert(InsertPos, Result);
3545 
3546         // Push the new instruction and any users onto the worklist.
3547         Worklist.pushUsersToWorkList(*Result);
3548         Worklist.push(Result);
3549 
3550         eraseInstFromFunction(*I);
3551       } else {
3552         LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3553                           << "    New = " << *I << '\n');
3554 
3555         // If the instruction was modified, it's possible that it is now dead.
3556         // if so, remove it.
3557         if (isInstructionTriviallyDead(I, &TLI)) {
3558           eraseInstFromFunction(*I);
3559         } else {
3560           Worklist.pushUsersToWorkList(*I);
3561           Worklist.push(I);
3562         }
3563       }
3564       MadeIRChange = true;
3565     }
3566   }
3567 
3568   Worklist.zap();
3569   return MadeIRChange;
3570 }
3571 
3572 /// Populate the IC worklist from a function, by walking it in depth-first
3573 /// order and adding all reachable code to the worklist.
3574 ///
3575 /// This has a couple of tricks to make the code faster and more powerful.  In
3576 /// particular, we constant fold and DCE instructions as we go, to avoid adding
3577 /// them to the worklist (this significantly speeds up instcombine on code where
3578 /// many instructions are dead or constant).  Additionally, if we find a branch
3579 /// whose condition is a known constant, we only visit the reachable successors.
3580 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3581                                           const TargetLibraryInfo *TLI,
3582                                           InstCombineWorklist &ICWorklist) {
3583   bool MadeIRChange = false;
3584   SmallPtrSet<BasicBlock *, 32> Visited;
3585   SmallVector<BasicBlock*, 256> Worklist;
3586   Worklist.push_back(&F.front());
3587 
3588   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
3589   DenseMap<Constant *, Constant *> FoldedConstants;
3590 
3591   do {
3592     BasicBlock *BB = Worklist.pop_back_val();
3593 
3594     // We have now visited this block!  If we've already been here, ignore it.
3595     if (!Visited.insert(BB).second)
3596       continue;
3597 
3598     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3599       Instruction *Inst = &*BBI++;
3600 
3601       // ConstantProp instruction if trivially constant.
3602       if (!Inst->use_empty() &&
3603           (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
3604         if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
3605           LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
3606                             << '\n');
3607           Inst->replaceAllUsesWith(C);
3608           ++NumConstProp;
3609           if (isInstructionTriviallyDead(Inst, TLI))
3610             Inst->eraseFromParent();
3611           MadeIRChange = true;
3612           continue;
3613         }
3614 
3615       // See if we can constant fold its operands.
3616       for (Use &U : Inst->operands()) {
3617         if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
3618           continue;
3619 
3620         auto *C = cast<Constant>(U);
3621         Constant *&FoldRes = FoldedConstants[C];
3622         if (!FoldRes)
3623           FoldRes = ConstantFoldConstant(C, DL, TLI);
3624 
3625         if (FoldRes != C) {
3626           LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
3627                             << "\n    Old = " << *C
3628                             << "\n    New = " << *FoldRes << '\n');
3629           U = FoldRes;
3630           MadeIRChange = true;
3631         }
3632       }
3633 
3634       // Skip processing debug intrinsics in InstCombine. Processing these call instructions
3635       // consumes non-trivial amount of time and provides no value for the optimization.
3636       if (!isa<DbgInfoIntrinsic>(Inst))
3637         InstrsForInstCombineWorklist.push_back(Inst);
3638     }
3639 
3640     // Recursively visit successors.  If this is a branch or switch on a
3641     // constant, only visit the reachable successor.
3642     Instruction *TI = BB->getTerminator();
3643     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3644       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
3645         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
3646         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
3647         Worklist.push_back(ReachableBB);
3648         continue;
3649       }
3650     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3651       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
3652         Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
3653         continue;
3654       }
3655     }
3656 
3657     for (BasicBlock *SuccBB : successors(TI))
3658       Worklist.push_back(SuccBB);
3659   } while (!Worklist.empty());
3660 
3661   // Remove instructions inside unreachable blocks. This prevents the
3662   // instcombine code from having to deal with some bad special cases, and
3663   // reduces use counts of instructions.
3664   for (BasicBlock &BB : F) {
3665     if (Visited.count(&BB))
3666       continue;
3667 
3668     unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
3669     MadeIRChange |= NumDeadInstInBB > 0;
3670     NumDeadInst += NumDeadInstInBB;
3671   }
3672 
3673   // Once we've found all of the instructions to add to instcombine's worklist,
3674   // add them in reverse order.  This way instcombine will visit from the top
3675   // of the function down.  This jives well with the way that it adds all uses
3676   // of instructions to the worklist after doing a transformation, thus avoiding
3677   // some N^2 behavior in pathological cases.
3678   ICWorklist.reserve(InstrsForInstCombineWorklist.size());
3679   for (Instruction *Inst : reverse(InstrsForInstCombineWorklist)) {
3680     // DCE instruction if trivially dead. As we iterate in reverse program
3681     // order here, we will clean up whole chains of dead instructions.
3682     if (isInstructionTriviallyDead(Inst, TLI)) {
3683       ++NumDeadInst;
3684       LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
3685       salvageDebugInfo(*Inst);
3686       Inst->eraseFromParent();
3687       MadeIRChange = true;
3688       continue;
3689     }
3690 
3691     ICWorklist.push(Inst);
3692   }
3693 
3694   return MadeIRChange;
3695 }
3696 
3697 static bool combineInstructionsOverFunction(
3698     Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
3699     AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
3700     OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
3701     ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
3702   auto &DL = F.getParent()->getDataLayout();
3703   MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
3704 
3705   /// Builder - This is an IRBuilder that automatically inserts new
3706   /// instructions into the worklist when they are created.
3707   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
3708       F.getContext(), TargetFolder(DL),
3709       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
3710         Worklist.add(I);
3711         if (match(I, m_Intrinsic<Intrinsic::assume>()))
3712           AC.registerAssumption(cast<CallInst>(I));
3713       }));
3714 
3715   // Lower dbg.declare intrinsics otherwise their value may be clobbered
3716   // by instcombiner.
3717   bool MadeIRChange = false;
3718   if (ShouldLowerDbgDeclare)
3719     MadeIRChange = LowerDbgDeclare(F);
3720 
3721   // Iterate while there is work to do.
3722   unsigned Iteration = 0;
3723   while (true) {
3724     ++Iteration;
3725 
3726     if (Iteration > InfiniteLoopDetectionThreshold) {
3727       report_fatal_error(
3728           "Instruction Combining seems stuck in an infinite loop after " +
3729           Twine(InfiniteLoopDetectionThreshold) + " iterations.");
3730     }
3731 
3732     if (Iteration > MaxIterations) {
3733       LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
3734                         << " on " << F.getName()
3735                         << " reached; stopping before reaching a fixpoint\n");
3736       break;
3737     }
3738 
3739     LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
3740                       << F.getName() << "\n");
3741 
3742     MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
3743 
3744     InstCombiner IC(Worklist, Builder, F.hasMinSize(), AA,
3745                     AC, TLI, DT, ORE, BFI, PSI, DL, LI);
3746     IC.MaxArraySizeForCombine = MaxArraySize;
3747 
3748     if (!IC.run())
3749       break;
3750 
3751     MadeIRChange = true;
3752   }
3753 
3754   return MadeIRChange;
3755 }
3756 
3757 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
3758 
3759 InstCombinePass::InstCombinePass(unsigned MaxIterations)
3760     : MaxIterations(MaxIterations) {}
3761 
3762 PreservedAnalyses InstCombinePass::run(Function &F,
3763                                        FunctionAnalysisManager &AM) {
3764   auto &AC = AM.getResult<AssumptionAnalysis>(F);
3765   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3766   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3767   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
3768 
3769   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
3770 
3771   auto *AA = &AM.getResult<AAManager>(F);
3772   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
3773   ProfileSummaryInfo *PSI =
3774       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
3775   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
3776       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
3777 
3778   if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI,
3779                                        PSI, MaxIterations, LI))
3780     // No changes, all analyses are preserved.
3781     return PreservedAnalyses::all();
3782 
3783   // Mark all the analyses that instcombine updates as preserved.
3784   PreservedAnalyses PA;
3785   PA.preserveSet<CFGAnalyses>();
3786   PA.preserve<AAManager>();
3787   PA.preserve<BasicAA>();
3788   PA.preserve<GlobalsAA>();
3789   return PA;
3790 }
3791 
3792 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3793   AU.setPreservesCFG();
3794   AU.addRequired<AAResultsWrapperPass>();
3795   AU.addRequired<AssumptionCacheTracker>();
3796   AU.addRequired<TargetLibraryInfoWrapperPass>();
3797   AU.addRequired<DominatorTreeWrapperPass>();
3798   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3799   AU.addPreserved<DominatorTreeWrapperPass>();
3800   AU.addPreserved<AAResultsWrapperPass>();
3801   AU.addPreserved<BasicAAWrapperPass>();
3802   AU.addPreserved<GlobalsAAWrapperPass>();
3803   AU.addRequired<ProfileSummaryInfoWrapperPass>();
3804   LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
3805 }
3806 
3807 bool InstructionCombiningPass::runOnFunction(Function &F) {
3808   if (skipFunction(F))
3809     return false;
3810 
3811   // Required analyses.
3812   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3813   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3814   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3815   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3816   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
3817 
3818   // Optional analyses.
3819   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3820   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3821   ProfileSummaryInfo *PSI =
3822       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3823   BlockFrequencyInfo *BFI =
3824       (PSI && PSI->hasProfileSummary()) ?
3825       &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
3826       nullptr;
3827 
3828   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI,
3829                                          PSI, MaxIterations, LI);
3830 }
3831 
3832 char InstructionCombiningPass::ID = 0;
3833 
3834 InstructionCombiningPass::InstructionCombiningPass()
3835     : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
3836   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
3837 }
3838 
3839 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
3840     : FunctionPass(ID), MaxIterations(MaxIterations) {
3841   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
3842 }
3843 
3844 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
3845                       "Combine redundant instructions", false, false)
3846 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3847 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3848 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3849 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3850 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3851 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3852 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
3853 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
3854 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
3855                     "Combine redundant instructions", false, false)
3856 
3857 // Initialization Routines
3858 void llvm::initializeInstCombine(PassRegistry &Registry) {
3859   initializeInstructionCombiningPassPass(Registry);
3860 }
3861 
3862 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
3863   initializeInstructionCombiningPassPass(*unwrap(R));
3864 }
3865 
3866 FunctionPass *llvm::createInstructionCombiningPass() {
3867   return new InstructionCombiningPass();
3868 }
3869 
3870 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
3871   return new InstructionCombiningPass(MaxIterations);
3872 }
3873 
3874 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
3875   unwrap(PM)->add(createInstructionCombiningPass());
3876 }
3877