1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Analysis/AliasAnalysis.h" 46 #include "llvm/Analysis/AssumptionCache.h" 47 #include "llvm/Analysis/BasicAliasAnalysis.h" 48 #include "llvm/Analysis/BlockFrequencyInfo.h" 49 #include "llvm/Analysis/CFG.h" 50 #include "llvm/Analysis/ConstantFolding.h" 51 #include "llvm/Analysis/EHPersonalities.h" 52 #include "llvm/Analysis/GlobalsModRef.h" 53 #include "llvm/Analysis/InstructionSimplify.h" 54 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 55 #include "llvm/Analysis/LoopInfo.h" 56 #include "llvm/Analysis/MemoryBuiltins.h" 57 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 58 #include "llvm/Analysis/ProfileSummaryInfo.h" 59 #include "llvm/Analysis/TargetFolder.h" 60 #include "llvm/Analysis/TargetLibraryInfo.h" 61 #include "llvm/Analysis/TargetTransformInfo.h" 62 #include "llvm/Analysis/Utils/Local.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/Analysis/VectorUtils.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugInfo.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/Dominators.h" 74 #include "llvm/IR/Function.h" 75 #include "llvm/IR/GetElementPtrTypeIterator.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/InstrTypes.h" 78 #include "llvm/IR/Instruction.h" 79 #include "llvm/IR/Instructions.h" 80 #include "llvm/IR/IntrinsicInst.h" 81 #include "llvm/IR/Intrinsics.h" 82 #include "llvm/IR/LegacyPassManager.h" 83 #include "llvm/IR/Metadata.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PassManager.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/Use.h" 89 #include "llvm/IR/User.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/InitializePasses.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/DebugCounter.h" 98 #include "llvm/Support/ErrorHandling.h" 99 #include "llvm/Support/KnownBits.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Transforms/InstCombine/InstCombine.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <algorithm> 104 #include <cassert> 105 #include <cstdint> 106 #include <memory> 107 #include <string> 108 #include <utility> 109 110 #define DEBUG_TYPE "instcombine" 111 #include "llvm/Transforms/Utils/InstructionWorklist.h" 112 113 using namespace llvm; 114 using namespace llvm::PatternMatch; 115 116 STATISTIC(NumWorklistIterations, 117 "Number of instruction combining iterations performed"); 118 119 STATISTIC(NumCombined , "Number of insts combined"); 120 STATISTIC(NumConstProp, "Number of constant folds"); 121 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 122 STATISTIC(NumSunkInst , "Number of instructions sunk"); 123 STATISTIC(NumExpand, "Number of expansions"); 124 STATISTIC(NumFactor , "Number of factorizations"); 125 STATISTIC(NumReassoc , "Number of reassociations"); 126 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 127 "Controls which instructions are visited"); 128 129 // FIXME: these limits eventually should be as low as 2. 130 static constexpr unsigned InstCombineDefaultMaxIterations = 1000; 131 #ifndef NDEBUG 132 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100; 133 #else 134 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; 135 #endif 136 137 static cl::opt<bool> 138 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 139 cl::init(true)); 140 141 static cl::opt<unsigned> MaxSinkNumUsers( 142 "instcombine-max-sink-users", cl::init(32), 143 cl::desc("Maximum number of undroppable users for instruction sinking")); 144 145 static cl::opt<unsigned> LimitMaxIterations( 146 "instcombine-max-iterations", 147 cl::desc("Limit the maximum number of instruction combining iterations"), 148 cl::init(InstCombineDefaultMaxIterations)); 149 150 static cl::opt<unsigned> InfiniteLoopDetectionThreshold( 151 "instcombine-infinite-loop-threshold", 152 cl::desc("Number of instruction combining iterations considered an " 153 "infinite loop"), 154 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); 155 156 static cl::opt<unsigned> 157 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 158 cl::desc("Maximum array size considered when doing a combine")); 159 160 // FIXME: Remove this flag when it is no longer necessary to convert 161 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 162 // increases variable availability at the cost of accuracy. Variables that 163 // cannot be promoted by mem2reg or SROA will be described as living in memory 164 // for their entire lifetime. However, passes like DSE and instcombine can 165 // delete stores to the alloca, leading to misleading and inaccurate debug 166 // information. This flag can be removed when those passes are fixed. 167 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 168 cl::Hidden, cl::init(true)); 169 170 Optional<Instruction *> 171 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 172 // Handle target specific intrinsics 173 if (II.getCalledFunction()->isTargetIntrinsic()) { 174 return TTI.instCombineIntrinsic(*this, II); 175 } 176 return None; 177 } 178 179 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 180 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 181 bool &KnownBitsComputed) { 182 // Handle target specific intrinsics 183 if (II.getCalledFunction()->isTargetIntrinsic()) { 184 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, 185 KnownBitsComputed); 186 } 187 return None; 188 } 189 190 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 191 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, 192 APInt &UndefElts3, 193 std::function<void(Instruction *, unsigned, APInt, APInt &)> 194 SimplifyAndSetOp) { 195 // Handle target specific intrinsics 196 if (II.getCalledFunction()->isTargetIntrinsic()) { 197 return TTI.simplifyDemandedVectorEltsIntrinsic( 198 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 199 SimplifyAndSetOp); 200 } 201 return None; 202 } 203 204 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { 205 return llvm::EmitGEPOffset(&Builder, DL, GEP); 206 } 207 208 /// Legal integers and common types are considered desirable. This is used to 209 /// avoid creating instructions with types that may not be supported well by the 210 /// the backend. 211 /// NOTE: This treats i8, i16 and i32 specially because they are common 212 /// types in frontend languages. 213 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { 214 switch (BitWidth) { 215 case 8: 216 case 16: 217 case 32: 218 return true; 219 default: 220 return DL.isLegalInteger(BitWidth); 221 } 222 } 223 224 /// Return true if it is desirable to convert an integer computation from a 225 /// given bit width to a new bit width. 226 /// We don't want to convert from a legal to an illegal type or from a smaller 227 /// to a larger illegal type. A width of '1' is always treated as a desirable 228 /// type because i1 is a fundamental type in IR, and there are many specialized 229 /// optimizations for i1 types. Common/desirable widths are equally treated as 230 /// legal to convert to, in order to open up more combining opportunities. 231 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 232 unsigned ToWidth) const { 233 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 234 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 235 236 // Convert to desirable widths even if they are not legal types. 237 // Only shrink types, to prevent infinite loops. 238 if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) 239 return true; 240 241 // If this is a legal integer from type, and the result would be an illegal 242 // type, don't do the transformation. 243 if (FromLegal && !ToLegal) 244 return false; 245 246 // Otherwise, if both are illegal, do not increase the size of the result. We 247 // do allow things like i160 -> i64, but not i64 -> i160. 248 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 249 return false; 250 251 return true; 252 } 253 254 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 255 /// We don't want to convert from a legal to an illegal type or from a smaller 256 /// to a larger illegal type. i1 is always treated as a legal type because it is 257 /// a fundamental type in IR, and there are many specialized optimizations for 258 /// i1 types. 259 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 260 // TODO: This could be extended to allow vectors. Datalayout changes might be 261 // needed to properly support that. 262 if (!From->isIntegerTy() || !To->isIntegerTy()) 263 return false; 264 265 unsigned FromWidth = From->getPrimitiveSizeInBits(); 266 unsigned ToWidth = To->getPrimitiveSizeInBits(); 267 return shouldChangeType(FromWidth, ToWidth); 268 } 269 270 // Return true, if No Signed Wrap should be maintained for I. 271 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 272 // where both B and C should be ConstantInts, results in a constant that does 273 // not overflow. This function only handles the Add and Sub opcodes. For 274 // all other opcodes, the function conservatively returns false. 275 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 276 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 277 if (!OBO || !OBO->hasNoSignedWrap()) 278 return false; 279 280 // We reason about Add and Sub Only. 281 Instruction::BinaryOps Opcode = I.getOpcode(); 282 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 283 return false; 284 285 const APInt *BVal, *CVal; 286 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 287 return false; 288 289 bool Overflow = false; 290 if (Opcode == Instruction::Add) 291 (void)BVal->sadd_ov(*CVal, Overflow); 292 else 293 (void)BVal->ssub_ov(*CVal, Overflow); 294 295 return !Overflow; 296 } 297 298 static bool hasNoUnsignedWrap(BinaryOperator &I) { 299 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 300 return OBO && OBO->hasNoUnsignedWrap(); 301 } 302 303 static bool hasNoSignedWrap(BinaryOperator &I) { 304 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 305 return OBO && OBO->hasNoSignedWrap(); 306 } 307 308 /// Conservatively clears subclassOptionalData after a reassociation or 309 /// commutation. We preserve fast-math flags when applicable as they can be 310 /// preserved. 311 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 312 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 313 if (!FPMO) { 314 I.clearSubclassOptionalData(); 315 return; 316 } 317 318 FastMathFlags FMF = I.getFastMathFlags(); 319 I.clearSubclassOptionalData(); 320 I.setFastMathFlags(FMF); 321 } 322 323 /// Combine constant operands of associative operations either before or after a 324 /// cast to eliminate one of the associative operations: 325 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 326 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 327 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 328 InstCombinerImpl &IC) { 329 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 330 if (!Cast || !Cast->hasOneUse()) 331 return false; 332 333 // TODO: Enhance logic for other casts and remove this check. 334 auto CastOpcode = Cast->getOpcode(); 335 if (CastOpcode != Instruction::ZExt) 336 return false; 337 338 // TODO: Enhance logic for other BinOps and remove this check. 339 if (!BinOp1->isBitwiseLogicOp()) 340 return false; 341 342 auto AssocOpcode = BinOp1->getOpcode(); 343 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 344 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 345 return false; 346 347 Constant *C1, *C2; 348 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 349 !match(BinOp2->getOperand(1), m_Constant(C2))) 350 return false; 351 352 // TODO: This assumes a zext cast. 353 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 354 // to the destination type might lose bits. 355 356 // Fold the constants together in the destination type: 357 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 358 Type *DestTy = C1->getType(); 359 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 360 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 361 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 362 IC.replaceOperand(*BinOp1, 1, FoldedC); 363 return true; 364 } 365 366 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast. 367 // inttoptr ( ptrtoint (x) ) --> x 368 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { 369 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); 370 if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) == 371 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { 372 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); 373 Type *CastTy = IntToPtr->getDestTy(); 374 if (PtrToInt && 375 CastTy->getPointerAddressSpace() == 376 PtrToInt->getSrcTy()->getPointerAddressSpace() && 377 DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) == 378 DL.getTypeSizeInBits(PtrToInt->getDestTy())) { 379 return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy, 380 "", PtrToInt); 381 } 382 } 383 return nullptr; 384 } 385 386 /// This performs a few simplifications for operators that are associative or 387 /// commutative: 388 /// 389 /// Commutative operators: 390 /// 391 /// 1. Order operands such that they are listed from right (least complex) to 392 /// left (most complex). This puts constants before unary operators before 393 /// binary operators. 394 /// 395 /// Associative operators: 396 /// 397 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 398 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 399 /// 400 /// Associative and commutative operators: 401 /// 402 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 403 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 404 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 405 /// if C1 and C2 are constants. 406 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 407 Instruction::BinaryOps Opcode = I.getOpcode(); 408 bool Changed = false; 409 410 do { 411 // Order operands such that they are listed from right (least complex) to 412 // left (most complex). This puts constants before unary operators before 413 // binary operators. 414 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 415 getComplexity(I.getOperand(1))) 416 Changed = !I.swapOperands(); 417 418 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 419 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 420 421 if (I.isAssociative()) { 422 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 423 if (Op0 && Op0->getOpcode() == Opcode) { 424 Value *A = Op0->getOperand(0); 425 Value *B = Op0->getOperand(1); 426 Value *C = I.getOperand(1); 427 428 // Does "B op C" simplify? 429 if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 430 // It simplifies to V. Form "A op V". 431 replaceOperand(I, 0, A); 432 replaceOperand(I, 1, V); 433 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 434 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 435 436 // Conservatively clear all optional flags since they may not be 437 // preserved by the reassociation. Reset nsw/nuw based on the above 438 // analysis. 439 ClearSubclassDataAfterReassociation(I); 440 441 // Note: this is only valid because SimplifyBinOp doesn't look at 442 // the operands to Op0. 443 if (IsNUW) 444 I.setHasNoUnsignedWrap(true); 445 446 if (IsNSW) 447 I.setHasNoSignedWrap(true); 448 449 Changed = true; 450 ++NumReassoc; 451 continue; 452 } 453 } 454 455 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 456 if (Op1 && Op1->getOpcode() == Opcode) { 457 Value *A = I.getOperand(0); 458 Value *B = Op1->getOperand(0); 459 Value *C = Op1->getOperand(1); 460 461 // Does "A op B" simplify? 462 if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 463 // It simplifies to V. Form "V op C". 464 replaceOperand(I, 0, V); 465 replaceOperand(I, 1, C); 466 // Conservatively clear the optional flags, since they may not be 467 // preserved by the reassociation. 468 ClearSubclassDataAfterReassociation(I); 469 Changed = true; 470 ++NumReassoc; 471 continue; 472 } 473 } 474 } 475 476 if (I.isAssociative() && I.isCommutative()) { 477 if (simplifyAssocCastAssoc(&I, *this)) { 478 Changed = true; 479 ++NumReassoc; 480 continue; 481 } 482 483 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 484 if (Op0 && Op0->getOpcode() == Opcode) { 485 Value *A = Op0->getOperand(0); 486 Value *B = Op0->getOperand(1); 487 Value *C = I.getOperand(1); 488 489 // Does "C op A" simplify? 490 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 491 // It simplifies to V. Form "V op B". 492 replaceOperand(I, 0, V); 493 replaceOperand(I, 1, B); 494 // Conservatively clear the optional flags, since they may not be 495 // preserved by the reassociation. 496 ClearSubclassDataAfterReassociation(I); 497 Changed = true; 498 ++NumReassoc; 499 continue; 500 } 501 } 502 503 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 504 if (Op1 && Op1->getOpcode() == Opcode) { 505 Value *A = I.getOperand(0); 506 Value *B = Op1->getOperand(0); 507 Value *C = Op1->getOperand(1); 508 509 // Does "C op A" simplify? 510 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 511 // It simplifies to V. Form "B op V". 512 replaceOperand(I, 0, B); 513 replaceOperand(I, 1, V); 514 // Conservatively clear the optional flags, since they may not be 515 // preserved by the reassociation. 516 ClearSubclassDataAfterReassociation(I); 517 Changed = true; 518 ++NumReassoc; 519 continue; 520 } 521 } 522 523 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 524 // if C1 and C2 are constants. 525 Value *A, *B; 526 Constant *C1, *C2, *CRes; 527 if (Op0 && Op1 && 528 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 529 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 530 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) && 531 (CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) { 532 bool IsNUW = hasNoUnsignedWrap(I) && 533 hasNoUnsignedWrap(*Op0) && 534 hasNoUnsignedWrap(*Op1); 535 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 536 BinaryOperator::CreateNUW(Opcode, A, B) : 537 BinaryOperator::Create(Opcode, A, B); 538 539 if (isa<FPMathOperator>(NewBO)) { 540 FastMathFlags Flags = I.getFastMathFlags(); 541 Flags &= Op0->getFastMathFlags(); 542 Flags &= Op1->getFastMathFlags(); 543 NewBO->setFastMathFlags(Flags); 544 } 545 InsertNewInstWith(NewBO, I); 546 NewBO->takeName(Op1); 547 replaceOperand(I, 0, NewBO); 548 replaceOperand(I, 1, CRes); 549 // Conservatively clear the optional flags, since they may not be 550 // preserved by the reassociation. 551 ClearSubclassDataAfterReassociation(I); 552 if (IsNUW) 553 I.setHasNoUnsignedWrap(true); 554 555 Changed = true; 556 continue; 557 } 558 } 559 560 // No further simplifications. 561 return Changed; 562 } while (true); 563 } 564 565 /// Return whether "X LOp (Y ROp Z)" is always equal to 566 /// "(X LOp Y) ROp (X LOp Z)". 567 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 568 Instruction::BinaryOps ROp) { 569 // X & (Y | Z) <--> (X & Y) | (X & Z) 570 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 571 if (LOp == Instruction::And) 572 return ROp == Instruction::Or || ROp == Instruction::Xor; 573 574 // X | (Y & Z) <--> (X | Y) & (X | Z) 575 if (LOp == Instruction::Or) 576 return ROp == Instruction::And; 577 578 // X * (Y + Z) <--> (X * Y) + (X * Z) 579 // X * (Y - Z) <--> (X * Y) - (X * Z) 580 if (LOp == Instruction::Mul) 581 return ROp == Instruction::Add || ROp == Instruction::Sub; 582 583 return false; 584 } 585 586 /// Return whether "(X LOp Y) ROp Z" is always equal to 587 /// "(X ROp Z) LOp (Y ROp Z)". 588 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 589 Instruction::BinaryOps ROp) { 590 if (Instruction::isCommutative(ROp)) 591 return leftDistributesOverRight(ROp, LOp); 592 593 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 594 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 595 596 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 597 // but this requires knowing that the addition does not overflow and other 598 // such subtleties. 599 } 600 601 /// This function returns identity value for given opcode, which can be used to 602 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 603 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 604 if (isa<Constant>(V)) 605 return nullptr; 606 607 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 608 } 609 610 /// This function predicates factorization using distributive laws. By default, 611 /// it just returns the 'Op' inputs. But for special-cases like 612 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 613 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 614 /// allow more factorization opportunities. 615 static Instruction::BinaryOps 616 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 617 Value *&LHS, Value *&RHS) { 618 assert(Op && "Expected a binary operator"); 619 LHS = Op->getOperand(0); 620 RHS = Op->getOperand(1); 621 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 622 Constant *C; 623 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 624 // X << C --> X * (1 << C) 625 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 626 return Instruction::Mul; 627 } 628 // TODO: We can add other conversions e.g. shr => div etc. 629 } 630 return Op->getOpcode(); 631 } 632 633 /// This tries to simplify binary operations by factorizing out common terms 634 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 635 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I, 636 Instruction::BinaryOps InnerOpcode, 637 Value *A, Value *B, Value *C, 638 Value *D) { 639 assert(A && B && C && D && "All values must be provided"); 640 641 Value *V = nullptr; 642 Value *SimplifiedInst = nullptr; 643 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 644 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 645 646 // Does "X op' Y" always equal "Y op' X"? 647 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 648 649 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 650 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 651 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 652 // commutative case, "(A op' B) op (C op' A)"? 653 if (A == C || (InnerCommutative && A == D)) { 654 if (A != C) 655 std::swap(C, D); 656 // Consider forming "A op' (B op D)". 657 // If "B op D" simplifies then it can be formed with no cost. 658 V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 659 // If "B op D" doesn't simplify then only go on if both of the existing 660 // operations "A op' B" and "C op' D" will be zapped as no longer used. 661 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 662 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 663 if (V) { 664 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 665 } 666 } 667 668 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 669 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 670 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 671 // commutative case, "(A op' B) op (B op' D)"? 672 if (B == D || (InnerCommutative && B == C)) { 673 if (B != D) 674 std::swap(C, D); 675 // Consider forming "(A op C) op' B". 676 // If "A op C" simplifies then it can be formed with no cost. 677 V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 678 679 // If "A op C" doesn't simplify then only go on if both of the existing 680 // operations "A op' B" and "C op' D" will be zapped as no longer used. 681 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 682 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 683 if (V) { 684 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 685 } 686 } 687 688 if (SimplifiedInst) { 689 ++NumFactor; 690 SimplifiedInst->takeName(&I); 691 692 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 693 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 694 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 695 bool HasNSW = false; 696 bool HasNUW = false; 697 if (isa<OverflowingBinaryOperator>(&I)) { 698 HasNSW = I.hasNoSignedWrap(); 699 HasNUW = I.hasNoUnsignedWrap(); 700 } 701 702 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 703 HasNSW &= LOBO->hasNoSignedWrap(); 704 HasNUW &= LOBO->hasNoUnsignedWrap(); 705 } 706 707 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 708 HasNSW &= ROBO->hasNoSignedWrap(); 709 HasNUW &= ROBO->hasNoUnsignedWrap(); 710 } 711 712 if (TopLevelOpcode == Instruction::Add && 713 InnerOpcode == Instruction::Mul) { 714 // We can propagate 'nsw' if we know that 715 // %Y = mul nsw i16 %X, C 716 // %Z = add nsw i16 %Y, %X 717 // => 718 // %Z = mul nsw i16 %X, C+1 719 // 720 // iff C+1 isn't INT_MIN 721 const APInt *CInt; 722 if (match(V, m_APInt(CInt))) { 723 if (!CInt->isMinSignedValue()) 724 BO->setHasNoSignedWrap(HasNSW); 725 } 726 727 // nuw can be propagated with any constant or nuw value. 728 BO->setHasNoUnsignedWrap(HasNUW); 729 } 730 } 731 } 732 } 733 return SimplifiedInst; 734 } 735 736 /// This tries to simplify binary operations which some other binary operation 737 /// distributes over either by factorizing out common terms 738 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 739 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 740 /// Returns the simplified value, or null if it didn't simplify. 741 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 742 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 743 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 744 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 745 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 746 747 { 748 // Factorization. 749 Value *A, *B, *C, *D; 750 Instruction::BinaryOps LHSOpcode, RHSOpcode; 751 if (Op0) 752 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 753 if (Op1) 754 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 755 756 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 757 // a common term. 758 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 759 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 760 return V; 761 762 // The instruction has the form "(A op' B) op (C)". Try to factorize common 763 // term. 764 if (Op0) 765 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 766 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 767 return V; 768 769 // The instruction has the form "(B) op (C op' D)". Try to factorize common 770 // term. 771 if (Op1) 772 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 773 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 774 return V; 775 } 776 777 // Expansion. 778 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 779 // The instruction has the form "(A op' B) op C". See if expanding it out 780 // to "(A op C) op' (B op C)" results in simplifications. 781 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 782 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 783 784 // Disable the use of undef because it's not safe to distribute undef. 785 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 786 Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 787 Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 788 789 // Do "A op C" and "B op C" both simplify? 790 if (L && R) { 791 // They do! Return "L op' R". 792 ++NumExpand; 793 C = Builder.CreateBinOp(InnerOpcode, L, R); 794 C->takeName(&I); 795 return C; 796 } 797 798 // Does "A op C" simplify to the identity value for the inner opcode? 799 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 800 // They do! Return "B op C". 801 ++NumExpand; 802 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 803 C->takeName(&I); 804 return C; 805 } 806 807 // Does "B op C" simplify to the identity value for the inner opcode? 808 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 809 // They do! Return "A op C". 810 ++NumExpand; 811 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 812 C->takeName(&I); 813 return C; 814 } 815 } 816 817 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 818 // The instruction has the form "A op (B op' C)". See if expanding it out 819 // to "(A op B) op' (A op C)" results in simplifications. 820 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 821 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 822 823 // Disable the use of undef because it's not safe to distribute undef. 824 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 825 Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 826 Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 827 828 // Do "A op B" and "A op C" both simplify? 829 if (L && R) { 830 // They do! Return "L op' R". 831 ++NumExpand; 832 A = Builder.CreateBinOp(InnerOpcode, L, R); 833 A->takeName(&I); 834 return A; 835 } 836 837 // Does "A op B" simplify to the identity value for the inner opcode? 838 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 839 // They do! Return "A op C". 840 ++NumExpand; 841 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 842 A->takeName(&I); 843 return A; 844 } 845 846 // Does "A op C" simplify to the identity value for the inner opcode? 847 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 848 // They do! Return "A op B". 849 ++NumExpand; 850 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 851 A->takeName(&I); 852 return A; 853 } 854 } 855 856 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 857 } 858 859 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 860 Value *LHS, 861 Value *RHS) { 862 Value *A, *B, *C, *D, *E, *F; 863 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 864 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 865 if (!LHSIsSelect && !RHSIsSelect) 866 return nullptr; 867 868 FastMathFlags FMF; 869 BuilderTy::FastMathFlagGuard Guard(Builder); 870 if (isa<FPMathOperator>(&I)) { 871 FMF = I.getFastMathFlags(); 872 Builder.setFastMathFlags(FMF); 873 } 874 875 Instruction::BinaryOps Opcode = I.getOpcode(); 876 SimplifyQuery Q = SQ.getWithInstruction(&I); 877 878 Value *Cond, *True = nullptr, *False = nullptr; 879 if (LHSIsSelect && RHSIsSelect && A == D) { 880 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 881 Cond = A; 882 True = simplifyBinOp(Opcode, B, E, FMF, Q); 883 False = simplifyBinOp(Opcode, C, F, FMF, Q); 884 885 if (LHS->hasOneUse() && RHS->hasOneUse()) { 886 if (False && !True) 887 True = Builder.CreateBinOp(Opcode, B, E); 888 else if (True && !False) 889 False = Builder.CreateBinOp(Opcode, C, F); 890 } 891 } else if (LHSIsSelect && LHS->hasOneUse()) { 892 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 893 Cond = A; 894 True = simplifyBinOp(Opcode, B, RHS, FMF, Q); 895 False = simplifyBinOp(Opcode, C, RHS, FMF, Q); 896 } else if (RHSIsSelect && RHS->hasOneUse()) { 897 // X op (D ? E : F) -> D ? (X op E) : (X op F) 898 Cond = D; 899 True = simplifyBinOp(Opcode, LHS, E, FMF, Q); 900 False = simplifyBinOp(Opcode, LHS, F, FMF, Q); 901 } 902 903 if (!True || !False) 904 return nullptr; 905 906 Value *SI = Builder.CreateSelect(Cond, True, False); 907 SI->takeName(&I); 908 return SI; 909 } 910 911 /// Freely adapt every user of V as-if V was changed to !V. 912 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 913 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) { 914 for (User *U : I->users()) { 915 switch (cast<Instruction>(U)->getOpcode()) { 916 case Instruction::Select: { 917 auto *SI = cast<SelectInst>(U); 918 SI->swapValues(); 919 SI->swapProfMetadata(); 920 break; 921 } 922 case Instruction::Br: 923 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 924 break; 925 case Instruction::Xor: 926 replaceInstUsesWith(cast<Instruction>(*U), I); 927 break; 928 default: 929 llvm_unreachable("Got unexpected user - out of sync with " 930 "canFreelyInvertAllUsersOf() ?"); 931 } 932 } 933 } 934 935 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 936 /// constant zero (which is the 'negate' form). 937 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 938 Value *NegV; 939 if (match(V, m_Neg(m_Value(NegV)))) 940 return NegV; 941 942 // Constants can be considered to be negated values if they can be folded. 943 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 944 return ConstantExpr::getNeg(C); 945 946 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 947 if (C->getType()->getElementType()->isIntegerTy()) 948 return ConstantExpr::getNeg(C); 949 950 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 951 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 952 Constant *Elt = CV->getAggregateElement(i); 953 if (!Elt) 954 return nullptr; 955 956 if (isa<UndefValue>(Elt)) 957 continue; 958 959 if (!isa<ConstantInt>(Elt)) 960 return nullptr; 961 } 962 return ConstantExpr::getNeg(CV); 963 } 964 965 // Negate integer vector splats. 966 if (auto *CV = dyn_cast<Constant>(V)) 967 if (CV->getType()->isVectorTy() && 968 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 969 return ConstantExpr::getNeg(CV); 970 971 return nullptr; 972 } 973 974 /// A binop with a constant operand and a sign-extended boolean operand may be 975 /// converted into a select of constants by applying the binary operation to 976 /// the constant with the two possible values of the extended boolean (0 or -1). 977 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) { 978 // TODO: Handle non-commutative binop (constant is operand 0). 979 // TODO: Handle zext. 980 // TODO: Peek through 'not' of cast. 981 Value *BO0 = BO.getOperand(0); 982 Value *BO1 = BO.getOperand(1); 983 Value *X; 984 Constant *C; 985 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) || 986 !X->getType()->isIntOrIntVectorTy(1)) 987 return nullptr; 988 989 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C) 990 Constant *Ones = ConstantInt::getAllOnesValue(BO.getType()); 991 Constant *Zero = ConstantInt::getNullValue(BO.getType()); 992 Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C); 993 Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C); 994 return SelectInst::Create(X, TVal, FVal); 995 } 996 997 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 998 InstCombiner::BuilderTy &Builder) { 999 if (auto *Cast = dyn_cast<CastInst>(&I)) 1000 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 1001 1002 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1003 assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) && 1004 "Expected constant-foldable intrinsic"); 1005 Intrinsic::ID IID = II->getIntrinsicID(); 1006 if (II->arg_size() == 1) 1007 return Builder.CreateUnaryIntrinsic(IID, SO); 1008 1009 // This works for real binary ops like min/max (where we always expect the 1010 // constant operand to be canonicalized as op1) and unary ops with a bonus 1011 // constant argument like ctlz/cttz. 1012 // TODO: Handle non-commutative binary intrinsics as below for binops. 1013 assert(II->arg_size() == 2 && "Expected binary intrinsic"); 1014 assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand"); 1015 return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1)); 1016 } 1017 1018 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 1019 1020 // Figure out if the constant is the left or the right argument. 1021 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 1022 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 1023 1024 Value *Op0 = SO, *Op1 = ConstOperand; 1025 if (!ConstIsRHS) 1026 std::swap(Op0, Op1); 1027 1028 Value *NewBO = Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), Op0, 1029 Op1, SO->getName() + ".op"); 1030 if (auto *NewBOI = dyn_cast<Instruction>(NewBO)) 1031 NewBOI->copyIRFlags(&I); 1032 return NewBO; 1033 } 1034 1035 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI, 1036 bool FoldWithMultiUse) { 1037 // Don't modify shared select instructions unless set FoldWithMultiUse 1038 if (!SI->hasOneUse() && !FoldWithMultiUse) 1039 return nullptr; 1040 1041 Value *TV = SI->getTrueValue(); 1042 Value *FV = SI->getFalseValue(); 1043 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 1044 return nullptr; 1045 1046 // Bool selects with constant operands can be folded to logical ops. 1047 if (SI->getType()->isIntOrIntVectorTy(1)) 1048 return nullptr; 1049 1050 // If it's a bitcast involving vectors, make sure it has the same number of 1051 // elements on both sides. 1052 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 1053 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 1054 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 1055 1056 // Verify that either both or neither are vectors. 1057 if ((SrcTy == nullptr) != (DestTy == nullptr)) 1058 return nullptr; 1059 1060 // If vectors, verify that they have the same number of elements. 1061 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) 1062 return nullptr; 1063 } 1064 1065 // Test if a CmpInst instruction is used exclusively by a select as 1066 // part of a minimum or maximum operation. If so, refrain from doing 1067 // any other folding. This helps out other analyses which understand 1068 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 1069 // and CodeGen. And in this case, at least one of the comparison 1070 // operands has at least one user besides the compare (the select), 1071 // which would often largely negate the benefit of folding anyway. 1072 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 1073 if (CI->hasOneUse()) { 1074 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 1075 1076 // FIXME: This is a hack to avoid infinite looping with min/max patterns. 1077 // We have to ensure that vector constants that only differ with 1078 // undef elements are treated as equivalent. 1079 auto areLooselyEqual = [](Value *A, Value *B) { 1080 if (A == B) 1081 return true; 1082 1083 // Test for vector constants. 1084 Constant *ConstA, *ConstB; 1085 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB))) 1086 return false; 1087 1088 // TODO: Deal with FP constants? 1089 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType()) 1090 return false; 1091 1092 // Compare for equality including undefs as equal. 1093 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB); 1094 const APInt *C; 1095 return match(Cmp, m_APIntAllowUndef(C)) && C->isOne(); 1096 }; 1097 1098 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) || 1099 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1))) 1100 return nullptr; 1101 } 1102 } 1103 1104 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 1105 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 1106 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 1107 } 1108 1109 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 1110 InstCombiner::BuilderTy &Builder) { 1111 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 1112 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 1113 1114 Value *Op0 = InV, *Op1 = C; 1115 if (!ConstIsRHS) 1116 std::swap(Op0, Op1); 1117 1118 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo"); 1119 auto *FPInst = dyn_cast<Instruction>(RI); 1120 if (FPInst && isa<FPMathOperator>(FPInst)) 1121 FPInst->copyFastMathFlags(I); 1122 return RI; 1123 } 1124 1125 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { 1126 unsigned NumPHIValues = PN->getNumIncomingValues(); 1127 if (NumPHIValues == 0) 1128 return nullptr; 1129 1130 // We normally only transform phis with a single use. However, if a PHI has 1131 // multiple uses and they are all the same operation, we can fold *all* of the 1132 // uses into the PHI. 1133 if (!PN->hasOneUse()) { 1134 // Walk the use list for the instruction, comparing them to I. 1135 for (User *U : PN->users()) { 1136 Instruction *UI = cast<Instruction>(U); 1137 if (UI != &I && !I.isIdenticalTo(UI)) 1138 return nullptr; 1139 } 1140 // Otherwise, we can replace *all* users with the new PHI we form. 1141 } 1142 1143 // Check to see if all of the operands of the PHI are simple constants 1144 // (constantint/constantfp/undef). If there is one non-constant value, 1145 // remember the BB it is in. If there is more than one or if *it* is a PHI, 1146 // bail out. We don't do arbitrary constant expressions here because moving 1147 // their computation can be expensive without a cost model. 1148 BasicBlock *NonConstBB = nullptr; 1149 for (unsigned i = 0; i != NumPHIValues; ++i) { 1150 Value *InVal = PN->getIncomingValue(i); 1151 // For non-freeze, require constant operand 1152 // For freeze, require non-undef, non-poison operand 1153 if (!isa<FreezeInst>(I) && match(InVal, m_ImmConstant())) 1154 continue; 1155 if (isa<FreezeInst>(I) && isGuaranteedNotToBeUndefOrPoison(InVal)) 1156 continue; 1157 1158 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 1159 if (NonConstBB) return nullptr; // More than one non-const value. 1160 1161 NonConstBB = PN->getIncomingBlock(i); 1162 1163 // If the InVal is an invoke at the end of the pred block, then we can't 1164 // insert a computation after it without breaking the edge. 1165 if (isa<InvokeInst>(InVal)) 1166 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 1167 return nullptr; 1168 1169 // If the incoming non-constant value is reachable from the phis block, 1170 // we'll push the operation across a loop backedge. This could result in 1171 // an infinite combine loop, and is generally non-profitable (especially 1172 // if the operation was originally outside the loop). 1173 if (isPotentiallyReachable(PN->getParent(), NonConstBB, nullptr, &DT, LI)) 1174 return nullptr; 1175 } 1176 1177 // If there is exactly one non-constant value, we can insert a copy of the 1178 // operation in that block. However, if this is a critical edge, we would be 1179 // inserting the computation on some other paths (e.g. inside a loop). Only 1180 // do this if the pred block is unconditionally branching into the phi block. 1181 // Also, make sure that the pred block is not dead code. 1182 if (NonConstBB != nullptr) { 1183 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1184 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB)) 1185 return nullptr; 1186 } 1187 1188 // Okay, we can do the transformation: create the new PHI node. 1189 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1190 InsertNewInstBefore(NewPN, *PN); 1191 NewPN->takeName(PN); 1192 1193 // If we are going to have to insert a new computation, do so right before the 1194 // predecessor's terminator. 1195 if (NonConstBB) 1196 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1197 1198 // Next, add all of the operands to the PHI. 1199 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1200 // We only currently try to fold the condition of a select when it is a phi, 1201 // not the true/false values. 1202 Value *TrueV = SI->getTrueValue(); 1203 Value *FalseV = SI->getFalseValue(); 1204 BasicBlock *PhiTransBB = PN->getParent(); 1205 for (unsigned i = 0; i != NumPHIValues; ++i) { 1206 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1207 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1208 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1209 Value *InV = nullptr; 1210 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1211 // even if currently isNullValue gives false. 1212 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1213 // For vector constants, we cannot use isNullValue to fold into 1214 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1215 // elements in the vector, we will incorrectly fold InC to 1216 // `TrueVInPred`. 1217 if (InC && isa<ConstantInt>(InC)) 1218 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1219 else { 1220 // Generate the select in the same block as PN's current incoming block. 1221 // Note: ThisBB need not be the NonConstBB because vector constants 1222 // which are constants by definition are handled here. 1223 // FIXME: This can lead to an increase in IR generation because we might 1224 // generate selects for vector constant phi operand, that could not be 1225 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1226 // non-vector phis, this transformation was always profitable because 1227 // the select would be generated exactly once in the NonConstBB. 1228 Builder.SetInsertPoint(ThisBB->getTerminator()); 1229 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1230 FalseVInPred, "phi.sel"); 1231 } 1232 NewPN->addIncoming(InV, ThisBB); 1233 } 1234 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1235 Constant *C = cast<Constant>(I.getOperand(1)); 1236 for (unsigned i = 0; i != NumPHIValues; ++i) { 1237 Value *InV = nullptr; 1238 if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1239 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1240 else 1241 InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i), 1242 C, "phi.cmp"); 1243 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1244 } 1245 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1246 for (unsigned i = 0; i != NumPHIValues; ++i) { 1247 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1248 Builder); 1249 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1250 } 1251 } else if (isa<FreezeInst>(&I)) { 1252 for (unsigned i = 0; i != NumPHIValues; ++i) { 1253 Value *InV; 1254 if (NonConstBB == PN->getIncomingBlock(i)) 1255 InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr"); 1256 else 1257 InV = PN->getIncomingValue(i); 1258 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1259 } 1260 } else { 1261 CastInst *CI = cast<CastInst>(&I); 1262 Type *RetTy = CI->getType(); 1263 for (unsigned i = 0; i != NumPHIValues; ++i) { 1264 Value *InV; 1265 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1266 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1267 else 1268 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1269 I.getType(), "phi.cast"); 1270 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1271 } 1272 } 1273 1274 for (User *U : make_early_inc_range(PN->users())) { 1275 Instruction *User = cast<Instruction>(U); 1276 if (User == &I) continue; 1277 replaceInstUsesWith(*User, NewPN); 1278 eraseInstFromFunction(*User); 1279 } 1280 return replaceInstUsesWith(I, NewPN); 1281 } 1282 1283 Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) { 1284 // TODO: This should be similar to the incoming values check in foldOpIntoPhi: 1285 // we are guarding against replicating the binop in >1 predecessor. 1286 // This could miss matching a phi with 2 constant incoming values. 1287 auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0)); 1288 auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1)); 1289 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() || 1290 Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2) 1291 return nullptr; 1292 1293 // TODO: Remove the restriction for binop being in the same block as the phis. 1294 if (BO.getParent() != Phi0->getParent() || 1295 BO.getParent() != Phi1->getParent()) 1296 return nullptr; 1297 1298 // Match a pair of incoming constants for one of the predecessor blocks. 1299 BasicBlock *ConstBB, *OtherBB; 1300 Constant *C0, *C1; 1301 if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) { 1302 ConstBB = Phi0->getIncomingBlock(0); 1303 OtherBB = Phi0->getIncomingBlock(1); 1304 } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) { 1305 ConstBB = Phi0->getIncomingBlock(1); 1306 OtherBB = Phi0->getIncomingBlock(0); 1307 } else { 1308 return nullptr; 1309 } 1310 if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1))) 1311 return nullptr; 1312 1313 // The block that we are hoisting to must reach here unconditionally. 1314 // Otherwise, we could be speculatively executing an expensive or 1315 // non-speculative op. 1316 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator()); 1317 if (!PredBlockBranch || PredBlockBranch->isConditional() || 1318 !DT.isReachableFromEntry(OtherBB)) 1319 return nullptr; 1320 1321 // TODO: This check could be tightened to only apply to binops (div/rem) that 1322 // are not safe to speculatively execute. But that could allow hoisting 1323 // potentially expensive instructions (fdiv for example). 1324 for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter) 1325 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter)) 1326 return nullptr; 1327 1328 // Fold constants for the predecessor block with constant incoming values. 1329 Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL); 1330 if (!NewC) 1331 return nullptr; 1332 1333 // Make a new binop in the predecessor block with the non-constant incoming 1334 // values. 1335 Builder.SetInsertPoint(PredBlockBranch); 1336 Value *NewBO = Builder.CreateBinOp(BO.getOpcode(), 1337 Phi0->getIncomingValueForBlock(OtherBB), 1338 Phi1->getIncomingValueForBlock(OtherBB)); 1339 if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO)) 1340 NotFoldedNewBO->copyIRFlags(&BO); 1341 1342 // Replace the binop with a phi of the new values. The old phis are dead. 1343 PHINode *NewPhi = PHINode::Create(BO.getType(), 2); 1344 NewPhi->addIncoming(NewBO, OtherBB); 1345 NewPhi->addIncoming(NewC, ConstBB); 1346 return NewPhi; 1347 } 1348 1349 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1350 if (!isa<Constant>(I.getOperand(1))) 1351 return nullptr; 1352 1353 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1354 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1355 return NewSel; 1356 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1357 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1358 return NewPhi; 1359 } 1360 return nullptr; 1361 } 1362 1363 /// Given a pointer type and a constant offset, determine whether or not there 1364 /// is a sequence of GEP indices into the pointed type that will land us at the 1365 /// specified offset. If so, fill them into NewIndices and return the resultant 1366 /// element type, otherwise return null. 1367 static Type *findElementAtOffset(PointerType *PtrTy, int64_t IntOffset, 1368 SmallVectorImpl<Value *> &NewIndices, 1369 const DataLayout &DL) { 1370 // Only used by visitGEPOfBitcast(), which is skipped for opaque pointers. 1371 Type *Ty = PtrTy->getNonOpaquePointerElementType(); 1372 if (!Ty->isSized()) 1373 return nullptr; 1374 1375 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset); 1376 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset); 1377 if (!Offset.isZero()) 1378 return nullptr; 1379 1380 for (const APInt &Index : Indices) 1381 NewIndices.push_back(ConstantInt::get(PtrTy->getContext(), Index)); 1382 return Ty; 1383 } 1384 1385 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1386 // If this GEP has only 0 indices, it is the same pointer as 1387 // Src. If Src is not a trivial GEP too, don't combine 1388 // the indices. 1389 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1390 !Src.hasOneUse()) 1391 return false; 1392 return true; 1393 } 1394 1395 /// Return a value X such that Val = X * Scale, or null if none. 1396 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1397 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1398 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1399 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1400 Scale.getBitWidth() && "Scale not compatible with value!"); 1401 1402 // If Val is zero or Scale is one then Val = Val * Scale. 1403 if (match(Val, m_Zero()) || Scale == 1) { 1404 NoSignedWrap = true; 1405 return Val; 1406 } 1407 1408 // If Scale is zero then it does not divide Val. 1409 if (Scale.isMinValue()) 1410 return nullptr; 1411 1412 // Look through chains of multiplications, searching for a constant that is 1413 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1414 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1415 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1416 // down from Val: 1417 // 1418 // Val = M1 * X || Analysis starts here and works down 1419 // M1 = M2 * Y || Doesn't descend into terms with more 1420 // M2 = Z * 4 \/ than one use 1421 // 1422 // Then to modify a term at the bottom: 1423 // 1424 // Val = M1 * X 1425 // M1 = Z * Y || Replaced M2 with Z 1426 // 1427 // Then to work back up correcting nsw flags. 1428 1429 // Op - the term we are currently analyzing. Starts at Val then drills down. 1430 // Replaced with its descaled value before exiting from the drill down loop. 1431 Value *Op = Val; 1432 1433 // Parent - initially null, but after drilling down notes where Op came from. 1434 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1435 // 0'th operand of Val. 1436 std::pair<Instruction *, unsigned> Parent; 1437 1438 // Set if the transform requires a descaling at deeper levels that doesn't 1439 // overflow. 1440 bool RequireNoSignedWrap = false; 1441 1442 // Log base 2 of the scale. Negative if not a power of 2. 1443 int32_t logScale = Scale.exactLogBase2(); 1444 1445 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1446 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1447 // If Op is a constant divisible by Scale then descale to the quotient. 1448 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1449 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1450 if (!Remainder.isMinValue()) 1451 // Not divisible by Scale. 1452 return nullptr; 1453 // Replace with the quotient in the parent. 1454 Op = ConstantInt::get(CI->getType(), Quotient); 1455 NoSignedWrap = true; 1456 break; 1457 } 1458 1459 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1460 if (BO->getOpcode() == Instruction::Mul) { 1461 // Multiplication. 1462 NoSignedWrap = BO->hasNoSignedWrap(); 1463 if (RequireNoSignedWrap && !NoSignedWrap) 1464 return nullptr; 1465 1466 // There are three cases for multiplication: multiplication by exactly 1467 // the scale, multiplication by a constant different to the scale, and 1468 // multiplication by something else. 1469 Value *LHS = BO->getOperand(0); 1470 Value *RHS = BO->getOperand(1); 1471 1472 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1473 // Multiplication by a constant. 1474 if (CI->getValue() == Scale) { 1475 // Multiplication by exactly the scale, replace the multiplication 1476 // by its left-hand side in the parent. 1477 Op = LHS; 1478 break; 1479 } 1480 1481 // Otherwise drill down into the constant. 1482 if (!Op->hasOneUse()) 1483 return nullptr; 1484 1485 Parent = std::make_pair(BO, 1); 1486 continue; 1487 } 1488 1489 // Multiplication by something else. Drill down into the left-hand side 1490 // since that's where the reassociate pass puts the good stuff. 1491 if (!Op->hasOneUse()) 1492 return nullptr; 1493 1494 Parent = std::make_pair(BO, 0); 1495 continue; 1496 } 1497 1498 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1499 isa<ConstantInt>(BO->getOperand(1))) { 1500 // Multiplication by a power of 2. 1501 NoSignedWrap = BO->hasNoSignedWrap(); 1502 if (RequireNoSignedWrap && !NoSignedWrap) 1503 return nullptr; 1504 1505 Value *LHS = BO->getOperand(0); 1506 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1507 getLimitedValue(Scale.getBitWidth()); 1508 // Op = LHS << Amt. 1509 1510 if (Amt == logScale) { 1511 // Multiplication by exactly the scale, replace the multiplication 1512 // by its left-hand side in the parent. 1513 Op = LHS; 1514 break; 1515 } 1516 if (Amt < logScale || !Op->hasOneUse()) 1517 return nullptr; 1518 1519 // Multiplication by more than the scale. Reduce the multiplying amount 1520 // by the scale in the parent. 1521 Parent = std::make_pair(BO, 1); 1522 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1523 break; 1524 } 1525 } 1526 1527 if (!Op->hasOneUse()) 1528 return nullptr; 1529 1530 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1531 if (Cast->getOpcode() == Instruction::SExt) { 1532 // Op is sign-extended from a smaller type, descale in the smaller type. 1533 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1534 APInt SmallScale = Scale.trunc(SmallSize); 1535 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1536 // descale Op as (sext Y) * Scale. In order to have 1537 // sext (Y * SmallScale) = (sext Y) * Scale 1538 // some conditions need to hold however: SmallScale must sign-extend to 1539 // Scale and the multiplication Y * SmallScale should not overflow. 1540 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1541 // SmallScale does not sign-extend to Scale. 1542 return nullptr; 1543 assert(SmallScale.exactLogBase2() == logScale); 1544 // Require that Y * SmallScale must not overflow. 1545 RequireNoSignedWrap = true; 1546 1547 // Drill down through the cast. 1548 Parent = std::make_pair(Cast, 0); 1549 Scale = SmallScale; 1550 continue; 1551 } 1552 1553 if (Cast->getOpcode() == Instruction::Trunc) { 1554 // Op is truncated from a larger type, descale in the larger type. 1555 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1556 // trunc (Y * sext Scale) = (trunc Y) * Scale 1557 // always holds. However (trunc Y) * Scale may overflow even if 1558 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1559 // from this point up in the expression (see later). 1560 if (RequireNoSignedWrap) 1561 return nullptr; 1562 1563 // Drill down through the cast. 1564 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1565 Parent = std::make_pair(Cast, 0); 1566 Scale = Scale.sext(LargeSize); 1567 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1568 logScale = -1; 1569 assert(Scale.exactLogBase2() == logScale); 1570 continue; 1571 } 1572 } 1573 1574 // Unsupported expression, bail out. 1575 return nullptr; 1576 } 1577 1578 // If Op is zero then Val = Op * Scale. 1579 if (match(Op, m_Zero())) { 1580 NoSignedWrap = true; 1581 return Op; 1582 } 1583 1584 // We know that we can successfully descale, so from here on we can safely 1585 // modify the IR. Op holds the descaled version of the deepest term in the 1586 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1587 // not to overflow. 1588 1589 if (!Parent.first) 1590 // The expression only had one term. 1591 return Op; 1592 1593 // Rewrite the parent using the descaled version of its operand. 1594 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1595 assert(Op != Parent.first->getOperand(Parent.second) && 1596 "Descaling was a no-op?"); 1597 replaceOperand(*Parent.first, Parent.second, Op); 1598 Worklist.push(Parent.first); 1599 1600 // Now work back up the expression correcting nsw flags. The logic is based 1601 // on the following observation: if X * Y is known not to overflow as a signed 1602 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1603 // then X * Z will not overflow as a signed multiplication either. As we work 1604 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1605 // current level has strictly smaller absolute value than the original. 1606 Instruction *Ancestor = Parent.first; 1607 do { 1608 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1609 // If the multiplication wasn't nsw then we can't say anything about the 1610 // value of the descaled multiplication, and we have to clear nsw flags 1611 // from this point on up. 1612 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1613 NoSignedWrap &= OpNoSignedWrap; 1614 if (NoSignedWrap != OpNoSignedWrap) { 1615 BO->setHasNoSignedWrap(NoSignedWrap); 1616 Worklist.push(Ancestor); 1617 } 1618 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1619 // The fact that the descaled input to the trunc has smaller absolute 1620 // value than the original input doesn't tell us anything useful about 1621 // the absolute values of the truncations. 1622 NoSignedWrap = false; 1623 } 1624 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1625 "Failed to keep proper track of nsw flags while drilling down?"); 1626 1627 if (Ancestor == Val) 1628 // Got to the top, all done! 1629 return Val; 1630 1631 // Move up one level in the expression. 1632 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1633 Ancestor = Ancestor->user_back(); 1634 } while (true); 1635 } 1636 1637 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 1638 if (!isa<VectorType>(Inst.getType())) 1639 return nullptr; 1640 1641 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1642 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1643 assert(cast<VectorType>(LHS->getType())->getElementCount() == 1644 cast<VectorType>(Inst.getType())->getElementCount()); 1645 assert(cast<VectorType>(RHS->getType())->getElementCount() == 1646 cast<VectorType>(Inst.getType())->getElementCount()); 1647 1648 // If both operands of the binop are vector concatenations, then perform the 1649 // narrow binop on each pair of the source operands followed by concatenation 1650 // of the results. 1651 Value *L0, *L1, *R0, *R1; 1652 ArrayRef<int> Mask; 1653 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 1654 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 1655 LHS->hasOneUse() && RHS->hasOneUse() && 1656 cast<ShuffleVectorInst>(LHS)->isConcat() && 1657 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1658 // This transform does not have the speculative execution constraint as 1659 // below because the shuffle is a concatenation. The new binops are 1660 // operating on exactly the same elements as the existing binop. 1661 // TODO: We could ease the mask requirement to allow different undef lanes, 1662 // but that requires an analysis of the binop-with-undef output value. 1663 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1664 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1665 BO->copyIRFlags(&Inst); 1666 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1667 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1668 BO->copyIRFlags(&Inst); 1669 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1670 } 1671 1672 // It may not be safe to reorder shuffles and things like div, urem, etc. 1673 // because we may trap when executing those ops on unknown vector elements. 1674 // See PR20059. 1675 if (!isSafeToSpeculativelyExecute(&Inst)) 1676 return nullptr; 1677 1678 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 1679 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1680 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1681 BO->copyIRFlags(&Inst); 1682 return new ShuffleVectorInst(XY, M); 1683 }; 1684 1685 // If both arguments of the binary operation are shuffles that use the same 1686 // mask and shuffle within a single vector, move the shuffle after the binop. 1687 Value *V1, *V2; 1688 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) && 1689 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) && 1690 V1->getType() == V2->getType() && 1691 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1692 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1693 return createBinOpShuffle(V1, V2, Mask); 1694 } 1695 1696 // If both arguments of a commutative binop are select-shuffles that use the 1697 // same mask with commuted operands, the shuffles are unnecessary. 1698 if (Inst.isCommutative() && 1699 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 1700 match(RHS, 1701 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 1702 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1703 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1704 // TODO: Allow shuffles that contain undefs in the mask? 1705 // That is legal, but it reduces undef knowledge. 1706 // TODO: Allow arbitrary shuffles by shuffling after binop? 1707 // That might be legal, but we have to deal with poison. 1708 if (LShuf->isSelect() && 1709 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) && 1710 RShuf->isSelect() && 1711 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) { 1712 // Example: 1713 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1714 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1715 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1716 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1717 NewBO->copyIRFlags(&Inst); 1718 return NewBO; 1719 } 1720 } 1721 1722 // If one argument is a shuffle within one vector and the other is a constant, 1723 // try moving the shuffle after the binary operation. This canonicalization 1724 // intends to move shuffles closer to other shuffles and binops closer to 1725 // other binops, so they can be folded. It may also enable demanded elements 1726 // transforms. 1727 Constant *C; 1728 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 1729 if (InstVTy && 1730 match(&Inst, 1731 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))), 1732 m_ImmConstant(C))) && 1733 cast<FixedVectorType>(V1->getType())->getNumElements() <= 1734 InstVTy->getNumElements()) { 1735 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 1736 "Shuffle should not change scalar type"); 1737 1738 // Find constant NewC that has property: 1739 // shuffle(NewC, ShMask) = C 1740 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1741 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1742 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1743 bool ConstOp1 = isa<Constant>(RHS); 1744 ArrayRef<int> ShMask = Mask; 1745 unsigned SrcVecNumElts = 1746 cast<FixedVectorType>(V1->getType())->getNumElements(); 1747 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1748 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1749 bool MayChange = true; 1750 unsigned NumElts = InstVTy->getNumElements(); 1751 for (unsigned I = 0; I < NumElts; ++I) { 1752 Constant *CElt = C->getAggregateElement(I); 1753 if (ShMask[I] >= 0) { 1754 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1755 Constant *NewCElt = NewVecC[ShMask[I]]; 1756 // Bail out if: 1757 // 1. The constant vector contains a constant expression. 1758 // 2. The shuffle needs an element of the constant vector that can't 1759 // be mapped to a new constant vector. 1760 // 3. This is a widening shuffle that copies elements of V1 into the 1761 // extended elements (extending with undef is allowed). 1762 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1763 I >= SrcVecNumElts) { 1764 MayChange = false; 1765 break; 1766 } 1767 NewVecC[ShMask[I]] = CElt; 1768 } 1769 // If this is a widening shuffle, we must be able to extend with undef 1770 // elements. If the original binop does not produce an undef in the high 1771 // lanes, then this transform is not safe. 1772 // Similarly for undef lanes due to the shuffle mask, we can only 1773 // transform binops that preserve undef. 1774 // TODO: We could shuffle those non-undef constant values into the 1775 // result by using a constant vector (rather than an undef vector) 1776 // as operand 1 of the new binop, but that might be too aggressive 1777 // for target-independent shuffle creation. 1778 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1779 Constant *MaybeUndef = 1780 ConstOp1 1781 ? ConstantFoldBinaryOpOperands(Opcode, UndefScalar, CElt, DL) 1782 : ConstantFoldBinaryOpOperands(Opcode, CElt, UndefScalar, DL); 1783 if (!MaybeUndef || !match(MaybeUndef, m_Undef())) { 1784 MayChange = false; 1785 break; 1786 } 1787 } 1788 } 1789 if (MayChange) { 1790 Constant *NewC = ConstantVector::get(NewVecC); 1791 // It may not be safe to execute a binop on a vector with undef elements 1792 // because the entire instruction can be folded to undef or create poison 1793 // that did not exist in the original code. 1794 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1795 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1796 1797 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1798 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1799 Value *NewLHS = ConstOp1 ? V1 : NewC; 1800 Value *NewRHS = ConstOp1 ? NewC : V1; 1801 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1802 } 1803 } 1804 1805 // Try to reassociate to sink a splat shuffle after a binary operation. 1806 if (Inst.isAssociative() && Inst.isCommutative()) { 1807 // Canonicalize shuffle operand as LHS. 1808 if (isa<ShuffleVectorInst>(RHS)) 1809 std::swap(LHS, RHS); 1810 1811 Value *X; 1812 ArrayRef<int> MaskC; 1813 int SplatIndex; 1814 Value *Y, *OtherOp; 1815 if (!match(LHS, 1816 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 1817 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || 1818 X->getType() != Inst.getType() || 1819 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp))))) 1820 return nullptr; 1821 1822 // FIXME: This may not be safe if the analysis allows undef elements. By 1823 // moving 'Y' before the splat shuffle, we are implicitly assuming 1824 // that it is not undef/poison at the splat index. 1825 if (isSplatValue(OtherOp, SplatIndex)) { 1826 std::swap(Y, OtherOp); 1827 } else if (!isSplatValue(Y, SplatIndex)) { 1828 return nullptr; 1829 } 1830 1831 // X and Y are splatted values, so perform the binary operation on those 1832 // values followed by a splat followed by the 2nd binary operation: 1833 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 1834 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 1835 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 1836 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 1837 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 1838 1839 // Intersect FMF on both new binops. Other (poison-generating) flags are 1840 // dropped to be safe. 1841 if (isa<FPMathOperator>(R)) { 1842 R->copyFastMathFlags(&Inst); 1843 R->andIRFlags(RHS); 1844 } 1845 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 1846 NewInstBO->copyIRFlags(R); 1847 return R; 1848 } 1849 1850 return nullptr; 1851 } 1852 1853 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1854 /// of a value. This requires a potentially expensive known bits check to make 1855 /// sure the narrow op does not overflow. 1856 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 1857 // We need at least one extended operand. 1858 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1859 1860 // If this is a sub, we swap the operands since we always want an extension 1861 // on the RHS. The LHS can be an extension or a constant. 1862 if (BO.getOpcode() == Instruction::Sub) 1863 std::swap(Op0, Op1); 1864 1865 Value *X; 1866 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1867 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1868 return nullptr; 1869 1870 // If both operands are the same extension from the same source type and we 1871 // can eliminate at least one (hasOneUse), this might work. 1872 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1873 Value *Y; 1874 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1875 cast<Operator>(Op1)->getOpcode() == CastOpc && 1876 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1877 // If that did not match, see if we have a suitable constant operand. 1878 // Truncating and extending must produce the same constant. 1879 Constant *WideC; 1880 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1881 return nullptr; 1882 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1883 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1884 return nullptr; 1885 Y = NarrowC; 1886 } 1887 1888 // Swap back now that we found our operands. 1889 if (BO.getOpcode() == Instruction::Sub) 1890 std::swap(X, Y); 1891 1892 // Both operands have narrow versions. Last step: the math must not overflow 1893 // in the narrow width. 1894 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1895 return nullptr; 1896 1897 // bo (ext X), (ext Y) --> ext (bo X, Y) 1898 // bo (ext X), C --> ext (bo X, C') 1899 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1900 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1901 if (IsSext) 1902 NewBinOp->setHasNoSignedWrap(); 1903 else 1904 NewBinOp->setHasNoUnsignedWrap(); 1905 } 1906 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1907 } 1908 1909 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 1910 // At least one GEP must be inbounds. 1911 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 1912 return false; 1913 1914 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 1915 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 1916 } 1917 1918 /// Thread a GEP operation with constant indices through the constant true/false 1919 /// arms of a select. 1920 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 1921 InstCombiner::BuilderTy &Builder) { 1922 if (!GEP.hasAllConstantIndices()) 1923 return nullptr; 1924 1925 Instruction *Sel; 1926 Value *Cond; 1927 Constant *TrueC, *FalseC; 1928 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 1929 !match(Sel, 1930 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 1931 return nullptr; 1932 1933 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 1934 // Propagate 'inbounds' and metadata from existing instructions. 1935 // Note: using IRBuilder to create the constants for efficiency. 1936 SmallVector<Value *, 4> IndexC(GEP.indices()); 1937 bool IsInBounds = GEP.isInBounds(); 1938 Type *Ty = GEP.getSourceElementType(); 1939 Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", IsInBounds); 1940 Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", IsInBounds); 1941 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 1942 } 1943 1944 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP, 1945 GEPOperator *Src) { 1946 // Combine Indices - If the source pointer to this getelementptr instruction 1947 // is a getelementptr instruction with matching element type, combine the 1948 // indices of the two getelementptr instructions into a single instruction. 1949 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1950 return nullptr; 1951 1952 if (Src->getResultElementType() == GEP.getSourceElementType() && 1953 Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1954 Src->hasOneUse()) { 1955 Value *GO1 = GEP.getOperand(1); 1956 Value *SO1 = Src->getOperand(1); 1957 1958 if (LI) { 1959 // Try to reassociate loop invariant GEP chains to enable LICM. 1960 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1961 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1962 // invariant: this breaks the dependence between GEPs and allows LICM 1963 // to hoist the invariant part out of the loop. 1964 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1965 // The swapped GEPs are inbounds if both original GEPs are inbounds 1966 // and the sign of the offsets is the same. For simplicity, only 1967 // handle both offsets being non-negative. 1968 bool IsInBounds = Src->isInBounds() && GEP.isInBounds() && 1969 isKnownNonNegative(SO1, DL, 0, &AC, &GEP, &DT) && 1970 isKnownNonNegative(GO1, DL, 0, &AC, &GEP, &DT); 1971 // Put NewSrc at same location as %src. 1972 Builder.SetInsertPoint(cast<Instruction>(Src)); 1973 Value *NewSrc = Builder.CreateGEP(GEP.getSourceElementType(), 1974 Src->getPointerOperand(), GO1, 1975 Src->getName(), IsInBounds); 1976 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 1977 GEP.getSourceElementType(), NewSrc, {SO1}); 1978 NewGEP->setIsInBounds(IsInBounds); 1979 return NewGEP; 1980 } 1981 } 1982 } 1983 } 1984 1985 // Note that if our source is a gep chain itself then we wait for that 1986 // chain to be resolved before we perform this transformation. This 1987 // avoids us creating a TON of code in some cases. 1988 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 1989 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1990 return nullptr; // Wait until our source is folded to completion. 1991 1992 // For constant GEPs, use a more general offset-based folding approach. 1993 // Only do this for opaque pointers, as the result element type may change. 1994 Type *PtrTy = Src->getType()->getScalarType(); 1995 if (PtrTy->isOpaquePointerTy() && GEP.hasAllConstantIndices() && 1996 (Src->hasOneUse() || Src->hasAllConstantIndices())) { 1997 // Split Src into a variable part and a constant suffix. 1998 gep_type_iterator GTI = gep_type_begin(*Src); 1999 Type *BaseType = GTI.getIndexedType(); 2000 bool IsFirstType = true; 2001 unsigned NumVarIndices = 0; 2002 for (auto Pair : enumerate(Src->indices())) { 2003 if (!isa<ConstantInt>(Pair.value())) { 2004 BaseType = GTI.getIndexedType(); 2005 IsFirstType = false; 2006 NumVarIndices = Pair.index() + 1; 2007 } 2008 ++GTI; 2009 } 2010 2011 // Determine the offset for the constant suffix of Src. 2012 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0); 2013 if (NumVarIndices != Src->getNumIndices()) { 2014 // FIXME: getIndexedOffsetInType() does not handled scalable vectors. 2015 if (isa<ScalableVectorType>(BaseType)) 2016 return nullptr; 2017 2018 SmallVector<Value *> ConstantIndices; 2019 if (!IsFirstType) 2020 ConstantIndices.push_back( 2021 Constant::getNullValue(Type::getInt32Ty(GEP.getContext()))); 2022 append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices)); 2023 Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices); 2024 } 2025 2026 // Add the offset for GEP (which is fully constant). 2027 if (!GEP.accumulateConstantOffset(DL, Offset)) 2028 return nullptr; 2029 2030 APInt OffsetOld = Offset; 2031 // Convert the total offset back into indices. 2032 SmallVector<APInt> ConstIndices = 2033 DL.getGEPIndicesForOffset(BaseType, Offset); 2034 if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) { 2035 // If both GEP are constant-indexed, and cannot be merged in either way, 2036 // convert them to a GEP of i8. 2037 if (Src->hasAllConstantIndices()) 2038 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2039 ? GetElementPtrInst::CreateInBounds( 2040 Builder.getInt8Ty(), Src->getOperand(0), 2041 Builder.getInt(OffsetOld), GEP.getName()) 2042 : GetElementPtrInst::Create( 2043 Builder.getInt8Ty(), Src->getOperand(0), 2044 Builder.getInt(OffsetOld), GEP.getName()); 2045 return nullptr; 2046 } 2047 2048 bool IsInBounds = isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)); 2049 SmallVector<Value *> Indices; 2050 append_range(Indices, drop_end(Src->indices(), 2051 Src->getNumIndices() - NumVarIndices)); 2052 for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) { 2053 Indices.push_back(ConstantInt::get(GEP.getContext(), Idx)); 2054 // Even if the total offset is inbounds, we may end up representing it 2055 // by first performing a larger negative offset, and then a smaller 2056 // positive one. The large negative offset might go out of bounds. Only 2057 // preserve inbounds if all signs are the same. 2058 IsInBounds &= Idx.isNonNegative() == ConstIndices[0].isNonNegative(); 2059 } 2060 2061 return IsInBounds 2062 ? GetElementPtrInst::CreateInBounds(Src->getSourceElementType(), 2063 Src->getOperand(0), Indices, 2064 GEP.getName()) 2065 : GetElementPtrInst::Create(Src->getSourceElementType(), 2066 Src->getOperand(0), Indices, 2067 GEP.getName()); 2068 } 2069 2070 if (Src->getResultElementType() != GEP.getSourceElementType()) 2071 return nullptr; 2072 2073 SmallVector<Value*, 8> Indices; 2074 2075 // Find out whether the last index in the source GEP is a sequential idx. 2076 bool EndsWithSequential = false; 2077 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 2078 I != E; ++I) 2079 EndsWithSequential = I.isSequential(); 2080 2081 // Can we combine the two pointer arithmetics offsets? 2082 if (EndsWithSequential) { 2083 // Replace: gep (gep %P, long B), long A, ... 2084 // With: T = long A+B; gep %P, T, ... 2085 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 2086 Value *GO1 = GEP.getOperand(1); 2087 2088 // If they aren't the same type, then the input hasn't been processed 2089 // by the loop above yet (which canonicalizes sequential index types to 2090 // intptr_t). Just avoid transforming this until the input has been 2091 // normalized. 2092 if (SO1->getType() != GO1->getType()) 2093 return nullptr; 2094 2095 Value *Sum = 2096 simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 2097 // Only do the combine when we are sure the cost after the 2098 // merge is never more than that before the merge. 2099 if (Sum == nullptr) 2100 return nullptr; 2101 2102 // Update the GEP in place if possible. 2103 if (Src->getNumOperands() == 2) { 2104 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 2105 replaceOperand(GEP, 0, Src->getOperand(0)); 2106 replaceOperand(GEP, 1, Sum); 2107 return &GEP; 2108 } 2109 Indices.append(Src->op_begin()+1, Src->op_end()-1); 2110 Indices.push_back(Sum); 2111 Indices.append(GEP.op_begin()+2, GEP.op_end()); 2112 } else if (isa<Constant>(*GEP.idx_begin()) && 2113 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2114 Src->getNumOperands() != 1) { 2115 // Otherwise we can do the fold if the first index of the GEP is a zero 2116 Indices.append(Src->op_begin()+1, Src->op_end()); 2117 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2118 } 2119 2120 if (!Indices.empty()) 2121 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2122 ? GetElementPtrInst::CreateInBounds( 2123 Src->getSourceElementType(), Src->getOperand(0), Indices, 2124 GEP.getName()) 2125 : GetElementPtrInst::Create(Src->getSourceElementType(), 2126 Src->getOperand(0), Indices, 2127 GEP.getName()); 2128 2129 return nullptr; 2130 } 2131 2132 // Note that we may have also stripped an address space cast in between. 2133 Instruction *InstCombinerImpl::visitGEPOfBitcast(BitCastInst *BCI, 2134 GetElementPtrInst &GEP) { 2135 // With opaque pointers, there is no pointer element type we can use to 2136 // adjust the GEP type. 2137 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2138 if (SrcType->isOpaque()) 2139 return nullptr; 2140 2141 Type *GEPEltType = GEP.getSourceElementType(); 2142 Type *SrcEltType = SrcType->getNonOpaquePointerElementType(); 2143 Value *SrcOp = BCI->getOperand(0); 2144 2145 // GEP directly using the source operand if this GEP is accessing an element 2146 // of a bitcasted pointer to vector or array of the same dimensions: 2147 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2148 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2149 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, 2150 const DataLayout &DL) { 2151 auto *VecVTy = cast<FixedVectorType>(VecTy); 2152 return ArrTy->getArrayElementType() == VecVTy->getElementType() && 2153 ArrTy->getArrayNumElements() == VecVTy->getNumElements() && 2154 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); 2155 }; 2156 if (GEP.getNumOperands() == 3 && 2157 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) && 2158 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || 2159 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() && 2160 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { 2161 2162 // Create a new GEP here, as using `setOperand()` followed by 2163 // `setSourceElementType()` won't actually update the type of the 2164 // existing GEP Value. Causing issues if this Value is accessed when 2165 // constructing an AddrSpaceCastInst 2166 SmallVector<Value *, 8> Indices(GEP.indices()); 2167 Value *NGEP = 2168 Builder.CreateGEP(SrcEltType, SrcOp, Indices, "", GEP.isInBounds()); 2169 NGEP->takeName(&GEP); 2170 2171 // Preserve GEP address space to satisfy users 2172 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2173 return new AddrSpaceCastInst(NGEP, GEP.getType()); 2174 2175 return replaceInstUsesWith(GEP, NGEP); 2176 } 2177 2178 // See if we can simplify: 2179 // X = bitcast A* to B* 2180 // Y = gep X, <...constant indices...> 2181 // into a gep of the original struct. This is important for SROA and alias 2182 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2183 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEP.getType()); 2184 APInt Offset(OffsetBits, 0); 2185 2186 // If the bitcast argument is an allocation, The bitcast is for convertion 2187 // to actual type of allocation. Removing such bitcasts, results in having 2188 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of 2189 // struct or array hierarchy. 2190 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have 2191 // a better chance to succeed. 2192 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) && 2193 !isAllocationFn(SrcOp, &TLI)) { 2194 // If this GEP instruction doesn't move the pointer, just replace the GEP 2195 // with a bitcast of the real input to the dest type. 2196 if (!Offset) { 2197 // If the bitcast is of an allocation, and the allocation will be 2198 // converted to match the type of the cast, don't touch this. 2199 if (isa<AllocaInst>(SrcOp)) { 2200 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2201 if (Instruction *I = visitBitCast(*BCI)) { 2202 if (I != BCI) { 2203 I->takeName(BCI); 2204 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2205 replaceInstUsesWith(*BCI, I); 2206 } 2207 return &GEP; 2208 } 2209 } 2210 2211 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2212 return new AddrSpaceCastInst(SrcOp, GEP.getType()); 2213 return new BitCastInst(SrcOp, GEP.getType()); 2214 } 2215 2216 // Otherwise, if the offset is non-zero, we need to find out if there is a 2217 // field at Offset in 'A's type. If so, we can pull the cast through the 2218 // GEP. 2219 SmallVector<Value *, 8> NewIndices; 2220 if (findElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices, DL)) { 2221 Value *NGEP = Builder.CreateGEP(SrcEltType, SrcOp, NewIndices, "", 2222 GEP.isInBounds()); 2223 2224 if (NGEP->getType() == GEP.getType()) 2225 return replaceInstUsesWith(GEP, NGEP); 2226 NGEP->takeName(&GEP); 2227 2228 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2229 return new AddrSpaceCastInst(NGEP, GEP.getType()); 2230 return new BitCastInst(NGEP, GEP.getType()); 2231 } 2232 } 2233 2234 return nullptr; 2235 } 2236 2237 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 2238 Value *PtrOp = GEP.getOperand(0); 2239 SmallVector<Value *, 8> Indices(GEP.indices()); 2240 Type *GEPType = GEP.getType(); 2241 Type *GEPEltType = GEP.getSourceElementType(); 2242 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType); 2243 if (Value *V = simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(), 2244 SQ.getWithInstruction(&GEP))) 2245 return replaceInstUsesWith(GEP, V); 2246 2247 // For vector geps, use the generic demanded vector support. 2248 // Skip if GEP return type is scalable. The number of elements is unknown at 2249 // compile-time. 2250 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 2251 auto VWidth = GEPFVTy->getNumElements(); 2252 APInt UndefElts(VWidth, 0); 2253 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2254 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 2255 UndefElts)) { 2256 if (V != &GEP) 2257 return replaceInstUsesWith(GEP, V); 2258 return &GEP; 2259 } 2260 2261 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 2262 // possible (decide on canonical form for pointer broadcast), 3) exploit 2263 // undef elements to decrease demanded bits 2264 } 2265 2266 // Eliminate unneeded casts for indices, and replace indices which displace 2267 // by multiples of a zero size type with zero. 2268 bool MadeChange = false; 2269 2270 // Index width may not be the same width as pointer width. 2271 // Data layout chooses the right type based on supported integer types. 2272 Type *NewScalarIndexTy = 2273 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 2274 2275 gep_type_iterator GTI = gep_type_begin(GEP); 2276 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 2277 ++I, ++GTI) { 2278 // Skip indices into struct types. 2279 if (GTI.isStruct()) 2280 continue; 2281 2282 Type *IndexTy = (*I)->getType(); 2283 Type *NewIndexType = 2284 IndexTy->isVectorTy() 2285 ? VectorType::get(NewScalarIndexTy, 2286 cast<VectorType>(IndexTy)->getElementCount()) 2287 : NewScalarIndexTy; 2288 2289 // If the element type has zero size then any index over it is equivalent 2290 // to an index of zero, so replace it with zero if it is not zero already. 2291 Type *EltTy = GTI.getIndexedType(); 2292 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 2293 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 2294 *I = Constant::getNullValue(NewIndexType); 2295 MadeChange = true; 2296 } 2297 2298 if (IndexTy != NewIndexType) { 2299 // If we are using a wider index than needed for this platform, shrink 2300 // it to what we need. If narrower, sign-extend it to what we need. 2301 // This explicit cast can make subsequent optimizations more obvious. 2302 *I = Builder.CreateIntCast(*I, NewIndexType, true); 2303 MadeChange = true; 2304 } 2305 } 2306 if (MadeChange) 2307 return &GEP; 2308 2309 // Check to see if the inputs to the PHI node are getelementptr instructions. 2310 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 2311 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 2312 if (!Op1) 2313 return nullptr; 2314 2315 // Don't fold a GEP into itself through a PHI node. This can only happen 2316 // through the back-edge of a loop. Folding a GEP into itself means that 2317 // the value of the previous iteration needs to be stored in the meantime, 2318 // thus requiring an additional register variable to be live, but not 2319 // actually achieving anything (the GEP still needs to be executed once per 2320 // loop iteration). 2321 if (Op1 == &GEP) 2322 return nullptr; 2323 2324 int DI = -1; 2325 2326 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 2327 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 2328 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() || 2329 Op1->getSourceElementType() != Op2->getSourceElementType()) 2330 return nullptr; 2331 2332 // As for Op1 above, don't try to fold a GEP into itself. 2333 if (Op2 == &GEP) 2334 return nullptr; 2335 2336 // Keep track of the type as we walk the GEP. 2337 Type *CurTy = nullptr; 2338 2339 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 2340 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 2341 return nullptr; 2342 2343 if (Op1->getOperand(J) != Op2->getOperand(J)) { 2344 if (DI == -1) { 2345 // We have not seen any differences yet in the GEPs feeding the 2346 // PHI yet, so we record this one if it is allowed to be a 2347 // variable. 2348 2349 // The first two arguments can vary for any GEP, the rest have to be 2350 // static for struct slots 2351 if (J > 1) { 2352 assert(CurTy && "No current type?"); 2353 if (CurTy->isStructTy()) 2354 return nullptr; 2355 } 2356 2357 DI = J; 2358 } else { 2359 // The GEP is different by more than one input. While this could be 2360 // extended to support GEPs that vary by more than one variable it 2361 // doesn't make sense since it greatly increases the complexity and 2362 // would result in an R+R+R addressing mode which no backend 2363 // directly supports and would need to be broken into several 2364 // simpler instructions anyway. 2365 return nullptr; 2366 } 2367 } 2368 2369 // Sink down a layer of the type for the next iteration. 2370 if (J > 0) { 2371 if (J == 1) { 2372 CurTy = Op1->getSourceElementType(); 2373 } else { 2374 CurTy = 2375 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 2376 } 2377 } 2378 } 2379 } 2380 2381 // If not all GEPs are identical we'll have to create a new PHI node. 2382 // Check that the old PHI node has only one use so that it will get 2383 // removed. 2384 if (DI != -1 && !PN->hasOneUse()) 2385 return nullptr; 2386 2387 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 2388 if (DI == -1) { 2389 // All the GEPs feeding the PHI are identical. Clone one down into our 2390 // BB so that it can be merged with the current GEP. 2391 } else { 2392 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 2393 // into the current block so it can be merged, and create a new PHI to 2394 // set that index. 2395 PHINode *NewPN; 2396 { 2397 IRBuilderBase::InsertPointGuard Guard(Builder); 2398 Builder.SetInsertPoint(PN); 2399 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 2400 PN->getNumOperands()); 2401 } 2402 2403 for (auto &I : PN->operands()) 2404 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 2405 PN->getIncomingBlock(I)); 2406 2407 NewGEP->setOperand(DI, NewPN); 2408 } 2409 2410 GEP.getParent()->getInstList().insert( 2411 GEP.getParent()->getFirstInsertionPt(), NewGEP); 2412 replaceOperand(GEP, 0, NewGEP); 2413 PtrOp = NewGEP; 2414 } 2415 2416 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) 2417 if (Instruction *I = visitGEPOfGEP(GEP, Src)) 2418 return I; 2419 2420 // Skip if GEP source element type is scalable. The type alloc size is unknown 2421 // at compile-time. 2422 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { 2423 unsigned AS = GEP.getPointerAddressSpace(); 2424 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 2425 DL.getIndexSizeInBits(AS)) { 2426 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2427 2428 bool Matched = false; 2429 uint64_t C; 2430 Value *V = nullptr; 2431 if (TyAllocSize == 1) { 2432 V = GEP.getOperand(1); 2433 Matched = true; 2434 } else if (match(GEP.getOperand(1), 2435 m_AShr(m_Value(V), m_ConstantInt(C)))) { 2436 if (TyAllocSize == 1ULL << C) 2437 Matched = true; 2438 } else if (match(GEP.getOperand(1), 2439 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 2440 if (TyAllocSize == C) 2441 Matched = true; 2442 } 2443 2444 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but 2445 // only if both point to the same underlying object (otherwise provenance 2446 // is not necessarily retained). 2447 Value *Y; 2448 Value *X = GEP.getOperand(0); 2449 if (Matched && 2450 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 2451 getUnderlyingObject(X) == getUnderlyingObject(Y)) 2452 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 2453 } 2454 } 2455 2456 // We do not handle pointer-vector geps here. 2457 if (GEPType->isVectorTy()) 2458 return nullptr; 2459 2460 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 2461 Value *StrippedPtr = PtrOp->stripPointerCasts(); 2462 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 2463 2464 // TODO: The basic approach of these folds is not compatible with opaque 2465 // pointers, because we can't use bitcasts as a hint for a desirable GEP 2466 // type. Instead, we should perform canonicalization directly on the GEP 2467 // type. For now, skip these. 2468 if (StrippedPtr != PtrOp && !StrippedPtrTy->isOpaque()) { 2469 bool HasZeroPointerIndex = false; 2470 Type *StrippedPtrEltTy = StrippedPtrTy->getNonOpaquePointerElementType(); 2471 2472 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 2473 HasZeroPointerIndex = C->isZero(); 2474 2475 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2476 // into : GEP [10 x i8]* X, i32 0, ... 2477 // 2478 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2479 // into : GEP i8* X, ... 2480 // 2481 // This occurs when the program declares an array extern like "int X[];" 2482 if (HasZeroPointerIndex) { 2483 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2484 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2485 if (CATy->getElementType() == StrippedPtrEltTy) { 2486 // -> GEP i8* X, ... 2487 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices())); 2488 GetElementPtrInst *Res = GetElementPtrInst::Create( 2489 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2490 Res->setIsInBounds(GEP.isInBounds()); 2491 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2492 return Res; 2493 // Insert Res, and create an addrspacecast. 2494 // e.g., 2495 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2496 // -> 2497 // %0 = GEP i8 addrspace(1)* X, ... 2498 // addrspacecast i8 addrspace(1)* %0 to i8* 2499 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2500 } 2501 2502 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2503 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2504 if (CATy->getElementType() == XATy->getElementType()) { 2505 // -> GEP [10 x i8]* X, i32 0, ... 2506 // At this point, we know that the cast source type is a pointer 2507 // to an array of the same type as the destination pointer 2508 // array. Because the array type is never stepped over (there 2509 // is a leading zero) we can fold the cast into this GEP. 2510 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2511 GEP.setSourceElementType(XATy); 2512 return replaceOperand(GEP, 0, StrippedPtr); 2513 } 2514 // Cannot replace the base pointer directly because StrippedPtr's 2515 // address space is different. Instead, create a new GEP followed by 2516 // an addrspacecast. 2517 // e.g., 2518 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2519 // i32 0, ... 2520 // -> 2521 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2522 // addrspacecast i8 addrspace(1)* %0 to i8* 2523 SmallVector<Value *, 8> Idx(GEP.indices()); 2524 Value *NewGEP = 2525 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2526 GEP.getName(), GEP.isInBounds()); 2527 return new AddrSpaceCastInst(NewGEP, GEPType); 2528 } 2529 } 2530 } 2531 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) { 2532 // Skip if GEP source element type is scalable. The type alloc size is 2533 // unknown at compile-time. 2534 // Transform things like: %t = getelementptr i32* 2535 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2 2536 // x i32]* %str, i32 0, i32 %V; bitcast 2537 if (StrippedPtrEltTy->isArrayTy() && 2538 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2539 DL.getTypeAllocSize(GEPEltType)) { 2540 Type *IdxType = DL.getIndexType(GEPType); 2541 Value *Idx[2] = {Constant::getNullValue(IdxType), GEP.getOperand(1)}; 2542 Value *NewGEP = Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2543 GEP.getName(), GEP.isInBounds()); 2544 2545 // V and GEP are both pointer types --> BitCast 2546 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2547 } 2548 2549 // Transform things like: 2550 // %V = mul i64 %N, 4 2551 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2552 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2553 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2554 // Check that changing the type amounts to dividing the index by a scale 2555 // factor. 2556 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2557 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize(); 2558 if (ResSize && SrcSize % ResSize == 0) { 2559 Value *Idx = GEP.getOperand(1); 2560 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2561 uint64_t Scale = SrcSize / ResSize; 2562 2563 // Earlier transforms ensure that the index has the right type 2564 // according to Data Layout, which considerably simplifies the 2565 // logic by eliminating implicit casts. 2566 assert(Idx->getType() == DL.getIndexType(GEPType) && 2567 "Index type does not match the Data Layout preferences"); 2568 2569 bool NSW; 2570 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2571 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2572 // If the multiplication NewIdx * Scale may overflow then the new 2573 // GEP may not be "inbounds". 2574 Value *NewGEP = 2575 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2576 GEP.getName(), GEP.isInBounds() && NSW); 2577 2578 // The NewGEP must be pointer typed, so must the old one -> BitCast 2579 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2580 GEPType); 2581 } 2582 } 2583 } 2584 2585 // Similarly, transform things like: 2586 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2587 // (where tmp = 8*tmp2) into: 2588 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2589 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2590 StrippedPtrEltTy->isArrayTy()) { 2591 // Check that changing to the array element type amounts to dividing the 2592 // index by a scale factor. 2593 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2594 uint64_t ArrayEltSize = 2595 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) 2596 .getFixedSize(); 2597 if (ResSize && ArrayEltSize % ResSize == 0) { 2598 Value *Idx = GEP.getOperand(1); 2599 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2600 uint64_t Scale = ArrayEltSize / ResSize; 2601 2602 // Earlier transforms ensure that the index has the right type 2603 // according to the Data Layout, which considerably simplifies 2604 // the logic by eliminating implicit casts. 2605 assert(Idx->getType() == DL.getIndexType(GEPType) && 2606 "Index type does not match the Data Layout preferences"); 2607 2608 bool NSW; 2609 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2610 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2611 // If the multiplication NewIdx * Scale may overflow then the new 2612 // GEP may not be "inbounds". 2613 Type *IndTy = DL.getIndexType(GEPType); 2614 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2615 2616 Value *NewGEP = 2617 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2618 GEP.getName(), GEP.isInBounds() && NSW); 2619 // The NewGEP must be pointer typed, so must the old one -> BitCast 2620 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2621 GEPType); 2622 } 2623 } 2624 } 2625 } 2626 } 2627 2628 // addrspacecast between types is canonicalized as a bitcast, then an 2629 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2630 // through the addrspacecast. 2631 Value *ASCStrippedPtrOp = PtrOp; 2632 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2633 // X = bitcast A addrspace(1)* to B addrspace(1)* 2634 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2635 // Z = gep Y, <...constant indices...> 2636 // Into an addrspacecasted GEP of the struct. 2637 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2638 ASCStrippedPtrOp = BC; 2639 } 2640 2641 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) 2642 if (Instruction *I = visitGEPOfBitcast(BCI, GEP)) 2643 return I; 2644 2645 if (!GEP.isInBounds()) { 2646 unsigned IdxWidth = 2647 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2648 APInt BasePtrOffset(IdxWidth, 0); 2649 Value *UnderlyingPtrOp = 2650 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2651 BasePtrOffset); 2652 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2653 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2654 BasePtrOffset.isNonNegative()) { 2655 APInt AllocSize( 2656 IdxWidth, 2657 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize()); 2658 if (BasePtrOffset.ule(AllocSize)) { 2659 return GetElementPtrInst::CreateInBounds( 2660 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName()); 2661 } 2662 } 2663 } 2664 } 2665 2666 if (Instruction *R = foldSelectGEP(GEP, Builder)) 2667 return R; 2668 2669 return nullptr; 2670 } 2671 2672 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, 2673 Instruction *AI) { 2674 if (isa<ConstantPointerNull>(V)) 2675 return true; 2676 if (auto *LI = dyn_cast<LoadInst>(V)) 2677 return isa<GlobalVariable>(LI->getPointerOperand()); 2678 // Two distinct allocations will never be equal. 2679 return isAllocLikeFn(V, &TLI) && V != AI; 2680 } 2681 2682 /// Given a call CB which uses an address UsedV, return true if we can prove the 2683 /// call's only possible effect is storing to V. 2684 static bool isRemovableWrite(CallBase &CB, Value *UsedV, 2685 const TargetLibraryInfo &TLI) { 2686 if (!CB.use_empty()) 2687 // TODO: add recursion if returned attribute is present 2688 return false; 2689 2690 if (CB.isTerminator()) 2691 // TODO: remove implementation restriction 2692 return false; 2693 2694 if (!CB.willReturn() || !CB.doesNotThrow()) 2695 return false; 2696 2697 // If the only possible side effect of the call is writing to the alloca, 2698 // and the result isn't used, we can safely remove any reads implied by the 2699 // call including those which might read the alloca itself. 2700 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI); 2701 return Dest && Dest->Ptr == UsedV; 2702 } 2703 2704 static bool isAllocSiteRemovable(Instruction *AI, 2705 SmallVectorImpl<WeakTrackingVH> &Users, 2706 const TargetLibraryInfo &TLI) { 2707 SmallVector<Instruction*, 4> Worklist; 2708 const Optional<StringRef> Family = getAllocationFamily(AI, &TLI); 2709 Worklist.push_back(AI); 2710 2711 do { 2712 Instruction *PI = Worklist.pop_back_val(); 2713 for (User *U : PI->users()) { 2714 Instruction *I = cast<Instruction>(U); 2715 switch (I->getOpcode()) { 2716 default: 2717 // Give up the moment we see something we can't handle. 2718 return false; 2719 2720 case Instruction::AddrSpaceCast: 2721 case Instruction::BitCast: 2722 case Instruction::GetElementPtr: 2723 Users.emplace_back(I); 2724 Worklist.push_back(I); 2725 continue; 2726 2727 case Instruction::ICmp: { 2728 ICmpInst *ICI = cast<ICmpInst>(I); 2729 // We can fold eq/ne comparisons with null to false/true, respectively. 2730 // We also fold comparisons in some conditions provided the alloc has 2731 // not escaped (see isNeverEqualToUnescapedAlloc). 2732 if (!ICI->isEquality()) 2733 return false; 2734 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2735 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2736 return false; 2737 Users.emplace_back(I); 2738 continue; 2739 } 2740 2741 case Instruction::Call: 2742 // Ignore no-op and store intrinsics. 2743 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2744 switch (II->getIntrinsicID()) { 2745 default: 2746 return false; 2747 2748 case Intrinsic::memmove: 2749 case Intrinsic::memcpy: 2750 case Intrinsic::memset: { 2751 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2752 if (MI->isVolatile() || MI->getRawDest() != PI) 2753 return false; 2754 LLVM_FALLTHROUGH; 2755 } 2756 case Intrinsic::assume: 2757 case Intrinsic::invariant_start: 2758 case Intrinsic::invariant_end: 2759 case Intrinsic::lifetime_start: 2760 case Intrinsic::lifetime_end: 2761 case Intrinsic::objectsize: 2762 Users.emplace_back(I); 2763 continue; 2764 case Intrinsic::launder_invariant_group: 2765 case Intrinsic::strip_invariant_group: 2766 Users.emplace_back(I); 2767 Worklist.push_back(I); 2768 continue; 2769 } 2770 } 2771 2772 if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) { 2773 Users.emplace_back(I); 2774 continue; 2775 } 2776 2777 if (isFreeCall(I, &TLI) && getAllocationFamily(I, &TLI) == Family) { 2778 assert(Family); 2779 Users.emplace_back(I); 2780 continue; 2781 } 2782 2783 if (isReallocLikeFn(I, &TLI) && 2784 getAllocationFamily(I, &TLI) == Family) { 2785 assert(Family); 2786 Users.emplace_back(I); 2787 Worklist.push_back(I); 2788 continue; 2789 } 2790 2791 return false; 2792 2793 case Instruction::Store: { 2794 StoreInst *SI = cast<StoreInst>(I); 2795 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2796 return false; 2797 Users.emplace_back(I); 2798 continue; 2799 } 2800 } 2801 llvm_unreachable("missing a return?"); 2802 } 2803 } while (!Worklist.empty()); 2804 return true; 2805 } 2806 2807 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 2808 assert(isa<AllocaInst>(MI) || isAllocRemovable(&cast<CallBase>(MI), &TLI)); 2809 2810 // If we have a malloc call which is only used in any amount of comparisons to 2811 // null and free calls, delete the calls and replace the comparisons with true 2812 // or false as appropriate. 2813 2814 // This is based on the principle that we can substitute our own allocation 2815 // function (which will never return null) rather than knowledge of the 2816 // specific function being called. In some sense this can change the permitted 2817 // outputs of a program (when we convert a malloc to an alloca, the fact that 2818 // the allocation is now on the stack is potentially visible, for example), 2819 // but we believe in a permissible manner. 2820 SmallVector<WeakTrackingVH, 64> Users; 2821 2822 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2823 // before each store. 2824 SmallVector<DbgVariableIntrinsic *, 8> DVIs; 2825 std::unique_ptr<DIBuilder> DIB; 2826 if (isa<AllocaInst>(MI)) { 2827 findDbgUsers(DVIs, &MI); 2828 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2829 } 2830 2831 if (isAllocSiteRemovable(&MI, Users, TLI)) { 2832 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2833 // Lowering all @llvm.objectsize calls first because they may 2834 // use a bitcast/GEP of the alloca we are removing. 2835 if (!Users[i]) 2836 continue; 2837 2838 Instruction *I = cast<Instruction>(&*Users[i]); 2839 2840 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2841 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2842 Value *Result = 2843 lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/true); 2844 replaceInstUsesWith(*I, Result); 2845 eraseInstFromFunction(*I); 2846 Users[i] = nullptr; // Skip examining in the next loop. 2847 } 2848 } 2849 } 2850 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2851 if (!Users[i]) 2852 continue; 2853 2854 Instruction *I = cast<Instruction>(&*Users[i]); 2855 2856 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2857 replaceInstUsesWith(*C, 2858 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2859 C->isFalseWhenEqual())); 2860 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2861 for (auto *DVI : DVIs) 2862 if (DVI->isAddressOfVariable()) 2863 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 2864 } else { 2865 // Casts, GEP, or anything else: we're about to delete this instruction, 2866 // so it can not have any valid uses. 2867 replaceInstUsesWith(*I, PoisonValue::get(I->getType())); 2868 } 2869 eraseInstFromFunction(*I); 2870 } 2871 2872 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2873 // Replace invoke with a NOP intrinsic to maintain the original CFG 2874 Module *M = II->getModule(); 2875 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2876 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2877 None, "", II->getParent()); 2878 } 2879 2880 // Remove debug intrinsics which describe the value contained within the 2881 // alloca. In addition to removing dbg.{declare,addr} which simply point to 2882 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 2883 // 2884 // ``` 2885 // define void @foo(i32 %0) { 2886 // %a = alloca i32 ; Deleted. 2887 // store i32 %0, i32* %a 2888 // dbg.value(i32 %0, "arg0") ; Not deleted. 2889 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 2890 // call void @trivially_inlinable_no_op(i32* %a) 2891 // ret void 2892 // } 2893 // ``` 2894 // 2895 // This may not be required if we stop describing the contents of allocas 2896 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 2897 // the LowerDbgDeclare utility. 2898 // 2899 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 2900 // "arg0" dbg.value may be stale after the call. However, failing to remove 2901 // the DW_OP_deref dbg.value causes large gaps in location coverage. 2902 for (auto *DVI : DVIs) 2903 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 2904 DVI->eraseFromParent(); 2905 2906 return eraseInstFromFunction(MI); 2907 } 2908 return nullptr; 2909 } 2910 2911 /// Move the call to free before a NULL test. 2912 /// 2913 /// Check if this free is accessed after its argument has been test 2914 /// against NULL (property 0). 2915 /// If yes, it is legal to move this call in its predecessor block. 2916 /// 2917 /// The move is performed only if the block containing the call to free 2918 /// will be removed, i.e.: 2919 /// 1. it has only one predecessor P, and P has two successors 2920 /// 2. it contains the call, noops, and an unconditional branch 2921 /// 3. its successor is the same as its predecessor's successor 2922 /// 2923 /// The profitability is out-of concern here and this function should 2924 /// be called only if the caller knows this transformation would be 2925 /// profitable (e.g., for code size). 2926 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2927 const DataLayout &DL) { 2928 Value *Op = FI.getArgOperand(0); 2929 BasicBlock *FreeInstrBB = FI.getParent(); 2930 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2931 2932 // Validate part of constraint #1: Only one predecessor 2933 // FIXME: We can extend the number of predecessor, but in that case, we 2934 // would duplicate the call to free in each predecessor and it may 2935 // not be profitable even for code size. 2936 if (!PredBB) 2937 return nullptr; 2938 2939 // Validate constraint #2: Does this block contains only the call to 2940 // free, noops, and an unconditional branch? 2941 BasicBlock *SuccBB; 2942 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2943 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2944 return nullptr; 2945 2946 // If there are only 2 instructions in the block, at this point, 2947 // this is the call to free and unconditional. 2948 // If there are more than 2 instructions, check that they are noops 2949 // i.e., they won't hurt the performance of the generated code. 2950 if (FreeInstrBB->size() != 2) { 2951 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 2952 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2953 continue; 2954 auto *Cast = dyn_cast<CastInst>(&Inst); 2955 if (!Cast || !Cast->isNoopCast(DL)) 2956 return nullptr; 2957 } 2958 } 2959 // Validate the rest of constraint #1 by matching on the pred branch. 2960 Instruction *TI = PredBB->getTerminator(); 2961 BasicBlock *TrueBB, *FalseBB; 2962 ICmpInst::Predicate Pred; 2963 if (!match(TI, m_Br(m_ICmp(Pred, 2964 m_CombineOr(m_Specific(Op), 2965 m_Specific(Op->stripPointerCasts())), 2966 m_Zero()), 2967 TrueBB, FalseBB))) 2968 return nullptr; 2969 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2970 return nullptr; 2971 2972 // Validate constraint #3: Ensure the null case just falls through. 2973 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2974 return nullptr; 2975 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2976 "Broken CFG: missing edge from predecessor to successor"); 2977 2978 // At this point, we know that everything in FreeInstrBB can be moved 2979 // before TI. 2980 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) { 2981 if (&Instr == FreeInstrBBTerminator) 2982 break; 2983 Instr.moveBefore(TI); 2984 } 2985 assert(FreeInstrBB->size() == 1 && 2986 "Only the branch instruction should remain"); 2987 2988 // Now that we've moved the call to free before the NULL check, we have to 2989 // remove any attributes on its parameter that imply it's non-null, because 2990 // those attributes might have only been valid because of the NULL check, and 2991 // we can get miscompiles if we keep them. This is conservative if non-null is 2992 // also implied by something other than the NULL check, but it's guaranteed to 2993 // be correct, and the conservativeness won't matter in practice, since the 2994 // attributes are irrelevant for the call to free itself and the pointer 2995 // shouldn't be used after the call. 2996 AttributeList Attrs = FI.getAttributes(); 2997 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull); 2998 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable); 2999 if (Dereferenceable.isValid()) { 3000 uint64_t Bytes = Dereferenceable.getDereferenceableBytes(); 3001 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, 3002 Attribute::Dereferenceable); 3003 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes); 3004 } 3005 FI.setAttributes(Attrs); 3006 3007 return &FI; 3008 } 3009 3010 Instruction *InstCombinerImpl::visitFree(CallInst &FI) { 3011 Value *Op = FI.getArgOperand(0); 3012 3013 // free undef -> unreachable. 3014 if (isa<UndefValue>(Op)) { 3015 // Leave a marker since we can't modify the CFG here. 3016 CreateNonTerminatorUnreachable(&FI); 3017 return eraseInstFromFunction(FI); 3018 } 3019 3020 // If we have 'free null' delete the instruction. This can happen in stl code 3021 // when lots of inlining happens. 3022 if (isa<ConstantPointerNull>(Op)) 3023 return eraseInstFromFunction(FI); 3024 3025 // If we had free(realloc(...)) with no intervening uses, then eliminate the 3026 // realloc() entirely. 3027 if (CallInst *CI = dyn_cast<CallInst>(Op)) { 3028 if (CI->hasOneUse() && isReallocLikeFn(CI, &TLI)) { 3029 return eraseInstFromFunction( 3030 *replaceInstUsesWith(*CI, CI->getOperand(0))); 3031 } 3032 } 3033 3034 // If we optimize for code size, try to move the call to free before the null 3035 // test so that simplify cfg can remove the empty block and dead code 3036 // elimination the branch. I.e., helps to turn something like: 3037 // if (foo) free(foo); 3038 // into 3039 // free(foo); 3040 // 3041 // Note that we can only do this for 'free' and not for any flavor of 3042 // 'operator delete'; there is no 'operator delete' symbol for which we are 3043 // permitted to invent a call, even if we're passing in a null pointer. 3044 if (MinimizeSize) { 3045 LibFunc Func; 3046 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 3047 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 3048 return I; 3049 } 3050 3051 return nullptr; 3052 } 3053 3054 static bool isMustTailCall(Value *V) { 3055 if (auto *CI = dyn_cast<CallInst>(V)) 3056 return CI->isMustTailCall(); 3057 return false; 3058 } 3059 3060 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 3061 if (RI.getNumOperands() == 0) // ret void 3062 return nullptr; 3063 3064 Value *ResultOp = RI.getOperand(0); 3065 Type *VTy = ResultOp->getType(); 3066 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp)) 3067 return nullptr; 3068 3069 // Don't replace result of musttail calls. 3070 if (isMustTailCall(ResultOp)) 3071 return nullptr; 3072 3073 // There might be assume intrinsics dominating this return that completely 3074 // determine the value. If so, constant fold it. 3075 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 3076 if (Known.isConstant()) 3077 return replaceOperand(RI, 0, 3078 Constant::getIntegerValue(VTy, Known.getConstant())); 3079 3080 return nullptr; 3081 } 3082 3083 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! 3084 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 3085 // Try to remove the previous instruction if it must lead to unreachable. 3086 // This includes instructions like stores and "llvm.assume" that may not get 3087 // removed by simple dead code elimination. 3088 while (Instruction *Prev = I.getPrevNonDebugInstruction()) { 3089 // While we theoretically can erase EH, that would result in a block that 3090 // used to start with an EH no longer starting with EH, which is invalid. 3091 // To make it valid, we'd need to fixup predecessors to no longer refer to 3092 // this block, but that changes CFG, which is not allowed in InstCombine. 3093 if (Prev->isEHPad()) 3094 return nullptr; // Can not drop any more instructions. We're done here. 3095 3096 if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) 3097 return nullptr; // Can not drop any more instructions. We're done here. 3098 // Otherwise, this instruction can be freely erased, 3099 // even if it is not side-effect free. 3100 3101 // A value may still have uses before we process it here (for example, in 3102 // another unreachable block), so convert those to poison. 3103 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); 3104 eraseInstFromFunction(*Prev); 3105 } 3106 assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty."); 3107 // FIXME: recurse into unconditional predecessors? 3108 return nullptr; 3109 } 3110 3111 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 3112 assert(BI.isUnconditional() && "Only for unconditional branches."); 3113 3114 // If this store is the second-to-last instruction in the basic block 3115 // (excluding debug info and bitcasts of pointers) and if the block ends with 3116 // an unconditional branch, try to move the store to the successor block. 3117 3118 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 3119 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 3120 return BBI->isDebugOrPseudoInst() || 3121 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 3122 }; 3123 3124 BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 3125 do { 3126 if (BBI != FirstInstr) 3127 --BBI; 3128 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 3129 3130 return dyn_cast<StoreInst>(BBI); 3131 }; 3132 3133 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 3134 if (mergeStoreIntoSuccessor(*SI)) 3135 return &BI; 3136 3137 return nullptr; 3138 } 3139 3140 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 3141 if (BI.isUnconditional()) 3142 return visitUnconditionalBranchInst(BI); 3143 3144 // Change br (not X), label True, label False to: br X, label False, True 3145 Value *X = nullptr; 3146 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 3147 !isa<Constant>(X)) { 3148 // Swap Destinations and condition... 3149 BI.swapSuccessors(); 3150 return replaceOperand(BI, 0, X); 3151 } 3152 3153 // If the condition is irrelevant, remove the use so that other 3154 // transforms on the condition become more effective. 3155 if (!isa<ConstantInt>(BI.getCondition()) && 3156 BI.getSuccessor(0) == BI.getSuccessor(1)) 3157 return replaceOperand( 3158 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType())); 3159 3160 // Canonicalize, for example, fcmp_one -> fcmp_oeq. 3161 CmpInst::Predicate Pred; 3162 if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())), 3163 m_BasicBlock(), m_BasicBlock())) && 3164 !isCanonicalPredicate(Pred)) { 3165 // Swap destinations and condition. 3166 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 3167 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 3168 BI.swapSuccessors(); 3169 Worklist.push(Cond); 3170 return &BI; 3171 } 3172 3173 return nullptr; 3174 } 3175 3176 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 3177 Value *Cond = SI.getCondition(); 3178 Value *Op0; 3179 ConstantInt *AddRHS; 3180 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 3181 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 3182 for (auto Case : SI.cases()) { 3183 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 3184 assert(isa<ConstantInt>(NewCase) && 3185 "Result of expression should be constant"); 3186 Case.setValue(cast<ConstantInt>(NewCase)); 3187 } 3188 return replaceOperand(SI, 0, Op0); 3189 } 3190 3191 KnownBits Known = computeKnownBits(Cond, 0, &SI); 3192 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 3193 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 3194 3195 // Compute the number of leading bits we can ignore. 3196 // TODO: A better way to determine this would use ComputeNumSignBits(). 3197 for (auto &C : SI.cases()) { 3198 LeadingKnownZeros = std::min( 3199 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 3200 LeadingKnownOnes = std::min( 3201 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 3202 } 3203 3204 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 3205 3206 // Shrink the condition operand if the new type is smaller than the old type. 3207 // But do not shrink to a non-standard type, because backend can't generate 3208 // good code for that yet. 3209 // TODO: We can make it aggressive again after fixing PR39569. 3210 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 3211 shouldChangeType(Known.getBitWidth(), NewWidth)) { 3212 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 3213 Builder.SetInsertPoint(&SI); 3214 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 3215 3216 for (auto Case : SI.cases()) { 3217 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3218 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3219 } 3220 return replaceOperand(SI, 0, NewCond); 3221 } 3222 3223 return nullptr; 3224 } 3225 3226 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 3227 Value *Agg = EV.getAggregateOperand(); 3228 3229 if (!EV.hasIndices()) 3230 return replaceInstUsesWith(EV, Agg); 3231 3232 if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(), 3233 SQ.getWithInstruction(&EV))) 3234 return replaceInstUsesWith(EV, V); 3235 3236 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 3237 // We're extracting from an insertvalue instruction, compare the indices 3238 const unsigned *exti, *exte, *insi, *inse; 3239 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 3240 exte = EV.idx_end(), inse = IV->idx_end(); 3241 exti != exte && insi != inse; 3242 ++exti, ++insi) { 3243 if (*insi != *exti) 3244 // The insert and extract both reference distinctly different elements. 3245 // This means the extract is not influenced by the insert, and we can 3246 // replace the aggregate operand of the extract with the aggregate 3247 // operand of the insert. i.e., replace 3248 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3249 // %E = extractvalue { i32, { i32 } } %I, 0 3250 // with 3251 // %E = extractvalue { i32, { i32 } } %A, 0 3252 return ExtractValueInst::Create(IV->getAggregateOperand(), 3253 EV.getIndices()); 3254 } 3255 if (exti == exte && insi == inse) 3256 // Both iterators are at the end: Index lists are identical. Replace 3257 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3258 // %C = extractvalue { i32, { i32 } } %B, 1, 0 3259 // with "i32 42" 3260 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 3261 if (exti == exte) { 3262 // The extract list is a prefix of the insert list. i.e. replace 3263 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3264 // %E = extractvalue { i32, { i32 } } %I, 1 3265 // with 3266 // %X = extractvalue { i32, { i32 } } %A, 1 3267 // %E = insertvalue { i32 } %X, i32 42, 0 3268 // by switching the order of the insert and extract (though the 3269 // insertvalue should be left in, since it may have other uses). 3270 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 3271 EV.getIndices()); 3272 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 3273 makeArrayRef(insi, inse)); 3274 } 3275 if (insi == inse) 3276 // The insert list is a prefix of the extract list 3277 // We can simply remove the common indices from the extract and make it 3278 // operate on the inserted value instead of the insertvalue result. 3279 // i.e., replace 3280 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3281 // %E = extractvalue { i32, { i32 } } %I, 1, 0 3282 // with 3283 // %E extractvalue { i32 } { i32 42 }, 0 3284 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 3285 makeArrayRef(exti, exte)); 3286 } 3287 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 3288 // extractvalue (any_mul_with_overflow X, -1), 0 --> -X 3289 Intrinsic::ID OvID = WO->getIntrinsicID(); 3290 if (*EV.idx_begin() == 0 && 3291 (OvID == Intrinsic::smul_with_overflow || 3292 OvID == Intrinsic::umul_with_overflow) && 3293 match(WO->getArgOperand(1), m_AllOnes())) { 3294 return BinaryOperator::CreateNeg(WO->getArgOperand(0)); 3295 } 3296 3297 // We're extracting from an overflow intrinsic, see if we're the only user, 3298 // which allows us to simplify multiple result intrinsics to simpler 3299 // things that just get one value. 3300 if (WO->hasOneUse()) { 3301 // Check if we're grabbing only the result of a 'with overflow' intrinsic 3302 // and replace it with a traditional binary instruction. 3303 if (*EV.idx_begin() == 0) { 3304 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 3305 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 3306 // Replace the old instruction's uses with poison. 3307 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); 3308 eraseInstFromFunction(*WO); 3309 return BinaryOperator::Create(BinOp, LHS, RHS); 3310 } 3311 3312 assert(*EV.idx_begin() == 1 && 3313 "unexpected extract index for overflow inst"); 3314 3315 // If only the overflow result is used, and the right hand side is a 3316 // constant (or constant splat), we can remove the intrinsic by directly 3317 // checking for overflow. 3318 const APInt *C; 3319 if (match(WO->getRHS(), m_APInt(C))) { 3320 // Compute the no-wrap range for LHS given RHS=C, then construct an 3321 // equivalent icmp, potentially using an offset. 3322 ConstantRange NWR = 3323 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 3324 WO->getNoWrapKind()); 3325 3326 CmpInst::Predicate Pred; 3327 APInt NewRHSC, Offset; 3328 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 3329 auto *OpTy = WO->getRHS()->getType(); 3330 auto *NewLHS = WO->getLHS(); 3331 if (Offset != 0) 3332 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset)); 3333 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, 3334 ConstantInt::get(OpTy, NewRHSC)); 3335 } 3336 } 3337 } 3338 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 3339 // If the (non-volatile) load only has one use, we can rewrite this to a 3340 // load from a GEP. This reduces the size of the load. If a load is used 3341 // only by extractvalue instructions then this either must have been 3342 // optimized before, or it is a struct with padding, in which case we 3343 // don't want to do the transformation as it loses padding knowledge. 3344 if (L->isSimple() && L->hasOneUse()) { 3345 // extractvalue has integer indices, getelementptr has Value*s. Convert. 3346 SmallVector<Value*, 4> Indices; 3347 // Prefix an i32 0 since we need the first element. 3348 Indices.push_back(Builder.getInt32(0)); 3349 for (unsigned Idx : EV.indices()) 3350 Indices.push_back(Builder.getInt32(Idx)); 3351 3352 // We need to insert these at the location of the old load, not at that of 3353 // the extractvalue. 3354 Builder.SetInsertPoint(L); 3355 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 3356 L->getPointerOperand(), Indices); 3357 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 3358 // Whatever aliasing information we had for the orignal load must also 3359 // hold for the smaller load, so propagate the annotations. 3360 NL->setAAMetadata(L->getAAMetadata()); 3361 // Returning the load directly will cause the main loop to insert it in 3362 // the wrong spot, so use replaceInstUsesWith(). 3363 return replaceInstUsesWith(EV, NL); 3364 } 3365 // We could simplify extracts from other values. Note that nested extracts may 3366 // already be simplified implicitly by the above: extract (extract (insert) ) 3367 // will be translated into extract ( insert ( extract ) ) first and then just 3368 // the value inserted, if appropriate. Similarly for extracts from single-use 3369 // loads: extract (extract (load)) will be translated to extract (load (gep)) 3370 // and if again single-use then via load (gep (gep)) to load (gep). 3371 // However, double extracts from e.g. function arguments or return values 3372 // aren't handled yet. 3373 return nullptr; 3374 } 3375 3376 /// Return 'true' if the given typeinfo will match anything. 3377 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 3378 switch (Personality) { 3379 case EHPersonality::GNU_C: 3380 case EHPersonality::GNU_C_SjLj: 3381 case EHPersonality::Rust: 3382 // The GCC C EH and Rust personality only exists to support cleanups, so 3383 // it's not clear what the semantics of catch clauses are. 3384 return false; 3385 case EHPersonality::Unknown: 3386 return false; 3387 case EHPersonality::GNU_Ada: 3388 // While __gnat_all_others_value will match any Ada exception, it doesn't 3389 // match foreign exceptions (or didn't, before gcc-4.7). 3390 return false; 3391 case EHPersonality::GNU_CXX: 3392 case EHPersonality::GNU_CXX_SjLj: 3393 case EHPersonality::GNU_ObjC: 3394 case EHPersonality::MSVC_X86SEH: 3395 case EHPersonality::MSVC_TableSEH: 3396 case EHPersonality::MSVC_CXX: 3397 case EHPersonality::CoreCLR: 3398 case EHPersonality::Wasm_CXX: 3399 case EHPersonality::XL_CXX: 3400 return TypeInfo->isNullValue(); 3401 } 3402 llvm_unreachable("invalid enum"); 3403 } 3404 3405 static bool shorter_filter(const Value *LHS, const Value *RHS) { 3406 return 3407 cast<ArrayType>(LHS->getType())->getNumElements() 3408 < 3409 cast<ArrayType>(RHS->getType())->getNumElements(); 3410 } 3411 3412 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 3413 // The logic here should be correct for any real-world personality function. 3414 // However if that turns out not to be true, the offending logic can always 3415 // be conditioned on the personality function, like the catch-all logic is. 3416 EHPersonality Personality = 3417 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 3418 3419 // Simplify the list of clauses, eg by removing repeated catch clauses 3420 // (these are often created by inlining). 3421 bool MakeNewInstruction = false; // If true, recreate using the following: 3422 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 3423 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 3424 3425 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 3426 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 3427 bool isLastClause = i + 1 == e; 3428 if (LI.isCatch(i)) { 3429 // A catch clause. 3430 Constant *CatchClause = LI.getClause(i); 3431 Constant *TypeInfo = CatchClause->stripPointerCasts(); 3432 3433 // If we already saw this clause, there is no point in having a second 3434 // copy of it. 3435 if (AlreadyCaught.insert(TypeInfo).second) { 3436 // This catch clause was not already seen. 3437 NewClauses.push_back(CatchClause); 3438 } else { 3439 // Repeated catch clause - drop the redundant copy. 3440 MakeNewInstruction = true; 3441 } 3442 3443 // If this is a catch-all then there is no point in keeping any following 3444 // clauses or marking the landingpad as having a cleanup. 3445 if (isCatchAll(Personality, TypeInfo)) { 3446 if (!isLastClause) 3447 MakeNewInstruction = true; 3448 CleanupFlag = false; 3449 break; 3450 } 3451 } else { 3452 // A filter clause. If any of the filter elements were already caught 3453 // then they can be dropped from the filter. It is tempting to try to 3454 // exploit the filter further by saying that any typeinfo that does not 3455 // occur in the filter can't be caught later (and thus can be dropped). 3456 // However this would be wrong, since typeinfos can match without being 3457 // equal (for example if one represents a C++ class, and the other some 3458 // class derived from it). 3459 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 3460 Constant *FilterClause = LI.getClause(i); 3461 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 3462 unsigned NumTypeInfos = FilterType->getNumElements(); 3463 3464 // An empty filter catches everything, so there is no point in keeping any 3465 // following clauses or marking the landingpad as having a cleanup. By 3466 // dealing with this case here the following code is made a bit simpler. 3467 if (!NumTypeInfos) { 3468 NewClauses.push_back(FilterClause); 3469 if (!isLastClause) 3470 MakeNewInstruction = true; 3471 CleanupFlag = false; 3472 break; 3473 } 3474 3475 bool MakeNewFilter = false; // If true, make a new filter. 3476 SmallVector<Constant *, 16> NewFilterElts; // New elements. 3477 if (isa<ConstantAggregateZero>(FilterClause)) { 3478 // Not an empty filter - it contains at least one null typeinfo. 3479 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 3480 Constant *TypeInfo = 3481 Constant::getNullValue(FilterType->getElementType()); 3482 // If this typeinfo is a catch-all then the filter can never match. 3483 if (isCatchAll(Personality, TypeInfo)) { 3484 // Throw the filter away. 3485 MakeNewInstruction = true; 3486 continue; 3487 } 3488 3489 // There is no point in having multiple copies of this typeinfo, so 3490 // discard all but the first copy if there is more than one. 3491 NewFilterElts.push_back(TypeInfo); 3492 if (NumTypeInfos > 1) 3493 MakeNewFilter = true; 3494 } else { 3495 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 3496 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 3497 NewFilterElts.reserve(NumTypeInfos); 3498 3499 // Remove any filter elements that were already caught or that already 3500 // occurred in the filter. While there, see if any of the elements are 3501 // catch-alls. If so, the filter can be discarded. 3502 bool SawCatchAll = false; 3503 for (unsigned j = 0; j != NumTypeInfos; ++j) { 3504 Constant *Elt = Filter->getOperand(j); 3505 Constant *TypeInfo = Elt->stripPointerCasts(); 3506 if (isCatchAll(Personality, TypeInfo)) { 3507 // This element is a catch-all. Bail out, noting this fact. 3508 SawCatchAll = true; 3509 break; 3510 } 3511 3512 // Even if we've seen a type in a catch clause, we don't want to 3513 // remove it from the filter. An unexpected type handler may be 3514 // set up for a call site which throws an exception of the same 3515 // type caught. In order for the exception thrown by the unexpected 3516 // handler to propagate correctly, the filter must be correctly 3517 // described for the call site. 3518 // 3519 // Example: 3520 // 3521 // void unexpected() { throw 1;} 3522 // void foo() throw (int) { 3523 // std::set_unexpected(unexpected); 3524 // try { 3525 // throw 2.0; 3526 // } catch (int i) {} 3527 // } 3528 3529 // There is no point in having multiple copies of the same typeinfo in 3530 // a filter, so only add it if we didn't already. 3531 if (SeenInFilter.insert(TypeInfo).second) 3532 NewFilterElts.push_back(cast<Constant>(Elt)); 3533 } 3534 // A filter containing a catch-all cannot match anything by definition. 3535 if (SawCatchAll) { 3536 // Throw the filter away. 3537 MakeNewInstruction = true; 3538 continue; 3539 } 3540 3541 // If we dropped something from the filter, make a new one. 3542 if (NewFilterElts.size() < NumTypeInfos) 3543 MakeNewFilter = true; 3544 } 3545 if (MakeNewFilter) { 3546 FilterType = ArrayType::get(FilterType->getElementType(), 3547 NewFilterElts.size()); 3548 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 3549 MakeNewInstruction = true; 3550 } 3551 3552 NewClauses.push_back(FilterClause); 3553 3554 // If the new filter is empty then it will catch everything so there is 3555 // no point in keeping any following clauses or marking the landingpad 3556 // as having a cleanup. The case of the original filter being empty was 3557 // already handled above. 3558 if (MakeNewFilter && !NewFilterElts.size()) { 3559 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3560 CleanupFlag = false; 3561 break; 3562 } 3563 } 3564 } 3565 3566 // If several filters occur in a row then reorder them so that the shortest 3567 // filters come first (those with the smallest number of elements). This is 3568 // advantageous because shorter filters are more likely to match, speeding up 3569 // unwinding, but mostly because it increases the effectiveness of the other 3570 // filter optimizations below. 3571 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3572 unsigned j; 3573 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3574 for (j = i; j != e; ++j) 3575 if (!isa<ArrayType>(NewClauses[j]->getType())) 3576 break; 3577 3578 // Check whether the filters are already sorted by length. We need to know 3579 // if sorting them is actually going to do anything so that we only make a 3580 // new landingpad instruction if it does. 3581 for (unsigned k = i; k + 1 < j; ++k) 3582 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3583 // Not sorted, so sort the filters now. Doing an unstable sort would be 3584 // correct too but reordering filters pointlessly might confuse users. 3585 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3586 shorter_filter); 3587 MakeNewInstruction = true; 3588 break; 3589 } 3590 3591 // Look for the next batch of filters. 3592 i = j + 1; 3593 } 3594 3595 // If typeinfos matched if and only if equal, then the elements of a filter L 3596 // that occurs later than a filter F could be replaced by the intersection of 3597 // the elements of F and L. In reality two typeinfos can match without being 3598 // equal (for example if one represents a C++ class, and the other some class 3599 // derived from it) so it would be wrong to perform this transform in general. 3600 // However the transform is correct and useful if F is a subset of L. In that 3601 // case L can be replaced by F, and thus removed altogether since repeating a 3602 // filter is pointless. So here we look at all pairs of filters F and L where 3603 // L follows F in the list of clauses, and remove L if every element of F is 3604 // an element of L. This can occur when inlining C++ functions with exception 3605 // specifications. 3606 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3607 // Examine each filter in turn. 3608 Value *Filter = NewClauses[i]; 3609 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3610 if (!FTy) 3611 // Not a filter - skip it. 3612 continue; 3613 unsigned FElts = FTy->getNumElements(); 3614 // Examine each filter following this one. Doing this backwards means that 3615 // we don't have to worry about filters disappearing under us when removed. 3616 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3617 Value *LFilter = NewClauses[j]; 3618 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3619 if (!LTy) 3620 // Not a filter - skip it. 3621 continue; 3622 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3623 // an element of LFilter, then discard LFilter. 3624 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3625 // If Filter is empty then it is a subset of LFilter. 3626 if (!FElts) { 3627 // Discard LFilter. 3628 NewClauses.erase(J); 3629 MakeNewInstruction = true; 3630 // Move on to the next filter. 3631 continue; 3632 } 3633 unsigned LElts = LTy->getNumElements(); 3634 // If Filter is longer than LFilter then it cannot be a subset of it. 3635 if (FElts > LElts) 3636 // Move on to the next filter. 3637 continue; 3638 // At this point we know that LFilter has at least one element. 3639 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3640 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3641 // already know that Filter is not longer than LFilter). 3642 if (isa<ConstantAggregateZero>(Filter)) { 3643 assert(FElts <= LElts && "Should have handled this case earlier!"); 3644 // Discard LFilter. 3645 NewClauses.erase(J); 3646 MakeNewInstruction = true; 3647 } 3648 // Move on to the next filter. 3649 continue; 3650 } 3651 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3652 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3653 // Since Filter is non-empty and contains only zeros, it is a subset of 3654 // LFilter iff LFilter contains a zero. 3655 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3656 for (unsigned l = 0; l != LElts; ++l) 3657 if (LArray->getOperand(l)->isNullValue()) { 3658 // LFilter contains a zero - discard it. 3659 NewClauses.erase(J); 3660 MakeNewInstruction = true; 3661 break; 3662 } 3663 // Move on to the next filter. 3664 continue; 3665 } 3666 // At this point we know that both filters are ConstantArrays. Loop over 3667 // operands to see whether every element of Filter is also an element of 3668 // LFilter. Since filters tend to be short this is probably faster than 3669 // using a method that scales nicely. 3670 ConstantArray *FArray = cast<ConstantArray>(Filter); 3671 bool AllFound = true; 3672 for (unsigned f = 0; f != FElts; ++f) { 3673 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3674 AllFound = false; 3675 for (unsigned l = 0; l != LElts; ++l) { 3676 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3677 if (LTypeInfo == FTypeInfo) { 3678 AllFound = true; 3679 break; 3680 } 3681 } 3682 if (!AllFound) 3683 break; 3684 } 3685 if (AllFound) { 3686 // Discard LFilter. 3687 NewClauses.erase(J); 3688 MakeNewInstruction = true; 3689 } 3690 // Move on to the next filter. 3691 } 3692 } 3693 3694 // If we changed any of the clauses, replace the old landingpad instruction 3695 // with a new one. 3696 if (MakeNewInstruction) { 3697 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3698 NewClauses.size()); 3699 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3700 NLI->addClause(NewClauses[i]); 3701 // A landing pad with no clauses must have the cleanup flag set. It is 3702 // theoretically possible, though highly unlikely, that we eliminated all 3703 // clauses. If so, force the cleanup flag to true. 3704 if (NewClauses.empty()) 3705 CleanupFlag = true; 3706 NLI->setCleanup(CleanupFlag); 3707 return NLI; 3708 } 3709 3710 // Even if none of the clauses changed, we may nonetheless have understood 3711 // that the cleanup flag is pointless. Clear it if so. 3712 if (LI.isCleanup() != CleanupFlag) { 3713 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3714 LI.setCleanup(CleanupFlag); 3715 return &LI; 3716 } 3717 3718 return nullptr; 3719 } 3720 3721 Value * 3722 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { 3723 // Try to push freeze through instructions that propagate but don't produce 3724 // poison as far as possible. If an operand of freeze follows three 3725 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one 3726 // guaranteed-non-poison operands then push the freeze through to the one 3727 // operand that is not guaranteed non-poison. The actual transform is as 3728 // follows. 3729 // Op1 = ... ; Op1 can be posion 3730 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have 3731 // ; single guaranteed-non-poison operands 3732 // ... = Freeze(Op0) 3733 // => 3734 // Op1 = ... 3735 // Op1.fr = Freeze(Op1) 3736 // ... = Inst(Op1.fr, NonPoisonOps...) 3737 auto *OrigOp = OrigFI.getOperand(0); 3738 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp); 3739 3740 // While we could change the other users of OrigOp to use freeze(OrigOp), that 3741 // potentially reduces their optimization potential, so let's only do this iff 3742 // the OrigOp is only used by the freeze. 3743 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp)) 3744 return nullptr; 3745 3746 // We can't push the freeze through an instruction which can itself create 3747 // poison. If the only source of new poison is flags, we can simply 3748 // strip them (since we know the only use is the freeze and nothing can 3749 // benefit from them.) 3750 if (canCreateUndefOrPoison(cast<Operator>(OrigOp), /*ConsiderFlags*/ false)) 3751 return nullptr; 3752 3753 // If operand is guaranteed not to be poison, there is no need to add freeze 3754 // to the operand. So we first find the operand that is not guaranteed to be 3755 // poison. 3756 Use *MaybePoisonOperand = nullptr; 3757 for (Use &U : OrigOpInst->operands()) { 3758 if (isGuaranteedNotToBeUndefOrPoison(U.get())) 3759 continue; 3760 if (!MaybePoisonOperand) 3761 MaybePoisonOperand = &U; 3762 else 3763 return nullptr; 3764 } 3765 3766 OrigOpInst->dropPoisonGeneratingFlags(); 3767 3768 // If all operands are guaranteed to be non-poison, we can drop freeze. 3769 if (!MaybePoisonOperand) 3770 return OrigOp; 3771 3772 Builder.SetInsertPoint(OrigOpInst); 3773 auto *FrozenMaybePoisonOperand = Builder.CreateFreeze( 3774 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); 3775 3776 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); 3777 return OrigOp; 3778 } 3779 3780 Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI, 3781 PHINode *PN) { 3782 // Detect whether this is a recurrence with a start value and some number of 3783 // backedge values. We'll check whether we can push the freeze through the 3784 // backedge values (possibly dropping poison flags along the way) until we 3785 // reach the phi again. In that case, we can move the freeze to the start 3786 // value. 3787 Use *StartU = nullptr; 3788 SmallVector<Value *> Worklist; 3789 for (Use &U : PN->incoming_values()) { 3790 if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) { 3791 // Add backedge value to worklist. 3792 Worklist.push_back(U.get()); 3793 continue; 3794 } 3795 3796 // Don't bother handling multiple start values. 3797 if (StartU) 3798 return nullptr; 3799 StartU = &U; 3800 } 3801 3802 if (!StartU || Worklist.empty()) 3803 return nullptr; // Not a recurrence. 3804 3805 Value *StartV = StartU->get(); 3806 BasicBlock *StartBB = PN->getIncomingBlock(*StartU); 3807 bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV); 3808 // We can't insert freeze if the the start value is the result of the 3809 // terminator (e.g. an invoke). 3810 if (StartNeedsFreeze && StartBB->getTerminator() == StartV) 3811 return nullptr; 3812 3813 SmallPtrSet<Value *, 32> Visited; 3814 SmallVector<Instruction *> DropFlags; 3815 while (!Worklist.empty()) { 3816 Value *V = Worklist.pop_back_val(); 3817 if (!Visited.insert(V).second) 3818 continue; 3819 3820 if (Visited.size() > 32) 3821 return nullptr; // Limit the total number of values we inspect. 3822 3823 // Assume that PN is non-poison, because it will be after the transform. 3824 if (V == PN || isGuaranteedNotToBeUndefOrPoison(V)) 3825 continue; 3826 3827 Instruction *I = dyn_cast<Instruction>(V); 3828 if (!I || canCreateUndefOrPoison(cast<Operator>(I), 3829 /*ConsiderFlags*/ false)) 3830 return nullptr; 3831 3832 DropFlags.push_back(I); 3833 append_range(Worklist, I->operands()); 3834 } 3835 3836 for (Instruction *I : DropFlags) 3837 I->dropPoisonGeneratingFlags(); 3838 3839 if (StartNeedsFreeze) { 3840 Builder.SetInsertPoint(StartBB->getTerminator()); 3841 Value *FrozenStartV = Builder.CreateFreeze(StartV, 3842 StartV->getName() + ".fr"); 3843 replaceUse(*StartU, FrozenStartV); 3844 } 3845 return replaceInstUsesWith(FI, PN); 3846 } 3847 3848 bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) { 3849 Value *Op = FI.getOperand(0); 3850 3851 if (isa<Constant>(Op) || Op->hasOneUse()) 3852 return false; 3853 3854 // Move the freeze directly after the definition of its operand, so that 3855 // it dominates the maximum number of uses. Note that it may not dominate 3856 // *all* uses if the operand is an invoke/callbr and the use is in a phi on 3857 // the normal/default destination. This is why the domination check in the 3858 // replacement below is still necessary. 3859 Instruction *MoveBefore = nullptr; 3860 if (isa<Argument>(Op)) { 3861 MoveBefore = &FI.getFunction()->getEntryBlock().front(); 3862 while (isa<AllocaInst>(MoveBefore)) 3863 MoveBefore = MoveBefore->getNextNode(); 3864 } else if (auto *PN = dyn_cast<PHINode>(Op)) { 3865 MoveBefore = PN->getParent()->getFirstNonPHI(); 3866 } else if (auto *II = dyn_cast<InvokeInst>(Op)) { 3867 MoveBefore = II->getNormalDest()->getFirstNonPHI(); 3868 } else if (auto *CB = dyn_cast<CallBrInst>(Op)) { 3869 MoveBefore = CB->getDefaultDest()->getFirstNonPHI(); 3870 } else { 3871 auto *I = cast<Instruction>(Op); 3872 assert(!I->isTerminator() && "Cannot be a terminator"); 3873 MoveBefore = I->getNextNode(); 3874 } 3875 3876 bool Changed = false; 3877 if (&FI != MoveBefore) { 3878 FI.moveBefore(MoveBefore); 3879 Changed = true; 3880 } 3881 3882 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { 3883 bool Dominates = DT.dominates(&FI, U); 3884 Changed |= Dominates; 3885 return Dominates; 3886 }); 3887 3888 return Changed; 3889 } 3890 3891 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 3892 Value *Op0 = I.getOperand(0); 3893 3894 if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3895 return replaceInstUsesWith(I, V); 3896 3897 // freeze (phi const, x) --> phi const, (freeze x) 3898 if (auto *PN = dyn_cast<PHINode>(Op0)) { 3899 if (Instruction *NV = foldOpIntoPhi(I, PN)) 3900 return NV; 3901 if (Instruction *NV = foldFreezeIntoRecurrence(I, PN)) 3902 return NV; 3903 } 3904 3905 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) 3906 return replaceInstUsesWith(I, NI); 3907 3908 // If I is freeze(undef), check its uses and fold it to a fixed constant. 3909 // - or: pick -1 3910 // - select's condition: if the true value is constant, choose it by making 3911 // the condition true. 3912 // - default: pick 0 3913 // 3914 // Note that this transform is intentionally done here rather than 3915 // via an analysis in InstSimplify or at individual user sites. That is 3916 // because we must produce the same value for all uses of the freeze - 3917 // it's the reason "freeze" exists! 3918 // 3919 // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid 3920 // duplicating logic for binops at least. 3921 auto getUndefReplacement = [&I](Type *Ty) { 3922 Constant *BestValue = nullptr; 3923 Constant *NullValue = Constant::getNullValue(Ty); 3924 for (const auto *U : I.users()) { 3925 Constant *C = NullValue; 3926 if (match(U, m_Or(m_Value(), m_Value()))) 3927 C = ConstantInt::getAllOnesValue(Ty); 3928 else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value()))) 3929 C = ConstantInt::getTrue(Ty); 3930 3931 if (!BestValue) 3932 BestValue = C; 3933 else if (BestValue != C) 3934 BestValue = NullValue; 3935 } 3936 assert(BestValue && "Must have at least one use"); 3937 return BestValue; 3938 }; 3939 3940 if (match(Op0, m_Undef())) 3941 return replaceInstUsesWith(I, getUndefReplacement(I.getType())); 3942 3943 Constant *C; 3944 if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) { 3945 Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType()); 3946 return replaceInstUsesWith(I, Constant::replaceUndefsWith(C, ReplaceC)); 3947 } 3948 3949 // Replace uses of Op with freeze(Op). 3950 if (freezeOtherUses(I)) 3951 return &I; 3952 3953 return nullptr; 3954 } 3955 3956 /// Check for case where the call writes to an otherwise dead alloca. This 3957 /// shows up for unused out-params in idiomatic C/C++ code. Note that this 3958 /// helper *only* analyzes the write; doesn't check any other legality aspect. 3959 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) { 3960 auto *CB = dyn_cast<CallBase>(I); 3961 if (!CB) 3962 // TODO: handle e.g. store to alloca here - only worth doing if we extend 3963 // to allow reload along used path as described below. Otherwise, this 3964 // is simply a store to a dead allocation which will be removed. 3965 return false; 3966 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI); 3967 if (!Dest) 3968 return false; 3969 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr)); 3970 if (!AI) 3971 // TODO: allow malloc? 3972 return false; 3973 // TODO: allow memory access dominated by move point? Note that since AI 3974 // could have a reference to itself captured by the call, we would need to 3975 // account for cycles in doing so. 3976 SmallVector<const User *> AllocaUsers; 3977 SmallPtrSet<const User *, 4> Visited; 3978 auto pushUsers = [&](const Instruction &I) { 3979 for (const User *U : I.users()) { 3980 if (Visited.insert(U).second) 3981 AllocaUsers.push_back(U); 3982 } 3983 }; 3984 pushUsers(*AI); 3985 while (!AllocaUsers.empty()) { 3986 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val()); 3987 if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) || 3988 isa<AddrSpaceCastInst>(UserI)) { 3989 pushUsers(*UserI); 3990 continue; 3991 } 3992 if (UserI == CB) 3993 continue; 3994 // TODO: support lifetime.start/end here 3995 return false; 3996 } 3997 return true; 3998 } 3999 4000 /// Try to move the specified instruction from its current block into the 4001 /// beginning of DestBlock, which can only happen if it's safe to move the 4002 /// instruction past all of the instructions between it and the end of its 4003 /// block. 4004 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock, 4005 TargetLibraryInfo &TLI) { 4006 BasicBlock *SrcBlock = I->getParent(); 4007 4008 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 4009 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || 4010 I->isTerminator()) 4011 return false; 4012 4013 // Do not sink static or dynamic alloca instructions. Static allocas must 4014 // remain in the entry block, and dynamic allocas must not be sunk in between 4015 // a stacksave / stackrestore pair, which would incorrectly shorten its 4016 // lifetime. 4017 if (isa<AllocaInst>(I)) 4018 return false; 4019 4020 // Do not sink into catchswitch blocks. 4021 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 4022 return false; 4023 4024 // Do not sink convergent call instructions. 4025 if (auto *CI = dyn_cast<CallInst>(I)) { 4026 if (CI->isConvergent()) 4027 return false; 4028 } 4029 4030 // Unless we can prove that the memory write isn't visibile except on the 4031 // path we're sinking to, we must bail. 4032 if (I->mayWriteToMemory()) { 4033 if (!SoleWriteToDeadLocal(I, TLI)) 4034 return false; 4035 } 4036 4037 // We can only sink load instructions if there is nothing between the load and 4038 // the end of block that could change the value. 4039 if (I->mayReadFromMemory()) { 4040 // We don't want to do any sophisticated alias analysis, so we only check 4041 // the instructions after I in I's parent block if we try to sink to its 4042 // successor block. 4043 if (DestBlock->getUniquePredecessor() != I->getParent()) 4044 return false; 4045 for (BasicBlock::iterator Scan = std::next(I->getIterator()), 4046 E = I->getParent()->end(); 4047 Scan != E; ++Scan) 4048 if (Scan->mayWriteToMemory()) 4049 return false; 4050 } 4051 4052 I->dropDroppableUses([DestBlock](const Use *U) { 4053 if (auto *I = dyn_cast<Instruction>(U->getUser())) 4054 return I->getParent() != DestBlock; 4055 return true; 4056 }); 4057 /// FIXME: We could remove droppable uses that are not dominated by 4058 /// the new position. 4059 4060 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 4061 I->moveBefore(&*InsertPos); 4062 ++NumSunkInst; 4063 4064 // Also sink all related debug uses from the source basic block. Otherwise we 4065 // get debug use before the def. Attempt to salvage debug uses first, to 4066 // maximise the range variables have location for. If we cannot salvage, then 4067 // mark the location undef: we know it was supposed to receive a new location 4068 // here, but that computation has been sunk. 4069 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 4070 findDbgUsers(DbgUsers, I); 4071 // Process the sinking DbgUsers in reverse order, as we only want to clone the 4072 // last appearing debug intrinsic for each given variable. 4073 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 4074 for (DbgVariableIntrinsic *DVI : DbgUsers) 4075 if (DVI->getParent() == SrcBlock) 4076 DbgUsersToSink.push_back(DVI); 4077 llvm::sort(DbgUsersToSink, 4078 [](auto *A, auto *B) { return B->comesBefore(A); }); 4079 4080 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 4081 SmallSet<DebugVariable, 4> SunkVariables; 4082 for (auto User : DbgUsersToSink) { 4083 // A dbg.declare instruction should not be cloned, since there can only be 4084 // one per variable fragment. It should be left in the original place 4085 // because the sunk instruction is not an alloca (otherwise we could not be 4086 // here). 4087 if (isa<DbgDeclareInst>(User)) 4088 continue; 4089 4090 DebugVariable DbgUserVariable = 4091 DebugVariable(User->getVariable(), User->getExpression(), 4092 User->getDebugLoc()->getInlinedAt()); 4093 4094 if (!SunkVariables.insert(DbgUserVariable).second) 4095 continue; 4096 4097 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 4098 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 4099 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 4100 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 4101 } 4102 4103 // Perform salvaging without the clones, then sink the clones. 4104 if (!DIIClones.empty()) { 4105 salvageDebugInfoForDbgValues(*I, DbgUsers); 4106 // The clones are in reverse order of original appearance, reverse again to 4107 // maintain the original order. 4108 for (auto &DIIClone : llvm::reverse(DIIClones)) { 4109 DIIClone->insertBefore(&*InsertPos); 4110 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 4111 } 4112 } 4113 4114 return true; 4115 } 4116 4117 bool InstCombinerImpl::run() { 4118 while (!Worklist.isEmpty()) { 4119 // Walk deferred instructions in reverse order, and push them to the 4120 // worklist, which means they'll end up popped from the worklist in-order. 4121 while (Instruction *I = Worklist.popDeferred()) { 4122 // Check to see if we can DCE the instruction. We do this already here to 4123 // reduce the number of uses and thus allow other folds to trigger. 4124 // Note that eraseInstFromFunction() may push additional instructions on 4125 // the deferred worklist, so this will DCE whole instruction chains. 4126 if (isInstructionTriviallyDead(I, &TLI)) { 4127 eraseInstFromFunction(*I); 4128 ++NumDeadInst; 4129 continue; 4130 } 4131 4132 Worklist.push(I); 4133 } 4134 4135 Instruction *I = Worklist.removeOne(); 4136 if (I == nullptr) continue; // skip null values. 4137 4138 // Check to see if we can DCE the instruction. 4139 if (isInstructionTriviallyDead(I, &TLI)) { 4140 eraseInstFromFunction(*I); 4141 ++NumDeadInst; 4142 continue; 4143 } 4144 4145 if (!DebugCounter::shouldExecute(VisitCounter)) 4146 continue; 4147 4148 // Instruction isn't dead, see if we can constant propagate it. 4149 if (!I->use_empty() && 4150 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 4151 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 4152 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 4153 << '\n'); 4154 4155 // Add operands to the worklist. 4156 replaceInstUsesWith(*I, C); 4157 ++NumConstProp; 4158 if (isInstructionTriviallyDead(I, &TLI)) 4159 eraseInstFromFunction(*I); 4160 MadeIRChange = true; 4161 continue; 4162 } 4163 } 4164 4165 // See if we can trivially sink this instruction to its user if we can 4166 // prove that the successor is not executed more frequently than our block. 4167 // Return the UserBlock if successful. 4168 auto getOptionalSinkBlockForInst = 4169 [this](Instruction *I) -> Optional<BasicBlock *> { 4170 if (!EnableCodeSinking) 4171 return None; 4172 4173 BasicBlock *BB = I->getParent(); 4174 BasicBlock *UserParent = nullptr; 4175 unsigned NumUsers = 0; 4176 4177 for (auto *U : I->users()) { 4178 if (U->isDroppable()) 4179 continue; 4180 if (NumUsers > MaxSinkNumUsers) 4181 return None; 4182 4183 Instruction *UserInst = cast<Instruction>(U); 4184 // Special handling for Phi nodes - get the block the use occurs in. 4185 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) { 4186 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 4187 if (PN->getIncomingValue(i) == I) { 4188 // Bail out if we have uses in different blocks. We don't do any 4189 // sophisticated analysis (i.e finding NearestCommonDominator of 4190 // these use blocks). 4191 if (UserParent && UserParent != PN->getIncomingBlock(i)) 4192 return None; 4193 UserParent = PN->getIncomingBlock(i); 4194 } 4195 } 4196 assert(UserParent && "expected to find user block!"); 4197 } else { 4198 if (UserParent && UserParent != UserInst->getParent()) 4199 return None; 4200 UserParent = UserInst->getParent(); 4201 } 4202 4203 // Make sure these checks are done only once, naturally we do the checks 4204 // the first time we get the userparent, this will save compile time. 4205 if (NumUsers == 0) { 4206 // Try sinking to another block. If that block is unreachable, then do 4207 // not bother. SimplifyCFG should handle it. 4208 if (UserParent == BB || !DT.isReachableFromEntry(UserParent)) 4209 return None; 4210 4211 auto *Term = UserParent->getTerminator(); 4212 // See if the user is one of our successors that has only one 4213 // predecessor, so that we don't have to split the critical edge. 4214 // Another option where we can sink is a block that ends with a 4215 // terminator that does not pass control to other block (such as 4216 // return or unreachable or resume). In this case: 4217 // - I dominates the User (by SSA form); 4218 // - the User will be executed at most once. 4219 // So sinking I down to User is always profitable or neutral. 4220 if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term)) 4221 return None; 4222 4223 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?"); 4224 } 4225 4226 NumUsers++; 4227 } 4228 4229 // No user or only has droppable users. 4230 if (!UserParent) 4231 return None; 4232 4233 return UserParent; 4234 }; 4235 4236 auto OptBB = getOptionalSinkBlockForInst(I); 4237 if (OptBB) { 4238 auto *UserParent = *OptBB; 4239 // Okay, the CFG is simple enough, try to sink this instruction. 4240 if (TryToSinkInstruction(I, UserParent, TLI)) { 4241 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 4242 MadeIRChange = true; 4243 // We'll add uses of the sunk instruction below, but since 4244 // sinking can expose opportunities for it's *operands* add 4245 // them to the worklist 4246 for (Use &U : I->operands()) 4247 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 4248 Worklist.push(OpI); 4249 } 4250 } 4251 4252 // Now that we have an instruction, try combining it to simplify it. 4253 Builder.SetInsertPoint(I); 4254 Builder.CollectMetadataToCopy( 4255 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4256 4257 #ifndef NDEBUG 4258 std::string OrigI; 4259 #endif 4260 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 4261 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 4262 4263 if (Instruction *Result = visit(*I)) { 4264 ++NumCombined; 4265 // Should we replace the old instruction with a new one? 4266 if (Result != I) { 4267 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 4268 << " New = " << *Result << '\n'); 4269 4270 Result->copyMetadata(*I, 4271 {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4272 // Everything uses the new instruction now. 4273 I->replaceAllUsesWith(Result); 4274 4275 // Move the name to the new instruction first. 4276 Result->takeName(I); 4277 4278 // Insert the new instruction into the basic block... 4279 BasicBlock *InstParent = I->getParent(); 4280 BasicBlock::iterator InsertPos = I->getIterator(); 4281 4282 // Are we replace a PHI with something that isn't a PHI, or vice versa? 4283 if (isa<PHINode>(Result) != isa<PHINode>(I)) { 4284 // We need to fix up the insertion point. 4285 if (isa<PHINode>(I)) // PHI -> Non-PHI 4286 InsertPos = InstParent->getFirstInsertionPt(); 4287 else // Non-PHI -> PHI 4288 InsertPos = InstParent->getFirstNonPHI()->getIterator(); 4289 } 4290 4291 InstParent->getInstList().insert(InsertPos, Result); 4292 4293 // Push the new instruction and any users onto the worklist. 4294 Worklist.pushUsersToWorkList(*Result); 4295 Worklist.push(Result); 4296 4297 eraseInstFromFunction(*I); 4298 } else { 4299 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 4300 << " New = " << *I << '\n'); 4301 4302 // If the instruction was modified, it's possible that it is now dead. 4303 // if so, remove it. 4304 if (isInstructionTriviallyDead(I, &TLI)) { 4305 eraseInstFromFunction(*I); 4306 } else { 4307 Worklist.pushUsersToWorkList(*I); 4308 Worklist.push(I); 4309 } 4310 } 4311 MadeIRChange = true; 4312 } 4313 } 4314 4315 Worklist.zap(); 4316 return MadeIRChange; 4317 } 4318 4319 // Track the scopes used by !alias.scope and !noalias. In a function, a 4320 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 4321 // by both sets. If not, the declaration of the scope can be safely omitted. 4322 // The MDNode of the scope can be omitted as well for the instructions that are 4323 // part of this function. We do not do that at this point, as this might become 4324 // too time consuming to do. 4325 class AliasScopeTracker { 4326 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 4327 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 4328 4329 public: 4330 void analyse(Instruction *I) { 4331 // This seems to be faster than checking 'mayReadOrWriteMemory()'. 4332 if (!I->hasMetadataOtherThanDebugLoc()) 4333 return; 4334 4335 auto Track = [](Metadata *ScopeList, auto &Container) { 4336 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 4337 if (!MDScopeList || !Container.insert(MDScopeList).second) 4338 return; 4339 for (auto &MDOperand : MDScopeList->operands()) 4340 if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 4341 Container.insert(MDScope); 4342 }; 4343 4344 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 4345 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 4346 } 4347 4348 bool isNoAliasScopeDeclDead(Instruction *Inst) { 4349 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 4350 if (!Decl) 4351 return false; 4352 4353 assert(Decl->use_empty() && 4354 "llvm.experimental.noalias.scope.decl in use ?"); 4355 const MDNode *MDSL = Decl->getScopeList(); 4356 assert(MDSL->getNumOperands() == 1 && 4357 "llvm.experimental.noalias.scope should refer to a single scope"); 4358 auto &MDOperand = MDSL->getOperand(0); 4359 if (auto *MD = dyn_cast<MDNode>(MDOperand)) 4360 return !UsedAliasScopesAndLists.contains(MD) || 4361 !UsedNoAliasScopesAndLists.contains(MD); 4362 4363 // Not an MDNode ? throw away. 4364 return true; 4365 } 4366 }; 4367 4368 /// Populate the IC worklist from a function, by walking it in depth-first 4369 /// order and adding all reachable code to the worklist. 4370 /// 4371 /// This has a couple of tricks to make the code faster and more powerful. In 4372 /// particular, we constant fold and DCE instructions as we go, to avoid adding 4373 /// them to the worklist (this significantly speeds up instcombine on code where 4374 /// many instructions are dead or constant). Additionally, if we find a branch 4375 /// whose condition is a known constant, we only visit the reachable successors. 4376 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 4377 const TargetLibraryInfo *TLI, 4378 InstructionWorklist &ICWorklist) { 4379 bool MadeIRChange = false; 4380 SmallPtrSet<BasicBlock *, 32> Visited; 4381 SmallVector<BasicBlock*, 256> Worklist; 4382 Worklist.push_back(&F.front()); 4383 4384 SmallVector<Instruction *, 128> InstrsForInstructionWorklist; 4385 DenseMap<Constant *, Constant *> FoldedConstants; 4386 AliasScopeTracker SeenAliasScopes; 4387 4388 do { 4389 BasicBlock *BB = Worklist.pop_back_val(); 4390 4391 // We have now visited this block! If we've already been here, ignore it. 4392 if (!Visited.insert(BB).second) 4393 continue; 4394 4395 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 4396 // ConstantProp instruction if trivially constant. 4397 if (!Inst.use_empty() && 4398 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0)))) 4399 if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) { 4400 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst 4401 << '\n'); 4402 Inst.replaceAllUsesWith(C); 4403 ++NumConstProp; 4404 if (isInstructionTriviallyDead(&Inst, TLI)) 4405 Inst.eraseFromParent(); 4406 MadeIRChange = true; 4407 continue; 4408 } 4409 4410 // See if we can constant fold its operands. 4411 for (Use &U : Inst.operands()) { 4412 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 4413 continue; 4414 4415 auto *C = cast<Constant>(U); 4416 Constant *&FoldRes = FoldedConstants[C]; 4417 if (!FoldRes) 4418 FoldRes = ConstantFoldConstant(C, DL, TLI); 4419 4420 if (FoldRes != C) { 4421 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst 4422 << "\n Old = " << *C 4423 << "\n New = " << *FoldRes << '\n'); 4424 U = FoldRes; 4425 MadeIRChange = true; 4426 } 4427 } 4428 4429 // Skip processing debug and pseudo intrinsics in InstCombine. Processing 4430 // these call instructions consumes non-trivial amount of time and 4431 // provides no value for the optimization. 4432 if (!Inst.isDebugOrPseudoInst()) { 4433 InstrsForInstructionWorklist.push_back(&Inst); 4434 SeenAliasScopes.analyse(&Inst); 4435 } 4436 } 4437 4438 // Recursively visit successors. If this is a branch or switch on a 4439 // constant, only visit the reachable successor. 4440 Instruction *TI = BB->getTerminator(); 4441 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 4442 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 4443 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 4444 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 4445 Worklist.push_back(ReachableBB); 4446 continue; 4447 } 4448 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 4449 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 4450 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 4451 continue; 4452 } 4453 } 4454 4455 append_range(Worklist, successors(TI)); 4456 } while (!Worklist.empty()); 4457 4458 // Remove instructions inside unreachable blocks. This prevents the 4459 // instcombine code from having to deal with some bad special cases, and 4460 // reduces use counts of instructions. 4461 for (BasicBlock &BB : F) { 4462 if (Visited.count(&BB)) 4463 continue; 4464 4465 unsigned NumDeadInstInBB; 4466 unsigned NumDeadDbgInstInBB; 4467 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 4468 removeAllNonTerminatorAndEHPadInstructions(&BB); 4469 4470 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 4471 NumDeadInst += NumDeadInstInBB; 4472 } 4473 4474 // Once we've found all of the instructions to add to instcombine's worklist, 4475 // add them in reverse order. This way instcombine will visit from the top 4476 // of the function down. This jives well with the way that it adds all uses 4477 // of instructions to the worklist after doing a transformation, thus avoiding 4478 // some N^2 behavior in pathological cases. 4479 ICWorklist.reserve(InstrsForInstructionWorklist.size()); 4480 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) { 4481 // DCE instruction if trivially dead. As we iterate in reverse program 4482 // order here, we will clean up whole chains of dead instructions. 4483 if (isInstructionTriviallyDead(Inst, TLI) || 4484 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 4485 ++NumDeadInst; 4486 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 4487 salvageDebugInfo(*Inst); 4488 Inst->eraseFromParent(); 4489 MadeIRChange = true; 4490 continue; 4491 } 4492 4493 ICWorklist.push(Inst); 4494 } 4495 4496 return MadeIRChange; 4497 } 4498 4499 static bool combineInstructionsOverFunction( 4500 Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, 4501 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 4502 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 4503 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) { 4504 auto &DL = F.getParent()->getDataLayout(); 4505 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 4506 4507 /// Builder - This is an IRBuilder that automatically inserts new 4508 /// instructions into the worklist when they are created. 4509 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 4510 F.getContext(), TargetFolder(DL), 4511 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 4512 Worklist.add(I); 4513 if (auto *Assume = dyn_cast<AssumeInst>(I)) 4514 AC.registerAssumption(Assume); 4515 })); 4516 4517 // Lower dbg.declare intrinsics otherwise their value may be clobbered 4518 // by instcombiner. 4519 bool MadeIRChange = false; 4520 if (ShouldLowerDbgDeclare) 4521 MadeIRChange = LowerDbgDeclare(F); 4522 4523 // Iterate while there is work to do. 4524 unsigned Iteration = 0; 4525 while (true) { 4526 ++NumWorklistIterations; 4527 ++Iteration; 4528 4529 if (Iteration > InfiniteLoopDetectionThreshold) { 4530 report_fatal_error( 4531 "Instruction Combining seems stuck in an infinite loop after " + 4532 Twine(InfiniteLoopDetectionThreshold) + " iterations."); 4533 } 4534 4535 if (Iteration > MaxIterations) { 4536 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 4537 << " on " << F.getName() 4538 << " reached; stopping before reaching a fixpoint\n"); 4539 break; 4540 } 4541 4542 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 4543 << F.getName() << "\n"); 4544 4545 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 4546 4547 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 4548 ORE, BFI, PSI, DL, LI); 4549 IC.MaxArraySizeForCombine = MaxArraySize; 4550 4551 if (!IC.run()) 4552 break; 4553 4554 MadeIRChange = true; 4555 } 4556 4557 return MadeIRChange; 4558 } 4559 4560 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {} 4561 4562 InstCombinePass::InstCombinePass(unsigned MaxIterations) 4563 : MaxIterations(MaxIterations) {} 4564 4565 PreservedAnalyses InstCombinePass::run(Function &F, 4566 FunctionAnalysisManager &AM) { 4567 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4568 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4569 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4570 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4571 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 4572 4573 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 4574 4575 auto *AA = &AM.getResult<AAManager>(F); 4576 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 4577 ProfileSummaryInfo *PSI = 4578 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 4579 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 4580 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 4581 4582 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4583 BFI, PSI, MaxIterations, LI)) 4584 // No changes, all analyses are preserved. 4585 return PreservedAnalyses::all(); 4586 4587 // Mark all the analyses that instcombine updates as preserved. 4588 PreservedAnalyses PA; 4589 PA.preserveSet<CFGAnalyses>(); 4590 return PA; 4591 } 4592 4593 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 4594 AU.setPreservesCFG(); 4595 AU.addRequired<AAResultsWrapperPass>(); 4596 AU.addRequired<AssumptionCacheTracker>(); 4597 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4598 AU.addRequired<TargetTransformInfoWrapperPass>(); 4599 AU.addRequired<DominatorTreeWrapperPass>(); 4600 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4601 AU.addPreserved<DominatorTreeWrapperPass>(); 4602 AU.addPreserved<AAResultsWrapperPass>(); 4603 AU.addPreserved<BasicAAWrapperPass>(); 4604 AU.addPreserved<GlobalsAAWrapperPass>(); 4605 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 4606 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 4607 } 4608 4609 bool InstructionCombiningPass::runOnFunction(Function &F) { 4610 if (skipFunction(F)) 4611 return false; 4612 4613 // Required analyses. 4614 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4615 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4616 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 4617 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4618 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4619 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4620 4621 // Optional analyses. 4622 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 4623 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 4624 ProfileSummaryInfo *PSI = 4625 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 4626 BlockFrequencyInfo *BFI = 4627 (PSI && PSI->hasProfileSummary()) ? 4628 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 4629 nullptr; 4630 4631 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4632 BFI, PSI, MaxIterations, LI); 4633 } 4634 4635 char InstructionCombiningPass::ID = 0; 4636 4637 InstructionCombiningPass::InstructionCombiningPass() 4638 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) { 4639 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4640 } 4641 4642 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations) 4643 : FunctionPass(ID), MaxIterations(MaxIterations) { 4644 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4645 } 4646 4647 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 4648 "Combine redundant instructions", false, false) 4649 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4650 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4651 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4652 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4653 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4654 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4655 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 4656 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 4657 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 4658 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 4659 "Combine redundant instructions", false, false) 4660 4661 // Initialization Routines 4662 void llvm::initializeInstCombine(PassRegistry &Registry) { 4663 initializeInstructionCombiningPassPass(Registry); 4664 } 4665 4666 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 4667 initializeInstructionCombiningPassPass(*unwrap(R)); 4668 } 4669 4670 FunctionPass *llvm::createInstructionCombiningPass() { 4671 return new InstructionCombiningPass(); 4672 } 4673 4674 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) { 4675 return new InstructionCombiningPass(MaxIterations); 4676 } 4677 4678 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 4679 unwrap(PM)->add(createInstructionCombiningPass()); 4680 } 4681