1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions.  This pass does not modify the CFG.  This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 //    %Y = add i32 %X, 1
15 //    %Z = add i32 %Y, 1
16 // into:
17 //    %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 //    1. If a binary operator has a constant operand, it is moved to the RHS
24 //    2. Bitwise operators with constant operands are always grouped so that
25 //       shifts are performed first, then or's, then and's, then xor's.
26 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 //    4. All cmp instructions on boolean values are replaced with logical ops
28 //    5. add X, X is represented as (X*2) => (X << 1)
29 //    6. Multiplies with a power-of-two constant argument are transformed into
30 //       shifts.
31 //   ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BlockFrequencyInfo.h"
50 #include "llvm/Analysis/CFG.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/EHPersonalities.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/MemoryBuiltins.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ProfileSummaryInfo.h"
60 #include "llvm/Analysis/TargetFolder.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/Analysis/VectorUtils.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DIBuilder.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GetElementPtrTypeIterator.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LegacyPassManager.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PassManager.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/Use.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/IR/ValueHandle.h"
91 #include "llvm/InitializePasses.h"
92 #include "llvm/Pass.h"
93 #include "llvm/Support/CBindingWrapping.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/DebugCounter.h"
99 #include "llvm/Support/ErrorHandling.h"
100 #include "llvm/Support/KnownBits.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Transforms/InstCombine/InstCombine.h"
103 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
104 #include "llvm/Transforms/Utils/Local.h"
105 #include <algorithm>
106 #include <cassert>
107 #include <cstdint>
108 #include <memory>
109 #include <string>
110 #include <utility>
111 
112 using namespace llvm;
113 using namespace llvm::PatternMatch;
114 
115 #define DEBUG_TYPE "instcombine"
116 
117 STATISTIC(NumCombined , "Number of insts combined");
118 STATISTIC(NumConstProp, "Number of constant folds");
119 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
120 STATISTIC(NumSunkInst , "Number of instructions sunk");
121 STATISTIC(NumExpand,    "Number of expansions");
122 STATISTIC(NumFactor   , "Number of factorizations");
123 STATISTIC(NumReassoc  , "Number of reassociations");
124 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
125               "Controls which instructions are visited");
126 
127 // FIXME: these limits eventually should be as low as 2.
128 static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
129 #ifndef NDEBUG
130 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100;
131 #else
132 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
133 #endif
134 
135 static cl::opt<bool>
136 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
137                                               cl::init(true));
138 
139 static cl::opt<unsigned> LimitMaxIterations(
140     "instcombine-max-iterations",
141     cl::desc("Limit the maximum number of instruction combining iterations"),
142     cl::init(InstCombineDefaultMaxIterations));
143 
144 static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
145     "instcombine-infinite-loop-threshold",
146     cl::desc("Number of instruction combining iterations considered an "
147              "infinite loop"),
148     cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
149 
150 static cl::opt<unsigned>
151 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
152              cl::desc("Maximum array size considered when doing a combine"));
153 
154 // FIXME: Remove this flag when it is no longer necessary to convert
155 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
156 // increases variable availability at the cost of accuracy. Variables that
157 // cannot be promoted by mem2reg or SROA will be described as living in memory
158 // for their entire lifetime. However, passes like DSE and instcombine can
159 // delete stores to the alloca, leading to misleading and inaccurate debug
160 // information. This flag can be removed when those passes are fixed.
161 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
162                                                cl::Hidden, cl::init(true));
163 
164 Optional<Instruction *>
165 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
166   // Handle target specific intrinsics
167   if (II.getCalledFunction()->isTargetIntrinsic()) {
168     return TTI.instCombineIntrinsic(*this, II);
169   }
170   return None;
171 }
172 
173 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
174     IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
175     bool &KnownBitsComputed) {
176   // Handle target specific intrinsics
177   if (II.getCalledFunction()->isTargetIntrinsic()) {
178     return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
179                                                 KnownBitsComputed);
180   }
181   return None;
182 }
183 
184 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
185     IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2,
186     APInt &UndefElts3,
187     std::function<void(Instruction *, unsigned, APInt, APInt &)>
188         SimplifyAndSetOp) {
189   // Handle target specific intrinsics
190   if (II.getCalledFunction()->isTargetIntrinsic()) {
191     return TTI.simplifyDemandedVectorEltsIntrinsic(
192         *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
193         SimplifyAndSetOp);
194   }
195   return None;
196 }
197 
198 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
199   return llvm::EmitGEPOffset(&Builder, DL, GEP);
200 }
201 
202 /// Return true if it is desirable to convert an integer computation from a
203 /// given bit width to a new bit width.
204 /// We don't want to convert from a legal to an illegal type or from a smaller
205 /// to a larger illegal type. A width of '1' is always treated as a legal type
206 /// because i1 is a fundamental type in IR, and there are many specialized
207 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
208 /// legal to convert to, in order to open up more combining opportunities.
209 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common
210 /// from frontend languages.
211 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
212                                         unsigned ToWidth) const {
213   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
214   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
215 
216   // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
217   // shrink types, to prevent infinite loops.
218   if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
219     return true;
220 
221   // If this is a legal integer from type, and the result would be an illegal
222   // type, don't do the transformation.
223   if (FromLegal && !ToLegal)
224     return false;
225 
226   // Otherwise, if both are illegal, do not increase the size of the result. We
227   // do allow things like i160 -> i64, but not i64 -> i160.
228   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
229     return false;
230 
231   return true;
232 }
233 
234 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
235 /// We don't want to convert from a legal to an illegal type or from a smaller
236 /// to a larger illegal type. i1 is always treated as a legal type because it is
237 /// a fundamental type in IR, and there are many specialized optimizations for
238 /// i1 types.
239 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
240   // TODO: This could be extended to allow vectors. Datalayout changes might be
241   // needed to properly support that.
242   if (!From->isIntegerTy() || !To->isIntegerTy())
243     return false;
244 
245   unsigned FromWidth = From->getPrimitiveSizeInBits();
246   unsigned ToWidth = To->getPrimitiveSizeInBits();
247   return shouldChangeType(FromWidth, ToWidth);
248 }
249 
250 // Return true, if No Signed Wrap should be maintained for I.
251 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
252 // where both B and C should be ConstantInts, results in a constant that does
253 // not overflow. This function only handles the Add and Sub opcodes. For
254 // all other opcodes, the function conservatively returns false.
255 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
256   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
257   if (!OBO || !OBO->hasNoSignedWrap())
258     return false;
259 
260   // We reason about Add and Sub Only.
261   Instruction::BinaryOps Opcode = I.getOpcode();
262   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
263     return false;
264 
265   const APInt *BVal, *CVal;
266   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
267     return false;
268 
269   bool Overflow = false;
270   if (Opcode == Instruction::Add)
271     (void)BVal->sadd_ov(*CVal, Overflow);
272   else
273     (void)BVal->ssub_ov(*CVal, Overflow);
274 
275   return !Overflow;
276 }
277 
278 static bool hasNoUnsignedWrap(BinaryOperator &I) {
279   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
280   return OBO && OBO->hasNoUnsignedWrap();
281 }
282 
283 static bool hasNoSignedWrap(BinaryOperator &I) {
284   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
285   return OBO && OBO->hasNoSignedWrap();
286 }
287 
288 /// Conservatively clears subclassOptionalData after a reassociation or
289 /// commutation. We preserve fast-math flags when applicable as they can be
290 /// preserved.
291 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
292   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
293   if (!FPMO) {
294     I.clearSubclassOptionalData();
295     return;
296   }
297 
298   FastMathFlags FMF = I.getFastMathFlags();
299   I.clearSubclassOptionalData();
300   I.setFastMathFlags(FMF);
301 }
302 
303 /// Combine constant operands of associative operations either before or after a
304 /// cast to eliminate one of the associative operations:
305 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
306 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
307 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
308                                    InstCombinerImpl &IC) {
309   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
310   if (!Cast || !Cast->hasOneUse())
311     return false;
312 
313   // TODO: Enhance logic for other casts and remove this check.
314   auto CastOpcode = Cast->getOpcode();
315   if (CastOpcode != Instruction::ZExt)
316     return false;
317 
318   // TODO: Enhance logic for other BinOps and remove this check.
319   if (!BinOp1->isBitwiseLogicOp())
320     return false;
321 
322   auto AssocOpcode = BinOp1->getOpcode();
323   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
324   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
325     return false;
326 
327   Constant *C1, *C2;
328   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
329       !match(BinOp2->getOperand(1), m_Constant(C2)))
330     return false;
331 
332   // TODO: This assumes a zext cast.
333   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
334   // to the destination type might lose bits.
335 
336   // Fold the constants together in the destination type:
337   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
338   Type *DestTy = C1->getType();
339   Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
340   Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
341   IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
342   IC.replaceOperand(*BinOp1, 1, FoldedC);
343   return true;
344 }
345 
346 /// This performs a few simplifications for operators that are associative or
347 /// commutative:
348 ///
349 ///  Commutative operators:
350 ///
351 ///  1. Order operands such that they are listed from right (least complex) to
352 ///     left (most complex).  This puts constants before unary operators before
353 ///     binary operators.
354 ///
355 ///  Associative operators:
356 ///
357 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
358 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
359 ///
360 ///  Associative and commutative operators:
361 ///
362 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
363 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
364 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
365 ///     if C1 and C2 are constants.
366 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
367   Instruction::BinaryOps Opcode = I.getOpcode();
368   bool Changed = false;
369 
370   do {
371     // Order operands such that they are listed from right (least complex) to
372     // left (most complex).  This puts constants before unary operators before
373     // binary operators.
374     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
375         getComplexity(I.getOperand(1)))
376       Changed = !I.swapOperands();
377 
378     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
379     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
380 
381     if (I.isAssociative()) {
382       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
383       if (Op0 && Op0->getOpcode() == Opcode) {
384         Value *A = Op0->getOperand(0);
385         Value *B = Op0->getOperand(1);
386         Value *C = I.getOperand(1);
387 
388         // Does "B op C" simplify?
389         if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
390           // It simplifies to V.  Form "A op V".
391           replaceOperand(I, 0, A);
392           replaceOperand(I, 1, V);
393           bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
394           bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
395 
396           // Conservatively clear all optional flags since they may not be
397           // preserved by the reassociation. Reset nsw/nuw based on the above
398           // analysis.
399           ClearSubclassDataAfterReassociation(I);
400 
401           // Note: this is only valid because SimplifyBinOp doesn't look at
402           // the operands to Op0.
403           if (IsNUW)
404             I.setHasNoUnsignedWrap(true);
405 
406           if (IsNSW)
407             I.setHasNoSignedWrap(true);
408 
409           Changed = true;
410           ++NumReassoc;
411           continue;
412         }
413       }
414 
415       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
416       if (Op1 && Op1->getOpcode() == Opcode) {
417         Value *A = I.getOperand(0);
418         Value *B = Op1->getOperand(0);
419         Value *C = Op1->getOperand(1);
420 
421         // Does "A op B" simplify?
422         if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
423           // It simplifies to V.  Form "V op C".
424           replaceOperand(I, 0, V);
425           replaceOperand(I, 1, C);
426           // Conservatively clear the optional flags, since they may not be
427           // preserved by the reassociation.
428           ClearSubclassDataAfterReassociation(I);
429           Changed = true;
430           ++NumReassoc;
431           continue;
432         }
433       }
434     }
435 
436     if (I.isAssociative() && I.isCommutative()) {
437       if (simplifyAssocCastAssoc(&I, *this)) {
438         Changed = true;
439         ++NumReassoc;
440         continue;
441       }
442 
443       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
444       if (Op0 && Op0->getOpcode() == Opcode) {
445         Value *A = Op0->getOperand(0);
446         Value *B = Op0->getOperand(1);
447         Value *C = I.getOperand(1);
448 
449         // Does "C op A" simplify?
450         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
451           // It simplifies to V.  Form "V op B".
452           replaceOperand(I, 0, V);
453           replaceOperand(I, 1, B);
454           // Conservatively clear the optional flags, since they may not be
455           // preserved by the reassociation.
456           ClearSubclassDataAfterReassociation(I);
457           Changed = true;
458           ++NumReassoc;
459           continue;
460         }
461       }
462 
463       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
464       if (Op1 && Op1->getOpcode() == Opcode) {
465         Value *A = I.getOperand(0);
466         Value *B = Op1->getOperand(0);
467         Value *C = Op1->getOperand(1);
468 
469         // Does "C op A" simplify?
470         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
471           // It simplifies to V.  Form "B op V".
472           replaceOperand(I, 0, B);
473           replaceOperand(I, 1, V);
474           // Conservatively clear the optional flags, since they may not be
475           // preserved by the reassociation.
476           ClearSubclassDataAfterReassociation(I);
477           Changed = true;
478           ++NumReassoc;
479           continue;
480         }
481       }
482 
483       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
484       // if C1 and C2 are constants.
485       Value *A, *B;
486       Constant *C1, *C2;
487       if (Op0 && Op1 &&
488           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
489           match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
490           match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
491         bool IsNUW = hasNoUnsignedWrap(I) &&
492            hasNoUnsignedWrap(*Op0) &&
493            hasNoUnsignedWrap(*Op1);
494          BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
495            BinaryOperator::CreateNUW(Opcode, A, B) :
496            BinaryOperator::Create(Opcode, A, B);
497 
498          if (isa<FPMathOperator>(NewBO)) {
499           FastMathFlags Flags = I.getFastMathFlags();
500           Flags &= Op0->getFastMathFlags();
501           Flags &= Op1->getFastMathFlags();
502           NewBO->setFastMathFlags(Flags);
503         }
504         InsertNewInstWith(NewBO, I);
505         NewBO->takeName(Op1);
506         replaceOperand(I, 0, NewBO);
507         replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
508         // Conservatively clear the optional flags, since they may not be
509         // preserved by the reassociation.
510         ClearSubclassDataAfterReassociation(I);
511         if (IsNUW)
512           I.setHasNoUnsignedWrap(true);
513 
514         Changed = true;
515         continue;
516       }
517     }
518 
519     // No further simplifications.
520     return Changed;
521   } while (true);
522 }
523 
524 /// Return whether "X LOp (Y ROp Z)" is always equal to
525 /// "(X LOp Y) ROp (X LOp Z)".
526 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
527                                      Instruction::BinaryOps ROp) {
528   // X & (Y | Z) <--> (X & Y) | (X & Z)
529   // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
530   if (LOp == Instruction::And)
531     return ROp == Instruction::Or || ROp == Instruction::Xor;
532 
533   // X | (Y & Z) <--> (X | Y) & (X | Z)
534   if (LOp == Instruction::Or)
535     return ROp == Instruction::And;
536 
537   // X * (Y + Z) <--> (X * Y) + (X * Z)
538   // X * (Y - Z) <--> (X * Y) - (X * Z)
539   if (LOp == Instruction::Mul)
540     return ROp == Instruction::Add || ROp == Instruction::Sub;
541 
542   return false;
543 }
544 
545 /// Return whether "(X LOp Y) ROp Z" is always equal to
546 /// "(X ROp Z) LOp (Y ROp Z)".
547 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
548                                      Instruction::BinaryOps ROp) {
549   if (Instruction::isCommutative(ROp))
550     return leftDistributesOverRight(ROp, LOp);
551 
552   // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
553   return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
554 
555   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
556   // but this requires knowing that the addition does not overflow and other
557   // such subtleties.
558 }
559 
560 /// This function returns identity value for given opcode, which can be used to
561 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
562 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
563   if (isa<Constant>(V))
564     return nullptr;
565 
566   return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
567 }
568 
569 /// This function predicates factorization using distributive laws. By default,
570 /// it just returns the 'Op' inputs. But for special-cases like
571 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
572 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
573 /// allow more factorization opportunities.
574 static Instruction::BinaryOps
575 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
576                           Value *&LHS, Value *&RHS) {
577   assert(Op && "Expected a binary operator");
578   LHS = Op->getOperand(0);
579   RHS = Op->getOperand(1);
580   if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
581     Constant *C;
582     if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
583       // X << C --> X * (1 << C)
584       RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
585       return Instruction::Mul;
586     }
587     // TODO: We can add other conversions e.g. shr => div etc.
588   }
589   return Op->getOpcode();
590 }
591 
592 /// This tries to simplify binary operations by factorizing out common terms
593 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
594 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I,
595                                           Instruction::BinaryOps InnerOpcode,
596                                           Value *A, Value *B, Value *C,
597                                           Value *D) {
598   assert(A && B && C && D && "All values must be provided");
599 
600   Value *V = nullptr;
601   Value *SimplifiedInst = nullptr;
602   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
603   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
604 
605   // Does "X op' Y" always equal "Y op' X"?
606   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
607 
608   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
609   if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
610     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
611     // commutative case, "(A op' B) op (C op' A)"?
612     if (A == C || (InnerCommutative && A == D)) {
613       if (A != C)
614         std::swap(C, D);
615       // Consider forming "A op' (B op D)".
616       // If "B op D" simplifies then it can be formed with no cost.
617       V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
618       // If "B op D" doesn't simplify then only go on if both of the existing
619       // operations "A op' B" and "C op' D" will be zapped as no longer used.
620       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
621         V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
622       if (V) {
623         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
624       }
625     }
626 
627   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
628   if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
629     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
630     // commutative case, "(A op' B) op (B op' D)"?
631     if (B == D || (InnerCommutative && B == C)) {
632       if (B != D)
633         std::swap(C, D);
634       // Consider forming "(A op C) op' B".
635       // If "A op C" simplifies then it can be formed with no cost.
636       V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
637 
638       // If "A op C" doesn't simplify then only go on if both of the existing
639       // operations "A op' B" and "C op' D" will be zapped as no longer used.
640       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
641         V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
642       if (V) {
643         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
644       }
645     }
646 
647   if (SimplifiedInst) {
648     ++NumFactor;
649     SimplifiedInst->takeName(&I);
650 
651     // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
652     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
653       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
654         bool HasNSW = false;
655         bool HasNUW = false;
656         if (isa<OverflowingBinaryOperator>(&I)) {
657           HasNSW = I.hasNoSignedWrap();
658           HasNUW = I.hasNoUnsignedWrap();
659         }
660 
661         if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
662           HasNSW &= LOBO->hasNoSignedWrap();
663           HasNUW &= LOBO->hasNoUnsignedWrap();
664         }
665 
666         if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
667           HasNSW &= ROBO->hasNoSignedWrap();
668           HasNUW &= ROBO->hasNoUnsignedWrap();
669         }
670 
671         if (TopLevelOpcode == Instruction::Add &&
672             InnerOpcode == Instruction::Mul) {
673           // We can propagate 'nsw' if we know that
674           //  %Y = mul nsw i16 %X, C
675           //  %Z = add nsw i16 %Y, %X
676           // =>
677           //  %Z = mul nsw i16 %X, C+1
678           //
679           // iff C+1 isn't INT_MIN
680           const APInt *CInt;
681           if (match(V, m_APInt(CInt))) {
682             if (!CInt->isMinSignedValue())
683               BO->setHasNoSignedWrap(HasNSW);
684           }
685 
686           // nuw can be propagated with any constant or nuw value.
687           BO->setHasNoUnsignedWrap(HasNUW);
688         }
689       }
690     }
691   }
692   return SimplifiedInst;
693 }
694 
695 /// This tries to simplify binary operations which some other binary operation
696 /// distributes over either by factorizing out common terms
697 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
698 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
699 /// Returns the simplified value, or null if it didn't simplify.
700 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
701   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
702   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
703   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
704   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
705 
706   {
707     // Factorization.
708     Value *A, *B, *C, *D;
709     Instruction::BinaryOps LHSOpcode, RHSOpcode;
710     if (Op0)
711       LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
712     if (Op1)
713       RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
714 
715     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
716     // a common term.
717     if (Op0 && Op1 && LHSOpcode == RHSOpcode)
718       if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
719         return V;
720 
721     // The instruction has the form "(A op' B) op (C)".  Try to factorize common
722     // term.
723     if (Op0)
724       if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
725         if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
726           return V;
727 
728     // The instruction has the form "(B) op (C op' D)".  Try to factorize common
729     // term.
730     if (Op1)
731       if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
732         if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
733           return V;
734   }
735 
736   // Expansion.
737   if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
738     // The instruction has the form "(A op' B) op C".  See if expanding it out
739     // to "(A op C) op' (B op C)" results in simplifications.
740     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
741     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
742 
743     Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
744     Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I));
745 
746     // Do "A op C" and "B op C" both simplify?
747     if (L && R) {
748       // They do! Return "L op' R".
749       ++NumExpand;
750       C = Builder.CreateBinOp(InnerOpcode, L, R);
751       C->takeName(&I);
752       return C;
753     }
754 
755     // Does "A op C" simplify to the identity value for the inner opcode?
756     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
757       // They do! Return "B op C".
758       ++NumExpand;
759       C = Builder.CreateBinOp(TopLevelOpcode, B, C);
760       C->takeName(&I);
761       return C;
762     }
763 
764     // Does "B op C" simplify to the identity value for the inner opcode?
765     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
766       // They do! Return "A op C".
767       ++NumExpand;
768       C = Builder.CreateBinOp(TopLevelOpcode, A, C);
769       C->takeName(&I);
770       return C;
771     }
772   }
773 
774   if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
775     // The instruction has the form "A op (B op' C)".  See if expanding it out
776     // to "(A op B) op' (A op C)" results in simplifications.
777     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
778     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
779 
780     Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I));
781     Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
782 
783     // Do "A op B" and "A op C" both simplify?
784     if (L && R) {
785       // They do! Return "L op' R".
786       ++NumExpand;
787       A = Builder.CreateBinOp(InnerOpcode, L, R);
788       A->takeName(&I);
789       return A;
790     }
791 
792     // Does "A op B" simplify to the identity value for the inner opcode?
793     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
794       // They do! Return "A op C".
795       ++NumExpand;
796       A = Builder.CreateBinOp(TopLevelOpcode, A, C);
797       A->takeName(&I);
798       return A;
799     }
800 
801     // Does "A op C" simplify to the identity value for the inner opcode?
802     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
803       // They do! Return "A op B".
804       ++NumExpand;
805       A = Builder.CreateBinOp(TopLevelOpcode, A, B);
806       A->takeName(&I);
807       return A;
808     }
809   }
810 
811   return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
812 }
813 
814 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
815                                                         Value *LHS,
816                                                         Value *RHS) {
817   Value *A, *B, *C, *D, *E, *F;
818   bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
819   bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
820   if (!LHSIsSelect && !RHSIsSelect)
821     return nullptr;
822 
823   FastMathFlags FMF;
824   BuilderTy::FastMathFlagGuard Guard(Builder);
825   if (isa<FPMathOperator>(&I)) {
826     FMF = I.getFastMathFlags();
827     Builder.setFastMathFlags(FMF);
828   }
829 
830   Instruction::BinaryOps Opcode = I.getOpcode();
831   SimplifyQuery Q = SQ.getWithInstruction(&I);
832 
833   Value *Cond, *True = nullptr, *False = nullptr;
834   if (LHSIsSelect && RHSIsSelect && A == D) {
835     // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
836     Cond = A;
837     True = SimplifyBinOp(Opcode, B, E, FMF, Q);
838     False = SimplifyBinOp(Opcode, C, F, FMF, Q);
839 
840     if (LHS->hasOneUse() && RHS->hasOneUse()) {
841       if (False && !True)
842         True = Builder.CreateBinOp(Opcode, B, E);
843       else if (True && !False)
844         False = Builder.CreateBinOp(Opcode, C, F);
845     }
846   } else if (LHSIsSelect && LHS->hasOneUse()) {
847     // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
848     Cond = A;
849     True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
850     False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
851   } else if (RHSIsSelect && RHS->hasOneUse()) {
852     // X op (D ? E : F) -> D ? (X op E) : (X op F)
853     Cond = D;
854     True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
855     False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
856   }
857 
858   if (!True || !False)
859     return nullptr;
860 
861   Value *SI = Builder.CreateSelect(Cond, True, False);
862   SI->takeName(&I);
863   return SI;
864 }
865 
866 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
867 /// constant zero (which is the 'negate' form).
868 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
869   Value *NegV;
870   if (match(V, m_Neg(m_Value(NegV))))
871     return NegV;
872 
873   // Constants can be considered to be negated values if they can be folded.
874   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
875     return ConstantExpr::getNeg(C);
876 
877   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
878     if (C->getType()->getElementType()->isIntegerTy())
879       return ConstantExpr::getNeg(C);
880 
881   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
882     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
883       Constant *Elt = CV->getAggregateElement(i);
884       if (!Elt)
885         return nullptr;
886 
887       if (isa<UndefValue>(Elt))
888         continue;
889 
890       if (!isa<ConstantInt>(Elt))
891         return nullptr;
892     }
893     return ConstantExpr::getNeg(CV);
894   }
895 
896   return nullptr;
897 }
898 
899 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
900                                              InstCombiner::BuilderTy &Builder) {
901   if (auto *Cast = dyn_cast<CastInst>(&I))
902     return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
903 
904   assert(I.isBinaryOp() && "Unexpected opcode for select folding");
905 
906   // Figure out if the constant is the left or the right argument.
907   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
908   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
909 
910   if (auto *SOC = dyn_cast<Constant>(SO)) {
911     if (ConstIsRHS)
912       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
913     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
914   }
915 
916   Value *Op0 = SO, *Op1 = ConstOperand;
917   if (!ConstIsRHS)
918     std::swap(Op0, Op1);
919 
920   auto *BO = cast<BinaryOperator>(&I);
921   Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
922                                   SO->getName() + ".op");
923   auto *FPInst = dyn_cast<Instruction>(RI);
924   if (FPInst && isa<FPMathOperator>(FPInst))
925     FPInst->copyFastMathFlags(BO);
926   return RI;
927 }
928 
929 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op,
930                                                 SelectInst *SI) {
931   // Don't modify shared select instructions.
932   if (!SI->hasOneUse())
933     return nullptr;
934 
935   Value *TV = SI->getTrueValue();
936   Value *FV = SI->getFalseValue();
937   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
938     return nullptr;
939 
940   // Bool selects with constant operands can be folded to logical ops.
941   if (SI->getType()->isIntOrIntVectorTy(1))
942     return nullptr;
943 
944   // If it's a bitcast involving vectors, make sure it has the same number of
945   // elements on both sides.
946   if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
947     VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
948     VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
949 
950     // Verify that either both or neither are vectors.
951     if ((SrcTy == nullptr) != (DestTy == nullptr))
952       return nullptr;
953 
954     // If vectors, verify that they have the same number of elements.
955     if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
956       return nullptr;
957   }
958 
959   // Test if a CmpInst instruction is used exclusively by a select as
960   // part of a minimum or maximum operation. If so, refrain from doing
961   // any other folding. This helps out other analyses which understand
962   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
963   // and CodeGen. And in this case, at least one of the comparison
964   // operands has at least one user besides the compare (the select),
965   // which would often largely negate the benefit of folding anyway.
966   if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
967     if (CI->hasOneUse()) {
968       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
969 
970       // FIXME: This is a hack to avoid infinite looping with min/max patterns.
971       //        We have to ensure that vector constants that only differ with
972       //        undef elements are treated as equivalent.
973       auto areLooselyEqual = [](Value *A, Value *B) {
974         if (A == B)
975           return true;
976 
977         // Test for vector constants.
978         Constant *ConstA, *ConstB;
979         if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
980           return false;
981 
982         // TODO: Deal with FP constants?
983         if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
984           return false;
985 
986         // Compare for equality including undefs as equal.
987         auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
988         const APInt *C;
989         return match(Cmp, m_APIntAllowUndef(C)) && C->isOneValue();
990       };
991 
992       if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
993           (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
994         return nullptr;
995     }
996   }
997 
998   Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
999   Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
1000   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1001 }
1002 
1003 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
1004                                         InstCombiner::BuilderTy &Builder) {
1005   bool ConstIsRHS = isa<Constant>(I->getOperand(1));
1006   Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
1007 
1008   if (auto *InC = dyn_cast<Constant>(InV)) {
1009     if (ConstIsRHS)
1010       return ConstantExpr::get(I->getOpcode(), InC, C);
1011     return ConstantExpr::get(I->getOpcode(), C, InC);
1012   }
1013 
1014   Value *Op0 = InV, *Op1 = C;
1015   if (!ConstIsRHS)
1016     std::swap(Op0, Op1);
1017 
1018   Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo");
1019   auto *FPInst = dyn_cast<Instruction>(RI);
1020   if (FPInst && isa<FPMathOperator>(FPInst))
1021     FPInst->copyFastMathFlags(I);
1022   return RI;
1023 }
1024 
1025 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1026   unsigned NumPHIValues = PN->getNumIncomingValues();
1027   if (NumPHIValues == 0)
1028     return nullptr;
1029 
1030   // We normally only transform phis with a single use.  However, if a PHI has
1031   // multiple uses and they are all the same operation, we can fold *all* of the
1032   // uses into the PHI.
1033   if (!PN->hasOneUse()) {
1034     // Walk the use list for the instruction, comparing them to I.
1035     for (User *U : PN->users()) {
1036       Instruction *UI = cast<Instruction>(U);
1037       if (UI != &I && !I.isIdenticalTo(UI))
1038         return nullptr;
1039     }
1040     // Otherwise, we can replace *all* users with the new PHI we form.
1041   }
1042 
1043   // Check to see if all of the operands of the PHI are simple constants
1044   // (constantint/constantfp/undef).  If there is one non-constant value,
1045   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
1046   // bail out.  We don't do arbitrary constant expressions here because moving
1047   // their computation can be expensive without a cost model.
1048   BasicBlock *NonConstBB = nullptr;
1049   for (unsigned i = 0; i != NumPHIValues; ++i) {
1050     Value *InVal = PN->getIncomingValue(i);
1051     // If I is a freeze instruction, count undef as a non-constant.
1052     if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal) &&
1053         (!isa<FreezeInst>(I) || isGuaranteedNotToBeUndefOrPoison(InVal)))
1054       continue;
1055 
1056     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
1057     if (NonConstBB) return nullptr;  // More than one non-const value.
1058 
1059     NonConstBB = PN->getIncomingBlock(i);
1060 
1061     // If the InVal is an invoke at the end of the pred block, then we can't
1062     // insert a computation after it without breaking the edge.
1063     if (isa<InvokeInst>(InVal))
1064       if (cast<Instruction>(InVal)->getParent() == NonConstBB)
1065         return nullptr;
1066 
1067     // If the incoming non-constant value is in I's block, we will remove one
1068     // instruction, but insert another equivalent one, leading to infinite
1069     // instcombine.
1070     if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
1071       return nullptr;
1072   }
1073 
1074   // If there is exactly one non-constant value, we can insert a copy of the
1075   // operation in that block.  However, if this is a critical edge, we would be
1076   // inserting the computation on some other paths (e.g. inside a loop).  Only
1077   // do this if the pred block is unconditionally branching into the phi block.
1078   if (NonConstBB != nullptr) {
1079     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1080     if (!BI || !BI->isUnconditional()) return nullptr;
1081   }
1082 
1083   // Okay, we can do the transformation: create the new PHI node.
1084   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1085   InsertNewInstBefore(NewPN, *PN);
1086   NewPN->takeName(PN);
1087 
1088   // If we are going to have to insert a new computation, do so right before the
1089   // predecessor's terminator.
1090   if (NonConstBB)
1091     Builder.SetInsertPoint(NonConstBB->getTerminator());
1092 
1093   // Next, add all of the operands to the PHI.
1094   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1095     // We only currently try to fold the condition of a select when it is a phi,
1096     // not the true/false values.
1097     Value *TrueV = SI->getTrueValue();
1098     Value *FalseV = SI->getFalseValue();
1099     BasicBlock *PhiTransBB = PN->getParent();
1100     for (unsigned i = 0; i != NumPHIValues; ++i) {
1101       BasicBlock *ThisBB = PN->getIncomingBlock(i);
1102       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1103       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1104       Value *InV = nullptr;
1105       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
1106       // even if currently isNullValue gives false.
1107       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1108       // For vector constants, we cannot use isNullValue to fold into
1109       // FalseVInPred versus TrueVInPred. When we have individual nonzero
1110       // elements in the vector, we will incorrectly fold InC to
1111       // `TrueVInPred`.
1112       if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC))
1113         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1114       else {
1115         // Generate the select in the same block as PN's current incoming block.
1116         // Note: ThisBB need not be the NonConstBB because vector constants
1117         // which are constants by definition are handled here.
1118         // FIXME: This can lead to an increase in IR generation because we might
1119         // generate selects for vector constant phi operand, that could not be
1120         // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1121         // non-vector phis, this transformation was always profitable because
1122         // the select would be generated exactly once in the NonConstBB.
1123         Builder.SetInsertPoint(ThisBB->getTerminator());
1124         InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1125                                    FalseVInPred, "phi.sel");
1126       }
1127       NewPN->addIncoming(InV, ThisBB);
1128     }
1129   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1130     Constant *C = cast<Constant>(I.getOperand(1));
1131     for (unsigned i = 0; i != NumPHIValues; ++i) {
1132       Value *InV = nullptr;
1133       if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1134         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1135       else
1136         InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i),
1137                                 C, "phi.cmp");
1138       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1139     }
1140   } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1141     for (unsigned i = 0; i != NumPHIValues; ++i) {
1142       Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1143                                              Builder);
1144       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1145     }
1146   } else if (isa<FreezeInst>(&I)) {
1147     for (unsigned i = 0; i != NumPHIValues; ++i) {
1148       Value *InV;
1149       if (NonConstBB == PN->getIncomingBlock(i))
1150         InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr");
1151       else
1152         InV = PN->getIncomingValue(i);
1153       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1154     }
1155   } else {
1156     CastInst *CI = cast<CastInst>(&I);
1157     Type *RetTy = CI->getType();
1158     for (unsigned i = 0; i != NumPHIValues; ++i) {
1159       Value *InV;
1160       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1161         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1162       else
1163         InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1164                                  I.getType(), "phi.cast");
1165       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1166     }
1167   }
1168 
1169   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1170     Instruction *User = cast<Instruction>(*UI++);
1171     if (User == &I) continue;
1172     replaceInstUsesWith(*User, NewPN);
1173     eraseInstFromFunction(*User);
1174   }
1175   return replaceInstUsesWith(I, NewPN);
1176 }
1177 
1178 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1179   if (!isa<Constant>(I.getOperand(1)))
1180     return nullptr;
1181 
1182   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1183     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1184       return NewSel;
1185   } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1186     if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1187       return NewPhi;
1188   }
1189   return nullptr;
1190 }
1191 
1192 /// Given a pointer type and a constant offset, determine whether or not there
1193 /// is a sequence of GEP indices into the pointed type that will land us at the
1194 /// specified offset. If so, fill them into NewIndices and return the resultant
1195 /// element type, otherwise return null.
1196 Type *
1197 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
1198                                       SmallVectorImpl<Value *> &NewIndices) {
1199   Type *Ty = PtrTy->getElementType();
1200   if (!Ty->isSized())
1201     return nullptr;
1202 
1203   // Start with the index over the outer type.  Note that the type size
1204   // might be zero (even if the offset isn't zero) if the indexed type
1205   // is something like [0 x {int, int}]
1206   Type *IndexTy = DL.getIndexType(PtrTy);
1207   int64_t FirstIdx = 0;
1208   if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
1209     FirstIdx = Offset/TySize;
1210     Offset -= FirstIdx*TySize;
1211 
1212     // Handle hosts where % returns negative instead of values [0..TySize).
1213     if (Offset < 0) {
1214       --FirstIdx;
1215       Offset += TySize;
1216       assert(Offset >= 0);
1217     }
1218     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
1219   }
1220 
1221   NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
1222 
1223   // Index into the types.  If we fail, set OrigBase to null.
1224   while (Offset) {
1225     // Indexing into tail padding between struct/array elements.
1226     if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
1227       return nullptr;
1228 
1229     if (StructType *STy = dyn_cast<StructType>(Ty)) {
1230       const StructLayout *SL = DL.getStructLayout(STy);
1231       assert(Offset < (int64_t)SL->getSizeInBytes() &&
1232              "Offset must stay within the indexed type");
1233 
1234       unsigned Elt = SL->getElementContainingOffset(Offset);
1235       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1236                                             Elt));
1237 
1238       Offset -= SL->getElementOffset(Elt);
1239       Ty = STy->getElementType(Elt);
1240     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
1241       uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
1242       assert(EltSize && "Cannot index into a zero-sized array");
1243       NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
1244       Offset %= EltSize;
1245       Ty = AT->getElementType();
1246     } else {
1247       // Otherwise, we can't index into the middle of this atomic type, bail.
1248       return nullptr;
1249     }
1250   }
1251 
1252   return Ty;
1253 }
1254 
1255 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1256   // If this GEP has only 0 indices, it is the same pointer as
1257   // Src. If Src is not a trivial GEP too, don't combine
1258   // the indices.
1259   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1260       !Src.hasOneUse())
1261     return false;
1262   return true;
1263 }
1264 
1265 /// Return a value X such that Val = X * Scale, or null if none.
1266 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1267 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1268   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1269   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1270          Scale.getBitWidth() && "Scale not compatible with value!");
1271 
1272   // If Val is zero or Scale is one then Val = Val * Scale.
1273   if (match(Val, m_Zero()) || Scale == 1) {
1274     NoSignedWrap = true;
1275     return Val;
1276   }
1277 
1278   // If Scale is zero then it does not divide Val.
1279   if (Scale.isMinValue())
1280     return nullptr;
1281 
1282   // Look through chains of multiplications, searching for a constant that is
1283   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1284   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1285   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1286   // down from Val:
1287   //
1288   //     Val = M1 * X          ||   Analysis starts here and works down
1289   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1290   //      M2 =  Z * 4          \/   than one use
1291   //
1292   // Then to modify a term at the bottom:
1293   //
1294   //     Val = M1 * X
1295   //      M1 =  Z * Y          ||   Replaced M2 with Z
1296   //
1297   // Then to work back up correcting nsw flags.
1298 
1299   // Op - the term we are currently analyzing.  Starts at Val then drills down.
1300   // Replaced with its descaled value before exiting from the drill down loop.
1301   Value *Op = Val;
1302 
1303   // Parent - initially null, but after drilling down notes where Op came from.
1304   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1305   // 0'th operand of Val.
1306   std::pair<Instruction *, unsigned> Parent;
1307 
1308   // Set if the transform requires a descaling at deeper levels that doesn't
1309   // overflow.
1310   bool RequireNoSignedWrap = false;
1311 
1312   // Log base 2 of the scale. Negative if not a power of 2.
1313   int32_t logScale = Scale.exactLogBase2();
1314 
1315   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1316     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1317       // If Op is a constant divisible by Scale then descale to the quotient.
1318       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1319       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1320       if (!Remainder.isMinValue())
1321         // Not divisible by Scale.
1322         return nullptr;
1323       // Replace with the quotient in the parent.
1324       Op = ConstantInt::get(CI->getType(), Quotient);
1325       NoSignedWrap = true;
1326       break;
1327     }
1328 
1329     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1330       if (BO->getOpcode() == Instruction::Mul) {
1331         // Multiplication.
1332         NoSignedWrap = BO->hasNoSignedWrap();
1333         if (RequireNoSignedWrap && !NoSignedWrap)
1334           return nullptr;
1335 
1336         // There are three cases for multiplication: multiplication by exactly
1337         // the scale, multiplication by a constant different to the scale, and
1338         // multiplication by something else.
1339         Value *LHS = BO->getOperand(0);
1340         Value *RHS = BO->getOperand(1);
1341 
1342         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1343           // Multiplication by a constant.
1344           if (CI->getValue() == Scale) {
1345             // Multiplication by exactly the scale, replace the multiplication
1346             // by its left-hand side in the parent.
1347             Op = LHS;
1348             break;
1349           }
1350 
1351           // Otherwise drill down into the constant.
1352           if (!Op->hasOneUse())
1353             return nullptr;
1354 
1355           Parent = std::make_pair(BO, 1);
1356           continue;
1357         }
1358 
1359         // Multiplication by something else. Drill down into the left-hand side
1360         // since that's where the reassociate pass puts the good stuff.
1361         if (!Op->hasOneUse())
1362           return nullptr;
1363 
1364         Parent = std::make_pair(BO, 0);
1365         continue;
1366       }
1367 
1368       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1369           isa<ConstantInt>(BO->getOperand(1))) {
1370         // Multiplication by a power of 2.
1371         NoSignedWrap = BO->hasNoSignedWrap();
1372         if (RequireNoSignedWrap && !NoSignedWrap)
1373           return nullptr;
1374 
1375         Value *LHS = BO->getOperand(0);
1376         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1377           getLimitedValue(Scale.getBitWidth());
1378         // Op = LHS << Amt.
1379 
1380         if (Amt == logScale) {
1381           // Multiplication by exactly the scale, replace the multiplication
1382           // by its left-hand side in the parent.
1383           Op = LHS;
1384           break;
1385         }
1386         if (Amt < logScale || !Op->hasOneUse())
1387           return nullptr;
1388 
1389         // Multiplication by more than the scale.  Reduce the multiplying amount
1390         // by the scale in the parent.
1391         Parent = std::make_pair(BO, 1);
1392         Op = ConstantInt::get(BO->getType(), Amt - logScale);
1393         break;
1394       }
1395     }
1396 
1397     if (!Op->hasOneUse())
1398       return nullptr;
1399 
1400     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1401       if (Cast->getOpcode() == Instruction::SExt) {
1402         // Op is sign-extended from a smaller type, descale in the smaller type.
1403         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1404         APInt SmallScale = Scale.trunc(SmallSize);
1405         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1406         // descale Op as (sext Y) * Scale.  In order to have
1407         //   sext (Y * SmallScale) = (sext Y) * Scale
1408         // some conditions need to hold however: SmallScale must sign-extend to
1409         // Scale and the multiplication Y * SmallScale should not overflow.
1410         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1411           // SmallScale does not sign-extend to Scale.
1412           return nullptr;
1413         assert(SmallScale.exactLogBase2() == logScale);
1414         // Require that Y * SmallScale must not overflow.
1415         RequireNoSignedWrap = true;
1416 
1417         // Drill down through the cast.
1418         Parent = std::make_pair(Cast, 0);
1419         Scale = SmallScale;
1420         continue;
1421       }
1422 
1423       if (Cast->getOpcode() == Instruction::Trunc) {
1424         // Op is truncated from a larger type, descale in the larger type.
1425         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1426         //   trunc (Y * sext Scale) = (trunc Y) * Scale
1427         // always holds.  However (trunc Y) * Scale may overflow even if
1428         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1429         // from this point up in the expression (see later).
1430         if (RequireNoSignedWrap)
1431           return nullptr;
1432 
1433         // Drill down through the cast.
1434         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1435         Parent = std::make_pair(Cast, 0);
1436         Scale = Scale.sext(LargeSize);
1437         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1438           logScale = -1;
1439         assert(Scale.exactLogBase2() == logScale);
1440         continue;
1441       }
1442     }
1443 
1444     // Unsupported expression, bail out.
1445     return nullptr;
1446   }
1447 
1448   // If Op is zero then Val = Op * Scale.
1449   if (match(Op, m_Zero())) {
1450     NoSignedWrap = true;
1451     return Op;
1452   }
1453 
1454   // We know that we can successfully descale, so from here on we can safely
1455   // modify the IR.  Op holds the descaled version of the deepest term in the
1456   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1457   // not to overflow.
1458 
1459   if (!Parent.first)
1460     // The expression only had one term.
1461     return Op;
1462 
1463   // Rewrite the parent using the descaled version of its operand.
1464   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1465   assert(Op != Parent.first->getOperand(Parent.second) &&
1466          "Descaling was a no-op?");
1467   replaceOperand(*Parent.first, Parent.second, Op);
1468   Worklist.push(Parent.first);
1469 
1470   // Now work back up the expression correcting nsw flags.  The logic is based
1471   // on the following observation: if X * Y is known not to overflow as a signed
1472   // multiplication, and Y is replaced by a value Z with smaller absolute value,
1473   // then X * Z will not overflow as a signed multiplication either.  As we work
1474   // our way up, having NoSignedWrap 'true' means that the descaled value at the
1475   // current level has strictly smaller absolute value than the original.
1476   Instruction *Ancestor = Parent.first;
1477   do {
1478     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1479       // If the multiplication wasn't nsw then we can't say anything about the
1480       // value of the descaled multiplication, and we have to clear nsw flags
1481       // from this point on up.
1482       bool OpNoSignedWrap = BO->hasNoSignedWrap();
1483       NoSignedWrap &= OpNoSignedWrap;
1484       if (NoSignedWrap != OpNoSignedWrap) {
1485         BO->setHasNoSignedWrap(NoSignedWrap);
1486         Worklist.push(Ancestor);
1487       }
1488     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1489       // The fact that the descaled input to the trunc has smaller absolute
1490       // value than the original input doesn't tell us anything useful about
1491       // the absolute values of the truncations.
1492       NoSignedWrap = false;
1493     }
1494     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1495            "Failed to keep proper track of nsw flags while drilling down?");
1496 
1497     if (Ancestor == Val)
1498       // Got to the top, all done!
1499       return Val;
1500 
1501     // Move up one level in the expression.
1502     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1503     Ancestor = Ancestor->user_back();
1504   } while (true);
1505 }
1506 
1507 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
1508   // FIXME: some of this is likely fine for scalable vectors
1509   if (!isa<FixedVectorType>(Inst.getType()))
1510     return nullptr;
1511 
1512   BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1513   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1514   assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1515          cast<VectorType>(Inst.getType())->getElementCount());
1516   assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1517          cast<VectorType>(Inst.getType())->getElementCount());
1518 
1519   // If both operands of the binop are vector concatenations, then perform the
1520   // narrow binop on each pair of the source operands followed by concatenation
1521   // of the results.
1522   Value *L0, *L1, *R0, *R1;
1523   ArrayRef<int> Mask;
1524   if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1525       match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1526       LHS->hasOneUse() && RHS->hasOneUse() &&
1527       cast<ShuffleVectorInst>(LHS)->isConcat() &&
1528       cast<ShuffleVectorInst>(RHS)->isConcat()) {
1529     // This transform does not have the speculative execution constraint as
1530     // below because the shuffle is a concatenation. The new binops are
1531     // operating on exactly the same elements as the existing binop.
1532     // TODO: We could ease the mask requirement to allow different undef lanes,
1533     //       but that requires an analysis of the binop-with-undef output value.
1534     Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1535     if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1536       BO->copyIRFlags(&Inst);
1537     Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1538     if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1539       BO->copyIRFlags(&Inst);
1540     return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1541   }
1542 
1543   // It may not be safe to reorder shuffles and things like div, urem, etc.
1544   // because we may trap when executing those ops on unknown vector elements.
1545   // See PR20059.
1546   if (!isSafeToSpeculativelyExecute(&Inst))
1547     return nullptr;
1548 
1549   auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1550     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1551     if (auto *BO = dyn_cast<BinaryOperator>(XY))
1552       BO->copyIRFlags(&Inst);
1553     return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
1554   };
1555 
1556   // If both arguments of the binary operation are shuffles that use the same
1557   // mask and shuffle within a single vector, move the shuffle after the binop.
1558   Value *V1, *V2;
1559   if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
1560       match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
1561       V1->getType() == V2->getType() &&
1562       (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1563     // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1564     return createBinOpShuffle(V1, V2, Mask);
1565   }
1566 
1567   // If both arguments of a commutative binop are select-shuffles that use the
1568   // same mask with commuted operands, the shuffles are unnecessary.
1569   if (Inst.isCommutative() &&
1570       match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1571       match(RHS,
1572             m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1573     auto *LShuf = cast<ShuffleVectorInst>(LHS);
1574     auto *RShuf = cast<ShuffleVectorInst>(RHS);
1575     // TODO: Allow shuffles that contain undefs in the mask?
1576     //       That is legal, but it reduces undef knowledge.
1577     // TODO: Allow arbitrary shuffles by shuffling after binop?
1578     //       That might be legal, but we have to deal with poison.
1579     if (LShuf->isSelect() &&
1580         !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
1581         RShuf->isSelect() &&
1582         !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
1583       // Example:
1584       // LHS = shuffle V1, V2, <0, 5, 6, 3>
1585       // RHS = shuffle V2, V1, <0, 5, 6, 3>
1586       // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1587       Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1588       NewBO->copyIRFlags(&Inst);
1589       return NewBO;
1590     }
1591   }
1592 
1593   // If one argument is a shuffle within one vector and the other is a constant,
1594   // try moving the shuffle after the binary operation. This canonicalization
1595   // intends to move shuffles closer to other shuffles and binops closer to
1596   // other binops, so they can be folded. It may also enable demanded elements
1597   // transforms.
1598   unsigned NumElts = cast<FixedVectorType>(Inst.getType())->getNumElements();
1599   Constant *C;
1600   if (match(&Inst,
1601             m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
1602                       m_Constant(C))) && !isa<ConstantExpr>(C) &&
1603       cast<FixedVectorType>(V1->getType())->getNumElements() <= NumElts) {
1604     assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
1605            "Shuffle should not change scalar type");
1606 
1607     // Find constant NewC that has property:
1608     //   shuffle(NewC, ShMask) = C
1609     // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1610     // reorder is not possible. A 1-to-1 mapping is not required. Example:
1611     // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1612     bool ConstOp1 = isa<Constant>(RHS);
1613     ArrayRef<int> ShMask = Mask;
1614     unsigned SrcVecNumElts =
1615         cast<FixedVectorType>(V1->getType())->getNumElements();
1616     UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1617     SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1618     bool MayChange = true;
1619     for (unsigned I = 0; I < NumElts; ++I) {
1620       Constant *CElt = C->getAggregateElement(I);
1621       if (ShMask[I] >= 0) {
1622         assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1623         Constant *NewCElt = NewVecC[ShMask[I]];
1624         // Bail out if:
1625         // 1. The constant vector contains a constant expression.
1626         // 2. The shuffle needs an element of the constant vector that can't
1627         //    be mapped to a new constant vector.
1628         // 3. This is a widening shuffle that copies elements of V1 into the
1629         //    extended elements (extending with undef is allowed).
1630         if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1631             I >= SrcVecNumElts) {
1632           MayChange = false;
1633           break;
1634         }
1635         NewVecC[ShMask[I]] = CElt;
1636       }
1637       // If this is a widening shuffle, we must be able to extend with undef
1638       // elements. If the original binop does not produce an undef in the high
1639       // lanes, then this transform is not safe.
1640       // Similarly for undef lanes due to the shuffle mask, we can only
1641       // transform binops that preserve undef.
1642       // TODO: We could shuffle those non-undef constant values into the
1643       //       result by using a constant vector (rather than an undef vector)
1644       //       as operand 1 of the new binop, but that might be too aggressive
1645       //       for target-independent shuffle creation.
1646       if (I >= SrcVecNumElts || ShMask[I] < 0) {
1647         Constant *MaybeUndef =
1648             ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1649                      : ConstantExpr::get(Opcode, CElt, UndefScalar);
1650         if (!isa<UndefValue>(MaybeUndef)) {
1651           MayChange = false;
1652           break;
1653         }
1654       }
1655     }
1656     if (MayChange) {
1657       Constant *NewC = ConstantVector::get(NewVecC);
1658       // It may not be safe to execute a binop on a vector with undef elements
1659       // because the entire instruction can be folded to undef or create poison
1660       // that did not exist in the original code.
1661       if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1662         NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1663 
1664       // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1665       // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1666       Value *NewLHS = ConstOp1 ? V1 : NewC;
1667       Value *NewRHS = ConstOp1 ? NewC : V1;
1668       return createBinOpShuffle(NewLHS, NewRHS, Mask);
1669     }
1670   }
1671 
1672   // Try to reassociate to sink a splat shuffle after a binary operation.
1673   if (Inst.isAssociative() && Inst.isCommutative()) {
1674     // Canonicalize shuffle operand as LHS.
1675     if (isa<ShuffleVectorInst>(RHS))
1676       std::swap(LHS, RHS);
1677 
1678     Value *X;
1679     ArrayRef<int> MaskC;
1680     int SplatIndex;
1681     BinaryOperator *BO;
1682     if (!match(LHS,
1683                m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
1684         !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1685         X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) ||
1686         BO->getOpcode() != Opcode)
1687       return nullptr;
1688 
1689     // FIXME: This may not be safe if the analysis allows undef elements. By
1690     //        moving 'Y' before the splat shuffle, we are implicitly assuming
1691     //        that it is not undef/poison at the splat index.
1692     Value *Y, *OtherOp;
1693     if (isSplatValue(BO->getOperand(0), SplatIndex)) {
1694       Y = BO->getOperand(0);
1695       OtherOp = BO->getOperand(1);
1696     } else if (isSplatValue(BO->getOperand(1), SplatIndex)) {
1697       Y = BO->getOperand(1);
1698       OtherOp = BO->getOperand(0);
1699     } else {
1700       return nullptr;
1701     }
1702 
1703     // X and Y are splatted values, so perform the binary operation on those
1704     // values followed by a splat followed by the 2nd binary operation:
1705     // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1706     Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1707     UndefValue *Undef = UndefValue::get(Inst.getType());
1708     SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1709     Value *NewSplat = Builder.CreateShuffleVector(NewBO, Undef, NewMask);
1710     Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1711 
1712     // Intersect FMF on both new binops. Other (poison-generating) flags are
1713     // dropped to be safe.
1714     if (isa<FPMathOperator>(R)) {
1715       R->copyFastMathFlags(&Inst);
1716       R->andIRFlags(BO);
1717     }
1718     if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1719       NewInstBO->copyIRFlags(R);
1720     return R;
1721   }
1722 
1723   return nullptr;
1724 }
1725 
1726 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1727 /// of a value. This requires a potentially expensive known bits check to make
1728 /// sure the narrow op does not overflow.
1729 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
1730   // We need at least one extended operand.
1731   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1732 
1733   // If this is a sub, we swap the operands since we always want an extension
1734   // on the RHS. The LHS can be an extension or a constant.
1735   if (BO.getOpcode() == Instruction::Sub)
1736     std::swap(Op0, Op1);
1737 
1738   Value *X;
1739   bool IsSext = match(Op0, m_SExt(m_Value(X)));
1740   if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1741     return nullptr;
1742 
1743   // If both operands are the same extension from the same source type and we
1744   // can eliminate at least one (hasOneUse), this might work.
1745   CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1746   Value *Y;
1747   if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1748         cast<Operator>(Op1)->getOpcode() == CastOpc &&
1749         (Op0->hasOneUse() || Op1->hasOneUse()))) {
1750     // If that did not match, see if we have a suitable constant operand.
1751     // Truncating and extending must produce the same constant.
1752     Constant *WideC;
1753     if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1754       return nullptr;
1755     Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1756     if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1757       return nullptr;
1758     Y = NarrowC;
1759   }
1760 
1761   // Swap back now that we found our operands.
1762   if (BO.getOpcode() == Instruction::Sub)
1763     std::swap(X, Y);
1764 
1765   // Both operands have narrow versions. Last step: the math must not overflow
1766   // in the narrow width.
1767   if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1768     return nullptr;
1769 
1770   // bo (ext X), (ext Y) --> ext (bo X, Y)
1771   // bo (ext X), C       --> ext (bo X, C')
1772   Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1773   if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1774     if (IsSext)
1775       NewBinOp->setHasNoSignedWrap();
1776     else
1777       NewBinOp->setHasNoUnsignedWrap();
1778   }
1779   return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1780 }
1781 
1782 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1783   // At least one GEP must be inbounds.
1784   if (!GEP1.isInBounds() && !GEP2.isInBounds())
1785     return false;
1786 
1787   return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1788          (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1789 }
1790 
1791 /// Thread a GEP operation with constant indices through the constant true/false
1792 /// arms of a select.
1793 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1794                                   InstCombiner::BuilderTy &Builder) {
1795   if (!GEP.hasAllConstantIndices())
1796     return nullptr;
1797 
1798   Instruction *Sel;
1799   Value *Cond;
1800   Constant *TrueC, *FalseC;
1801   if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1802       !match(Sel,
1803              m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1804     return nullptr;
1805 
1806   // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1807   // Propagate 'inbounds' and metadata from existing instructions.
1808   // Note: using IRBuilder to create the constants for efficiency.
1809   SmallVector<Value *, 4> IndexC(GEP.idx_begin(), GEP.idx_end());
1810   bool IsInBounds = GEP.isInBounds();
1811   Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(TrueC, IndexC)
1812                                : Builder.CreateGEP(TrueC, IndexC);
1813   Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(FalseC, IndexC)
1814                                 : Builder.CreateGEP(FalseC, IndexC);
1815   return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1816 }
1817 
1818 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1819   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1820   Type *GEPType = GEP.getType();
1821   Type *GEPEltType = GEP.getSourceElementType();
1822   bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
1823   if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
1824     return replaceInstUsesWith(GEP, V);
1825 
1826   // For vector geps, use the generic demanded vector support.
1827   // Skip if GEP return type is scalable. The number of elements is unknown at
1828   // compile-time.
1829   if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
1830     auto VWidth = GEPFVTy->getNumElements();
1831     APInt UndefElts(VWidth, 0);
1832     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1833     if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
1834                                               UndefElts)) {
1835       if (V != &GEP)
1836         return replaceInstUsesWith(GEP, V);
1837       return &GEP;
1838     }
1839 
1840     // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
1841     // possible (decide on canonical form for pointer broadcast), 3) exploit
1842     // undef elements to decrease demanded bits
1843   }
1844 
1845   Value *PtrOp = GEP.getOperand(0);
1846 
1847   // Eliminate unneeded casts for indices, and replace indices which displace
1848   // by multiples of a zero size type with zero.
1849   bool MadeChange = false;
1850 
1851   // Index width may not be the same width as pointer width.
1852   // Data layout chooses the right type based on supported integer types.
1853   Type *NewScalarIndexTy =
1854       DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1855 
1856   gep_type_iterator GTI = gep_type_begin(GEP);
1857   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1858        ++I, ++GTI) {
1859     // Skip indices into struct types.
1860     if (GTI.isStruct())
1861       continue;
1862 
1863     Type *IndexTy = (*I)->getType();
1864     Type *NewIndexType =
1865         IndexTy->isVectorTy()
1866             ? VectorType::get(NewScalarIndexTy,
1867                               cast<VectorType>(IndexTy)->getElementCount())
1868             : NewScalarIndexTy;
1869 
1870     // If the element type has zero size then any index over it is equivalent
1871     // to an index of zero, so replace it with zero if it is not zero already.
1872     Type *EltTy = GTI.getIndexedType();
1873     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
1874       if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
1875         *I = Constant::getNullValue(NewIndexType);
1876         MadeChange = true;
1877       }
1878 
1879     if (IndexTy != NewIndexType) {
1880       // If we are using a wider index than needed for this platform, shrink
1881       // it to what we need.  If narrower, sign-extend it to what we need.
1882       // This explicit cast can make subsequent optimizations more obvious.
1883       *I = Builder.CreateIntCast(*I, NewIndexType, true);
1884       MadeChange = true;
1885     }
1886   }
1887   if (MadeChange)
1888     return &GEP;
1889 
1890   // Check to see if the inputs to the PHI node are getelementptr instructions.
1891   if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1892     auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1893     if (!Op1)
1894       return nullptr;
1895 
1896     // Don't fold a GEP into itself through a PHI node. This can only happen
1897     // through the back-edge of a loop. Folding a GEP into itself means that
1898     // the value of the previous iteration needs to be stored in the meantime,
1899     // thus requiring an additional register variable to be live, but not
1900     // actually achieving anything (the GEP still needs to be executed once per
1901     // loop iteration).
1902     if (Op1 == &GEP)
1903       return nullptr;
1904 
1905     int DI = -1;
1906 
1907     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1908       auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1909       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1910         return nullptr;
1911 
1912       // As for Op1 above, don't try to fold a GEP into itself.
1913       if (Op2 == &GEP)
1914         return nullptr;
1915 
1916       // Keep track of the type as we walk the GEP.
1917       Type *CurTy = nullptr;
1918 
1919       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1920         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1921           return nullptr;
1922 
1923         if (Op1->getOperand(J) != Op2->getOperand(J)) {
1924           if (DI == -1) {
1925             // We have not seen any differences yet in the GEPs feeding the
1926             // PHI yet, so we record this one if it is allowed to be a
1927             // variable.
1928 
1929             // The first two arguments can vary for any GEP, the rest have to be
1930             // static for struct slots
1931             if (J > 1) {
1932               assert(CurTy && "No current type?");
1933               if (CurTy->isStructTy())
1934                 return nullptr;
1935             }
1936 
1937             DI = J;
1938           } else {
1939             // The GEP is different by more than one input. While this could be
1940             // extended to support GEPs that vary by more than one variable it
1941             // doesn't make sense since it greatly increases the complexity and
1942             // would result in an R+R+R addressing mode which no backend
1943             // directly supports and would need to be broken into several
1944             // simpler instructions anyway.
1945             return nullptr;
1946           }
1947         }
1948 
1949         // Sink down a layer of the type for the next iteration.
1950         if (J > 0) {
1951           if (J == 1) {
1952             CurTy = Op1->getSourceElementType();
1953           } else {
1954             CurTy =
1955                 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
1956           }
1957         }
1958       }
1959     }
1960 
1961     // If not all GEPs are identical we'll have to create a new PHI node.
1962     // Check that the old PHI node has only one use so that it will get
1963     // removed.
1964     if (DI != -1 && !PN->hasOneUse())
1965       return nullptr;
1966 
1967     auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1968     if (DI == -1) {
1969       // All the GEPs feeding the PHI are identical. Clone one down into our
1970       // BB so that it can be merged with the current GEP.
1971     } else {
1972       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1973       // into the current block so it can be merged, and create a new PHI to
1974       // set that index.
1975       PHINode *NewPN;
1976       {
1977         IRBuilderBase::InsertPointGuard Guard(Builder);
1978         Builder.SetInsertPoint(PN);
1979         NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
1980                                   PN->getNumOperands());
1981       }
1982 
1983       for (auto &I : PN->operands())
1984         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1985                            PN->getIncomingBlock(I));
1986 
1987       NewGEP->setOperand(DI, NewPN);
1988     }
1989 
1990     GEP.getParent()->getInstList().insert(
1991         GEP.getParent()->getFirstInsertionPt(), NewGEP);
1992     replaceOperand(GEP, 0, NewGEP);
1993     PtrOp = NewGEP;
1994   }
1995 
1996   // Combine Indices - If the source pointer to this getelementptr instruction
1997   // is a getelementptr instruction, combine the indices of the two
1998   // getelementptr instructions into a single instruction.
1999   if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
2000     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2001       return nullptr;
2002 
2003     // Try to reassociate loop invariant GEP chains to enable LICM.
2004     if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
2005         Src->hasOneUse()) {
2006       if (Loop *L = LI->getLoopFor(GEP.getParent())) {
2007         Value *GO1 = GEP.getOperand(1);
2008         Value *SO1 = Src->getOperand(1);
2009         // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
2010         // invariant: this breaks the dependence between GEPs and allows LICM
2011         // to hoist the invariant part out of the loop.
2012         if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
2013           // We have to be careful here.
2014           // We have something like:
2015           //  %src = getelementptr <ty>, <ty>* %base, <ty> %idx
2016           //  %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
2017           // If we just swap idx & idx2 then we could inadvertantly
2018           // change %src from a vector to a scalar, or vice versa.
2019           // Cases:
2020           //  1) %base a scalar & idx a scalar & idx2 a vector
2021           //      => Swapping idx & idx2 turns %src into a vector type.
2022           //  2) %base a scalar & idx a vector & idx2 a scalar
2023           //      => Swapping idx & idx2 turns %src in a scalar type
2024           //  3) %base, %idx, and %idx2 are scalars
2025           //      => %src & %gep are scalars
2026           //      => swapping idx & idx2 is safe
2027           //  4) %base a vector
2028           //      => %src is a vector
2029           //      => swapping idx & idx2 is safe.
2030           auto *SO0 = Src->getOperand(0);
2031           auto *SO0Ty = SO0->getType();
2032           if (!isa<VectorType>(GEPType) || // case 3
2033               isa<VectorType>(SO0Ty)) {    // case 4
2034             Src->setOperand(1, GO1);
2035             GEP.setOperand(1, SO1);
2036             return &GEP;
2037           } else {
2038             // Case 1 or 2
2039             // -- have to recreate %src & %gep
2040             // put NewSrc at same location as %src
2041             Builder.SetInsertPoint(cast<Instruction>(PtrOp));
2042             auto *NewSrc = cast<GetElementPtrInst>(
2043                 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()));
2044             NewSrc->setIsInBounds(Src->isInBounds());
2045             auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
2046             NewGEP->setIsInBounds(GEP.isInBounds());
2047             return NewGEP;
2048           }
2049         }
2050       }
2051     }
2052 
2053     // Note that if our source is a gep chain itself then we wait for that
2054     // chain to be resolved before we perform this transformation.  This
2055     // avoids us creating a TON of code in some cases.
2056     if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
2057       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
2058         return nullptr;   // Wait until our source is folded to completion.
2059 
2060     SmallVector<Value*, 8> Indices;
2061 
2062     // Find out whether the last index in the source GEP is a sequential idx.
2063     bool EndsWithSequential = false;
2064     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2065          I != E; ++I)
2066       EndsWithSequential = I.isSequential();
2067 
2068     // Can we combine the two pointer arithmetics offsets?
2069     if (EndsWithSequential) {
2070       // Replace: gep (gep %P, long B), long A, ...
2071       // With:    T = long A+B; gep %P, T, ...
2072       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2073       Value *GO1 = GEP.getOperand(1);
2074 
2075       // If they aren't the same type, then the input hasn't been processed
2076       // by the loop above yet (which canonicalizes sequential index types to
2077       // intptr_t).  Just avoid transforming this until the input has been
2078       // normalized.
2079       if (SO1->getType() != GO1->getType())
2080         return nullptr;
2081 
2082       Value *Sum =
2083           SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2084       // Only do the combine when we are sure the cost after the
2085       // merge is never more than that before the merge.
2086       if (Sum == nullptr)
2087         return nullptr;
2088 
2089       // Update the GEP in place if possible.
2090       if (Src->getNumOperands() == 2) {
2091         GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2092         replaceOperand(GEP, 0, Src->getOperand(0));
2093         replaceOperand(GEP, 1, Sum);
2094         return &GEP;
2095       }
2096       Indices.append(Src->op_begin()+1, Src->op_end()-1);
2097       Indices.push_back(Sum);
2098       Indices.append(GEP.op_begin()+2, GEP.op_end());
2099     } else if (isa<Constant>(*GEP.idx_begin()) &&
2100                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2101                Src->getNumOperands() != 1) {
2102       // Otherwise we can do the fold if the first index of the GEP is a zero
2103       Indices.append(Src->op_begin()+1, Src->op_end());
2104       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2105     }
2106 
2107     if (!Indices.empty())
2108       return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2109                  ? GetElementPtrInst::CreateInBounds(
2110                        Src->getSourceElementType(), Src->getOperand(0), Indices,
2111                        GEP.getName())
2112                  : GetElementPtrInst::Create(Src->getSourceElementType(),
2113                                              Src->getOperand(0), Indices,
2114                                              GEP.getName());
2115   }
2116 
2117   // Skip if GEP source element type is scalable. The type alloc size is unknown
2118   // at compile-time.
2119   if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2120     unsigned AS = GEP.getPointerAddressSpace();
2121     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2122         DL.getIndexSizeInBits(AS)) {
2123       uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2124 
2125       bool Matched = false;
2126       uint64_t C;
2127       Value *V = nullptr;
2128       if (TyAllocSize == 1) {
2129         V = GEP.getOperand(1);
2130         Matched = true;
2131       } else if (match(GEP.getOperand(1),
2132                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
2133         if (TyAllocSize == 1ULL << C)
2134           Matched = true;
2135       } else if (match(GEP.getOperand(1),
2136                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2137         if (TyAllocSize == C)
2138           Matched = true;
2139       }
2140 
2141       if (Matched) {
2142         // Canonicalize (gep i8* X, -(ptrtoint Y))
2143         // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
2144         // The GEP pattern is emitted by the SCEV expander for certain kinds of
2145         // pointer arithmetic.
2146         if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
2147           Operator *Index = cast<Operator>(V);
2148           Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
2149           Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
2150           return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
2151         }
2152         // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
2153         // to (bitcast Y)
2154         Value *Y;
2155         if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
2156                            m_PtrToInt(m_Specific(GEP.getOperand(0))))))
2157           return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2158       }
2159     }
2160   }
2161 
2162   // We do not handle pointer-vector geps here.
2163   if (GEPType->isVectorTy())
2164     return nullptr;
2165 
2166   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2167   Value *StrippedPtr = PtrOp->stripPointerCasts();
2168   PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2169 
2170   if (StrippedPtr != PtrOp) {
2171     bool HasZeroPointerIndex = false;
2172     Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
2173 
2174     if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2175       HasZeroPointerIndex = C->isZero();
2176 
2177     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2178     // into     : GEP [10 x i8]* X, i32 0, ...
2179     //
2180     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2181     //           into     : GEP i8* X, ...
2182     //
2183     // This occurs when the program declares an array extern like "int X[];"
2184     if (HasZeroPointerIndex) {
2185       if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2186         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2187         if (CATy->getElementType() == StrippedPtrEltTy) {
2188           // -> GEP i8* X, ...
2189           SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
2190           GetElementPtrInst *Res = GetElementPtrInst::Create(
2191               StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2192           Res->setIsInBounds(GEP.isInBounds());
2193           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2194             return Res;
2195           // Insert Res, and create an addrspacecast.
2196           // e.g.,
2197           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2198           // ->
2199           // %0 = GEP i8 addrspace(1)* X, ...
2200           // addrspacecast i8 addrspace(1)* %0 to i8*
2201           return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2202         }
2203 
2204         if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2205           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2206           if (CATy->getElementType() == XATy->getElementType()) {
2207             // -> GEP [10 x i8]* X, i32 0, ...
2208             // At this point, we know that the cast source type is a pointer
2209             // to an array of the same type as the destination pointer
2210             // array.  Because the array type is never stepped over (there
2211             // is a leading zero) we can fold the cast into this GEP.
2212             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2213               GEP.setSourceElementType(XATy);
2214               return replaceOperand(GEP, 0, StrippedPtr);
2215             }
2216             // Cannot replace the base pointer directly because StrippedPtr's
2217             // address space is different. Instead, create a new GEP followed by
2218             // an addrspacecast.
2219             // e.g.,
2220             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2221             //   i32 0, ...
2222             // ->
2223             // %0 = GEP [10 x i8] addrspace(1)* X, ...
2224             // addrspacecast i8 addrspace(1)* %0 to i8*
2225             SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
2226             Value *NewGEP =
2227                 GEP.isInBounds()
2228                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2229                                                 Idx, GEP.getName())
2230                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2231                                         GEP.getName());
2232             return new AddrSpaceCastInst(NewGEP, GEPType);
2233           }
2234         }
2235       }
2236     } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
2237       // Skip if GEP source element type is scalable. The type alloc size is
2238       // unknown at compile-time.
2239       // Transform things like: %t = getelementptr i32*
2240       // bitcast ([2 x i32]* %str to i32*), i32 %V into:  %t1 = getelementptr [2
2241       // x i32]* %str, i32 0, i32 %V; bitcast
2242       if (StrippedPtrEltTy->isArrayTy() &&
2243           DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2244               DL.getTypeAllocSize(GEPEltType)) {
2245         Type *IdxType = DL.getIndexType(GEPType);
2246         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2247         Value *NewGEP =
2248             GEP.isInBounds()
2249                 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2250                                             GEP.getName())
2251                 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2252                                     GEP.getName());
2253 
2254         // V and GEP are both pointer types --> BitCast
2255         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2256       }
2257 
2258       // Transform things like:
2259       // %V = mul i64 %N, 4
2260       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2261       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
2262       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2263         // Check that changing the type amounts to dividing the index by a scale
2264         // factor.
2265         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2266         uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
2267         if (ResSize && SrcSize % ResSize == 0) {
2268           Value *Idx = GEP.getOperand(1);
2269           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2270           uint64_t Scale = SrcSize / ResSize;
2271 
2272           // Earlier transforms ensure that the index has the right type
2273           // according to Data Layout, which considerably simplifies the
2274           // logic by eliminating implicit casts.
2275           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2276                  "Index type does not match the Data Layout preferences");
2277 
2278           bool NSW;
2279           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2280             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2281             // If the multiplication NewIdx * Scale may overflow then the new
2282             // GEP may not be "inbounds".
2283             Value *NewGEP =
2284                 GEP.isInBounds() && NSW
2285                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2286                                                 NewIdx, GEP.getName())
2287                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2288                                         GEP.getName());
2289 
2290             // The NewGEP must be pointer typed, so must the old one -> BitCast
2291             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2292                                                                  GEPType);
2293           }
2294         }
2295       }
2296 
2297       // Similarly, transform things like:
2298       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2299       //   (where tmp = 8*tmp2) into:
2300       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2301       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2302           StrippedPtrEltTy->isArrayTy()) {
2303         // Check that changing to the array element type amounts to dividing the
2304         // index by a scale factor.
2305         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2306         uint64_t ArrayEltSize =
2307             DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
2308                 .getFixedSize();
2309         if (ResSize && ArrayEltSize % ResSize == 0) {
2310           Value *Idx = GEP.getOperand(1);
2311           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2312           uint64_t Scale = ArrayEltSize / ResSize;
2313 
2314           // Earlier transforms ensure that the index has the right type
2315           // according to the Data Layout, which considerably simplifies
2316           // the logic by eliminating implicit casts.
2317           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2318                  "Index type does not match the Data Layout preferences");
2319 
2320           bool NSW;
2321           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2322             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2323             // If the multiplication NewIdx * Scale may overflow then the new
2324             // GEP may not be "inbounds".
2325             Type *IndTy = DL.getIndexType(GEPType);
2326             Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2327 
2328             Value *NewGEP =
2329                 GEP.isInBounds() && NSW
2330                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2331                                                 Off, GEP.getName())
2332                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2333                                         GEP.getName());
2334             // The NewGEP must be pointer typed, so must the old one -> BitCast
2335             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2336                                                                  GEPType);
2337           }
2338         }
2339       }
2340     }
2341   }
2342 
2343   // addrspacecast between types is canonicalized as a bitcast, then an
2344   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2345   // through the addrspacecast.
2346   Value *ASCStrippedPtrOp = PtrOp;
2347   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2348     //   X = bitcast A addrspace(1)* to B addrspace(1)*
2349     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2350     //   Z = gep Y, <...constant indices...>
2351     // Into an addrspacecasted GEP of the struct.
2352     if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2353       ASCStrippedPtrOp = BC;
2354   }
2355 
2356   if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2357     Value *SrcOp = BCI->getOperand(0);
2358     PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2359     Type *SrcEltType = SrcType->getElementType();
2360 
2361     // GEP directly using the source operand if this GEP is accessing an element
2362     // of a bitcasted pointer to vector or array of the same dimensions:
2363     // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2364     // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2365     auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2366                                           const DataLayout &DL) {
2367       auto *VecVTy = cast<VectorType>(VecTy);
2368       return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
2369              ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
2370              DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2371     };
2372     if (GEP.getNumOperands() == 3 &&
2373         ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() &&
2374           areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2375          (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() &&
2376           areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2377 
2378       // Create a new GEP here, as using `setOperand()` followed by
2379       // `setSourceElementType()` won't actually update the type of the
2380       // existing GEP Value. Causing issues if this Value is accessed when
2381       // constructing an AddrSpaceCastInst
2382       Value *NGEP =
2383           GEP.isInBounds()
2384               ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
2385               : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
2386       NGEP->takeName(&GEP);
2387 
2388       // Preserve GEP address space to satisfy users
2389       if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2390         return new AddrSpaceCastInst(NGEP, GEPType);
2391 
2392       return replaceInstUsesWith(GEP, NGEP);
2393     }
2394 
2395     // See if we can simplify:
2396     //   X = bitcast A* to B*
2397     //   Y = gep X, <...constant indices...>
2398     // into a gep of the original struct. This is important for SROA and alias
2399     // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2400     unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2401     APInt Offset(OffsetBits, 0);
2402     if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
2403       // If this GEP instruction doesn't move the pointer, just replace the GEP
2404       // with a bitcast of the real input to the dest type.
2405       if (!Offset) {
2406         // If the bitcast is of an allocation, and the allocation will be
2407         // converted to match the type of the cast, don't touch this.
2408         if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
2409           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2410           if (Instruction *I = visitBitCast(*BCI)) {
2411             if (I != BCI) {
2412               I->takeName(BCI);
2413               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2414               replaceInstUsesWith(*BCI, I);
2415             }
2416             return &GEP;
2417           }
2418         }
2419 
2420         if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2421           return new AddrSpaceCastInst(SrcOp, GEPType);
2422         return new BitCastInst(SrcOp, GEPType);
2423       }
2424 
2425       // Otherwise, if the offset is non-zero, we need to find out if there is a
2426       // field at Offset in 'A's type.  If so, we can pull the cast through the
2427       // GEP.
2428       SmallVector<Value*, 8> NewIndices;
2429       if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2430         Value *NGEP =
2431             GEP.isInBounds()
2432                 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2433                 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2434 
2435         if (NGEP->getType() == GEPType)
2436           return replaceInstUsesWith(GEP, NGEP);
2437         NGEP->takeName(&GEP);
2438 
2439         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2440           return new AddrSpaceCastInst(NGEP, GEPType);
2441         return new BitCastInst(NGEP, GEPType);
2442       }
2443     }
2444   }
2445 
2446   if (!GEP.isInBounds()) {
2447     unsigned IdxWidth =
2448         DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2449     APInt BasePtrOffset(IdxWidth, 0);
2450     Value *UnderlyingPtrOp =
2451             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2452                                                              BasePtrOffset);
2453     if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2454       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2455           BasePtrOffset.isNonNegative()) {
2456         APInt AllocSize(
2457             IdxWidth,
2458             DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
2459         if (BasePtrOffset.ule(AllocSize)) {
2460           return GetElementPtrInst::CreateInBounds(
2461               GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
2462               GEP.getName());
2463         }
2464       }
2465     }
2466   }
2467 
2468   if (Instruction *R = foldSelectGEP(GEP, Builder))
2469     return R;
2470 
2471   return nullptr;
2472 }
2473 
2474 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
2475                                          Instruction *AI) {
2476   if (isa<ConstantPointerNull>(V))
2477     return true;
2478   if (auto *LI = dyn_cast<LoadInst>(V))
2479     return isa<GlobalVariable>(LI->getPointerOperand());
2480   // Two distinct allocations will never be equal.
2481   // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2482   // through bitcasts of V can cause
2483   // the result statement below to be true, even when AI and V (ex:
2484   // i8* ->i32* ->i8* of AI) are the same allocations.
2485   return isAllocLikeFn(V, TLI) && V != AI;
2486 }
2487 
2488 static bool isAllocSiteRemovable(Instruction *AI,
2489                                  SmallVectorImpl<WeakTrackingVH> &Users,
2490                                  const TargetLibraryInfo *TLI) {
2491   SmallVector<Instruction*, 4> Worklist;
2492   Worklist.push_back(AI);
2493 
2494   do {
2495     Instruction *PI = Worklist.pop_back_val();
2496     for (User *U : PI->users()) {
2497       Instruction *I = cast<Instruction>(U);
2498       switch (I->getOpcode()) {
2499       default:
2500         // Give up the moment we see something we can't handle.
2501         return false;
2502 
2503       case Instruction::AddrSpaceCast:
2504       case Instruction::BitCast:
2505       case Instruction::GetElementPtr:
2506         Users.emplace_back(I);
2507         Worklist.push_back(I);
2508         continue;
2509 
2510       case Instruction::ICmp: {
2511         ICmpInst *ICI = cast<ICmpInst>(I);
2512         // We can fold eq/ne comparisons with null to false/true, respectively.
2513         // We also fold comparisons in some conditions provided the alloc has
2514         // not escaped (see isNeverEqualToUnescapedAlloc).
2515         if (!ICI->isEquality())
2516           return false;
2517         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2518         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2519           return false;
2520         Users.emplace_back(I);
2521         continue;
2522       }
2523 
2524       case Instruction::Call:
2525         // Ignore no-op and store intrinsics.
2526         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2527           switch (II->getIntrinsicID()) {
2528           default:
2529             return false;
2530 
2531           case Intrinsic::memmove:
2532           case Intrinsic::memcpy:
2533           case Intrinsic::memset: {
2534             MemIntrinsic *MI = cast<MemIntrinsic>(II);
2535             if (MI->isVolatile() || MI->getRawDest() != PI)
2536               return false;
2537             LLVM_FALLTHROUGH;
2538           }
2539           case Intrinsic::assume:
2540           case Intrinsic::invariant_start:
2541           case Intrinsic::invariant_end:
2542           case Intrinsic::lifetime_start:
2543           case Intrinsic::lifetime_end:
2544           case Intrinsic::objectsize:
2545             Users.emplace_back(I);
2546             continue;
2547           }
2548         }
2549 
2550         if (isFreeCall(I, TLI)) {
2551           Users.emplace_back(I);
2552           continue;
2553         }
2554         return false;
2555 
2556       case Instruction::Store: {
2557         StoreInst *SI = cast<StoreInst>(I);
2558         if (SI->isVolatile() || SI->getPointerOperand() != PI)
2559           return false;
2560         Users.emplace_back(I);
2561         continue;
2562       }
2563       }
2564       llvm_unreachable("missing a return?");
2565     }
2566   } while (!Worklist.empty());
2567   return true;
2568 }
2569 
2570 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
2571   // If we have a malloc call which is only used in any amount of comparisons to
2572   // null and free calls, delete the calls and replace the comparisons with true
2573   // or false as appropriate.
2574 
2575   // This is based on the principle that we can substitute our own allocation
2576   // function (which will never return null) rather than knowledge of the
2577   // specific function being called. In some sense this can change the permitted
2578   // outputs of a program (when we convert a malloc to an alloca, the fact that
2579   // the allocation is now on the stack is potentially visible, for example),
2580   // but we believe in a permissible manner.
2581   SmallVector<WeakTrackingVH, 64> Users;
2582 
2583   // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2584   // before each store.
2585   TinyPtrVector<DbgVariableIntrinsic *> DIIs;
2586   std::unique_ptr<DIBuilder> DIB;
2587   if (isa<AllocaInst>(MI)) {
2588     DIIs = FindDbgAddrUses(&MI);
2589     DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2590   }
2591 
2592   if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2593     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2594       // Lowering all @llvm.objectsize calls first because they may
2595       // use a bitcast/GEP of the alloca we are removing.
2596       if (!Users[i])
2597        continue;
2598 
2599       Instruction *I = cast<Instruction>(&*Users[i]);
2600 
2601       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2602         if (II->getIntrinsicID() == Intrinsic::objectsize) {
2603           Value *Result =
2604               lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2605           replaceInstUsesWith(*I, Result);
2606           eraseInstFromFunction(*I);
2607           Users[i] = nullptr; // Skip examining in the next loop.
2608         }
2609       }
2610     }
2611     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2612       if (!Users[i])
2613         continue;
2614 
2615       Instruction *I = cast<Instruction>(&*Users[i]);
2616 
2617       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2618         replaceInstUsesWith(*C,
2619                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
2620                                              C->isFalseWhenEqual()));
2621       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2622         for (auto *DII : DIIs)
2623           ConvertDebugDeclareToDebugValue(DII, SI, *DIB);
2624       } else {
2625         // Casts, GEP, or anything else: we're about to delete this instruction,
2626         // so it can not have any valid uses.
2627         replaceInstUsesWith(*I, UndefValue::get(I->getType()));
2628       }
2629       eraseInstFromFunction(*I);
2630     }
2631 
2632     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2633       // Replace invoke with a NOP intrinsic to maintain the original CFG
2634       Module *M = II->getModule();
2635       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2636       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2637                          None, "", II->getParent());
2638     }
2639 
2640     for (auto *DII : DIIs)
2641       eraseInstFromFunction(*DII);
2642 
2643     return eraseInstFromFunction(MI);
2644   }
2645   return nullptr;
2646 }
2647 
2648 /// Move the call to free before a NULL test.
2649 ///
2650 /// Check if this free is accessed after its argument has been test
2651 /// against NULL (property 0).
2652 /// If yes, it is legal to move this call in its predecessor block.
2653 ///
2654 /// The move is performed only if the block containing the call to free
2655 /// will be removed, i.e.:
2656 /// 1. it has only one predecessor P, and P has two successors
2657 /// 2. it contains the call, noops, and an unconditional branch
2658 /// 3. its successor is the same as its predecessor's successor
2659 ///
2660 /// The profitability is out-of concern here and this function should
2661 /// be called only if the caller knows this transformation would be
2662 /// profitable (e.g., for code size).
2663 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2664                                                 const DataLayout &DL) {
2665   Value *Op = FI.getArgOperand(0);
2666   BasicBlock *FreeInstrBB = FI.getParent();
2667   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2668 
2669   // Validate part of constraint #1: Only one predecessor
2670   // FIXME: We can extend the number of predecessor, but in that case, we
2671   //        would duplicate the call to free in each predecessor and it may
2672   //        not be profitable even for code size.
2673   if (!PredBB)
2674     return nullptr;
2675 
2676   // Validate constraint #2: Does this block contains only the call to
2677   //                         free, noops, and an unconditional branch?
2678   BasicBlock *SuccBB;
2679   Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2680   if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2681     return nullptr;
2682 
2683   // If there are only 2 instructions in the block, at this point,
2684   // this is the call to free and unconditional.
2685   // If there are more than 2 instructions, check that they are noops
2686   // i.e., they won't hurt the performance of the generated code.
2687   if (FreeInstrBB->size() != 2) {
2688     for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2689       if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2690         continue;
2691       auto *Cast = dyn_cast<CastInst>(&Inst);
2692       if (!Cast || !Cast->isNoopCast(DL))
2693         return nullptr;
2694     }
2695   }
2696   // Validate the rest of constraint #1 by matching on the pred branch.
2697   Instruction *TI = PredBB->getTerminator();
2698   BasicBlock *TrueBB, *FalseBB;
2699   ICmpInst::Predicate Pred;
2700   if (!match(TI, m_Br(m_ICmp(Pred,
2701                              m_CombineOr(m_Specific(Op),
2702                                          m_Specific(Op->stripPointerCasts())),
2703                              m_Zero()),
2704                       TrueBB, FalseBB)))
2705     return nullptr;
2706   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2707     return nullptr;
2708 
2709   // Validate constraint #3: Ensure the null case just falls through.
2710   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2711     return nullptr;
2712   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2713          "Broken CFG: missing edge from predecessor to successor");
2714 
2715   // At this point, we know that everything in FreeInstrBB can be moved
2716   // before TI.
2717   for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
2718        It != End;) {
2719     Instruction &Instr = *It++;
2720     if (&Instr == FreeInstrBBTerminator)
2721       break;
2722     Instr.moveBefore(TI);
2723   }
2724   assert(FreeInstrBB->size() == 1 &&
2725          "Only the branch instruction should remain");
2726   return &FI;
2727 }
2728 
2729 Instruction *InstCombinerImpl::visitFree(CallInst &FI) {
2730   Value *Op = FI.getArgOperand(0);
2731 
2732   // free undef -> unreachable.
2733   if (isa<UndefValue>(Op)) {
2734     // Leave a marker since we can't modify the CFG here.
2735     CreateNonTerminatorUnreachable(&FI);
2736     return eraseInstFromFunction(FI);
2737   }
2738 
2739   // If we have 'free null' delete the instruction.  This can happen in stl code
2740   // when lots of inlining happens.
2741   if (isa<ConstantPointerNull>(Op))
2742     return eraseInstFromFunction(FI);
2743 
2744   // If we optimize for code size, try to move the call to free before the null
2745   // test so that simplify cfg can remove the empty block and dead code
2746   // elimination the branch. I.e., helps to turn something like:
2747   // if (foo) free(foo);
2748   // into
2749   // free(foo);
2750   //
2751   // Note that we can only do this for 'free' and not for any flavor of
2752   // 'operator delete'; there is no 'operator delete' symbol for which we are
2753   // permitted to invent a call, even if we're passing in a null pointer.
2754   if (MinimizeSize) {
2755     LibFunc Func;
2756     if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
2757       if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2758         return I;
2759   }
2760 
2761   return nullptr;
2762 }
2763 
2764 static bool isMustTailCall(Value *V) {
2765   if (auto *CI = dyn_cast<CallInst>(V))
2766     return CI->isMustTailCall();
2767   return false;
2768 }
2769 
2770 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
2771   if (RI.getNumOperands() == 0) // ret void
2772     return nullptr;
2773 
2774   Value *ResultOp = RI.getOperand(0);
2775   Type *VTy = ResultOp->getType();
2776   if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
2777     return nullptr;
2778 
2779   // Don't replace result of musttail calls.
2780   if (isMustTailCall(ResultOp))
2781     return nullptr;
2782 
2783   // There might be assume intrinsics dominating this return that completely
2784   // determine the value. If so, constant fold it.
2785   KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2786   if (Known.isConstant())
2787     return replaceOperand(RI, 0,
2788         Constant::getIntegerValue(VTy, Known.getConstant()));
2789 
2790   return nullptr;
2791 }
2792 
2793 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
2794   assert(BI.isUnconditional() && "Only for unconditional branches.");
2795 
2796   // If this store is the second-to-last instruction in the basic block
2797   // (excluding debug info and bitcasts of pointers) and if the block ends with
2798   // an unconditional branch, try to move the store to the successor block.
2799 
2800   auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
2801     auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
2802       return isa<DbgInfoIntrinsic>(BBI) ||
2803              (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
2804     };
2805 
2806     BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
2807     do {
2808       if (BBI != FirstInstr)
2809         --BBI;
2810     } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
2811 
2812     return dyn_cast<StoreInst>(BBI);
2813   };
2814 
2815   if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
2816     if (mergeStoreIntoSuccessor(*SI))
2817       return &BI;
2818 
2819   return nullptr;
2820 }
2821 
2822 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
2823   if (BI.isUnconditional())
2824     return visitUnconditionalBranchInst(BI);
2825 
2826   // Change br (not X), label True, label False to: br X, label False, True
2827   Value *X = nullptr;
2828   if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
2829       !isa<Constant>(X)) {
2830     // Swap Destinations and condition...
2831     BI.swapSuccessors();
2832     return replaceOperand(BI, 0, X);
2833   }
2834 
2835   // If the condition is irrelevant, remove the use so that other
2836   // transforms on the condition become more effective.
2837   if (!isa<ConstantInt>(BI.getCondition()) &&
2838       BI.getSuccessor(0) == BI.getSuccessor(1))
2839     return replaceOperand(
2840         BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
2841 
2842   // Canonicalize, for example, fcmp_one -> fcmp_oeq.
2843   CmpInst::Predicate Pred;
2844   if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())),
2845                       m_BasicBlock(), m_BasicBlock())) &&
2846       !isCanonicalPredicate(Pred)) {
2847     // Swap destinations and condition.
2848     CmpInst *Cond = cast<CmpInst>(BI.getCondition());
2849     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2850     BI.swapSuccessors();
2851     Worklist.push(Cond);
2852     return &BI;
2853   }
2854 
2855   return nullptr;
2856 }
2857 
2858 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
2859   Value *Cond = SI.getCondition();
2860   Value *Op0;
2861   ConstantInt *AddRHS;
2862   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
2863     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2864     for (auto Case : SI.cases()) {
2865       Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
2866       assert(isa<ConstantInt>(NewCase) &&
2867              "Result of expression should be constant");
2868       Case.setValue(cast<ConstantInt>(NewCase));
2869     }
2870     return replaceOperand(SI, 0, Op0);
2871   }
2872 
2873   KnownBits Known = computeKnownBits(Cond, 0, &SI);
2874   unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
2875   unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
2876 
2877   // Compute the number of leading bits we can ignore.
2878   // TODO: A better way to determine this would use ComputeNumSignBits().
2879   for (auto &C : SI.cases()) {
2880     LeadingKnownZeros = std::min(
2881         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2882     LeadingKnownOnes = std::min(
2883         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2884   }
2885 
2886   unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
2887 
2888   // Shrink the condition operand if the new type is smaller than the old type.
2889   // But do not shrink to a non-standard type, because backend can't generate
2890   // good code for that yet.
2891   // TODO: We can make it aggressive again after fixing PR39569.
2892   if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
2893       shouldChangeType(Known.getBitWidth(), NewWidth)) {
2894     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2895     Builder.SetInsertPoint(&SI);
2896     Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
2897 
2898     for (auto Case : SI.cases()) {
2899       APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
2900       Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
2901     }
2902     return replaceOperand(SI, 0, NewCond);
2903   }
2904 
2905   return nullptr;
2906 }
2907 
2908 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
2909   Value *Agg = EV.getAggregateOperand();
2910 
2911   if (!EV.hasIndices())
2912     return replaceInstUsesWith(EV, Agg);
2913 
2914   if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
2915                                           SQ.getWithInstruction(&EV)))
2916     return replaceInstUsesWith(EV, V);
2917 
2918   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2919     // We're extracting from an insertvalue instruction, compare the indices
2920     const unsigned *exti, *exte, *insi, *inse;
2921     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2922          exte = EV.idx_end(), inse = IV->idx_end();
2923          exti != exte && insi != inse;
2924          ++exti, ++insi) {
2925       if (*insi != *exti)
2926         // The insert and extract both reference distinctly different elements.
2927         // This means the extract is not influenced by the insert, and we can
2928         // replace the aggregate operand of the extract with the aggregate
2929         // operand of the insert. i.e., replace
2930         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2931         // %E = extractvalue { i32, { i32 } } %I, 0
2932         // with
2933         // %E = extractvalue { i32, { i32 } } %A, 0
2934         return ExtractValueInst::Create(IV->getAggregateOperand(),
2935                                         EV.getIndices());
2936     }
2937     if (exti == exte && insi == inse)
2938       // Both iterators are at the end: Index lists are identical. Replace
2939       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2940       // %C = extractvalue { i32, { i32 } } %B, 1, 0
2941       // with "i32 42"
2942       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
2943     if (exti == exte) {
2944       // The extract list is a prefix of the insert list. i.e. replace
2945       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2946       // %E = extractvalue { i32, { i32 } } %I, 1
2947       // with
2948       // %X = extractvalue { i32, { i32 } } %A, 1
2949       // %E = insertvalue { i32 } %X, i32 42, 0
2950       // by switching the order of the insert and extract (though the
2951       // insertvalue should be left in, since it may have other uses).
2952       Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
2953                                                 EV.getIndices());
2954       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
2955                                      makeArrayRef(insi, inse));
2956     }
2957     if (insi == inse)
2958       // The insert list is a prefix of the extract list
2959       // We can simply remove the common indices from the extract and make it
2960       // operate on the inserted value instead of the insertvalue result.
2961       // i.e., replace
2962       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2963       // %E = extractvalue { i32, { i32 } } %I, 1, 0
2964       // with
2965       // %E extractvalue { i32 } { i32 42 }, 0
2966       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
2967                                       makeArrayRef(exti, exte));
2968   }
2969   if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
2970     // We're extracting from an overflow intrinsic, see if we're the only user,
2971     // which allows us to simplify multiple result intrinsics to simpler
2972     // things that just get one value.
2973     if (WO->hasOneUse()) {
2974       // Check if we're grabbing only the result of a 'with overflow' intrinsic
2975       // and replace it with a traditional binary instruction.
2976       if (*EV.idx_begin() == 0) {
2977         Instruction::BinaryOps BinOp = WO->getBinaryOp();
2978         Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
2979         replaceInstUsesWith(*WO, UndefValue::get(WO->getType()));
2980         eraseInstFromFunction(*WO);
2981         return BinaryOperator::Create(BinOp, LHS, RHS);
2982       }
2983 
2984       // If the normal result of the add is dead, and the RHS is a constant,
2985       // we can transform this into a range comparison.
2986       // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
2987       if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2988         if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS()))
2989           return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(),
2990                               ConstantExpr::getNot(CI));
2991     }
2992   }
2993   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2994     // If the (non-volatile) load only has one use, we can rewrite this to a
2995     // load from a GEP. This reduces the size of the load. If a load is used
2996     // only by extractvalue instructions then this either must have been
2997     // optimized before, or it is a struct with padding, in which case we
2998     // don't want to do the transformation as it loses padding knowledge.
2999     if (L->isSimple() && L->hasOneUse()) {
3000       // extractvalue has integer indices, getelementptr has Value*s. Convert.
3001       SmallVector<Value*, 4> Indices;
3002       // Prefix an i32 0 since we need the first element.
3003       Indices.push_back(Builder.getInt32(0));
3004       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
3005             I != E; ++I)
3006         Indices.push_back(Builder.getInt32(*I));
3007 
3008       // We need to insert these at the location of the old load, not at that of
3009       // the extractvalue.
3010       Builder.SetInsertPoint(L);
3011       Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
3012                                              L->getPointerOperand(), Indices);
3013       Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
3014       // Whatever aliasing information we had for the orignal load must also
3015       // hold for the smaller load, so propagate the annotations.
3016       AAMDNodes Nodes;
3017       L->getAAMetadata(Nodes);
3018       NL->setAAMetadata(Nodes);
3019       // Returning the load directly will cause the main loop to insert it in
3020       // the wrong spot, so use replaceInstUsesWith().
3021       return replaceInstUsesWith(EV, NL);
3022     }
3023   // We could simplify extracts from other values. Note that nested extracts may
3024   // already be simplified implicitly by the above: extract (extract (insert) )
3025   // will be translated into extract ( insert ( extract ) ) first and then just
3026   // the value inserted, if appropriate. Similarly for extracts from single-use
3027   // loads: extract (extract (load)) will be translated to extract (load (gep))
3028   // and if again single-use then via load (gep (gep)) to load (gep).
3029   // However, double extracts from e.g. function arguments or return values
3030   // aren't handled yet.
3031   return nullptr;
3032 }
3033 
3034 /// Return 'true' if the given typeinfo will match anything.
3035 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3036   switch (Personality) {
3037   case EHPersonality::GNU_C:
3038   case EHPersonality::GNU_C_SjLj:
3039   case EHPersonality::Rust:
3040     // The GCC C EH and Rust personality only exists to support cleanups, so
3041     // it's not clear what the semantics of catch clauses are.
3042     return false;
3043   case EHPersonality::Unknown:
3044     return false;
3045   case EHPersonality::GNU_Ada:
3046     // While __gnat_all_others_value will match any Ada exception, it doesn't
3047     // match foreign exceptions (or didn't, before gcc-4.7).
3048     return false;
3049   case EHPersonality::GNU_CXX:
3050   case EHPersonality::GNU_CXX_SjLj:
3051   case EHPersonality::GNU_ObjC:
3052   case EHPersonality::MSVC_X86SEH:
3053   case EHPersonality::MSVC_Win64SEH:
3054   case EHPersonality::MSVC_CXX:
3055   case EHPersonality::CoreCLR:
3056   case EHPersonality::Wasm_CXX:
3057     return TypeInfo->isNullValue();
3058   }
3059   llvm_unreachable("invalid enum");
3060 }
3061 
3062 static bool shorter_filter(const Value *LHS, const Value *RHS) {
3063   return
3064     cast<ArrayType>(LHS->getType())->getNumElements()
3065   <
3066     cast<ArrayType>(RHS->getType())->getNumElements();
3067 }
3068 
3069 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
3070   // The logic here should be correct for any real-world personality function.
3071   // However if that turns out not to be true, the offending logic can always
3072   // be conditioned on the personality function, like the catch-all logic is.
3073   EHPersonality Personality =
3074       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3075 
3076   // Simplify the list of clauses, eg by removing repeated catch clauses
3077   // (these are often created by inlining).
3078   bool MakeNewInstruction = false; // If true, recreate using the following:
3079   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3080   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
3081 
3082   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3083   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3084     bool isLastClause = i + 1 == e;
3085     if (LI.isCatch(i)) {
3086       // A catch clause.
3087       Constant *CatchClause = LI.getClause(i);
3088       Constant *TypeInfo = CatchClause->stripPointerCasts();
3089 
3090       // If we already saw this clause, there is no point in having a second
3091       // copy of it.
3092       if (AlreadyCaught.insert(TypeInfo).second) {
3093         // This catch clause was not already seen.
3094         NewClauses.push_back(CatchClause);
3095       } else {
3096         // Repeated catch clause - drop the redundant copy.
3097         MakeNewInstruction = true;
3098       }
3099 
3100       // If this is a catch-all then there is no point in keeping any following
3101       // clauses or marking the landingpad as having a cleanup.
3102       if (isCatchAll(Personality, TypeInfo)) {
3103         if (!isLastClause)
3104           MakeNewInstruction = true;
3105         CleanupFlag = false;
3106         break;
3107       }
3108     } else {
3109       // A filter clause.  If any of the filter elements were already caught
3110       // then they can be dropped from the filter.  It is tempting to try to
3111       // exploit the filter further by saying that any typeinfo that does not
3112       // occur in the filter can't be caught later (and thus can be dropped).
3113       // However this would be wrong, since typeinfos can match without being
3114       // equal (for example if one represents a C++ class, and the other some
3115       // class derived from it).
3116       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3117       Constant *FilterClause = LI.getClause(i);
3118       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3119       unsigned NumTypeInfos = FilterType->getNumElements();
3120 
3121       // An empty filter catches everything, so there is no point in keeping any
3122       // following clauses or marking the landingpad as having a cleanup.  By
3123       // dealing with this case here the following code is made a bit simpler.
3124       if (!NumTypeInfos) {
3125         NewClauses.push_back(FilterClause);
3126         if (!isLastClause)
3127           MakeNewInstruction = true;
3128         CleanupFlag = false;
3129         break;
3130       }
3131 
3132       bool MakeNewFilter = false; // If true, make a new filter.
3133       SmallVector<Constant *, 16> NewFilterElts; // New elements.
3134       if (isa<ConstantAggregateZero>(FilterClause)) {
3135         // Not an empty filter - it contains at least one null typeinfo.
3136         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3137         Constant *TypeInfo =
3138           Constant::getNullValue(FilterType->getElementType());
3139         // If this typeinfo is a catch-all then the filter can never match.
3140         if (isCatchAll(Personality, TypeInfo)) {
3141           // Throw the filter away.
3142           MakeNewInstruction = true;
3143           continue;
3144         }
3145 
3146         // There is no point in having multiple copies of this typeinfo, so
3147         // discard all but the first copy if there is more than one.
3148         NewFilterElts.push_back(TypeInfo);
3149         if (NumTypeInfos > 1)
3150           MakeNewFilter = true;
3151       } else {
3152         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3153         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3154         NewFilterElts.reserve(NumTypeInfos);
3155 
3156         // Remove any filter elements that were already caught or that already
3157         // occurred in the filter.  While there, see if any of the elements are
3158         // catch-alls.  If so, the filter can be discarded.
3159         bool SawCatchAll = false;
3160         for (unsigned j = 0; j != NumTypeInfos; ++j) {
3161           Constant *Elt = Filter->getOperand(j);
3162           Constant *TypeInfo = Elt->stripPointerCasts();
3163           if (isCatchAll(Personality, TypeInfo)) {
3164             // This element is a catch-all.  Bail out, noting this fact.
3165             SawCatchAll = true;
3166             break;
3167           }
3168 
3169           // Even if we've seen a type in a catch clause, we don't want to
3170           // remove it from the filter.  An unexpected type handler may be
3171           // set up for a call site which throws an exception of the same
3172           // type caught.  In order for the exception thrown by the unexpected
3173           // handler to propagate correctly, the filter must be correctly
3174           // described for the call site.
3175           //
3176           // Example:
3177           //
3178           // void unexpected() { throw 1;}
3179           // void foo() throw (int) {
3180           //   std::set_unexpected(unexpected);
3181           //   try {
3182           //     throw 2.0;
3183           //   } catch (int i) {}
3184           // }
3185 
3186           // There is no point in having multiple copies of the same typeinfo in
3187           // a filter, so only add it if we didn't already.
3188           if (SeenInFilter.insert(TypeInfo).second)
3189             NewFilterElts.push_back(cast<Constant>(Elt));
3190         }
3191         // A filter containing a catch-all cannot match anything by definition.
3192         if (SawCatchAll) {
3193           // Throw the filter away.
3194           MakeNewInstruction = true;
3195           continue;
3196         }
3197 
3198         // If we dropped something from the filter, make a new one.
3199         if (NewFilterElts.size() < NumTypeInfos)
3200           MakeNewFilter = true;
3201       }
3202       if (MakeNewFilter) {
3203         FilterType = ArrayType::get(FilterType->getElementType(),
3204                                     NewFilterElts.size());
3205         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3206         MakeNewInstruction = true;
3207       }
3208 
3209       NewClauses.push_back(FilterClause);
3210 
3211       // If the new filter is empty then it will catch everything so there is
3212       // no point in keeping any following clauses or marking the landingpad
3213       // as having a cleanup.  The case of the original filter being empty was
3214       // already handled above.
3215       if (MakeNewFilter && !NewFilterElts.size()) {
3216         assert(MakeNewInstruction && "New filter but not a new instruction!");
3217         CleanupFlag = false;
3218         break;
3219       }
3220     }
3221   }
3222 
3223   // If several filters occur in a row then reorder them so that the shortest
3224   // filters come first (those with the smallest number of elements).  This is
3225   // advantageous because shorter filters are more likely to match, speeding up
3226   // unwinding, but mostly because it increases the effectiveness of the other
3227   // filter optimizations below.
3228   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3229     unsigned j;
3230     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3231     for (j = i; j != e; ++j)
3232       if (!isa<ArrayType>(NewClauses[j]->getType()))
3233         break;
3234 
3235     // Check whether the filters are already sorted by length.  We need to know
3236     // if sorting them is actually going to do anything so that we only make a
3237     // new landingpad instruction if it does.
3238     for (unsigned k = i; k + 1 < j; ++k)
3239       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3240         // Not sorted, so sort the filters now.  Doing an unstable sort would be
3241         // correct too but reordering filters pointlessly might confuse users.
3242         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3243                          shorter_filter);
3244         MakeNewInstruction = true;
3245         break;
3246       }
3247 
3248     // Look for the next batch of filters.
3249     i = j + 1;
3250   }
3251 
3252   // If typeinfos matched if and only if equal, then the elements of a filter L
3253   // that occurs later than a filter F could be replaced by the intersection of
3254   // the elements of F and L.  In reality two typeinfos can match without being
3255   // equal (for example if one represents a C++ class, and the other some class
3256   // derived from it) so it would be wrong to perform this transform in general.
3257   // However the transform is correct and useful if F is a subset of L.  In that
3258   // case L can be replaced by F, and thus removed altogether since repeating a
3259   // filter is pointless.  So here we look at all pairs of filters F and L where
3260   // L follows F in the list of clauses, and remove L if every element of F is
3261   // an element of L.  This can occur when inlining C++ functions with exception
3262   // specifications.
3263   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3264     // Examine each filter in turn.
3265     Value *Filter = NewClauses[i];
3266     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3267     if (!FTy)
3268       // Not a filter - skip it.
3269       continue;
3270     unsigned FElts = FTy->getNumElements();
3271     // Examine each filter following this one.  Doing this backwards means that
3272     // we don't have to worry about filters disappearing under us when removed.
3273     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3274       Value *LFilter = NewClauses[j];
3275       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3276       if (!LTy)
3277         // Not a filter - skip it.
3278         continue;
3279       // If Filter is a subset of LFilter, i.e. every element of Filter is also
3280       // an element of LFilter, then discard LFilter.
3281       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3282       // If Filter is empty then it is a subset of LFilter.
3283       if (!FElts) {
3284         // Discard LFilter.
3285         NewClauses.erase(J);
3286         MakeNewInstruction = true;
3287         // Move on to the next filter.
3288         continue;
3289       }
3290       unsigned LElts = LTy->getNumElements();
3291       // If Filter is longer than LFilter then it cannot be a subset of it.
3292       if (FElts > LElts)
3293         // Move on to the next filter.
3294         continue;
3295       // At this point we know that LFilter has at least one element.
3296       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3297         // Filter is a subset of LFilter iff Filter contains only zeros (as we
3298         // already know that Filter is not longer than LFilter).
3299         if (isa<ConstantAggregateZero>(Filter)) {
3300           assert(FElts <= LElts && "Should have handled this case earlier!");
3301           // Discard LFilter.
3302           NewClauses.erase(J);
3303           MakeNewInstruction = true;
3304         }
3305         // Move on to the next filter.
3306         continue;
3307       }
3308       ConstantArray *LArray = cast<ConstantArray>(LFilter);
3309       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3310         // Since Filter is non-empty and contains only zeros, it is a subset of
3311         // LFilter iff LFilter contains a zero.
3312         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3313         for (unsigned l = 0; l != LElts; ++l)
3314           if (LArray->getOperand(l)->isNullValue()) {
3315             // LFilter contains a zero - discard it.
3316             NewClauses.erase(J);
3317             MakeNewInstruction = true;
3318             break;
3319           }
3320         // Move on to the next filter.
3321         continue;
3322       }
3323       // At this point we know that both filters are ConstantArrays.  Loop over
3324       // operands to see whether every element of Filter is also an element of
3325       // LFilter.  Since filters tend to be short this is probably faster than
3326       // using a method that scales nicely.
3327       ConstantArray *FArray = cast<ConstantArray>(Filter);
3328       bool AllFound = true;
3329       for (unsigned f = 0; f != FElts; ++f) {
3330         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3331         AllFound = false;
3332         for (unsigned l = 0; l != LElts; ++l) {
3333           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3334           if (LTypeInfo == FTypeInfo) {
3335             AllFound = true;
3336             break;
3337           }
3338         }
3339         if (!AllFound)
3340           break;
3341       }
3342       if (AllFound) {
3343         // Discard LFilter.
3344         NewClauses.erase(J);
3345         MakeNewInstruction = true;
3346       }
3347       // Move on to the next filter.
3348     }
3349   }
3350 
3351   // If we changed any of the clauses, replace the old landingpad instruction
3352   // with a new one.
3353   if (MakeNewInstruction) {
3354     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3355                                                  NewClauses.size());
3356     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3357       NLI->addClause(NewClauses[i]);
3358     // A landing pad with no clauses must have the cleanup flag set.  It is
3359     // theoretically possible, though highly unlikely, that we eliminated all
3360     // clauses.  If so, force the cleanup flag to true.
3361     if (NewClauses.empty())
3362       CleanupFlag = true;
3363     NLI->setCleanup(CleanupFlag);
3364     return NLI;
3365   }
3366 
3367   // Even if none of the clauses changed, we may nonetheless have understood
3368   // that the cleanup flag is pointless.  Clear it if so.
3369   if (LI.isCleanup() != CleanupFlag) {
3370     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3371     LI.setCleanup(CleanupFlag);
3372     return &LI;
3373   }
3374 
3375   return nullptr;
3376 }
3377 
3378 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
3379   Value *Op0 = I.getOperand(0);
3380 
3381   if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3382     return replaceInstUsesWith(I, V);
3383 
3384   // freeze (phi const, x) --> phi const, (freeze x)
3385   if (auto *PN = dyn_cast<PHINode>(Op0)) {
3386     if (Instruction *NV = foldOpIntoPhi(I, PN))
3387       return NV;
3388   }
3389 
3390   if (match(Op0, m_Undef())) {
3391     // If I is freeze(undef), see its uses and fold it to the best constant.
3392     // - or: pick -1
3393     // - select's condition: pick the value that leads to choosing a constant
3394     // - other ops: pick 0
3395     Constant *BestValue = nullptr;
3396     Constant *NullValue = Constant::getNullValue(I.getType());
3397     for (const auto *U : I.users()) {
3398       Constant *C = NullValue;
3399 
3400       if (match(U, m_Or(m_Value(), m_Value())))
3401         C = Constant::getAllOnesValue(I.getType());
3402       else if (const auto *SI = dyn_cast<SelectInst>(U)) {
3403         if (SI->getCondition() == &I) {
3404           APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1);
3405           C = Constant::getIntegerValue(I.getType(), CondVal);
3406         }
3407       }
3408 
3409       if (!BestValue)
3410         BestValue = C;
3411       else if (BestValue != C)
3412         BestValue = NullValue;
3413     }
3414 
3415     return replaceInstUsesWith(I, BestValue);
3416   }
3417 
3418   return nullptr;
3419 }
3420 
3421 /// Try to move the specified instruction from its current block into the
3422 /// beginning of DestBlock, which can only happen if it's safe to move the
3423 /// instruction past all of the instructions between it and the end of its
3424 /// block.
3425 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3426   assert(I->getSingleUndroppableUse() && "Invariants didn't hold!");
3427   BasicBlock *SrcBlock = I->getParent();
3428 
3429   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3430   if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3431       I->isTerminator())
3432     return false;
3433 
3434   // Do not sink static or dynamic alloca instructions. Static allocas must
3435   // remain in the entry block, and dynamic allocas must not be sunk in between
3436   // a stacksave / stackrestore pair, which would incorrectly shorten its
3437   // lifetime.
3438   if (isa<AllocaInst>(I))
3439     return false;
3440 
3441   // Do not sink into catchswitch blocks.
3442   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3443     return false;
3444 
3445   // Do not sink convergent call instructions.
3446   if (auto *CI = dyn_cast<CallInst>(I)) {
3447     if (CI->isConvergent())
3448       return false;
3449   }
3450   // We can only sink load instructions if there is nothing between the load and
3451   // the end of block that could change the value.
3452   if (I->mayReadFromMemory()) {
3453     // We don't want to do any sophisticated alias analysis, so we only check
3454     // the instructions after I in I's parent block if we try to sink to its
3455     // successor block.
3456     if (DestBlock->getUniquePredecessor() != I->getParent())
3457       return false;
3458     for (BasicBlock::iterator Scan = I->getIterator(),
3459                               E = I->getParent()->end();
3460          Scan != E; ++Scan)
3461       if (Scan->mayWriteToMemory())
3462         return false;
3463   }
3464 
3465   I->dropDroppableUses([DestBlock](const Use *U) {
3466     if (auto *I = dyn_cast<Instruction>(U->getUser()))
3467       return I->getParent() != DestBlock;
3468     return true;
3469   });
3470   /// FIXME: We could remove droppable uses that are not dominated by
3471   /// the new position.
3472 
3473   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3474   I->moveBefore(&*InsertPos);
3475   ++NumSunkInst;
3476 
3477   // Also sink all related debug uses from the source basic block. Otherwise we
3478   // get debug use before the def. Attempt to salvage debug uses first, to
3479   // maximise the range variables have location for. If we cannot salvage, then
3480   // mark the location undef: we know it was supposed to receive a new location
3481   // here, but that computation has been sunk.
3482   SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3483   findDbgUsers(DbgUsers, I);
3484 
3485   // Update the arguments of a dbg.declare instruction, so that it
3486   // does not point into a sunk instruction.
3487   auto updateDbgDeclare = [&I](DbgVariableIntrinsic *DII) {
3488     if (!isa<DbgDeclareInst>(DII))
3489       return false;
3490 
3491     if (isa<CastInst>(I))
3492       DII->setOperand(
3493           0, MetadataAsValue::get(I->getContext(),
3494                                   ValueAsMetadata::get(I->getOperand(0))));
3495     return true;
3496   };
3497 
3498   SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
3499   for (auto User : DbgUsers) {
3500     // A dbg.declare instruction should not be cloned, since there can only be
3501     // one per variable fragment. It should be left in the original place
3502     // because the sunk instruction is not an alloca (otherwise we could not be
3503     // here).
3504     if (User->getParent() != SrcBlock || updateDbgDeclare(User))
3505       continue;
3506 
3507     DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
3508     LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
3509   }
3510 
3511   // Perform salvaging without the clones, then sink the clones.
3512   if (!DIIClones.empty()) {
3513     salvageDebugInfoForDbgValues(*I, DbgUsers);
3514     for (auto &DIIClone : DIIClones) {
3515       DIIClone->insertBefore(&*InsertPos);
3516       LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
3517     }
3518   }
3519 
3520   return true;
3521 }
3522 
3523 bool InstCombinerImpl::run() {
3524   while (!Worklist.isEmpty()) {
3525     // Walk deferred instructions in reverse order, and push them to the
3526     // worklist, which means they'll end up popped from the worklist in-order.
3527     while (Instruction *I = Worklist.popDeferred()) {
3528       // Check to see if we can DCE the instruction. We do this already here to
3529       // reduce the number of uses and thus allow other folds to trigger.
3530       // Note that eraseInstFromFunction() may push additional instructions on
3531       // the deferred worklist, so this will DCE whole instruction chains.
3532       if (isInstructionTriviallyDead(I, &TLI)) {
3533         eraseInstFromFunction(*I);
3534         ++NumDeadInst;
3535         continue;
3536       }
3537 
3538       Worklist.push(I);
3539     }
3540 
3541     Instruction *I = Worklist.removeOne();
3542     if (I == nullptr) continue;  // skip null values.
3543 
3544     // Check to see if we can DCE the instruction.
3545     if (isInstructionTriviallyDead(I, &TLI)) {
3546       eraseInstFromFunction(*I);
3547       ++NumDeadInst;
3548       continue;
3549     }
3550 
3551     if (!DebugCounter::shouldExecute(VisitCounter))
3552       continue;
3553 
3554     // Instruction isn't dead, see if we can constant propagate it.
3555     if (!I->use_empty() &&
3556         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3557       if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3558         LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3559                           << '\n');
3560 
3561         // Add operands to the worklist.
3562         replaceInstUsesWith(*I, C);
3563         ++NumConstProp;
3564         if (isInstructionTriviallyDead(I, &TLI))
3565           eraseInstFromFunction(*I);
3566         MadeIRChange = true;
3567         continue;
3568       }
3569     }
3570 
3571     // See if we can trivially sink this instruction to its user if we can
3572     // prove that the successor is not executed more frequently than our block.
3573     if (EnableCodeSinking)
3574       if (Use *SingleUse = I->getSingleUndroppableUse()) {
3575         BasicBlock *BB = I->getParent();
3576         Instruction *UserInst = cast<Instruction>(SingleUse->getUser());
3577         BasicBlock *UserParent;
3578 
3579         // Get the block the use occurs in.
3580         if (PHINode *PN = dyn_cast<PHINode>(UserInst))
3581           UserParent = PN->getIncomingBlock(*SingleUse);
3582         else
3583           UserParent = UserInst->getParent();
3584 
3585         if (UserParent != BB) {
3586           // See if the user is one of our successors that has only one
3587           // predecessor, so that we don't have to split the critical edge.
3588           bool ShouldSink = UserParent->getUniquePredecessor() == BB;
3589           // Another option where we can sink is a block that ends with a
3590           // terminator that does not pass control to other block (such as
3591           // return or unreachable). In this case:
3592           //   - I dominates the User (by SSA form);
3593           //   - the User will be executed at most once.
3594           // So sinking I down to User is always profitable or neutral.
3595           if (!ShouldSink) {
3596             auto *Term = UserParent->getTerminator();
3597             ShouldSink = isa<ReturnInst>(Term) || isa<UnreachableInst>(Term);
3598           }
3599           if (ShouldSink) {
3600             assert(DT.dominates(BB, UserParent) &&
3601                    "Dominance relation broken?");
3602             // Okay, the CFG is simple enough, try to sink this instruction.
3603             if (TryToSinkInstruction(I, UserParent)) {
3604               LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3605               MadeIRChange = true;
3606               // We'll add uses of the sunk instruction below, but since sinking
3607               // can expose opportunities for it's *operands* add them to the
3608               // worklist
3609               for (Use &U : I->operands())
3610                 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3611                   Worklist.push(OpI);
3612             }
3613           }
3614         }
3615       }
3616 
3617     // Now that we have an instruction, try combining it to simplify it.
3618     Builder.SetInsertPoint(I);
3619     Builder.SetCurrentDebugLocation(I->getDebugLoc());
3620 
3621 #ifndef NDEBUG
3622     std::string OrigI;
3623 #endif
3624     LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3625     LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3626 
3627     if (Instruction *Result = visit(*I)) {
3628       ++NumCombined;
3629       // Should we replace the old instruction with a new one?
3630       if (Result != I) {
3631         LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3632                           << "    New = " << *Result << '\n');
3633 
3634         if (I->getDebugLoc())
3635           Result->setDebugLoc(I->getDebugLoc());
3636         // Everything uses the new instruction now.
3637         I->replaceAllUsesWith(Result);
3638 
3639         // Move the name to the new instruction first.
3640         Result->takeName(I);
3641 
3642         // Insert the new instruction into the basic block...
3643         BasicBlock *InstParent = I->getParent();
3644         BasicBlock::iterator InsertPos = I->getIterator();
3645 
3646         // If we replace a PHI with something that isn't a PHI, fix up the
3647         // insertion point.
3648         if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
3649           InsertPos = InstParent->getFirstInsertionPt();
3650 
3651         InstParent->getInstList().insert(InsertPos, Result);
3652 
3653         // Push the new instruction and any users onto the worklist.
3654         Worklist.pushUsersToWorkList(*Result);
3655         Worklist.push(Result);
3656 
3657         eraseInstFromFunction(*I);
3658       } else {
3659         LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3660                           << "    New = " << *I << '\n');
3661 
3662         // If the instruction was modified, it's possible that it is now dead.
3663         // if so, remove it.
3664         if (isInstructionTriviallyDead(I, &TLI)) {
3665           eraseInstFromFunction(*I);
3666         } else {
3667           Worklist.pushUsersToWorkList(*I);
3668           Worklist.push(I);
3669         }
3670       }
3671       MadeIRChange = true;
3672     }
3673   }
3674 
3675   Worklist.zap();
3676   return MadeIRChange;
3677 }
3678 
3679 /// Populate the IC worklist from a function, by walking it in depth-first
3680 /// order and adding all reachable code to the worklist.
3681 ///
3682 /// This has a couple of tricks to make the code faster and more powerful.  In
3683 /// particular, we constant fold and DCE instructions as we go, to avoid adding
3684 /// them to the worklist (this significantly speeds up instcombine on code where
3685 /// many instructions are dead or constant).  Additionally, if we find a branch
3686 /// whose condition is a known constant, we only visit the reachable successors.
3687 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3688                                           const TargetLibraryInfo *TLI,
3689                                           InstCombineWorklist &ICWorklist) {
3690   bool MadeIRChange = false;
3691   SmallPtrSet<BasicBlock *, 32> Visited;
3692   SmallVector<BasicBlock*, 256> Worklist;
3693   Worklist.push_back(&F.front());
3694 
3695   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
3696   DenseMap<Constant *, Constant *> FoldedConstants;
3697 
3698   do {
3699     BasicBlock *BB = Worklist.pop_back_val();
3700 
3701     // We have now visited this block!  If we've already been here, ignore it.
3702     if (!Visited.insert(BB).second)
3703       continue;
3704 
3705     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3706       Instruction *Inst = &*BBI++;
3707 
3708       // ConstantProp instruction if trivially constant.
3709       if (!Inst->use_empty() &&
3710           (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
3711         if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
3712           LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
3713                             << '\n');
3714           Inst->replaceAllUsesWith(C);
3715           ++NumConstProp;
3716           if (isInstructionTriviallyDead(Inst, TLI))
3717             Inst->eraseFromParent();
3718           MadeIRChange = true;
3719           continue;
3720         }
3721 
3722       // See if we can constant fold its operands.
3723       for (Use &U : Inst->operands()) {
3724         if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
3725           continue;
3726 
3727         auto *C = cast<Constant>(U);
3728         Constant *&FoldRes = FoldedConstants[C];
3729         if (!FoldRes)
3730           FoldRes = ConstantFoldConstant(C, DL, TLI);
3731 
3732         if (FoldRes != C) {
3733           LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
3734                             << "\n    Old = " << *C
3735                             << "\n    New = " << *FoldRes << '\n');
3736           U = FoldRes;
3737           MadeIRChange = true;
3738         }
3739       }
3740 
3741       // Skip processing debug intrinsics in InstCombine. Processing these call instructions
3742       // consumes non-trivial amount of time and provides no value for the optimization.
3743       if (!isa<DbgInfoIntrinsic>(Inst))
3744         InstrsForInstCombineWorklist.push_back(Inst);
3745     }
3746 
3747     // Recursively visit successors.  If this is a branch or switch on a
3748     // constant, only visit the reachable successor.
3749     Instruction *TI = BB->getTerminator();
3750     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3751       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
3752         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
3753         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
3754         Worklist.push_back(ReachableBB);
3755         continue;
3756       }
3757     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3758       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
3759         Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
3760         continue;
3761       }
3762     }
3763 
3764     for (BasicBlock *SuccBB : successors(TI))
3765       Worklist.push_back(SuccBB);
3766   } while (!Worklist.empty());
3767 
3768   // Remove instructions inside unreachable blocks. This prevents the
3769   // instcombine code from having to deal with some bad special cases, and
3770   // reduces use counts of instructions.
3771   for (BasicBlock &BB : F) {
3772     if (Visited.count(&BB))
3773       continue;
3774 
3775     unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
3776     MadeIRChange |= NumDeadInstInBB > 0;
3777     NumDeadInst += NumDeadInstInBB;
3778   }
3779 
3780   // Once we've found all of the instructions to add to instcombine's worklist,
3781   // add them in reverse order.  This way instcombine will visit from the top
3782   // of the function down.  This jives well with the way that it adds all uses
3783   // of instructions to the worklist after doing a transformation, thus avoiding
3784   // some N^2 behavior in pathological cases.
3785   ICWorklist.reserve(InstrsForInstCombineWorklist.size());
3786   for (Instruction *Inst : reverse(InstrsForInstCombineWorklist)) {
3787     // DCE instruction if trivially dead. As we iterate in reverse program
3788     // order here, we will clean up whole chains of dead instructions.
3789     if (isInstructionTriviallyDead(Inst, TLI)) {
3790       ++NumDeadInst;
3791       LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
3792       salvageDebugInfo(*Inst);
3793       Inst->eraseFromParent();
3794       MadeIRChange = true;
3795       continue;
3796     }
3797 
3798     ICWorklist.push(Inst);
3799   }
3800 
3801   return MadeIRChange;
3802 }
3803 
3804 static bool combineInstructionsOverFunction(
3805     Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
3806     AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
3807     DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
3808     ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
3809   auto &DL = F.getParent()->getDataLayout();
3810   MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
3811 
3812   /// Builder - This is an IRBuilder that automatically inserts new
3813   /// instructions into the worklist when they are created.
3814   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
3815       F.getContext(), TargetFolder(DL),
3816       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
3817         Worklist.add(I);
3818         if (match(I, m_Intrinsic<Intrinsic::assume>()))
3819           AC.registerAssumption(cast<CallInst>(I));
3820       }));
3821 
3822   // Lower dbg.declare intrinsics otherwise their value may be clobbered
3823   // by instcombiner.
3824   bool MadeIRChange = false;
3825   if (ShouldLowerDbgDeclare)
3826     MadeIRChange = LowerDbgDeclare(F);
3827 
3828   // Iterate while there is work to do.
3829   unsigned Iteration = 0;
3830   while (true) {
3831     ++Iteration;
3832 
3833     if (Iteration > InfiniteLoopDetectionThreshold) {
3834       report_fatal_error(
3835           "Instruction Combining seems stuck in an infinite loop after " +
3836           Twine(InfiniteLoopDetectionThreshold) + " iterations.");
3837     }
3838 
3839     if (Iteration > MaxIterations) {
3840       LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
3841                         << " on " << F.getName()
3842                         << " reached; stopping before reaching a fixpoint\n");
3843       break;
3844     }
3845 
3846     LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
3847                       << F.getName() << "\n");
3848 
3849     MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
3850 
3851     InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
3852                         ORE, BFI, PSI, DL, LI);
3853     IC.MaxArraySizeForCombine = MaxArraySize;
3854 
3855     if (!IC.run())
3856       break;
3857 
3858     MadeIRChange = true;
3859   }
3860 
3861   return MadeIRChange;
3862 }
3863 
3864 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
3865 
3866 InstCombinePass::InstCombinePass(unsigned MaxIterations)
3867     : MaxIterations(MaxIterations) {}
3868 
3869 PreservedAnalyses InstCombinePass::run(Function &F,
3870                                        FunctionAnalysisManager &AM) {
3871   auto &AC = AM.getResult<AssumptionAnalysis>(F);
3872   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3873   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3874   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
3875   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
3876 
3877   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
3878 
3879   auto *AA = &AM.getResult<AAManager>(F);
3880   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
3881   ProfileSummaryInfo *PSI =
3882       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
3883   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
3884       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
3885 
3886   if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
3887                                        BFI, PSI, MaxIterations, LI))
3888     // No changes, all analyses are preserved.
3889     return PreservedAnalyses::all();
3890 
3891   // Mark all the analyses that instcombine updates as preserved.
3892   PreservedAnalyses PA;
3893   PA.preserveSet<CFGAnalyses>();
3894   PA.preserve<AAManager>();
3895   PA.preserve<BasicAA>();
3896   PA.preserve<GlobalsAA>();
3897   return PA;
3898 }
3899 
3900 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3901   AU.setPreservesCFG();
3902   AU.addRequired<AAResultsWrapperPass>();
3903   AU.addRequired<AssumptionCacheTracker>();
3904   AU.addRequired<TargetLibraryInfoWrapperPass>();
3905   AU.addRequired<TargetTransformInfoWrapperPass>();
3906   AU.addRequired<DominatorTreeWrapperPass>();
3907   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3908   AU.addPreserved<DominatorTreeWrapperPass>();
3909   AU.addPreserved<AAResultsWrapperPass>();
3910   AU.addPreserved<BasicAAWrapperPass>();
3911   AU.addPreserved<GlobalsAAWrapperPass>();
3912   AU.addRequired<ProfileSummaryInfoWrapperPass>();
3913   LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
3914 }
3915 
3916 bool InstructionCombiningPass::runOnFunction(Function &F) {
3917   if (skipFunction(F))
3918     return false;
3919 
3920   // Required analyses.
3921   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3922   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3923   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3924   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3925   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3926   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
3927 
3928   // Optional analyses.
3929   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3930   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3931   ProfileSummaryInfo *PSI =
3932       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3933   BlockFrequencyInfo *BFI =
3934       (PSI && PSI->hasProfileSummary()) ?
3935       &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
3936       nullptr;
3937 
3938   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
3939                                          BFI, PSI, MaxIterations, LI);
3940 }
3941 
3942 char InstructionCombiningPass::ID = 0;
3943 
3944 InstructionCombiningPass::InstructionCombiningPass()
3945     : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
3946   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
3947 }
3948 
3949 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
3950     : FunctionPass(ID), MaxIterations(MaxIterations) {
3951   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
3952 }
3953 
3954 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
3955                       "Combine redundant instructions", false, false)
3956 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3957 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3958 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3959 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3960 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3961 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3962 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3963 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
3964 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
3965 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
3966                     "Combine redundant instructions", false, false)
3967 
3968 // Initialization Routines
3969 void llvm::initializeInstCombine(PassRegistry &Registry) {
3970   initializeInstructionCombiningPassPass(Registry);
3971 }
3972 
3973 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
3974   initializeInstructionCombiningPassPass(*unwrap(R));
3975 }
3976 
3977 FunctionPass *llvm::createInstructionCombiningPass() {
3978   return new InstructionCombiningPass();
3979 }
3980 
3981 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
3982   return new InstructionCombiningPass(MaxIterations);
3983 }
3984 
3985 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
3986   unwrap(PM)->add(createInstructionCombiningPass());
3987 }
3988