1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/User.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 38 #include <cassert> 39 #include <cstdint> 40 #include <iterator> 41 #include <utility> 42 43 using namespace llvm; 44 using namespace PatternMatch; 45 46 #define DEBUG_TYPE "instcombine" 47 48 /// Return true if the value is cheaper to scalarize than it is to leave as a 49 /// vector operation. IsConstantExtractIndex indicates whether we are extracting 50 /// one known element from a vector constant. 51 /// 52 /// FIXME: It's possible to create more instructions than previously existed. 53 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) { 54 // If we can pick a scalar constant value out of a vector, that is free. 55 if (auto *C = dyn_cast<Constant>(V)) 56 return IsConstantExtractIndex || C->getSplatValue(); 57 58 // An insertelement to the same constant index as our extract will simplify 59 // to the scalar inserted element. An insertelement to a different constant 60 // index is irrelevant to our extract. 61 if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt()))) 62 return IsConstantExtractIndex; 63 64 if (match(V, m_OneUse(m_Load(m_Value())))) 65 return true; 66 67 if (match(V, m_OneUse(m_UnOp()))) 68 return true; 69 70 Value *V0, *V1; 71 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 72 if (cheapToScalarize(V0, IsConstantExtractIndex) || 73 cheapToScalarize(V1, IsConstantExtractIndex)) 74 return true; 75 76 CmpInst::Predicate UnusedPred; 77 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 78 if (cheapToScalarize(V0, IsConstantExtractIndex) || 79 cheapToScalarize(V1, IsConstantExtractIndex)) 80 return true; 81 82 return false; 83 } 84 85 // If we have a PHI node with a vector type that is only used to feed 86 // itself and be an operand of extractelement at a constant location, 87 // try to replace the PHI of the vector type with a PHI of a scalar type. 88 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { 89 SmallVector<Instruction *, 2> Extracts; 90 // The users we want the PHI to have are: 91 // 1) The EI ExtractElement (we already know this) 92 // 2) Possibly more ExtractElements with the same index. 93 // 3) Another operand, which will feed back into the PHI. 94 Instruction *PHIUser = nullptr; 95 for (auto U : PN->users()) { 96 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 97 if (EI.getIndexOperand() == EU->getIndexOperand()) 98 Extracts.push_back(EU); 99 else 100 return nullptr; 101 } else if (!PHIUser) { 102 PHIUser = cast<Instruction>(U); 103 } else { 104 return nullptr; 105 } 106 } 107 108 if (!PHIUser) 109 return nullptr; 110 111 // Verify that this PHI user has one use, which is the PHI itself, 112 // and that it is a binary operation which is cheap to scalarize. 113 // otherwise return nullptr. 114 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 115 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 116 return nullptr; 117 118 // Create a scalar PHI node that will replace the vector PHI node 119 // just before the current PHI node. 120 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 121 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 122 // Scalarize each PHI operand. 123 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 124 Value *PHIInVal = PN->getIncomingValue(i); 125 BasicBlock *inBB = PN->getIncomingBlock(i); 126 Value *Elt = EI.getIndexOperand(); 127 // If the operand is the PHI induction variable: 128 if (PHIInVal == PHIUser) { 129 // Scalarize the binary operation. Its first operand is the 130 // scalar PHI, and the second operand is extracted from the other 131 // vector operand. 132 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 133 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 134 Value *Op = InsertNewInstWith( 135 ExtractElementInst::Create(B0->getOperand(opId), Elt, 136 B0->getOperand(opId)->getName() + ".Elt"), 137 *B0); 138 Value *newPHIUser = InsertNewInstWith( 139 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 140 scalarPHI, Op, B0), *B0); 141 scalarPHI->addIncoming(newPHIUser, inBB); 142 } else { 143 // Scalarize PHI input: 144 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 145 // Insert the new instruction into the predecessor basic block. 146 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 147 BasicBlock::iterator InsertPos; 148 if (pos && !isa<PHINode>(pos)) { 149 InsertPos = ++pos->getIterator(); 150 } else { 151 InsertPos = inBB->getFirstInsertionPt(); 152 } 153 154 InsertNewInstWith(newEI, *InsertPos); 155 156 scalarPHI->addIncoming(newEI, inBB); 157 } 158 } 159 160 for (auto E : Extracts) 161 replaceInstUsesWith(*E, scalarPHI); 162 163 return &EI; 164 } 165 166 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext, 167 InstCombiner::BuilderTy &Builder, 168 bool IsBigEndian) { 169 Value *X; 170 uint64_t ExtIndexC; 171 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 172 !X->getType()->isVectorTy() || 173 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 174 return nullptr; 175 176 // If this extractelement is using a bitcast from a vector of the same number 177 // of elements, see if we can find the source element from the source vector: 178 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 179 auto *SrcTy = cast<VectorType>(X->getType()); 180 Type *DestTy = Ext.getType(); 181 unsigned NumSrcElts = SrcTy->getNumElements(); 182 unsigned NumElts = Ext.getVectorOperandType()->getNumElements(); 183 if (NumSrcElts == NumElts) 184 if (Value *Elt = findScalarElement(X, ExtIndexC)) 185 return new BitCastInst(Elt, DestTy); 186 187 // If the source elements are wider than the destination, try to shift and 188 // truncate a subset of scalar bits of an insert op. 189 if (NumSrcElts < NumElts) { 190 Value *Scalar; 191 uint64_t InsIndexC; 192 if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar), 193 m_ConstantInt(InsIndexC)))) 194 return nullptr; 195 196 // The extract must be from the subset of vector elements that we inserted 197 // into. Example: if we inserted element 1 of a <2 x i64> and we are 198 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 199 // of elements 4-7 of the bitcasted vector. 200 unsigned NarrowingRatio = NumElts / NumSrcElts; 201 if (ExtIndexC / NarrowingRatio != InsIndexC) 202 return nullptr; 203 204 // We are extracting part of the original scalar. How that scalar is 205 // inserted into the vector depends on the endian-ness. Example: 206 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 207 // +--+--+--+--+--+--+--+--+ 208 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 209 // extelt <4 x i16> V', 3: | |S2|S3| 210 // +--+--+--+--+--+--+--+--+ 211 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 212 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 213 // In this example, we must right-shift little-endian. Big-endian is just a 214 // truncate. 215 unsigned Chunk = ExtIndexC % NarrowingRatio; 216 if (IsBigEndian) 217 Chunk = NarrowingRatio - 1 - Chunk; 218 219 // Bail out if this is an FP vector to FP vector sequence. That would take 220 // more instructions than we started with unless there is no shift, and it 221 // may not be handled as well in the backend. 222 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 223 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 224 if (NeedSrcBitcast && NeedDestBitcast) 225 return nullptr; 226 227 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 228 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 229 unsigned ShAmt = Chunk * DestWidth; 230 231 // TODO: This limitation is more strict than necessary. We could sum the 232 // number of new instructions and subtract the number eliminated to know if 233 // we can proceed. 234 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 235 if (NeedSrcBitcast || NeedDestBitcast) 236 return nullptr; 237 238 if (NeedSrcBitcast) { 239 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 240 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 241 } 242 243 if (ShAmt) { 244 // Bail out if we could end with more instructions than we started with. 245 if (!Ext.getVectorOperand()->hasOneUse()) 246 return nullptr; 247 Scalar = Builder.CreateLShr(Scalar, ShAmt); 248 } 249 250 if (NeedDestBitcast) { 251 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 252 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 253 } 254 return new TruncInst(Scalar, DestTy); 255 } 256 257 return nullptr; 258 } 259 260 /// Find elements of V demanded by UserInstr. 261 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 262 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 263 264 // Conservatively assume that all elements are needed. 265 APInt UsedElts(APInt::getAllOnesValue(VWidth)); 266 267 switch (UserInstr->getOpcode()) { 268 case Instruction::ExtractElement: { 269 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 270 assert(EEI->getVectorOperand() == V); 271 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 272 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 273 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 274 } 275 break; 276 } 277 case Instruction::ShuffleVector: { 278 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 279 unsigned MaskNumElts = 280 cast<VectorType>(UserInstr->getType())->getNumElements(); 281 282 UsedElts = APInt(VWidth, 0); 283 for (unsigned i = 0; i < MaskNumElts; i++) { 284 unsigned MaskVal = Shuffle->getMaskValue(i); 285 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 286 continue; 287 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 288 UsedElts.setBit(MaskVal); 289 if (Shuffle->getOperand(1) == V && 290 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 291 UsedElts.setBit(MaskVal - VWidth); 292 } 293 break; 294 } 295 default: 296 break; 297 } 298 return UsedElts; 299 } 300 301 /// Find union of elements of V demanded by all its users. 302 /// If it is known by querying findDemandedEltsBySingleUser that 303 /// no user demands an element of V, then the corresponding bit 304 /// remains unset in the returned value. 305 static APInt findDemandedEltsByAllUsers(Value *V) { 306 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 307 308 APInt UnionUsedElts(VWidth, 0); 309 for (const Use &U : V->uses()) { 310 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 311 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 312 } else { 313 UnionUsedElts = APInt::getAllOnesValue(VWidth); 314 break; 315 } 316 317 if (UnionUsedElts.isAllOnesValue()) 318 break; 319 } 320 321 return UnionUsedElts; 322 } 323 324 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { 325 Value *SrcVec = EI.getVectorOperand(); 326 Value *Index = EI.getIndexOperand(); 327 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 328 SQ.getWithInstruction(&EI))) 329 return replaceInstUsesWith(EI, V); 330 331 // If extracting a specified index from the vector, see if we can recursively 332 // find a previously computed scalar that was inserted into the vector. 333 auto *IndexC = dyn_cast<ConstantInt>(Index); 334 if (IndexC) { 335 unsigned NumElts = EI.getVectorOperandType()->getNumElements(); 336 337 // InstSimplify should handle cases where the index is invalid. 338 if (!IndexC->getValue().ule(NumElts)) 339 return nullptr; 340 341 // This instruction only demands the single element from the input vector. 342 if (NumElts != 1) { 343 // If the input vector has a single use, simplify it based on this use 344 // property. 345 if (SrcVec->hasOneUse()) { 346 APInt UndefElts(NumElts, 0); 347 APInt DemandedElts(NumElts, 0); 348 DemandedElts.setBit(IndexC->getZExtValue()); 349 if (Value *V = 350 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 351 return replaceOperand(EI, 0, V); 352 } else { 353 // If the input vector has multiple uses, simplify it based on a union 354 // of all elements used. 355 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 356 if (!DemandedElts.isAllOnesValue()) { 357 APInt UndefElts(NumElts, 0); 358 if (Value *V = SimplifyDemandedVectorElts( 359 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 360 true /* AllowMultipleUsers */)) { 361 if (V != SrcVec) { 362 SrcVec->replaceAllUsesWith(V); 363 return &EI; 364 } 365 } 366 } 367 } 368 } 369 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian())) 370 return I; 371 372 // If there's a vector PHI feeding a scalar use through this extractelement 373 // instruction, try to scalarize the PHI. 374 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 375 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 376 return ScalarPHI; 377 } 378 379 // TODO come up with a n-ary matcher that subsumes both unary and 380 // binary matchers. 381 UnaryOperator *UO; 382 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) { 383 // extelt (unop X), Index --> unop (extelt X, Index) 384 Value *X = UO->getOperand(0); 385 Value *E = Builder.CreateExtractElement(X, Index); 386 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 387 } 388 389 BinaryOperator *BO; 390 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) { 391 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 392 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 393 Value *E0 = Builder.CreateExtractElement(X, Index); 394 Value *E1 = Builder.CreateExtractElement(Y, Index); 395 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 396 } 397 398 Value *X, *Y; 399 CmpInst::Predicate Pred; 400 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 401 cheapToScalarize(SrcVec, IndexC)) { 402 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 403 Value *E0 = Builder.CreateExtractElement(X, Index); 404 Value *E1 = Builder.CreateExtractElement(Y, Index); 405 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 406 } 407 408 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 409 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 410 // Extracting the inserted element? 411 if (IE->getOperand(2) == Index) 412 return replaceInstUsesWith(EI, IE->getOperand(1)); 413 // If the inserted and extracted elements are constants, they must not 414 // be the same value, extract from the pre-inserted value instead. 415 if (isa<Constant>(IE->getOperand(2)) && IndexC) 416 return replaceOperand(EI, 0, IE->getOperand(0)); 417 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 418 // If this is extracting an element from a shufflevector, figure out where 419 // it came from and extract from the appropriate input element instead. 420 if (auto *Elt = dyn_cast<ConstantInt>(Index)) { 421 int SrcIdx = SVI->getMaskValue(Elt->getZExtValue()); 422 Value *Src; 423 unsigned LHSWidth = 424 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements(); 425 426 if (SrcIdx < 0) 427 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 428 if (SrcIdx < (int)LHSWidth) 429 Src = SVI->getOperand(0); 430 else { 431 SrcIdx -= LHSWidth; 432 Src = SVI->getOperand(1); 433 } 434 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 435 return ExtractElementInst::Create(Src, 436 ConstantInt::get(Int32Ty, 437 SrcIdx, false)); 438 } 439 } else if (auto *CI = dyn_cast<CastInst>(I)) { 440 // Canonicalize extractelement(cast) -> cast(extractelement). 441 // Bitcasts can change the number of vector elements, and they cost 442 // nothing. 443 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 444 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 445 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 446 } 447 } 448 } 449 return nullptr; 450 } 451 452 /// If V is a shuffle of values that ONLY returns elements from either LHS or 453 /// RHS, return the shuffle mask and true. Otherwise, return false. 454 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 455 SmallVectorImpl<Constant*> &Mask) { 456 assert(LHS->getType() == RHS->getType() && 457 "Invalid CollectSingleShuffleElements"); 458 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 459 460 if (isa<UndefValue>(V)) { 461 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 462 return true; 463 } 464 465 if (V == LHS) { 466 for (unsigned i = 0; i != NumElts; ++i) 467 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 468 return true; 469 } 470 471 if (V == RHS) { 472 for (unsigned i = 0; i != NumElts; ++i) 473 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), 474 i+NumElts)); 475 return true; 476 } 477 478 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 479 // If this is an insert of an extract from some other vector, include it. 480 Value *VecOp = IEI->getOperand(0); 481 Value *ScalarOp = IEI->getOperand(1); 482 Value *IdxOp = IEI->getOperand(2); 483 484 if (!isa<ConstantInt>(IdxOp)) 485 return false; 486 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 487 488 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 489 // We can handle this if the vector we are inserting into is 490 // transitively ok. 491 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 492 // If so, update the mask to reflect the inserted undef. 493 Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext())); 494 return true; 495 } 496 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 497 if (isa<ConstantInt>(EI->getOperand(1))) { 498 unsigned ExtractedIdx = 499 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 500 unsigned NumLHSElts = 501 cast<VectorType>(LHS->getType())->getNumElements(); 502 503 // This must be extracting from either LHS or RHS. 504 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 505 // We can handle this if the vector we are inserting into is 506 // transitively ok. 507 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 508 // If so, update the mask to reflect the inserted value. 509 if (EI->getOperand(0) == LHS) { 510 Mask[InsertedIdx % NumElts] = 511 ConstantInt::get(Type::getInt32Ty(V->getContext()), 512 ExtractedIdx); 513 } else { 514 assert(EI->getOperand(0) == RHS); 515 Mask[InsertedIdx % NumElts] = 516 ConstantInt::get(Type::getInt32Ty(V->getContext()), 517 ExtractedIdx + NumLHSElts); 518 } 519 return true; 520 } 521 } 522 } 523 } 524 } 525 526 return false; 527 } 528 529 /// If we have insertion into a vector that is wider than the vector that we 530 /// are extracting from, try to widen the source vector to allow a single 531 /// shufflevector to replace one or more insert/extract pairs. 532 static void replaceExtractElements(InsertElementInst *InsElt, 533 ExtractElementInst *ExtElt, 534 InstCombiner &IC) { 535 VectorType *InsVecType = InsElt->getType(); 536 VectorType *ExtVecType = ExtElt->getVectorOperandType(); 537 unsigned NumInsElts = InsVecType->getNumElements(); 538 unsigned NumExtElts = ExtVecType->getNumElements(); 539 540 // The inserted-to vector must be wider than the extracted-from vector. 541 if (InsVecType->getElementType() != ExtVecType->getElementType() || 542 NumExtElts >= NumInsElts) 543 return; 544 545 // Create a shuffle mask to widen the extended-from vector using undefined 546 // values. The mask selects all of the values of the original vector followed 547 // by as many undefined values as needed to create a vector of the same length 548 // as the inserted-to vector. 549 SmallVector<Constant *, 16> ExtendMask; 550 IntegerType *IntType = Type::getInt32Ty(InsElt->getContext()); 551 for (unsigned i = 0; i < NumExtElts; ++i) 552 ExtendMask.push_back(ConstantInt::get(IntType, i)); 553 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 554 ExtendMask.push_back(UndefValue::get(IntType)); 555 556 Value *ExtVecOp = ExtElt->getVectorOperand(); 557 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 558 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 559 ? ExtVecOpInst->getParent() 560 : ExtElt->getParent(); 561 562 // TODO: This restriction matches the basic block check below when creating 563 // new extractelement instructions. If that limitation is removed, this one 564 // could also be removed. But for now, we just bail out to ensure that we 565 // will replace the extractelement instruction that is feeding our 566 // insertelement instruction. This allows the insertelement to then be 567 // replaced by a shufflevector. If the insertelement is not replaced, we can 568 // induce infinite looping because there's an optimization for extractelement 569 // that will delete our widening shuffle. This would trigger another attempt 570 // here to create that shuffle, and we spin forever. 571 if (InsertionBlock != InsElt->getParent()) 572 return; 573 574 // TODO: This restriction matches the check in visitInsertElementInst() and 575 // prevents an infinite loop caused by not turning the extract/insert pair 576 // into a shuffle. We really should not need either check, but we're lacking 577 // folds for shufflevectors because we're afraid to generate shuffle masks 578 // that the backend can't handle. 579 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 580 return; 581 582 auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), 583 ConstantVector::get(ExtendMask)); 584 585 // Insert the new shuffle after the vector operand of the extract is defined 586 // (as long as it's not a PHI) or at the start of the basic block of the 587 // extract, so any subsequent extracts in the same basic block can use it. 588 // TODO: Insert before the earliest ExtractElementInst that is replaced. 589 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 590 WideVec->insertAfter(ExtVecOpInst); 591 else 592 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 593 594 // Replace extracts from the original narrow vector with extracts from the new 595 // wide vector. 596 for (User *U : ExtVecOp->users()) { 597 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 598 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 599 continue; 600 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 601 NewExt->insertAfter(OldExt); 602 IC.replaceInstUsesWith(*OldExt, NewExt); 603 } 604 } 605 606 /// We are building a shuffle to create V, which is a sequence of insertelement, 607 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 608 /// not rely on the second vector source. Return a std::pair containing the 609 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 610 /// parameter as required. 611 /// 612 /// Note: we intentionally don't try to fold earlier shuffles since they have 613 /// often been chosen carefully to be efficiently implementable on the target. 614 using ShuffleOps = std::pair<Value *, Value *>; 615 616 static ShuffleOps collectShuffleElements(Value *V, 617 SmallVectorImpl<Constant *> &Mask, 618 Value *PermittedRHS, 619 InstCombiner &IC) { 620 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 621 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 622 623 if (isa<UndefValue>(V)) { 624 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 625 return std::make_pair( 626 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 627 } 628 629 if (isa<ConstantAggregateZero>(V)) { 630 Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0)); 631 return std::make_pair(V, nullptr); 632 } 633 634 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 635 // If this is an insert of an extract from some other vector, include it. 636 Value *VecOp = IEI->getOperand(0); 637 Value *ScalarOp = IEI->getOperand(1); 638 Value *IdxOp = IEI->getOperand(2); 639 640 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 641 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 642 unsigned ExtractedIdx = 643 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 644 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 645 646 // Either the extracted from or inserted into vector must be RHSVec, 647 // otherwise we'd end up with a shuffle of three inputs. 648 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 649 Value *RHS = EI->getOperand(0); 650 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 651 assert(LR.second == nullptr || LR.second == RHS); 652 653 if (LR.first->getType() != RHS->getType()) { 654 // Although we are giving up for now, see if we can create extracts 655 // that match the inserts for another round of combining. 656 replaceExtractElements(IEI, EI, IC); 657 658 // We tried our best, but we can't find anything compatible with RHS 659 // further up the chain. Return a trivial shuffle. 660 for (unsigned i = 0; i < NumElts; ++i) 661 Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i); 662 return std::make_pair(V, nullptr); 663 } 664 665 unsigned NumLHSElts = 666 cast<VectorType>(RHS->getType())->getNumElements(); 667 Mask[InsertedIdx % NumElts] = 668 ConstantInt::get(Type::getInt32Ty(V->getContext()), 669 NumLHSElts+ExtractedIdx); 670 return std::make_pair(LR.first, RHS); 671 } 672 673 if (VecOp == PermittedRHS) { 674 // We've gone as far as we can: anything on the other side of the 675 // extractelement will already have been converted into a shuffle. 676 unsigned NumLHSElts = 677 cast<VectorType>(EI->getOperand(0)->getType())->getNumElements(); 678 for (unsigned i = 0; i != NumElts; ++i) 679 Mask.push_back(ConstantInt::get( 680 Type::getInt32Ty(V->getContext()), 681 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i)); 682 return std::make_pair(EI->getOperand(0), PermittedRHS); 683 } 684 685 // If this insertelement is a chain that comes from exactly these two 686 // vectors, return the vector and the effective shuffle. 687 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 688 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 689 Mask)) 690 return std::make_pair(EI->getOperand(0), PermittedRHS); 691 } 692 } 693 } 694 695 // Otherwise, we can't do anything fancy. Return an identity vector. 696 for (unsigned i = 0; i != NumElts; ++i) 697 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 698 return std::make_pair(V, nullptr); 699 } 700 701 /// Try to find redundant insertvalue instructions, like the following ones: 702 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 703 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 704 /// Here the second instruction inserts values at the same indices, as the 705 /// first one, making the first one redundant. 706 /// It should be transformed to: 707 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 708 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) { 709 bool IsRedundant = false; 710 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 711 712 // If there is a chain of insertvalue instructions (each of them except the 713 // last one has only one use and it's another insertvalue insn from this 714 // chain), check if any of the 'children' uses the same indices as the first 715 // instruction. In this case, the first one is redundant. 716 Value *V = &I; 717 unsigned Depth = 0; 718 while (V->hasOneUse() && Depth < 10) { 719 User *U = V->user_back(); 720 auto UserInsInst = dyn_cast<InsertValueInst>(U); 721 if (!UserInsInst || U->getOperand(0) != V) 722 break; 723 if (UserInsInst->getIndices() == FirstIndices) { 724 IsRedundant = true; 725 break; 726 } 727 V = UserInsInst; 728 Depth++; 729 } 730 731 if (IsRedundant) 732 return replaceInstUsesWith(I, I.getOperand(0)); 733 return nullptr; 734 } 735 736 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 737 int MaskSize = Shuf.getShuffleMask().size(); 738 int VecSize = 739 cast<VectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 740 741 // A vector select does not change the size of the operands. 742 if (MaskSize != VecSize) 743 return false; 744 745 // Each mask element must be undefined or choose a vector element from one of 746 // the source operands without crossing vector lanes. 747 for (int i = 0; i != MaskSize; ++i) { 748 int Elt = Shuf.getMaskValue(i); 749 if (Elt != -1 && Elt != i && Elt != i + VecSize) 750 return false; 751 } 752 753 return true; 754 } 755 756 /// Turn a chain of inserts that splats a value into an insert + shuffle: 757 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 758 /// shufflevector(insertelt(X, %k, 0), undef, zero) 759 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 760 // We are interested in the last insert in a chain. So if this insert has a 761 // single user and that user is an insert, bail. 762 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 763 return nullptr; 764 765 auto *VecTy = cast<VectorType>(InsElt.getType()); 766 unsigned NumElements = VecTy->getNumElements(); 767 768 // Do not try to do this for a one-element vector, since that's a nop, 769 // and will cause an inf-loop. 770 if (NumElements == 1) 771 return nullptr; 772 773 Value *SplatVal = InsElt.getOperand(1); 774 InsertElementInst *CurrIE = &InsElt; 775 SmallBitVector ElementPresent(NumElements, false); 776 InsertElementInst *FirstIE = nullptr; 777 778 // Walk the chain backwards, keeping track of which indices we inserted into, 779 // until we hit something that isn't an insert of the splatted value. 780 while (CurrIE) { 781 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 782 if (!Idx || CurrIE->getOperand(1) != SplatVal) 783 return nullptr; 784 785 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 786 // Check none of the intermediate steps have any additional uses, except 787 // for the root insertelement instruction, which can be re-used, if it 788 // inserts at position 0. 789 if (CurrIE != &InsElt && 790 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 791 return nullptr; 792 793 ElementPresent[Idx->getZExtValue()] = true; 794 FirstIE = CurrIE; 795 CurrIE = NextIE; 796 } 797 798 // If this is just a single insertelement (not a sequence), we are done. 799 if (FirstIE == &InsElt) 800 return nullptr; 801 802 // If we are not inserting into an undef vector, make sure we've seen an 803 // insert into every element. 804 // TODO: If the base vector is not undef, it might be better to create a splat 805 // and then a select-shuffle (blend) with the base vector. 806 if (!isa<UndefValue>(FirstIE->getOperand(0))) 807 if (!ElementPresent.all()) 808 return nullptr; 809 810 // Create the insert + shuffle. 811 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 812 UndefValue *UndefVec = UndefValue::get(VecTy); 813 Constant *Zero = ConstantInt::get(Int32Ty, 0); 814 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 815 FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt); 816 817 // Splat from element 0, but replace absent elements with undef in the mask. 818 SmallVector<Constant *, 16> Mask(NumElements, Zero); 819 for (unsigned i = 0; i != NumElements; ++i) 820 if (!ElementPresent[i]) 821 Mask[i] = UndefValue::get(Int32Ty); 822 823 return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask)); 824 } 825 826 /// Try to fold an insert element into an existing splat shuffle by changing 827 /// the shuffle's mask to include the index of this insert element. 828 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 829 // Check if the vector operand of this insert is a canonical splat shuffle. 830 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 831 if (!Shuf || !Shuf->isZeroEltSplat()) 832 return nullptr; 833 834 // Check for a constant insertion index. 835 uint64_t IdxC; 836 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 837 return nullptr; 838 839 // Check if the splat shuffle's input is the same as this insert's scalar op. 840 Value *X = InsElt.getOperand(1); 841 Value *Op0 = Shuf->getOperand(0); 842 if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt()))) 843 return nullptr; 844 845 // Replace the shuffle mask element at the index of this insert with a zero. 846 // For example: 847 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1 848 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef> 849 unsigned NumMaskElts = Shuf->getType()->getNumElements(); 850 SmallVector<int, 16> NewMask(NumMaskElts); 851 for (unsigned i = 0; i != NumMaskElts; ++i) 852 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 853 854 return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask); 855 } 856 857 /// Try to fold an extract+insert element into an existing identity shuffle by 858 /// changing the shuffle's mask to include the index of this insert element. 859 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 860 // Check if the vector operand of this insert is an identity shuffle. 861 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 862 if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) || 863 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 864 return nullptr; 865 866 // Check for a constant insertion index. 867 uint64_t IdxC; 868 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 869 return nullptr; 870 871 // Check if this insert's scalar op is extracted from the identity shuffle's 872 // input vector. 873 Value *Scalar = InsElt.getOperand(1); 874 Value *X = Shuf->getOperand(0); 875 if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC)))) 876 return nullptr; 877 878 // Replace the shuffle mask element at the index of this extract+insert with 879 // that same index value. 880 // For example: 881 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 882 unsigned NumMaskElts = Shuf->getType()->getNumElements(); 883 SmallVector<int, 16> NewMask(NumMaskElts); 884 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 885 for (unsigned i = 0; i != NumMaskElts; ++i) { 886 if (i != IdxC) { 887 // All mask elements besides the inserted element remain the same. 888 NewMask[i] = OldMask[i]; 889 } else if (OldMask[i] == (int)IdxC) { 890 // If the mask element was already set, there's nothing to do 891 // (demanded elements analysis may unset it later). 892 return nullptr; 893 } else { 894 assert(OldMask[i] == UndefMaskElem && 895 "Unexpected shuffle mask element for identity shuffle"); 896 NewMask[i] = IdxC; 897 } 898 } 899 900 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 901 } 902 903 /// If we have an insertelement instruction feeding into another insertelement 904 /// and the 2nd is inserting a constant into the vector, canonicalize that 905 /// constant insertion before the insertion of a variable: 906 /// 907 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 908 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 909 /// 910 /// This has the potential of eliminating the 2nd insertelement instruction 911 /// via constant folding of the scalar constant into a vector constant. 912 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 913 InstCombiner::BuilderTy &Builder) { 914 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 915 if (!InsElt1 || !InsElt1->hasOneUse()) 916 return nullptr; 917 918 Value *X, *Y; 919 Constant *ScalarC; 920 ConstantInt *IdxC1, *IdxC2; 921 if (match(InsElt1->getOperand(0), m_Value(X)) && 922 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 923 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 924 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 925 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 926 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 927 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 928 } 929 930 return nullptr; 931 } 932 933 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 934 /// --> shufflevector X, CVec', Mask' 935 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 936 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 937 // Bail out if the parent has more than one use. In that case, we'd be 938 // replacing the insertelt with a shuffle, and that's not a clear win. 939 if (!Inst || !Inst->hasOneUse()) 940 return nullptr; 941 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 942 // The shuffle must have a constant vector operand. The insertelt must have 943 // a constant scalar being inserted at a constant position in the vector. 944 Constant *ShufConstVec, *InsEltScalar; 945 uint64_t InsEltIndex; 946 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 947 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 948 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 949 return nullptr; 950 951 // Adding an element to an arbitrary shuffle could be expensive, but a 952 // shuffle that selects elements from vectors without crossing lanes is 953 // assumed cheap. 954 // If we're just adding a constant into that shuffle, it will still be 955 // cheap. 956 if (!isShuffleEquivalentToSelect(*Shuf)) 957 return nullptr; 958 959 // From the above 'select' check, we know that the mask has the same number 960 // of elements as the vector input operands. We also know that each constant 961 // input element is used in its lane and can not be used more than once by 962 // the shuffle. Therefore, replace the constant in the shuffle's constant 963 // vector with the insertelt constant. Replace the constant in the shuffle's 964 // mask vector with the insertelt index plus the length of the vector 965 // (because the constant vector operand of a shuffle is always the 2nd 966 // operand). 967 ArrayRef<int> Mask = Shuf->getShuffleMask(); 968 unsigned NumElts = Mask.size(); 969 SmallVector<Constant *, 16> NewShufElts(NumElts); 970 SmallVector<int, 16> NewMaskElts(NumElts); 971 for (unsigned I = 0; I != NumElts; ++I) { 972 if (I == InsEltIndex) { 973 NewShufElts[I] = InsEltScalar; 974 NewMaskElts[I] = InsEltIndex + NumElts; 975 } else { 976 // Copy over the existing values. 977 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 978 NewMaskElts[I] = Mask[I]; 979 } 980 } 981 982 // Create new operands for a shuffle that includes the constant of the 983 // original insertelt. The old shuffle will be dead now. 984 return new ShuffleVectorInst(Shuf->getOperand(0), 985 ConstantVector::get(NewShufElts), NewMaskElts); 986 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 987 // Transform sequences of insertelements ops with constant data/indexes into 988 // a single shuffle op. 989 unsigned NumElts = InsElt.getType()->getNumElements(); 990 991 uint64_t InsertIdx[2]; 992 Constant *Val[2]; 993 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 994 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 995 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 996 !match(IEI->getOperand(1), m_Constant(Val[1]))) 997 return nullptr; 998 SmallVector<Constant *, 16> Values(NumElts); 999 SmallVector<Constant *, 16> Mask(NumElts); 1000 auto ValI = std::begin(Val); 1001 // Generate new constant vector and mask. 1002 // We have 2 values/masks from the insertelements instructions. Insert them 1003 // into new value/mask vectors. 1004 for (uint64_t I : InsertIdx) { 1005 if (!Values[I]) { 1006 assert(!Mask[I]); 1007 Values[I] = *ValI; 1008 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 1009 NumElts + I); 1010 } 1011 ++ValI; 1012 } 1013 // Remaining values are filled with 'undef' values. 1014 for (unsigned I = 0; I < NumElts; ++I) { 1015 if (!Values[I]) { 1016 assert(!Mask[I]); 1017 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1018 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I); 1019 } 1020 } 1021 // Create new operands for a shuffle that includes the constant of the 1022 // original insertelt. 1023 return new ShuffleVectorInst(IEI->getOperand(0), 1024 ConstantVector::get(Values), 1025 ConstantVector::get(Mask)); 1026 } 1027 return nullptr; 1028 } 1029 1030 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { 1031 Value *VecOp = IE.getOperand(0); 1032 Value *ScalarOp = IE.getOperand(1); 1033 Value *IdxOp = IE.getOperand(2); 1034 1035 if (auto *V = SimplifyInsertElementInst( 1036 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1037 return replaceInstUsesWith(IE, V); 1038 1039 // If the vector and scalar are both bitcast from the same element type, do 1040 // the insert in that source type followed by bitcast. 1041 Value *VecSrc, *ScalarSrc; 1042 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1043 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1044 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1045 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1046 cast<VectorType>(VecSrc->getType())->getElementType() == 1047 ScalarSrc->getType()) { 1048 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1049 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1050 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1051 return new BitCastInst(NewInsElt, IE.getType()); 1052 } 1053 1054 // If the inserted element was extracted from some other vector and both 1055 // indexes are valid constants, try to turn this into a shuffle. 1056 uint64_t InsertedIdx, ExtractedIdx; 1057 Value *ExtVecOp; 1058 if (match(IdxOp, m_ConstantInt(InsertedIdx)) && 1059 match(ScalarOp, 1060 m_ExtractElement(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1061 ExtractedIdx < cast<VectorType>(ExtVecOp->getType())->getNumElements()) { 1062 // TODO: Looking at the user(s) to determine if this insert is a 1063 // fold-to-shuffle opportunity does not match the usual instcombine 1064 // constraints. We should decide if the transform is worthy based only 1065 // on this instruction and its operands, but that may not work currently. 1066 // 1067 // Here, we are trying to avoid creating shuffles before reaching 1068 // the end of a chain of extract-insert pairs. This is complicated because 1069 // we do not generally form arbitrary shuffle masks in instcombine 1070 // (because those may codegen poorly), but collectShuffleElements() does 1071 // exactly that. 1072 // 1073 // The rules for determining what is an acceptable target-independent 1074 // shuffle mask are fuzzy because they evolve based on the backend's 1075 // capabilities and real-world impact. 1076 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1077 if (!Insert.hasOneUse()) 1078 return true; 1079 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1080 if (!InsertUser) 1081 return true; 1082 return false; 1083 }; 1084 1085 // Try to form a shuffle from a chain of extract-insert ops. 1086 if (isShuffleRootCandidate(IE)) { 1087 SmallVector<Constant*, 16> Mask; 1088 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1089 1090 // The proposed shuffle may be trivial, in which case we shouldn't 1091 // perform the combine. 1092 if (LR.first != &IE && LR.second != &IE) { 1093 // We now have a shuffle of LHS, RHS, Mask. 1094 if (LR.second == nullptr) 1095 LR.second = UndefValue::get(LR.first->getType()); 1096 return new ShuffleVectorInst(LR.first, LR.second, 1097 ConstantVector::get(Mask)); 1098 } 1099 } 1100 } 1101 1102 unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements(); 1103 APInt UndefElts(VWidth, 0); 1104 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1105 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1106 if (V != &IE) 1107 return replaceInstUsesWith(IE, V); 1108 return &IE; 1109 } 1110 1111 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1112 return Shuf; 1113 1114 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1115 return NewInsElt; 1116 1117 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1118 return Broadcast; 1119 1120 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1121 return Splat; 1122 1123 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1124 return IdentityShuf; 1125 1126 return nullptr; 1127 } 1128 1129 /// Return true if we can evaluate the specified expression tree if the vector 1130 /// elements were shuffled in a different order. 1131 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1132 unsigned Depth = 5) { 1133 // We can always reorder the elements of a constant. 1134 if (isa<Constant>(V)) 1135 return true; 1136 1137 // We won't reorder vector arguments. No IPO here. 1138 Instruction *I = dyn_cast<Instruction>(V); 1139 if (!I) return false; 1140 1141 // Two users may expect different orders of the elements. Don't try it. 1142 if (!I->hasOneUse()) 1143 return false; 1144 1145 if (Depth == 0) return false; 1146 1147 switch (I->getOpcode()) { 1148 case Instruction::UDiv: 1149 case Instruction::SDiv: 1150 case Instruction::URem: 1151 case Instruction::SRem: 1152 // Propagating an undefined shuffle mask element to integer div/rem is not 1153 // allowed because those opcodes can create immediate undefined behavior 1154 // from an undefined element in an operand. 1155 if (llvm::any_of(Mask, [](int M){ return M == -1; })) 1156 return false; 1157 LLVM_FALLTHROUGH; 1158 case Instruction::Add: 1159 case Instruction::FAdd: 1160 case Instruction::Sub: 1161 case Instruction::FSub: 1162 case Instruction::Mul: 1163 case Instruction::FMul: 1164 case Instruction::FDiv: 1165 case Instruction::FRem: 1166 case Instruction::Shl: 1167 case Instruction::LShr: 1168 case Instruction::AShr: 1169 case Instruction::And: 1170 case Instruction::Or: 1171 case Instruction::Xor: 1172 case Instruction::ICmp: 1173 case Instruction::FCmp: 1174 case Instruction::Trunc: 1175 case Instruction::ZExt: 1176 case Instruction::SExt: 1177 case Instruction::FPToUI: 1178 case Instruction::FPToSI: 1179 case Instruction::UIToFP: 1180 case Instruction::SIToFP: 1181 case Instruction::FPTrunc: 1182 case Instruction::FPExt: 1183 case Instruction::GetElementPtr: { 1184 // Bail out if we would create longer vector ops. We could allow creating 1185 // longer vector ops, but that may result in more expensive codegen. 1186 Type *ITy = I->getType(); 1187 if (ITy->isVectorTy() && 1188 Mask.size() > cast<VectorType>(ITy)->getNumElements()) 1189 return false; 1190 for (Value *Operand : I->operands()) { 1191 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1192 return false; 1193 } 1194 return true; 1195 } 1196 case Instruction::InsertElement: { 1197 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1198 if (!CI) return false; 1199 int ElementNumber = CI->getLimitedValue(); 1200 1201 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1202 // can't put an element into multiple indices. 1203 bool SeenOnce = false; 1204 for (int i = 0, e = Mask.size(); i != e; ++i) { 1205 if (Mask[i] == ElementNumber) { 1206 if (SeenOnce) 1207 return false; 1208 SeenOnce = true; 1209 } 1210 } 1211 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1212 } 1213 } 1214 return false; 1215 } 1216 1217 /// Rebuild a new instruction just like 'I' but with the new operands given. 1218 /// In the event of type mismatch, the type of the operands is correct. 1219 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1220 // We don't want to use the IRBuilder here because we want the replacement 1221 // instructions to appear next to 'I', not the builder's insertion point. 1222 switch (I->getOpcode()) { 1223 case Instruction::Add: 1224 case Instruction::FAdd: 1225 case Instruction::Sub: 1226 case Instruction::FSub: 1227 case Instruction::Mul: 1228 case Instruction::FMul: 1229 case Instruction::UDiv: 1230 case Instruction::SDiv: 1231 case Instruction::FDiv: 1232 case Instruction::URem: 1233 case Instruction::SRem: 1234 case Instruction::FRem: 1235 case Instruction::Shl: 1236 case Instruction::LShr: 1237 case Instruction::AShr: 1238 case Instruction::And: 1239 case Instruction::Or: 1240 case Instruction::Xor: { 1241 BinaryOperator *BO = cast<BinaryOperator>(I); 1242 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1243 BinaryOperator *New = 1244 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1245 NewOps[0], NewOps[1], "", BO); 1246 if (isa<OverflowingBinaryOperator>(BO)) { 1247 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1248 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1249 } 1250 if (isa<PossiblyExactOperator>(BO)) { 1251 New->setIsExact(BO->isExact()); 1252 } 1253 if (isa<FPMathOperator>(BO)) 1254 New->copyFastMathFlags(I); 1255 return New; 1256 } 1257 case Instruction::ICmp: 1258 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1259 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1260 NewOps[0], NewOps[1]); 1261 case Instruction::FCmp: 1262 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1263 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1264 NewOps[0], NewOps[1]); 1265 case Instruction::Trunc: 1266 case Instruction::ZExt: 1267 case Instruction::SExt: 1268 case Instruction::FPToUI: 1269 case Instruction::FPToSI: 1270 case Instruction::UIToFP: 1271 case Instruction::SIToFP: 1272 case Instruction::FPTrunc: 1273 case Instruction::FPExt: { 1274 // It's possible that the mask has a different number of elements from 1275 // the original cast. We recompute the destination type to match the mask. 1276 Type *DestTy = VectorType::get( 1277 I->getType()->getScalarType(), 1278 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1279 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1280 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1281 "", I); 1282 } 1283 case Instruction::GetElementPtr: { 1284 Value *Ptr = NewOps[0]; 1285 ArrayRef<Value*> Idx = NewOps.slice(1); 1286 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1287 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1288 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1289 return GEP; 1290 } 1291 } 1292 llvm_unreachable("failed to rebuild vector instructions"); 1293 } 1294 1295 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1296 // Mask.size() does not need to be equal to the number of vector elements. 1297 1298 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1299 Type *EltTy = V->getType()->getScalarType(); 1300 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1301 if (isa<UndefValue>(V)) 1302 return UndefValue::get(VectorType::get(EltTy, Mask.size())); 1303 1304 if (isa<ConstantAggregateZero>(V)) 1305 return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size())); 1306 1307 if (Constant *C = dyn_cast<Constant>(V)) 1308 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 1309 Mask); 1310 1311 Instruction *I = cast<Instruction>(V); 1312 switch (I->getOpcode()) { 1313 case Instruction::Add: 1314 case Instruction::FAdd: 1315 case Instruction::Sub: 1316 case Instruction::FSub: 1317 case Instruction::Mul: 1318 case Instruction::FMul: 1319 case Instruction::UDiv: 1320 case Instruction::SDiv: 1321 case Instruction::FDiv: 1322 case Instruction::URem: 1323 case Instruction::SRem: 1324 case Instruction::FRem: 1325 case Instruction::Shl: 1326 case Instruction::LShr: 1327 case Instruction::AShr: 1328 case Instruction::And: 1329 case Instruction::Or: 1330 case Instruction::Xor: 1331 case Instruction::ICmp: 1332 case Instruction::FCmp: 1333 case Instruction::Trunc: 1334 case Instruction::ZExt: 1335 case Instruction::SExt: 1336 case Instruction::FPToUI: 1337 case Instruction::FPToSI: 1338 case Instruction::UIToFP: 1339 case Instruction::SIToFP: 1340 case Instruction::FPTrunc: 1341 case Instruction::FPExt: 1342 case Instruction::Select: 1343 case Instruction::GetElementPtr: { 1344 SmallVector<Value*, 8> NewOps; 1345 bool NeedsRebuild = 1346 (Mask.size() != cast<VectorType>(I->getType())->getNumElements()); 1347 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1348 Value *V; 1349 // Recursively call evaluateInDifferentElementOrder on vector arguments 1350 // as well. E.g. GetElementPtr may have scalar operands even if the 1351 // return value is a vector, so we need to examine the operand type. 1352 if (I->getOperand(i)->getType()->isVectorTy()) 1353 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1354 else 1355 V = I->getOperand(i); 1356 NewOps.push_back(V); 1357 NeedsRebuild |= (V != I->getOperand(i)); 1358 } 1359 if (NeedsRebuild) { 1360 return buildNew(I, NewOps); 1361 } 1362 return I; 1363 } 1364 case Instruction::InsertElement: { 1365 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1366 1367 // The insertelement was inserting at Element. Figure out which element 1368 // that becomes after shuffling. The answer is guaranteed to be unique 1369 // by CanEvaluateShuffled. 1370 bool Found = false; 1371 int Index = 0; 1372 for (int e = Mask.size(); Index != e; ++Index) { 1373 if (Mask[Index] == Element) { 1374 Found = true; 1375 break; 1376 } 1377 } 1378 1379 // If element is not in Mask, no need to handle the operand 1 (element to 1380 // be inserted). Just evaluate values in operand 0 according to Mask. 1381 if (!Found) 1382 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1383 1384 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1385 return InsertElementInst::Create(V, I->getOperand(1), 1386 ConstantInt::get(I32Ty, Index), "", I); 1387 } 1388 } 1389 llvm_unreachable("failed to reorder elements of vector instruction!"); 1390 } 1391 1392 // Returns true if the shuffle is extracting a contiguous range of values from 1393 // LHS, for example: 1394 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1395 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1396 // Shuffles to: |EE|FF|GG|HH| 1397 // +--+--+--+--+ 1398 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1399 ArrayRef<int> Mask) { 1400 unsigned LHSElems = 1401 cast<VectorType>(SVI.getOperand(0)->getType())->getNumElements(); 1402 unsigned MaskElems = Mask.size(); 1403 unsigned BegIdx = Mask.front(); 1404 unsigned EndIdx = Mask.back(); 1405 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1406 return false; 1407 for (unsigned I = 0; I != MaskElems; ++I) 1408 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1409 return false; 1410 return true; 1411 } 1412 1413 /// These are the ingredients in an alternate form binary operator as described 1414 /// below. 1415 struct BinopElts { 1416 BinaryOperator::BinaryOps Opcode; 1417 Value *Op0; 1418 Value *Op1; 1419 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1420 Value *V0 = nullptr, Value *V1 = nullptr) : 1421 Opcode(Opc), Op0(V0), Op1(V1) {} 1422 operator bool() const { return Opcode != 0; } 1423 }; 1424 1425 /// Binops may be transformed into binops with different opcodes and operands. 1426 /// Reverse the usual canonicalization to enable folds with the non-canonical 1427 /// form of the binop. If a transform is possible, return the elements of the 1428 /// new binop. If not, return invalid elements. 1429 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1430 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1431 Type *Ty = BO->getType(); 1432 switch (BO->getOpcode()) { 1433 case Instruction::Shl: { 1434 // shl X, C --> mul X, (1 << C) 1435 Constant *C; 1436 if (match(BO1, m_Constant(C))) { 1437 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1438 return { Instruction::Mul, BO0, ShlOne }; 1439 } 1440 break; 1441 } 1442 case Instruction::Or: { 1443 // or X, C --> add X, C (when X and C have no common bits set) 1444 const APInt *C; 1445 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1446 return { Instruction::Add, BO0, BO1 }; 1447 break; 1448 } 1449 default: 1450 break; 1451 } 1452 return {}; 1453 } 1454 1455 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1456 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1457 1458 // Are we shuffling together some value and that same value after it has been 1459 // modified by a binop with a constant? 1460 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1461 Constant *C; 1462 bool Op0IsBinop; 1463 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1464 Op0IsBinop = true; 1465 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1466 Op0IsBinop = false; 1467 else 1468 return nullptr; 1469 1470 // The identity constant for a binop leaves a variable operand unchanged. For 1471 // a vector, this is a splat of something like 0, -1, or 1. 1472 // If there's no identity constant for this binop, we're done. 1473 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1474 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1475 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1476 if (!IdC) 1477 return nullptr; 1478 1479 // Shuffle identity constants into the lanes that return the original value. 1480 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1481 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1482 // The existing binop constant vector remains in the same operand position. 1483 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1484 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1485 ConstantExpr::getShuffleVector(IdC, C, Mask); 1486 1487 bool MightCreatePoisonOrUB = 1488 is_contained(Mask, UndefMaskElem) && 1489 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1490 if (MightCreatePoisonOrUB) 1491 NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true); 1492 1493 // shuf (bop X, C), X, M --> bop X, C' 1494 // shuf X, (bop X, C), M --> bop X, C' 1495 Value *X = Op0IsBinop ? Op1 : Op0; 1496 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1497 NewBO->copyIRFlags(BO); 1498 1499 // An undef shuffle mask element may propagate as an undef constant element in 1500 // the new binop. That would produce poison where the original code might not. 1501 // If we already made a safe constant, then there's no danger. 1502 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1503 NewBO->dropPoisonGeneratingFlags(); 1504 return NewBO; 1505 } 1506 1507 /// If we have an insert of a scalar to a non-zero element of an undefined 1508 /// vector and then shuffle that value, that's the same as inserting to the zero 1509 /// element and shuffling. Splatting from the zero element is recognized as the 1510 /// canonical form of splat. 1511 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 1512 InstCombiner::BuilderTy &Builder) { 1513 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1514 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1515 Value *X; 1516 uint64_t IndexC; 1517 1518 // Match a shuffle that is a splat to a non-zero element. 1519 if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X), 1520 m_ConstantInt(IndexC)))) || 1521 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 1522 return nullptr; 1523 1524 // Insert into element 0 of an undef vector. 1525 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 1526 Constant *Zero = Builder.getInt32(0); 1527 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 1528 1529 // Splat from element 0. Any mask element that is undefined remains undefined. 1530 // For example: 1531 // shuf (inselt undef, X, 2), undef, <2,2,undef> 1532 // --> shuf (inselt undef, X, 0), undef, <0,0,undef> 1533 unsigned NumMaskElts = Shuf.getType()->getNumElements(); 1534 SmallVector<int, 16> NewMask(NumMaskElts, 0); 1535 for (unsigned i = 0; i != NumMaskElts; ++i) 1536 if (Mask[i] == UndefMaskElem) 1537 NewMask[i] = Mask[i]; 1538 1539 return new ShuffleVectorInst(NewIns, UndefVec, NewMask); 1540 } 1541 1542 /// Try to fold shuffles that are the equivalent of a vector select. 1543 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, 1544 InstCombiner::BuilderTy &Builder, 1545 const DataLayout &DL) { 1546 if (!Shuf.isSelect()) 1547 return nullptr; 1548 1549 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 1550 // Commuting undef to operand 0 conflicts with another canonicalization. 1551 unsigned NumElts = Shuf.getType()->getNumElements(); 1552 if (!isa<UndefValue>(Shuf.getOperand(1)) && 1553 Shuf.getMaskValue(0) >= (int)NumElts) { 1554 // TODO: Can we assert that both operands of a shuffle-select are not undef 1555 // (otherwise, it would have been folded by instsimplify? 1556 Shuf.commute(); 1557 return &Shuf; 1558 } 1559 1560 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 1561 return I; 1562 1563 BinaryOperator *B0, *B1; 1564 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 1565 !match(Shuf.getOperand(1), m_BinOp(B1))) 1566 return nullptr; 1567 1568 Value *X, *Y; 1569 Constant *C0, *C1; 1570 bool ConstantsAreOp1; 1571 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 1572 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 1573 ConstantsAreOp1 = true; 1574 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 1575 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 1576 ConstantsAreOp1 = false; 1577 else 1578 return nullptr; 1579 1580 // We need matching binops to fold the lanes together. 1581 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 1582 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 1583 bool DropNSW = false; 1584 if (ConstantsAreOp1 && Opc0 != Opc1) { 1585 // TODO: We drop "nsw" if shift is converted into multiply because it may 1586 // not be correct when the shift amount is BitWidth - 1. We could examine 1587 // each vector element to determine if it is safe to keep that flag. 1588 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 1589 DropNSW = true; 1590 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 1591 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 1592 Opc0 = AltB0.Opcode; 1593 C0 = cast<Constant>(AltB0.Op1); 1594 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 1595 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 1596 Opc1 = AltB1.Opcode; 1597 C1 = cast<Constant>(AltB1.Op1); 1598 } 1599 } 1600 1601 if (Opc0 != Opc1) 1602 return nullptr; 1603 1604 // The opcodes must be the same. Use a new name to make that clear. 1605 BinaryOperator::BinaryOps BOpc = Opc0; 1606 1607 // Select the constant elements needed for the single binop. 1608 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1609 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 1610 1611 // We are moving a binop after a shuffle. When a shuffle has an undefined 1612 // mask element, the result is undefined, but it is not poison or undefined 1613 // behavior. That is not necessarily true for div/rem/shift. 1614 bool MightCreatePoisonOrUB = 1615 is_contained(Mask, UndefMaskElem) && 1616 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 1617 if (MightCreatePoisonOrUB) 1618 NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1); 1619 1620 Value *V; 1621 if (X == Y) { 1622 // Remove a binop and the shuffle by rearranging the constant: 1623 // shuffle (op V, C0), (op V, C1), M --> op V, C' 1624 // shuffle (op C0, V), (op C1, V), M --> op C', V 1625 V = X; 1626 } else { 1627 // If there are 2 different variable operands, we must create a new shuffle 1628 // (select) first, so check uses to ensure that we don't end up with more 1629 // instructions than we started with. 1630 if (!B0->hasOneUse() && !B1->hasOneUse()) 1631 return nullptr; 1632 1633 // If we use the original shuffle mask and op1 is *variable*, we would be 1634 // putting an undef into operand 1 of div/rem/shift. This is either UB or 1635 // poison. We do not have to guard against UB when *constants* are op1 1636 // because safe constants guarantee that we do not overflow sdiv/srem (and 1637 // there's no danger for other opcodes). 1638 // TODO: To allow this case, create a new shuffle mask with no undefs. 1639 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 1640 return nullptr; 1641 1642 // Note: In general, we do not create new shuffles in InstCombine because we 1643 // do not know if a target can lower an arbitrary shuffle optimally. In this 1644 // case, the shuffle uses the existing mask, so there is no additional risk. 1645 1646 // Select the variable vectors first, then perform the binop: 1647 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 1648 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 1649 V = Builder.CreateShuffleVector(X, Y, Mask); 1650 } 1651 1652 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : 1653 BinaryOperator::Create(BOpc, NewC, V); 1654 1655 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 1656 // 1. If we changed an opcode, poison conditions might have changed. 1657 // 2. If the shuffle had undef mask elements, the new binop might have undefs 1658 // where the original code did not. But if we already made a safe constant, 1659 // then there's no danger. 1660 NewBO->copyIRFlags(B0); 1661 NewBO->andIRFlags(B1); 1662 if (DropNSW) 1663 NewBO->setHasNoSignedWrap(false); 1664 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1665 NewBO->dropPoisonGeneratingFlags(); 1666 return NewBO; 1667 } 1668 1669 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 1670 /// Example (little endian): 1671 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 1672 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 1673 bool IsBigEndian) { 1674 // This must be a bitcasted shuffle of 1 vector integer operand. 1675 Type *DestType = Shuf.getType(); 1676 Value *X; 1677 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 1678 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 1679 return nullptr; 1680 1681 // The source type must have the same number of elements as the shuffle, 1682 // and the source element type must be larger than the shuffle element type. 1683 Type *SrcType = X->getType(); 1684 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 1685 cast<VectorType>(SrcType)->getNumElements() != 1686 cast<VectorType>(DestType)->getNumElements() || 1687 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 1688 return nullptr; 1689 1690 assert(Shuf.changesLength() && !Shuf.increasesLength() && 1691 "Expected a shuffle that decreases length"); 1692 1693 // Last, check that the mask chooses the correct low bits for each narrow 1694 // element in the result. 1695 uint64_t TruncRatio = 1696 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 1697 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1698 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 1699 if (Mask[i] == UndefMaskElem) 1700 continue; 1701 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 1702 assert(LSBIndex <= std::numeric_limits<int32_t>::max() && 1703 "Overflowed 32-bits"); 1704 if (Mask[i] != (int)LSBIndex) 1705 return nullptr; 1706 } 1707 1708 return new TruncInst(X, DestType); 1709 } 1710 1711 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 1712 /// narrowing (concatenating with undef and extracting back to the original 1713 /// length). This allows replacing the wide select with a narrow select. 1714 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 1715 InstCombiner::BuilderTy &Builder) { 1716 // This must be a narrowing identity shuffle. It extracts the 1st N elements 1717 // of the 1st vector operand of a shuffle. 1718 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 1719 return nullptr; 1720 1721 // The vector being shuffled must be a vector select that we can eliminate. 1722 // TODO: The one-use requirement could be eased if X and/or Y are constants. 1723 Value *Cond, *X, *Y; 1724 if (!match(Shuf.getOperand(0), 1725 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 1726 return nullptr; 1727 1728 // We need a narrow condition value. It must be extended with undef elements 1729 // and have the same number of elements as this shuffle. 1730 unsigned NarrowNumElts = Shuf.getType()->getNumElements(); 1731 Value *NarrowCond; 1732 if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef()))) || 1733 cast<VectorType>(NarrowCond->getType())->getNumElements() != 1734 NarrowNumElts || 1735 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 1736 return nullptr; 1737 1738 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 1739 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 1740 Value *Undef = UndefValue::get(X->getType()); 1741 Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getShuffleMask()); 1742 Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getShuffleMask()); 1743 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 1744 } 1745 1746 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 1747 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 1748 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1749 if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1)) 1750 return nullptr; 1751 1752 Value *X, *Y; 1753 ArrayRef<int> Mask; 1754 if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Mask(Mask)))) 1755 return nullptr; 1756 1757 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 1758 // then combining may result in worse codegen. 1759 if (!Op0->hasOneUse()) 1760 return nullptr; 1761 1762 // We are extracting a subvector from a shuffle. Remove excess elements from 1763 // the 1st shuffle mask to eliminate the extract. 1764 // 1765 // This transform is conservatively limited to identity extracts because we do 1766 // not allow arbitrary shuffle mask creation as a target-independent transform 1767 // (because we can't guarantee that will lower efficiently). 1768 // 1769 // If the extracting shuffle has an undef mask element, it transfers to the 1770 // new shuffle mask. Otherwise, copy the original mask element. Example: 1771 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 1772 // shuf X, Y, <C0, undef, C2, undef> 1773 unsigned NumElts = Shuf.getType()->getNumElements(); 1774 SmallVector<int, 16> NewMask(NumElts); 1775 assert(NumElts < Mask.size() && 1776 "Identity with extract must have less elements than its inputs"); 1777 1778 for (unsigned i = 0; i != NumElts; ++i) { 1779 int ExtractMaskElt = Shuf.getMaskValue(i); 1780 int MaskElt = Mask[i]; 1781 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 1782 } 1783 return new ShuffleVectorInst(X, Y, NewMask); 1784 } 1785 1786 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 1787 /// operand with the operand of an insertelement. 1788 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 1789 InstCombiner &IC) { 1790 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 1791 SmallVector<int, 16> Mask; 1792 Shuf.getShuffleMask(Mask); 1793 1794 // The shuffle must not change vector sizes. 1795 // TODO: This restriction could be removed if the insert has only one use 1796 // (because the transform would require a new length-changing shuffle). 1797 int NumElts = Mask.size(); 1798 if (NumElts != (int)(cast<VectorType>(V0->getType())->getNumElements())) 1799 return nullptr; 1800 1801 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 1802 // not be able to handle it there if the insertelement has >1 use. 1803 // If the shuffle has an insertelement operand but does not choose the 1804 // inserted scalar element from that value, then we can replace that shuffle 1805 // operand with the source vector of the insertelement. 1806 Value *X; 1807 uint64_t IdxC; 1808 if (match(V0, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 1809 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 1810 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 1811 return IC.replaceOperand(Shuf, 0, X); 1812 } 1813 if (match(V1, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 1814 // Offset the index constant by the vector width because we are checking for 1815 // accesses to the 2nd vector input of the shuffle. 1816 IdxC += NumElts; 1817 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 1818 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 1819 return IC.replaceOperand(Shuf, 1, X); 1820 } 1821 1822 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 1823 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 1824 // We need an insertelement with a constant index. 1825 if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar), 1826 m_ConstantInt(IndexC)))) 1827 return false; 1828 1829 // Test the shuffle mask to see if it splices the inserted scalar into the 1830 // operand 1 vector of the shuffle. 1831 int NewInsIndex = -1; 1832 for (int i = 0; i != NumElts; ++i) { 1833 // Ignore undef mask elements. 1834 if (Mask[i] == -1) 1835 continue; 1836 1837 // The shuffle takes elements of operand 1 without lane changes. 1838 if (Mask[i] == NumElts + i) 1839 continue; 1840 1841 // The shuffle must choose the inserted scalar exactly once. 1842 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 1843 return false; 1844 1845 // The shuffle is placing the inserted scalar into element i. 1846 NewInsIndex = i; 1847 } 1848 1849 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 1850 1851 // Index is updated to the potentially translated insertion lane. 1852 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 1853 return true; 1854 }; 1855 1856 // If the shuffle is unnecessary, insert the scalar operand directly into 1857 // operand 1 of the shuffle. Example: 1858 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 1859 Value *Scalar; 1860 ConstantInt *IndexC; 1861 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1862 return InsertElementInst::Create(V1, Scalar, IndexC); 1863 1864 // Try again after commuting shuffle. Example: 1865 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 1866 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 1867 std::swap(V0, V1); 1868 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 1869 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1870 return InsertElementInst::Create(V1, Scalar, IndexC); 1871 1872 return nullptr; 1873 } 1874 1875 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 1876 // Match the operands as identity with padding (also known as concatenation 1877 // with undef) shuffles of the same source type. The backend is expected to 1878 // recreate these concatenations from a shuffle of narrow operands. 1879 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 1880 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 1881 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 1882 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 1883 return nullptr; 1884 1885 // We limit this transform to power-of-2 types because we expect that the 1886 // backend can convert the simplified IR patterns to identical nodes as the 1887 // original IR. 1888 // TODO: If we can verify the same behavior for arbitrary types, the 1889 // power-of-2 checks can be removed. 1890 Value *X = Shuffle0->getOperand(0); 1891 Value *Y = Shuffle1->getOperand(0); 1892 if (X->getType() != Y->getType() || 1893 !isPowerOf2_32(Shuf.getType()->getNumElements()) || 1894 !isPowerOf2_32(Shuffle0->getType()->getNumElements()) || 1895 !isPowerOf2_32(cast<VectorType>(X->getType())->getNumElements()) || 1896 isa<UndefValue>(X) || isa<UndefValue>(Y)) 1897 return nullptr; 1898 assert(isa<UndefValue>(Shuffle0->getOperand(1)) && 1899 isa<UndefValue>(Shuffle1->getOperand(1)) && 1900 "Unexpected operand for identity shuffle"); 1901 1902 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 1903 // operands directly by adjusting the shuffle mask to account for the narrower 1904 // types: 1905 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 1906 int NarrowElts = cast<VectorType>(X->getType())->getNumElements(); 1907 int WideElts = Shuffle0->getType()->getNumElements(); 1908 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 1909 1910 Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext()); 1911 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1912 SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty)); 1913 for (int i = 0, e = Mask.size(); i != e; ++i) { 1914 if (Mask[i] == -1) 1915 continue; 1916 1917 // If this shuffle is choosing an undef element from 1 of the sources, that 1918 // element is undef. 1919 if (Mask[i] < WideElts) { 1920 if (Shuffle0->getMaskValue(Mask[i]) == -1) 1921 continue; 1922 } else { 1923 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 1924 continue; 1925 } 1926 1927 // If this shuffle is choosing from the 1st narrow op, the mask element is 1928 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 1929 // element is offset down to adjust for the narrow vector widths. 1930 if (Mask[i] < WideElts) { 1931 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 1932 NewMask[i] = ConstantInt::get(I32Ty, Mask[i]); 1933 } else { 1934 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 1935 NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts)); 1936 } 1937 } 1938 return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask)); 1939 } 1940 1941 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 1942 Value *LHS = SVI.getOperand(0); 1943 Value *RHS = SVI.getOperand(1); 1944 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 1945 if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 1946 SVI.getType(), ShufQuery)) 1947 return replaceInstUsesWith(SVI, V); 1948 1949 // shuffle x, x, mask --> shuffle x, undef, mask' 1950 unsigned VWidth = SVI.getType()->getNumElements(); 1951 unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements(); 1952 ArrayRef<int> Mask = SVI.getShuffleMask(); 1953 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 1954 1955 // Peek through a bitcasted shuffle operand by scaling the mask. If the 1956 // simulated shuffle can simplify, then this shuffle is unnecessary: 1957 // shuf (bitcast X), undef, Mask --> bitcast X' 1958 // TODO: This could be extended to allow length-changing shuffles and/or casts 1959 // to narrower elements. The transform might also be obsoleted if we 1960 // allowed canonicalization of bitcasted shuffles. 1961 Value *X; 1962 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 1963 X->getType()->isVectorTy() && VWidth == LHSWidth && 1964 cast<VectorType>(X->getType())->getNumElements() >= VWidth) { 1965 // Create the scaled mask constant. 1966 auto *XType = cast<VectorType>(X->getType()); 1967 unsigned XNumElts = XType->getNumElements(); 1968 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 1969 unsigned ScaleFactor = XNumElts / VWidth; 1970 SmallVector<int, 16> ScaledMask; 1971 narrowShuffleMaskElts(ScaleFactor, Mask, ScaledMask); 1972 1973 // If the shuffled source vector simplifies, cast that value to this 1974 // shuffle's type. 1975 if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType), 1976 ScaledMask, XType, ShufQuery)) 1977 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 1978 } 1979 1980 if (LHS == RHS) { 1981 assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?"); 1982 // Remap any references to RHS to use LHS. 1983 SmallVector<int, 16> Elts; 1984 for (unsigned i = 0; i != VWidth; ++i) { 1985 // Propagate undef elements or force mask to LHS. 1986 if (Mask[i] < 0) 1987 Elts.push_back(UndefMaskElem); 1988 else 1989 Elts.push_back(Mask[i] % LHSWidth); 1990 } 1991 return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts); 1992 } 1993 1994 // shuffle undef, x, mask --> shuffle x, undef, mask' 1995 if (isa<UndefValue>(LHS)) { 1996 SVI.commute(); 1997 return &SVI; 1998 } 1999 2000 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2001 return I; 2002 2003 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) 2004 return I; 2005 2006 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2007 return I; 2008 2009 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2010 return I; 2011 2012 APInt UndefElts(VWidth, 0); 2013 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 2014 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2015 if (V != &SVI) 2016 return replaceInstUsesWith(SVI, V); 2017 return &SVI; 2018 } 2019 2020 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2021 return I; 2022 2023 // These transforms have the potential to lose undef knowledge, so they are 2024 // intentionally placed after SimplifyDemandedVectorElts(). 2025 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2026 return I; 2027 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2028 return I; 2029 2030 if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) { 2031 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 2032 return replaceInstUsesWith(SVI, V); 2033 } 2034 2035 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2036 // a non-vector type. We can instead bitcast the original vector followed by 2037 // an extract of the desired element: 2038 // 2039 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2040 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2041 // %1 = bitcast <4 x i8> %sroa to i32 2042 // Becomes: 2043 // %bc = bitcast <16 x i8> %in to <4 x i32> 2044 // %ext = extractelement <4 x i32> %bc, i32 0 2045 // 2046 // If the shuffle is extracting a contiguous range of values from the input 2047 // vector then each use which is a bitcast of the extracted size can be 2048 // replaced. This will work if the vector types are compatible, and the begin 2049 // index is aligned to a value in the casted vector type. If the begin index 2050 // isn't aligned then we can shuffle the original vector (keeping the same 2051 // vector type) before extracting. 2052 // 2053 // This code will bail out if the target type is fundamentally incompatible 2054 // with vectors of the source type. 2055 // 2056 // Example of <16 x i8>, target type i32: 2057 // Index range [4,8): v-----------v Will work. 2058 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2059 // <16 x i8>: | | | | | | | | | | | | | | | | | 2060 // <4 x i32>: | | | | | 2061 // +-----------+-----------+-----------+-----------+ 2062 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2063 // Target type i40: ^--------------^ Won't work, bail. 2064 bool MadeChange = false; 2065 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2066 Value *V = LHS; 2067 unsigned MaskElems = Mask.size(); 2068 VectorType *SrcTy = cast<VectorType>(V->getType()); 2069 unsigned VecBitWidth = SrcTy->getBitWidth(); 2070 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2071 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2072 unsigned SrcNumElems = SrcTy->getNumElements(); 2073 SmallVector<BitCastInst *, 8> BCs; 2074 DenseMap<Type *, Value *> NewBCs; 2075 for (User *U : SVI.users()) 2076 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2077 if (!BC->use_empty()) 2078 // Only visit bitcasts that weren't previously handled. 2079 BCs.push_back(BC); 2080 for (BitCastInst *BC : BCs) { 2081 unsigned BegIdx = Mask.front(); 2082 Type *TgtTy = BC->getDestTy(); 2083 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2084 if (!TgtElemBitWidth) 2085 continue; 2086 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2087 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2088 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2089 if (!VecBitWidthsEqual) 2090 continue; 2091 if (!VectorType::isValidElementType(TgtTy)) 2092 continue; 2093 VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems); 2094 if (!BegIsAligned) { 2095 // Shuffle the input so [0,NumElements) contains the output, and 2096 // [NumElems,SrcNumElems) is undef. 2097 SmallVector<Constant *, 16> ShuffleMask(SrcNumElems, 2098 UndefValue::get(Int32Ty)); 2099 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2100 ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx); 2101 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 2102 ConstantVector::get(ShuffleMask), 2103 SVI.getName() + ".extract"); 2104 BegIdx = 0; 2105 } 2106 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2107 assert(SrcElemsPerTgtElem); 2108 BegIdx /= SrcElemsPerTgtElem; 2109 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2110 auto *NewBC = 2111 BCAlreadyExists 2112 ? NewBCs[CastSrcTy] 2113 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2114 if (!BCAlreadyExists) 2115 NewBCs[CastSrcTy] = NewBC; 2116 auto *Ext = Builder.CreateExtractElement( 2117 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2118 // The shufflevector isn't being replaced: the bitcast that used it 2119 // is. InstCombine will visit the newly-created instructions. 2120 replaceInstUsesWith(*BC, Ext); 2121 MadeChange = true; 2122 } 2123 } 2124 2125 // If the LHS is a shufflevector itself, see if we can combine it with this 2126 // one without producing an unusual shuffle. 2127 // Cases that might be simplified: 2128 // 1. 2129 // x1=shuffle(v1,v2,mask1) 2130 // x=shuffle(x1,undef,mask) 2131 // ==> 2132 // x=shuffle(v1,undef,newMask) 2133 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2134 // 2. 2135 // x1=shuffle(v1,undef,mask1) 2136 // x=shuffle(x1,x2,mask) 2137 // where v1.size() == mask1.size() 2138 // ==> 2139 // x=shuffle(v1,x2,newMask) 2140 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2141 // 3. 2142 // x2=shuffle(v2,undef,mask2) 2143 // x=shuffle(x1,x2,mask) 2144 // where v2.size() == mask2.size() 2145 // ==> 2146 // x=shuffle(x1,v2,newMask) 2147 // newMask[i] = (mask[i] < x1.size()) 2148 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2149 // 4. 2150 // x1=shuffle(v1,undef,mask1) 2151 // x2=shuffle(v2,undef,mask2) 2152 // x=shuffle(x1,x2,mask) 2153 // where v1.size() == v2.size() 2154 // ==> 2155 // x=shuffle(v1,v2,newMask) 2156 // newMask[i] = (mask[i] < x1.size()) 2157 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2158 // 2159 // Here we are really conservative: 2160 // we are absolutely afraid of producing a shuffle mask not in the input 2161 // program, because the code gen may not be smart enough to turn a merged 2162 // shuffle into two specific shuffles: it may produce worse code. As such, 2163 // we only merge two shuffles if the result is either a splat or one of the 2164 // input shuffle masks. In this case, merging the shuffles just removes 2165 // one instruction, which we know is safe. This is good for things like 2166 // turning: (splat(splat)) -> splat, or 2167 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2168 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2169 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2170 if (LHSShuffle) 2171 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) 2172 LHSShuffle = nullptr; 2173 if (RHSShuffle) 2174 if (!isa<UndefValue>(RHSShuffle->getOperand(1))) 2175 RHSShuffle = nullptr; 2176 if (!LHSShuffle && !RHSShuffle) 2177 return MadeChange ? &SVI : nullptr; 2178 2179 Value* LHSOp0 = nullptr; 2180 Value* LHSOp1 = nullptr; 2181 Value* RHSOp0 = nullptr; 2182 unsigned LHSOp0Width = 0; 2183 unsigned RHSOp0Width = 0; 2184 if (LHSShuffle) { 2185 LHSOp0 = LHSShuffle->getOperand(0); 2186 LHSOp1 = LHSShuffle->getOperand(1); 2187 LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements(); 2188 } 2189 if (RHSShuffle) { 2190 RHSOp0 = RHSShuffle->getOperand(0); 2191 RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements(); 2192 } 2193 Value* newLHS = LHS; 2194 Value* newRHS = RHS; 2195 if (LHSShuffle) { 2196 // case 1 2197 if (isa<UndefValue>(RHS)) { 2198 newLHS = LHSOp0; 2199 newRHS = LHSOp1; 2200 } 2201 // case 2 or 4 2202 else if (LHSOp0Width == LHSWidth) { 2203 newLHS = LHSOp0; 2204 } 2205 } 2206 // case 3 or 4 2207 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2208 newRHS = RHSOp0; 2209 } 2210 // case 4 2211 if (LHSOp0 == RHSOp0) { 2212 newLHS = LHSOp0; 2213 newRHS = nullptr; 2214 } 2215 2216 if (newLHS == LHS && newRHS == RHS) 2217 return MadeChange ? &SVI : nullptr; 2218 2219 ArrayRef<int> LHSMask; 2220 ArrayRef<int> RHSMask; 2221 if (newLHS != LHS) 2222 LHSMask = LHSShuffle->getShuffleMask(); 2223 if (RHSShuffle && newRHS != RHS) 2224 RHSMask = RHSShuffle->getShuffleMask(); 2225 2226 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2227 SmallVector<int, 16> newMask; 2228 bool isSplat = true; 2229 int SplatElt = -1; 2230 // Create a new mask for the new ShuffleVectorInst so that the new 2231 // ShuffleVectorInst is equivalent to the original one. 2232 for (unsigned i = 0; i < VWidth; ++i) { 2233 int eltMask; 2234 if (Mask[i] < 0) { 2235 // This element is an undef value. 2236 eltMask = -1; 2237 } else if (Mask[i] < (int)LHSWidth) { 2238 // This element is from left hand side vector operand. 2239 // 2240 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2241 // new mask value for the element. 2242 if (newLHS != LHS) { 2243 eltMask = LHSMask[Mask[i]]; 2244 // If the value selected is an undef value, explicitly specify it 2245 // with a -1 mask value. 2246 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2247 eltMask = -1; 2248 } else 2249 eltMask = Mask[i]; 2250 } else { 2251 // This element is from right hand side vector operand 2252 // 2253 // If the value selected is an undef value, explicitly specify it 2254 // with a -1 mask value. (case 1) 2255 if (isa<UndefValue>(RHS)) 2256 eltMask = -1; 2257 // If RHS is going to be replaced (case 3 or 4), calculate the 2258 // new mask value for the element. 2259 else if (newRHS != RHS) { 2260 eltMask = RHSMask[Mask[i]-LHSWidth]; 2261 // If the value selected is an undef value, explicitly specify it 2262 // with a -1 mask value. 2263 if (eltMask >= (int)RHSOp0Width) { 2264 assert(isa<UndefValue>(RHSShuffle->getOperand(1)) 2265 && "should have been check above"); 2266 eltMask = -1; 2267 } 2268 } else 2269 eltMask = Mask[i]-LHSWidth; 2270 2271 // If LHS's width is changed, shift the mask value accordingly. 2272 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2273 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2274 // If newRHS == newLHS, we want to remap any references from newRHS to 2275 // newLHS so that we can properly identify splats that may occur due to 2276 // obfuscation across the two vectors. 2277 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2278 eltMask += newLHSWidth; 2279 } 2280 2281 // Check if this could still be a splat. 2282 if (eltMask >= 0) { 2283 if (SplatElt >= 0 && SplatElt != eltMask) 2284 isSplat = false; 2285 SplatElt = eltMask; 2286 } 2287 2288 newMask.push_back(eltMask); 2289 } 2290 2291 // If the result mask is equal to one of the original shuffle masks, 2292 // or is a splat, do the replacement. 2293 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2294 SmallVector<Constant*, 16> Elts; 2295 for (unsigned i = 0, e = newMask.size(); i != e; ++i) { 2296 if (newMask[i] < 0) { 2297 Elts.push_back(UndefValue::get(Int32Ty)); 2298 } else { 2299 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); 2300 } 2301 } 2302 if (!newRHS) 2303 newRHS = UndefValue::get(newLHS->getType()); 2304 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); 2305 } 2306 2307 return MadeChange ? &SVI : nullptr; 2308 } 2309