1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/User.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <iterator>
41 #include <utility>
42 
43 using namespace llvm;
44 using namespace PatternMatch;
45 
46 #define DEBUG_TYPE "instcombine"
47 
48 /// Return true if the value is cheaper to scalarize than it is to leave as a
49 /// vector operation. IsConstantExtractIndex indicates whether we are extracting
50 /// one known element from a vector constant.
51 ///
52 /// FIXME: It's possible to create more instructions than previously existed.
53 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
54   // If we can pick a scalar constant value out of a vector, that is free.
55   if (auto *C = dyn_cast<Constant>(V))
56     return IsConstantExtractIndex || C->getSplatValue();
57 
58   // An insertelement to the same constant index as our extract will simplify
59   // to the scalar inserted element. An insertelement to a different constant
60   // index is irrelevant to our extract.
61   if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
62     return IsConstantExtractIndex;
63 
64   if (match(V, m_OneUse(m_Load(m_Value()))))
65     return true;
66 
67   if (match(V, m_OneUse(m_UnOp())))
68     return true;
69 
70   Value *V0, *V1;
71   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
72     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
73         cheapToScalarize(V1, IsConstantExtractIndex))
74       return true;
75 
76   CmpInst::Predicate UnusedPred;
77   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
78     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
79         cheapToScalarize(V1, IsConstantExtractIndex))
80       return true;
81 
82   return false;
83 }
84 
85 // If we have a PHI node with a vector type that is only used to feed
86 // itself and be an operand of extractelement at a constant location,
87 // try to replace the PHI of the vector type with a PHI of a scalar type.
88 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
89   SmallVector<Instruction *, 2> Extracts;
90   // The users we want the PHI to have are:
91   // 1) The EI ExtractElement (we already know this)
92   // 2) Possibly more ExtractElements with the same index.
93   // 3) Another operand, which will feed back into the PHI.
94   Instruction *PHIUser = nullptr;
95   for (auto U : PN->users()) {
96     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
97       if (EI.getIndexOperand() == EU->getIndexOperand())
98         Extracts.push_back(EU);
99       else
100         return nullptr;
101     } else if (!PHIUser) {
102       PHIUser = cast<Instruction>(U);
103     } else {
104       return nullptr;
105     }
106   }
107 
108   if (!PHIUser)
109     return nullptr;
110 
111   // Verify that this PHI user has one use, which is the PHI itself,
112   // and that it is a binary operation which is cheap to scalarize.
113   // otherwise return nullptr.
114   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
115       !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
116     return nullptr;
117 
118   // Create a scalar PHI node that will replace the vector PHI node
119   // just before the current PHI node.
120   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
121       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
122   // Scalarize each PHI operand.
123   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
124     Value *PHIInVal = PN->getIncomingValue(i);
125     BasicBlock *inBB = PN->getIncomingBlock(i);
126     Value *Elt = EI.getIndexOperand();
127     // If the operand is the PHI induction variable:
128     if (PHIInVal == PHIUser) {
129       // Scalarize the binary operation. Its first operand is the
130       // scalar PHI, and the second operand is extracted from the other
131       // vector operand.
132       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
133       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
134       Value *Op = InsertNewInstWith(
135           ExtractElementInst::Create(B0->getOperand(opId), Elt,
136                                      B0->getOperand(opId)->getName() + ".Elt"),
137           *B0);
138       Value *newPHIUser = InsertNewInstWith(
139           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
140                                                 scalarPHI, Op, B0), *B0);
141       scalarPHI->addIncoming(newPHIUser, inBB);
142     } else {
143       // Scalarize PHI input:
144       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
145       // Insert the new instruction into the predecessor basic block.
146       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
147       BasicBlock::iterator InsertPos;
148       if (pos && !isa<PHINode>(pos)) {
149         InsertPos = ++pos->getIterator();
150       } else {
151         InsertPos = inBB->getFirstInsertionPt();
152       }
153 
154       InsertNewInstWith(newEI, *InsertPos);
155 
156       scalarPHI->addIncoming(newEI, inBB);
157     }
158   }
159 
160   for (auto E : Extracts)
161     replaceInstUsesWith(*E, scalarPHI);
162 
163   return &EI;
164 }
165 
166 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
167                                       InstCombiner::BuilderTy &Builder,
168                                       bool IsBigEndian) {
169   Value *X;
170   uint64_t ExtIndexC;
171   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
172       !X->getType()->isVectorTy() ||
173       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
174     return nullptr;
175 
176   // If this extractelement is using a bitcast from a vector of the same number
177   // of elements, see if we can find the source element from the source vector:
178   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
179   auto *SrcTy = cast<VectorType>(X->getType());
180   Type *DestTy = Ext.getType();
181   unsigned NumSrcElts = SrcTy->getNumElements();
182   unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
183   if (NumSrcElts == NumElts)
184     if (Value *Elt = findScalarElement(X, ExtIndexC))
185       return new BitCastInst(Elt, DestTy);
186 
187   // If the source elements are wider than the destination, try to shift and
188   // truncate a subset of scalar bits of an insert op.
189   if (NumSrcElts < NumElts) {
190     Value *Scalar;
191     uint64_t InsIndexC;
192     if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
193                                   m_ConstantInt(InsIndexC))))
194       return nullptr;
195 
196     // The extract must be from the subset of vector elements that we inserted
197     // into. Example: if we inserted element 1 of a <2 x i64> and we are
198     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
199     // of elements 4-7 of the bitcasted vector.
200     unsigned NarrowingRatio = NumElts / NumSrcElts;
201     if (ExtIndexC / NarrowingRatio != InsIndexC)
202       return nullptr;
203 
204     // We are extracting part of the original scalar. How that scalar is
205     // inserted into the vector depends on the endian-ness. Example:
206     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
207     //                                       +--+--+--+--+--+--+--+--+
208     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
209     // extelt <4 x i16> V', 3:               |                 |S2|S3|
210     //                                       +--+--+--+--+--+--+--+--+
211     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
212     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
213     // In this example, we must right-shift little-endian. Big-endian is just a
214     // truncate.
215     unsigned Chunk = ExtIndexC % NarrowingRatio;
216     if (IsBigEndian)
217       Chunk = NarrowingRatio - 1 - Chunk;
218 
219     // Bail out if this is an FP vector to FP vector sequence. That would take
220     // more instructions than we started with unless there is no shift, and it
221     // may not be handled as well in the backend.
222     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
223     bool NeedDestBitcast = DestTy->isFloatingPointTy();
224     if (NeedSrcBitcast && NeedDestBitcast)
225       return nullptr;
226 
227     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
228     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
229     unsigned ShAmt = Chunk * DestWidth;
230 
231     // TODO: This limitation is more strict than necessary. We could sum the
232     // number of new instructions and subtract the number eliminated to know if
233     // we can proceed.
234     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
235       if (NeedSrcBitcast || NeedDestBitcast)
236         return nullptr;
237 
238     if (NeedSrcBitcast) {
239       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
240       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
241     }
242 
243     if (ShAmt) {
244       // Bail out if we could end with more instructions than we started with.
245       if (!Ext.getVectorOperand()->hasOneUse())
246         return nullptr;
247       Scalar = Builder.CreateLShr(Scalar, ShAmt);
248     }
249 
250     if (NeedDestBitcast) {
251       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
252       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
253     }
254     return new TruncInst(Scalar, DestTy);
255   }
256 
257   return nullptr;
258 }
259 
260 /// Find elements of V demanded by UserInstr.
261 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
262   unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
263 
264   // Conservatively assume that all elements are needed.
265   APInt UsedElts(APInt::getAllOnesValue(VWidth));
266 
267   switch (UserInstr->getOpcode()) {
268   case Instruction::ExtractElement: {
269     ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
270     assert(EEI->getVectorOperand() == V);
271     ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
272     if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
273       UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
274     }
275     break;
276   }
277   case Instruction::ShuffleVector: {
278     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
279     unsigned MaskNumElts =
280         cast<VectorType>(UserInstr->getType())->getNumElements();
281 
282     UsedElts = APInt(VWidth, 0);
283     for (unsigned i = 0; i < MaskNumElts; i++) {
284       unsigned MaskVal = Shuffle->getMaskValue(i);
285       if (MaskVal == -1u || MaskVal >= 2 * VWidth)
286         continue;
287       if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
288         UsedElts.setBit(MaskVal);
289       if (Shuffle->getOperand(1) == V &&
290           ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
291         UsedElts.setBit(MaskVal - VWidth);
292     }
293     break;
294   }
295   default:
296     break;
297   }
298   return UsedElts;
299 }
300 
301 /// Find union of elements of V demanded by all its users.
302 /// If it is known by querying findDemandedEltsBySingleUser that
303 /// no user demands an element of V, then the corresponding bit
304 /// remains unset in the returned value.
305 static APInt findDemandedEltsByAllUsers(Value *V) {
306   unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
307 
308   APInt UnionUsedElts(VWidth, 0);
309   for (const Use &U : V->uses()) {
310     if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
311       UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
312     } else {
313       UnionUsedElts = APInt::getAllOnesValue(VWidth);
314       break;
315     }
316 
317     if (UnionUsedElts.isAllOnesValue())
318       break;
319   }
320 
321   return UnionUsedElts;
322 }
323 
324 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
325   Value *SrcVec = EI.getVectorOperand();
326   Value *Index = EI.getIndexOperand();
327   if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
328                                             SQ.getWithInstruction(&EI)))
329     return replaceInstUsesWith(EI, V);
330 
331   // If extracting a specified index from the vector, see if we can recursively
332   // find a previously computed scalar that was inserted into the vector.
333   auto *IndexC = dyn_cast<ConstantInt>(Index);
334   if (IndexC) {
335     unsigned NumElts = EI.getVectorOperandType()->getNumElements();
336 
337     // InstSimplify should handle cases where the index is invalid.
338     if (!IndexC->getValue().ule(NumElts))
339       return nullptr;
340 
341     // This instruction only demands the single element from the input vector.
342     if (NumElts != 1) {
343       // If the input vector has a single use, simplify it based on this use
344       // property.
345       if (SrcVec->hasOneUse()) {
346         APInt UndefElts(NumElts, 0);
347         APInt DemandedElts(NumElts, 0);
348         DemandedElts.setBit(IndexC->getZExtValue());
349         if (Value *V =
350                 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts))
351           return replaceOperand(EI, 0, V);
352       } else {
353         // If the input vector has multiple uses, simplify it based on a union
354         // of all elements used.
355         APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
356         if (!DemandedElts.isAllOnesValue()) {
357           APInt UndefElts(NumElts, 0);
358           if (Value *V = SimplifyDemandedVectorElts(
359                   SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
360                   true /* AllowMultipleUsers */)) {
361             if (V != SrcVec) {
362               SrcVec->replaceAllUsesWith(V);
363               return &EI;
364             }
365           }
366         }
367       }
368     }
369     if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
370       return I;
371 
372     // If there's a vector PHI feeding a scalar use through this extractelement
373     // instruction, try to scalarize the PHI.
374     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
375       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
376         return ScalarPHI;
377   }
378 
379   // TODO come up with a n-ary matcher that subsumes both unary and
380   // binary matchers.
381   UnaryOperator *UO;
382   if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) {
383     // extelt (unop X), Index --> unop (extelt X, Index)
384     Value *X = UO->getOperand(0);
385     Value *E = Builder.CreateExtractElement(X, Index);
386     return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
387   }
388 
389   BinaryOperator *BO;
390   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
391     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
392     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
393     Value *E0 = Builder.CreateExtractElement(X, Index);
394     Value *E1 = Builder.CreateExtractElement(Y, Index);
395     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
396   }
397 
398   Value *X, *Y;
399   CmpInst::Predicate Pred;
400   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
401       cheapToScalarize(SrcVec, IndexC)) {
402     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
403     Value *E0 = Builder.CreateExtractElement(X, Index);
404     Value *E1 = Builder.CreateExtractElement(Y, Index);
405     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
406   }
407 
408   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
409     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
410       // Extracting the inserted element?
411       if (IE->getOperand(2) == Index)
412         return replaceInstUsesWith(EI, IE->getOperand(1));
413       // If the inserted and extracted elements are constants, they must not
414       // be the same value, extract from the pre-inserted value instead.
415       if (isa<Constant>(IE->getOperand(2)) && IndexC)
416         return replaceOperand(EI, 0, IE->getOperand(0));
417     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
418       // If this is extracting an element from a shufflevector, figure out where
419       // it came from and extract from the appropriate input element instead.
420       if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
421         int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
422         Value *Src;
423         unsigned LHSWidth =
424             cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
425 
426         if (SrcIdx < 0)
427           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
428         if (SrcIdx < (int)LHSWidth)
429           Src = SVI->getOperand(0);
430         else {
431           SrcIdx -= LHSWidth;
432           Src = SVI->getOperand(1);
433         }
434         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
435         return ExtractElementInst::Create(Src,
436                                           ConstantInt::get(Int32Ty,
437                                                            SrcIdx, false));
438       }
439     } else if (auto *CI = dyn_cast<CastInst>(I)) {
440       // Canonicalize extractelement(cast) -> cast(extractelement).
441       // Bitcasts can change the number of vector elements, and they cost
442       // nothing.
443       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
444         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
445         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
446       }
447     }
448   }
449   return nullptr;
450 }
451 
452 /// If V is a shuffle of values that ONLY returns elements from either LHS or
453 /// RHS, return the shuffle mask and true. Otherwise, return false.
454 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
455                                          SmallVectorImpl<Constant*> &Mask) {
456   assert(LHS->getType() == RHS->getType() &&
457          "Invalid CollectSingleShuffleElements");
458   unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
459 
460   if (isa<UndefValue>(V)) {
461     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
462     return true;
463   }
464 
465   if (V == LHS) {
466     for (unsigned i = 0; i != NumElts; ++i)
467       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
468     return true;
469   }
470 
471   if (V == RHS) {
472     for (unsigned i = 0; i != NumElts; ++i)
473       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
474                                       i+NumElts));
475     return true;
476   }
477 
478   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
479     // If this is an insert of an extract from some other vector, include it.
480     Value *VecOp    = IEI->getOperand(0);
481     Value *ScalarOp = IEI->getOperand(1);
482     Value *IdxOp    = IEI->getOperand(2);
483 
484     if (!isa<ConstantInt>(IdxOp))
485       return false;
486     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
487 
488     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
489       // We can handle this if the vector we are inserting into is
490       // transitively ok.
491       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
492         // If so, update the mask to reflect the inserted undef.
493         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
494         return true;
495       }
496     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
497       if (isa<ConstantInt>(EI->getOperand(1))) {
498         unsigned ExtractedIdx =
499         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
500         unsigned NumLHSElts =
501             cast<VectorType>(LHS->getType())->getNumElements();
502 
503         // This must be extracting from either LHS or RHS.
504         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
505           // We can handle this if the vector we are inserting into is
506           // transitively ok.
507           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
508             // If so, update the mask to reflect the inserted value.
509             if (EI->getOperand(0) == LHS) {
510               Mask[InsertedIdx % NumElts] =
511               ConstantInt::get(Type::getInt32Ty(V->getContext()),
512                                ExtractedIdx);
513             } else {
514               assert(EI->getOperand(0) == RHS);
515               Mask[InsertedIdx % NumElts] =
516               ConstantInt::get(Type::getInt32Ty(V->getContext()),
517                                ExtractedIdx + NumLHSElts);
518             }
519             return true;
520           }
521         }
522       }
523     }
524   }
525 
526   return false;
527 }
528 
529 /// If we have insertion into a vector that is wider than the vector that we
530 /// are extracting from, try to widen the source vector to allow a single
531 /// shufflevector to replace one or more insert/extract pairs.
532 static void replaceExtractElements(InsertElementInst *InsElt,
533                                    ExtractElementInst *ExtElt,
534                                    InstCombiner &IC) {
535   VectorType *InsVecType = InsElt->getType();
536   VectorType *ExtVecType = ExtElt->getVectorOperandType();
537   unsigned NumInsElts = InsVecType->getNumElements();
538   unsigned NumExtElts = ExtVecType->getNumElements();
539 
540   // The inserted-to vector must be wider than the extracted-from vector.
541   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
542       NumExtElts >= NumInsElts)
543     return;
544 
545   // Create a shuffle mask to widen the extended-from vector using undefined
546   // values. The mask selects all of the values of the original vector followed
547   // by as many undefined values as needed to create a vector of the same length
548   // as the inserted-to vector.
549   SmallVector<Constant *, 16> ExtendMask;
550   IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
551   for (unsigned i = 0; i < NumExtElts; ++i)
552     ExtendMask.push_back(ConstantInt::get(IntType, i));
553   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
554     ExtendMask.push_back(UndefValue::get(IntType));
555 
556   Value *ExtVecOp = ExtElt->getVectorOperand();
557   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
558   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
559                                    ? ExtVecOpInst->getParent()
560                                    : ExtElt->getParent();
561 
562   // TODO: This restriction matches the basic block check below when creating
563   // new extractelement instructions. If that limitation is removed, this one
564   // could also be removed. But for now, we just bail out to ensure that we
565   // will replace the extractelement instruction that is feeding our
566   // insertelement instruction. This allows the insertelement to then be
567   // replaced by a shufflevector. If the insertelement is not replaced, we can
568   // induce infinite looping because there's an optimization for extractelement
569   // that will delete our widening shuffle. This would trigger another attempt
570   // here to create that shuffle, and we spin forever.
571   if (InsertionBlock != InsElt->getParent())
572     return;
573 
574   // TODO: This restriction matches the check in visitInsertElementInst() and
575   // prevents an infinite loop caused by not turning the extract/insert pair
576   // into a shuffle. We really should not need either check, but we're lacking
577   // folds for shufflevectors because we're afraid to generate shuffle masks
578   // that the backend can't handle.
579   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
580     return;
581 
582   auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
583                                         ConstantVector::get(ExtendMask));
584 
585   // Insert the new shuffle after the vector operand of the extract is defined
586   // (as long as it's not a PHI) or at the start of the basic block of the
587   // extract, so any subsequent extracts in the same basic block can use it.
588   // TODO: Insert before the earliest ExtractElementInst that is replaced.
589   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
590     WideVec->insertAfter(ExtVecOpInst);
591   else
592     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
593 
594   // Replace extracts from the original narrow vector with extracts from the new
595   // wide vector.
596   for (User *U : ExtVecOp->users()) {
597     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
598     if (!OldExt || OldExt->getParent() != WideVec->getParent())
599       continue;
600     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
601     NewExt->insertAfter(OldExt);
602     IC.replaceInstUsesWith(*OldExt, NewExt);
603   }
604 }
605 
606 /// We are building a shuffle to create V, which is a sequence of insertelement,
607 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
608 /// not rely on the second vector source. Return a std::pair containing the
609 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
610 /// parameter as required.
611 ///
612 /// Note: we intentionally don't try to fold earlier shuffles since they have
613 /// often been chosen carefully to be efficiently implementable on the target.
614 using ShuffleOps = std::pair<Value *, Value *>;
615 
616 static ShuffleOps collectShuffleElements(Value *V,
617                                          SmallVectorImpl<Constant *> &Mask,
618                                          Value *PermittedRHS,
619                                          InstCombiner &IC) {
620   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
621   unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
622 
623   if (isa<UndefValue>(V)) {
624     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
625     return std::make_pair(
626         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
627   }
628 
629   if (isa<ConstantAggregateZero>(V)) {
630     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
631     return std::make_pair(V, nullptr);
632   }
633 
634   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
635     // If this is an insert of an extract from some other vector, include it.
636     Value *VecOp    = IEI->getOperand(0);
637     Value *ScalarOp = IEI->getOperand(1);
638     Value *IdxOp    = IEI->getOperand(2);
639 
640     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
641       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
642         unsigned ExtractedIdx =
643           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
644         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
645 
646         // Either the extracted from or inserted into vector must be RHSVec,
647         // otherwise we'd end up with a shuffle of three inputs.
648         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
649           Value *RHS = EI->getOperand(0);
650           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
651           assert(LR.second == nullptr || LR.second == RHS);
652 
653           if (LR.first->getType() != RHS->getType()) {
654             // Although we are giving up for now, see if we can create extracts
655             // that match the inserts for another round of combining.
656             replaceExtractElements(IEI, EI, IC);
657 
658             // We tried our best, but we can't find anything compatible with RHS
659             // further up the chain. Return a trivial shuffle.
660             for (unsigned i = 0; i < NumElts; ++i)
661               Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
662             return std::make_pair(V, nullptr);
663           }
664 
665           unsigned NumLHSElts =
666               cast<VectorType>(RHS->getType())->getNumElements();
667           Mask[InsertedIdx % NumElts] =
668             ConstantInt::get(Type::getInt32Ty(V->getContext()),
669                              NumLHSElts+ExtractedIdx);
670           return std::make_pair(LR.first, RHS);
671         }
672 
673         if (VecOp == PermittedRHS) {
674           // We've gone as far as we can: anything on the other side of the
675           // extractelement will already have been converted into a shuffle.
676           unsigned NumLHSElts =
677               cast<VectorType>(EI->getOperand(0)->getType())->getNumElements();
678           for (unsigned i = 0; i != NumElts; ++i)
679             Mask.push_back(ConstantInt::get(
680                 Type::getInt32Ty(V->getContext()),
681                 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
682           return std::make_pair(EI->getOperand(0), PermittedRHS);
683         }
684 
685         // If this insertelement is a chain that comes from exactly these two
686         // vectors, return the vector and the effective shuffle.
687         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
688             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
689                                          Mask))
690           return std::make_pair(EI->getOperand(0), PermittedRHS);
691       }
692     }
693   }
694 
695   // Otherwise, we can't do anything fancy. Return an identity vector.
696   for (unsigned i = 0; i != NumElts; ++i)
697     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
698   return std::make_pair(V, nullptr);
699 }
700 
701 /// Try to find redundant insertvalue instructions, like the following ones:
702 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
703 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
704 /// Here the second instruction inserts values at the same indices, as the
705 /// first one, making the first one redundant.
706 /// It should be transformed to:
707 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
708 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
709   bool IsRedundant = false;
710   ArrayRef<unsigned int> FirstIndices = I.getIndices();
711 
712   // If there is a chain of insertvalue instructions (each of them except the
713   // last one has only one use and it's another insertvalue insn from this
714   // chain), check if any of the 'children' uses the same indices as the first
715   // instruction. In this case, the first one is redundant.
716   Value *V = &I;
717   unsigned Depth = 0;
718   while (V->hasOneUse() && Depth < 10) {
719     User *U = V->user_back();
720     auto UserInsInst = dyn_cast<InsertValueInst>(U);
721     if (!UserInsInst || U->getOperand(0) != V)
722       break;
723     if (UserInsInst->getIndices() == FirstIndices) {
724       IsRedundant = true;
725       break;
726     }
727     V = UserInsInst;
728     Depth++;
729   }
730 
731   if (IsRedundant)
732     return replaceInstUsesWith(I, I.getOperand(0));
733   return nullptr;
734 }
735 
736 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
737   int MaskSize = Shuf.getShuffleMask().size();
738   int VecSize =
739       cast<VectorType>(Shuf.getOperand(0)->getType())->getNumElements();
740 
741   // A vector select does not change the size of the operands.
742   if (MaskSize != VecSize)
743     return false;
744 
745   // Each mask element must be undefined or choose a vector element from one of
746   // the source operands without crossing vector lanes.
747   for (int i = 0; i != MaskSize; ++i) {
748     int Elt = Shuf.getMaskValue(i);
749     if (Elt != -1 && Elt != i && Elt != i + VecSize)
750       return false;
751   }
752 
753   return true;
754 }
755 
756 /// Turn a chain of inserts that splats a value into an insert + shuffle:
757 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
758 /// shufflevector(insertelt(X, %k, 0), undef, zero)
759 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
760   // We are interested in the last insert in a chain. So if this insert has a
761   // single user and that user is an insert, bail.
762   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
763     return nullptr;
764 
765   auto *VecTy = cast<VectorType>(InsElt.getType());
766   unsigned NumElements = VecTy->getNumElements();
767 
768   // Do not try to do this for a one-element vector, since that's a nop,
769   // and will cause an inf-loop.
770   if (NumElements == 1)
771     return nullptr;
772 
773   Value *SplatVal = InsElt.getOperand(1);
774   InsertElementInst *CurrIE = &InsElt;
775   SmallBitVector ElementPresent(NumElements, false);
776   InsertElementInst *FirstIE = nullptr;
777 
778   // Walk the chain backwards, keeping track of which indices we inserted into,
779   // until we hit something that isn't an insert of the splatted value.
780   while (CurrIE) {
781     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
782     if (!Idx || CurrIE->getOperand(1) != SplatVal)
783       return nullptr;
784 
785     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
786     // Check none of the intermediate steps have any additional uses, except
787     // for the root insertelement instruction, which can be re-used, if it
788     // inserts at position 0.
789     if (CurrIE != &InsElt &&
790         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
791       return nullptr;
792 
793     ElementPresent[Idx->getZExtValue()] = true;
794     FirstIE = CurrIE;
795     CurrIE = NextIE;
796   }
797 
798   // If this is just a single insertelement (not a sequence), we are done.
799   if (FirstIE == &InsElt)
800     return nullptr;
801 
802   // If we are not inserting into an undef vector, make sure we've seen an
803   // insert into every element.
804   // TODO: If the base vector is not undef, it might be better to create a splat
805   //       and then a select-shuffle (blend) with the base vector.
806   if (!isa<UndefValue>(FirstIE->getOperand(0)))
807     if (!ElementPresent.all())
808       return nullptr;
809 
810   // Create the insert + shuffle.
811   Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
812   UndefValue *UndefVec = UndefValue::get(VecTy);
813   Constant *Zero = ConstantInt::get(Int32Ty, 0);
814   if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
815     FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt);
816 
817   // Splat from element 0, but replace absent elements with undef in the mask.
818   SmallVector<Constant *, 16> Mask(NumElements, Zero);
819   for (unsigned i = 0; i != NumElements; ++i)
820     if (!ElementPresent[i])
821       Mask[i] = UndefValue::get(Int32Ty);
822 
823   return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask));
824 }
825 
826 /// Try to fold an insert element into an existing splat shuffle by changing
827 /// the shuffle's mask to include the index of this insert element.
828 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
829   // Check if the vector operand of this insert is a canonical splat shuffle.
830   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
831   if (!Shuf || !Shuf->isZeroEltSplat())
832     return nullptr;
833 
834   // Check for a constant insertion index.
835   uint64_t IdxC;
836   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
837     return nullptr;
838 
839   // Check if the splat shuffle's input is the same as this insert's scalar op.
840   Value *X = InsElt.getOperand(1);
841   Value *Op0 = Shuf->getOperand(0);
842   if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt())))
843     return nullptr;
844 
845   // Replace the shuffle mask element at the index of this insert with a zero.
846   // For example:
847   // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
848   //   --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
849   unsigned NumMaskElts = Shuf->getType()->getNumElements();
850   SmallVector<int, 16> NewMask(NumMaskElts);
851   for (unsigned i = 0; i != NumMaskElts; ++i)
852     NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);
853 
854   return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
855 }
856 
857 /// Try to fold an extract+insert element into an existing identity shuffle by
858 /// changing the shuffle's mask to include the index of this insert element.
859 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
860   // Check if the vector operand of this insert is an identity shuffle.
861   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
862   if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) ||
863       !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
864     return nullptr;
865 
866   // Check for a constant insertion index.
867   uint64_t IdxC;
868   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
869     return nullptr;
870 
871   // Check if this insert's scalar op is extracted from the identity shuffle's
872   // input vector.
873   Value *Scalar = InsElt.getOperand(1);
874   Value *X = Shuf->getOperand(0);
875   if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC))))
876     return nullptr;
877 
878   // Replace the shuffle mask element at the index of this extract+insert with
879   // that same index value.
880   // For example:
881   // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
882   unsigned NumMaskElts = Shuf->getType()->getNumElements();
883   SmallVector<int, 16> NewMask(NumMaskElts);
884   ArrayRef<int> OldMask = Shuf->getShuffleMask();
885   for (unsigned i = 0; i != NumMaskElts; ++i) {
886     if (i != IdxC) {
887       // All mask elements besides the inserted element remain the same.
888       NewMask[i] = OldMask[i];
889     } else if (OldMask[i] == (int)IdxC) {
890       // If the mask element was already set, there's nothing to do
891       // (demanded elements analysis may unset it later).
892       return nullptr;
893     } else {
894       assert(OldMask[i] == UndefMaskElem &&
895              "Unexpected shuffle mask element for identity shuffle");
896       NewMask[i] = IdxC;
897     }
898   }
899 
900   return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
901 }
902 
903 /// If we have an insertelement instruction feeding into another insertelement
904 /// and the 2nd is inserting a constant into the vector, canonicalize that
905 /// constant insertion before the insertion of a variable:
906 ///
907 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
908 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
909 ///
910 /// This has the potential of eliminating the 2nd insertelement instruction
911 /// via constant folding of the scalar constant into a vector constant.
912 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
913                                      InstCombiner::BuilderTy &Builder) {
914   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
915   if (!InsElt1 || !InsElt1->hasOneUse())
916     return nullptr;
917 
918   Value *X, *Y;
919   Constant *ScalarC;
920   ConstantInt *IdxC1, *IdxC2;
921   if (match(InsElt1->getOperand(0), m_Value(X)) &&
922       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
923       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
924       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
925       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
926     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
927     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
928   }
929 
930   return nullptr;
931 }
932 
933 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
934 /// --> shufflevector X, CVec', Mask'
935 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
936   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
937   // Bail out if the parent has more than one use. In that case, we'd be
938   // replacing the insertelt with a shuffle, and that's not a clear win.
939   if (!Inst || !Inst->hasOneUse())
940     return nullptr;
941   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
942     // The shuffle must have a constant vector operand. The insertelt must have
943     // a constant scalar being inserted at a constant position in the vector.
944     Constant *ShufConstVec, *InsEltScalar;
945     uint64_t InsEltIndex;
946     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
947         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
948         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
949       return nullptr;
950 
951     // Adding an element to an arbitrary shuffle could be expensive, but a
952     // shuffle that selects elements from vectors without crossing lanes is
953     // assumed cheap.
954     // If we're just adding a constant into that shuffle, it will still be
955     // cheap.
956     if (!isShuffleEquivalentToSelect(*Shuf))
957       return nullptr;
958 
959     // From the above 'select' check, we know that the mask has the same number
960     // of elements as the vector input operands. We also know that each constant
961     // input element is used in its lane and can not be used more than once by
962     // the shuffle. Therefore, replace the constant in the shuffle's constant
963     // vector with the insertelt constant. Replace the constant in the shuffle's
964     // mask vector with the insertelt index plus the length of the vector
965     // (because the constant vector operand of a shuffle is always the 2nd
966     // operand).
967     ArrayRef<int> Mask = Shuf->getShuffleMask();
968     unsigned NumElts = Mask.size();
969     SmallVector<Constant *, 16> NewShufElts(NumElts);
970     SmallVector<int, 16> NewMaskElts(NumElts);
971     for (unsigned I = 0; I != NumElts; ++I) {
972       if (I == InsEltIndex) {
973         NewShufElts[I] = InsEltScalar;
974         NewMaskElts[I] = InsEltIndex + NumElts;
975       } else {
976         // Copy over the existing values.
977         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
978         NewMaskElts[I] = Mask[I];
979       }
980     }
981 
982     // Create new operands for a shuffle that includes the constant of the
983     // original insertelt. The old shuffle will be dead now.
984     return new ShuffleVectorInst(Shuf->getOperand(0),
985                                  ConstantVector::get(NewShufElts), NewMaskElts);
986   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
987     // Transform sequences of insertelements ops with constant data/indexes into
988     // a single shuffle op.
989     unsigned NumElts = InsElt.getType()->getNumElements();
990 
991     uint64_t InsertIdx[2];
992     Constant *Val[2];
993     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
994         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
995         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
996         !match(IEI->getOperand(1), m_Constant(Val[1])))
997       return nullptr;
998     SmallVector<Constant *, 16> Values(NumElts);
999     SmallVector<Constant *, 16> Mask(NumElts);
1000     auto ValI = std::begin(Val);
1001     // Generate new constant vector and mask.
1002     // We have 2 values/masks from the insertelements instructions. Insert them
1003     // into new value/mask vectors.
1004     for (uint64_t I : InsertIdx) {
1005       if (!Values[I]) {
1006         assert(!Mask[I]);
1007         Values[I] = *ValI;
1008         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
1009                                    NumElts + I);
1010       }
1011       ++ValI;
1012     }
1013     // Remaining values are filled with 'undef' values.
1014     for (unsigned I = 0; I < NumElts; ++I) {
1015       if (!Values[I]) {
1016         assert(!Mask[I]);
1017         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
1018         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
1019       }
1020     }
1021     // Create new operands for a shuffle that includes the constant of the
1022     // original insertelt.
1023     return new ShuffleVectorInst(IEI->getOperand(0),
1024                                  ConstantVector::get(Values),
1025                                  ConstantVector::get(Mask));
1026   }
1027   return nullptr;
1028 }
1029 
1030 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
1031   Value *VecOp    = IE.getOperand(0);
1032   Value *ScalarOp = IE.getOperand(1);
1033   Value *IdxOp    = IE.getOperand(2);
1034 
1035   if (auto *V = SimplifyInsertElementInst(
1036           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1037     return replaceInstUsesWith(IE, V);
1038 
1039   // If the vector and scalar are both bitcast from the same element type, do
1040   // the insert in that source type followed by bitcast.
1041   Value *VecSrc, *ScalarSrc;
1042   if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1043       match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1044       (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1045       VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1046       cast<VectorType>(VecSrc->getType())->getElementType() ==
1047           ScalarSrc->getType()) {
1048     // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1049     //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1050     Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1051     return new BitCastInst(NewInsElt, IE.getType());
1052   }
1053 
1054   // If the inserted element was extracted from some other vector and both
1055   // indexes are valid constants, try to turn this into a shuffle.
1056   uint64_t InsertedIdx, ExtractedIdx;
1057   Value *ExtVecOp;
1058   if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1059       match(ScalarOp,
1060             m_ExtractElement(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) &&
1061       ExtractedIdx < cast<VectorType>(ExtVecOp->getType())->getNumElements()) {
1062     // TODO: Looking at the user(s) to determine if this insert is a
1063     // fold-to-shuffle opportunity does not match the usual instcombine
1064     // constraints. We should decide if the transform is worthy based only
1065     // on this instruction and its operands, but that may not work currently.
1066     //
1067     // Here, we are trying to avoid creating shuffles before reaching
1068     // the end of a chain of extract-insert pairs. This is complicated because
1069     // we do not generally form arbitrary shuffle masks in instcombine
1070     // (because those may codegen poorly), but collectShuffleElements() does
1071     // exactly that.
1072     //
1073     // The rules for determining what is an acceptable target-independent
1074     // shuffle mask are fuzzy because they evolve based on the backend's
1075     // capabilities and real-world impact.
1076     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1077       if (!Insert.hasOneUse())
1078         return true;
1079       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1080       if (!InsertUser)
1081         return true;
1082       return false;
1083     };
1084 
1085     // Try to form a shuffle from a chain of extract-insert ops.
1086     if (isShuffleRootCandidate(IE)) {
1087       SmallVector<Constant*, 16> Mask;
1088       ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
1089 
1090       // The proposed shuffle may be trivial, in which case we shouldn't
1091       // perform the combine.
1092       if (LR.first != &IE && LR.second != &IE) {
1093         // We now have a shuffle of LHS, RHS, Mask.
1094         if (LR.second == nullptr)
1095           LR.second = UndefValue::get(LR.first->getType());
1096         return new ShuffleVectorInst(LR.first, LR.second,
1097                                      ConstantVector::get(Mask));
1098       }
1099     }
1100   }
1101 
1102   unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
1103   APInt UndefElts(VWidth, 0);
1104   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1105   if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
1106     if (V != &IE)
1107       return replaceInstUsesWith(IE, V);
1108     return &IE;
1109   }
1110 
1111   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1112     return Shuf;
1113 
1114   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1115     return NewInsElt;
1116 
1117   if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1118     return Broadcast;
1119 
1120   if (Instruction *Splat = foldInsEltIntoSplat(IE))
1121     return Splat;
1122 
1123   if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1124     return IdentityShuf;
1125 
1126   return nullptr;
1127 }
1128 
1129 /// Return true if we can evaluate the specified expression tree if the vector
1130 /// elements were shuffled in a different order.
1131 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1132                                 unsigned Depth = 5) {
1133   // We can always reorder the elements of a constant.
1134   if (isa<Constant>(V))
1135     return true;
1136 
1137   // We won't reorder vector arguments. No IPO here.
1138   Instruction *I = dyn_cast<Instruction>(V);
1139   if (!I) return false;
1140 
1141   // Two users may expect different orders of the elements. Don't try it.
1142   if (!I->hasOneUse())
1143     return false;
1144 
1145   if (Depth == 0) return false;
1146 
1147   switch (I->getOpcode()) {
1148     case Instruction::UDiv:
1149     case Instruction::SDiv:
1150     case Instruction::URem:
1151     case Instruction::SRem:
1152       // Propagating an undefined shuffle mask element to integer div/rem is not
1153       // allowed because those opcodes can create immediate undefined behavior
1154       // from an undefined element in an operand.
1155       if (llvm::any_of(Mask, [](int M){ return M == -1; }))
1156         return false;
1157       LLVM_FALLTHROUGH;
1158     case Instruction::Add:
1159     case Instruction::FAdd:
1160     case Instruction::Sub:
1161     case Instruction::FSub:
1162     case Instruction::Mul:
1163     case Instruction::FMul:
1164     case Instruction::FDiv:
1165     case Instruction::FRem:
1166     case Instruction::Shl:
1167     case Instruction::LShr:
1168     case Instruction::AShr:
1169     case Instruction::And:
1170     case Instruction::Or:
1171     case Instruction::Xor:
1172     case Instruction::ICmp:
1173     case Instruction::FCmp:
1174     case Instruction::Trunc:
1175     case Instruction::ZExt:
1176     case Instruction::SExt:
1177     case Instruction::FPToUI:
1178     case Instruction::FPToSI:
1179     case Instruction::UIToFP:
1180     case Instruction::SIToFP:
1181     case Instruction::FPTrunc:
1182     case Instruction::FPExt:
1183     case Instruction::GetElementPtr: {
1184       // Bail out if we would create longer vector ops. We could allow creating
1185       // longer vector ops, but that may result in more expensive codegen.
1186       Type *ITy = I->getType();
1187       if (ITy->isVectorTy() &&
1188           Mask.size() > cast<VectorType>(ITy)->getNumElements())
1189         return false;
1190       for (Value *Operand : I->operands()) {
1191         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1192           return false;
1193       }
1194       return true;
1195     }
1196     case Instruction::InsertElement: {
1197       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1198       if (!CI) return false;
1199       int ElementNumber = CI->getLimitedValue();
1200 
1201       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1202       // can't put an element into multiple indices.
1203       bool SeenOnce = false;
1204       for (int i = 0, e = Mask.size(); i != e; ++i) {
1205         if (Mask[i] == ElementNumber) {
1206           if (SeenOnce)
1207             return false;
1208           SeenOnce = true;
1209         }
1210       }
1211       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1212     }
1213   }
1214   return false;
1215 }
1216 
1217 /// Rebuild a new instruction just like 'I' but with the new operands given.
1218 /// In the event of type mismatch, the type of the operands is correct.
1219 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1220   // We don't want to use the IRBuilder here because we want the replacement
1221   // instructions to appear next to 'I', not the builder's insertion point.
1222   switch (I->getOpcode()) {
1223     case Instruction::Add:
1224     case Instruction::FAdd:
1225     case Instruction::Sub:
1226     case Instruction::FSub:
1227     case Instruction::Mul:
1228     case Instruction::FMul:
1229     case Instruction::UDiv:
1230     case Instruction::SDiv:
1231     case Instruction::FDiv:
1232     case Instruction::URem:
1233     case Instruction::SRem:
1234     case Instruction::FRem:
1235     case Instruction::Shl:
1236     case Instruction::LShr:
1237     case Instruction::AShr:
1238     case Instruction::And:
1239     case Instruction::Or:
1240     case Instruction::Xor: {
1241       BinaryOperator *BO = cast<BinaryOperator>(I);
1242       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1243       BinaryOperator *New =
1244           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1245                                  NewOps[0], NewOps[1], "", BO);
1246       if (isa<OverflowingBinaryOperator>(BO)) {
1247         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1248         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1249       }
1250       if (isa<PossiblyExactOperator>(BO)) {
1251         New->setIsExact(BO->isExact());
1252       }
1253       if (isa<FPMathOperator>(BO))
1254         New->copyFastMathFlags(I);
1255       return New;
1256     }
1257     case Instruction::ICmp:
1258       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1259       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1260                           NewOps[0], NewOps[1]);
1261     case Instruction::FCmp:
1262       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1263       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1264                           NewOps[0], NewOps[1]);
1265     case Instruction::Trunc:
1266     case Instruction::ZExt:
1267     case Instruction::SExt:
1268     case Instruction::FPToUI:
1269     case Instruction::FPToSI:
1270     case Instruction::UIToFP:
1271     case Instruction::SIToFP:
1272     case Instruction::FPTrunc:
1273     case Instruction::FPExt: {
1274       // It's possible that the mask has a different number of elements from
1275       // the original cast. We recompute the destination type to match the mask.
1276       Type *DestTy = VectorType::get(
1277           I->getType()->getScalarType(),
1278           cast<VectorType>(NewOps[0]->getType())->getElementCount());
1279       assert(NewOps.size() == 1 && "cast with #ops != 1");
1280       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1281                               "", I);
1282     }
1283     case Instruction::GetElementPtr: {
1284       Value *Ptr = NewOps[0];
1285       ArrayRef<Value*> Idx = NewOps.slice(1);
1286       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1287           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1288       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1289       return GEP;
1290     }
1291   }
1292   llvm_unreachable("failed to rebuild vector instructions");
1293 }
1294 
1295 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1296   // Mask.size() does not need to be equal to the number of vector elements.
1297 
1298   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1299   Type *EltTy = V->getType()->getScalarType();
1300   Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1301   if (isa<UndefValue>(V))
1302     return UndefValue::get(VectorType::get(EltTy, Mask.size()));
1303 
1304   if (isa<ConstantAggregateZero>(V))
1305     return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));
1306 
1307   if (Constant *C = dyn_cast<Constant>(V))
1308     return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
1309                                           Mask);
1310 
1311   Instruction *I = cast<Instruction>(V);
1312   switch (I->getOpcode()) {
1313     case Instruction::Add:
1314     case Instruction::FAdd:
1315     case Instruction::Sub:
1316     case Instruction::FSub:
1317     case Instruction::Mul:
1318     case Instruction::FMul:
1319     case Instruction::UDiv:
1320     case Instruction::SDiv:
1321     case Instruction::FDiv:
1322     case Instruction::URem:
1323     case Instruction::SRem:
1324     case Instruction::FRem:
1325     case Instruction::Shl:
1326     case Instruction::LShr:
1327     case Instruction::AShr:
1328     case Instruction::And:
1329     case Instruction::Or:
1330     case Instruction::Xor:
1331     case Instruction::ICmp:
1332     case Instruction::FCmp:
1333     case Instruction::Trunc:
1334     case Instruction::ZExt:
1335     case Instruction::SExt:
1336     case Instruction::FPToUI:
1337     case Instruction::FPToSI:
1338     case Instruction::UIToFP:
1339     case Instruction::SIToFP:
1340     case Instruction::FPTrunc:
1341     case Instruction::FPExt:
1342     case Instruction::Select:
1343     case Instruction::GetElementPtr: {
1344       SmallVector<Value*, 8> NewOps;
1345       bool NeedsRebuild =
1346           (Mask.size() != cast<VectorType>(I->getType())->getNumElements());
1347       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1348         Value *V;
1349         // Recursively call evaluateInDifferentElementOrder on vector arguments
1350         // as well. E.g. GetElementPtr may have scalar operands even if the
1351         // return value is a vector, so we need to examine the operand type.
1352         if (I->getOperand(i)->getType()->isVectorTy())
1353           V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1354         else
1355           V = I->getOperand(i);
1356         NewOps.push_back(V);
1357         NeedsRebuild |= (V != I->getOperand(i));
1358       }
1359       if (NeedsRebuild) {
1360         return buildNew(I, NewOps);
1361       }
1362       return I;
1363     }
1364     case Instruction::InsertElement: {
1365       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1366 
1367       // The insertelement was inserting at Element. Figure out which element
1368       // that becomes after shuffling. The answer is guaranteed to be unique
1369       // by CanEvaluateShuffled.
1370       bool Found = false;
1371       int Index = 0;
1372       for (int e = Mask.size(); Index != e; ++Index) {
1373         if (Mask[Index] == Element) {
1374           Found = true;
1375           break;
1376         }
1377       }
1378 
1379       // If element is not in Mask, no need to handle the operand 1 (element to
1380       // be inserted). Just evaluate values in operand 0 according to Mask.
1381       if (!Found)
1382         return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1383 
1384       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1385       return InsertElementInst::Create(V, I->getOperand(1),
1386                                        ConstantInt::get(I32Ty, Index), "", I);
1387     }
1388   }
1389   llvm_unreachable("failed to reorder elements of vector instruction!");
1390 }
1391 
1392 // Returns true if the shuffle is extracting a contiguous range of values from
1393 // LHS, for example:
1394 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1395 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1396 //   Shuffles to:  |EE|FF|GG|HH|
1397 //                 +--+--+--+--+
1398 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1399                                        ArrayRef<int> Mask) {
1400   unsigned LHSElems =
1401       cast<VectorType>(SVI.getOperand(0)->getType())->getNumElements();
1402   unsigned MaskElems = Mask.size();
1403   unsigned BegIdx = Mask.front();
1404   unsigned EndIdx = Mask.back();
1405   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1406     return false;
1407   for (unsigned I = 0; I != MaskElems; ++I)
1408     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1409       return false;
1410   return true;
1411 }
1412 
1413 /// These are the ingredients in an alternate form binary operator as described
1414 /// below.
1415 struct BinopElts {
1416   BinaryOperator::BinaryOps Opcode;
1417   Value *Op0;
1418   Value *Op1;
1419   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1420             Value *V0 = nullptr, Value *V1 = nullptr) :
1421       Opcode(Opc), Op0(V0), Op1(V1) {}
1422   operator bool() const { return Opcode != 0; }
1423 };
1424 
1425 /// Binops may be transformed into binops with different opcodes and operands.
1426 /// Reverse the usual canonicalization to enable folds with the non-canonical
1427 /// form of the binop. If a transform is possible, return the elements of the
1428 /// new binop. If not, return invalid elements.
1429 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1430   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1431   Type *Ty = BO->getType();
1432   switch (BO->getOpcode()) {
1433     case Instruction::Shl: {
1434       // shl X, C --> mul X, (1 << C)
1435       Constant *C;
1436       if (match(BO1, m_Constant(C))) {
1437         Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1438         return { Instruction::Mul, BO0, ShlOne };
1439       }
1440       break;
1441     }
1442     case Instruction::Or: {
1443       // or X, C --> add X, C (when X and C have no common bits set)
1444       const APInt *C;
1445       if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1446         return { Instruction::Add, BO0, BO1 };
1447       break;
1448     }
1449     default:
1450       break;
1451   }
1452   return {};
1453 }
1454 
1455 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1456   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1457 
1458   // Are we shuffling together some value and that same value after it has been
1459   // modified by a binop with a constant?
1460   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1461   Constant *C;
1462   bool Op0IsBinop;
1463   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1464     Op0IsBinop = true;
1465   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1466     Op0IsBinop = false;
1467   else
1468     return nullptr;
1469 
1470   // The identity constant for a binop leaves a variable operand unchanged. For
1471   // a vector, this is a splat of something like 0, -1, or 1.
1472   // If there's no identity constant for this binop, we're done.
1473   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1474   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1475   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1476   if (!IdC)
1477     return nullptr;
1478 
1479   // Shuffle identity constants into the lanes that return the original value.
1480   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1481   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1482   // The existing binop constant vector remains in the same operand position.
1483   ArrayRef<int> Mask = Shuf.getShuffleMask();
1484   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1485                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
1486 
1487   bool MightCreatePoisonOrUB =
1488       is_contained(Mask, UndefMaskElem) &&
1489       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1490   if (MightCreatePoisonOrUB)
1491     NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
1492 
1493   // shuf (bop X, C), X, M --> bop X, C'
1494   // shuf X, (bop X, C), M --> bop X, C'
1495   Value *X = Op0IsBinop ? Op1 : Op0;
1496   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1497   NewBO->copyIRFlags(BO);
1498 
1499   // An undef shuffle mask element may propagate as an undef constant element in
1500   // the new binop. That would produce poison where the original code might not.
1501   // If we already made a safe constant, then there's no danger.
1502   if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
1503     NewBO->dropPoisonGeneratingFlags();
1504   return NewBO;
1505 }
1506 
1507 /// If we have an insert of a scalar to a non-zero element of an undefined
1508 /// vector and then shuffle that value, that's the same as inserting to the zero
1509 /// element and shuffling. Splatting from the zero element is recognized as the
1510 /// canonical form of splat.
1511 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
1512                                             InstCombiner::BuilderTy &Builder) {
1513   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1514   ArrayRef<int> Mask = Shuf.getShuffleMask();
1515   Value *X;
1516   uint64_t IndexC;
1517 
1518   // Match a shuffle that is a splat to a non-zero element.
1519   if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X),
1520                                            m_ConstantInt(IndexC)))) ||
1521       !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0)
1522     return nullptr;
1523 
1524   // Insert into element 0 of an undef vector.
1525   UndefValue *UndefVec = UndefValue::get(Shuf.getType());
1526   Constant *Zero = Builder.getInt32(0);
1527   Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
1528 
1529   // Splat from element 0. Any mask element that is undefined remains undefined.
1530   // For example:
1531   // shuf (inselt undef, X, 2), undef, <2,2,undef>
1532   //   --> shuf (inselt undef, X, 0), undef, <0,0,undef>
1533   unsigned NumMaskElts = Shuf.getType()->getNumElements();
1534   SmallVector<int, 16> NewMask(NumMaskElts, 0);
1535   for (unsigned i = 0; i != NumMaskElts; ++i)
1536     if (Mask[i] == UndefMaskElem)
1537       NewMask[i] = Mask[i];
1538 
1539   return new ShuffleVectorInst(NewIns, UndefVec, NewMask);
1540 }
1541 
1542 /// Try to fold shuffles that are the equivalent of a vector select.
1543 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1544                                       InstCombiner::BuilderTy &Builder,
1545                                       const DataLayout &DL) {
1546   if (!Shuf.isSelect())
1547     return nullptr;
1548 
1549   // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
1550   // Commuting undef to operand 0 conflicts with another canonicalization.
1551   unsigned NumElts = Shuf.getType()->getNumElements();
1552   if (!isa<UndefValue>(Shuf.getOperand(1)) &&
1553       Shuf.getMaskValue(0) >= (int)NumElts) {
1554     // TODO: Can we assert that both operands of a shuffle-select are not undef
1555     // (otherwise, it would have been folded by instsimplify?
1556     Shuf.commute();
1557     return &Shuf;
1558   }
1559 
1560   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1561     return I;
1562 
1563   BinaryOperator *B0, *B1;
1564   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1565       !match(Shuf.getOperand(1), m_BinOp(B1)))
1566     return nullptr;
1567 
1568   Value *X, *Y;
1569   Constant *C0, *C1;
1570   bool ConstantsAreOp1;
1571   if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1572       match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1573     ConstantsAreOp1 = true;
1574   else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1575            match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1576     ConstantsAreOp1 = false;
1577   else
1578     return nullptr;
1579 
1580   // We need matching binops to fold the lanes together.
1581   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1582   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1583   bool DropNSW = false;
1584   if (ConstantsAreOp1 && Opc0 != Opc1) {
1585     // TODO: We drop "nsw" if shift is converted into multiply because it may
1586     // not be correct when the shift amount is BitWidth - 1. We could examine
1587     // each vector element to determine if it is safe to keep that flag.
1588     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1589       DropNSW = true;
1590     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1591       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1592       Opc0 = AltB0.Opcode;
1593       C0 = cast<Constant>(AltB0.Op1);
1594     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
1595       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
1596       Opc1 = AltB1.Opcode;
1597       C1 = cast<Constant>(AltB1.Op1);
1598     }
1599   }
1600 
1601   if (Opc0 != Opc1)
1602     return nullptr;
1603 
1604   // The opcodes must be the same. Use a new name to make that clear.
1605   BinaryOperator::BinaryOps BOpc = Opc0;
1606 
1607   // Select the constant elements needed for the single binop.
1608   ArrayRef<int> Mask = Shuf.getShuffleMask();
1609   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
1610 
1611   // We are moving a binop after a shuffle. When a shuffle has an undefined
1612   // mask element, the result is undefined, but it is not poison or undefined
1613   // behavior. That is not necessarily true for div/rem/shift.
1614   bool MightCreatePoisonOrUB =
1615       is_contained(Mask, UndefMaskElem) &&
1616       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
1617   if (MightCreatePoisonOrUB)
1618     NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
1619 
1620   Value *V;
1621   if (X == Y) {
1622     // Remove a binop and the shuffle by rearranging the constant:
1623     // shuffle (op V, C0), (op V, C1), M --> op V, C'
1624     // shuffle (op C0, V), (op C1, V), M --> op C', V
1625     V = X;
1626   } else {
1627     // If there are 2 different variable operands, we must create a new shuffle
1628     // (select) first, so check uses to ensure that we don't end up with more
1629     // instructions than we started with.
1630     if (!B0->hasOneUse() && !B1->hasOneUse())
1631       return nullptr;
1632 
1633     // If we use the original shuffle mask and op1 is *variable*, we would be
1634     // putting an undef into operand 1 of div/rem/shift. This is either UB or
1635     // poison. We do not have to guard against UB when *constants* are op1
1636     // because safe constants guarantee that we do not overflow sdiv/srem (and
1637     // there's no danger for other opcodes).
1638     // TODO: To allow this case, create a new shuffle mask with no undefs.
1639     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
1640       return nullptr;
1641 
1642     // Note: In general, we do not create new shuffles in InstCombine because we
1643     // do not know if a target can lower an arbitrary shuffle optimally. In this
1644     // case, the shuffle uses the existing mask, so there is no additional risk.
1645 
1646     // Select the variable vectors first, then perform the binop:
1647     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
1648     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
1649     V = Builder.CreateShuffleVector(X, Y, Mask);
1650   }
1651 
1652   Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
1653                                          BinaryOperator::Create(BOpc, NewC, V);
1654 
1655   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
1656   // 1. If we changed an opcode, poison conditions might have changed.
1657   // 2. If the shuffle had undef mask elements, the new binop might have undefs
1658   //    where the original code did not. But if we already made a safe constant,
1659   //    then there's no danger.
1660   NewBO->copyIRFlags(B0);
1661   NewBO->andIRFlags(B1);
1662   if (DropNSW)
1663     NewBO->setHasNoSignedWrap(false);
1664   if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
1665     NewBO->dropPoisonGeneratingFlags();
1666   return NewBO;
1667 }
1668 
1669 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
1670 /// Example (little endian):
1671 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8>
1672 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf,
1673                                      bool IsBigEndian) {
1674   // This must be a bitcasted shuffle of 1 vector integer operand.
1675   Type *DestType = Shuf.getType();
1676   Value *X;
1677   if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) ||
1678       !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy())
1679     return nullptr;
1680 
1681   // The source type must have the same number of elements as the shuffle,
1682   // and the source element type must be larger than the shuffle element type.
1683   Type *SrcType = X->getType();
1684   if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
1685       cast<VectorType>(SrcType)->getNumElements() !=
1686           cast<VectorType>(DestType)->getNumElements() ||
1687       SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0)
1688     return nullptr;
1689 
1690   assert(Shuf.changesLength() && !Shuf.increasesLength() &&
1691          "Expected a shuffle that decreases length");
1692 
1693   // Last, check that the mask chooses the correct low bits for each narrow
1694   // element in the result.
1695   uint64_t TruncRatio =
1696       SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits();
1697   ArrayRef<int> Mask = Shuf.getShuffleMask();
1698   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1699     if (Mask[i] == UndefMaskElem)
1700       continue;
1701     uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
1702     assert(LSBIndex <= std::numeric_limits<int32_t>::max() &&
1703            "Overflowed 32-bits");
1704     if (Mask[i] != (int)LSBIndex)
1705       return nullptr;
1706   }
1707 
1708   return new TruncInst(X, DestType);
1709 }
1710 
1711 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
1712 /// narrowing (concatenating with undef and extracting back to the original
1713 /// length). This allows replacing the wide select with a narrow select.
1714 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
1715                                        InstCombiner::BuilderTy &Builder) {
1716   // This must be a narrowing identity shuffle. It extracts the 1st N elements
1717   // of the 1st vector operand of a shuffle.
1718   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
1719     return nullptr;
1720 
1721   // The vector being shuffled must be a vector select that we can eliminate.
1722   // TODO: The one-use requirement could be eased if X and/or Y are constants.
1723   Value *Cond, *X, *Y;
1724   if (!match(Shuf.getOperand(0),
1725              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
1726     return nullptr;
1727 
1728   // We need a narrow condition value. It must be extended with undef elements
1729   // and have the same number of elements as this shuffle.
1730   unsigned NarrowNumElts = Shuf.getType()->getNumElements();
1731   Value *NarrowCond;
1732   if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef()))) ||
1733       cast<VectorType>(NarrowCond->getType())->getNumElements() !=
1734           NarrowNumElts ||
1735       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
1736     return nullptr;
1737 
1738   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
1739   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
1740   Value *Undef = UndefValue::get(X->getType());
1741   Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getShuffleMask());
1742   Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getShuffleMask());
1743   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
1744 }
1745 
1746 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
1747 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
1748   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1749   if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
1750     return nullptr;
1751 
1752   Value *X, *Y;
1753   ArrayRef<int> Mask;
1754   if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Mask(Mask))))
1755     return nullptr;
1756 
1757   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
1758   // then combining may result in worse codegen.
1759   if (!Op0->hasOneUse())
1760     return nullptr;
1761 
1762   // We are extracting a subvector from a shuffle. Remove excess elements from
1763   // the 1st shuffle mask to eliminate the extract.
1764   //
1765   // This transform is conservatively limited to identity extracts because we do
1766   // not allow arbitrary shuffle mask creation as a target-independent transform
1767   // (because we can't guarantee that will lower efficiently).
1768   //
1769   // If the extracting shuffle has an undef mask element, it transfers to the
1770   // new shuffle mask. Otherwise, copy the original mask element. Example:
1771   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
1772   //   shuf X, Y, <C0, undef, C2, undef>
1773   unsigned NumElts = Shuf.getType()->getNumElements();
1774   SmallVector<int, 16> NewMask(NumElts);
1775   assert(NumElts < Mask.size() &&
1776          "Identity with extract must have less elements than its inputs");
1777 
1778   for (unsigned i = 0; i != NumElts; ++i) {
1779     int ExtractMaskElt = Shuf.getMaskValue(i);
1780     int MaskElt = Mask[i];
1781     NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt;
1782   }
1783   return new ShuffleVectorInst(X, Y, NewMask);
1784 }
1785 
1786 /// Try to replace a shuffle with an insertelement or try to replace a shuffle
1787 /// operand with the operand of an insertelement.
1788 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
1789                                           InstCombiner &IC) {
1790   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
1791   SmallVector<int, 16> Mask;
1792   Shuf.getShuffleMask(Mask);
1793 
1794   // The shuffle must not change vector sizes.
1795   // TODO: This restriction could be removed if the insert has only one use
1796   //       (because the transform would require a new length-changing shuffle).
1797   int NumElts = Mask.size();
1798   if (NumElts != (int)(cast<VectorType>(V0->getType())->getNumElements()))
1799     return nullptr;
1800 
1801   // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
1802   // not be able to handle it there if the insertelement has >1 use.
1803   // If the shuffle has an insertelement operand but does not choose the
1804   // inserted scalar element from that value, then we can replace that shuffle
1805   // operand with the source vector of the insertelement.
1806   Value *X;
1807   uint64_t IdxC;
1808   if (match(V0, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
1809     // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
1810     if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; }))
1811       return IC.replaceOperand(Shuf, 0, X);
1812   }
1813   if (match(V1, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
1814     // Offset the index constant by the vector width because we are checking for
1815     // accesses to the 2nd vector input of the shuffle.
1816     IdxC += NumElts;
1817     // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
1818     if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; }))
1819       return IC.replaceOperand(Shuf, 1, X);
1820   }
1821 
1822   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
1823   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
1824     // We need an insertelement with a constant index.
1825     if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
1826                                    m_ConstantInt(IndexC))))
1827       return false;
1828 
1829     // Test the shuffle mask to see if it splices the inserted scalar into the
1830     // operand 1 vector of the shuffle.
1831     int NewInsIndex = -1;
1832     for (int i = 0; i != NumElts; ++i) {
1833       // Ignore undef mask elements.
1834       if (Mask[i] == -1)
1835         continue;
1836 
1837       // The shuffle takes elements of operand 1 without lane changes.
1838       if (Mask[i] == NumElts + i)
1839         continue;
1840 
1841       // The shuffle must choose the inserted scalar exactly once.
1842       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
1843         return false;
1844 
1845       // The shuffle is placing the inserted scalar into element i.
1846       NewInsIndex = i;
1847     }
1848 
1849     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
1850 
1851     // Index is updated to the potentially translated insertion lane.
1852     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
1853     return true;
1854   };
1855 
1856   // If the shuffle is unnecessary, insert the scalar operand directly into
1857   // operand 1 of the shuffle. Example:
1858   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
1859   Value *Scalar;
1860   ConstantInt *IndexC;
1861   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1862     return InsertElementInst::Create(V1, Scalar, IndexC);
1863 
1864   // Try again after commuting shuffle. Example:
1865   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
1866   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
1867   std::swap(V0, V1);
1868   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1869   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1870     return InsertElementInst::Create(V1, Scalar, IndexC);
1871 
1872   return nullptr;
1873 }
1874 
1875 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
1876   // Match the operands as identity with padding (also known as concatenation
1877   // with undef) shuffles of the same source type. The backend is expected to
1878   // recreate these concatenations from a shuffle of narrow operands.
1879   auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
1880   auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
1881   if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
1882       !Shuffle1 || !Shuffle1->isIdentityWithPadding())
1883     return nullptr;
1884 
1885   // We limit this transform to power-of-2 types because we expect that the
1886   // backend can convert the simplified IR patterns to identical nodes as the
1887   // original IR.
1888   // TODO: If we can verify the same behavior for arbitrary types, the
1889   //       power-of-2 checks can be removed.
1890   Value *X = Shuffle0->getOperand(0);
1891   Value *Y = Shuffle1->getOperand(0);
1892   if (X->getType() != Y->getType() ||
1893       !isPowerOf2_32(Shuf.getType()->getNumElements()) ||
1894       !isPowerOf2_32(Shuffle0->getType()->getNumElements()) ||
1895       !isPowerOf2_32(cast<VectorType>(X->getType())->getNumElements()) ||
1896       isa<UndefValue>(X) || isa<UndefValue>(Y))
1897     return nullptr;
1898   assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
1899          isa<UndefValue>(Shuffle1->getOperand(1)) &&
1900          "Unexpected operand for identity shuffle");
1901 
1902   // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
1903   // operands directly by adjusting the shuffle mask to account for the narrower
1904   // types:
1905   // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
1906   int NarrowElts = cast<VectorType>(X->getType())->getNumElements();
1907   int WideElts = Shuffle0->getType()->getNumElements();
1908   assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
1909 
1910   Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext());
1911   ArrayRef<int> Mask = Shuf.getShuffleMask();
1912   SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty));
1913   for (int i = 0, e = Mask.size(); i != e; ++i) {
1914     if (Mask[i] == -1)
1915       continue;
1916 
1917     // If this shuffle is choosing an undef element from 1 of the sources, that
1918     // element is undef.
1919     if (Mask[i] < WideElts) {
1920       if (Shuffle0->getMaskValue(Mask[i]) == -1)
1921         continue;
1922     } else {
1923       if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
1924         continue;
1925     }
1926 
1927     // If this shuffle is choosing from the 1st narrow op, the mask element is
1928     // the same. If this shuffle is choosing from the 2nd narrow op, the mask
1929     // element is offset down to adjust for the narrow vector widths.
1930     if (Mask[i] < WideElts) {
1931       assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
1932       NewMask[i] = ConstantInt::get(I32Ty, Mask[i]);
1933     } else {
1934       assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
1935       NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts));
1936     }
1937   }
1938   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1939 }
1940 
1941 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
1942   Value *LHS = SVI.getOperand(0);
1943   Value *RHS = SVI.getOperand(1);
1944   SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI);
1945   if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(),
1946                                           SVI.getType(), ShufQuery))
1947     return replaceInstUsesWith(SVI, V);
1948 
1949   // shuffle x, x, mask --> shuffle x, undef, mask'
1950   unsigned VWidth = SVI.getType()->getNumElements();
1951   unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements();
1952   ArrayRef<int> Mask = SVI.getShuffleMask();
1953   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1954 
1955   // Peek through a bitcasted shuffle operand by scaling the mask. If the
1956   // simulated shuffle can simplify, then this shuffle is unnecessary:
1957   // shuf (bitcast X), undef, Mask --> bitcast X'
1958   // TODO: This could be extended to allow length-changing shuffles and/or casts
1959   //       to narrower elements. The transform might also be obsoleted if we
1960   //       allowed canonicalization of bitcasted shuffles.
1961   Value *X;
1962   if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) &&
1963       X->getType()->isVectorTy() && VWidth == LHSWidth &&
1964       cast<VectorType>(X->getType())->getNumElements() >= VWidth) {
1965     // Create the scaled mask constant.
1966     auto *XType = cast<VectorType>(X->getType());
1967     unsigned XNumElts = XType->getNumElements();
1968     assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast");
1969     unsigned ScaleFactor = XNumElts / VWidth;
1970     SmallVector<int, 16> ScaledMask;
1971     narrowShuffleMaskElts(ScaleFactor, Mask, ScaledMask);
1972 
1973     // If the shuffled source vector simplifies, cast that value to this
1974     // shuffle's type.
1975     if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType),
1976                                             ScaledMask, XType, ShufQuery))
1977       return BitCastInst::Create(Instruction::BitCast, V, SVI.getType());
1978   }
1979 
1980   if (LHS == RHS) {
1981     assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?");
1982     // Remap any references to RHS to use LHS.
1983     SmallVector<int, 16> Elts;
1984     for (unsigned i = 0; i != VWidth; ++i) {
1985       // Propagate undef elements or force mask to LHS.
1986       if (Mask[i] < 0)
1987         Elts.push_back(UndefMaskElem);
1988       else
1989         Elts.push_back(Mask[i] % LHSWidth);
1990     }
1991     return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts);
1992   }
1993 
1994   // shuffle undef, x, mask --> shuffle x, undef, mask'
1995   if (isa<UndefValue>(LHS)) {
1996     SVI.commute();
1997     return &SVI;
1998   }
1999 
2000   if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
2001     return I;
2002 
2003   if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
2004     return I;
2005 
2006   if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian()))
2007     return I;
2008 
2009   if (Instruction *I = narrowVectorSelect(SVI, Builder))
2010     return I;
2011 
2012   APInt UndefElts(VWidth, 0);
2013   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2014   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
2015     if (V != &SVI)
2016       return replaceInstUsesWith(SVI, V);
2017     return &SVI;
2018   }
2019 
2020   if (Instruction *I = foldIdentityExtractShuffle(SVI))
2021     return I;
2022 
2023   // These transforms have the potential to lose undef knowledge, so they are
2024   // intentionally placed after SimplifyDemandedVectorElts().
2025   if (Instruction *I = foldShuffleWithInsert(SVI, *this))
2026     return I;
2027   if (Instruction *I = foldIdentityPaddedShuffles(SVI))
2028     return I;
2029 
2030   if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
2031     Value *V = evaluateInDifferentElementOrder(LHS, Mask);
2032     return replaceInstUsesWith(SVI, V);
2033   }
2034 
2035   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
2036   // a non-vector type. We can instead bitcast the original vector followed by
2037   // an extract of the desired element:
2038   //
2039   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
2040   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
2041   //   %1 = bitcast <4 x i8> %sroa to i32
2042   // Becomes:
2043   //   %bc = bitcast <16 x i8> %in to <4 x i32>
2044   //   %ext = extractelement <4 x i32> %bc, i32 0
2045   //
2046   // If the shuffle is extracting a contiguous range of values from the input
2047   // vector then each use which is a bitcast of the extracted size can be
2048   // replaced. This will work if the vector types are compatible, and the begin
2049   // index is aligned to a value in the casted vector type. If the begin index
2050   // isn't aligned then we can shuffle the original vector (keeping the same
2051   // vector type) before extracting.
2052   //
2053   // This code will bail out if the target type is fundamentally incompatible
2054   // with vectors of the source type.
2055   //
2056   // Example of <16 x i8>, target type i32:
2057   // Index range [4,8):         v-----------v Will work.
2058   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2059   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
2060   //     <4 x i32>: |           |           |           |           |
2061   //                +-----------+-----------+-----------+-----------+
2062   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
2063   // Target type i40:           ^--------------^ Won't work, bail.
2064   bool MadeChange = false;
2065   if (isShuffleExtractingFromLHS(SVI, Mask)) {
2066     Value *V = LHS;
2067     unsigned MaskElems = Mask.size();
2068     VectorType *SrcTy = cast<VectorType>(V->getType());
2069     unsigned VecBitWidth = SrcTy->getBitWidth();
2070     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
2071     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
2072     unsigned SrcNumElems = SrcTy->getNumElements();
2073     SmallVector<BitCastInst *, 8> BCs;
2074     DenseMap<Type *, Value *> NewBCs;
2075     for (User *U : SVI.users())
2076       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
2077         if (!BC->use_empty())
2078           // Only visit bitcasts that weren't previously handled.
2079           BCs.push_back(BC);
2080     for (BitCastInst *BC : BCs) {
2081       unsigned BegIdx = Mask.front();
2082       Type *TgtTy = BC->getDestTy();
2083       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
2084       if (!TgtElemBitWidth)
2085         continue;
2086       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2087       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2088       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2089       if (!VecBitWidthsEqual)
2090         continue;
2091       if (!VectorType::isValidElementType(TgtTy))
2092         continue;
2093       VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
2094       if (!BegIsAligned) {
2095         // Shuffle the input so [0,NumElements) contains the output, and
2096         // [NumElems,SrcNumElems) is undef.
2097         SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
2098                                                 UndefValue::get(Int32Ty));
2099         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2100           ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
2101         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
2102                                         ConstantVector::get(ShuffleMask),
2103                                         SVI.getName() + ".extract");
2104         BegIdx = 0;
2105       }
2106       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2107       assert(SrcElemsPerTgtElem);
2108       BegIdx /= SrcElemsPerTgtElem;
2109       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
2110       auto *NewBC =
2111           BCAlreadyExists
2112               ? NewBCs[CastSrcTy]
2113               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2114       if (!BCAlreadyExists)
2115         NewBCs[CastSrcTy] = NewBC;
2116       auto *Ext = Builder.CreateExtractElement(
2117           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
2118       // The shufflevector isn't being replaced: the bitcast that used it
2119       // is. InstCombine will visit the newly-created instructions.
2120       replaceInstUsesWith(*BC, Ext);
2121       MadeChange = true;
2122     }
2123   }
2124 
2125   // If the LHS is a shufflevector itself, see if we can combine it with this
2126   // one without producing an unusual shuffle.
2127   // Cases that might be simplified:
2128   // 1.
2129   // x1=shuffle(v1,v2,mask1)
2130   //  x=shuffle(x1,undef,mask)
2131   //        ==>
2132   //  x=shuffle(v1,undef,newMask)
2133   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2134   // 2.
2135   // x1=shuffle(v1,undef,mask1)
2136   //  x=shuffle(x1,x2,mask)
2137   // where v1.size() == mask1.size()
2138   //        ==>
2139   //  x=shuffle(v1,x2,newMask)
2140   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2141   // 3.
2142   // x2=shuffle(v2,undef,mask2)
2143   //  x=shuffle(x1,x2,mask)
2144   // where v2.size() == mask2.size()
2145   //        ==>
2146   //  x=shuffle(x1,v2,newMask)
2147   // newMask[i] = (mask[i] < x1.size())
2148   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2149   // 4.
2150   // x1=shuffle(v1,undef,mask1)
2151   // x2=shuffle(v2,undef,mask2)
2152   //  x=shuffle(x1,x2,mask)
2153   // where v1.size() == v2.size()
2154   //        ==>
2155   //  x=shuffle(v1,v2,newMask)
2156   // newMask[i] = (mask[i] < x1.size())
2157   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2158   //
2159   // Here we are really conservative:
2160   // we are absolutely afraid of producing a shuffle mask not in the input
2161   // program, because the code gen may not be smart enough to turn a merged
2162   // shuffle into two specific shuffles: it may produce worse code.  As such,
2163   // we only merge two shuffles if the result is either a splat or one of the
2164   // input shuffle masks.  In this case, merging the shuffles just removes
2165   // one instruction, which we know is safe.  This is good for things like
2166   // turning: (splat(splat)) -> splat, or
2167   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2168   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
2169   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
2170   if (LHSShuffle)
2171     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
2172       LHSShuffle = nullptr;
2173   if (RHSShuffle)
2174     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
2175       RHSShuffle = nullptr;
2176   if (!LHSShuffle && !RHSShuffle)
2177     return MadeChange ? &SVI : nullptr;
2178 
2179   Value* LHSOp0 = nullptr;
2180   Value* LHSOp1 = nullptr;
2181   Value* RHSOp0 = nullptr;
2182   unsigned LHSOp0Width = 0;
2183   unsigned RHSOp0Width = 0;
2184   if (LHSShuffle) {
2185     LHSOp0 = LHSShuffle->getOperand(0);
2186     LHSOp1 = LHSShuffle->getOperand(1);
2187     LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements();
2188   }
2189   if (RHSShuffle) {
2190     RHSOp0 = RHSShuffle->getOperand(0);
2191     RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements();
2192   }
2193   Value* newLHS = LHS;
2194   Value* newRHS = RHS;
2195   if (LHSShuffle) {
2196     // case 1
2197     if (isa<UndefValue>(RHS)) {
2198       newLHS = LHSOp0;
2199       newRHS = LHSOp1;
2200     }
2201     // case 2 or 4
2202     else if (LHSOp0Width == LHSWidth) {
2203       newLHS = LHSOp0;
2204     }
2205   }
2206   // case 3 or 4
2207   if (RHSShuffle && RHSOp0Width == LHSWidth) {
2208     newRHS = RHSOp0;
2209   }
2210   // case 4
2211   if (LHSOp0 == RHSOp0) {
2212     newLHS = LHSOp0;
2213     newRHS = nullptr;
2214   }
2215 
2216   if (newLHS == LHS && newRHS == RHS)
2217     return MadeChange ? &SVI : nullptr;
2218 
2219   ArrayRef<int> LHSMask;
2220   ArrayRef<int> RHSMask;
2221   if (newLHS != LHS)
2222     LHSMask = LHSShuffle->getShuffleMask();
2223   if (RHSShuffle && newRHS != RHS)
2224     RHSMask = RHSShuffle->getShuffleMask();
2225 
2226   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
2227   SmallVector<int, 16> newMask;
2228   bool isSplat = true;
2229   int SplatElt = -1;
2230   // Create a new mask for the new ShuffleVectorInst so that the new
2231   // ShuffleVectorInst is equivalent to the original one.
2232   for (unsigned i = 0; i < VWidth; ++i) {
2233     int eltMask;
2234     if (Mask[i] < 0) {
2235       // This element is an undef value.
2236       eltMask = -1;
2237     } else if (Mask[i] < (int)LHSWidth) {
2238       // This element is from left hand side vector operand.
2239       //
2240       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2241       // new mask value for the element.
2242       if (newLHS != LHS) {
2243         eltMask = LHSMask[Mask[i]];
2244         // If the value selected is an undef value, explicitly specify it
2245         // with a -1 mask value.
2246         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
2247           eltMask = -1;
2248       } else
2249         eltMask = Mask[i];
2250     } else {
2251       // This element is from right hand side vector operand
2252       //
2253       // If the value selected is an undef value, explicitly specify it
2254       // with a -1 mask value. (case 1)
2255       if (isa<UndefValue>(RHS))
2256         eltMask = -1;
2257       // If RHS is going to be replaced (case 3 or 4), calculate the
2258       // new mask value for the element.
2259       else if (newRHS != RHS) {
2260         eltMask = RHSMask[Mask[i]-LHSWidth];
2261         // If the value selected is an undef value, explicitly specify it
2262         // with a -1 mask value.
2263         if (eltMask >= (int)RHSOp0Width) {
2264           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
2265                  && "should have been check above");
2266           eltMask = -1;
2267         }
2268       } else
2269         eltMask = Mask[i]-LHSWidth;
2270 
2271       // If LHS's width is changed, shift the mask value accordingly.
2272       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2273       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2274       // If newRHS == newLHS, we want to remap any references from newRHS to
2275       // newLHS so that we can properly identify splats that may occur due to
2276       // obfuscation across the two vectors.
2277       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
2278         eltMask += newLHSWidth;
2279     }
2280 
2281     // Check if this could still be a splat.
2282     if (eltMask >= 0) {
2283       if (SplatElt >= 0 && SplatElt != eltMask)
2284         isSplat = false;
2285       SplatElt = eltMask;
2286     }
2287 
2288     newMask.push_back(eltMask);
2289   }
2290 
2291   // If the result mask is equal to one of the original shuffle masks,
2292   // or is a splat, do the replacement.
2293   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
2294     SmallVector<Constant*, 16> Elts;
2295     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
2296       if (newMask[i] < 0) {
2297         Elts.push_back(UndefValue::get(Int32Ty));
2298       } else {
2299         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
2300       }
2301     }
2302     if (!newRHS)
2303       newRHS = UndefValue::get(newLHS->getType());
2304     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
2305   }
2306 
2307   return MadeChange ? &SVI : nullptr;
2308 }
2309