1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Transforms/InstCombine/InstCombiner.h"
39 #include <cassert>
40 #include <cstdint>
41 #include <iterator>
42 #include <utility>
43
44 #define DEBUG_TYPE "instcombine"
45
46 using namespace llvm;
47 using namespace PatternMatch;
48
49 STATISTIC(NumAggregateReconstructionsSimplified,
50 "Number of aggregate reconstructions turned into reuse of the "
51 "original aggregate");
52
53 /// Return true if the value is cheaper to scalarize than it is to leave as a
54 /// vector operation. If the extract index \p EI is a constant integer then
55 /// some operations may be cheap to scalarize.
56 ///
57 /// FIXME: It's possible to create more instructions than previously existed.
cheapToScalarize(Value * V,Value * EI)58 static bool cheapToScalarize(Value *V, Value *EI) {
59 ConstantInt *CEI = dyn_cast<ConstantInt>(EI);
60
61 // If we can pick a scalar constant value out of a vector, that is free.
62 if (auto *C = dyn_cast<Constant>(V))
63 return CEI || C->getSplatValue();
64
65 if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) {
66 ElementCount EC = cast<VectorType>(V->getType())->getElementCount();
67 // Index needs to be lower than the minimum size of the vector, because
68 // for scalable vector, the vector size is known at run time.
69 return CEI->getValue().ult(EC.getKnownMinValue());
70 }
71
72 // An insertelement to the same constant index as our extract will simplify
73 // to the scalar inserted element. An insertelement to a different constant
74 // index is irrelevant to our extract.
75 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt())))
76 return CEI;
77
78 if (match(V, m_OneUse(m_Load(m_Value()))))
79 return true;
80
81 if (match(V, m_OneUse(m_UnOp())))
82 return true;
83
84 Value *V0, *V1;
85 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
86 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
87 return true;
88
89 CmpInst::Predicate UnusedPred;
90 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
91 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
92 return true;
93
94 return false;
95 }
96
97 // If we have a PHI node with a vector type that is only used to feed
98 // itself and be an operand of extractelement at a constant location,
99 // try to replace the PHI of the vector type with a PHI of a scalar type.
scalarizePHI(ExtractElementInst & EI,PHINode * PN)100 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI,
101 PHINode *PN) {
102 SmallVector<Instruction *, 2> Extracts;
103 // The users we want the PHI to have are:
104 // 1) The EI ExtractElement (we already know this)
105 // 2) Possibly more ExtractElements with the same index.
106 // 3) Another operand, which will feed back into the PHI.
107 Instruction *PHIUser = nullptr;
108 for (auto U : PN->users()) {
109 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
110 if (EI.getIndexOperand() == EU->getIndexOperand())
111 Extracts.push_back(EU);
112 else
113 return nullptr;
114 } else if (!PHIUser) {
115 PHIUser = cast<Instruction>(U);
116 } else {
117 return nullptr;
118 }
119 }
120
121 if (!PHIUser)
122 return nullptr;
123
124 // Verify that this PHI user has one use, which is the PHI itself,
125 // and that it is a binary operation which is cheap to scalarize.
126 // otherwise return nullptr.
127 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
128 !(isa<BinaryOperator>(PHIUser)) ||
129 !cheapToScalarize(PHIUser, EI.getIndexOperand()))
130 return nullptr;
131
132 // Create a scalar PHI node that will replace the vector PHI node
133 // just before the current PHI node.
134 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
135 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
136 // Scalarize each PHI operand.
137 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
138 Value *PHIInVal = PN->getIncomingValue(i);
139 BasicBlock *inBB = PN->getIncomingBlock(i);
140 Value *Elt = EI.getIndexOperand();
141 // If the operand is the PHI induction variable:
142 if (PHIInVal == PHIUser) {
143 // Scalarize the binary operation. Its first operand is the
144 // scalar PHI, and the second operand is extracted from the other
145 // vector operand.
146 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
147 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
148 Value *Op = InsertNewInstWith(
149 ExtractElementInst::Create(B0->getOperand(opId), Elt,
150 B0->getOperand(opId)->getName() + ".Elt"),
151 *B0);
152 Value *newPHIUser = InsertNewInstWith(
153 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
154 scalarPHI, Op, B0), *B0);
155 scalarPHI->addIncoming(newPHIUser, inBB);
156 } else {
157 // Scalarize PHI input:
158 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
159 // Insert the new instruction into the predecessor basic block.
160 Instruction *pos = dyn_cast<Instruction>(PHIInVal);
161 BasicBlock::iterator InsertPos;
162 if (pos && !isa<PHINode>(pos)) {
163 InsertPos = ++pos->getIterator();
164 } else {
165 InsertPos = inBB->getFirstInsertionPt();
166 }
167
168 InsertNewInstWith(newEI, *InsertPos);
169
170 scalarPHI->addIncoming(newEI, inBB);
171 }
172 }
173
174 for (auto E : Extracts)
175 replaceInstUsesWith(*E, scalarPHI);
176
177 return &EI;
178 }
179
foldBitcastExtElt(ExtractElementInst & Ext)180 Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) {
181 Value *X;
182 uint64_t ExtIndexC;
183 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
184 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
185 return nullptr;
186
187 ElementCount NumElts =
188 cast<VectorType>(Ext.getVectorOperandType())->getElementCount();
189 Type *DestTy = Ext.getType();
190 bool IsBigEndian = DL.isBigEndian();
191
192 // If we are casting an integer to vector and extracting a portion, that is
193 // a shift-right and truncate.
194 // TODO: Allow FP dest type by casting the trunc to FP?
195 if (X->getType()->isIntegerTy() && DestTy->isIntegerTy() &&
196 isDesirableIntType(X->getType()->getPrimitiveSizeInBits())) {
197 assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) &&
198 "Expected fixed vector type for bitcast from scalar integer");
199
200 // Big endian requires adjusting the extract index since MSB is at index 0.
201 // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8
202 // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8
203 if (IsBigEndian)
204 ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC;
205 unsigned ShiftAmountC = ExtIndexC * DestTy->getPrimitiveSizeInBits();
206 if (!ShiftAmountC || Ext.getVectorOperand()->hasOneUse()) {
207 Value *Lshr = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset");
208 return new TruncInst(Lshr, DestTy);
209 }
210 }
211
212 if (!X->getType()->isVectorTy())
213 return nullptr;
214
215 // If this extractelement is using a bitcast from a vector of the same number
216 // of elements, see if we can find the source element from the source vector:
217 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
218 auto *SrcTy = cast<VectorType>(X->getType());
219 ElementCount NumSrcElts = SrcTy->getElementCount();
220 if (NumSrcElts == NumElts)
221 if (Value *Elt = findScalarElement(X, ExtIndexC))
222 return new BitCastInst(Elt, DestTy);
223
224 assert(NumSrcElts.isScalable() == NumElts.isScalable() &&
225 "Src and Dst must be the same sort of vector type");
226
227 // If the source elements are wider than the destination, try to shift and
228 // truncate a subset of scalar bits of an insert op.
229 if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) {
230 Value *Scalar;
231 Value *Vec;
232 uint64_t InsIndexC;
233 if (!match(X, m_InsertElt(m_Value(Vec), m_Value(Scalar),
234 m_ConstantInt(InsIndexC))))
235 return nullptr;
236
237 // The extract must be from the subset of vector elements that we inserted
238 // into. Example: if we inserted element 1 of a <2 x i64> and we are
239 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
240 // of elements 4-7 of the bitcasted vector.
241 unsigned NarrowingRatio =
242 NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue();
243
244 if (ExtIndexC / NarrowingRatio != InsIndexC) {
245 // Remove insertelement, if we don't use the inserted element.
246 // extractelement (bitcast (insertelement (Vec, b)), a) ->
247 // extractelement (bitcast (Vec), a)
248 // FIXME: this should be removed to SimplifyDemandedVectorElts,
249 // once scale vectors are supported.
250 if (X->hasOneUse() && Ext.getVectorOperand()->hasOneUse()) {
251 Value *NewBC = Builder.CreateBitCast(Vec, Ext.getVectorOperandType());
252 return ExtractElementInst::Create(NewBC, Ext.getIndexOperand());
253 }
254 return nullptr;
255 }
256
257 // We are extracting part of the original scalar. How that scalar is
258 // inserted into the vector depends on the endian-ness. Example:
259 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7
260 // +--+--+--+--+--+--+--+--+
261 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3|
262 // extelt <4 x i16> V', 3: | |S2|S3|
263 // +--+--+--+--+--+--+--+--+
264 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
265 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
266 // In this example, we must right-shift little-endian. Big-endian is just a
267 // truncate.
268 unsigned Chunk = ExtIndexC % NarrowingRatio;
269 if (IsBigEndian)
270 Chunk = NarrowingRatio - 1 - Chunk;
271
272 // Bail out if this is an FP vector to FP vector sequence. That would take
273 // more instructions than we started with unless there is no shift, and it
274 // may not be handled as well in the backend.
275 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
276 bool NeedDestBitcast = DestTy->isFloatingPointTy();
277 if (NeedSrcBitcast && NeedDestBitcast)
278 return nullptr;
279
280 unsigned SrcWidth = SrcTy->getScalarSizeInBits();
281 unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
282 unsigned ShAmt = Chunk * DestWidth;
283
284 // TODO: This limitation is more strict than necessary. We could sum the
285 // number of new instructions and subtract the number eliminated to know if
286 // we can proceed.
287 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
288 if (NeedSrcBitcast || NeedDestBitcast)
289 return nullptr;
290
291 if (NeedSrcBitcast) {
292 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
293 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
294 }
295
296 if (ShAmt) {
297 // Bail out if we could end with more instructions than we started with.
298 if (!Ext.getVectorOperand()->hasOneUse())
299 return nullptr;
300 Scalar = Builder.CreateLShr(Scalar, ShAmt);
301 }
302
303 if (NeedDestBitcast) {
304 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
305 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
306 }
307 return new TruncInst(Scalar, DestTy);
308 }
309
310 return nullptr;
311 }
312
313 /// Find elements of V demanded by UserInstr.
findDemandedEltsBySingleUser(Value * V,Instruction * UserInstr)314 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
315 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
316
317 // Conservatively assume that all elements are needed.
318 APInt UsedElts(APInt::getAllOnes(VWidth));
319
320 switch (UserInstr->getOpcode()) {
321 case Instruction::ExtractElement: {
322 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
323 assert(EEI->getVectorOperand() == V);
324 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
325 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
326 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
327 }
328 break;
329 }
330 case Instruction::ShuffleVector: {
331 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
332 unsigned MaskNumElts =
333 cast<FixedVectorType>(UserInstr->getType())->getNumElements();
334
335 UsedElts = APInt(VWidth, 0);
336 for (unsigned i = 0; i < MaskNumElts; i++) {
337 unsigned MaskVal = Shuffle->getMaskValue(i);
338 if (MaskVal == -1u || MaskVal >= 2 * VWidth)
339 continue;
340 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
341 UsedElts.setBit(MaskVal);
342 if (Shuffle->getOperand(1) == V &&
343 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
344 UsedElts.setBit(MaskVal - VWidth);
345 }
346 break;
347 }
348 default:
349 break;
350 }
351 return UsedElts;
352 }
353
354 /// Find union of elements of V demanded by all its users.
355 /// If it is known by querying findDemandedEltsBySingleUser that
356 /// no user demands an element of V, then the corresponding bit
357 /// remains unset in the returned value.
findDemandedEltsByAllUsers(Value * V)358 static APInt findDemandedEltsByAllUsers(Value *V) {
359 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
360
361 APInt UnionUsedElts(VWidth, 0);
362 for (const Use &U : V->uses()) {
363 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
364 UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
365 } else {
366 UnionUsedElts = APInt::getAllOnes(VWidth);
367 break;
368 }
369
370 if (UnionUsedElts.isAllOnes())
371 break;
372 }
373
374 return UnionUsedElts;
375 }
376
377 /// Given a constant index for a extractelement or insertelement instruction,
378 /// return it with the canonical type if it isn't already canonical. We
379 /// arbitrarily pick 64 bit as our canonical type. The actual bitwidth doesn't
380 /// matter, we just want a consistent type to simplify CSE.
getPreferredVectorIndex(ConstantInt * IndexC)381 ConstantInt *getPreferredVectorIndex(ConstantInt *IndexC) {
382 const unsigned IndexBW = IndexC->getType()->getBitWidth();
383 if (IndexBW == 64 || IndexC->getValue().getActiveBits() > 64)
384 return nullptr;
385 return ConstantInt::get(IndexC->getContext(),
386 IndexC->getValue().zextOrTrunc(64));
387 }
388
visitExtractElementInst(ExtractElementInst & EI)389 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) {
390 Value *SrcVec = EI.getVectorOperand();
391 Value *Index = EI.getIndexOperand();
392 if (Value *V = simplifyExtractElementInst(SrcVec, Index,
393 SQ.getWithInstruction(&EI)))
394 return replaceInstUsesWith(EI, V);
395
396 // If extracting a specified index from the vector, see if we can recursively
397 // find a previously computed scalar that was inserted into the vector.
398 auto *IndexC = dyn_cast<ConstantInt>(Index);
399 if (IndexC) {
400 // Canonicalize type of constant indices to i64 to simplify CSE
401 if (auto *NewIdx = getPreferredVectorIndex(IndexC))
402 return replaceOperand(EI, 1, NewIdx);
403
404 ElementCount EC = EI.getVectorOperandType()->getElementCount();
405 unsigned NumElts = EC.getKnownMinValue();
406
407 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) {
408 Intrinsic::ID IID = II->getIntrinsicID();
409 // Index needs to be lower than the minimum size of the vector, because
410 // for scalable vector, the vector size is known at run time.
411 if (IID == Intrinsic::experimental_stepvector &&
412 IndexC->getValue().ult(NumElts)) {
413 Type *Ty = EI.getType();
414 unsigned BitWidth = Ty->getIntegerBitWidth();
415 Value *Idx;
416 // Return index when its value does not exceed the allowed limit
417 // for the element type of the vector, otherwise return undefined.
418 if (IndexC->getValue().getActiveBits() <= BitWidth)
419 Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth));
420 else
421 Idx = UndefValue::get(Ty);
422 return replaceInstUsesWith(EI, Idx);
423 }
424 }
425
426 // InstSimplify should handle cases where the index is invalid.
427 // For fixed-length vector, it's invalid to extract out-of-range element.
428 if (!EC.isScalable() && IndexC->getValue().uge(NumElts))
429 return nullptr;
430
431 if (Instruction *I = foldBitcastExtElt(EI))
432 return I;
433
434 // If there's a vector PHI feeding a scalar use through this extractelement
435 // instruction, try to scalarize the PHI.
436 if (auto *Phi = dyn_cast<PHINode>(SrcVec))
437 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
438 return ScalarPHI;
439 }
440
441 // TODO come up with a n-ary matcher that subsumes both unary and
442 // binary matchers.
443 UnaryOperator *UO;
444 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) {
445 // extelt (unop X), Index --> unop (extelt X, Index)
446 Value *X = UO->getOperand(0);
447 Value *E = Builder.CreateExtractElement(X, Index);
448 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
449 }
450
451 BinaryOperator *BO;
452 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) {
453 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
454 Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
455 Value *E0 = Builder.CreateExtractElement(X, Index);
456 Value *E1 = Builder.CreateExtractElement(Y, Index);
457 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
458 }
459
460 Value *X, *Y;
461 CmpInst::Predicate Pred;
462 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
463 cheapToScalarize(SrcVec, Index)) {
464 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
465 Value *E0 = Builder.CreateExtractElement(X, Index);
466 Value *E1 = Builder.CreateExtractElement(Y, Index);
467 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
468 }
469
470 if (auto *I = dyn_cast<Instruction>(SrcVec)) {
471 if (auto *IE = dyn_cast<InsertElementInst>(I)) {
472 // instsimplify already handled the case where the indices are constants
473 // and equal by value, if both are constants, they must not be the same
474 // value, extract from the pre-inserted value instead.
475 if (isa<Constant>(IE->getOperand(2)) && IndexC)
476 return replaceOperand(EI, 0, IE->getOperand(0));
477 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
478 auto *VecType = cast<VectorType>(GEP->getType());
479 ElementCount EC = VecType->getElementCount();
480 uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0;
481 if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) {
482 // Find out why we have a vector result - these are a few examples:
483 // 1. We have a scalar pointer and a vector of indices, or
484 // 2. We have a vector of pointers and a scalar index, or
485 // 3. We have a vector of pointers and a vector of indices, etc.
486 // Here we only consider combining when there is exactly one vector
487 // operand, since the optimization is less obviously a win due to
488 // needing more than one extractelements.
489
490 unsigned VectorOps =
491 llvm::count_if(GEP->operands(), [](const Value *V) {
492 return isa<VectorType>(V->getType());
493 });
494 if (VectorOps == 1) {
495 Value *NewPtr = GEP->getPointerOperand();
496 if (isa<VectorType>(NewPtr->getType()))
497 NewPtr = Builder.CreateExtractElement(NewPtr, IndexC);
498
499 SmallVector<Value *> NewOps;
500 for (unsigned I = 1; I != GEP->getNumOperands(); ++I) {
501 Value *Op = GEP->getOperand(I);
502 if (isa<VectorType>(Op->getType()))
503 NewOps.push_back(Builder.CreateExtractElement(Op, IndexC));
504 else
505 NewOps.push_back(Op);
506 }
507
508 GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
509 GEP->getSourceElementType(), NewPtr, NewOps);
510 NewGEP->setIsInBounds(GEP->isInBounds());
511 return NewGEP;
512 }
513 }
514 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
515 // If this is extracting an element from a shufflevector, figure out where
516 // it came from and extract from the appropriate input element instead.
517 // Restrict the following transformation to fixed-length vector.
518 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) {
519 int SrcIdx =
520 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue());
521 Value *Src;
522 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType())
523 ->getNumElements();
524
525 if (SrcIdx < 0)
526 return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
527 if (SrcIdx < (int)LHSWidth)
528 Src = SVI->getOperand(0);
529 else {
530 SrcIdx -= LHSWidth;
531 Src = SVI->getOperand(1);
532 }
533 Type *Int32Ty = Type::getInt32Ty(EI.getContext());
534 return ExtractElementInst::Create(
535 Src, ConstantInt::get(Int32Ty, SrcIdx, false));
536 }
537 } else if (auto *CI = dyn_cast<CastInst>(I)) {
538 // Canonicalize extractelement(cast) -> cast(extractelement).
539 // Bitcasts can change the number of vector elements, and they cost
540 // nothing.
541 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
542 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
543 return CastInst::Create(CI->getOpcode(), EE, EI.getType());
544 }
545 }
546 }
547
548 // Run demanded elements after other transforms as this can drop flags on
549 // binops. If there's two paths to the same final result, we prefer the
550 // one which doesn't force us to drop flags.
551 if (IndexC) {
552 ElementCount EC = EI.getVectorOperandType()->getElementCount();
553 unsigned NumElts = EC.getKnownMinValue();
554 // This instruction only demands the single element from the input vector.
555 // Skip for scalable type, the number of elements is unknown at
556 // compile-time.
557 if (!EC.isScalable() && NumElts != 1) {
558 // If the input vector has a single use, simplify it based on this use
559 // property.
560 if (SrcVec->hasOneUse()) {
561 APInt UndefElts(NumElts, 0);
562 APInt DemandedElts(NumElts, 0);
563 DemandedElts.setBit(IndexC->getZExtValue());
564 if (Value *V =
565 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts))
566 return replaceOperand(EI, 0, V);
567 } else {
568 // If the input vector has multiple uses, simplify it based on a union
569 // of all elements used.
570 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
571 if (!DemandedElts.isAllOnes()) {
572 APInt UndefElts(NumElts, 0);
573 if (Value *V = SimplifyDemandedVectorElts(
574 SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
575 true /* AllowMultipleUsers */)) {
576 if (V != SrcVec) {
577 SrcVec->replaceAllUsesWith(V);
578 return &EI;
579 }
580 }
581 }
582 }
583 }
584 }
585 return nullptr;
586 }
587
588 /// If V is a shuffle of values that ONLY returns elements from either LHS or
589 /// RHS, return the shuffle mask and true. Otherwise, return false.
collectSingleShuffleElements(Value * V,Value * LHS,Value * RHS,SmallVectorImpl<int> & Mask)590 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
591 SmallVectorImpl<int> &Mask) {
592 assert(LHS->getType() == RHS->getType() &&
593 "Invalid CollectSingleShuffleElements");
594 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
595
596 if (match(V, m_Undef())) {
597 Mask.assign(NumElts, -1);
598 return true;
599 }
600
601 if (V == LHS) {
602 for (unsigned i = 0; i != NumElts; ++i)
603 Mask.push_back(i);
604 return true;
605 }
606
607 if (V == RHS) {
608 for (unsigned i = 0; i != NumElts; ++i)
609 Mask.push_back(i + NumElts);
610 return true;
611 }
612
613 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
614 // If this is an insert of an extract from some other vector, include it.
615 Value *VecOp = IEI->getOperand(0);
616 Value *ScalarOp = IEI->getOperand(1);
617 Value *IdxOp = IEI->getOperand(2);
618
619 if (!isa<ConstantInt>(IdxOp))
620 return false;
621 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
622
623 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
624 // We can handle this if the vector we are inserting into is
625 // transitively ok.
626 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
627 // If so, update the mask to reflect the inserted undef.
628 Mask[InsertedIdx] = -1;
629 return true;
630 }
631 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
632 if (isa<ConstantInt>(EI->getOperand(1))) {
633 unsigned ExtractedIdx =
634 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
635 unsigned NumLHSElts =
636 cast<FixedVectorType>(LHS->getType())->getNumElements();
637
638 // This must be extracting from either LHS or RHS.
639 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
640 // We can handle this if the vector we are inserting into is
641 // transitively ok.
642 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
643 // If so, update the mask to reflect the inserted value.
644 if (EI->getOperand(0) == LHS) {
645 Mask[InsertedIdx % NumElts] = ExtractedIdx;
646 } else {
647 assert(EI->getOperand(0) == RHS);
648 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts;
649 }
650 return true;
651 }
652 }
653 }
654 }
655 }
656
657 return false;
658 }
659
660 /// If we have insertion into a vector that is wider than the vector that we
661 /// are extracting from, try to widen the source vector to allow a single
662 /// shufflevector to replace one or more insert/extract pairs.
replaceExtractElements(InsertElementInst * InsElt,ExtractElementInst * ExtElt,InstCombinerImpl & IC)663 static void replaceExtractElements(InsertElementInst *InsElt,
664 ExtractElementInst *ExtElt,
665 InstCombinerImpl &IC) {
666 auto *InsVecType = cast<FixedVectorType>(InsElt->getType());
667 auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType());
668 unsigned NumInsElts = InsVecType->getNumElements();
669 unsigned NumExtElts = ExtVecType->getNumElements();
670
671 // The inserted-to vector must be wider than the extracted-from vector.
672 if (InsVecType->getElementType() != ExtVecType->getElementType() ||
673 NumExtElts >= NumInsElts)
674 return;
675
676 // Create a shuffle mask to widen the extended-from vector using poison
677 // values. The mask selects all of the values of the original vector followed
678 // by as many poison values as needed to create a vector of the same length
679 // as the inserted-to vector.
680 SmallVector<int, 16> ExtendMask;
681 for (unsigned i = 0; i < NumExtElts; ++i)
682 ExtendMask.push_back(i);
683 for (unsigned i = NumExtElts; i < NumInsElts; ++i)
684 ExtendMask.push_back(-1);
685
686 Value *ExtVecOp = ExtElt->getVectorOperand();
687 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
688 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
689 ? ExtVecOpInst->getParent()
690 : ExtElt->getParent();
691
692 // TODO: This restriction matches the basic block check below when creating
693 // new extractelement instructions. If that limitation is removed, this one
694 // could also be removed. But for now, we just bail out to ensure that we
695 // will replace the extractelement instruction that is feeding our
696 // insertelement instruction. This allows the insertelement to then be
697 // replaced by a shufflevector. If the insertelement is not replaced, we can
698 // induce infinite looping because there's an optimization for extractelement
699 // that will delete our widening shuffle. This would trigger another attempt
700 // here to create that shuffle, and we spin forever.
701 if (InsertionBlock != InsElt->getParent())
702 return;
703
704 // TODO: This restriction matches the check in visitInsertElementInst() and
705 // prevents an infinite loop caused by not turning the extract/insert pair
706 // into a shuffle. We really should not need either check, but we're lacking
707 // folds for shufflevectors because we're afraid to generate shuffle masks
708 // that the backend can't handle.
709 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
710 return;
711
712 auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask);
713
714 // Insert the new shuffle after the vector operand of the extract is defined
715 // (as long as it's not a PHI) or at the start of the basic block of the
716 // extract, so any subsequent extracts in the same basic block can use it.
717 // TODO: Insert before the earliest ExtractElementInst that is replaced.
718 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
719 WideVec->insertAfter(ExtVecOpInst);
720 else
721 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
722
723 // Replace extracts from the original narrow vector with extracts from the new
724 // wide vector.
725 for (User *U : ExtVecOp->users()) {
726 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
727 if (!OldExt || OldExt->getParent() != WideVec->getParent())
728 continue;
729 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
730 NewExt->insertAfter(OldExt);
731 IC.replaceInstUsesWith(*OldExt, NewExt);
732 }
733 }
734
735 /// We are building a shuffle to create V, which is a sequence of insertelement,
736 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
737 /// not rely on the second vector source. Return a std::pair containing the
738 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
739 /// parameter as required.
740 ///
741 /// Note: we intentionally don't try to fold earlier shuffles since they have
742 /// often been chosen carefully to be efficiently implementable on the target.
743 using ShuffleOps = std::pair<Value *, Value *>;
744
collectShuffleElements(Value * V,SmallVectorImpl<int> & Mask,Value * PermittedRHS,InstCombinerImpl & IC)745 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask,
746 Value *PermittedRHS,
747 InstCombinerImpl &IC) {
748 assert(V->getType()->isVectorTy() && "Invalid shuffle!");
749 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
750
751 if (match(V, m_Undef())) {
752 Mask.assign(NumElts, -1);
753 return std::make_pair(
754 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
755 }
756
757 if (isa<ConstantAggregateZero>(V)) {
758 Mask.assign(NumElts, 0);
759 return std::make_pair(V, nullptr);
760 }
761
762 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
763 // If this is an insert of an extract from some other vector, include it.
764 Value *VecOp = IEI->getOperand(0);
765 Value *ScalarOp = IEI->getOperand(1);
766 Value *IdxOp = IEI->getOperand(2);
767
768 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
769 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
770 unsigned ExtractedIdx =
771 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
772 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
773
774 // Either the extracted from or inserted into vector must be RHSVec,
775 // otherwise we'd end up with a shuffle of three inputs.
776 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
777 Value *RHS = EI->getOperand(0);
778 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
779 assert(LR.second == nullptr || LR.second == RHS);
780
781 if (LR.first->getType() != RHS->getType()) {
782 // Although we are giving up for now, see if we can create extracts
783 // that match the inserts for another round of combining.
784 replaceExtractElements(IEI, EI, IC);
785
786 // We tried our best, but we can't find anything compatible with RHS
787 // further up the chain. Return a trivial shuffle.
788 for (unsigned i = 0; i < NumElts; ++i)
789 Mask[i] = i;
790 return std::make_pair(V, nullptr);
791 }
792
793 unsigned NumLHSElts =
794 cast<FixedVectorType>(RHS->getType())->getNumElements();
795 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx;
796 return std::make_pair(LR.first, RHS);
797 }
798
799 if (VecOp == PermittedRHS) {
800 // We've gone as far as we can: anything on the other side of the
801 // extractelement will already have been converted into a shuffle.
802 unsigned NumLHSElts =
803 cast<FixedVectorType>(EI->getOperand(0)->getType())
804 ->getNumElements();
805 for (unsigned i = 0; i != NumElts; ++i)
806 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i);
807 return std::make_pair(EI->getOperand(0), PermittedRHS);
808 }
809
810 // If this insertelement is a chain that comes from exactly these two
811 // vectors, return the vector and the effective shuffle.
812 if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
813 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
814 Mask))
815 return std::make_pair(EI->getOperand(0), PermittedRHS);
816 }
817 }
818 }
819
820 // Otherwise, we can't do anything fancy. Return an identity vector.
821 for (unsigned i = 0; i != NumElts; ++i)
822 Mask.push_back(i);
823 return std::make_pair(V, nullptr);
824 }
825
826 /// Look for chain of insertvalue's that fully define an aggregate, and trace
827 /// back the values inserted, see if they are all were extractvalue'd from
828 /// the same source aggregate from the exact same element indexes.
829 /// If they were, just reuse the source aggregate.
830 /// This potentially deals with PHI indirections.
foldAggregateConstructionIntoAggregateReuse(InsertValueInst & OrigIVI)831 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse(
832 InsertValueInst &OrigIVI) {
833 Type *AggTy = OrigIVI.getType();
834 unsigned NumAggElts;
835 switch (AggTy->getTypeID()) {
836 case Type::StructTyID:
837 NumAggElts = AggTy->getStructNumElements();
838 break;
839 case Type::ArrayTyID:
840 NumAggElts = AggTy->getArrayNumElements();
841 break;
842 default:
843 llvm_unreachable("Unhandled aggregate type?");
844 }
845
846 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able
847 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}),
848 // FIXME: any interesting patterns to be caught with larger limit?
849 assert(NumAggElts > 0 && "Aggregate should have elements.");
850 if (NumAggElts > 2)
851 return nullptr;
852
853 static constexpr auto NotFound = None;
854 static constexpr auto FoundMismatch = nullptr;
855
856 // Try to find a value of each element of an aggregate.
857 // FIXME: deal with more complex, not one-dimensional, aggregate types
858 SmallVector<Optional<Instruction *>, 2> AggElts(NumAggElts, NotFound);
859
860 // Do we know values for each element of the aggregate?
861 auto KnowAllElts = [&AggElts]() {
862 return all_of(AggElts,
863 [](Optional<Instruction *> Elt) { return Elt != NotFound; });
864 };
865
866 int Depth = 0;
867
868 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with
869 // every element being overwritten twice, which should never happen.
870 static const int DepthLimit = 2 * NumAggElts;
871
872 // Recurse up the chain of `insertvalue` aggregate operands until either we've
873 // reconstructed full initializer or can't visit any more `insertvalue`'s.
874 for (InsertValueInst *CurrIVI = &OrigIVI;
875 Depth < DepthLimit && CurrIVI && !KnowAllElts();
876 CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()),
877 ++Depth) {
878 auto *InsertedValue =
879 dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand());
880 if (!InsertedValue)
881 return nullptr; // Inserted value must be produced by an instruction.
882
883 ArrayRef<unsigned int> Indices = CurrIVI->getIndices();
884
885 // Don't bother with more than single-level aggregates.
886 if (Indices.size() != 1)
887 return nullptr; // FIXME: deal with more complex aggregates?
888
889 // Now, we may have already previously recorded the value for this element
890 // of an aggregate. If we did, that means the CurrIVI will later be
891 // overwritten with the already-recorded value. But if not, let's record it!
892 Optional<Instruction *> &Elt = AggElts[Indices.front()];
893 Elt = Elt.value_or(InsertedValue);
894
895 // FIXME: should we handle chain-terminating undef base operand?
896 }
897
898 // Was that sufficient to deduce the full initializer for the aggregate?
899 if (!KnowAllElts())
900 return nullptr; // Give up then.
901
902 // We now want to find the source[s] of the aggregate elements we've found.
903 // And with "source" we mean the original aggregate[s] from which
904 // the inserted elements were extracted. This may require PHI translation.
905
906 enum class AggregateDescription {
907 /// When analyzing the value that was inserted into an aggregate, we did
908 /// not manage to find defining `extractvalue` instruction to analyze.
909 NotFound,
910 /// When analyzing the value that was inserted into an aggregate, we did
911 /// manage to find defining `extractvalue` instruction[s], and everything
912 /// matched perfectly - aggregate type, element insertion/extraction index.
913 Found,
914 /// When analyzing the value that was inserted into an aggregate, we did
915 /// manage to find defining `extractvalue` instruction, but there was
916 /// a mismatch: either the source type from which the extraction was didn't
917 /// match the aggregate type into which the insertion was,
918 /// or the extraction/insertion channels mismatched,
919 /// or different elements had different source aggregates.
920 FoundMismatch
921 };
922 auto Describe = [](Optional<Value *> SourceAggregate) {
923 if (SourceAggregate == NotFound)
924 return AggregateDescription::NotFound;
925 if (*SourceAggregate == FoundMismatch)
926 return AggregateDescription::FoundMismatch;
927 return AggregateDescription::Found;
928 };
929
930 // Given the value \p Elt that was being inserted into element \p EltIdx of an
931 // aggregate AggTy, see if \p Elt was originally defined by an
932 // appropriate extractvalue (same element index, same aggregate type).
933 // If found, return the source aggregate from which the extraction was.
934 // If \p PredBB is provided, does PHI translation of an \p Elt first.
935 auto FindSourceAggregate =
936 [&](Instruction *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB,
937 Optional<BasicBlock *> PredBB) -> Optional<Value *> {
938 // For now(?), only deal with, at most, a single level of PHI indirection.
939 if (UseBB && PredBB)
940 Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB));
941 // FIXME: deal with multiple levels of PHI indirection?
942
943 // Did we find an extraction?
944 auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt);
945 if (!EVI)
946 return NotFound;
947
948 Value *SourceAggregate = EVI->getAggregateOperand();
949
950 // Is the extraction from the same type into which the insertion was?
951 if (SourceAggregate->getType() != AggTy)
952 return FoundMismatch;
953 // And the element index doesn't change between extraction and insertion?
954 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front())
955 return FoundMismatch;
956
957 return SourceAggregate; // AggregateDescription::Found
958 };
959
960 // Given elements AggElts that were constructing an aggregate OrigIVI,
961 // see if we can find appropriate source aggregate for each of the elements,
962 // and see it's the same aggregate for each element. If so, return it.
963 auto FindCommonSourceAggregate =
964 [&](Optional<BasicBlock *> UseBB,
965 Optional<BasicBlock *> PredBB) -> Optional<Value *> {
966 Optional<Value *> SourceAggregate;
967
968 for (auto I : enumerate(AggElts)) {
969 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch &&
970 "We don't store nullptr in SourceAggregate!");
971 assert((Describe(SourceAggregate) == AggregateDescription::Found) ==
972 (I.index() != 0) &&
973 "SourceAggregate should be valid after the first element,");
974
975 // For this element, is there a plausible source aggregate?
976 // FIXME: we could special-case undef element, IFF we know that in the
977 // source aggregate said element isn't poison.
978 Optional<Value *> SourceAggregateForElement =
979 FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB);
980
981 // Okay, what have we found? Does that correlate with previous findings?
982
983 // Regardless of whether or not we have previously found source
984 // aggregate for previous elements (if any), if we didn't find one for
985 // this element, passthrough whatever we have just found.
986 if (Describe(SourceAggregateForElement) != AggregateDescription::Found)
987 return SourceAggregateForElement;
988
989 // Okay, we have found source aggregate for this element.
990 // Let's see what we already know from previous elements, if any.
991 switch (Describe(SourceAggregate)) {
992 case AggregateDescription::NotFound:
993 // This is apparently the first element that we have examined.
994 SourceAggregate = SourceAggregateForElement; // Record the aggregate!
995 continue; // Great, now look at next element.
996 case AggregateDescription::Found:
997 // We have previously already successfully examined other elements.
998 // Is this the same source aggregate we've found for other elements?
999 if (*SourceAggregateForElement != *SourceAggregate)
1000 return FoundMismatch;
1001 continue; // Still the same aggregate, look at next element.
1002 case AggregateDescription::FoundMismatch:
1003 llvm_unreachable("Can't happen. We would have early-exited then.");
1004 };
1005 }
1006
1007 assert(Describe(SourceAggregate) == AggregateDescription::Found &&
1008 "Must be a valid Value");
1009 return *SourceAggregate;
1010 };
1011
1012 Optional<Value *> SourceAggregate;
1013
1014 // Can we find the source aggregate without looking at predecessors?
1015 SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None);
1016 if (Describe(SourceAggregate) != AggregateDescription::NotFound) {
1017 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch)
1018 return nullptr; // Conflicting source aggregates!
1019 ++NumAggregateReconstructionsSimplified;
1020 return replaceInstUsesWith(OrigIVI, *SourceAggregate);
1021 }
1022
1023 // Okay, apparently we need to look at predecessors.
1024
1025 // We should be smart about picking the "use" basic block, which will be the
1026 // merge point for aggregate, where we'll insert the final PHI that will be
1027 // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice.
1028 // We should look in which blocks each of the AggElts is being defined,
1029 // they all should be defined in the same basic block.
1030 BasicBlock *UseBB = nullptr;
1031
1032 for (const Optional<Instruction *> &I : AggElts) {
1033 BasicBlock *BB = (*I)->getParent();
1034 // If it's the first instruction we've encountered, record the basic block.
1035 if (!UseBB) {
1036 UseBB = BB;
1037 continue;
1038 }
1039 // Otherwise, this must be the same basic block we've seen previously.
1040 if (UseBB != BB)
1041 return nullptr;
1042 }
1043
1044 // If *all* of the elements are basic-block-independent, meaning they are
1045 // either function arguments, or constant expressions, then if we didn't
1046 // handle them without predecessor-aware handling, we won't handle them now.
1047 if (!UseBB)
1048 return nullptr;
1049
1050 // If we didn't manage to find source aggregate without looking at
1051 // predecessors, and there are no predecessors to look at, then we're done.
1052 if (pred_empty(UseBB))
1053 return nullptr;
1054
1055 // Arbitrary predecessor count limit.
1056 static const int PredCountLimit = 64;
1057
1058 // Cache the (non-uniqified!) list of predecessors in a vector,
1059 // checking the limit at the same time for efficiency.
1060 SmallVector<BasicBlock *, 4> Preds; // May have duplicates!
1061 for (BasicBlock *Pred : predecessors(UseBB)) {
1062 // Don't bother if there are too many predecessors.
1063 if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once?
1064 return nullptr;
1065 Preds.emplace_back(Pred);
1066 }
1067
1068 // For each predecessor, what is the source aggregate,
1069 // from which all the elements were originally extracted from?
1070 // Note that we want for the map to have stable iteration order!
1071 SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates;
1072 for (BasicBlock *Pred : Preds) {
1073 std::pair<decltype(SourceAggregates)::iterator, bool> IV =
1074 SourceAggregates.insert({Pred, nullptr});
1075 // Did we already evaluate this predecessor?
1076 if (!IV.second)
1077 continue;
1078
1079 // Let's hope that when coming from predecessor Pred, all elements of the
1080 // aggregate produced by OrigIVI must have been originally extracted from
1081 // the same aggregate. Is that so? Can we find said original aggregate?
1082 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred);
1083 if (Describe(SourceAggregate) != AggregateDescription::Found)
1084 return nullptr; // Give up.
1085 IV.first->second = *SourceAggregate;
1086 }
1087
1088 // All good! Now we just need to thread the source aggregates here.
1089 // Note that we have to insert the new PHI here, ourselves, because we can't
1090 // rely on InstCombinerImpl::run() inserting it into the right basic block.
1091 // Note that the same block can be a predecessor more than once,
1092 // and we need to preserve that invariant for the PHI node.
1093 BuilderTy::InsertPointGuard Guard(Builder);
1094 Builder.SetInsertPoint(UseBB->getFirstNonPHI());
1095 auto *PHI =
1096 Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged");
1097 for (BasicBlock *Pred : Preds)
1098 PHI->addIncoming(SourceAggregates[Pred], Pred);
1099
1100 ++NumAggregateReconstructionsSimplified;
1101 return replaceInstUsesWith(OrigIVI, PHI);
1102 }
1103
1104 /// Try to find redundant insertvalue instructions, like the following ones:
1105 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0
1106 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0
1107 /// Here the second instruction inserts values at the same indices, as the
1108 /// first one, making the first one redundant.
1109 /// It should be transformed to:
1110 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0
visitInsertValueInst(InsertValueInst & I)1111 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) {
1112 bool IsRedundant = false;
1113 ArrayRef<unsigned int> FirstIndices = I.getIndices();
1114
1115 // If there is a chain of insertvalue instructions (each of them except the
1116 // last one has only one use and it's another insertvalue insn from this
1117 // chain), check if any of the 'children' uses the same indices as the first
1118 // instruction. In this case, the first one is redundant.
1119 Value *V = &I;
1120 unsigned Depth = 0;
1121 while (V->hasOneUse() && Depth < 10) {
1122 User *U = V->user_back();
1123 auto UserInsInst = dyn_cast<InsertValueInst>(U);
1124 if (!UserInsInst || U->getOperand(0) != V)
1125 break;
1126 if (UserInsInst->getIndices() == FirstIndices) {
1127 IsRedundant = true;
1128 break;
1129 }
1130 V = UserInsInst;
1131 Depth++;
1132 }
1133
1134 if (IsRedundant)
1135 return replaceInstUsesWith(I, I.getOperand(0));
1136
1137 if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I))
1138 return NewI;
1139
1140 return nullptr;
1141 }
1142
isShuffleEquivalentToSelect(ShuffleVectorInst & Shuf)1143 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
1144 // Can not analyze scalable type, the number of elements is not a compile-time
1145 // constant.
1146 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType()))
1147 return false;
1148
1149 int MaskSize = Shuf.getShuffleMask().size();
1150 int VecSize =
1151 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements();
1152
1153 // A vector select does not change the size of the operands.
1154 if (MaskSize != VecSize)
1155 return false;
1156
1157 // Each mask element must be undefined or choose a vector element from one of
1158 // the source operands without crossing vector lanes.
1159 for (int i = 0; i != MaskSize; ++i) {
1160 int Elt = Shuf.getMaskValue(i);
1161 if (Elt != -1 && Elt != i && Elt != i + VecSize)
1162 return false;
1163 }
1164
1165 return true;
1166 }
1167
1168 /// Turn a chain of inserts that splats a value into an insert + shuffle:
1169 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
1170 /// shufflevector(insertelt(X, %k, 0), poison, zero)
foldInsSequenceIntoSplat(InsertElementInst & InsElt)1171 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
1172 // We are interested in the last insert in a chain. So if this insert has a
1173 // single user and that user is an insert, bail.
1174 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
1175 return nullptr;
1176
1177 VectorType *VecTy = InsElt.getType();
1178 // Can not handle scalable type, the number of elements is not a compile-time
1179 // constant.
1180 if (isa<ScalableVectorType>(VecTy))
1181 return nullptr;
1182 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1183
1184 // Do not try to do this for a one-element vector, since that's a nop,
1185 // and will cause an inf-loop.
1186 if (NumElements == 1)
1187 return nullptr;
1188
1189 Value *SplatVal = InsElt.getOperand(1);
1190 InsertElementInst *CurrIE = &InsElt;
1191 SmallBitVector ElementPresent(NumElements, false);
1192 InsertElementInst *FirstIE = nullptr;
1193
1194 // Walk the chain backwards, keeping track of which indices we inserted into,
1195 // until we hit something that isn't an insert of the splatted value.
1196 while (CurrIE) {
1197 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
1198 if (!Idx || CurrIE->getOperand(1) != SplatVal)
1199 return nullptr;
1200
1201 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
1202 // Check none of the intermediate steps have any additional uses, except
1203 // for the root insertelement instruction, which can be re-used, if it
1204 // inserts at position 0.
1205 if (CurrIE != &InsElt &&
1206 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
1207 return nullptr;
1208
1209 ElementPresent[Idx->getZExtValue()] = true;
1210 FirstIE = CurrIE;
1211 CurrIE = NextIE;
1212 }
1213
1214 // If this is just a single insertelement (not a sequence), we are done.
1215 if (FirstIE == &InsElt)
1216 return nullptr;
1217
1218 // If we are not inserting into an undef vector, make sure we've seen an
1219 // insert into every element.
1220 // TODO: If the base vector is not undef, it might be better to create a splat
1221 // and then a select-shuffle (blend) with the base vector.
1222 if (!match(FirstIE->getOperand(0), m_Undef()))
1223 if (!ElementPresent.all())
1224 return nullptr;
1225
1226 // Create the insert + shuffle.
1227 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
1228 PoisonValue *PoisonVec = PoisonValue::get(VecTy);
1229 Constant *Zero = ConstantInt::get(Int32Ty, 0);
1230 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
1231 FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt);
1232
1233 // Splat from element 0, but replace absent elements with undef in the mask.
1234 SmallVector<int, 16> Mask(NumElements, 0);
1235 for (unsigned i = 0; i != NumElements; ++i)
1236 if (!ElementPresent[i])
1237 Mask[i] = -1;
1238
1239 return new ShuffleVectorInst(FirstIE, Mask);
1240 }
1241
1242 /// Try to fold an insert element into an existing splat shuffle by changing
1243 /// the shuffle's mask to include the index of this insert element.
foldInsEltIntoSplat(InsertElementInst & InsElt)1244 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
1245 // Check if the vector operand of this insert is a canonical splat shuffle.
1246 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1247 if (!Shuf || !Shuf->isZeroEltSplat())
1248 return nullptr;
1249
1250 // Bail out early if shuffle is scalable type. The number of elements in
1251 // shuffle mask is unknown at compile-time.
1252 if (isa<ScalableVectorType>(Shuf->getType()))
1253 return nullptr;
1254
1255 // Check for a constant insertion index.
1256 uint64_t IdxC;
1257 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1258 return nullptr;
1259
1260 // Check if the splat shuffle's input is the same as this insert's scalar op.
1261 Value *X = InsElt.getOperand(1);
1262 Value *Op0 = Shuf->getOperand(0);
1263 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt())))
1264 return nullptr;
1265
1266 // Replace the shuffle mask element at the index of this insert with a zero.
1267 // For example:
1268 // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1
1269 // --> shuf (inselt undef, X, 0), poison, <0,0,0,undef>
1270 unsigned NumMaskElts =
1271 cast<FixedVectorType>(Shuf->getType())->getNumElements();
1272 SmallVector<int, 16> NewMask(NumMaskElts);
1273 for (unsigned i = 0; i != NumMaskElts; ++i)
1274 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);
1275
1276 return new ShuffleVectorInst(Op0, NewMask);
1277 }
1278
1279 /// Try to fold an extract+insert element into an existing identity shuffle by
1280 /// changing the shuffle's mask to include the index of this insert element.
foldInsEltIntoIdentityShuffle(InsertElementInst & InsElt)1281 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
1282 // Check if the vector operand of this insert is an identity shuffle.
1283 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1284 if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) ||
1285 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
1286 return nullptr;
1287
1288 // Bail out early if shuffle is scalable type. The number of elements in
1289 // shuffle mask is unknown at compile-time.
1290 if (isa<ScalableVectorType>(Shuf->getType()))
1291 return nullptr;
1292
1293 // Check for a constant insertion index.
1294 uint64_t IdxC;
1295 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1296 return nullptr;
1297
1298 // Check if this insert's scalar op is extracted from the identity shuffle's
1299 // input vector.
1300 Value *Scalar = InsElt.getOperand(1);
1301 Value *X = Shuf->getOperand(0);
1302 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC))))
1303 return nullptr;
1304
1305 // Replace the shuffle mask element at the index of this extract+insert with
1306 // that same index value.
1307 // For example:
1308 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
1309 unsigned NumMaskElts =
1310 cast<FixedVectorType>(Shuf->getType())->getNumElements();
1311 SmallVector<int, 16> NewMask(NumMaskElts);
1312 ArrayRef<int> OldMask = Shuf->getShuffleMask();
1313 for (unsigned i = 0; i != NumMaskElts; ++i) {
1314 if (i != IdxC) {
1315 // All mask elements besides the inserted element remain the same.
1316 NewMask[i] = OldMask[i];
1317 } else if (OldMask[i] == (int)IdxC) {
1318 // If the mask element was already set, there's nothing to do
1319 // (demanded elements analysis may unset it later).
1320 return nullptr;
1321 } else {
1322 assert(OldMask[i] == UndefMaskElem &&
1323 "Unexpected shuffle mask element for identity shuffle");
1324 NewMask[i] = IdxC;
1325 }
1326 }
1327
1328 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
1329 }
1330
1331 /// If we have an insertelement instruction feeding into another insertelement
1332 /// and the 2nd is inserting a constant into the vector, canonicalize that
1333 /// constant insertion before the insertion of a variable:
1334 ///
1335 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
1336 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
1337 ///
1338 /// This has the potential of eliminating the 2nd insertelement instruction
1339 /// via constant folding of the scalar constant into a vector constant.
hoistInsEltConst(InsertElementInst & InsElt2,InstCombiner::BuilderTy & Builder)1340 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
1341 InstCombiner::BuilderTy &Builder) {
1342 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
1343 if (!InsElt1 || !InsElt1->hasOneUse())
1344 return nullptr;
1345
1346 Value *X, *Y;
1347 Constant *ScalarC;
1348 ConstantInt *IdxC1, *IdxC2;
1349 if (match(InsElt1->getOperand(0), m_Value(X)) &&
1350 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
1351 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
1352 match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
1353 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
1354 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
1355 return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
1356 }
1357
1358 return nullptr;
1359 }
1360
1361 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
1362 /// --> shufflevector X, CVec', Mask'
foldConstantInsEltIntoShuffle(InsertElementInst & InsElt)1363 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
1364 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
1365 // Bail out if the parent has more than one use. In that case, we'd be
1366 // replacing the insertelt with a shuffle, and that's not a clear win.
1367 if (!Inst || !Inst->hasOneUse())
1368 return nullptr;
1369 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
1370 // The shuffle must have a constant vector operand. The insertelt must have
1371 // a constant scalar being inserted at a constant position in the vector.
1372 Constant *ShufConstVec, *InsEltScalar;
1373 uint64_t InsEltIndex;
1374 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
1375 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
1376 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
1377 return nullptr;
1378
1379 // Adding an element to an arbitrary shuffle could be expensive, but a
1380 // shuffle that selects elements from vectors without crossing lanes is
1381 // assumed cheap.
1382 // If we're just adding a constant into that shuffle, it will still be
1383 // cheap.
1384 if (!isShuffleEquivalentToSelect(*Shuf))
1385 return nullptr;
1386
1387 // From the above 'select' check, we know that the mask has the same number
1388 // of elements as the vector input operands. We also know that each constant
1389 // input element is used in its lane and can not be used more than once by
1390 // the shuffle. Therefore, replace the constant in the shuffle's constant
1391 // vector with the insertelt constant. Replace the constant in the shuffle's
1392 // mask vector with the insertelt index plus the length of the vector
1393 // (because the constant vector operand of a shuffle is always the 2nd
1394 // operand).
1395 ArrayRef<int> Mask = Shuf->getShuffleMask();
1396 unsigned NumElts = Mask.size();
1397 SmallVector<Constant *, 16> NewShufElts(NumElts);
1398 SmallVector<int, 16> NewMaskElts(NumElts);
1399 for (unsigned I = 0; I != NumElts; ++I) {
1400 if (I == InsEltIndex) {
1401 NewShufElts[I] = InsEltScalar;
1402 NewMaskElts[I] = InsEltIndex + NumElts;
1403 } else {
1404 // Copy over the existing values.
1405 NewShufElts[I] = ShufConstVec->getAggregateElement(I);
1406 NewMaskElts[I] = Mask[I];
1407 }
1408
1409 // Bail if we failed to find an element.
1410 if (!NewShufElts[I])
1411 return nullptr;
1412 }
1413
1414 // Create new operands for a shuffle that includes the constant of the
1415 // original insertelt. The old shuffle will be dead now.
1416 return new ShuffleVectorInst(Shuf->getOperand(0),
1417 ConstantVector::get(NewShufElts), NewMaskElts);
1418 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
1419 // Transform sequences of insertelements ops with constant data/indexes into
1420 // a single shuffle op.
1421 // Can not handle scalable type, the number of elements needed to create
1422 // shuffle mask is not a compile-time constant.
1423 if (isa<ScalableVectorType>(InsElt.getType()))
1424 return nullptr;
1425 unsigned NumElts =
1426 cast<FixedVectorType>(InsElt.getType())->getNumElements();
1427
1428 uint64_t InsertIdx[2];
1429 Constant *Val[2];
1430 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
1431 !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
1432 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
1433 !match(IEI->getOperand(1), m_Constant(Val[1])))
1434 return nullptr;
1435 SmallVector<Constant *, 16> Values(NumElts);
1436 SmallVector<int, 16> Mask(NumElts);
1437 auto ValI = std::begin(Val);
1438 // Generate new constant vector and mask.
1439 // We have 2 values/masks from the insertelements instructions. Insert them
1440 // into new value/mask vectors.
1441 for (uint64_t I : InsertIdx) {
1442 if (!Values[I]) {
1443 Values[I] = *ValI;
1444 Mask[I] = NumElts + I;
1445 }
1446 ++ValI;
1447 }
1448 // Remaining values are filled with 'undef' values.
1449 for (unsigned I = 0; I < NumElts; ++I) {
1450 if (!Values[I]) {
1451 Values[I] = UndefValue::get(InsElt.getType()->getElementType());
1452 Mask[I] = I;
1453 }
1454 }
1455 // Create new operands for a shuffle that includes the constant of the
1456 // original insertelt.
1457 return new ShuffleVectorInst(IEI->getOperand(0),
1458 ConstantVector::get(Values), Mask);
1459 }
1460 return nullptr;
1461 }
1462
1463 /// If both the base vector and the inserted element are extended from the same
1464 /// type, do the insert element in the narrow source type followed by extend.
1465 /// TODO: This can be extended to include other cast opcodes, but particularly
1466 /// if we create a wider insertelement, make sure codegen is not harmed.
narrowInsElt(InsertElementInst & InsElt,InstCombiner::BuilderTy & Builder)1467 static Instruction *narrowInsElt(InsertElementInst &InsElt,
1468 InstCombiner::BuilderTy &Builder) {
1469 // We are creating a vector extend. If the original vector extend has another
1470 // use, that would mean we end up with 2 vector extends, so avoid that.
1471 // TODO: We could ease the use-clause to "if at least one op has one use"
1472 // (assuming that the source types match - see next TODO comment).
1473 Value *Vec = InsElt.getOperand(0);
1474 if (!Vec->hasOneUse())
1475 return nullptr;
1476
1477 Value *Scalar = InsElt.getOperand(1);
1478 Value *X, *Y;
1479 CastInst::CastOps CastOpcode;
1480 if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y))))
1481 CastOpcode = Instruction::FPExt;
1482 else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y))))
1483 CastOpcode = Instruction::SExt;
1484 else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y))))
1485 CastOpcode = Instruction::ZExt;
1486 else
1487 return nullptr;
1488
1489 // TODO: We can allow mismatched types by creating an intermediate cast.
1490 if (X->getType()->getScalarType() != Y->getType())
1491 return nullptr;
1492
1493 // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index)
1494 Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2));
1495 return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType());
1496 }
1497
visitInsertElementInst(InsertElementInst & IE)1498 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) {
1499 Value *VecOp = IE.getOperand(0);
1500 Value *ScalarOp = IE.getOperand(1);
1501 Value *IdxOp = IE.getOperand(2);
1502
1503 if (auto *V = simplifyInsertElementInst(
1504 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1505 return replaceInstUsesWith(IE, V);
1506
1507 // Canonicalize type of constant indices to i64 to simplify CSE
1508 if (auto *IndexC = dyn_cast<ConstantInt>(IdxOp))
1509 if (auto *NewIdx = getPreferredVectorIndex(IndexC))
1510 return replaceOperand(IE, 2, NewIdx);
1511
1512 // If the scalar is bitcast and inserted into undef, do the insert in the
1513 // source type followed by bitcast.
1514 // TODO: Generalize for insert into any constant, not just undef?
1515 Value *ScalarSrc;
1516 if (match(VecOp, m_Undef()) &&
1517 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) &&
1518 (ScalarSrc->getType()->isIntegerTy() ||
1519 ScalarSrc->getType()->isFloatingPointTy())) {
1520 // inselt undef, (bitcast ScalarSrc), IdxOp -->
1521 // bitcast (inselt undef, ScalarSrc, IdxOp)
1522 Type *ScalarTy = ScalarSrc->getType();
1523 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount());
1524 UndefValue *NewUndef = UndefValue::get(VecTy);
1525 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp);
1526 return new BitCastInst(NewInsElt, IE.getType());
1527 }
1528
1529 // If the vector and scalar are both bitcast from the same element type, do
1530 // the insert in that source type followed by bitcast.
1531 Value *VecSrc;
1532 if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1533 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1534 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1535 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1536 cast<VectorType>(VecSrc->getType())->getElementType() ==
1537 ScalarSrc->getType()) {
1538 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1539 // bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1540 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1541 return new BitCastInst(NewInsElt, IE.getType());
1542 }
1543
1544 // If the inserted element was extracted from some other fixed-length vector
1545 // and both indexes are valid constants, try to turn this into a shuffle.
1546 // Can not handle scalable vector type, the number of elements needed to
1547 // create shuffle mask is not a compile-time constant.
1548 uint64_t InsertedIdx, ExtractedIdx;
1549 Value *ExtVecOp;
1550 if (isa<FixedVectorType>(IE.getType()) &&
1551 match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1552 match(ScalarOp,
1553 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) &&
1554 isa<FixedVectorType>(ExtVecOp->getType()) &&
1555 ExtractedIdx <
1556 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) {
1557 // TODO: Looking at the user(s) to determine if this insert is a
1558 // fold-to-shuffle opportunity does not match the usual instcombine
1559 // constraints. We should decide if the transform is worthy based only
1560 // on this instruction and its operands, but that may not work currently.
1561 //
1562 // Here, we are trying to avoid creating shuffles before reaching
1563 // the end of a chain of extract-insert pairs. This is complicated because
1564 // we do not generally form arbitrary shuffle masks in instcombine
1565 // (because those may codegen poorly), but collectShuffleElements() does
1566 // exactly that.
1567 //
1568 // The rules for determining what is an acceptable target-independent
1569 // shuffle mask are fuzzy because they evolve based on the backend's
1570 // capabilities and real-world impact.
1571 auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1572 if (!Insert.hasOneUse())
1573 return true;
1574 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1575 if (!InsertUser)
1576 return true;
1577 return false;
1578 };
1579
1580 // Try to form a shuffle from a chain of extract-insert ops.
1581 if (isShuffleRootCandidate(IE)) {
1582 SmallVector<int, 16> Mask;
1583 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
1584
1585 // The proposed shuffle may be trivial, in which case we shouldn't
1586 // perform the combine.
1587 if (LR.first != &IE && LR.second != &IE) {
1588 // We now have a shuffle of LHS, RHS, Mask.
1589 if (LR.second == nullptr)
1590 LR.second = UndefValue::get(LR.first->getType());
1591 return new ShuffleVectorInst(LR.first, LR.second, Mask);
1592 }
1593 }
1594 }
1595
1596 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) {
1597 unsigned VWidth = VecTy->getNumElements();
1598 APInt UndefElts(VWidth, 0);
1599 APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1600 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
1601 if (V != &IE)
1602 return replaceInstUsesWith(IE, V);
1603 return &IE;
1604 }
1605 }
1606
1607 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1608 return Shuf;
1609
1610 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1611 return NewInsElt;
1612
1613 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1614 return Broadcast;
1615
1616 if (Instruction *Splat = foldInsEltIntoSplat(IE))
1617 return Splat;
1618
1619 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1620 return IdentityShuf;
1621
1622 if (Instruction *Ext = narrowInsElt(IE, Builder))
1623 return Ext;
1624
1625 return nullptr;
1626 }
1627
1628 /// Return true if we can evaluate the specified expression tree if the vector
1629 /// elements were shuffled in a different order.
canEvaluateShuffled(Value * V,ArrayRef<int> Mask,unsigned Depth=5)1630 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1631 unsigned Depth = 5) {
1632 // We can always reorder the elements of a constant.
1633 if (isa<Constant>(V))
1634 return true;
1635
1636 // We won't reorder vector arguments. No IPO here.
1637 Instruction *I = dyn_cast<Instruction>(V);
1638 if (!I) return false;
1639
1640 // Two users may expect different orders of the elements. Don't try it.
1641 if (!I->hasOneUse())
1642 return false;
1643
1644 if (Depth == 0) return false;
1645
1646 switch (I->getOpcode()) {
1647 case Instruction::UDiv:
1648 case Instruction::SDiv:
1649 case Instruction::URem:
1650 case Instruction::SRem:
1651 // Propagating an undefined shuffle mask element to integer div/rem is not
1652 // allowed because those opcodes can create immediate undefined behavior
1653 // from an undefined element in an operand.
1654 if (llvm::is_contained(Mask, -1))
1655 return false;
1656 LLVM_FALLTHROUGH;
1657 case Instruction::Add:
1658 case Instruction::FAdd:
1659 case Instruction::Sub:
1660 case Instruction::FSub:
1661 case Instruction::Mul:
1662 case Instruction::FMul:
1663 case Instruction::FDiv:
1664 case Instruction::FRem:
1665 case Instruction::Shl:
1666 case Instruction::LShr:
1667 case Instruction::AShr:
1668 case Instruction::And:
1669 case Instruction::Or:
1670 case Instruction::Xor:
1671 case Instruction::ICmp:
1672 case Instruction::FCmp:
1673 case Instruction::Trunc:
1674 case Instruction::ZExt:
1675 case Instruction::SExt:
1676 case Instruction::FPToUI:
1677 case Instruction::FPToSI:
1678 case Instruction::UIToFP:
1679 case Instruction::SIToFP:
1680 case Instruction::FPTrunc:
1681 case Instruction::FPExt:
1682 case Instruction::GetElementPtr: {
1683 // Bail out if we would create longer vector ops. We could allow creating
1684 // longer vector ops, but that may result in more expensive codegen.
1685 Type *ITy = I->getType();
1686 if (ITy->isVectorTy() &&
1687 Mask.size() > cast<FixedVectorType>(ITy)->getNumElements())
1688 return false;
1689 for (Value *Operand : I->operands()) {
1690 if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1691 return false;
1692 }
1693 return true;
1694 }
1695 case Instruction::InsertElement: {
1696 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1697 if (!CI) return false;
1698 int ElementNumber = CI->getLimitedValue();
1699
1700 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1701 // can't put an element into multiple indices.
1702 bool SeenOnce = false;
1703 for (int i = 0, e = Mask.size(); i != e; ++i) {
1704 if (Mask[i] == ElementNumber) {
1705 if (SeenOnce)
1706 return false;
1707 SeenOnce = true;
1708 }
1709 }
1710 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1711 }
1712 }
1713 return false;
1714 }
1715
1716 /// Rebuild a new instruction just like 'I' but with the new operands given.
1717 /// In the event of type mismatch, the type of the operands is correct.
buildNew(Instruction * I,ArrayRef<Value * > NewOps)1718 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1719 // We don't want to use the IRBuilder here because we want the replacement
1720 // instructions to appear next to 'I', not the builder's insertion point.
1721 switch (I->getOpcode()) {
1722 case Instruction::Add:
1723 case Instruction::FAdd:
1724 case Instruction::Sub:
1725 case Instruction::FSub:
1726 case Instruction::Mul:
1727 case Instruction::FMul:
1728 case Instruction::UDiv:
1729 case Instruction::SDiv:
1730 case Instruction::FDiv:
1731 case Instruction::URem:
1732 case Instruction::SRem:
1733 case Instruction::FRem:
1734 case Instruction::Shl:
1735 case Instruction::LShr:
1736 case Instruction::AShr:
1737 case Instruction::And:
1738 case Instruction::Or:
1739 case Instruction::Xor: {
1740 BinaryOperator *BO = cast<BinaryOperator>(I);
1741 assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1742 BinaryOperator *New =
1743 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1744 NewOps[0], NewOps[1], "", BO);
1745 if (isa<OverflowingBinaryOperator>(BO)) {
1746 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1747 New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1748 }
1749 if (isa<PossiblyExactOperator>(BO)) {
1750 New->setIsExact(BO->isExact());
1751 }
1752 if (isa<FPMathOperator>(BO))
1753 New->copyFastMathFlags(I);
1754 return New;
1755 }
1756 case Instruction::ICmp:
1757 assert(NewOps.size() == 2 && "icmp with #ops != 2");
1758 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1759 NewOps[0], NewOps[1]);
1760 case Instruction::FCmp:
1761 assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1762 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1763 NewOps[0], NewOps[1]);
1764 case Instruction::Trunc:
1765 case Instruction::ZExt:
1766 case Instruction::SExt:
1767 case Instruction::FPToUI:
1768 case Instruction::FPToSI:
1769 case Instruction::UIToFP:
1770 case Instruction::SIToFP:
1771 case Instruction::FPTrunc:
1772 case Instruction::FPExt: {
1773 // It's possible that the mask has a different number of elements from
1774 // the original cast. We recompute the destination type to match the mask.
1775 Type *DestTy = VectorType::get(
1776 I->getType()->getScalarType(),
1777 cast<VectorType>(NewOps[0]->getType())->getElementCount());
1778 assert(NewOps.size() == 1 && "cast with #ops != 1");
1779 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1780 "", I);
1781 }
1782 case Instruction::GetElementPtr: {
1783 Value *Ptr = NewOps[0];
1784 ArrayRef<Value*> Idx = NewOps.slice(1);
1785 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1786 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1787 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1788 return GEP;
1789 }
1790 }
1791 llvm_unreachable("failed to rebuild vector instructions");
1792 }
1793
evaluateInDifferentElementOrder(Value * V,ArrayRef<int> Mask)1794 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1795 // Mask.size() does not need to be equal to the number of vector elements.
1796
1797 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1798 Type *EltTy = V->getType()->getScalarType();
1799 Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1800 if (match(V, m_Undef()))
1801 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size()));
1802
1803 if (isa<ConstantAggregateZero>(V))
1804 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size()));
1805
1806 if (Constant *C = dyn_cast<Constant>(V))
1807 return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()),
1808 Mask);
1809
1810 Instruction *I = cast<Instruction>(V);
1811 switch (I->getOpcode()) {
1812 case Instruction::Add:
1813 case Instruction::FAdd:
1814 case Instruction::Sub:
1815 case Instruction::FSub:
1816 case Instruction::Mul:
1817 case Instruction::FMul:
1818 case Instruction::UDiv:
1819 case Instruction::SDiv:
1820 case Instruction::FDiv:
1821 case Instruction::URem:
1822 case Instruction::SRem:
1823 case Instruction::FRem:
1824 case Instruction::Shl:
1825 case Instruction::LShr:
1826 case Instruction::AShr:
1827 case Instruction::And:
1828 case Instruction::Or:
1829 case Instruction::Xor:
1830 case Instruction::ICmp:
1831 case Instruction::FCmp:
1832 case Instruction::Trunc:
1833 case Instruction::ZExt:
1834 case Instruction::SExt:
1835 case Instruction::FPToUI:
1836 case Instruction::FPToSI:
1837 case Instruction::UIToFP:
1838 case Instruction::SIToFP:
1839 case Instruction::FPTrunc:
1840 case Instruction::FPExt:
1841 case Instruction::Select:
1842 case Instruction::GetElementPtr: {
1843 SmallVector<Value*, 8> NewOps;
1844 bool NeedsRebuild =
1845 (Mask.size() !=
1846 cast<FixedVectorType>(I->getType())->getNumElements());
1847 for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1848 Value *V;
1849 // Recursively call evaluateInDifferentElementOrder on vector arguments
1850 // as well. E.g. GetElementPtr may have scalar operands even if the
1851 // return value is a vector, so we need to examine the operand type.
1852 if (I->getOperand(i)->getType()->isVectorTy())
1853 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1854 else
1855 V = I->getOperand(i);
1856 NewOps.push_back(V);
1857 NeedsRebuild |= (V != I->getOperand(i));
1858 }
1859 if (NeedsRebuild) {
1860 return buildNew(I, NewOps);
1861 }
1862 return I;
1863 }
1864 case Instruction::InsertElement: {
1865 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1866
1867 // The insertelement was inserting at Element. Figure out which element
1868 // that becomes after shuffling. The answer is guaranteed to be unique
1869 // by CanEvaluateShuffled.
1870 bool Found = false;
1871 int Index = 0;
1872 for (int e = Mask.size(); Index != e; ++Index) {
1873 if (Mask[Index] == Element) {
1874 Found = true;
1875 break;
1876 }
1877 }
1878
1879 // If element is not in Mask, no need to handle the operand 1 (element to
1880 // be inserted). Just evaluate values in operand 0 according to Mask.
1881 if (!Found)
1882 return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1883
1884 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1885 return InsertElementInst::Create(V, I->getOperand(1),
1886 ConstantInt::get(I32Ty, Index), "", I);
1887 }
1888 }
1889 llvm_unreachable("failed to reorder elements of vector instruction!");
1890 }
1891
1892 // Returns true if the shuffle is extracting a contiguous range of values from
1893 // LHS, for example:
1894 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1895 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1896 // Shuffles to: |EE|FF|GG|HH|
1897 // +--+--+--+--+
isShuffleExtractingFromLHS(ShuffleVectorInst & SVI,ArrayRef<int> Mask)1898 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1899 ArrayRef<int> Mask) {
1900 unsigned LHSElems =
1901 cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements();
1902 unsigned MaskElems = Mask.size();
1903 unsigned BegIdx = Mask.front();
1904 unsigned EndIdx = Mask.back();
1905 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1906 return false;
1907 for (unsigned I = 0; I != MaskElems; ++I)
1908 if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1909 return false;
1910 return true;
1911 }
1912
1913 /// These are the ingredients in an alternate form binary operator as described
1914 /// below.
1915 struct BinopElts {
1916 BinaryOperator::BinaryOps Opcode;
1917 Value *Op0;
1918 Value *Op1;
BinopEltsBinopElts1919 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1920 Value *V0 = nullptr, Value *V1 = nullptr) :
1921 Opcode(Opc), Op0(V0), Op1(V1) {}
operator boolBinopElts1922 operator bool() const { return Opcode != 0; }
1923 };
1924
1925 /// Binops may be transformed into binops with different opcodes and operands.
1926 /// Reverse the usual canonicalization to enable folds with the non-canonical
1927 /// form of the binop. If a transform is possible, return the elements of the
1928 /// new binop. If not, return invalid elements.
getAlternateBinop(BinaryOperator * BO,const DataLayout & DL)1929 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1930 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1931 Type *Ty = BO->getType();
1932 switch (BO->getOpcode()) {
1933 case Instruction::Shl: {
1934 // shl X, C --> mul X, (1 << C)
1935 Constant *C;
1936 if (match(BO1, m_Constant(C))) {
1937 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1938 return {Instruction::Mul, BO0, ShlOne};
1939 }
1940 break;
1941 }
1942 case Instruction::Or: {
1943 // or X, C --> add X, C (when X and C have no common bits set)
1944 const APInt *C;
1945 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1946 return {Instruction::Add, BO0, BO1};
1947 break;
1948 }
1949 case Instruction::Sub:
1950 // sub 0, X --> mul X, -1
1951 if (match(BO0, m_ZeroInt()))
1952 return {Instruction::Mul, BO1, ConstantInt::getAllOnesValue(Ty)};
1953 break;
1954 default:
1955 break;
1956 }
1957 return {};
1958 }
1959
foldSelectShuffleWith1Binop(ShuffleVectorInst & Shuf)1960 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1961 assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1962
1963 // Are we shuffling together some value and that same value after it has been
1964 // modified by a binop with a constant?
1965 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1966 Constant *C;
1967 bool Op0IsBinop;
1968 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1969 Op0IsBinop = true;
1970 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1971 Op0IsBinop = false;
1972 else
1973 return nullptr;
1974
1975 // The identity constant for a binop leaves a variable operand unchanged. For
1976 // a vector, this is a splat of something like 0, -1, or 1.
1977 // If there's no identity constant for this binop, we're done.
1978 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1979 BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1980 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1981 if (!IdC)
1982 return nullptr;
1983
1984 // Shuffle identity constants into the lanes that return the original value.
1985 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1986 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1987 // The existing binop constant vector remains in the same operand position.
1988 ArrayRef<int> Mask = Shuf.getShuffleMask();
1989 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1990 ConstantExpr::getShuffleVector(IdC, C, Mask);
1991
1992 bool MightCreatePoisonOrUB =
1993 is_contained(Mask, UndefMaskElem) &&
1994 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1995 if (MightCreatePoisonOrUB)
1996 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true);
1997
1998 // shuf (bop X, C), X, M --> bop X, C'
1999 // shuf X, (bop X, C), M --> bop X, C'
2000 Value *X = Op0IsBinop ? Op1 : Op0;
2001 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
2002 NewBO->copyIRFlags(BO);
2003
2004 // An undef shuffle mask element may propagate as an undef constant element in
2005 // the new binop. That would produce poison where the original code might not.
2006 // If we already made a safe constant, then there's no danger.
2007 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
2008 NewBO->dropPoisonGeneratingFlags();
2009 return NewBO;
2010 }
2011
2012 /// If we have an insert of a scalar to a non-zero element of an undefined
2013 /// vector and then shuffle that value, that's the same as inserting to the zero
2014 /// element and shuffling. Splatting from the zero element is recognized as the
2015 /// canonical form of splat.
canonicalizeInsertSplat(ShuffleVectorInst & Shuf,InstCombiner::BuilderTy & Builder)2016 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
2017 InstCombiner::BuilderTy &Builder) {
2018 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2019 ArrayRef<int> Mask = Shuf.getShuffleMask();
2020 Value *X;
2021 uint64_t IndexC;
2022
2023 // Match a shuffle that is a splat to a non-zero element.
2024 if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X),
2025 m_ConstantInt(IndexC)))) ||
2026 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0)
2027 return nullptr;
2028
2029 // Insert into element 0 of an undef vector.
2030 UndefValue *UndefVec = UndefValue::get(Shuf.getType());
2031 Constant *Zero = Builder.getInt32(0);
2032 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
2033
2034 // Splat from element 0. Any mask element that is undefined remains undefined.
2035 // For example:
2036 // shuf (inselt undef, X, 2), _, <2,2,undef>
2037 // --> shuf (inselt undef, X, 0), poison, <0,0,undef>
2038 unsigned NumMaskElts =
2039 cast<FixedVectorType>(Shuf.getType())->getNumElements();
2040 SmallVector<int, 16> NewMask(NumMaskElts, 0);
2041 for (unsigned i = 0; i != NumMaskElts; ++i)
2042 if (Mask[i] == UndefMaskElem)
2043 NewMask[i] = Mask[i];
2044
2045 return new ShuffleVectorInst(NewIns, NewMask);
2046 }
2047
2048 /// Try to fold shuffles that are the equivalent of a vector select.
foldSelectShuffle(ShuffleVectorInst & Shuf)2049 Instruction *InstCombinerImpl::foldSelectShuffle(ShuffleVectorInst &Shuf) {
2050 if (!Shuf.isSelect())
2051 return nullptr;
2052
2053 // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
2054 // Commuting undef to operand 0 conflicts with another canonicalization.
2055 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
2056 if (!match(Shuf.getOperand(1), m_Undef()) &&
2057 Shuf.getMaskValue(0) >= (int)NumElts) {
2058 // TODO: Can we assert that both operands of a shuffle-select are not undef
2059 // (otherwise, it would have been folded by instsimplify?
2060 Shuf.commute();
2061 return &Shuf;
2062 }
2063
2064 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
2065 return I;
2066
2067 BinaryOperator *B0, *B1;
2068 if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
2069 !match(Shuf.getOperand(1), m_BinOp(B1)))
2070 return nullptr;
2071
2072 // If one operand is "0 - X", allow that to be viewed as "X * -1"
2073 // (ConstantsAreOp1) by getAlternateBinop below. If the neg is not paired
2074 // with a multiply, we will exit because C0/C1 will not be set.
2075 Value *X, *Y;
2076 Constant *C0 = nullptr, *C1 = nullptr;
2077 bool ConstantsAreOp1;
2078 if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
2079 match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
2080 ConstantsAreOp1 = false;
2081 else if (match(B0, m_CombineOr(m_BinOp(m_Value(X), m_Constant(C0)),
2082 m_Neg(m_Value(X)))) &&
2083 match(B1, m_CombineOr(m_BinOp(m_Value(Y), m_Constant(C1)),
2084 m_Neg(m_Value(Y)))))
2085 ConstantsAreOp1 = true;
2086 else
2087 return nullptr;
2088
2089 // We need matching binops to fold the lanes together.
2090 BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
2091 BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
2092 bool DropNSW = false;
2093 if (ConstantsAreOp1 && Opc0 != Opc1) {
2094 // TODO: We drop "nsw" if shift is converted into multiply because it may
2095 // not be correct when the shift amount is BitWidth - 1. We could examine
2096 // each vector element to determine if it is safe to keep that flag.
2097 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
2098 DropNSW = true;
2099 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
2100 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
2101 Opc0 = AltB0.Opcode;
2102 C0 = cast<Constant>(AltB0.Op1);
2103 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
2104 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
2105 Opc1 = AltB1.Opcode;
2106 C1 = cast<Constant>(AltB1.Op1);
2107 }
2108 }
2109
2110 if (Opc0 != Opc1 || !C0 || !C1)
2111 return nullptr;
2112
2113 // The opcodes must be the same. Use a new name to make that clear.
2114 BinaryOperator::BinaryOps BOpc = Opc0;
2115
2116 // Select the constant elements needed for the single binop.
2117 ArrayRef<int> Mask = Shuf.getShuffleMask();
2118 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
2119
2120 // We are moving a binop after a shuffle. When a shuffle has an undefined
2121 // mask element, the result is undefined, but it is not poison or undefined
2122 // behavior. That is not necessarily true for div/rem/shift.
2123 bool MightCreatePoisonOrUB =
2124 is_contained(Mask, UndefMaskElem) &&
2125 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
2126 if (MightCreatePoisonOrUB)
2127 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC,
2128 ConstantsAreOp1);
2129
2130 Value *V;
2131 if (X == Y) {
2132 // Remove a binop and the shuffle by rearranging the constant:
2133 // shuffle (op V, C0), (op V, C1), M --> op V, C'
2134 // shuffle (op C0, V), (op C1, V), M --> op C', V
2135 V = X;
2136 } else {
2137 // If there are 2 different variable operands, we must create a new shuffle
2138 // (select) first, so check uses to ensure that we don't end up with more
2139 // instructions than we started with.
2140 if (!B0->hasOneUse() && !B1->hasOneUse())
2141 return nullptr;
2142
2143 // If we use the original shuffle mask and op1 is *variable*, we would be
2144 // putting an undef into operand 1 of div/rem/shift. This is either UB or
2145 // poison. We do not have to guard against UB when *constants* are op1
2146 // because safe constants guarantee that we do not overflow sdiv/srem (and
2147 // there's no danger for other opcodes).
2148 // TODO: To allow this case, create a new shuffle mask with no undefs.
2149 if (MightCreatePoisonOrUB && !ConstantsAreOp1)
2150 return nullptr;
2151
2152 // Note: In general, we do not create new shuffles in InstCombine because we
2153 // do not know if a target can lower an arbitrary shuffle optimally. In this
2154 // case, the shuffle uses the existing mask, so there is no additional risk.
2155
2156 // Select the variable vectors first, then perform the binop:
2157 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
2158 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
2159 V = Builder.CreateShuffleVector(X, Y, Mask);
2160 }
2161
2162 Value *NewBO = ConstantsAreOp1 ? Builder.CreateBinOp(BOpc, V, NewC) :
2163 Builder.CreateBinOp(BOpc, NewC, V);
2164
2165 // Flags are intersected from the 2 source binops. But there are 2 exceptions:
2166 // 1. If we changed an opcode, poison conditions might have changed.
2167 // 2. If the shuffle had undef mask elements, the new binop might have undefs
2168 // where the original code did not. But if we already made a safe constant,
2169 // then there's no danger.
2170 if (auto *NewI = dyn_cast<Instruction>(NewBO)) {
2171 NewI->copyIRFlags(B0);
2172 NewI->andIRFlags(B1);
2173 if (DropNSW)
2174 NewI->setHasNoSignedWrap(false);
2175 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
2176 NewI->dropPoisonGeneratingFlags();
2177 }
2178 return replaceInstUsesWith(Shuf, NewBO);
2179 }
2180
2181 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
2182 /// Example (little endian):
2183 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8>
foldTruncShuffle(ShuffleVectorInst & Shuf,bool IsBigEndian)2184 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf,
2185 bool IsBigEndian) {
2186 // This must be a bitcasted shuffle of 1 vector integer operand.
2187 Type *DestType = Shuf.getType();
2188 Value *X;
2189 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) ||
2190 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy())
2191 return nullptr;
2192
2193 // The source type must have the same number of elements as the shuffle,
2194 // and the source element type must be larger than the shuffle element type.
2195 Type *SrcType = X->getType();
2196 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
2197 cast<FixedVectorType>(SrcType)->getNumElements() !=
2198 cast<FixedVectorType>(DestType)->getNumElements() ||
2199 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0)
2200 return nullptr;
2201
2202 assert(Shuf.changesLength() && !Shuf.increasesLength() &&
2203 "Expected a shuffle that decreases length");
2204
2205 // Last, check that the mask chooses the correct low bits for each narrow
2206 // element in the result.
2207 uint64_t TruncRatio =
2208 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits();
2209 ArrayRef<int> Mask = Shuf.getShuffleMask();
2210 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
2211 if (Mask[i] == UndefMaskElem)
2212 continue;
2213 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
2214 assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits");
2215 if (Mask[i] != (int)LSBIndex)
2216 return nullptr;
2217 }
2218
2219 return new TruncInst(X, DestType);
2220 }
2221
2222 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
2223 /// narrowing (concatenating with undef and extracting back to the original
2224 /// length). This allows replacing the wide select with a narrow select.
narrowVectorSelect(ShuffleVectorInst & Shuf,InstCombiner::BuilderTy & Builder)2225 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
2226 InstCombiner::BuilderTy &Builder) {
2227 // This must be a narrowing identity shuffle. It extracts the 1st N elements
2228 // of the 1st vector operand of a shuffle.
2229 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
2230 return nullptr;
2231
2232 // The vector being shuffled must be a vector select that we can eliminate.
2233 // TODO: The one-use requirement could be eased if X and/or Y are constants.
2234 Value *Cond, *X, *Y;
2235 if (!match(Shuf.getOperand(0),
2236 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
2237 return nullptr;
2238
2239 // We need a narrow condition value. It must be extended with undef elements
2240 // and have the same number of elements as this shuffle.
2241 unsigned NarrowNumElts =
2242 cast<FixedVectorType>(Shuf.getType())->getNumElements();
2243 Value *NarrowCond;
2244 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) ||
2245 cast<FixedVectorType>(NarrowCond->getType())->getNumElements() !=
2246 NarrowNumElts ||
2247 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
2248 return nullptr;
2249
2250 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
2251 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
2252 Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
2253 Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask());
2254 return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
2255 }
2256
2257 /// Canonicalize FP negate after shuffle.
foldFNegShuffle(ShuffleVectorInst & Shuf,InstCombiner::BuilderTy & Builder)2258 static Instruction *foldFNegShuffle(ShuffleVectorInst &Shuf,
2259 InstCombiner::BuilderTy &Builder) {
2260 Instruction *FNeg0;
2261 Value *X;
2262 if (!match(Shuf.getOperand(0), m_CombineAnd(m_Instruction(FNeg0),
2263 m_FNeg(m_Value(X)))))
2264 return nullptr;
2265
2266 // shuffle (fneg X), Mask --> fneg (shuffle X, Mask)
2267 if (FNeg0->hasOneUse() && match(Shuf.getOperand(1), m_Undef())) {
2268 Value *NewShuf = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
2269 return UnaryOperator::CreateFNegFMF(NewShuf, FNeg0);
2270 }
2271
2272 Instruction *FNeg1;
2273 Value *Y;
2274 if (!match(Shuf.getOperand(1), m_CombineAnd(m_Instruction(FNeg1),
2275 m_FNeg(m_Value(Y)))))
2276 return nullptr;
2277
2278 // shuffle (fneg X), (fneg Y), Mask --> fneg (shuffle X, Y, Mask)
2279 if (FNeg0->hasOneUse() || FNeg1->hasOneUse()) {
2280 Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask());
2281 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewShuf);
2282 NewFNeg->copyIRFlags(FNeg0);
2283 NewFNeg->andIRFlags(FNeg1);
2284 return NewFNeg;
2285 }
2286
2287 return nullptr;
2288 }
2289
2290 /// Canonicalize casts after shuffle.
foldCastShuffle(ShuffleVectorInst & Shuf,InstCombiner::BuilderTy & Builder)2291 static Instruction *foldCastShuffle(ShuffleVectorInst &Shuf,
2292 InstCombiner::BuilderTy &Builder) {
2293 // Do we have 2 matching cast operands?
2294 auto *Cast0 = dyn_cast<CastInst>(Shuf.getOperand(0));
2295 auto *Cast1 = dyn_cast<CastInst>(Shuf.getOperand(1));
2296 if (!Cast0 || !Cast1 || Cast0->getOpcode() != Cast1->getOpcode() ||
2297 Cast0->getSrcTy() != Cast1->getSrcTy())
2298 return nullptr;
2299
2300 // TODO: Allow other opcodes? That would require easing the type restrictions
2301 // below here.
2302 CastInst::CastOps CastOpcode = Cast0->getOpcode();
2303 switch (CastOpcode) {
2304 case Instruction::FPToSI:
2305 case Instruction::FPToUI:
2306 case Instruction::SIToFP:
2307 case Instruction::UIToFP:
2308 break;
2309 default:
2310 return nullptr;
2311 }
2312
2313 VectorType *ShufTy = Shuf.getType();
2314 VectorType *ShufOpTy = cast<VectorType>(Shuf.getOperand(0)->getType());
2315 VectorType *CastSrcTy = cast<VectorType>(Cast0->getSrcTy());
2316
2317 // TODO: Allow length-increasing shuffles?
2318 if (ShufTy->getElementCount().getKnownMinValue() >
2319 ShufOpTy->getElementCount().getKnownMinValue())
2320 return nullptr;
2321
2322 // TODO: Allow element-size-decreasing casts (ex: fptosi float to i8)?
2323 assert(isa<FixedVectorType>(CastSrcTy) && isa<FixedVectorType>(ShufOpTy) &&
2324 "Expected fixed vector operands for casts and binary shuffle");
2325 if (CastSrcTy->getPrimitiveSizeInBits() > ShufOpTy->getPrimitiveSizeInBits())
2326 return nullptr;
2327
2328 // At least one of the operands must have only one use (the shuffle).
2329 if (!Cast0->hasOneUse() && !Cast1->hasOneUse())
2330 return nullptr;
2331
2332 // shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask)
2333 Value *X = Cast0->getOperand(0);
2334 Value *Y = Cast1->getOperand(0);
2335 Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask());
2336 return CastInst::Create(CastOpcode, NewShuf, ShufTy);
2337 }
2338
2339 /// Try to fold an extract subvector operation.
foldIdentityExtractShuffle(ShuffleVectorInst & Shuf)2340 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
2341 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2342 if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef()))
2343 return nullptr;
2344
2345 // Check if we are extracting all bits of an inserted scalar:
2346 // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type
2347 Value *X;
2348 if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) &&
2349 X->getType()->getPrimitiveSizeInBits() ==
2350 Shuf.getType()->getPrimitiveSizeInBits())
2351 return new BitCastInst(X, Shuf.getType());
2352
2353 // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
2354 Value *Y;
2355 ArrayRef<int> Mask;
2356 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask))))
2357 return nullptr;
2358
2359 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
2360 // then combining may result in worse codegen.
2361 if (!Op0->hasOneUse())
2362 return nullptr;
2363
2364 // We are extracting a subvector from a shuffle. Remove excess elements from
2365 // the 1st shuffle mask to eliminate the extract.
2366 //
2367 // This transform is conservatively limited to identity extracts because we do
2368 // not allow arbitrary shuffle mask creation as a target-independent transform
2369 // (because we can't guarantee that will lower efficiently).
2370 //
2371 // If the extracting shuffle has an undef mask element, it transfers to the
2372 // new shuffle mask. Otherwise, copy the original mask element. Example:
2373 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
2374 // shuf X, Y, <C0, undef, C2, undef>
2375 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
2376 SmallVector<int, 16> NewMask(NumElts);
2377 assert(NumElts < Mask.size() &&
2378 "Identity with extract must have less elements than its inputs");
2379
2380 for (unsigned i = 0; i != NumElts; ++i) {
2381 int ExtractMaskElt = Shuf.getMaskValue(i);
2382 int MaskElt = Mask[i];
2383 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt;
2384 }
2385 return new ShuffleVectorInst(X, Y, NewMask);
2386 }
2387
2388 /// Try to replace a shuffle with an insertelement or try to replace a shuffle
2389 /// operand with the operand of an insertelement.
foldShuffleWithInsert(ShuffleVectorInst & Shuf,InstCombinerImpl & IC)2390 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
2391 InstCombinerImpl &IC) {
2392 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
2393 SmallVector<int, 16> Mask;
2394 Shuf.getShuffleMask(Mask);
2395
2396 int NumElts = Mask.size();
2397 int InpNumElts = cast<FixedVectorType>(V0->getType())->getNumElements();
2398
2399 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
2400 // not be able to handle it there if the insertelement has >1 use.
2401 // If the shuffle has an insertelement operand but does not choose the
2402 // inserted scalar element from that value, then we can replace that shuffle
2403 // operand with the source vector of the insertelement.
2404 Value *X;
2405 uint64_t IdxC;
2406 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2407 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
2408 if (!is_contained(Mask, (int)IdxC))
2409 return IC.replaceOperand(Shuf, 0, X);
2410 }
2411 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2412 // Offset the index constant by the vector width because we are checking for
2413 // accesses to the 2nd vector input of the shuffle.
2414 IdxC += InpNumElts;
2415 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
2416 if (!is_contained(Mask, (int)IdxC))
2417 return IC.replaceOperand(Shuf, 1, X);
2418 }
2419 // For the rest of the transform, the shuffle must not change vector sizes.
2420 // TODO: This restriction could be removed if the insert has only one use
2421 // (because the transform would require a new length-changing shuffle).
2422 if (NumElts != InpNumElts)
2423 return nullptr;
2424
2425 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
2426 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
2427 // We need an insertelement with a constant index.
2428 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar),
2429 m_ConstantInt(IndexC))))
2430 return false;
2431
2432 // Test the shuffle mask to see if it splices the inserted scalar into the
2433 // operand 1 vector of the shuffle.
2434 int NewInsIndex = -1;
2435 for (int i = 0; i != NumElts; ++i) {
2436 // Ignore undef mask elements.
2437 if (Mask[i] == -1)
2438 continue;
2439
2440 // The shuffle takes elements of operand 1 without lane changes.
2441 if (Mask[i] == NumElts + i)
2442 continue;
2443
2444 // The shuffle must choose the inserted scalar exactly once.
2445 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
2446 return false;
2447
2448 // The shuffle is placing the inserted scalar into element i.
2449 NewInsIndex = i;
2450 }
2451
2452 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
2453
2454 // Index is updated to the potentially translated insertion lane.
2455 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
2456 return true;
2457 };
2458
2459 // If the shuffle is unnecessary, insert the scalar operand directly into
2460 // operand 1 of the shuffle. Example:
2461 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
2462 Value *Scalar;
2463 ConstantInt *IndexC;
2464 if (isShufflingScalarIntoOp1(Scalar, IndexC))
2465 return InsertElementInst::Create(V1, Scalar, IndexC);
2466
2467 // Try again after commuting shuffle. Example:
2468 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
2469 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
2470 std::swap(V0, V1);
2471 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
2472 if (isShufflingScalarIntoOp1(Scalar, IndexC))
2473 return InsertElementInst::Create(V1, Scalar, IndexC);
2474
2475 return nullptr;
2476 }
2477
foldIdentityPaddedShuffles(ShuffleVectorInst & Shuf)2478 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
2479 // Match the operands as identity with padding (also known as concatenation
2480 // with undef) shuffles of the same source type. The backend is expected to
2481 // recreate these concatenations from a shuffle of narrow operands.
2482 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
2483 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
2484 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
2485 !Shuffle1 || !Shuffle1->isIdentityWithPadding())
2486 return nullptr;
2487
2488 // We limit this transform to power-of-2 types because we expect that the
2489 // backend can convert the simplified IR patterns to identical nodes as the
2490 // original IR.
2491 // TODO: If we can verify the same behavior for arbitrary types, the
2492 // power-of-2 checks can be removed.
2493 Value *X = Shuffle0->getOperand(0);
2494 Value *Y = Shuffle1->getOperand(0);
2495 if (X->getType() != Y->getType() ||
2496 !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) ||
2497 !isPowerOf2_32(
2498 cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) ||
2499 !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) ||
2500 match(X, m_Undef()) || match(Y, m_Undef()))
2501 return nullptr;
2502 assert(match(Shuffle0->getOperand(1), m_Undef()) &&
2503 match(Shuffle1->getOperand(1), m_Undef()) &&
2504 "Unexpected operand for identity shuffle");
2505
2506 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
2507 // operands directly by adjusting the shuffle mask to account for the narrower
2508 // types:
2509 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
2510 int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements();
2511 int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements();
2512 assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
2513
2514 ArrayRef<int> Mask = Shuf.getShuffleMask();
2515 SmallVector<int, 16> NewMask(Mask.size(), -1);
2516 for (int i = 0, e = Mask.size(); i != e; ++i) {
2517 if (Mask[i] == -1)
2518 continue;
2519
2520 // If this shuffle is choosing an undef element from 1 of the sources, that
2521 // element is undef.
2522 if (Mask[i] < WideElts) {
2523 if (Shuffle0->getMaskValue(Mask[i]) == -1)
2524 continue;
2525 } else {
2526 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
2527 continue;
2528 }
2529
2530 // If this shuffle is choosing from the 1st narrow op, the mask element is
2531 // the same. If this shuffle is choosing from the 2nd narrow op, the mask
2532 // element is offset down to adjust for the narrow vector widths.
2533 if (Mask[i] < WideElts) {
2534 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
2535 NewMask[i] = Mask[i];
2536 } else {
2537 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
2538 NewMask[i] = Mask[i] - (WideElts - NarrowElts);
2539 }
2540 }
2541 return new ShuffleVectorInst(X, Y, NewMask);
2542 }
2543
visitShuffleVectorInst(ShuffleVectorInst & SVI)2544 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
2545 Value *LHS = SVI.getOperand(0);
2546 Value *RHS = SVI.getOperand(1);
2547 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI);
2548 if (auto *V = simplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(),
2549 SVI.getType(), ShufQuery))
2550 return replaceInstUsesWith(SVI, V);
2551
2552 // Bail out for scalable vectors
2553 if (isa<ScalableVectorType>(LHS->getType()))
2554 return nullptr;
2555
2556 unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements();
2557 unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements();
2558
2559 // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask)
2560 //
2561 // if X and Y are of the same (vector) type, and the element size is not
2562 // changed by the bitcasts, we can distribute the bitcasts through the
2563 // shuffle, hopefully reducing the number of instructions. We make sure that
2564 // at least one bitcast only has one use, so we don't *increase* the number of
2565 // instructions here.
2566 Value *X, *Y;
2567 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) &&
2568 X->getType()->isVectorTy() && X->getType() == Y->getType() &&
2569 X->getType()->getScalarSizeInBits() ==
2570 SVI.getType()->getScalarSizeInBits() &&
2571 (LHS->hasOneUse() || RHS->hasOneUse())) {
2572 Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(),
2573 SVI.getName() + ".uncasted");
2574 return new BitCastInst(V, SVI.getType());
2575 }
2576
2577 ArrayRef<int> Mask = SVI.getShuffleMask();
2578 Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
2579
2580 // Peek through a bitcasted shuffle operand by scaling the mask. If the
2581 // simulated shuffle can simplify, then this shuffle is unnecessary:
2582 // shuf (bitcast X), undef, Mask --> bitcast X'
2583 // TODO: This could be extended to allow length-changing shuffles.
2584 // The transform might also be obsoleted if we allowed canonicalization
2585 // of bitcasted shuffles.
2586 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) &&
2587 X->getType()->isVectorTy() && VWidth == LHSWidth) {
2588 // Try to create a scaled mask constant.
2589 auto *XType = cast<FixedVectorType>(X->getType());
2590 unsigned XNumElts = XType->getNumElements();
2591 SmallVector<int, 16> ScaledMask;
2592 if (XNumElts >= VWidth) {
2593 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast");
2594 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask);
2595 } else {
2596 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast");
2597 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask))
2598 ScaledMask.clear();
2599 }
2600 if (!ScaledMask.empty()) {
2601 // If the shuffled source vector simplifies, cast that value to this
2602 // shuffle's type.
2603 if (auto *V = simplifyShuffleVectorInst(X, UndefValue::get(XType),
2604 ScaledMask, XType, ShufQuery))
2605 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType());
2606 }
2607 }
2608
2609 // shuffle x, x, mask --> shuffle x, undef, mask'
2610 if (LHS == RHS) {
2611 assert(!match(RHS, m_Undef()) &&
2612 "Shuffle with 2 undef ops not simplified?");
2613 return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth));
2614 }
2615
2616 // shuffle undef, x, mask --> shuffle x, undef, mask'
2617 if (match(LHS, m_Undef())) {
2618 SVI.commute();
2619 return &SVI;
2620 }
2621
2622 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
2623 return I;
2624
2625 if (Instruction *I = foldSelectShuffle(SVI))
2626 return I;
2627
2628 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian()))
2629 return I;
2630
2631 if (Instruction *I = narrowVectorSelect(SVI, Builder))
2632 return I;
2633
2634 if (Instruction *I = foldFNegShuffle(SVI, Builder))
2635 return I;
2636
2637 if (Instruction *I = foldCastShuffle(SVI, Builder))
2638 return I;
2639
2640 APInt UndefElts(VWidth, 0);
2641 APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
2642 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
2643 if (V != &SVI)
2644 return replaceInstUsesWith(SVI, V);
2645 return &SVI;
2646 }
2647
2648 if (Instruction *I = foldIdentityExtractShuffle(SVI))
2649 return I;
2650
2651 // These transforms have the potential to lose undef knowledge, so they are
2652 // intentionally placed after SimplifyDemandedVectorElts().
2653 if (Instruction *I = foldShuffleWithInsert(SVI, *this))
2654 return I;
2655 if (Instruction *I = foldIdentityPaddedShuffles(SVI))
2656 return I;
2657
2658 if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) {
2659 Value *V = evaluateInDifferentElementOrder(LHS, Mask);
2660 return replaceInstUsesWith(SVI, V);
2661 }
2662
2663 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
2664 // a non-vector type. We can instead bitcast the original vector followed by
2665 // an extract of the desired element:
2666 //
2667 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
2668 // <4 x i32> <i32 0, i32 1, i32 2, i32 3>
2669 // %1 = bitcast <4 x i8> %sroa to i32
2670 // Becomes:
2671 // %bc = bitcast <16 x i8> %in to <4 x i32>
2672 // %ext = extractelement <4 x i32> %bc, i32 0
2673 //
2674 // If the shuffle is extracting a contiguous range of values from the input
2675 // vector then each use which is a bitcast of the extracted size can be
2676 // replaced. This will work if the vector types are compatible, and the begin
2677 // index is aligned to a value in the casted vector type. If the begin index
2678 // isn't aligned then we can shuffle the original vector (keeping the same
2679 // vector type) before extracting.
2680 //
2681 // This code will bail out if the target type is fundamentally incompatible
2682 // with vectors of the source type.
2683 //
2684 // Example of <16 x i8>, target type i32:
2685 // Index range [4,8): v-----------v Will work.
2686 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2687 // <16 x i8>: | | | | | | | | | | | | | | | | |
2688 // <4 x i32>: | | | | |
2689 // +-----------+-----------+-----------+-----------+
2690 // Index range [6,10): ^-----------^ Needs an extra shuffle.
2691 // Target type i40: ^--------------^ Won't work, bail.
2692 bool MadeChange = false;
2693 if (isShuffleExtractingFromLHS(SVI, Mask)) {
2694 Value *V = LHS;
2695 unsigned MaskElems = Mask.size();
2696 auto *SrcTy = cast<FixedVectorType>(V->getType());
2697 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize();
2698 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
2699 assert(SrcElemBitWidth && "vector elements must have a bitwidth");
2700 unsigned SrcNumElems = SrcTy->getNumElements();
2701 SmallVector<BitCastInst *, 8> BCs;
2702 DenseMap<Type *, Value *> NewBCs;
2703 for (User *U : SVI.users())
2704 if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
2705 if (!BC->use_empty())
2706 // Only visit bitcasts that weren't previously handled.
2707 BCs.push_back(BC);
2708 for (BitCastInst *BC : BCs) {
2709 unsigned BegIdx = Mask.front();
2710 Type *TgtTy = BC->getDestTy();
2711 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
2712 if (!TgtElemBitWidth)
2713 continue;
2714 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2715 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2716 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2717 if (!VecBitWidthsEqual)
2718 continue;
2719 if (!VectorType::isValidElementType(TgtTy))
2720 continue;
2721 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems);
2722 if (!BegIsAligned) {
2723 // Shuffle the input so [0,NumElements) contains the output, and
2724 // [NumElems,SrcNumElems) is undef.
2725 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1);
2726 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2727 ShuffleMask[I] = Idx;
2728 V = Builder.CreateShuffleVector(V, ShuffleMask,
2729 SVI.getName() + ".extract");
2730 BegIdx = 0;
2731 }
2732 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2733 assert(SrcElemsPerTgtElem);
2734 BegIdx /= SrcElemsPerTgtElem;
2735 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
2736 auto *NewBC =
2737 BCAlreadyExists
2738 ? NewBCs[CastSrcTy]
2739 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2740 if (!BCAlreadyExists)
2741 NewBCs[CastSrcTy] = NewBC;
2742 auto *Ext = Builder.CreateExtractElement(
2743 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
2744 // The shufflevector isn't being replaced: the bitcast that used it
2745 // is. InstCombine will visit the newly-created instructions.
2746 replaceInstUsesWith(*BC, Ext);
2747 MadeChange = true;
2748 }
2749 }
2750
2751 // If the LHS is a shufflevector itself, see if we can combine it with this
2752 // one without producing an unusual shuffle.
2753 // Cases that might be simplified:
2754 // 1.
2755 // x1=shuffle(v1,v2,mask1)
2756 // x=shuffle(x1,undef,mask)
2757 // ==>
2758 // x=shuffle(v1,undef,newMask)
2759 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2760 // 2.
2761 // x1=shuffle(v1,undef,mask1)
2762 // x=shuffle(x1,x2,mask)
2763 // where v1.size() == mask1.size()
2764 // ==>
2765 // x=shuffle(v1,x2,newMask)
2766 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2767 // 3.
2768 // x2=shuffle(v2,undef,mask2)
2769 // x=shuffle(x1,x2,mask)
2770 // where v2.size() == mask2.size()
2771 // ==>
2772 // x=shuffle(x1,v2,newMask)
2773 // newMask[i] = (mask[i] < x1.size())
2774 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2775 // 4.
2776 // x1=shuffle(v1,undef,mask1)
2777 // x2=shuffle(v2,undef,mask2)
2778 // x=shuffle(x1,x2,mask)
2779 // where v1.size() == v2.size()
2780 // ==>
2781 // x=shuffle(v1,v2,newMask)
2782 // newMask[i] = (mask[i] < x1.size())
2783 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2784 //
2785 // Here we are really conservative:
2786 // we are absolutely afraid of producing a shuffle mask not in the input
2787 // program, because the code gen may not be smart enough to turn a merged
2788 // shuffle into two specific shuffles: it may produce worse code. As such,
2789 // we only merge two shuffles if the result is either a splat or one of the
2790 // input shuffle masks. In this case, merging the shuffles just removes
2791 // one instruction, which we know is safe. This is good for things like
2792 // turning: (splat(splat)) -> splat, or
2793 // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2794 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
2795 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
2796 if (LHSShuffle)
2797 if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef()))
2798 LHSShuffle = nullptr;
2799 if (RHSShuffle)
2800 if (!match(RHSShuffle->getOperand(1), m_Undef()))
2801 RHSShuffle = nullptr;
2802 if (!LHSShuffle && !RHSShuffle)
2803 return MadeChange ? &SVI : nullptr;
2804
2805 Value* LHSOp0 = nullptr;
2806 Value* LHSOp1 = nullptr;
2807 Value* RHSOp0 = nullptr;
2808 unsigned LHSOp0Width = 0;
2809 unsigned RHSOp0Width = 0;
2810 if (LHSShuffle) {
2811 LHSOp0 = LHSShuffle->getOperand(0);
2812 LHSOp1 = LHSShuffle->getOperand(1);
2813 LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements();
2814 }
2815 if (RHSShuffle) {
2816 RHSOp0 = RHSShuffle->getOperand(0);
2817 RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements();
2818 }
2819 Value* newLHS = LHS;
2820 Value* newRHS = RHS;
2821 if (LHSShuffle) {
2822 // case 1
2823 if (match(RHS, m_Undef())) {
2824 newLHS = LHSOp0;
2825 newRHS = LHSOp1;
2826 }
2827 // case 2 or 4
2828 else if (LHSOp0Width == LHSWidth) {
2829 newLHS = LHSOp0;
2830 }
2831 }
2832 // case 3 or 4
2833 if (RHSShuffle && RHSOp0Width == LHSWidth) {
2834 newRHS = RHSOp0;
2835 }
2836 // case 4
2837 if (LHSOp0 == RHSOp0) {
2838 newLHS = LHSOp0;
2839 newRHS = nullptr;
2840 }
2841
2842 if (newLHS == LHS && newRHS == RHS)
2843 return MadeChange ? &SVI : nullptr;
2844
2845 ArrayRef<int> LHSMask;
2846 ArrayRef<int> RHSMask;
2847 if (newLHS != LHS)
2848 LHSMask = LHSShuffle->getShuffleMask();
2849 if (RHSShuffle && newRHS != RHS)
2850 RHSMask = RHSShuffle->getShuffleMask();
2851
2852 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
2853 SmallVector<int, 16> newMask;
2854 bool isSplat = true;
2855 int SplatElt = -1;
2856 // Create a new mask for the new ShuffleVectorInst so that the new
2857 // ShuffleVectorInst is equivalent to the original one.
2858 for (unsigned i = 0; i < VWidth; ++i) {
2859 int eltMask;
2860 if (Mask[i] < 0) {
2861 // This element is an undef value.
2862 eltMask = -1;
2863 } else if (Mask[i] < (int)LHSWidth) {
2864 // This element is from left hand side vector operand.
2865 //
2866 // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2867 // new mask value for the element.
2868 if (newLHS != LHS) {
2869 eltMask = LHSMask[Mask[i]];
2870 // If the value selected is an undef value, explicitly specify it
2871 // with a -1 mask value.
2872 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
2873 eltMask = -1;
2874 } else
2875 eltMask = Mask[i];
2876 } else {
2877 // This element is from right hand side vector operand
2878 //
2879 // If the value selected is an undef value, explicitly specify it
2880 // with a -1 mask value. (case 1)
2881 if (match(RHS, m_Undef()))
2882 eltMask = -1;
2883 // If RHS is going to be replaced (case 3 or 4), calculate the
2884 // new mask value for the element.
2885 else if (newRHS != RHS) {
2886 eltMask = RHSMask[Mask[i]-LHSWidth];
2887 // If the value selected is an undef value, explicitly specify it
2888 // with a -1 mask value.
2889 if (eltMask >= (int)RHSOp0Width) {
2890 assert(match(RHSShuffle->getOperand(1), m_Undef()) &&
2891 "should have been check above");
2892 eltMask = -1;
2893 }
2894 } else
2895 eltMask = Mask[i]-LHSWidth;
2896
2897 // If LHS's width is changed, shift the mask value accordingly.
2898 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2899 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2900 // If newRHS == newLHS, we want to remap any references from newRHS to
2901 // newLHS so that we can properly identify splats that may occur due to
2902 // obfuscation across the two vectors.
2903 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
2904 eltMask += newLHSWidth;
2905 }
2906
2907 // Check if this could still be a splat.
2908 if (eltMask >= 0) {
2909 if (SplatElt >= 0 && SplatElt != eltMask)
2910 isSplat = false;
2911 SplatElt = eltMask;
2912 }
2913
2914 newMask.push_back(eltMask);
2915 }
2916
2917 // If the result mask is equal to one of the original shuffle masks,
2918 // or is a splat, do the replacement.
2919 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
2920 if (!newRHS)
2921 newRHS = UndefValue::get(newLHS->getType());
2922 return new ShuffleVectorInst(newLHS, newRHS, newMask);
2923 }
2924
2925 return MadeChange ? &SVI : nullptr;
2926 }
2927