1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
39 #include "llvm/Transforms/InstCombine/InstCombiner.h"
40 #include <cassert>
41 #include <cstdint>
42 #include <iterator>
43 #include <utility>
44 
45 using namespace llvm;
46 using namespace PatternMatch;
47 
48 #define DEBUG_TYPE "instcombine"
49 
50 STATISTIC(NumAggregateReconstructionsSimplified,
51           "Number of aggregate reconstructions turned into reuse of the "
52           "original aggregate");
53 
54 /// Return true if the value is cheaper to scalarize than it is to leave as a
55 /// vector operation. If the extract index \p EI is a constant integer then
56 /// some operations may be cheap to scalarize.
57 ///
58 /// FIXME: It's possible to create more instructions than previously existed.
59 static bool cheapToScalarize(Value *V, Value *EI) {
60   ConstantInt *CEI = dyn_cast<ConstantInt>(EI);
61 
62   // If we can pick a scalar constant value out of a vector, that is free.
63   if (auto *C = dyn_cast<Constant>(V))
64     return CEI || C->getSplatValue();
65 
66   if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) {
67     ElementCount EC = cast<VectorType>(V->getType())->getElementCount();
68     // Index needs to be lower than the minimum size of the vector, because
69     // for scalable vector, the vector size is known at run time.
70     return CEI->getValue().ult(EC.getKnownMinValue());
71   }
72 
73   // An insertelement to the same constant index as our extract will simplify
74   // to the scalar inserted element. An insertelement to a different constant
75   // index is irrelevant to our extract.
76   if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt())))
77     return CEI;
78 
79   if (match(V, m_OneUse(m_Load(m_Value()))))
80     return true;
81 
82   if (match(V, m_OneUse(m_UnOp())))
83     return true;
84 
85   Value *V0, *V1;
86   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
87     if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
88       return true;
89 
90   CmpInst::Predicate UnusedPred;
91   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
92     if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
93       return true;
94 
95   return false;
96 }
97 
98 // If we have a PHI node with a vector type that is only used to feed
99 // itself and be an operand of extractelement at a constant location,
100 // try to replace the PHI of the vector type with a PHI of a scalar type.
101 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI,
102                                             PHINode *PN) {
103   SmallVector<Instruction *, 2> Extracts;
104   // The users we want the PHI to have are:
105   // 1) The EI ExtractElement (we already know this)
106   // 2) Possibly more ExtractElements with the same index.
107   // 3) Another operand, which will feed back into the PHI.
108   Instruction *PHIUser = nullptr;
109   for (auto U : PN->users()) {
110     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
111       if (EI.getIndexOperand() == EU->getIndexOperand())
112         Extracts.push_back(EU);
113       else
114         return nullptr;
115     } else if (!PHIUser) {
116       PHIUser = cast<Instruction>(U);
117     } else {
118       return nullptr;
119     }
120   }
121 
122   if (!PHIUser)
123     return nullptr;
124 
125   // Verify that this PHI user has one use, which is the PHI itself,
126   // and that it is a binary operation which is cheap to scalarize.
127   // otherwise return nullptr.
128   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
129       !(isa<BinaryOperator>(PHIUser)) ||
130       !cheapToScalarize(PHIUser, EI.getIndexOperand()))
131     return nullptr;
132 
133   // Create a scalar PHI node that will replace the vector PHI node
134   // just before the current PHI node.
135   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
136       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
137   // Scalarize each PHI operand.
138   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
139     Value *PHIInVal = PN->getIncomingValue(i);
140     BasicBlock *inBB = PN->getIncomingBlock(i);
141     Value *Elt = EI.getIndexOperand();
142     // If the operand is the PHI induction variable:
143     if (PHIInVal == PHIUser) {
144       // Scalarize the binary operation. Its first operand is the
145       // scalar PHI, and the second operand is extracted from the other
146       // vector operand.
147       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
148       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
149       Value *Op = InsertNewInstWith(
150           ExtractElementInst::Create(B0->getOperand(opId), Elt,
151                                      B0->getOperand(opId)->getName() + ".Elt"),
152           *B0);
153       Value *newPHIUser = InsertNewInstWith(
154           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
155                                                 scalarPHI, Op, B0), *B0);
156       scalarPHI->addIncoming(newPHIUser, inBB);
157     } else {
158       // Scalarize PHI input:
159       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
160       // Insert the new instruction into the predecessor basic block.
161       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
162       BasicBlock::iterator InsertPos;
163       if (pos && !isa<PHINode>(pos)) {
164         InsertPos = ++pos->getIterator();
165       } else {
166         InsertPos = inBB->getFirstInsertionPt();
167       }
168 
169       InsertNewInstWith(newEI, *InsertPos);
170 
171       scalarPHI->addIncoming(newEI, inBB);
172     }
173   }
174 
175   for (auto E : Extracts)
176     replaceInstUsesWith(*E, scalarPHI);
177 
178   return &EI;
179 }
180 
181 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
182                                       InstCombiner::BuilderTy &Builder,
183                                       bool IsBigEndian) {
184   Value *X;
185   uint64_t ExtIndexC;
186   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
187       !X->getType()->isVectorTy() ||
188       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
189     return nullptr;
190 
191   // If this extractelement is using a bitcast from a vector of the same number
192   // of elements, see if we can find the source element from the source vector:
193   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
194   auto *SrcTy = cast<VectorType>(X->getType());
195   Type *DestTy = Ext.getType();
196   ElementCount NumSrcElts = SrcTy->getElementCount();
197   ElementCount NumElts =
198       cast<VectorType>(Ext.getVectorOperandType())->getElementCount();
199   if (NumSrcElts == NumElts)
200     if (Value *Elt = findScalarElement(X, ExtIndexC))
201       return new BitCastInst(Elt, DestTy);
202 
203   assert(NumSrcElts.isScalable() == NumElts.isScalable() &&
204          "Src and Dst must be the same sort of vector type");
205 
206   // If the source elements are wider than the destination, try to shift and
207   // truncate a subset of scalar bits of an insert op.
208   if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) {
209     Value *Scalar;
210     uint64_t InsIndexC;
211     if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar),
212                               m_ConstantInt(InsIndexC))))
213       return nullptr;
214 
215     // The extract must be from the subset of vector elements that we inserted
216     // into. Example: if we inserted element 1 of a <2 x i64> and we are
217     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
218     // of elements 4-7 of the bitcasted vector.
219     unsigned NarrowingRatio =
220         NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue();
221     if (ExtIndexC / NarrowingRatio != InsIndexC)
222       return nullptr;
223 
224     // We are extracting part of the original scalar. How that scalar is
225     // inserted into the vector depends on the endian-ness. Example:
226     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
227     //                                       +--+--+--+--+--+--+--+--+
228     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
229     // extelt <4 x i16> V', 3:               |                 |S2|S3|
230     //                                       +--+--+--+--+--+--+--+--+
231     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
232     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
233     // In this example, we must right-shift little-endian. Big-endian is just a
234     // truncate.
235     unsigned Chunk = ExtIndexC % NarrowingRatio;
236     if (IsBigEndian)
237       Chunk = NarrowingRatio - 1 - Chunk;
238 
239     // Bail out if this is an FP vector to FP vector sequence. That would take
240     // more instructions than we started with unless there is no shift, and it
241     // may not be handled as well in the backend.
242     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
243     bool NeedDestBitcast = DestTy->isFloatingPointTy();
244     if (NeedSrcBitcast && NeedDestBitcast)
245       return nullptr;
246 
247     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
248     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
249     unsigned ShAmt = Chunk * DestWidth;
250 
251     // TODO: This limitation is more strict than necessary. We could sum the
252     // number of new instructions and subtract the number eliminated to know if
253     // we can proceed.
254     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
255       if (NeedSrcBitcast || NeedDestBitcast)
256         return nullptr;
257 
258     if (NeedSrcBitcast) {
259       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
260       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
261     }
262 
263     if (ShAmt) {
264       // Bail out if we could end with more instructions than we started with.
265       if (!Ext.getVectorOperand()->hasOneUse())
266         return nullptr;
267       Scalar = Builder.CreateLShr(Scalar, ShAmt);
268     }
269 
270     if (NeedDestBitcast) {
271       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
272       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
273     }
274     return new TruncInst(Scalar, DestTy);
275   }
276 
277   return nullptr;
278 }
279 
280 /// Find elements of V demanded by UserInstr.
281 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
282   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
283 
284   // Conservatively assume that all elements are needed.
285   APInt UsedElts(APInt::getAllOnesValue(VWidth));
286 
287   switch (UserInstr->getOpcode()) {
288   case Instruction::ExtractElement: {
289     ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
290     assert(EEI->getVectorOperand() == V);
291     ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
292     if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
293       UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
294     }
295     break;
296   }
297   case Instruction::ShuffleVector: {
298     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
299     unsigned MaskNumElts =
300         cast<FixedVectorType>(UserInstr->getType())->getNumElements();
301 
302     UsedElts = APInt(VWidth, 0);
303     for (unsigned i = 0; i < MaskNumElts; i++) {
304       unsigned MaskVal = Shuffle->getMaskValue(i);
305       if (MaskVal == -1u || MaskVal >= 2 * VWidth)
306         continue;
307       if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
308         UsedElts.setBit(MaskVal);
309       if (Shuffle->getOperand(1) == V &&
310           ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
311         UsedElts.setBit(MaskVal - VWidth);
312     }
313     break;
314   }
315   default:
316     break;
317   }
318   return UsedElts;
319 }
320 
321 /// Find union of elements of V demanded by all its users.
322 /// If it is known by querying findDemandedEltsBySingleUser that
323 /// no user demands an element of V, then the corresponding bit
324 /// remains unset in the returned value.
325 static APInt findDemandedEltsByAllUsers(Value *V) {
326   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
327 
328   APInt UnionUsedElts(VWidth, 0);
329   for (const Use &U : V->uses()) {
330     if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
331       UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
332     } else {
333       UnionUsedElts = APInt::getAllOnesValue(VWidth);
334       break;
335     }
336 
337     if (UnionUsedElts.isAllOnesValue())
338       break;
339   }
340 
341   return UnionUsedElts;
342 }
343 
344 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) {
345   Value *SrcVec = EI.getVectorOperand();
346   Value *Index = EI.getIndexOperand();
347   if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
348                                             SQ.getWithInstruction(&EI)))
349     return replaceInstUsesWith(EI, V);
350 
351   // If extracting a specified index from the vector, see if we can recursively
352   // find a previously computed scalar that was inserted into the vector.
353   auto *IndexC = dyn_cast<ConstantInt>(Index);
354   if (IndexC) {
355     ElementCount EC = EI.getVectorOperandType()->getElementCount();
356     unsigned NumElts = EC.getKnownMinValue();
357 
358     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) {
359       Intrinsic::ID IID = II->getIntrinsicID();
360       // Index needs to be lower than the minimum size of the vector, because
361       // for scalable vector, the vector size is known at run time.
362       if (IID == Intrinsic::experimental_stepvector &&
363           IndexC->getValue().ult(NumElts)) {
364         Type *Ty = EI.getType();
365         unsigned BitWidth = Ty->getIntegerBitWidth();
366         Value *Idx;
367         // Return index when its value does not exceed the allowed limit
368         // for the element type of the vector, otherwise return undefined.
369         if (IndexC->getValue().getActiveBits() <= BitWidth)
370           Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth));
371         else
372           Idx = UndefValue::get(Ty);
373         return replaceInstUsesWith(EI, Idx);
374       }
375     }
376 
377     // InstSimplify should handle cases where the index is invalid.
378     // For fixed-length vector, it's invalid to extract out-of-range element.
379     if (!EC.isScalable() && IndexC->getValue().uge(NumElts))
380       return nullptr;
381 
382     // This instruction only demands the single element from the input vector.
383     // Skip for scalable type, the number of elements is unknown at
384     // compile-time.
385     if (!EC.isScalable() && NumElts != 1) {
386       // If the input vector has a single use, simplify it based on this use
387       // property.
388       if (SrcVec->hasOneUse()) {
389         APInt UndefElts(NumElts, 0);
390         APInt DemandedElts(NumElts, 0);
391         DemandedElts.setBit(IndexC->getZExtValue());
392         if (Value *V =
393                 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts))
394           return replaceOperand(EI, 0, V);
395       } else {
396         // If the input vector has multiple uses, simplify it based on a union
397         // of all elements used.
398         APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
399         if (!DemandedElts.isAllOnesValue()) {
400           APInt UndefElts(NumElts, 0);
401           if (Value *V = SimplifyDemandedVectorElts(
402                   SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
403                   true /* AllowMultipleUsers */)) {
404             if (V != SrcVec) {
405               SrcVec->replaceAllUsesWith(V);
406               return &EI;
407             }
408           }
409         }
410       }
411     }
412 
413     if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
414       return I;
415 
416     // If there's a vector PHI feeding a scalar use through this extractelement
417     // instruction, try to scalarize the PHI.
418     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
419       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
420         return ScalarPHI;
421   }
422 
423   // TODO come up with a n-ary matcher that subsumes both unary and
424   // binary matchers.
425   UnaryOperator *UO;
426   if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) {
427     // extelt (unop X), Index --> unop (extelt X, Index)
428     Value *X = UO->getOperand(0);
429     Value *E = Builder.CreateExtractElement(X, Index);
430     return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
431   }
432 
433   BinaryOperator *BO;
434   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) {
435     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
436     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
437     Value *E0 = Builder.CreateExtractElement(X, Index);
438     Value *E1 = Builder.CreateExtractElement(Y, Index);
439     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
440   }
441 
442   Value *X, *Y;
443   CmpInst::Predicate Pred;
444   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
445       cheapToScalarize(SrcVec, Index)) {
446     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
447     Value *E0 = Builder.CreateExtractElement(X, Index);
448     Value *E1 = Builder.CreateExtractElement(Y, Index);
449     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
450   }
451 
452   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
453     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
454       // Extracting the inserted element?
455       if (IE->getOperand(2) == Index)
456         return replaceInstUsesWith(EI, IE->getOperand(1));
457       // If the inserted and extracted elements are constants, they must not
458       // be the same value, extract from the pre-inserted value instead.
459       if (isa<Constant>(IE->getOperand(2)) && IndexC)
460         return replaceOperand(EI, 0, IE->getOperand(0));
461     } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
462       auto *VecType = cast<VectorType>(GEP->getType());
463       ElementCount EC = VecType->getElementCount();
464       uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0;
465       if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) {
466         // Find out why we have a vector result - these are a few examples:
467         //  1. We have a scalar pointer and a vector of indices, or
468         //  2. We have a vector of pointers and a scalar index, or
469         //  3. We have a vector of pointers and a vector of indices, etc.
470         // Here we only consider combining when there is exactly one vector
471         // operand, since the optimization is less obviously a win due to
472         // needing more than one extractelements.
473 
474         unsigned VectorOps =
475             llvm::count_if(GEP->operands(), [](const Value *V) {
476               return isa<VectorType>(V->getType());
477             });
478         if (VectorOps > 1)
479           return nullptr;
480         assert(VectorOps == 1 && "Expected exactly one vector GEP operand!");
481 
482         Value *NewPtr = GEP->getPointerOperand();
483         if (isa<VectorType>(NewPtr->getType()))
484           NewPtr = Builder.CreateExtractElement(NewPtr, IndexC);
485 
486         SmallVector<Value *> NewOps;
487         for (unsigned I = 1; I != GEP->getNumOperands(); ++I) {
488           Value *Op = GEP->getOperand(I);
489           if (isa<VectorType>(Op->getType()))
490             NewOps.push_back(Builder.CreateExtractElement(Op, IndexC));
491           else
492             NewOps.push_back(Op);
493         }
494 
495         GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
496             cast<PointerType>(NewPtr->getType())->getElementType(), NewPtr,
497             NewOps);
498         NewGEP->setIsInBounds(GEP->isInBounds());
499         return NewGEP;
500       }
501       return nullptr;
502     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
503       // If this is extracting an element from a shufflevector, figure out where
504       // it came from and extract from the appropriate input element instead.
505       // Restrict the following transformation to fixed-length vector.
506       if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) {
507         int SrcIdx =
508             SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue());
509         Value *Src;
510         unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType())
511                                 ->getNumElements();
512 
513         if (SrcIdx < 0)
514           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
515         if (SrcIdx < (int)LHSWidth)
516           Src = SVI->getOperand(0);
517         else {
518           SrcIdx -= LHSWidth;
519           Src = SVI->getOperand(1);
520         }
521         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
522         return ExtractElementInst::Create(
523             Src, ConstantInt::get(Int32Ty, SrcIdx, false));
524       }
525     } else if (auto *CI = dyn_cast<CastInst>(I)) {
526       // Canonicalize extractelement(cast) -> cast(extractelement).
527       // Bitcasts can change the number of vector elements, and they cost
528       // nothing.
529       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
530         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
531         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
532       }
533     }
534   }
535   return nullptr;
536 }
537 
538 /// If V is a shuffle of values that ONLY returns elements from either LHS or
539 /// RHS, return the shuffle mask and true. Otherwise, return false.
540 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
541                                          SmallVectorImpl<int> &Mask) {
542   assert(LHS->getType() == RHS->getType() &&
543          "Invalid CollectSingleShuffleElements");
544   unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
545 
546   if (match(V, m_Undef())) {
547     Mask.assign(NumElts, -1);
548     return true;
549   }
550 
551   if (V == LHS) {
552     for (unsigned i = 0; i != NumElts; ++i)
553       Mask.push_back(i);
554     return true;
555   }
556 
557   if (V == RHS) {
558     for (unsigned i = 0; i != NumElts; ++i)
559       Mask.push_back(i + NumElts);
560     return true;
561   }
562 
563   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
564     // If this is an insert of an extract from some other vector, include it.
565     Value *VecOp    = IEI->getOperand(0);
566     Value *ScalarOp = IEI->getOperand(1);
567     Value *IdxOp    = IEI->getOperand(2);
568 
569     if (!isa<ConstantInt>(IdxOp))
570       return false;
571     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
572 
573     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
574       // We can handle this if the vector we are inserting into is
575       // transitively ok.
576       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
577         // If so, update the mask to reflect the inserted undef.
578         Mask[InsertedIdx] = -1;
579         return true;
580       }
581     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
582       if (isa<ConstantInt>(EI->getOperand(1))) {
583         unsigned ExtractedIdx =
584         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
585         unsigned NumLHSElts =
586             cast<FixedVectorType>(LHS->getType())->getNumElements();
587 
588         // This must be extracting from either LHS or RHS.
589         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
590           // We can handle this if the vector we are inserting into is
591           // transitively ok.
592           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
593             // If so, update the mask to reflect the inserted value.
594             if (EI->getOperand(0) == LHS) {
595               Mask[InsertedIdx % NumElts] = ExtractedIdx;
596             } else {
597               assert(EI->getOperand(0) == RHS);
598               Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts;
599             }
600             return true;
601           }
602         }
603       }
604     }
605   }
606 
607   return false;
608 }
609 
610 /// If we have insertion into a vector that is wider than the vector that we
611 /// are extracting from, try to widen the source vector to allow a single
612 /// shufflevector to replace one or more insert/extract pairs.
613 static void replaceExtractElements(InsertElementInst *InsElt,
614                                    ExtractElementInst *ExtElt,
615                                    InstCombinerImpl &IC) {
616   auto *InsVecType = cast<FixedVectorType>(InsElt->getType());
617   auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType());
618   unsigned NumInsElts = InsVecType->getNumElements();
619   unsigned NumExtElts = ExtVecType->getNumElements();
620 
621   // The inserted-to vector must be wider than the extracted-from vector.
622   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
623       NumExtElts >= NumInsElts)
624     return;
625 
626   // Create a shuffle mask to widen the extended-from vector using poison
627   // values. The mask selects all of the values of the original vector followed
628   // by as many poison values as needed to create a vector of the same length
629   // as the inserted-to vector.
630   SmallVector<int, 16> ExtendMask;
631   for (unsigned i = 0; i < NumExtElts; ++i)
632     ExtendMask.push_back(i);
633   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
634     ExtendMask.push_back(-1);
635 
636   Value *ExtVecOp = ExtElt->getVectorOperand();
637   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
638   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
639                                    ? ExtVecOpInst->getParent()
640                                    : ExtElt->getParent();
641 
642   // TODO: This restriction matches the basic block check below when creating
643   // new extractelement instructions. If that limitation is removed, this one
644   // could also be removed. But for now, we just bail out to ensure that we
645   // will replace the extractelement instruction that is feeding our
646   // insertelement instruction. This allows the insertelement to then be
647   // replaced by a shufflevector. If the insertelement is not replaced, we can
648   // induce infinite looping because there's an optimization for extractelement
649   // that will delete our widening shuffle. This would trigger another attempt
650   // here to create that shuffle, and we spin forever.
651   if (InsertionBlock != InsElt->getParent())
652     return;
653 
654   // TODO: This restriction matches the check in visitInsertElementInst() and
655   // prevents an infinite loop caused by not turning the extract/insert pair
656   // into a shuffle. We really should not need either check, but we're lacking
657   // folds for shufflevectors because we're afraid to generate shuffle masks
658   // that the backend can't handle.
659   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
660     return;
661 
662   auto *WideVec =
663       new ShuffleVectorInst(ExtVecOp, PoisonValue::get(ExtVecType), ExtendMask);
664 
665   // Insert the new shuffle after the vector operand of the extract is defined
666   // (as long as it's not a PHI) or at the start of the basic block of the
667   // extract, so any subsequent extracts in the same basic block can use it.
668   // TODO: Insert before the earliest ExtractElementInst that is replaced.
669   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
670     WideVec->insertAfter(ExtVecOpInst);
671   else
672     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
673 
674   // Replace extracts from the original narrow vector with extracts from the new
675   // wide vector.
676   for (User *U : ExtVecOp->users()) {
677     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
678     if (!OldExt || OldExt->getParent() != WideVec->getParent())
679       continue;
680     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
681     NewExt->insertAfter(OldExt);
682     IC.replaceInstUsesWith(*OldExt, NewExt);
683   }
684 }
685 
686 /// We are building a shuffle to create V, which is a sequence of insertelement,
687 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
688 /// not rely on the second vector source. Return a std::pair containing the
689 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
690 /// parameter as required.
691 ///
692 /// Note: we intentionally don't try to fold earlier shuffles since they have
693 /// often been chosen carefully to be efficiently implementable on the target.
694 using ShuffleOps = std::pair<Value *, Value *>;
695 
696 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask,
697                                          Value *PermittedRHS,
698                                          InstCombinerImpl &IC) {
699   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
700   unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
701 
702   if (match(V, m_Undef())) {
703     Mask.assign(NumElts, -1);
704     return std::make_pair(
705         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
706   }
707 
708   if (isa<ConstantAggregateZero>(V)) {
709     Mask.assign(NumElts, 0);
710     return std::make_pair(V, nullptr);
711   }
712 
713   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
714     // If this is an insert of an extract from some other vector, include it.
715     Value *VecOp    = IEI->getOperand(0);
716     Value *ScalarOp = IEI->getOperand(1);
717     Value *IdxOp    = IEI->getOperand(2);
718 
719     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
720       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
721         unsigned ExtractedIdx =
722           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
723         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
724 
725         // Either the extracted from or inserted into vector must be RHSVec,
726         // otherwise we'd end up with a shuffle of three inputs.
727         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
728           Value *RHS = EI->getOperand(0);
729           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
730           assert(LR.second == nullptr || LR.second == RHS);
731 
732           if (LR.first->getType() != RHS->getType()) {
733             // Although we are giving up for now, see if we can create extracts
734             // that match the inserts for another round of combining.
735             replaceExtractElements(IEI, EI, IC);
736 
737             // We tried our best, but we can't find anything compatible with RHS
738             // further up the chain. Return a trivial shuffle.
739             for (unsigned i = 0; i < NumElts; ++i)
740               Mask[i] = i;
741             return std::make_pair(V, nullptr);
742           }
743 
744           unsigned NumLHSElts =
745               cast<FixedVectorType>(RHS->getType())->getNumElements();
746           Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx;
747           return std::make_pair(LR.first, RHS);
748         }
749 
750         if (VecOp == PermittedRHS) {
751           // We've gone as far as we can: anything on the other side of the
752           // extractelement will already have been converted into a shuffle.
753           unsigned NumLHSElts =
754               cast<FixedVectorType>(EI->getOperand(0)->getType())
755                   ->getNumElements();
756           for (unsigned i = 0; i != NumElts; ++i)
757             Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i);
758           return std::make_pair(EI->getOperand(0), PermittedRHS);
759         }
760 
761         // If this insertelement is a chain that comes from exactly these two
762         // vectors, return the vector and the effective shuffle.
763         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
764             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
765                                          Mask))
766           return std::make_pair(EI->getOperand(0), PermittedRHS);
767       }
768     }
769   }
770 
771   // Otherwise, we can't do anything fancy. Return an identity vector.
772   for (unsigned i = 0; i != NumElts; ++i)
773     Mask.push_back(i);
774   return std::make_pair(V, nullptr);
775 }
776 
777 /// Look for chain of insertvalue's that fully define an aggregate, and trace
778 /// back the values inserted, see if they are all were extractvalue'd from
779 /// the same source aggregate from the exact same element indexes.
780 /// If they were, just reuse the source aggregate.
781 /// This potentially deals with PHI indirections.
782 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse(
783     InsertValueInst &OrigIVI) {
784   Type *AggTy = OrigIVI.getType();
785   unsigned NumAggElts;
786   switch (AggTy->getTypeID()) {
787   case Type::StructTyID:
788     NumAggElts = AggTy->getStructNumElements();
789     break;
790   case Type::ArrayTyID:
791     NumAggElts = AggTy->getArrayNumElements();
792     break;
793   default:
794     llvm_unreachable("Unhandled aggregate type?");
795   }
796 
797   // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able
798   // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}),
799   // FIXME: any interesting patterns to be caught with larger limit?
800   assert(NumAggElts > 0 && "Aggregate should have elements.");
801   if (NumAggElts > 2)
802     return nullptr;
803 
804   static constexpr auto NotFound = None;
805   static constexpr auto FoundMismatch = nullptr;
806 
807   // Try to find a value of each element of an aggregate.
808   // FIXME: deal with more complex, not one-dimensional, aggregate types
809   SmallVector<Optional<Instruction *>, 2> AggElts(NumAggElts, NotFound);
810 
811   // Do we know values for each element of the aggregate?
812   auto KnowAllElts = [&AggElts]() {
813     return all_of(AggElts,
814                   [](Optional<Instruction *> Elt) { return Elt != NotFound; });
815   };
816 
817   int Depth = 0;
818 
819   // Arbitrary `insertvalue` visitation depth limit. Let's be okay with
820   // every element being overwritten twice, which should never happen.
821   static const int DepthLimit = 2 * NumAggElts;
822 
823   // Recurse up the chain of `insertvalue` aggregate operands until either we've
824   // reconstructed full initializer or can't visit any more `insertvalue`'s.
825   for (InsertValueInst *CurrIVI = &OrigIVI;
826        Depth < DepthLimit && CurrIVI && !KnowAllElts();
827        CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()),
828                        ++Depth) {
829     auto *InsertedValue =
830         dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand());
831     if (!InsertedValue)
832       return nullptr; // Inserted value must be produced by an instruction.
833 
834     ArrayRef<unsigned int> Indices = CurrIVI->getIndices();
835 
836     // Don't bother with more than single-level aggregates.
837     if (Indices.size() != 1)
838       return nullptr; // FIXME: deal with more complex aggregates?
839 
840     // Now, we may have already previously recorded the value for this element
841     // of an aggregate. If we did, that means the CurrIVI will later be
842     // overwritten with the already-recorded value. But if not, let's record it!
843     Optional<Instruction *> &Elt = AggElts[Indices.front()];
844     Elt = Elt.getValueOr(InsertedValue);
845 
846     // FIXME: should we handle chain-terminating undef base operand?
847   }
848 
849   // Was that sufficient to deduce the full initializer for the aggregate?
850   if (!KnowAllElts())
851     return nullptr; // Give up then.
852 
853   // We now want to find the source[s] of the aggregate elements we've found.
854   // And with "source" we mean the original aggregate[s] from which
855   // the inserted elements were extracted. This may require PHI translation.
856 
857   enum class AggregateDescription {
858     /// When analyzing the value that was inserted into an aggregate, we did
859     /// not manage to find defining `extractvalue` instruction to analyze.
860     NotFound,
861     /// When analyzing the value that was inserted into an aggregate, we did
862     /// manage to find defining `extractvalue` instruction[s], and everything
863     /// matched perfectly - aggregate type, element insertion/extraction index.
864     Found,
865     /// When analyzing the value that was inserted into an aggregate, we did
866     /// manage to find defining `extractvalue` instruction, but there was
867     /// a mismatch: either the source type from which the extraction was didn't
868     /// match the aggregate type into which the insertion was,
869     /// or the extraction/insertion channels mismatched,
870     /// or different elements had different source aggregates.
871     FoundMismatch
872   };
873   auto Describe = [](Optional<Value *> SourceAggregate) {
874     if (SourceAggregate == NotFound)
875       return AggregateDescription::NotFound;
876     if (*SourceAggregate == FoundMismatch)
877       return AggregateDescription::FoundMismatch;
878     return AggregateDescription::Found;
879   };
880 
881   // Given the value \p Elt that was being inserted into element \p EltIdx of an
882   // aggregate AggTy, see if \p Elt was originally defined by an
883   // appropriate extractvalue (same element index, same aggregate type).
884   // If found, return the source aggregate from which the extraction was.
885   // If \p PredBB is provided, does PHI translation of an \p Elt first.
886   auto FindSourceAggregate =
887       [&](Instruction *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB,
888           Optional<BasicBlock *> PredBB) -> Optional<Value *> {
889     // For now(?), only deal with, at most, a single level of PHI indirection.
890     if (UseBB && PredBB)
891       Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB));
892     // FIXME: deal with multiple levels of PHI indirection?
893 
894     // Did we find an extraction?
895     auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt);
896     if (!EVI)
897       return NotFound;
898 
899     Value *SourceAggregate = EVI->getAggregateOperand();
900 
901     // Is the extraction from the same type into which the insertion was?
902     if (SourceAggregate->getType() != AggTy)
903       return FoundMismatch;
904     // And the element index doesn't change between extraction and insertion?
905     if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front())
906       return FoundMismatch;
907 
908     return SourceAggregate; // AggregateDescription::Found
909   };
910 
911   // Given elements AggElts that were constructing an aggregate OrigIVI,
912   // see if we can find appropriate source aggregate for each of the elements,
913   // and see it's the same aggregate for each element. If so, return it.
914   auto FindCommonSourceAggregate =
915       [&](Optional<BasicBlock *> UseBB,
916           Optional<BasicBlock *> PredBB) -> Optional<Value *> {
917     Optional<Value *> SourceAggregate;
918 
919     for (auto I : enumerate(AggElts)) {
920       assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch &&
921              "We don't store nullptr in SourceAggregate!");
922       assert((Describe(SourceAggregate) == AggregateDescription::Found) ==
923                  (I.index() != 0) &&
924              "SourceAggregate should be valid after the first element,");
925 
926       // For this element, is there a plausible source aggregate?
927       // FIXME: we could special-case undef element, IFF we know that in the
928       //        source aggregate said element isn't poison.
929       Optional<Value *> SourceAggregateForElement =
930           FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB);
931 
932       // Okay, what have we found? Does that correlate with previous findings?
933 
934       // Regardless of whether or not we have previously found source
935       // aggregate for previous elements (if any), if we didn't find one for
936       // this element, passthrough whatever we have just found.
937       if (Describe(SourceAggregateForElement) != AggregateDescription::Found)
938         return SourceAggregateForElement;
939 
940       // Okay, we have found source aggregate for this element.
941       // Let's see what we already know from previous elements, if any.
942       switch (Describe(SourceAggregate)) {
943       case AggregateDescription::NotFound:
944         // This is apparently the first element that we have examined.
945         SourceAggregate = SourceAggregateForElement; // Record the aggregate!
946         continue; // Great, now look at next element.
947       case AggregateDescription::Found:
948         // We have previously already successfully examined other elements.
949         // Is this the same source aggregate we've found for other elements?
950         if (*SourceAggregateForElement != *SourceAggregate)
951           return FoundMismatch;
952         continue; // Still the same aggregate, look at next element.
953       case AggregateDescription::FoundMismatch:
954         llvm_unreachable("Can't happen. We would have early-exited then.");
955       };
956     }
957 
958     assert(Describe(SourceAggregate) == AggregateDescription::Found &&
959            "Must be a valid Value");
960     return *SourceAggregate;
961   };
962 
963   Optional<Value *> SourceAggregate;
964 
965   // Can we find the source aggregate without looking at predecessors?
966   SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None);
967   if (Describe(SourceAggregate) != AggregateDescription::NotFound) {
968     if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch)
969       return nullptr; // Conflicting source aggregates!
970     ++NumAggregateReconstructionsSimplified;
971     return replaceInstUsesWith(OrigIVI, *SourceAggregate);
972   }
973 
974   // Okay, apparently we need to look at predecessors.
975 
976   // We should be smart about picking the "use" basic block, which will be the
977   // merge point for aggregate, where we'll insert the final PHI that will be
978   // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice.
979   // We should look in which blocks each of the AggElts is being defined,
980   // they all should be defined in the same basic block.
981   BasicBlock *UseBB = nullptr;
982 
983   for (const Optional<Instruction *> &I : AggElts) {
984     BasicBlock *BB = (*I)->getParent();
985     // If it's the first instruction we've encountered, record the basic block.
986     if (!UseBB) {
987       UseBB = BB;
988       continue;
989     }
990     // Otherwise, this must be the same basic block we've seen previously.
991     if (UseBB != BB)
992       return nullptr;
993   }
994 
995   // If *all* of the elements are basic-block-independent, meaning they are
996   // either function arguments, or constant expressions, then if we didn't
997   // handle them without predecessor-aware handling, we won't handle them now.
998   if (!UseBB)
999     return nullptr;
1000 
1001   // If we didn't manage to find source aggregate without looking at
1002   // predecessors, and there are no predecessors to look at, then we're done.
1003   if (pred_empty(UseBB))
1004     return nullptr;
1005 
1006   // Arbitrary predecessor count limit.
1007   static const int PredCountLimit = 64;
1008 
1009   // Cache the (non-uniqified!) list of predecessors in a vector,
1010   // checking the limit at the same time for efficiency.
1011   SmallVector<BasicBlock *, 4> Preds; // May have duplicates!
1012   for (BasicBlock *Pred : predecessors(UseBB)) {
1013     // Don't bother if there are too many predecessors.
1014     if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once?
1015       return nullptr;
1016     Preds.emplace_back(Pred);
1017   }
1018 
1019   // For each predecessor, what is the source aggregate,
1020   // from which all the elements were originally extracted from?
1021   // Note that we want for the map to have stable iteration order!
1022   SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates;
1023   for (BasicBlock *Pred : Preds) {
1024     std::pair<decltype(SourceAggregates)::iterator, bool> IV =
1025         SourceAggregates.insert({Pred, nullptr});
1026     // Did we already evaluate this predecessor?
1027     if (!IV.second)
1028       continue;
1029 
1030     // Let's hope that when coming from predecessor Pred, all elements of the
1031     // aggregate produced by OrigIVI must have been originally extracted from
1032     // the same aggregate. Is that so? Can we find said original aggregate?
1033     SourceAggregate = FindCommonSourceAggregate(UseBB, Pred);
1034     if (Describe(SourceAggregate) != AggregateDescription::Found)
1035       return nullptr; // Give up.
1036     IV.first->second = *SourceAggregate;
1037   }
1038 
1039   // All good! Now we just need to thread the source aggregates here.
1040   // Note that we have to insert the new PHI here, ourselves, because we can't
1041   // rely on InstCombinerImpl::run() inserting it into the right basic block.
1042   // Note that the same block can be a predecessor more than once,
1043   // and we need to preserve that invariant for the PHI node.
1044   BuilderTy::InsertPointGuard Guard(Builder);
1045   Builder.SetInsertPoint(UseBB->getFirstNonPHI());
1046   auto *PHI =
1047       Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged");
1048   for (BasicBlock *Pred : Preds)
1049     PHI->addIncoming(SourceAggregates[Pred], Pred);
1050 
1051   ++NumAggregateReconstructionsSimplified;
1052   return replaceInstUsesWith(OrigIVI, PHI);
1053 }
1054 
1055 /// Try to find redundant insertvalue instructions, like the following ones:
1056 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
1057 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
1058 /// Here the second instruction inserts values at the same indices, as the
1059 /// first one, making the first one redundant.
1060 /// It should be transformed to:
1061 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
1062 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) {
1063   bool IsRedundant = false;
1064   ArrayRef<unsigned int> FirstIndices = I.getIndices();
1065 
1066   // If there is a chain of insertvalue instructions (each of them except the
1067   // last one has only one use and it's another insertvalue insn from this
1068   // chain), check if any of the 'children' uses the same indices as the first
1069   // instruction. In this case, the first one is redundant.
1070   Value *V = &I;
1071   unsigned Depth = 0;
1072   while (V->hasOneUse() && Depth < 10) {
1073     User *U = V->user_back();
1074     auto UserInsInst = dyn_cast<InsertValueInst>(U);
1075     if (!UserInsInst || U->getOperand(0) != V)
1076       break;
1077     if (UserInsInst->getIndices() == FirstIndices) {
1078       IsRedundant = true;
1079       break;
1080     }
1081     V = UserInsInst;
1082     Depth++;
1083   }
1084 
1085   if (IsRedundant)
1086     return replaceInstUsesWith(I, I.getOperand(0));
1087 
1088   if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I))
1089     return NewI;
1090 
1091   return nullptr;
1092 }
1093 
1094 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
1095   // Can not analyze scalable type, the number of elements is not a compile-time
1096   // constant.
1097   if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType()))
1098     return false;
1099 
1100   int MaskSize = Shuf.getShuffleMask().size();
1101   int VecSize =
1102       cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements();
1103 
1104   // A vector select does not change the size of the operands.
1105   if (MaskSize != VecSize)
1106     return false;
1107 
1108   // Each mask element must be undefined or choose a vector element from one of
1109   // the source operands without crossing vector lanes.
1110   for (int i = 0; i != MaskSize; ++i) {
1111     int Elt = Shuf.getMaskValue(i);
1112     if (Elt != -1 && Elt != i && Elt != i + VecSize)
1113       return false;
1114   }
1115 
1116   return true;
1117 }
1118 
1119 /// Turn a chain of inserts that splats a value into an insert + shuffle:
1120 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
1121 /// shufflevector(insertelt(X, %k, 0), poison, zero)
1122 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
1123   // We are interested in the last insert in a chain. So if this insert has a
1124   // single user and that user is an insert, bail.
1125   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
1126     return nullptr;
1127 
1128   VectorType *VecTy = InsElt.getType();
1129   // Can not handle scalable type, the number of elements is not a compile-time
1130   // constant.
1131   if (isa<ScalableVectorType>(VecTy))
1132     return nullptr;
1133   unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1134 
1135   // Do not try to do this for a one-element vector, since that's a nop,
1136   // and will cause an inf-loop.
1137   if (NumElements == 1)
1138     return nullptr;
1139 
1140   Value *SplatVal = InsElt.getOperand(1);
1141   InsertElementInst *CurrIE = &InsElt;
1142   SmallBitVector ElementPresent(NumElements, false);
1143   InsertElementInst *FirstIE = nullptr;
1144 
1145   // Walk the chain backwards, keeping track of which indices we inserted into,
1146   // until we hit something that isn't an insert of the splatted value.
1147   while (CurrIE) {
1148     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
1149     if (!Idx || CurrIE->getOperand(1) != SplatVal)
1150       return nullptr;
1151 
1152     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
1153     // Check none of the intermediate steps have any additional uses, except
1154     // for the root insertelement instruction, which can be re-used, if it
1155     // inserts at position 0.
1156     if (CurrIE != &InsElt &&
1157         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
1158       return nullptr;
1159 
1160     ElementPresent[Idx->getZExtValue()] = true;
1161     FirstIE = CurrIE;
1162     CurrIE = NextIE;
1163   }
1164 
1165   // If this is just a single insertelement (not a sequence), we are done.
1166   if (FirstIE == &InsElt)
1167     return nullptr;
1168 
1169   // If we are not inserting into an undef vector, make sure we've seen an
1170   // insert into every element.
1171   // TODO: If the base vector is not undef, it might be better to create a splat
1172   //       and then a select-shuffle (blend) with the base vector.
1173   if (!match(FirstIE->getOperand(0), m_Undef()))
1174     if (!ElementPresent.all())
1175       return nullptr;
1176 
1177   // Create the insert + shuffle.
1178   Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
1179   PoisonValue *PoisonVec = PoisonValue::get(VecTy);
1180   Constant *Zero = ConstantInt::get(Int32Ty, 0);
1181   if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
1182     FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt);
1183 
1184   // Splat from element 0, but replace absent elements with undef in the mask.
1185   SmallVector<int, 16> Mask(NumElements, 0);
1186   for (unsigned i = 0; i != NumElements; ++i)
1187     if (!ElementPresent[i])
1188       Mask[i] = -1;
1189 
1190   return new ShuffleVectorInst(FirstIE, PoisonVec, Mask);
1191 }
1192 
1193 /// Try to fold an insert element into an existing splat shuffle by changing
1194 /// the shuffle's mask to include the index of this insert element.
1195 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
1196   // Check if the vector operand of this insert is a canonical splat shuffle.
1197   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1198   if (!Shuf || !Shuf->isZeroEltSplat())
1199     return nullptr;
1200 
1201   // Bail out early if shuffle is scalable type. The number of elements in
1202   // shuffle mask is unknown at compile-time.
1203   if (isa<ScalableVectorType>(Shuf->getType()))
1204     return nullptr;
1205 
1206   // Check for a constant insertion index.
1207   uint64_t IdxC;
1208   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1209     return nullptr;
1210 
1211   // Check if the splat shuffle's input is the same as this insert's scalar op.
1212   Value *X = InsElt.getOperand(1);
1213   Value *Op0 = Shuf->getOperand(0);
1214   if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt())))
1215     return nullptr;
1216 
1217   // Replace the shuffle mask element at the index of this insert with a zero.
1218   // For example:
1219   // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
1220   //   --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
1221   unsigned NumMaskElts =
1222       cast<FixedVectorType>(Shuf->getType())->getNumElements();
1223   SmallVector<int, 16> NewMask(NumMaskElts);
1224   for (unsigned i = 0; i != NumMaskElts; ++i)
1225     NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);
1226 
1227   return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
1228 }
1229 
1230 /// Try to fold an extract+insert element into an existing identity shuffle by
1231 /// changing the shuffle's mask to include the index of this insert element.
1232 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
1233   // Check if the vector operand of this insert is an identity shuffle.
1234   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1235   if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) ||
1236       !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
1237     return nullptr;
1238 
1239   // Bail out early if shuffle is scalable type. The number of elements in
1240   // shuffle mask is unknown at compile-time.
1241   if (isa<ScalableVectorType>(Shuf->getType()))
1242     return nullptr;
1243 
1244   // Check for a constant insertion index.
1245   uint64_t IdxC;
1246   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1247     return nullptr;
1248 
1249   // Check if this insert's scalar op is extracted from the identity shuffle's
1250   // input vector.
1251   Value *Scalar = InsElt.getOperand(1);
1252   Value *X = Shuf->getOperand(0);
1253   if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC))))
1254     return nullptr;
1255 
1256   // Replace the shuffle mask element at the index of this extract+insert with
1257   // that same index value.
1258   // For example:
1259   // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
1260   unsigned NumMaskElts =
1261       cast<FixedVectorType>(Shuf->getType())->getNumElements();
1262   SmallVector<int, 16> NewMask(NumMaskElts);
1263   ArrayRef<int> OldMask = Shuf->getShuffleMask();
1264   for (unsigned i = 0; i != NumMaskElts; ++i) {
1265     if (i != IdxC) {
1266       // All mask elements besides the inserted element remain the same.
1267       NewMask[i] = OldMask[i];
1268     } else if (OldMask[i] == (int)IdxC) {
1269       // If the mask element was already set, there's nothing to do
1270       // (demanded elements analysis may unset it later).
1271       return nullptr;
1272     } else {
1273       assert(OldMask[i] == UndefMaskElem &&
1274              "Unexpected shuffle mask element for identity shuffle");
1275       NewMask[i] = IdxC;
1276     }
1277   }
1278 
1279   return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
1280 }
1281 
1282 /// If we have an insertelement instruction feeding into another insertelement
1283 /// and the 2nd is inserting a constant into the vector, canonicalize that
1284 /// constant insertion before the insertion of a variable:
1285 ///
1286 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
1287 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
1288 ///
1289 /// This has the potential of eliminating the 2nd insertelement instruction
1290 /// via constant folding of the scalar constant into a vector constant.
1291 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
1292                                      InstCombiner::BuilderTy &Builder) {
1293   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
1294   if (!InsElt1 || !InsElt1->hasOneUse())
1295     return nullptr;
1296 
1297   Value *X, *Y;
1298   Constant *ScalarC;
1299   ConstantInt *IdxC1, *IdxC2;
1300   if (match(InsElt1->getOperand(0), m_Value(X)) &&
1301       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
1302       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
1303       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
1304       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
1305     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
1306     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
1307   }
1308 
1309   return nullptr;
1310 }
1311 
1312 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
1313 /// --> shufflevector X, CVec', Mask'
1314 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
1315   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
1316   // Bail out if the parent has more than one use. In that case, we'd be
1317   // replacing the insertelt with a shuffle, and that's not a clear win.
1318   if (!Inst || !Inst->hasOneUse())
1319     return nullptr;
1320   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
1321     // The shuffle must have a constant vector operand. The insertelt must have
1322     // a constant scalar being inserted at a constant position in the vector.
1323     Constant *ShufConstVec, *InsEltScalar;
1324     uint64_t InsEltIndex;
1325     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
1326         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
1327         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
1328       return nullptr;
1329 
1330     // Adding an element to an arbitrary shuffle could be expensive, but a
1331     // shuffle that selects elements from vectors without crossing lanes is
1332     // assumed cheap.
1333     // If we're just adding a constant into that shuffle, it will still be
1334     // cheap.
1335     if (!isShuffleEquivalentToSelect(*Shuf))
1336       return nullptr;
1337 
1338     // From the above 'select' check, we know that the mask has the same number
1339     // of elements as the vector input operands. We also know that each constant
1340     // input element is used in its lane and can not be used more than once by
1341     // the shuffle. Therefore, replace the constant in the shuffle's constant
1342     // vector with the insertelt constant. Replace the constant in the shuffle's
1343     // mask vector with the insertelt index plus the length of the vector
1344     // (because the constant vector operand of a shuffle is always the 2nd
1345     // operand).
1346     ArrayRef<int> Mask = Shuf->getShuffleMask();
1347     unsigned NumElts = Mask.size();
1348     SmallVector<Constant *, 16> NewShufElts(NumElts);
1349     SmallVector<int, 16> NewMaskElts(NumElts);
1350     for (unsigned I = 0; I != NumElts; ++I) {
1351       if (I == InsEltIndex) {
1352         NewShufElts[I] = InsEltScalar;
1353         NewMaskElts[I] = InsEltIndex + NumElts;
1354       } else {
1355         // Copy over the existing values.
1356         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
1357         NewMaskElts[I] = Mask[I];
1358       }
1359     }
1360 
1361     // Create new operands for a shuffle that includes the constant of the
1362     // original insertelt. The old shuffle will be dead now.
1363     return new ShuffleVectorInst(Shuf->getOperand(0),
1364                                  ConstantVector::get(NewShufElts), NewMaskElts);
1365   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
1366     // Transform sequences of insertelements ops with constant data/indexes into
1367     // a single shuffle op.
1368     // Can not handle scalable type, the number of elements needed to create
1369     // shuffle mask is not a compile-time constant.
1370     if (isa<ScalableVectorType>(InsElt.getType()))
1371       return nullptr;
1372     unsigned NumElts =
1373         cast<FixedVectorType>(InsElt.getType())->getNumElements();
1374 
1375     uint64_t InsertIdx[2];
1376     Constant *Val[2];
1377     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
1378         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
1379         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
1380         !match(IEI->getOperand(1), m_Constant(Val[1])))
1381       return nullptr;
1382     SmallVector<Constant *, 16> Values(NumElts);
1383     SmallVector<int, 16> Mask(NumElts);
1384     auto ValI = std::begin(Val);
1385     // Generate new constant vector and mask.
1386     // We have 2 values/masks from the insertelements instructions. Insert them
1387     // into new value/mask vectors.
1388     for (uint64_t I : InsertIdx) {
1389       if (!Values[I]) {
1390         Values[I] = *ValI;
1391         Mask[I] = NumElts + I;
1392       }
1393       ++ValI;
1394     }
1395     // Remaining values are filled with 'undef' values.
1396     for (unsigned I = 0; I < NumElts; ++I) {
1397       if (!Values[I]) {
1398         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
1399         Mask[I] = I;
1400       }
1401     }
1402     // Create new operands for a shuffle that includes the constant of the
1403     // original insertelt.
1404     return new ShuffleVectorInst(IEI->getOperand(0),
1405                                  ConstantVector::get(Values), Mask);
1406   }
1407   return nullptr;
1408 }
1409 
1410 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) {
1411   Value *VecOp    = IE.getOperand(0);
1412   Value *ScalarOp = IE.getOperand(1);
1413   Value *IdxOp    = IE.getOperand(2);
1414 
1415   if (auto *V = SimplifyInsertElementInst(
1416           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1417     return replaceInstUsesWith(IE, V);
1418 
1419   // If the scalar is bitcast and inserted into undef, do the insert in the
1420   // source type followed by bitcast.
1421   // TODO: Generalize for insert into any constant, not just undef?
1422   Value *ScalarSrc;
1423   if (match(VecOp, m_Undef()) &&
1424       match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) &&
1425       (ScalarSrc->getType()->isIntegerTy() ||
1426        ScalarSrc->getType()->isFloatingPointTy())) {
1427     // inselt undef, (bitcast ScalarSrc), IdxOp -->
1428     //   bitcast (inselt undef, ScalarSrc, IdxOp)
1429     Type *ScalarTy = ScalarSrc->getType();
1430     Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount());
1431     UndefValue *NewUndef = UndefValue::get(VecTy);
1432     Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp);
1433     return new BitCastInst(NewInsElt, IE.getType());
1434   }
1435 
1436   // If the vector and scalar are both bitcast from the same element type, do
1437   // the insert in that source type followed by bitcast.
1438   Value *VecSrc;
1439   if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1440       match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1441       (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1442       VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1443       cast<VectorType>(VecSrc->getType())->getElementType() ==
1444           ScalarSrc->getType()) {
1445     // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1446     //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1447     Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1448     return new BitCastInst(NewInsElt, IE.getType());
1449   }
1450 
1451   // If the inserted element was extracted from some other fixed-length vector
1452   // and both indexes are valid constants, try to turn this into a shuffle.
1453   // Can not handle scalable vector type, the number of elements needed to
1454   // create shuffle mask is not a compile-time constant.
1455   uint64_t InsertedIdx, ExtractedIdx;
1456   Value *ExtVecOp;
1457   if (isa<FixedVectorType>(IE.getType()) &&
1458       match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1459       match(ScalarOp,
1460             m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) &&
1461       isa<FixedVectorType>(ExtVecOp->getType()) &&
1462       ExtractedIdx <
1463           cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) {
1464     // TODO: Looking at the user(s) to determine if this insert is a
1465     // fold-to-shuffle opportunity does not match the usual instcombine
1466     // constraints. We should decide if the transform is worthy based only
1467     // on this instruction and its operands, but that may not work currently.
1468     //
1469     // Here, we are trying to avoid creating shuffles before reaching
1470     // the end of a chain of extract-insert pairs. This is complicated because
1471     // we do not generally form arbitrary shuffle masks in instcombine
1472     // (because those may codegen poorly), but collectShuffleElements() does
1473     // exactly that.
1474     //
1475     // The rules for determining what is an acceptable target-independent
1476     // shuffle mask are fuzzy because they evolve based on the backend's
1477     // capabilities and real-world impact.
1478     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1479       if (!Insert.hasOneUse())
1480         return true;
1481       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1482       if (!InsertUser)
1483         return true;
1484       return false;
1485     };
1486 
1487     // Try to form a shuffle from a chain of extract-insert ops.
1488     if (isShuffleRootCandidate(IE)) {
1489       SmallVector<int, 16> Mask;
1490       ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
1491 
1492       // The proposed shuffle may be trivial, in which case we shouldn't
1493       // perform the combine.
1494       if (LR.first != &IE && LR.second != &IE) {
1495         // We now have a shuffle of LHS, RHS, Mask.
1496         if (LR.second == nullptr)
1497           LR.second = UndefValue::get(LR.first->getType());
1498         return new ShuffleVectorInst(LR.first, LR.second, Mask);
1499       }
1500     }
1501   }
1502 
1503   if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) {
1504     unsigned VWidth = VecTy->getNumElements();
1505     APInt UndefElts(VWidth, 0);
1506     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1507     if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
1508       if (V != &IE)
1509         return replaceInstUsesWith(IE, V);
1510       return &IE;
1511     }
1512   }
1513 
1514   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1515     return Shuf;
1516 
1517   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1518     return NewInsElt;
1519 
1520   if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1521     return Broadcast;
1522 
1523   if (Instruction *Splat = foldInsEltIntoSplat(IE))
1524     return Splat;
1525 
1526   if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1527     return IdentityShuf;
1528 
1529   return nullptr;
1530 }
1531 
1532 /// Return true if we can evaluate the specified expression tree if the vector
1533 /// elements were shuffled in a different order.
1534 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1535                                 unsigned Depth = 5) {
1536   // We can always reorder the elements of a constant.
1537   if (isa<Constant>(V))
1538     return true;
1539 
1540   // We won't reorder vector arguments. No IPO here.
1541   Instruction *I = dyn_cast<Instruction>(V);
1542   if (!I) return false;
1543 
1544   // Two users may expect different orders of the elements. Don't try it.
1545   if (!I->hasOneUse())
1546     return false;
1547 
1548   if (Depth == 0) return false;
1549 
1550   switch (I->getOpcode()) {
1551     case Instruction::UDiv:
1552     case Instruction::SDiv:
1553     case Instruction::URem:
1554     case Instruction::SRem:
1555       // Propagating an undefined shuffle mask element to integer div/rem is not
1556       // allowed because those opcodes can create immediate undefined behavior
1557       // from an undefined element in an operand.
1558       if (llvm::is_contained(Mask, -1))
1559         return false;
1560       LLVM_FALLTHROUGH;
1561     case Instruction::Add:
1562     case Instruction::FAdd:
1563     case Instruction::Sub:
1564     case Instruction::FSub:
1565     case Instruction::Mul:
1566     case Instruction::FMul:
1567     case Instruction::FDiv:
1568     case Instruction::FRem:
1569     case Instruction::Shl:
1570     case Instruction::LShr:
1571     case Instruction::AShr:
1572     case Instruction::And:
1573     case Instruction::Or:
1574     case Instruction::Xor:
1575     case Instruction::ICmp:
1576     case Instruction::FCmp:
1577     case Instruction::Trunc:
1578     case Instruction::ZExt:
1579     case Instruction::SExt:
1580     case Instruction::FPToUI:
1581     case Instruction::FPToSI:
1582     case Instruction::UIToFP:
1583     case Instruction::SIToFP:
1584     case Instruction::FPTrunc:
1585     case Instruction::FPExt:
1586     case Instruction::GetElementPtr: {
1587       // Bail out if we would create longer vector ops. We could allow creating
1588       // longer vector ops, but that may result in more expensive codegen.
1589       Type *ITy = I->getType();
1590       if (ITy->isVectorTy() &&
1591           Mask.size() > cast<FixedVectorType>(ITy)->getNumElements())
1592         return false;
1593       for (Value *Operand : I->operands()) {
1594         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1595           return false;
1596       }
1597       return true;
1598     }
1599     case Instruction::InsertElement: {
1600       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1601       if (!CI) return false;
1602       int ElementNumber = CI->getLimitedValue();
1603 
1604       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1605       // can't put an element into multiple indices.
1606       bool SeenOnce = false;
1607       for (int i = 0, e = Mask.size(); i != e; ++i) {
1608         if (Mask[i] == ElementNumber) {
1609           if (SeenOnce)
1610             return false;
1611           SeenOnce = true;
1612         }
1613       }
1614       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1615     }
1616   }
1617   return false;
1618 }
1619 
1620 /// Rebuild a new instruction just like 'I' but with the new operands given.
1621 /// In the event of type mismatch, the type of the operands is correct.
1622 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1623   // We don't want to use the IRBuilder here because we want the replacement
1624   // instructions to appear next to 'I', not the builder's insertion point.
1625   switch (I->getOpcode()) {
1626     case Instruction::Add:
1627     case Instruction::FAdd:
1628     case Instruction::Sub:
1629     case Instruction::FSub:
1630     case Instruction::Mul:
1631     case Instruction::FMul:
1632     case Instruction::UDiv:
1633     case Instruction::SDiv:
1634     case Instruction::FDiv:
1635     case Instruction::URem:
1636     case Instruction::SRem:
1637     case Instruction::FRem:
1638     case Instruction::Shl:
1639     case Instruction::LShr:
1640     case Instruction::AShr:
1641     case Instruction::And:
1642     case Instruction::Or:
1643     case Instruction::Xor: {
1644       BinaryOperator *BO = cast<BinaryOperator>(I);
1645       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1646       BinaryOperator *New =
1647           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1648                                  NewOps[0], NewOps[1], "", BO);
1649       if (isa<OverflowingBinaryOperator>(BO)) {
1650         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1651         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1652       }
1653       if (isa<PossiblyExactOperator>(BO)) {
1654         New->setIsExact(BO->isExact());
1655       }
1656       if (isa<FPMathOperator>(BO))
1657         New->copyFastMathFlags(I);
1658       return New;
1659     }
1660     case Instruction::ICmp:
1661       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1662       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1663                           NewOps[0], NewOps[1]);
1664     case Instruction::FCmp:
1665       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1666       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1667                           NewOps[0], NewOps[1]);
1668     case Instruction::Trunc:
1669     case Instruction::ZExt:
1670     case Instruction::SExt:
1671     case Instruction::FPToUI:
1672     case Instruction::FPToSI:
1673     case Instruction::UIToFP:
1674     case Instruction::SIToFP:
1675     case Instruction::FPTrunc:
1676     case Instruction::FPExt: {
1677       // It's possible that the mask has a different number of elements from
1678       // the original cast. We recompute the destination type to match the mask.
1679       Type *DestTy = VectorType::get(
1680           I->getType()->getScalarType(),
1681           cast<VectorType>(NewOps[0]->getType())->getElementCount());
1682       assert(NewOps.size() == 1 && "cast with #ops != 1");
1683       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1684                               "", I);
1685     }
1686     case Instruction::GetElementPtr: {
1687       Value *Ptr = NewOps[0];
1688       ArrayRef<Value*> Idx = NewOps.slice(1);
1689       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1690           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1691       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1692       return GEP;
1693     }
1694   }
1695   llvm_unreachable("failed to rebuild vector instructions");
1696 }
1697 
1698 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1699   // Mask.size() does not need to be equal to the number of vector elements.
1700 
1701   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1702   Type *EltTy = V->getType()->getScalarType();
1703   Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1704   if (match(V, m_Undef()))
1705     return UndefValue::get(FixedVectorType::get(EltTy, Mask.size()));
1706 
1707   if (isa<ConstantAggregateZero>(V))
1708     return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size()));
1709 
1710   if (Constant *C = dyn_cast<Constant>(V))
1711     return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()),
1712                                           Mask);
1713 
1714   Instruction *I = cast<Instruction>(V);
1715   switch (I->getOpcode()) {
1716     case Instruction::Add:
1717     case Instruction::FAdd:
1718     case Instruction::Sub:
1719     case Instruction::FSub:
1720     case Instruction::Mul:
1721     case Instruction::FMul:
1722     case Instruction::UDiv:
1723     case Instruction::SDiv:
1724     case Instruction::FDiv:
1725     case Instruction::URem:
1726     case Instruction::SRem:
1727     case Instruction::FRem:
1728     case Instruction::Shl:
1729     case Instruction::LShr:
1730     case Instruction::AShr:
1731     case Instruction::And:
1732     case Instruction::Or:
1733     case Instruction::Xor:
1734     case Instruction::ICmp:
1735     case Instruction::FCmp:
1736     case Instruction::Trunc:
1737     case Instruction::ZExt:
1738     case Instruction::SExt:
1739     case Instruction::FPToUI:
1740     case Instruction::FPToSI:
1741     case Instruction::UIToFP:
1742     case Instruction::SIToFP:
1743     case Instruction::FPTrunc:
1744     case Instruction::FPExt:
1745     case Instruction::Select:
1746     case Instruction::GetElementPtr: {
1747       SmallVector<Value*, 8> NewOps;
1748       bool NeedsRebuild =
1749           (Mask.size() !=
1750            cast<FixedVectorType>(I->getType())->getNumElements());
1751       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1752         Value *V;
1753         // Recursively call evaluateInDifferentElementOrder on vector arguments
1754         // as well. E.g. GetElementPtr may have scalar operands even if the
1755         // return value is a vector, so we need to examine the operand type.
1756         if (I->getOperand(i)->getType()->isVectorTy())
1757           V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1758         else
1759           V = I->getOperand(i);
1760         NewOps.push_back(V);
1761         NeedsRebuild |= (V != I->getOperand(i));
1762       }
1763       if (NeedsRebuild) {
1764         return buildNew(I, NewOps);
1765       }
1766       return I;
1767     }
1768     case Instruction::InsertElement: {
1769       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1770 
1771       // The insertelement was inserting at Element. Figure out which element
1772       // that becomes after shuffling. The answer is guaranteed to be unique
1773       // by CanEvaluateShuffled.
1774       bool Found = false;
1775       int Index = 0;
1776       for (int e = Mask.size(); Index != e; ++Index) {
1777         if (Mask[Index] == Element) {
1778           Found = true;
1779           break;
1780         }
1781       }
1782 
1783       // If element is not in Mask, no need to handle the operand 1 (element to
1784       // be inserted). Just evaluate values in operand 0 according to Mask.
1785       if (!Found)
1786         return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1787 
1788       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1789       return InsertElementInst::Create(V, I->getOperand(1),
1790                                        ConstantInt::get(I32Ty, Index), "", I);
1791     }
1792   }
1793   llvm_unreachable("failed to reorder elements of vector instruction!");
1794 }
1795 
1796 // Returns true if the shuffle is extracting a contiguous range of values from
1797 // LHS, for example:
1798 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1799 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1800 //   Shuffles to:  |EE|FF|GG|HH|
1801 //                 +--+--+--+--+
1802 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1803                                        ArrayRef<int> Mask) {
1804   unsigned LHSElems =
1805       cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements();
1806   unsigned MaskElems = Mask.size();
1807   unsigned BegIdx = Mask.front();
1808   unsigned EndIdx = Mask.back();
1809   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1810     return false;
1811   for (unsigned I = 0; I != MaskElems; ++I)
1812     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1813       return false;
1814   return true;
1815 }
1816 
1817 /// These are the ingredients in an alternate form binary operator as described
1818 /// below.
1819 struct BinopElts {
1820   BinaryOperator::BinaryOps Opcode;
1821   Value *Op0;
1822   Value *Op1;
1823   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1824             Value *V0 = nullptr, Value *V1 = nullptr) :
1825       Opcode(Opc), Op0(V0), Op1(V1) {}
1826   operator bool() const { return Opcode != 0; }
1827 };
1828 
1829 /// Binops may be transformed into binops with different opcodes and operands.
1830 /// Reverse the usual canonicalization to enable folds with the non-canonical
1831 /// form of the binop. If a transform is possible, return the elements of the
1832 /// new binop. If not, return invalid elements.
1833 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1834   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1835   Type *Ty = BO->getType();
1836   switch (BO->getOpcode()) {
1837     case Instruction::Shl: {
1838       // shl X, C --> mul X, (1 << C)
1839       Constant *C;
1840       if (match(BO1, m_Constant(C))) {
1841         Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1842         return { Instruction::Mul, BO0, ShlOne };
1843       }
1844       break;
1845     }
1846     case Instruction::Or: {
1847       // or X, C --> add X, C (when X and C have no common bits set)
1848       const APInt *C;
1849       if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1850         return { Instruction::Add, BO0, BO1 };
1851       break;
1852     }
1853     default:
1854       break;
1855   }
1856   return {};
1857 }
1858 
1859 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1860   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1861 
1862   // Are we shuffling together some value and that same value after it has been
1863   // modified by a binop with a constant?
1864   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1865   Constant *C;
1866   bool Op0IsBinop;
1867   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1868     Op0IsBinop = true;
1869   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1870     Op0IsBinop = false;
1871   else
1872     return nullptr;
1873 
1874   // The identity constant for a binop leaves a variable operand unchanged. For
1875   // a vector, this is a splat of something like 0, -1, or 1.
1876   // If there's no identity constant for this binop, we're done.
1877   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1878   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1879   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1880   if (!IdC)
1881     return nullptr;
1882 
1883   // Shuffle identity constants into the lanes that return the original value.
1884   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1885   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1886   // The existing binop constant vector remains in the same operand position.
1887   ArrayRef<int> Mask = Shuf.getShuffleMask();
1888   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1889                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
1890 
1891   bool MightCreatePoisonOrUB =
1892       is_contained(Mask, UndefMaskElem) &&
1893       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1894   if (MightCreatePoisonOrUB)
1895     NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true);
1896 
1897   // shuf (bop X, C), X, M --> bop X, C'
1898   // shuf X, (bop X, C), M --> bop X, C'
1899   Value *X = Op0IsBinop ? Op1 : Op0;
1900   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1901   NewBO->copyIRFlags(BO);
1902 
1903   // An undef shuffle mask element may propagate as an undef constant element in
1904   // the new binop. That would produce poison where the original code might not.
1905   // If we already made a safe constant, then there's no danger.
1906   if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
1907     NewBO->dropPoisonGeneratingFlags();
1908   return NewBO;
1909 }
1910 
1911 /// If we have an insert of a scalar to a non-zero element of an undefined
1912 /// vector and then shuffle that value, that's the same as inserting to the zero
1913 /// element and shuffling. Splatting from the zero element is recognized as the
1914 /// canonical form of splat.
1915 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
1916                                             InstCombiner::BuilderTy &Builder) {
1917   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1918   ArrayRef<int> Mask = Shuf.getShuffleMask();
1919   Value *X;
1920   uint64_t IndexC;
1921 
1922   // Match a shuffle that is a splat to a non-zero element.
1923   if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X),
1924                                        m_ConstantInt(IndexC)))) ||
1925       !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0)
1926     return nullptr;
1927 
1928   // Insert into element 0 of an undef vector.
1929   UndefValue *UndefVec = UndefValue::get(Shuf.getType());
1930   Constant *Zero = Builder.getInt32(0);
1931   Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
1932 
1933   // Splat from element 0. Any mask element that is undefined remains undefined.
1934   // For example:
1935   // shuf (inselt undef, X, 2), undef, <2,2,undef>
1936   //   --> shuf (inselt undef, X, 0), undef, <0,0,undef>
1937   unsigned NumMaskElts =
1938       cast<FixedVectorType>(Shuf.getType())->getNumElements();
1939   SmallVector<int, 16> NewMask(NumMaskElts, 0);
1940   for (unsigned i = 0; i != NumMaskElts; ++i)
1941     if (Mask[i] == UndefMaskElem)
1942       NewMask[i] = Mask[i];
1943 
1944   return new ShuffleVectorInst(NewIns, UndefVec, NewMask);
1945 }
1946 
1947 /// Try to fold shuffles that are the equivalent of a vector select.
1948 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1949                                       InstCombiner::BuilderTy &Builder,
1950                                       const DataLayout &DL) {
1951   if (!Shuf.isSelect())
1952     return nullptr;
1953 
1954   // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
1955   // Commuting undef to operand 0 conflicts with another canonicalization.
1956   unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
1957   if (!match(Shuf.getOperand(1), m_Undef()) &&
1958       Shuf.getMaskValue(0) >= (int)NumElts) {
1959     // TODO: Can we assert that both operands of a shuffle-select are not undef
1960     // (otherwise, it would have been folded by instsimplify?
1961     Shuf.commute();
1962     return &Shuf;
1963   }
1964 
1965   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1966     return I;
1967 
1968   BinaryOperator *B0, *B1;
1969   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1970       !match(Shuf.getOperand(1), m_BinOp(B1)))
1971     return nullptr;
1972 
1973   Value *X, *Y;
1974   Constant *C0, *C1;
1975   bool ConstantsAreOp1;
1976   if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1977       match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1978     ConstantsAreOp1 = true;
1979   else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1980            match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1981     ConstantsAreOp1 = false;
1982   else
1983     return nullptr;
1984 
1985   // We need matching binops to fold the lanes together.
1986   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1987   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1988   bool DropNSW = false;
1989   if (ConstantsAreOp1 && Opc0 != Opc1) {
1990     // TODO: We drop "nsw" if shift is converted into multiply because it may
1991     // not be correct when the shift amount is BitWidth - 1. We could examine
1992     // each vector element to determine if it is safe to keep that flag.
1993     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1994       DropNSW = true;
1995     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1996       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1997       Opc0 = AltB0.Opcode;
1998       C0 = cast<Constant>(AltB0.Op1);
1999     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
2000       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
2001       Opc1 = AltB1.Opcode;
2002       C1 = cast<Constant>(AltB1.Op1);
2003     }
2004   }
2005 
2006   if (Opc0 != Opc1)
2007     return nullptr;
2008 
2009   // The opcodes must be the same. Use a new name to make that clear.
2010   BinaryOperator::BinaryOps BOpc = Opc0;
2011 
2012   // Select the constant elements needed for the single binop.
2013   ArrayRef<int> Mask = Shuf.getShuffleMask();
2014   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
2015 
2016   // We are moving a binop after a shuffle. When a shuffle has an undefined
2017   // mask element, the result is undefined, but it is not poison or undefined
2018   // behavior. That is not necessarily true for div/rem/shift.
2019   bool MightCreatePoisonOrUB =
2020       is_contained(Mask, UndefMaskElem) &&
2021       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
2022   if (MightCreatePoisonOrUB)
2023     NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC,
2024                                                        ConstantsAreOp1);
2025 
2026   Value *V;
2027   if (X == Y) {
2028     // Remove a binop and the shuffle by rearranging the constant:
2029     // shuffle (op V, C0), (op V, C1), M --> op V, C'
2030     // shuffle (op C0, V), (op C1, V), M --> op C', V
2031     V = X;
2032   } else {
2033     // If there are 2 different variable operands, we must create a new shuffle
2034     // (select) first, so check uses to ensure that we don't end up with more
2035     // instructions than we started with.
2036     if (!B0->hasOneUse() && !B1->hasOneUse())
2037       return nullptr;
2038 
2039     // If we use the original shuffle mask and op1 is *variable*, we would be
2040     // putting an undef into operand 1 of div/rem/shift. This is either UB or
2041     // poison. We do not have to guard against UB when *constants* are op1
2042     // because safe constants guarantee that we do not overflow sdiv/srem (and
2043     // there's no danger for other opcodes).
2044     // TODO: To allow this case, create a new shuffle mask with no undefs.
2045     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
2046       return nullptr;
2047 
2048     // Note: In general, we do not create new shuffles in InstCombine because we
2049     // do not know if a target can lower an arbitrary shuffle optimally. In this
2050     // case, the shuffle uses the existing mask, so there is no additional risk.
2051 
2052     // Select the variable vectors first, then perform the binop:
2053     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
2054     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
2055     V = Builder.CreateShuffleVector(X, Y, Mask);
2056   }
2057 
2058   Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
2059                                          BinaryOperator::Create(BOpc, NewC, V);
2060 
2061   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
2062   // 1. If we changed an opcode, poison conditions might have changed.
2063   // 2. If the shuffle had undef mask elements, the new binop might have undefs
2064   //    where the original code did not. But if we already made a safe constant,
2065   //    then there's no danger.
2066   NewBO->copyIRFlags(B0);
2067   NewBO->andIRFlags(B1);
2068   if (DropNSW)
2069     NewBO->setHasNoSignedWrap(false);
2070   if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
2071     NewBO->dropPoisonGeneratingFlags();
2072   return NewBO;
2073 }
2074 
2075 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
2076 /// Example (little endian):
2077 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8>
2078 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf,
2079                                      bool IsBigEndian) {
2080   // This must be a bitcasted shuffle of 1 vector integer operand.
2081   Type *DestType = Shuf.getType();
2082   Value *X;
2083   if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) ||
2084       !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy())
2085     return nullptr;
2086 
2087   // The source type must have the same number of elements as the shuffle,
2088   // and the source element type must be larger than the shuffle element type.
2089   Type *SrcType = X->getType();
2090   if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
2091       cast<FixedVectorType>(SrcType)->getNumElements() !=
2092           cast<FixedVectorType>(DestType)->getNumElements() ||
2093       SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0)
2094     return nullptr;
2095 
2096   assert(Shuf.changesLength() && !Shuf.increasesLength() &&
2097          "Expected a shuffle that decreases length");
2098 
2099   // Last, check that the mask chooses the correct low bits for each narrow
2100   // element in the result.
2101   uint64_t TruncRatio =
2102       SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits();
2103   ArrayRef<int> Mask = Shuf.getShuffleMask();
2104   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
2105     if (Mask[i] == UndefMaskElem)
2106       continue;
2107     uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
2108     assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits");
2109     if (Mask[i] != (int)LSBIndex)
2110       return nullptr;
2111   }
2112 
2113   return new TruncInst(X, DestType);
2114 }
2115 
2116 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
2117 /// narrowing (concatenating with undef and extracting back to the original
2118 /// length). This allows replacing the wide select with a narrow select.
2119 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
2120                                        InstCombiner::BuilderTy &Builder) {
2121   // This must be a narrowing identity shuffle. It extracts the 1st N elements
2122   // of the 1st vector operand of a shuffle.
2123   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
2124     return nullptr;
2125 
2126   // The vector being shuffled must be a vector select that we can eliminate.
2127   // TODO: The one-use requirement could be eased if X and/or Y are constants.
2128   Value *Cond, *X, *Y;
2129   if (!match(Shuf.getOperand(0),
2130              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
2131     return nullptr;
2132 
2133   // We need a narrow condition value. It must be extended with undef elements
2134   // and have the same number of elements as this shuffle.
2135   unsigned NarrowNumElts =
2136       cast<FixedVectorType>(Shuf.getType())->getNumElements();
2137   Value *NarrowCond;
2138   if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) ||
2139       cast<FixedVectorType>(NarrowCond->getType())->getNumElements() !=
2140           NarrowNumElts ||
2141       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
2142     return nullptr;
2143 
2144   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
2145   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
2146   Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
2147   Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask());
2148   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
2149 }
2150 
2151 /// Try to fold an extract subvector operation.
2152 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
2153   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2154   if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef()))
2155     return nullptr;
2156 
2157   // Check if we are extracting all bits of an inserted scalar:
2158   // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type
2159   Value *X;
2160   if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) &&
2161       X->getType()->getPrimitiveSizeInBits() ==
2162           Shuf.getType()->getPrimitiveSizeInBits())
2163     return new BitCastInst(X, Shuf.getType());
2164 
2165   // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
2166   Value *Y;
2167   ArrayRef<int> Mask;
2168   if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask))))
2169     return nullptr;
2170 
2171   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
2172   // then combining may result in worse codegen.
2173   if (!Op0->hasOneUse())
2174     return nullptr;
2175 
2176   // We are extracting a subvector from a shuffle. Remove excess elements from
2177   // the 1st shuffle mask to eliminate the extract.
2178   //
2179   // This transform is conservatively limited to identity extracts because we do
2180   // not allow arbitrary shuffle mask creation as a target-independent transform
2181   // (because we can't guarantee that will lower efficiently).
2182   //
2183   // If the extracting shuffle has an undef mask element, it transfers to the
2184   // new shuffle mask. Otherwise, copy the original mask element. Example:
2185   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
2186   //   shuf X, Y, <C0, undef, C2, undef>
2187   unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
2188   SmallVector<int, 16> NewMask(NumElts);
2189   assert(NumElts < Mask.size() &&
2190          "Identity with extract must have less elements than its inputs");
2191 
2192   for (unsigned i = 0; i != NumElts; ++i) {
2193     int ExtractMaskElt = Shuf.getMaskValue(i);
2194     int MaskElt = Mask[i];
2195     NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt;
2196   }
2197   return new ShuffleVectorInst(X, Y, NewMask);
2198 }
2199 
2200 /// Try to replace a shuffle with an insertelement or try to replace a shuffle
2201 /// operand with the operand of an insertelement.
2202 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
2203                                           InstCombinerImpl &IC) {
2204   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
2205   SmallVector<int, 16> Mask;
2206   Shuf.getShuffleMask(Mask);
2207 
2208   // The shuffle must not change vector sizes.
2209   // TODO: This restriction could be removed if the insert has only one use
2210   //       (because the transform would require a new length-changing shuffle).
2211   int NumElts = Mask.size();
2212   if (NumElts != (int)(cast<FixedVectorType>(V0->getType())->getNumElements()))
2213     return nullptr;
2214 
2215   // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
2216   // not be able to handle it there if the insertelement has >1 use.
2217   // If the shuffle has an insertelement operand but does not choose the
2218   // inserted scalar element from that value, then we can replace that shuffle
2219   // operand with the source vector of the insertelement.
2220   Value *X;
2221   uint64_t IdxC;
2222   if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2223     // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
2224     if (!is_contained(Mask, (int)IdxC))
2225       return IC.replaceOperand(Shuf, 0, X);
2226   }
2227   if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2228     // Offset the index constant by the vector width because we are checking for
2229     // accesses to the 2nd vector input of the shuffle.
2230     IdxC += NumElts;
2231     // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
2232     if (!is_contained(Mask, (int)IdxC))
2233       return IC.replaceOperand(Shuf, 1, X);
2234   }
2235 
2236   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
2237   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
2238     // We need an insertelement with a constant index.
2239     if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar),
2240                                m_ConstantInt(IndexC))))
2241       return false;
2242 
2243     // Test the shuffle mask to see if it splices the inserted scalar into the
2244     // operand 1 vector of the shuffle.
2245     int NewInsIndex = -1;
2246     for (int i = 0; i != NumElts; ++i) {
2247       // Ignore undef mask elements.
2248       if (Mask[i] == -1)
2249         continue;
2250 
2251       // The shuffle takes elements of operand 1 without lane changes.
2252       if (Mask[i] == NumElts + i)
2253         continue;
2254 
2255       // The shuffle must choose the inserted scalar exactly once.
2256       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
2257         return false;
2258 
2259       // The shuffle is placing the inserted scalar into element i.
2260       NewInsIndex = i;
2261     }
2262 
2263     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
2264 
2265     // Index is updated to the potentially translated insertion lane.
2266     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
2267     return true;
2268   };
2269 
2270   // If the shuffle is unnecessary, insert the scalar operand directly into
2271   // operand 1 of the shuffle. Example:
2272   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
2273   Value *Scalar;
2274   ConstantInt *IndexC;
2275   if (isShufflingScalarIntoOp1(Scalar, IndexC))
2276     return InsertElementInst::Create(V1, Scalar, IndexC);
2277 
2278   // Try again after commuting shuffle. Example:
2279   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
2280   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
2281   std::swap(V0, V1);
2282   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
2283   if (isShufflingScalarIntoOp1(Scalar, IndexC))
2284     return InsertElementInst::Create(V1, Scalar, IndexC);
2285 
2286   return nullptr;
2287 }
2288 
2289 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
2290   // Match the operands as identity with padding (also known as concatenation
2291   // with undef) shuffles of the same source type. The backend is expected to
2292   // recreate these concatenations from a shuffle of narrow operands.
2293   auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
2294   auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
2295   if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
2296       !Shuffle1 || !Shuffle1->isIdentityWithPadding())
2297     return nullptr;
2298 
2299   // We limit this transform to power-of-2 types because we expect that the
2300   // backend can convert the simplified IR patterns to identical nodes as the
2301   // original IR.
2302   // TODO: If we can verify the same behavior for arbitrary types, the
2303   //       power-of-2 checks can be removed.
2304   Value *X = Shuffle0->getOperand(0);
2305   Value *Y = Shuffle1->getOperand(0);
2306   if (X->getType() != Y->getType() ||
2307       !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) ||
2308       !isPowerOf2_32(
2309           cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) ||
2310       !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) ||
2311       match(X, m_Undef()) || match(Y, m_Undef()))
2312     return nullptr;
2313   assert(match(Shuffle0->getOperand(1), m_Undef()) &&
2314          match(Shuffle1->getOperand(1), m_Undef()) &&
2315          "Unexpected operand for identity shuffle");
2316 
2317   // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
2318   // operands directly by adjusting the shuffle mask to account for the narrower
2319   // types:
2320   // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
2321   int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements();
2322   int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements();
2323   assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
2324 
2325   ArrayRef<int> Mask = Shuf.getShuffleMask();
2326   SmallVector<int, 16> NewMask(Mask.size(), -1);
2327   for (int i = 0, e = Mask.size(); i != e; ++i) {
2328     if (Mask[i] == -1)
2329       continue;
2330 
2331     // If this shuffle is choosing an undef element from 1 of the sources, that
2332     // element is undef.
2333     if (Mask[i] < WideElts) {
2334       if (Shuffle0->getMaskValue(Mask[i]) == -1)
2335         continue;
2336     } else {
2337       if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
2338         continue;
2339     }
2340 
2341     // If this shuffle is choosing from the 1st narrow op, the mask element is
2342     // the same. If this shuffle is choosing from the 2nd narrow op, the mask
2343     // element is offset down to adjust for the narrow vector widths.
2344     if (Mask[i] < WideElts) {
2345       assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
2346       NewMask[i] = Mask[i];
2347     } else {
2348       assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
2349       NewMask[i] = Mask[i] - (WideElts - NarrowElts);
2350     }
2351   }
2352   return new ShuffleVectorInst(X, Y, NewMask);
2353 }
2354 
2355 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
2356   Value *LHS = SVI.getOperand(0);
2357   Value *RHS = SVI.getOperand(1);
2358   SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI);
2359   if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(),
2360                                           SVI.getType(), ShufQuery))
2361     return replaceInstUsesWith(SVI, V);
2362 
2363   // Bail out for scalable vectors
2364   if (isa<ScalableVectorType>(LHS->getType()))
2365     return nullptr;
2366 
2367   unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements();
2368   unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements();
2369 
2370   // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask)
2371   //
2372   // if X and Y are of the same (vector) type, and the element size is not
2373   // changed by the bitcasts, we can distribute the bitcasts through the
2374   // shuffle, hopefully reducing the number of instructions. We make sure that
2375   // at least one bitcast only has one use, so we don't *increase* the number of
2376   // instructions here.
2377   Value *X, *Y;
2378   if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) &&
2379       X->getType()->isVectorTy() && X->getType() == Y->getType() &&
2380       X->getType()->getScalarSizeInBits() ==
2381           SVI.getType()->getScalarSizeInBits() &&
2382       (LHS->hasOneUse() || RHS->hasOneUse())) {
2383     Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(),
2384                                            SVI.getName() + ".uncasted");
2385     return new BitCastInst(V, SVI.getType());
2386   }
2387 
2388   ArrayRef<int> Mask = SVI.getShuffleMask();
2389   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
2390 
2391   // Peek through a bitcasted shuffle operand by scaling the mask. If the
2392   // simulated shuffle can simplify, then this shuffle is unnecessary:
2393   // shuf (bitcast X), undef, Mask --> bitcast X'
2394   // TODO: This could be extended to allow length-changing shuffles.
2395   //       The transform might also be obsoleted if we allowed canonicalization
2396   //       of bitcasted shuffles.
2397   if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) &&
2398       X->getType()->isVectorTy() && VWidth == LHSWidth) {
2399     // Try to create a scaled mask constant.
2400     auto *XType = cast<FixedVectorType>(X->getType());
2401     unsigned XNumElts = XType->getNumElements();
2402     SmallVector<int, 16> ScaledMask;
2403     if (XNumElts >= VWidth) {
2404       assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast");
2405       narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask);
2406     } else {
2407       assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast");
2408       if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask))
2409         ScaledMask.clear();
2410     }
2411     if (!ScaledMask.empty()) {
2412       // If the shuffled source vector simplifies, cast that value to this
2413       // shuffle's type.
2414       if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType),
2415                                               ScaledMask, XType, ShufQuery))
2416         return BitCastInst::Create(Instruction::BitCast, V, SVI.getType());
2417     }
2418   }
2419 
2420   // shuffle x, x, mask --> shuffle x, undef, mask'
2421   if (LHS == RHS) {
2422     assert(!match(RHS, m_Undef()) &&
2423            "Shuffle with 2 undef ops not simplified?");
2424     // Remap any references to RHS to use LHS.
2425     SmallVector<int, 16> Elts;
2426     for (unsigned i = 0; i != VWidth; ++i) {
2427       // Propagate undef elements or force mask to LHS.
2428       if (Mask[i] < 0)
2429         Elts.push_back(UndefMaskElem);
2430       else
2431         Elts.push_back(Mask[i] % LHSWidth);
2432     }
2433     return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts);
2434   }
2435 
2436   // shuffle undef, x, mask --> shuffle x, undef, mask'
2437   if (match(LHS, m_Undef())) {
2438     SVI.commute();
2439     return &SVI;
2440   }
2441 
2442   if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
2443     return I;
2444 
2445   if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
2446     return I;
2447 
2448   if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian()))
2449     return I;
2450 
2451   if (Instruction *I = narrowVectorSelect(SVI, Builder))
2452     return I;
2453 
2454   APInt UndefElts(VWidth, 0);
2455   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2456   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
2457     if (V != &SVI)
2458       return replaceInstUsesWith(SVI, V);
2459     return &SVI;
2460   }
2461 
2462   if (Instruction *I = foldIdentityExtractShuffle(SVI))
2463     return I;
2464 
2465   // These transforms have the potential to lose undef knowledge, so they are
2466   // intentionally placed after SimplifyDemandedVectorElts().
2467   if (Instruction *I = foldShuffleWithInsert(SVI, *this))
2468     return I;
2469   if (Instruction *I = foldIdentityPaddedShuffles(SVI))
2470     return I;
2471 
2472   if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) {
2473     Value *V = evaluateInDifferentElementOrder(LHS, Mask);
2474     return replaceInstUsesWith(SVI, V);
2475   }
2476 
2477   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
2478   // a non-vector type. We can instead bitcast the original vector followed by
2479   // an extract of the desired element:
2480   //
2481   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
2482   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
2483   //   %1 = bitcast <4 x i8> %sroa to i32
2484   // Becomes:
2485   //   %bc = bitcast <16 x i8> %in to <4 x i32>
2486   //   %ext = extractelement <4 x i32> %bc, i32 0
2487   //
2488   // If the shuffle is extracting a contiguous range of values from the input
2489   // vector then each use which is a bitcast of the extracted size can be
2490   // replaced. This will work if the vector types are compatible, and the begin
2491   // index is aligned to a value in the casted vector type. If the begin index
2492   // isn't aligned then we can shuffle the original vector (keeping the same
2493   // vector type) before extracting.
2494   //
2495   // This code will bail out if the target type is fundamentally incompatible
2496   // with vectors of the source type.
2497   //
2498   // Example of <16 x i8>, target type i32:
2499   // Index range [4,8):         v-----------v Will work.
2500   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2501   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
2502   //     <4 x i32>: |           |           |           |           |
2503   //                +-----------+-----------+-----------+-----------+
2504   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
2505   // Target type i40:           ^--------------^ Won't work, bail.
2506   bool MadeChange = false;
2507   if (isShuffleExtractingFromLHS(SVI, Mask)) {
2508     Value *V = LHS;
2509     unsigned MaskElems = Mask.size();
2510     auto *SrcTy = cast<FixedVectorType>(V->getType());
2511     unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize();
2512     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
2513     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
2514     unsigned SrcNumElems = SrcTy->getNumElements();
2515     SmallVector<BitCastInst *, 8> BCs;
2516     DenseMap<Type *, Value *> NewBCs;
2517     for (User *U : SVI.users())
2518       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
2519         if (!BC->use_empty())
2520           // Only visit bitcasts that weren't previously handled.
2521           BCs.push_back(BC);
2522     for (BitCastInst *BC : BCs) {
2523       unsigned BegIdx = Mask.front();
2524       Type *TgtTy = BC->getDestTy();
2525       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
2526       if (!TgtElemBitWidth)
2527         continue;
2528       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2529       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2530       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2531       if (!VecBitWidthsEqual)
2532         continue;
2533       if (!VectorType::isValidElementType(TgtTy))
2534         continue;
2535       auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems);
2536       if (!BegIsAligned) {
2537         // Shuffle the input so [0,NumElements) contains the output, and
2538         // [NumElems,SrcNumElems) is undef.
2539         SmallVector<int, 16> ShuffleMask(SrcNumElems, -1);
2540         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2541           ShuffleMask[I] = Idx;
2542         V = Builder.CreateShuffleVector(V, ShuffleMask,
2543                                         SVI.getName() + ".extract");
2544         BegIdx = 0;
2545       }
2546       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2547       assert(SrcElemsPerTgtElem);
2548       BegIdx /= SrcElemsPerTgtElem;
2549       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
2550       auto *NewBC =
2551           BCAlreadyExists
2552               ? NewBCs[CastSrcTy]
2553               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2554       if (!BCAlreadyExists)
2555         NewBCs[CastSrcTy] = NewBC;
2556       auto *Ext = Builder.CreateExtractElement(
2557           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
2558       // The shufflevector isn't being replaced: the bitcast that used it
2559       // is. InstCombine will visit the newly-created instructions.
2560       replaceInstUsesWith(*BC, Ext);
2561       MadeChange = true;
2562     }
2563   }
2564 
2565   // If the LHS is a shufflevector itself, see if we can combine it with this
2566   // one without producing an unusual shuffle.
2567   // Cases that might be simplified:
2568   // 1.
2569   // x1=shuffle(v1,v2,mask1)
2570   //  x=shuffle(x1,undef,mask)
2571   //        ==>
2572   //  x=shuffle(v1,undef,newMask)
2573   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2574   // 2.
2575   // x1=shuffle(v1,undef,mask1)
2576   //  x=shuffle(x1,x2,mask)
2577   // where v1.size() == mask1.size()
2578   //        ==>
2579   //  x=shuffle(v1,x2,newMask)
2580   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2581   // 3.
2582   // x2=shuffle(v2,undef,mask2)
2583   //  x=shuffle(x1,x2,mask)
2584   // where v2.size() == mask2.size()
2585   //        ==>
2586   //  x=shuffle(x1,v2,newMask)
2587   // newMask[i] = (mask[i] < x1.size())
2588   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2589   // 4.
2590   // x1=shuffle(v1,undef,mask1)
2591   // x2=shuffle(v2,undef,mask2)
2592   //  x=shuffle(x1,x2,mask)
2593   // where v1.size() == v2.size()
2594   //        ==>
2595   //  x=shuffle(v1,v2,newMask)
2596   // newMask[i] = (mask[i] < x1.size())
2597   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2598   //
2599   // Here we are really conservative:
2600   // we are absolutely afraid of producing a shuffle mask not in the input
2601   // program, because the code gen may not be smart enough to turn a merged
2602   // shuffle into two specific shuffles: it may produce worse code.  As such,
2603   // we only merge two shuffles if the result is either a splat or one of the
2604   // input shuffle masks.  In this case, merging the shuffles just removes
2605   // one instruction, which we know is safe.  This is good for things like
2606   // turning: (splat(splat)) -> splat, or
2607   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2608   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
2609   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
2610   if (LHSShuffle)
2611     if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef()))
2612       LHSShuffle = nullptr;
2613   if (RHSShuffle)
2614     if (!match(RHSShuffle->getOperand(1), m_Undef()))
2615       RHSShuffle = nullptr;
2616   if (!LHSShuffle && !RHSShuffle)
2617     return MadeChange ? &SVI : nullptr;
2618 
2619   Value* LHSOp0 = nullptr;
2620   Value* LHSOp1 = nullptr;
2621   Value* RHSOp0 = nullptr;
2622   unsigned LHSOp0Width = 0;
2623   unsigned RHSOp0Width = 0;
2624   if (LHSShuffle) {
2625     LHSOp0 = LHSShuffle->getOperand(0);
2626     LHSOp1 = LHSShuffle->getOperand(1);
2627     LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements();
2628   }
2629   if (RHSShuffle) {
2630     RHSOp0 = RHSShuffle->getOperand(0);
2631     RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements();
2632   }
2633   Value* newLHS = LHS;
2634   Value* newRHS = RHS;
2635   if (LHSShuffle) {
2636     // case 1
2637     if (match(RHS, m_Undef())) {
2638       newLHS = LHSOp0;
2639       newRHS = LHSOp1;
2640     }
2641     // case 2 or 4
2642     else if (LHSOp0Width == LHSWidth) {
2643       newLHS = LHSOp0;
2644     }
2645   }
2646   // case 3 or 4
2647   if (RHSShuffle && RHSOp0Width == LHSWidth) {
2648     newRHS = RHSOp0;
2649   }
2650   // case 4
2651   if (LHSOp0 == RHSOp0) {
2652     newLHS = LHSOp0;
2653     newRHS = nullptr;
2654   }
2655 
2656   if (newLHS == LHS && newRHS == RHS)
2657     return MadeChange ? &SVI : nullptr;
2658 
2659   ArrayRef<int> LHSMask;
2660   ArrayRef<int> RHSMask;
2661   if (newLHS != LHS)
2662     LHSMask = LHSShuffle->getShuffleMask();
2663   if (RHSShuffle && newRHS != RHS)
2664     RHSMask = RHSShuffle->getShuffleMask();
2665 
2666   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
2667   SmallVector<int, 16> newMask;
2668   bool isSplat = true;
2669   int SplatElt = -1;
2670   // Create a new mask for the new ShuffleVectorInst so that the new
2671   // ShuffleVectorInst is equivalent to the original one.
2672   for (unsigned i = 0; i < VWidth; ++i) {
2673     int eltMask;
2674     if (Mask[i] < 0) {
2675       // This element is an undef value.
2676       eltMask = -1;
2677     } else if (Mask[i] < (int)LHSWidth) {
2678       // This element is from left hand side vector operand.
2679       //
2680       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2681       // new mask value for the element.
2682       if (newLHS != LHS) {
2683         eltMask = LHSMask[Mask[i]];
2684         // If the value selected is an undef value, explicitly specify it
2685         // with a -1 mask value.
2686         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
2687           eltMask = -1;
2688       } else
2689         eltMask = Mask[i];
2690     } else {
2691       // This element is from right hand side vector operand
2692       //
2693       // If the value selected is an undef value, explicitly specify it
2694       // with a -1 mask value. (case 1)
2695       if (match(RHS, m_Undef()))
2696         eltMask = -1;
2697       // If RHS is going to be replaced (case 3 or 4), calculate the
2698       // new mask value for the element.
2699       else if (newRHS != RHS) {
2700         eltMask = RHSMask[Mask[i]-LHSWidth];
2701         // If the value selected is an undef value, explicitly specify it
2702         // with a -1 mask value.
2703         if (eltMask >= (int)RHSOp0Width) {
2704           assert(match(RHSShuffle->getOperand(1), m_Undef()) &&
2705                  "should have been check above");
2706           eltMask = -1;
2707         }
2708       } else
2709         eltMask = Mask[i]-LHSWidth;
2710 
2711       // If LHS's width is changed, shift the mask value accordingly.
2712       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2713       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2714       // If newRHS == newLHS, we want to remap any references from newRHS to
2715       // newLHS so that we can properly identify splats that may occur due to
2716       // obfuscation across the two vectors.
2717       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
2718         eltMask += newLHSWidth;
2719     }
2720 
2721     // Check if this could still be a splat.
2722     if (eltMask >= 0) {
2723       if (SplatElt >= 0 && SplatElt != eltMask)
2724         isSplat = false;
2725       SplatElt = eltMask;
2726     }
2727 
2728     newMask.push_back(eltMask);
2729   }
2730 
2731   // If the result mask is equal to one of the original shuffle masks,
2732   // or is a splat, do the replacement.
2733   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
2734     if (!newRHS)
2735       newRHS = UndefValue::get(newLHS->getType());
2736     return new ShuffleVectorInst(newLHS, newRHS, newMask);
2737   }
2738 
2739   return MadeChange ? &SVI : nullptr;
2740 }
2741