1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements instcombine for ExtractElement, InsertElement and
11 // ShuffleVector.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstCombineInternal.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/VectorUtils.h"
19 #include "llvm/IR/PatternMatch.h"
20 using namespace llvm;
21 using namespace PatternMatch;
22 
23 #define DEBUG_TYPE "instcombine"
24 
25 /// Return true if the value is cheaper to scalarize than it is to leave as a
26 /// vector operation. isConstant indicates whether we're extracting one known
27 /// element. If false we're extracting a variable index.
28 static bool cheapToScalarize(Value *V, bool isConstant) {
29   if (Constant *C = dyn_cast<Constant>(V)) {
30     if (isConstant) return true;
31 
32     // If all elts are the same, we can extract it and use any of the values.
33     if (Constant *Op0 = C->getAggregateElement(0U)) {
34       for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e;
35            ++i)
36         if (C->getAggregateElement(i) != Op0)
37           return false;
38       return true;
39     }
40   }
41   Instruction *I = dyn_cast<Instruction>(V);
42   if (!I) return false;
43 
44   // Insert element gets simplified to the inserted element or is deleted if
45   // this is constant idx extract element and its a constant idx insertelt.
46   if (I->getOpcode() == Instruction::InsertElement && isConstant &&
47       isa<ConstantInt>(I->getOperand(2)))
48     return true;
49   if (I->getOpcode() == Instruction::Load && I->hasOneUse())
50     return true;
51   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
52     if (BO->hasOneUse() &&
53         (cheapToScalarize(BO->getOperand(0), isConstant) ||
54          cheapToScalarize(BO->getOperand(1), isConstant)))
55       return true;
56   if (CmpInst *CI = dyn_cast<CmpInst>(I))
57     if (CI->hasOneUse() &&
58         (cheapToScalarize(CI->getOperand(0), isConstant) ||
59          cheapToScalarize(CI->getOperand(1), isConstant)))
60       return true;
61 
62   return false;
63 }
64 
65 // If we have a PHI node with a vector type that is only used to feed
66 // itself and be an operand of extractelement at a constant location,
67 // try to replace the PHI of the vector type with a PHI of a scalar type.
68 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
69   SmallVector<Instruction *, 2> Extracts;
70   // The users we want the PHI to have are:
71   // 1) The EI ExtractElement (we already know this)
72   // 2) Possibly more ExtractElements with the same index.
73   // 3) Another operand, which will feed back into the PHI.
74   Instruction *PHIUser = nullptr;
75   for (auto U : PN->users()) {
76     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
77       if (EI.getIndexOperand() == EU->getIndexOperand())
78         Extracts.push_back(EU);
79       else
80         return nullptr;
81     } else if (!PHIUser) {
82       PHIUser = cast<Instruction>(U);
83     } else {
84       return nullptr;
85     }
86   }
87 
88   if (!PHIUser)
89     return nullptr;
90 
91   // Verify that this PHI user has one use, which is the PHI itself,
92   // and that it is a binary operation which is cheap to scalarize.
93   // otherwise return NULL.
94   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
95       !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
96     return nullptr;
97 
98   // Create a scalar PHI node that will replace the vector PHI node
99   // just before the current PHI node.
100   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
101       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
102   // Scalarize each PHI operand.
103   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
104     Value *PHIInVal = PN->getIncomingValue(i);
105     BasicBlock *inBB = PN->getIncomingBlock(i);
106     Value *Elt = EI.getIndexOperand();
107     // If the operand is the PHI induction variable:
108     if (PHIInVal == PHIUser) {
109       // Scalarize the binary operation. Its first operand is the
110       // scalar PHI, and the second operand is extracted from the other
111       // vector operand.
112       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
113       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
114       Value *Op = InsertNewInstWith(
115           ExtractElementInst::Create(B0->getOperand(opId), Elt,
116                                      B0->getOperand(opId)->getName() + ".Elt"),
117           *B0);
118       Value *newPHIUser = InsertNewInstWith(
119           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
120                                                 scalarPHI, Op, B0), *B0);
121       scalarPHI->addIncoming(newPHIUser, inBB);
122     } else {
123       // Scalarize PHI input:
124       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
125       // Insert the new instruction into the predecessor basic block.
126       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
127       BasicBlock::iterator InsertPos;
128       if (pos && !isa<PHINode>(pos)) {
129         InsertPos = ++pos->getIterator();
130       } else {
131         InsertPos = inBB->getFirstInsertionPt();
132       }
133 
134       InsertNewInstWith(newEI, *InsertPos);
135 
136       scalarPHI->addIncoming(newEI, inBB);
137     }
138   }
139 
140   for (auto E : Extracts)
141     replaceInstUsesWith(*E, scalarPHI);
142 
143   return &EI;
144 }
145 
146 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
147   if (Value *V = SimplifyExtractElementInst(
148           EI.getVectorOperand(), EI.getIndexOperand(), DL, &TLI, &DT, &AC))
149     return replaceInstUsesWith(EI, V);
150 
151   // If vector val is constant with all elements the same, replace EI with
152   // that element.  We handle a known element # below.
153   if (Constant *C = dyn_cast<Constant>(EI.getOperand(0)))
154     if (cheapToScalarize(C, false))
155       return replaceInstUsesWith(EI, C->getAggregateElement(0U));
156 
157   // If extracting a specified index from the vector, see if we can recursively
158   // find a previously computed scalar that was inserted into the vector.
159   if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
160     unsigned IndexVal = IdxC->getZExtValue();
161     unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
162 
163     // InstSimplify handles cases where the index is invalid.
164     assert(IndexVal < VectorWidth);
165 
166     // This instruction only demands the single element from the input vector.
167     // If the input vector has a single use, simplify it based on this use
168     // property.
169     if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
170       APInt UndefElts(VectorWidth, 0);
171       APInt DemandedMask(VectorWidth, 0);
172       DemandedMask.setBit(IndexVal);
173       if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), DemandedMask,
174                                                 UndefElts)) {
175         EI.setOperand(0, V);
176         return &EI;
177       }
178     }
179 
180     // If this extractelement is directly using a bitcast from a vector of
181     // the same number of elements, see if we can find the source element from
182     // it.  In this case, we will end up needing to bitcast the scalars.
183     if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
184       if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
185         if (VT->getNumElements() == VectorWidth)
186           if (Value *Elt = findScalarElement(BCI->getOperand(0), IndexVal))
187             return new BitCastInst(Elt, EI.getType());
188     }
189 
190     // If there's a vector PHI feeding a scalar use through this extractelement
191     // instruction, try to scalarize the PHI.
192     if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) {
193       Instruction *scalarPHI = scalarizePHI(EI, PN);
194       if (scalarPHI)
195         return scalarPHI;
196     }
197   }
198 
199   if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
200     // Push extractelement into predecessor operation if legal and
201     // profitable to do so.
202     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
203       if (I->hasOneUse() &&
204           cheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
205         Value *newEI0 =
206           Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
207                                         EI.getName()+".lhs");
208         Value *newEI1 =
209           Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
210                                         EI.getName()+".rhs");
211         return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(),
212                                                      newEI0, newEI1, BO);
213       }
214     } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
215       // Extracting the inserted element?
216       if (IE->getOperand(2) == EI.getOperand(1))
217         return replaceInstUsesWith(EI, IE->getOperand(1));
218       // If the inserted and extracted elements are constants, they must not
219       // be the same value, extract from the pre-inserted value instead.
220       if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
221         Worklist.AddValue(EI.getOperand(0));
222         EI.setOperand(0, IE->getOperand(0));
223         return &EI;
224       }
225     } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
226       // If this is extracting an element from a shufflevector, figure out where
227       // it came from and extract from the appropriate input element instead.
228       if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
229         int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
230         Value *Src;
231         unsigned LHSWidth =
232           SVI->getOperand(0)->getType()->getVectorNumElements();
233 
234         if (SrcIdx < 0)
235           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
236         if (SrcIdx < (int)LHSWidth)
237           Src = SVI->getOperand(0);
238         else {
239           SrcIdx -= LHSWidth;
240           Src = SVI->getOperand(1);
241         }
242         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
243         return ExtractElementInst::Create(Src,
244                                           ConstantInt::get(Int32Ty,
245                                                            SrcIdx, false));
246       }
247     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
248       // Canonicalize extractelement(cast) -> cast(extractelement).
249       // Bitcasts can change the number of vector elements, and they cost
250       // nothing.
251       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
252         Value *EE = Builder->CreateExtractElement(CI->getOperand(0),
253                                                   EI.getIndexOperand());
254         Worklist.AddValue(EE);
255         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
256       }
257     } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
258       if (SI->hasOneUse()) {
259         // TODO: For a select on vectors, it might be useful to do this if it
260         // has multiple extractelement uses. For vector select, that seems to
261         // fight the vectorizer.
262 
263         // If we are extracting an element from a vector select or a select on
264         // vectors, create a select on the scalars extracted from the vector
265         // arguments.
266         Value *TrueVal = SI->getTrueValue();
267         Value *FalseVal = SI->getFalseValue();
268 
269         Value *Cond = SI->getCondition();
270         if (Cond->getType()->isVectorTy()) {
271           Cond = Builder->CreateExtractElement(Cond,
272                                                EI.getIndexOperand(),
273                                                Cond->getName() + ".elt");
274         }
275 
276         Value *V1Elem
277           = Builder->CreateExtractElement(TrueVal,
278                                           EI.getIndexOperand(),
279                                           TrueVal->getName() + ".elt");
280 
281         Value *V2Elem
282           = Builder->CreateExtractElement(FalseVal,
283                                           EI.getIndexOperand(),
284                                           FalseVal->getName() + ".elt");
285         return SelectInst::Create(Cond,
286                                   V1Elem,
287                                   V2Elem,
288                                   SI->getName() + ".elt");
289       }
290     }
291   }
292   return nullptr;
293 }
294 
295 /// If V is a shuffle of values that ONLY returns elements from either LHS or
296 /// RHS, return the shuffle mask and true. Otherwise, return false.
297 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
298                                          SmallVectorImpl<Constant*> &Mask) {
299   assert(LHS->getType() == RHS->getType() &&
300          "Invalid CollectSingleShuffleElements");
301   unsigned NumElts = V->getType()->getVectorNumElements();
302 
303   if (isa<UndefValue>(V)) {
304     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
305     return true;
306   }
307 
308   if (V == LHS) {
309     for (unsigned i = 0; i != NumElts; ++i)
310       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
311     return true;
312   }
313 
314   if (V == RHS) {
315     for (unsigned i = 0; i != NumElts; ++i)
316       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
317                                       i+NumElts));
318     return true;
319   }
320 
321   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
322     // If this is an insert of an extract from some other vector, include it.
323     Value *VecOp    = IEI->getOperand(0);
324     Value *ScalarOp = IEI->getOperand(1);
325     Value *IdxOp    = IEI->getOperand(2);
326 
327     if (!isa<ConstantInt>(IdxOp))
328       return false;
329     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
330 
331     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
332       // We can handle this if the vector we are inserting into is
333       // transitively ok.
334       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
335         // If so, update the mask to reflect the inserted undef.
336         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
337         return true;
338       }
339     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
340       if (isa<ConstantInt>(EI->getOperand(1))) {
341         unsigned ExtractedIdx =
342         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
343         unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
344 
345         // This must be extracting from either LHS or RHS.
346         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
347           // We can handle this if the vector we are inserting into is
348           // transitively ok.
349           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
350             // If so, update the mask to reflect the inserted value.
351             if (EI->getOperand(0) == LHS) {
352               Mask[InsertedIdx % NumElts] =
353               ConstantInt::get(Type::getInt32Ty(V->getContext()),
354                                ExtractedIdx);
355             } else {
356               assert(EI->getOperand(0) == RHS);
357               Mask[InsertedIdx % NumElts] =
358               ConstantInt::get(Type::getInt32Ty(V->getContext()),
359                                ExtractedIdx + NumLHSElts);
360             }
361             return true;
362           }
363         }
364       }
365     }
366   }
367 
368   return false;
369 }
370 
371 /// If we have insertion into a vector that is wider than the vector that we
372 /// are extracting from, try to widen the source vector to allow a single
373 /// shufflevector to replace one or more insert/extract pairs.
374 static void replaceExtractElements(InsertElementInst *InsElt,
375                                    ExtractElementInst *ExtElt,
376                                    InstCombiner &IC) {
377   VectorType *InsVecType = InsElt->getType();
378   VectorType *ExtVecType = ExtElt->getVectorOperandType();
379   unsigned NumInsElts = InsVecType->getVectorNumElements();
380   unsigned NumExtElts = ExtVecType->getVectorNumElements();
381 
382   // The inserted-to vector must be wider than the extracted-from vector.
383   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
384       NumExtElts >= NumInsElts)
385     return;
386 
387   // Create a shuffle mask to widen the extended-from vector using undefined
388   // values. The mask selects all of the values of the original vector followed
389   // by as many undefined values as needed to create a vector of the same length
390   // as the inserted-to vector.
391   SmallVector<Constant *, 16> ExtendMask;
392   IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
393   for (unsigned i = 0; i < NumExtElts; ++i)
394     ExtendMask.push_back(ConstantInt::get(IntType, i));
395   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
396     ExtendMask.push_back(UndefValue::get(IntType));
397 
398   Value *ExtVecOp = ExtElt->getVectorOperand();
399   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
400   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
401                                    ? ExtVecOpInst->getParent()
402                                    : ExtElt->getParent();
403 
404   // TODO: This restriction matches the basic block check below when creating
405   // new extractelement instructions. If that limitation is removed, this one
406   // could also be removed. But for now, we just bail out to ensure that we
407   // will replace the extractelement instruction that is feeding our
408   // insertelement instruction. This allows the insertelement to then be
409   // replaced by a shufflevector. If the insertelement is not replaced, we can
410   // induce infinite looping because there's an optimization for extractelement
411   // that will delete our widening shuffle. This would trigger another attempt
412   // here to create that shuffle, and we spin forever.
413   if (InsertionBlock != InsElt->getParent())
414     return;
415 
416   // TODO: This restriction matches the check in visitInsertElementInst() and
417   // prevents an infinite loop caused by not turning the extract/insert pair
418   // into a shuffle. We really should not need either check, but we're lacking
419   // folds for shufflevectors because we're afraid to generate shuffle masks
420   // that the backend can't handle.
421   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
422     return;
423 
424   auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
425                                         ConstantVector::get(ExtendMask));
426 
427   // Insert the new shuffle after the vector operand of the extract is defined
428   // (as long as it's not a PHI) or at the start of the basic block of the
429   // extract, so any subsequent extracts in the same basic block can use it.
430   // TODO: Insert before the earliest ExtractElementInst that is replaced.
431   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
432     WideVec->insertAfter(ExtVecOpInst);
433   else
434     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
435 
436   // Replace extracts from the original narrow vector with extracts from the new
437   // wide vector.
438   for (User *U : ExtVecOp->users()) {
439     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
440     if (!OldExt || OldExt->getParent() != WideVec->getParent())
441       continue;
442     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
443     NewExt->insertAfter(WideVec);
444     IC.replaceInstUsesWith(*OldExt, NewExt);
445   }
446 }
447 
448 /// We are building a shuffle to create V, which is a sequence of insertelement,
449 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
450 /// not rely on the second vector source. Return a std::pair containing the
451 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
452 /// parameter as required.
453 ///
454 /// Note: we intentionally don't try to fold earlier shuffles since they have
455 /// often been chosen carefully to be efficiently implementable on the target.
456 typedef std::pair<Value *, Value *> ShuffleOps;
457 
458 static ShuffleOps collectShuffleElements(Value *V,
459                                          SmallVectorImpl<Constant *> &Mask,
460                                          Value *PermittedRHS,
461                                          InstCombiner &IC) {
462   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
463   unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
464 
465   if (isa<UndefValue>(V)) {
466     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
467     return std::make_pair(
468         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
469   }
470 
471   if (isa<ConstantAggregateZero>(V)) {
472     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
473     return std::make_pair(V, nullptr);
474   }
475 
476   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
477     // If this is an insert of an extract from some other vector, include it.
478     Value *VecOp    = IEI->getOperand(0);
479     Value *ScalarOp = IEI->getOperand(1);
480     Value *IdxOp    = IEI->getOperand(2);
481 
482     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
483       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
484         unsigned ExtractedIdx =
485           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
486         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
487 
488         // Either the extracted from or inserted into vector must be RHSVec,
489         // otherwise we'd end up with a shuffle of three inputs.
490         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
491           Value *RHS = EI->getOperand(0);
492           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
493           assert(LR.second == nullptr || LR.second == RHS);
494 
495           if (LR.first->getType() != RHS->getType()) {
496             // Although we are giving up for now, see if we can create extracts
497             // that match the inserts for another round of combining.
498             replaceExtractElements(IEI, EI, IC);
499 
500             // We tried our best, but we can't find anything compatible with RHS
501             // further up the chain. Return a trivial shuffle.
502             for (unsigned i = 0; i < NumElts; ++i)
503               Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
504             return std::make_pair(V, nullptr);
505           }
506 
507           unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
508           Mask[InsertedIdx % NumElts] =
509             ConstantInt::get(Type::getInt32Ty(V->getContext()),
510                              NumLHSElts+ExtractedIdx);
511           return std::make_pair(LR.first, RHS);
512         }
513 
514         if (VecOp == PermittedRHS) {
515           // We've gone as far as we can: anything on the other side of the
516           // extractelement will already have been converted into a shuffle.
517           unsigned NumLHSElts =
518               EI->getOperand(0)->getType()->getVectorNumElements();
519           for (unsigned i = 0; i != NumElts; ++i)
520             Mask.push_back(ConstantInt::get(
521                 Type::getInt32Ty(V->getContext()),
522                 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
523           return std::make_pair(EI->getOperand(0), PermittedRHS);
524         }
525 
526         // If this insertelement is a chain that comes from exactly these two
527         // vectors, return the vector and the effective shuffle.
528         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
529             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
530                                          Mask))
531           return std::make_pair(EI->getOperand(0), PermittedRHS);
532       }
533     }
534   }
535 
536   // Otherwise, we can't do anything fancy. Return an identity vector.
537   for (unsigned i = 0; i != NumElts; ++i)
538     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
539   return std::make_pair(V, nullptr);
540 }
541 
542 /// Try to find redundant insertvalue instructions, like the following ones:
543 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
544 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
545 /// Here the second instruction inserts values at the same indices, as the
546 /// first one, making the first one redundant.
547 /// It should be transformed to:
548 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
549 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
550   bool IsRedundant = false;
551   ArrayRef<unsigned int> FirstIndices = I.getIndices();
552 
553   // If there is a chain of insertvalue instructions (each of them except the
554   // last one has only one use and it's another insertvalue insn from this
555   // chain), check if any of the 'children' uses the same indices as the first
556   // instruction. In this case, the first one is redundant.
557   Value *V = &I;
558   unsigned Depth = 0;
559   while (V->hasOneUse() && Depth < 10) {
560     User *U = V->user_back();
561     auto UserInsInst = dyn_cast<InsertValueInst>(U);
562     if (!UserInsInst || U->getOperand(0) != V)
563       break;
564     if (UserInsInst->getIndices() == FirstIndices) {
565       IsRedundant = true;
566       break;
567     }
568     V = UserInsInst;
569     Depth++;
570   }
571 
572   if (IsRedundant)
573     return replaceInstUsesWith(I, I.getOperand(0));
574   return nullptr;
575 }
576 
577 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
578   int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
579   int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
580 
581   // A vector select does not change the size of the operands.
582   if (MaskSize != VecSize)
583     return false;
584 
585   // Each mask element must be undefined or choose a vector element from one of
586   // the source operands without crossing vector lanes.
587   for (int i = 0; i != MaskSize; ++i) {
588     int Elt = Shuf.getMaskValue(i);
589     if (Elt != -1 && Elt != i && Elt != i + VecSize)
590       return false;
591   }
592 
593   return true;
594 }
595 
596 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
597 /// --> shufflevector X, CVec', Mask'
598 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
599   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
600   // Bail out if the parent has more than one use. In that case, we'd be
601   // replacing the insertelt with a shuffle, and that's not a clear win.
602   if (!Inst || !Inst->hasOneUse())
603     return nullptr;
604   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
605     // The shuffle must have a constant vector operand. The insertelt must have
606     // a constant scalar being inserted at a constant position in the vector.
607     Constant *ShufConstVec, *InsEltScalar;
608     uint64_t InsEltIndex;
609     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
610         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
611         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
612       return nullptr;
613 
614     // Adding an element to an arbitrary shuffle could be expensive, but a
615     // shuffle that selects elements from vectors without crossing lanes is
616     // assumed cheap.
617     // If we're just adding a constant into that shuffle, it will still be
618     // cheap.
619     if (!isShuffleEquivalentToSelect(*Shuf))
620       return nullptr;
621 
622     // From the above 'select' check, we know that the mask has the same number
623     // of elements as the vector input operands. We also know that each constant
624     // input element is used in its lane and can not be used more than once by
625     // the shuffle. Therefore, replace the constant in the shuffle's constant
626     // vector with the insertelt constant. Replace the constant in the shuffle's
627     // mask vector with the insertelt index plus the length of the vector
628     // (because the constant vector operand of a shuffle is always the 2nd
629     // operand).
630     Constant *Mask = Shuf->getMask();
631     unsigned NumElts = Mask->getType()->getVectorNumElements();
632     SmallVector<Constant *, 16> NewShufElts(NumElts);
633     SmallVector<Constant *, 16> NewMaskElts(NumElts);
634     for (unsigned I = 0; I != NumElts; ++I) {
635       if (I == InsEltIndex) {
636         NewShufElts[I] = InsEltScalar;
637         Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
638         NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
639       } else {
640         // Copy over the existing values.
641         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
642         NewMaskElts[I] = Mask->getAggregateElement(I);
643       }
644     }
645 
646     // Create new operands for a shuffle that includes the constant of the
647     // original insertelt. The old shuffle will be dead now.
648     return new ShuffleVectorInst(Shuf->getOperand(0),
649                                  ConstantVector::get(NewShufElts),
650                                  ConstantVector::get(NewMaskElts));
651   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
652     // Transform sequences of insertelements ops with constant data/indexes into
653     // a single shuffle op.
654     unsigned NumElts = InsElt.getType()->getNumElements();
655 
656     uint64_t InsertIdx[2];
657     Constant *Val[2];
658     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
659         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
660         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
661         !match(IEI->getOperand(1), m_Constant(Val[1])))
662       return nullptr;
663     SmallVector<Constant *, 16> Values(NumElts);
664     SmallVector<Constant *, 16> Mask(NumElts);
665     auto ValI = std::begin(Val);
666     // Generate new constant vector and mask.
667     // We have 2 values/masks from the insertelements instructions. Insert them
668     // into new value/mask vectors.
669     for (uint64_t I : InsertIdx) {
670       if (!Values[I]) {
671         assert(!Mask[I]);
672         Values[I] = *ValI;
673         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
674                                    NumElts + I);
675       }
676       ++ValI;
677     }
678     // Remaining values are filled with 'undef' values.
679     for (unsigned I = 0; I < NumElts; ++I) {
680       if (!Values[I]) {
681         assert(!Mask[I]);
682         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
683         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
684       }
685     }
686     // Create new operands for a shuffle that includes the constant of the
687     // original insertelt.
688     return new ShuffleVectorInst(IEI->getOperand(0),
689                                  ConstantVector::get(Values),
690                                  ConstantVector::get(Mask));
691   }
692   return nullptr;
693 }
694 
695 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
696   Value *VecOp    = IE.getOperand(0);
697   Value *ScalarOp = IE.getOperand(1);
698   Value *IdxOp    = IE.getOperand(2);
699 
700   // Inserting an undef or into an undefined place, remove this.
701   if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
702     replaceInstUsesWith(IE, VecOp);
703 
704   // If the inserted element was extracted from some other vector, and if the
705   // indexes are constant, try to turn this into a shufflevector operation.
706   if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
707     if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
708       unsigned NumInsertVectorElts = IE.getType()->getNumElements();
709       unsigned NumExtractVectorElts =
710           EI->getOperand(0)->getType()->getVectorNumElements();
711       unsigned ExtractedIdx =
712         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
713       unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
714 
715       if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract.
716         return replaceInstUsesWith(IE, VecOp);
717 
718       if (InsertedIdx >= NumInsertVectorElts)  // Out of range insert.
719         return replaceInstUsesWith(IE, UndefValue::get(IE.getType()));
720 
721       // If we are extracting a value from a vector, then inserting it right
722       // back into the same place, just use the input vector.
723       if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
724         return replaceInstUsesWith(IE, VecOp);
725 
726       // If this insertelement isn't used by some other insertelement, turn it
727       // (and any insertelements it points to), into one big shuffle.
728       if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.user_back())) {
729         SmallVector<Constant*, 16> Mask;
730         ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
731 
732         // The proposed shuffle may be trivial, in which case we shouldn't
733         // perform the combine.
734         if (LR.first != &IE && LR.second != &IE) {
735           // We now have a shuffle of LHS, RHS, Mask.
736           if (LR.second == nullptr)
737             LR.second = UndefValue::get(LR.first->getType());
738           return new ShuffleVectorInst(LR.first, LR.second,
739                                        ConstantVector::get(Mask));
740         }
741       }
742     }
743   }
744 
745   unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
746   APInt UndefElts(VWidth, 0);
747   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
748   if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
749     if (V != &IE)
750       return replaceInstUsesWith(IE, V);
751     return &IE;
752   }
753 
754   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
755     return Shuf;
756 
757   return nullptr;
758 }
759 
760 /// Return true if we can evaluate the specified expression tree if the vector
761 /// elements were shuffled in a different order.
762 static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask,
763                                 unsigned Depth = 5) {
764   // We can always reorder the elements of a constant.
765   if (isa<Constant>(V))
766     return true;
767 
768   // We won't reorder vector arguments. No IPO here.
769   Instruction *I = dyn_cast<Instruction>(V);
770   if (!I) return false;
771 
772   // Two users may expect different orders of the elements. Don't try it.
773   if (!I->hasOneUse())
774     return false;
775 
776   if (Depth == 0) return false;
777 
778   switch (I->getOpcode()) {
779     case Instruction::Add:
780     case Instruction::FAdd:
781     case Instruction::Sub:
782     case Instruction::FSub:
783     case Instruction::Mul:
784     case Instruction::FMul:
785     case Instruction::UDiv:
786     case Instruction::SDiv:
787     case Instruction::FDiv:
788     case Instruction::URem:
789     case Instruction::SRem:
790     case Instruction::FRem:
791     case Instruction::Shl:
792     case Instruction::LShr:
793     case Instruction::AShr:
794     case Instruction::And:
795     case Instruction::Or:
796     case Instruction::Xor:
797     case Instruction::ICmp:
798     case Instruction::FCmp:
799     case Instruction::Trunc:
800     case Instruction::ZExt:
801     case Instruction::SExt:
802     case Instruction::FPToUI:
803     case Instruction::FPToSI:
804     case Instruction::UIToFP:
805     case Instruction::SIToFP:
806     case Instruction::FPTrunc:
807     case Instruction::FPExt:
808     case Instruction::GetElementPtr: {
809       for (Value *Operand : I->operands()) {
810         if (!CanEvaluateShuffled(Operand, Mask, Depth-1))
811           return false;
812       }
813       return true;
814     }
815     case Instruction::InsertElement: {
816       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
817       if (!CI) return false;
818       int ElementNumber = CI->getLimitedValue();
819 
820       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
821       // can't put an element into multiple indices.
822       bool SeenOnce = false;
823       for (int i = 0, e = Mask.size(); i != e; ++i) {
824         if (Mask[i] == ElementNumber) {
825           if (SeenOnce)
826             return false;
827           SeenOnce = true;
828         }
829       }
830       return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1);
831     }
832   }
833   return false;
834 }
835 
836 /// Rebuild a new instruction just like 'I' but with the new operands given.
837 /// In the event of type mismatch, the type of the operands is correct.
838 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
839   // We don't want to use the IRBuilder here because we want the replacement
840   // instructions to appear next to 'I', not the builder's insertion point.
841   switch (I->getOpcode()) {
842     case Instruction::Add:
843     case Instruction::FAdd:
844     case Instruction::Sub:
845     case Instruction::FSub:
846     case Instruction::Mul:
847     case Instruction::FMul:
848     case Instruction::UDiv:
849     case Instruction::SDiv:
850     case Instruction::FDiv:
851     case Instruction::URem:
852     case Instruction::SRem:
853     case Instruction::FRem:
854     case Instruction::Shl:
855     case Instruction::LShr:
856     case Instruction::AShr:
857     case Instruction::And:
858     case Instruction::Or:
859     case Instruction::Xor: {
860       BinaryOperator *BO = cast<BinaryOperator>(I);
861       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
862       BinaryOperator *New =
863           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
864                                  NewOps[0], NewOps[1], "", BO);
865       if (isa<OverflowingBinaryOperator>(BO)) {
866         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
867         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
868       }
869       if (isa<PossiblyExactOperator>(BO)) {
870         New->setIsExact(BO->isExact());
871       }
872       if (isa<FPMathOperator>(BO))
873         New->copyFastMathFlags(I);
874       return New;
875     }
876     case Instruction::ICmp:
877       assert(NewOps.size() == 2 && "icmp with #ops != 2");
878       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
879                           NewOps[0], NewOps[1]);
880     case Instruction::FCmp:
881       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
882       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
883                           NewOps[0], NewOps[1]);
884     case Instruction::Trunc:
885     case Instruction::ZExt:
886     case Instruction::SExt:
887     case Instruction::FPToUI:
888     case Instruction::FPToSI:
889     case Instruction::UIToFP:
890     case Instruction::SIToFP:
891     case Instruction::FPTrunc:
892     case Instruction::FPExt: {
893       // It's possible that the mask has a different number of elements from
894       // the original cast. We recompute the destination type to match the mask.
895       Type *DestTy =
896           VectorType::get(I->getType()->getScalarType(),
897                           NewOps[0]->getType()->getVectorNumElements());
898       assert(NewOps.size() == 1 && "cast with #ops != 1");
899       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
900                               "", I);
901     }
902     case Instruction::GetElementPtr: {
903       Value *Ptr = NewOps[0];
904       ArrayRef<Value*> Idx = NewOps.slice(1);
905       GetElementPtrInst *GEP = GetElementPtrInst::Create(
906           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
907       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
908       return GEP;
909     }
910   }
911   llvm_unreachable("failed to rebuild vector instructions");
912 }
913 
914 Value *
915 InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
916   // Mask.size() does not need to be equal to the number of vector elements.
917 
918   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
919   if (isa<UndefValue>(V)) {
920     return UndefValue::get(VectorType::get(V->getType()->getScalarType(),
921                                            Mask.size()));
922   }
923   if (isa<ConstantAggregateZero>(V)) {
924     return ConstantAggregateZero::get(
925                VectorType::get(V->getType()->getScalarType(),
926                                Mask.size()));
927   }
928   if (Constant *C = dyn_cast<Constant>(V)) {
929     SmallVector<Constant *, 16> MaskValues;
930     for (int i = 0, e = Mask.size(); i != e; ++i) {
931       if (Mask[i] == -1)
932         MaskValues.push_back(UndefValue::get(Builder->getInt32Ty()));
933       else
934         MaskValues.push_back(Builder->getInt32(Mask[i]));
935     }
936     return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
937                                           ConstantVector::get(MaskValues));
938   }
939 
940   Instruction *I = cast<Instruction>(V);
941   switch (I->getOpcode()) {
942     case Instruction::Add:
943     case Instruction::FAdd:
944     case Instruction::Sub:
945     case Instruction::FSub:
946     case Instruction::Mul:
947     case Instruction::FMul:
948     case Instruction::UDiv:
949     case Instruction::SDiv:
950     case Instruction::FDiv:
951     case Instruction::URem:
952     case Instruction::SRem:
953     case Instruction::FRem:
954     case Instruction::Shl:
955     case Instruction::LShr:
956     case Instruction::AShr:
957     case Instruction::And:
958     case Instruction::Or:
959     case Instruction::Xor:
960     case Instruction::ICmp:
961     case Instruction::FCmp:
962     case Instruction::Trunc:
963     case Instruction::ZExt:
964     case Instruction::SExt:
965     case Instruction::FPToUI:
966     case Instruction::FPToSI:
967     case Instruction::UIToFP:
968     case Instruction::SIToFP:
969     case Instruction::FPTrunc:
970     case Instruction::FPExt:
971     case Instruction::Select:
972     case Instruction::GetElementPtr: {
973       SmallVector<Value*, 8> NewOps;
974       bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
975       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
976         Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask);
977         NewOps.push_back(V);
978         NeedsRebuild |= (V != I->getOperand(i));
979       }
980       if (NeedsRebuild) {
981         return buildNew(I, NewOps);
982       }
983       return I;
984     }
985     case Instruction::InsertElement: {
986       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
987 
988       // The insertelement was inserting at Element. Figure out which element
989       // that becomes after shuffling. The answer is guaranteed to be unique
990       // by CanEvaluateShuffled.
991       bool Found = false;
992       int Index = 0;
993       for (int e = Mask.size(); Index != e; ++Index) {
994         if (Mask[Index] == Element) {
995           Found = true;
996           break;
997         }
998       }
999 
1000       // If element is not in Mask, no need to handle the operand 1 (element to
1001       // be inserted). Just evaluate values in operand 0 according to Mask.
1002       if (!Found)
1003         return EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
1004 
1005       Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
1006       return InsertElementInst::Create(V, I->getOperand(1),
1007                                        Builder->getInt32(Index), "", I);
1008     }
1009   }
1010   llvm_unreachable("failed to reorder elements of vector instruction!");
1011 }
1012 
1013 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
1014                                   bool &isLHSID, bool &isRHSID) {
1015   isLHSID = isRHSID = true;
1016 
1017   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1018     if (Mask[i] < 0) continue;  // Ignore undef values.
1019     // Is this an identity shuffle of the LHS value?
1020     isLHSID &= (Mask[i] == (int)i);
1021 
1022     // Is this an identity shuffle of the RHS value?
1023     isRHSID &= (Mask[i]-e == i);
1024   }
1025 }
1026 
1027 // Returns true if the shuffle is extracting a contiguous range of values from
1028 // LHS, for example:
1029 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1030 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1031 //   Shuffles to:  |EE|FF|GG|HH|
1032 //                 +--+--+--+--+
1033 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1034                                        SmallVector<int, 16> &Mask) {
1035   unsigned LHSElems =
1036       cast<VectorType>(SVI.getOperand(0)->getType())->getNumElements();
1037   unsigned MaskElems = Mask.size();
1038   unsigned BegIdx = Mask.front();
1039   unsigned EndIdx = Mask.back();
1040   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1041     return false;
1042   for (unsigned I = 0; I != MaskElems; ++I)
1043     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1044       return false;
1045   return true;
1046 }
1047 
1048 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
1049   Value *LHS = SVI.getOperand(0);
1050   Value *RHS = SVI.getOperand(1);
1051   SmallVector<int, 16> Mask = SVI.getShuffleMask();
1052   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1053 
1054   bool MadeChange = false;
1055 
1056   // Undefined shuffle mask -> undefined value.
1057   if (isa<UndefValue>(SVI.getOperand(2)))
1058     return replaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
1059 
1060   unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
1061 
1062   APInt UndefElts(VWidth, 0);
1063   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1064   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
1065     if (V != &SVI)
1066       return replaceInstUsesWith(SVI, V);
1067     LHS = SVI.getOperand(0);
1068     RHS = SVI.getOperand(1);
1069     MadeChange = true;
1070   }
1071 
1072   unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements();
1073 
1074   // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
1075   // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
1076   if (LHS == RHS || isa<UndefValue>(LHS)) {
1077     if (isa<UndefValue>(LHS) && LHS == RHS) {
1078       // shuffle(undef,undef,mask) -> undef.
1079       Value *Result = (VWidth == LHSWidth)
1080                       ? LHS : UndefValue::get(SVI.getType());
1081       return replaceInstUsesWith(SVI, Result);
1082     }
1083 
1084     // Remap any references to RHS to use LHS.
1085     SmallVector<Constant*, 16> Elts;
1086     for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
1087       if (Mask[i] < 0) {
1088         Elts.push_back(UndefValue::get(Int32Ty));
1089         continue;
1090       }
1091 
1092       if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
1093           (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
1094         Mask[i] = -1;     // Turn into undef.
1095         Elts.push_back(UndefValue::get(Int32Ty));
1096       } else {
1097         Mask[i] = Mask[i] % e;  // Force to LHS.
1098         Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
1099       }
1100     }
1101     SVI.setOperand(0, SVI.getOperand(1));
1102     SVI.setOperand(1, UndefValue::get(RHS->getType()));
1103     SVI.setOperand(2, ConstantVector::get(Elts));
1104     LHS = SVI.getOperand(0);
1105     RHS = SVI.getOperand(1);
1106     MadeChange = true;
1107   }
1108 
1109   if (VWidth == LHSWidth) {
1110     // Analyze the shuffle, are the LHS or RHS and identity shuffles?
1111     bool isLHSID, isRHSID;
1112     recognizeIdentityMask(Mask, isLHSID, isRHSID);
1113 
1114     // Eliminate identity shuffles.
1115     if (isLHSID) return replaceInstUsesWith(SVI, LHS);
1116     if (isRHSID) return replaceInstUsesWith(SVI, RHS);
1117   }
1118 
1119   if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) {
1120     Value *V = EvaluateInDifferentElementOrder(LHS, Mask);
1121     return replaceInstUsesWith(SVI, V);
1122   }
1123 
1124   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
1125   // a non-vector type. We can instead bitcast the original vector followed by
1126   // an extract of the desired element:
1127   //
1128   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
1129   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
1130   //   %1 = bitcast <4 x i8> %sroa to i32
1131   // Becomes:
1132   //   %bc = bitcast <16 x i8> %in to <4 x i32>
1133   //   %ext = extractelement <4 x i32> %bc, i32 0
1134   //
1135   // If the shuffle is extracting a contiguous range of values from the input
1136   // vector then each use which is a bitcast of the extracted size can be
1137   // replaced. This will work if the vector types are compatible, and the begin
1138   // index is aligned to a value in the casted vector type. If the begin index
1139   // isn't aligned then we can shuffle the original vector (keeping the same
1140   // vector type) before extracting.
1141   //
1142   // This code will bail out if the target type is fundamentally incompatible
1143   // with vectors of the source type.
1144   //
1145   // Example of <16 x i8>, target type i32:
1146   // Index range [4,8):         v-----------v Will work.
1147   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1148   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
1149   //     <4 x i32>: |           |           |           |           |
1150   //                +-----------+-----------+-----------+-----------+
1151   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
1152   // Target type i40:           ^--------------^ Won't work, bail.
1153   if (isShuffleExtractingFromLHS(SVI, Mask)) {
1154     Value *V = LHS;
1155     unsigned MaskElems = Mask.size();
1156     unsigned BegIdx = Mask.front();
1157     VectorType *SrcTy = cast<VectorType>(V->getType());
1158     unsigned VecBitWidth = SrcTy->getBitWidth();
1159     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
1160     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
1161     unsigned SrcNumElems = SrcTy->getNumElements();
1162     SmallVector<BitCastInst *, 8> BCs;
1163     DenseMap<Type *, Value *> NewBCs;
1164     for (User *U : SVI.users())
1165       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
1166         if (!BC->use_empty())
1167           // Only visit bitcasts that weren't previously handled.
1168           BCs.push_back(BC);
1169     for (BitCastInst *BC : BCs) {
1170       Type *TgtTy = BC->getDestTy();
1171       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
1172       if (!TgtElemBitWidth)
1173         continue;
1174       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
1175       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
1176       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
1177       if (!VecBitWidthsEqual)
1178         continue;
1179       if (!VectorType::isValidElementType(TgtTy))
1180         continue;
1181       VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
1182       if (!BegIsAligned) {
1183         // Shuffle the input so [0,NumElements) contains the output, and
1184         // [NumElems,SrcNumElems) is undef.
1185         SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
1186                                                 UndefValue::get(Int32Ty));
1187         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
1188           ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
1189         V = Builder->CreateShuffleVector(V, UndefValue::get(V->getType()),
1190                                          ConstantVector::get(ShuffleMask),
1191                                          SVI.getName() + ".extract");
1192         BegIdx = 0;
1193       }
1194       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
1195       assert(SrcElemsPerTgtElem);
1196       BegIdx /= SrcElemsPerTgtElem;
1197       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
1198       auto *NewBC =
1199           BCAlreadyExists
1200               ? NewBCs[CastSrcTy]
1201               : Builder->CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
1202       if (!BCAlreadyExists)
1203         NewBCs[CastSrcTy] = NewBC;
1204       auto *Ext = Builder->CreateExtractElement(
1205           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
1206       // The shufflevector isn't being replaced: the bitcast that used it
1207       // is. InstCombine will visit the newly-created instructions.
1208       replaceInstUsesWith(*BC, Ext);
1209       MadeChange = true;
1210     }
1211   }
1212 
1213   // If the LHS is a shufflevector itself, see if we can combine it with this
1214   // one without producing an unusual shuffle.
1215   // Cases that might be simplified:
1216   // 1.
1217   // x1=shuffle(v1,v2,mask1)
1218   //  x=shuffle(x1,undef,mask)
1219   //        ==>
1220   //  x=shuffle(v1,undef,newMask)
1221   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
1222   // 2.
1223   // x1=shuffle(v1,undef,mask1)
1224   //  x=shuffle(x1,x2,mask)
1225   // where v1.size() == mask1.size()
1226   //        ==>
1227   //  x=shuffle(v1,x2,newMask)
1228   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
1229   // 3.
1230   // x2=shuffle(v2,undef,mask2)
1231   //  x=shuffle(x1,x2,mask)
1232   // where v2.size() == mask2.size()
1233   //        ==>
1234   //  x=shuffle(x1,v2,newMask)
1235   // newMask[i] = (mask[i] < x1.size())
1236   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
1237   // 4.
1238   // x1=shuffle(v1,undef,mask1)
1239   // x2=shuffle(v2,undef,mask2)
1240   //  x=shuffle(x1,x2,mask)
1241   // where v1.size() == v2.size()
1242   //        ==>
1243   //  x=shuffle(v1,v2,newMask)
1244   // newMask[i] = (mask[i] < x1.size())
1245   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
1246   //
1247   // Here we are really conservative:
1248   // we are absolutely afraid of producing a shuffle mask not in the input
1249   // program, because the code gen may not be smart enough to turn a merged
1250   // shuffle into two specific shuffles: it may produce worse code.  As such,
1251   // we only merge two shuffles if the result is either a splat or one of the
1252   // input shuffle masks.  In this case, merging the shuffles just removes
1253   // one instruction, which we know is safe.  This is good for things like
1254   // turning: (splat(splat)) -> splat, or
1255   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
1256   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
1257   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
1258   if (LHSShuffle)
1259     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
1260       LHSShuffle = nullptr;
1261   if (RHSShuffle)
1262     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
1263       RHSShuffle = nullptr;
1264   if (!LHSShuffle && !RHSShuffle)
1265     return MadeChange ? &SVI : nullptr;
1266 
1267   Value* LHSOp0 = nullptr;
1268   Value* LHSOp1 = nullptr;
1269   Value* RHSOp0 = nullptr;
1270   unsigned LHSOp0Width = 0;
1271   unsigned RHSOp0Width = 0;
1272   if (LHSShuffle) {
1273     LHSOp0 = LHSShuffle->getOperand(0);
1274     LHSOp1 = LHSShuffle->getOperand(1);
1275     LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements();
1276   }
1277   if (RHSShuffle) {
1278     RHSOp0 = RHSShuffle->getOperand(0);
1279     RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements();
1280   }
1281   Value* newLHS = LHS;
1282   Value* newRHS = RHS;
1283   if (LHSShuffle) {
1284     // case 1
1285     if (isa<UndefValue>(RHS)) {
1286       newLHS = LHSOp0;
1287       newRHS = LHSOp1;
1288     }
1289     // case 2 or 4
1290     else if (LHSOp0Width == LHSWidth) {
1291       newLHS = LHSOp0;
1292     }
1293   }
1294   // case 3 or 4
1295   if (RHSShuffle && RHSOp0Width == LHSWidth) {
1296     newRHS = RHSOp0;
1297   }
1298   // case 4
1299   if (LHSOp0 == RHSOp0) {
1300     newLHS = LHSOp0;
1301     newRHS = nullptr;
1302   }
1303 
1304   if (newLHS == LHS && newRHS == RHS)
1305     return MadeChange ? &SVI : nullptr;
1306 
1307   SmallVector<int, 16> LHSMask;
1308   SmallVector<int, 16> RHSMask;
1309   if (newLHS != LHS)
1310     LHSMask = LHSShuffle->getShuffleMask();
1311   if (RHSShuffle && newRHS != RHS)
1312     RHSMask = RHSShuffle->getShuffleMask();
1313 
1314   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
1315   SmallVector<int, 16> newMask;
1316   bool isSplat = true;
1317   int SplatElt = -1;
1318   // Create a new mask for the new ShuffleVectorInst so that the new
1319   // ShuffleVectorInst is equivalent to the original one.
1320   for (unsigned i = 0; i < VWidth; ++i) {
1321     int eltMask;
1322     if (Mask[i] < 0) {
1323       // This element is an undef value.
1324       eltMask = -1;
1325     } else if (Mask[i] < (int)LHSWidth) {
1326       // This element is from left hand side vector operand.
1327       //
1328       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
1329       // new mask value for the element.
1330       if (newLHS != LHS) {
1331         eltMask = LHSMask[Mask[i]];
1332         // If the value selected is an undef value, explicitly specify it
1333         // with a -1 mask value.
1334         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
1335           eltMask = -1;
1336       } else
1337         eltMask = Mask[i];
1338     } else {
1339       // This element is from right hand side vector operand
1340       //
1341       // If the value selected is an undef value, explicitly specify it
1342       // with a -1 mask value. (case 1)
1343       if (isa<UndefValue>(RHS))
1344         eltMask = -1;
1345       // If RHS is going to be replaced (case 3 or 4), calculate the
1346       // new mask value for the element.
1347       else if (newRHS != RHS) {
1348         eltMask = RHSMask[Mask[i]-LHSWidth];
1349         // If the value selected is an undef value, explicitly specify it
1350         // with a -1 mask value.
1351         if (eltMask >= (int)RHSOp0Width) {
1352           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
1353                  && "should have been check above");
1354           eltMask = -1;
1355         }
1356       } else
1357         eltMask = Mask[i]-LHSWidth;
1358 
1359       // If LHS's width is changed, shift the mask value accordingly.
1360       // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any
1361       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
1362       // If newRHS == newLHS, we want to remap any references from newRHS to
1363       // newLHS so that we can properly identify splats that may occur due to
1364       // obfuscation across the two vectors.
1365       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
1366         eltMask += newLHSWidth;
1367     }
1368 
1369     // Check if this could still be a splat.
1370     if (eltMask >= 0) {
1371       if (SplatElt >= 0 && SplatElt != eltMask)
1372         isSplat = false;
1373       SplatElt = eltMask;
1374     }
1375 
1376     newMask.push_back(eltMask);
1377   }
1378 
1379   // If the result mask is equal to one of the original shuffle masks,
1380   // or is a splat, do the replacement.
1381   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
1382     SmallVector<Constant*, 16> Elts;
1383     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
1384       if (newMask[i] < 0) {
1385         Elts.push_back(UndefValue::get(Int32Ty));
1386       } else {
1387         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
1388       }
1389     }
1390     if (!newRHS)
1391       newRHS = UndefValue::get(newLHS->getType());
1392     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
1393   }
1394 
1395   // If the result mask is an identity, replace uses of this instruction with
1396   // corresponding argument.
1397   bool isLHSID, isRHSID;
1398   recognizeIdentityMask(newMask, isLHSID, isRHSID);
1399   if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS);
1400   if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS);
1401 
1402   return MadeChange ? &SVI : nullptr;
1403 }
1404