1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/User.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 38 #include <cassert> 39 #include <cstdint> 40 #include <iterator> 41 #include <utility> 42 43 using namespace llvm; 44 using namespace PatternMatch; 45 46 #define DEBUG_TYPE "instcombine" 47 48 /// Return true if the value is cheaper to scalarize than it is to leave as a 49 /// vector operation. IsConstantExtractIndex indicates whether we are extracting 50 /// one known element from a vector constant. 51 /// 52 /// FIXME: It's possible to create more instructions than previously existed. 53 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) { 54 // If we can pick a scalar constant value out of a vector, that is free. 55 if (auto *C = dyn_cast<Constant>(V)) 56 return IsConstantExtractIndex || C->getSplatValue(); 57 58 // An insertelement to the same constant index as our extract will simplify 59 // to the scalar inserted element. An insertelement to a different constant 60 // index is irrelevant to our extract. 61 if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt()))) 62 return IsConstantExtractIndex; 63 64 if (match(V, m_OneUse(m_Load(m_Value())))) 65 return true; 66 67 if (match(V, m_OneUse(m_UnOp()))) 68 return true; 69 70 Value *V0, *V1; 71 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 72 if (cheapToScalarize(V0, IsConstantExtractIndex) || 73 cheapToScalarize(V1, IsConstantExtractIndex)) 74 return true; 75 76 CmpInst::Predicate UnusedPred; 77 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 78 if (cheapToScalarize(V0, IsConstantExtractIndex) || 79 cheapToScalarize(V1, IsConstantExtractIndex)) 80 return true; 81 82 return false; 83 } 84 85 // If we have a PHI node with a vector type that is only used to feed 86 // itself and be an operand of extractelement at a constant location, 87 // try to replace the PHI of the vector type with a PHI of a scalar type. 88 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { 89 SmallVector<Instruction *, 2> Extracts; 90 // The users we want the PHI to have are: 91 // 1) The EI ExtractElement (we already know this) 92 // 2) Possibly more ExtractElements with the same index. 93 // 3) Another operand, which will feed back into the PHI. 94 Instruction *PHIUser = nullptr; 95 for (auto U : PN->users()) { 96 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 97 if (EI.getIndexOperand() == EU->getIndexOperand()) 98 Extracts.push_back(EU); 99 else 100 return nullptr; 101 } else if (!PHIUser) { 102 PHIUser = cast<Instruction>(U); 103 } else { 104 return nullptr; 105 } 106 } 107 108 if (!PHIUser) 109 return nullptr; 110 111 // Verify that this PHI user has one use, which is the PHI itself, 112 // and that it is a binary operation which is cheap to scalarize. 113 // otherwise return nullptr. 114 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 115 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 116 return nullptr; 117 118 // Create a scalar PHI node that will replace the vector PHI node 119 // just before the current PHI node. 120 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 121 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 122 // Scalarize each PHI operand. 123 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 124 Value *PHIInVal = PN->getIncomingValue(i); 125 BasicBlock *inBB = PN->getIncomingBlock(i); 126 Value *Elt = EI.getIndexOperand(); 127 // If the operand is the PHI induction variable: 128 if (PHIInVal == PHIUser) { 129 // Scalarize the binary operation. Its first operand is the 130 // scalar PHI, and the second operand is extracted from the other 131 // vector operand. 132 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 133 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 134 Value *Op = InsertNewInstWith( 135 ExtractElementInst::Create(B0->getOperand(opId), Elt, 136 B0->getOperand(opId)->getName() + ".Elt"), 137 *B0); 138 Value *newPHIUser = InsertNewInstWith( 139 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 140 scalarPHI, Op, B0), *B0); 141 scalarPHI->addIncoming(newPHIUser, inBB); 142 } else { 143 // Scalarize PHI input: 144 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 145 // Insert the new instruction into the predecessor basic block. 146 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 147 BasicBlock::iterator InsertPos; 148 if (pos && !isa<PHINode>(pos)) { 149 InsertPos = ++pos->getIterator(); 150 } else { 151 InsertPos = inBB->getFirstInsertionPt(); 152 } 153 154 InsertNewInstWith(newEI, *InsertPos); 155 156 scalarPHI->addIncoming(newEI, inBB); 157 } 158 } 159 160 for (auto E : Extracts) 161 replaceInstUsesWith(*E, scalarPHI); 162 163 return &EI; 164 } 165 166 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext, 167 InstCombiner::BuilderTy &Builder, 168 bool IsBigEndian) { 169 Value *X; 170 uint64_t ExtIndexC; 171 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 172 !X->getType()->isVectorTy() || 173 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 174 return nullptr; 175 176 // If this extractelement is using a bitcast from a vector of the same number 177 // of elements, see if we can find the source element from the source vector: 178 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 179 auto *SrcTy = cast<VectorType>(X->getType()); 180 Type *DestTy = Ext.getType(); 181 unsigned NumSrcElts = SrcTy->getNumElements(); 182 unsigned NumElts = Ext.getVectorOperandType()->getNumElements(); 183 if (NumSrcElts == NumElts) 184 if (Value *Elt = findScalarElement(X, ExtIndexC)) 185 return new BitCastInst(Elt, DestTy); 186 187 // If the source elements are wider than the destination, try to shift and 188 // truncate a subset of scalar bits of an insert op. 189 if (NumSrcElts < NumElts) { 190 Value *Scalar; 191 uint64_t InsIndexC; 192 if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar), 193 m_ConstantInt(InsIndexC)))) 194 return nullptr; 195 196 // The extract must be from the subset of vector elements that we inserted 197 // into. Example: if we inserted element 1 of a <2 x i64> and we are 198 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 199 // of elements 4-7 of the bitcasted vector. 200 unsigned NarrowingRatio = NumElts / NumSrcElts; 201 if (ExtIndexC / NarrowingRatio != InsIndexC) 202 return nullptr; 203 204 // We are extracting part of the original scalar. How that scalar is 205 // inserted into the vector depends on the endian-ness. Example: 206 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 207 // +--+--+--+--+--+--+--+--+ 208 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 209 // extelt <4 x i16> V', 3: | |S2|S3| 210 // +--+--+--+--+--+--+--+--+ 211 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 212 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 213 // In this example, we must right-shift little-endian. Big-endian is just a 214 // truncate. 215 unsigned Chunk = ExtIndexC % NarrowingRatio; 216 if (IsBigEndian) 217 Chunk = NarrowingRatio - 1 - Chunk; 218 219 // Bail out if this is an FP vector to FP vector sequence. That would take 220 // more instructions than we started with unless there is no shift, and it 221 // may not be handled as well in the backend. 222 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 223 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 224 if (NeedSrcBitcast && NeedDestBitcast) 225 return nullptr; 226 227 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 228 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 229 unsigned ShAmt = Chunk * DestWidth; 230 231 // TODO: This limitation is more strict than necessary. We could sum the 232 // number of new instructions and subtract the number eliminated to know if 233 // we can proceed. 234 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 235 if (NeedSrcBitcast || NeedDestBitcast) 236 return nullptr; 237 238 if (NeedSrcBitcast) { 239 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 240 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 241 } 242 243 if (ShAmt) { 244 // Bail out if we could end with more instructions than we started with. 245 if (!Ext.getVectorOperand()->hasOneUse()) 246 return nullptr; 247 Scalar = Builder.CreateLShr(Scalar, ShAmt); 248 } 249 250 if (NeedDestBitcast) { 251 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 252 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 253 } 254 return new TruncInst(Scalar, DestTy); 255 } 256 257 return nullptr; 258 } 259 260 /// Find elements of V demanded by UserInstr. 261 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 262 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 263 264 // Conservatively assume that all elements are needed. 265 APInt UsedElts(APInt::getAllOnesValue(VWidth)); 266 267 switch (UserInstr->getOpcode()) { 268 case Instruction::ExtractElement: { 269 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 270 assert(EEI->getVectorOperand() == V); 271 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 272 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 273 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 274 } 275 break; 276 } 277 case Instruction::ShuffleVector: { 278 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 279 unsigned MaskNumElts = 280 cast<VectorType>(UserInstr->getType())->getNumElements(); 281 282 UsedElts = APInt(VWidth, 0); 283 for (unsigned i = 0; i < MaskNumElts; i++) { 284 unsigned MaskVal = Shuffle->getMaskValue(i); 285 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 286 continue; 287 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 288 UsedElts.setBit(MaskVal); 289 if (Shuffle->getOperand(1) == V && 290 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 291 UsedElts.setBit(MaskVal - VWidth); 292 } 293 break; 294 } 295 default: 296 break; 297 } 298 return UsedElts; 299 } 300 301 /// Find union of elements of V demanded by all its users. 302 /// If it is known by querying findDemandedEltsBySingleUser that 303 /// no user demands an element of V, then the corresponding bit 304 /// remains unset in the returned value. 305 static APInt findDemandedEltsByAllUsers(Value *V) { 306 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 307 308 APInt UnionUsedElts(VWidth, 0); 309 for (const Use &U : V->uses()) { 310 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 311 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 312 } else { 313 UnionUsedElts = APInt::getAllOnesValue(VWidth); 314 break; 315 } 316 317 if (UnionUsedElts.isAllOnesValue()) 318 break; 319 } 320 321 return UnionUsedElts; 322 } 323 324 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { 325 Value *SrcVec = EI.getVectorOperand(); 326 Value *Index = EI.getIndexOperand(); 327 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 328 SQ.getWithInstruction(&EI))) 329 return replaceInstUsesWith(EI, V); 330 331 // If extracting a specified index from the vector, see if we can recursively 332 // find a previously computed scalar that was inserted into the vector. 333 auto *IndexC = dyn_cast<ConstantInt>(Index); 334 if (IndexC) { 335 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 336 unsigned NumElts = EC.Min; 337 338 // InstSimplify should handle cases where the index is invalid. 339 // For fixed-length vector, it's invalid to extract out-of-range element. 340 if (!EC.Scalable && IndexC->getValue().uge(NumElts)) 341 return nullptr; 342 343 // This instruction only demands the single element from the input vector. 344 // Skip for scalable type, the number of elements is unknown at 345 // compile-time. 346 if (!EC.Scalable && NumElts != 1) { 347 // If the input vector has a single use, simplify it based on this use 348 // property. 349 if (SrcVec->hasOneUse()) { 350 APInt UndefElts(NumElts, 0); 351 APInt DemandedElts(NumElts, 0); 352 DemandedElts.setBit(IndexC->getZExtValue()); 353 if (Value *V = 354 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 355 return replaceOperand(EI, 0, V); 356 } else { 357 // If the input vector has multiple uses, simplify it based on a union 358 // of all elements used. 359 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 360 if (!DemandedElts.isAllOnesValue()) { 361 APInt UndefElts(NumElts, 0); 362 if (Value *V = SimplifyDemandedVectorElts( 363 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 364 true /* AllowMultipleUsers */)) { 365 if (V != SrcVec) { 366 SrcVec->replaceAllUsesWith(V); 367 return &EI; 368 } 369 } 370 } 371 } 372 } 373 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian())) 374 return I; 375 376 // If there's a vector PHI feeding a scalar use through this extractelement 377 // instruction, try to scalarize the PHI. 378 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 379 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 380 return ScalarPHI; 381 } 382 383 // TODO come up with a n-ary matcher that subsumes both unary and 384 // binary matchers. 385 UnaryOperator *UO; 386 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) { 387 // extelt (unop X), Index --> unop (extelt X, Index) 388 Value *X = UO->getOperand(0); 389 Value *E = Builder.CreateExtractElement(X, Index); 390 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 391 } 392 393 BinaryOperator *BO; 394 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) { 395 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 396 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 397 Value *E0 = Builder.CreateExtractElement(X, Index); 398 Value *E1 = Builder.CreateExtractElement(Y, Index); 399 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 400 } 401 402 Value *X, *Y; 403 CmpInst::Predicate Pred; 404 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 405 cheapToScalarize(SrcVec, IndexC)) { 406 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 407 Value *E0 = Builder.CreateExtractElement(X, Index); 408 Value *E1 = Builder.CreateExtractElement(Y, Index); 409 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 410 } 411 412 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 413 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 414 // Extracting the inserted element? 415 if (IE->getOperand(2) == Index) 416 return replaceInstUsesWith(EI, IE->getOperand(1)); 417 // If the inserted and extracted elements are constants, they must not 418 // be the same value, extract from the pre-inserted value instead. 419 if (isa<Constant>(IE->getOperand(2)) && IndexC) 420 return replaceOperand(EI, 0, IE->getOperand(0)); 421 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 422 // If this is extracting an element from a shufflevector, figure out where 423 // it came from and extract from the appropriate input element instead. 424 // Restrict the following transformation to fixed-length vector. 425 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { 426 int SrcIdx = 427 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); 428 Value *Src; 429 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) 430 ->getNumElements(); 431 432 if (SrcIdx < 0) 433 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 434 if (SrcIdx < (int)LHSWidth) 435 Src = SVI->getOperand(0); 436 else { 437 SrcIdx -= LHSWidth; 438 Src = SVI->getOperand(1); 439 } 440 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 441 return ExtractElementInst::Create( 442 Src, ConstantInt::get(Int32Ty, SrcIdx, false)); 443 } 444 } else if (auto *CI = dyn_cast<CastInst>(I)) { 445 // Canonicalize extractelement(cast) -> cast(extractelement). 446 // Bitcasts can change the number of vector elements, and they cost 447 // nothing. 448 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 449 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 450 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 451 } 452 } 453 } 454 return nullptr; 455 } 456 457 /// If V is a shuffle of values that ONLY returns elements from either LHS or 458 /// RHS, return the shuffle mask and true. Otherwise, return false. 459 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 460 SmallVectorImpl<int> &Mask) { 461 assert(LHS->getType() == RHS->getType() && 462 "Invalid CollectSingleShuffleElements"); 463 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 464 465 if (isa<UndefValue>(V)) { 466 Mask.assign(NumElts, -1); 467 return true; 468 } 469 470 if (V == LHS) { 471 for (unsigned i = 0; i != NumElts; ++i) 472 Mask.push_back(i); 473 return true; 474 } 475 476 if (V == RHS) { 477 for (unsigned i = 0; i != NumElts; ++i) 478 Mask.push_back(i + NumElts); 479 return true; 480 } 481 482 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 483 // If this is an insert of an extract from some other vector, include it. 484 Value *VecOp = IEI->getOperand(0); 485 Value *ScalarOp = IEI->getOperand(1); 486 Value *IdxOp = IEI->getOperand(2); 487 488 if (!isa<ConstantInt>(IdxOp)) 489 return false; 490 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 491 492 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 493 // We can handle this if the vector we are inserting into is 494 // transitively ok. 495 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 496 // If so, update the mask to reflect the inserted undef. 497 Mask[InsertedIdx] = -1; 498 return true; 499 } 500 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 501 if (isa<ConstantInt>(EI->getOperand(1))) { 502 unsigned ExtractedIdx = 503 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 504 unsigned NumLHSElts = 505 cast<VectorType>(LHS->getType())->getNumElements(); 506 507 // This must be extracting from either LHS or RHS. 508 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 509 // We can handle this if the vector we are inserting into is 510 // transitively ok. 511 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 512 // If so, update the mask to reflect the inserted value. 513 if (EI->getOperand(0) == LHS) { 514 Mask[InsertedIdx % NumElts] = ExtractedIdx; 515 } else { 516 assert(EI->getOperand(0) == RHS); 517 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 518 } 519 return true; 520 } 521 } 522 } 523 } 524 } 525 526 return false; 527 } 528 529 /// If we have insertion into a vector that is wider than the vector that we 530 /// are extracting from, try to widen the source vector to allow a single 531 /// shufflevector to replace one or more insert/extract pairs. 532 static void replaceExtractElements(InsertElementInst *InsElt, 533 ExtractElementInst *ExtElt, 534 InstCombiner &IC) { 535 VectorType *InsVecType = InsElt->getType(); 536 VectorType *ExtVecType = ExtElt->getVectorOperandType(); 537 unsigned NumInsElts = InsVecType->getNumElements(); 538 unsigned NumExtElts = ExtVecType->getNumElements(); 539 540 // The inserted-to vector must be wider than the extracted-from vector. 541 if (InsVecType->getElementType() != ExtVecType->getElementType() || 542 NumExtElts >= NumInsElts) 543 return; 544 545 // Create a shuffle mask to widen the extended-from vector using undefined 546 // values. The mask selects all of the values of the original vector followed 547 // by as many undefined values as needed to create a vector of the same length 548 // as the inserted-to vector. 549 SmallVector<int, 16> ExtendMask; 550 for (unsigned i = 0; i < NumExtElts; ++i) 551 ExtendMask.push_back(i); 552 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 553 ExtendMask.push_back(-1); 554 555 Value *ExtVecOp = ExtElt->getVectorOperand(); 556 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 557 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 558 ? ExtVecOpInst->getParent() 559 : ExtElt->getParent(); 560 561 // TODO: This restriction matches the basic block check below when creating 562 // new extractelement instructions. If that limitation is removed, this one 563 // could also be removed. But for now, we just bail out to ensure that we 564 // will replace the extractelement instruction that is feeding our 565 // insertelement instruction. This allows the insertelement to then be 566 // replaced by a shufflevector. If the insertelement is not replaced, we can 567 // induce infinite looping because there's an optimization for extractelement 568 // that will delete our widening shuffle. This would trigger another attempt 569 // here to create that shuffle, and we spin forever. 570 if (InsertionBlock != InsElt->getParent()) 571 return; 572 573 // TODO: This restriction matches the check in visitInsertElementInst() and 574 // prevents an infinite loop caused by not turning the extract/insert pair 575 // into a shuffle. We really should not need either check, but we're lacking 576 // folds for shufflevectors because we're afraid to generate shuffle masks 577 // that the backend can't handle. 578 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 579 return; 580 581 auto *WideVec = 582 new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), ExtendMask); 583 584 // Insert the new shuffle after the vector operand of the extract is defined 585 // (as long as it's not a PHI) or at the start of the basic block of the 586 // extract, so any subsequent extracts in the same basic block can use it. 587 // TODO: Insert before the earliest ExtractElementInst that is replaced. 588 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 589 WideVec->insertAfter(ExtVecOpInst); 590 else 591 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 592 593 // Replace extracts from the original narrow vector with extracts from the new 594 // wide vector. 595 for (User *U : ExtVecOp->users()) { 596 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 597 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 598 continue; 599 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 600 NewExt->insertAfter(OldExt); 601 IC.replaceInstUsesWith(*OldExt, NewExt); 602 } 603 } 604 605 /// We are building a shuffle to create V, which is a sequence of insertelement, 606 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 607 /// not rely on the second vector source. Return a std::pair containing the 608 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 609 /// parameter as required. 610 /// 611 /// Note: we intentionally don't try to fold earlier shuffles since they have 612 /// often been chosen carefully to be efficiently implementable on the target. 613 using ShuffleOps = std::pair<Value *, Value *>; 614 615 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 616 Value *PermittedRHS, 617 InstCombiner &IC) { 618 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 619 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 620 621 if (isa<UndefValue>(V)) { 622 Mask.assign(NumElts, -1); 623 return std::make_pair( 624 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 625 } 626 627 if (isa<ConstantAggregateZero>(V)) { 628 Mask.assign(NumElts, 0); 629 return std::make_pair(V, nullptr); 630 } 631 632 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 633 // If this is an insert of an extract from some other vector, include it. 634 Value *VecOp = IEI->getOperand(0); 635 Value *ScalarOp = IEI->getOperand(1); 636 Value *IdxOp = IEI->getOperand(2); 637 638 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 639 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 640 unsigned ExtractedIdx = 641 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 642 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 643 644 // Either the extracted from or inserted into vector must be RHSVec, 645 // otherwise we'd end up with a shuffle of three inputs. 646 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 647 Value *RHS = EI->getOperand(0); 648 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 649 assert(LR.second == nullptr || LR.second == RHS); 650 651 if (LR.first->getType() != RHS->getType()) { 652 // Although we are giving up for now, see if we can create extracts 653 // that match the inserts for another round of combining. 654 replaceExtractElements(IEI, EI, IC); 655 656 // We tried our best, but we can't find anything compatible with RHS 657 // further up the chain. Return a trivial shuffle. 658 for (unsigned i = 0; i < NumElts; ++i) 659 Mask[i] = i; 660 return std::make_pair(V, nullptr); 661 } 662 663 unsigned NumLHSElts = 664 cast<VectorType>(RHS->getType())->getNumElements(); 665 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 666 return std::make_pair(LR.first, RHS); 667 } 668 669 if (VecOp == PermittedRHS) { 670 // We've gone as far as we can: anything on the other side of the 671 // extractelement will already have been converted into a shuffle. 672 unsigned NumLHSElts = 673 cast<VectorType>(EI->getOperand(0)->getType())->getNumElements(); 674 for (unsigned i = 0; i != NumElts; ++i) 675 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 676 return std::make_pair(EI->getOperand(0), PermittedRHS); 677 } 678 679 // If this insertelement is a chain that comes from exactly these two 680 // vectors, return the vector and the effective shuffle. 681 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 682 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 683 Mask)) 684 return std::make_pair(EI->getOperand(0), PermittedRHS); 685 } 686 } 687 } 688 689 // Otherwise, we can't do anything fancy. Return an identity vector. 690 for (unsigned i = 0; i != NumElts; ++i) 691 Mask.push_back(i); 692 return std::make_pair(V, nullptr); 693 } 694 695 /// Try to find redundant insertvalue instructions, like the following ones: 696 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 697 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 698 /// Here the second instruction inserts values at the same indices, as the 699 /// first one, making the first one redundant. 700 /// It should be transformed to: 701 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 702 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) { 703 bool IsRedundant = false; 704 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 705 706 // If there is a chain of insertvalue instructions (each of them except the 707 // last one has only one use and it's another insertvalue insn from this 708 // chain), check if any of the 'children' uses the same indices as the first 709 // instruction. In this case, the first one is redundant. 710 Value *V = &I; 711 unsigned Depth = 0; 712 while (V->hasOneUse() && Depth < 10) { 713 User *U = V->user_back(); 714 auto UserInsInst = dyn_cast<InsertValueInst>(U); 715 if (!UserInsInst || U->getOperand(0) != V) 716 break; 717 if (UserInsInst->getIndices() == FirstIndices) { 718 IsRedundant = true; 719 break; 720 } 721 V = UserInsInst; 722 Depth++; 723 } 724 725 if (IsRedundant) 726 return replaceInstUsesWith(I, I.getOperand(0)); 727 return nullptr; 728 } 729 730 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 731 // Can not analyze scalable type, the number of elements is not a compile-time 732 // constant. 733 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) 734 return false; 735 736 int MaskSize = Shuf.getShuffleMask().size(); 737 int VecSize = 738 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 739 740 // A vector select does not change the size of the operands. 741 if (MaskSize != VecSize) 742 return false; 743 744 // Each mask element must be undefined or choose a vector element from one of 745 // the source operands without crossing vector lanes. 746 for (int i = 0; i != MaskSize; ++i) { 747 int Elt = Shuf.getMaskValue(i); 748 if (Elt != -1 && Elt != i && Elt != i + VecSize) 749 return false; 750 } 751 752 return true; 753 } 754 755 /// Turn a chain of inserts that splats a value into an insert + shuffle: 756 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 757 /// shufflevector(insertelt(X, %k, 0), undef, zero) 758 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 759 // We are interested in the last insert in a chain. So if this insert has a 760 // single user and that user is an insert, bail. 761 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 762 return nullptr; 763 764 VectorType *VecTy = InsElt.getType(); 765 // Can not handle scalable type, the number of elements is not a compile-time 766 // constant. 767 if (isa<ScalableVectorType>(VecTy)) 768 return nullptr; 769 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 770 771 // Do not try to do this for a one-element vector, since that's a nop, 772 // and will cause an inf-loop. 773 if (NumElements == 1) 774 return nullptr; 775 776 Value *SplatVal = InsElt.getOperand(1); 777 InsertElementInst *CurrIE = &InsElt; 778 SmallBitVector ElementPresent(NumElements, false); 779 InsertElementInst *FirstIE = nullptr; 780 781 // Walk the chain backwards, keeping track of which indices we inserted into, 782 // until we hit something that isn't an insert of the splatted value. 783 while (CurrIE) { 784 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 785 if (!Idx || CurrIE->getOperand(1) != SplatVal) 786 return nullptr; 787 788 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 789 // Check none of the intermediate steps have any additional uses, except 790 // for the root insertelement instruction, which can be re-used, if it 791 // inserts at position 0. 792 if (CurrIE != &InsElt && 793 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 794 return nullptr; 795 796 ElementPresent[Idx->getZExtValue()] = true; 797 FirstIE = CurrIE; 798 CurrIE = NextIE; 799 } 800 801 // If this is just a single insertelement (not a sequence), we are done. 802 if (FirstIE == &InsElt) 803 return nullptr; 804 805 // If we are not inserting into an undef vector, make sure we've seen an 806 // insert into every element. 807 // TODO: If the base vector is not undef, it might be better to create a splat 808 // and then a select-shuffle (blend) with the base vector. 809 if (!isa<UndefValue>(FirstIE->getOperand(0))) 810 if (!ElementPresent.all()) 811 return nullptr; 812 813 // Create the insert + shuffle. 814 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 815 UndefValue *UndefVec = UndefValue::get(VecTy); 816 Constant *Zero = ConstantInt::get(Int32Ty, 0); 817 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 818 FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt); 819 820 // Splat from element 0, but replace absent elements with undef in the mask. 821 SmallVector<int, 16> Mask(NumElements, 0); 822 for (unsigned i = 0; i != NumElements; ++i) 823 if (!ElementPresent[i]) 824 Mask[i] = -1; 825 826 return new ShuffleVectorInst(FirstIE, UndefVec, Mask); 827 } 828 829 /// Try to fold an insert element into an existing splat shuffle by changing 830 /// the shuffle's mask to include the index of this insert element. 831 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 832 // Check if the vector operand of this insert is a canonical splat shuffle. 833 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 834 if (!Shuf || !Shuf->isZeroEltSplat()) 835 return nullptr; 836 837 // Bail out early if shuffle is scalable type. The number of elements in 838 // shuffle mask is unknown at compile-time. 839 if (isa<ScalableVectorType>(Shuf->getType())) 840 return nullptr; 841 842 // Check for a constant insertion index. 843 uint64_t IdxC; 844 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 845 return nullptr; 846 847 // Check if the splat shuffle's input is the same as this insert's scalar op. 848 Value *X = InsElt.getOperand(1); 849 Value *Op0 = Shuf->getOperand(0); 850 if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt()))) 851 return nullptr; 852 853 // Replace the shuffle mask element at the index of this insert with a zero. 854 // For example: 855 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1 856 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef> 857 unsigned NumMaskElts = Shuf->getType()->getNumElements(); 858 SmallVector<int, 16> NewMask(NumMaskElts); 859 for (unsigned i = 0; i != NumMaskElts; ++i) 860 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 861 862 return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask); 863 } 864 865 /// Try to fold an extract+insert element into an existing identity shuffle by 866 /// changing the shuffle's mask to include the index of this insert element. 867 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 868 // Check if the vector operand of this insert is an identity shuffle. 869 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 870 if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) || 871 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 872 return nullptr; 873 874 // Bail out early if shuffle is scalable type. The number of elements in 875 // shuffle mask is unknown at compile-time. 876 if (isa<ScalableVectorType>(Shuf->getType())) 877 return nullptr; 878 879 // Check for a constant insertion index. 880 uint64_t IdxC; 881 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 882 return nullptr; 883 884 // Check if this insert's scalar op is extracted from the identity shuffle's 885 // input vector. 886 Value *Scalar = InsElt.getOperand(1); 887 Value *X = Shuf->getOperand(0); 888 if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC)))) 889 return nullptr; 890 891 // Replace the shuffle mask element at the index of this extract+insert with 892 // that same index value. 893 // For example: 894 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 895 unsigned NumMaskElts = Shuf->getType()->getNumElements(); 896 SmallVector<int, 16> NewMask(NumMaskElts); 897 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 898 for (unsigned i = 0; i != NumMaskElts; ++i) { 899 if (i != IdxC) { 900 // All mask elements besides the inserted element remain the same. 901 NewMask[i] = OldMask[i]; 902 } else if (OldMask[i] == (int)IdxC) { 903 // If the mask element was already set, there's nothing to do 904 // (demanded elements analysis may unset it later). 905 return nullptr; 906 } else { 907 assert(OldMask[i] == UndefMaskElem && 908 "Unexpected shuffle mask element for identity shuffle"); 909 NewMask[i] = IdxC; 910 } 911 } 912 913 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 914 } 915 916 /// If we have an insertelement instruction feeding into another insertelement 917 /// and the 2nd is inserting a constant into the vector, canonicalize that 918 /// constant insertion before the insertion of a variable: 919 /// 920 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 921 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 922 /// 923 /// This has the potential of eliminating the 2nd insertelement instruction 924 /// via constant folding of the scalar constant into a vector constant. 925 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 926 InstCombiner::BuilderTy &Builder) { 927 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 928 if (!InsElt1 || !InsElt1->hasOneUse()) 929 return nullptr; 930 931 Value *X, *Y; 932 Constant *ScalarC; 933 ConstantInt *IdxC1, *IdxC2; 934 if (match(InsElt1->getOperand(0), m_Value(X)) && 935 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 936 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 937 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 938 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 939 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 940 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 941 } 942 943 return nullptr; 944 } 945 946 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 947 /// --> shufflevector X, CVec', Mask' 948 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 949 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 950 // Bail out if the parent has more than one use. In that case, we'd be 951 // replacing the insertelt with a shuffle, and that's not a clear win. 952 if (!Inst || !Inst->hasOneUse()) 953 return nullptr; 954 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 955 // The shuffle must have a constant vector operand. The insertelt must have 956 // a constant scalar being inserted at a constant position in the vector. 957 Constant *ShufConstVec, *InsEltScalar; 958 uint64_t InsEltIndex; 959 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 960 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 961 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 962 return nullptr; 963 964 // Adding an element to an arbitrary shuffle could be expensive, but a 965 // shuffle that selects elements from vectors without crossing lanes is 966 // assumed cheap. 967 // If we're just adding a constant into that shuffle, it will still be 968 // cheap. 969 if (!isShuffleEquivalentToSelect(*Shuf)) 970 return nullptr; 971 972 // From the above 'select' check, we know that the mask has the same number 973 // of elements as the vector input operands. We also know that each constant 974 // input element is used in its lane and can not be used more than once by 975 // the shuffle. Therefore, replace the constant in the shuffle's constant 976 // vector with the insertelt constant. Replace the constant in the shuffle's 977 // mask vector with the insertelt index plus the length of the vector 978 // (because the constant vector operand of a shuffle is always the 2nd 979 // operand). 980 ArrayRef<int> Mask = Shuf->getShuffleMask(); 981 unsigned NumElts = Mask.size(); 982 SmallVector<Constant *, 16> NewShufElts(NumElts); 983 SmallVector<int, 16> NewMaskElts(NumElts); 984 for (unsigned I = 0; I != NumElts; ++I) { 985 if (I == InsEltIndex) { 986 NewShufElts[I] = InsEltScalar; 987 NewMaskElts[I] = InsEltIndex + NumElts; 988 } else { 989 // Copy over the existing values. 990 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 991 NewMaskElts[I] = Mask[I]; 992 } 993 } 994 995 // Create new operands for a shuffle that includes the constant of the 996 // original insertelt. The old shuffle will be dead now. 997 return new ShuffleVectorInst(Shuf->getOperand(0), 998 ConstantVector::get(NewShufElts), NewMaskElts); 999 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 1000 // Transform sequences of insertelements ops with constant data/indexes into 1001 // a single shuffle op. 1002 // Can not handle scalable type, the number of elements needed to create 1003 // shuffle mask is not a compile-time constant. 1004 if (isa<ScalableVectorType>(InsElt.getType())) 1005 return nullptr; 1006 unsigned NumElts = 1007 cast<FixedVectorType>(InsElt.getType())->getNumElements(); 1008 1009 uint64_t InsertIdx[2]; 1010 Constant *Val[2]; 1011 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 1012 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 1013 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 1014 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1015 return nullptr; 1016 SmallVector<Constant *, 16> Values(NumElts); 1017 SmallVector<int, 16> Mask(NumElts); 1018 auto ValI = std::begin(Val); 1019 // Generate new constant vector and mask. 1020 // We have 2 values/masks from the insertelements instructions. Insert them 1021 // into new value/mask vectors. 1022 for (uint64_t I : InsertIdx) { 1023 if (!Values[I]) { 1024 Values[I] = *ValI; 1025 Mask[I] = NumElts + I; 1026 } 1027 ++ValI; 1028 } 1029 // Remaining values are filled with 'undef' values. 1030 for (unsigned I = 0; I < NumElts; ++I) { 1031 if (!Values[I]) { 1032 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1033 Mask[I] = I; 1034 } 1035 } 1036 // Create new operands for a shuffle that includes the constant of the 1037 // original insertelt. 1038 return new ShuffleVectorInst(IEI->getOperand(0), 1039 ConstantVector::get(Values), Mask); 1040 } 1041 return nullptr; 1042 } 1043 1044 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { 1045 Value *VecOp = IE.getOperand(0); 1046 Value *ScalarOp = IE.getOperand(1); 1047 Value *IdxOp = IE.getOperand(2); 1048 1049 if (auto *V = SimplifyInsertElementInst( 1050 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1051 return replaceInstUsesWith(IE, V); 1052 1053 // If the vector and scalar are both bitcast from the same element type, do 1054 // the insert in that source type followed by bitcast. 1055 Value *VecSrc, *ScalarSrc; 1056 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1057 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1058 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1059 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1060 cast<VectorType>(VecSrc->getType())->getElementType() == 1061 ScalarSrc->getType()) { 1062 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1063 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1064 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1065 return new BitCastInst(NewInsElt, IE.getType()); 1066 } 1067 1068 // If the inserted element was extracted from some other fixed-length vector 1069 // and both indexes are valid constants, try to turn this into a shuffle. 1070 // Can not handle scalable vector type, the number of elements needed to 1071 // create shuffle mask is not a compile-time constant. 1072 uint64_t InsertedIdx, ExtractedIdx; 1073 Value *ExtVecOp; 1074 if (isa<FixedVectorType>(IE.getType()) && 1075 match(IdxOp, m_ConstantInt(InsertedIdx)) && 1076 match(ScalarOp, 1077 m_ExtractElement(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1078 isa<FixedVectorType>(ExtVecOp->getType()) && 1079 ExtractedIdx < 1080 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { 1081 // TODO: Looking at the user(s) to determine if this insert is a 1082 // fold-to-shuffle opportunity does not match the usual instcombine 1083 // constraints. We should decide if the transform is worthy based only 1084 // on this instruction and its operands, but that may not work currently. 1085 // 1086 // Here, we are trying to avoid creating shuffles before reaching 1087 // the end of a chain of extract-insert pairs. This is complicated because 1088 // we do not generally form arbitrary shuffle masks in instcombine 1089 // (because those may codegen poorly), but collectShuffleElements() does 1090 // exactly that. 1091 // 1092 // The rules for determining what is an acceptable target-independent 1093 // shuffle mask are fuzzy because they evolve based on the backend's 1094 // capabilities and real-world impact. 1095 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1096 if (!Insert.hasOneUse()) 1097 return true; 1098 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1099 if (!InsertUser) 1100 return true; 1101 return false; 1102 }; 1103 1104 // Try to form a shuffle from a chain of extract-insert ops. 1105 if (isShuffleRootCandidate(IE)) { 1106 SmallVector<int, 16> Mask; 1107 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1108 1109 // The proposed shuffle may be trivial, in which case we shouldn't 1110 // perform the combine. 1111 if (LR.first != &IE && LR.second != &IE) { 1112 // We now have a shuffle of LHS, RHS, Mask. 1113 if (LR.second == nullptr) 1114 LR.second = UndefValue::get(LR.first->getType()); 1115 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1116 } 1117 } 1118 } 1119 1120 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { 1121 unsigned VWidth = VecTy->getNumElements(); 1122 APInt UndefElts(VWidth, 0); 1123 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1124 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1125 if (V != &IE) 1126 return replaceInstUsesWith(IE, V); 1127 return &IE; 1128 } 1129 } 1130 1131 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1132 return Shuf; 1133 1134 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1135 return NewInsElt; 1136 1137 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1138 return Broadcast; 1139 1140 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1141 return Splat; 1142 1143 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1144 return IdentityShuf; 1145 1146 return nullptr; 1147 } 1148 1149 /// Return true if we can evaluate the specified expression tree if the vector 1150 /// elements were shuffled in a different order. 1151 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1152 unsigned Depth = 5) { 1153 // We can always reorder the elements of a constant. 1154 if (isa<Constant>(V)) 1155 return true; 1156 1157 // We won't reorder vector arguments. No IPO here. 1158 Instruction *I = dyn_cast<Instruction>(V); 1159 if (!I) return false; 1160 1161 // Two users may expect different orders of the elements. Don't try it. 1162 if (!I->hasOneUse()) 1163 return false; 1164 1165 if (Depth == 0) return false; 1166 1167 switch (I->getOpcode()) { 1168 case Instruction::UDiv: 1169 case Instruction::SDiv: 1170 case Instruction::URem: 1171 case Instruction::SRem: 1172 // Propagating an undefined shuffle mask element to integer div/rem is not 1173 // allowed because those opcodes can create immediate undefined behavior 1174 // from an undefined element in an operand. 1175 if (llvm::any_of(Mask, [](int M){ return M == -1; })) 1176 return false; 1177 LLVM_FALLTHROUGH; 1178 case Instruction::Add: 1179 case Instruction::FAdd: 1180 case Instruction::Sub: 1181 case Instruction::FSub: 1182 case Instruction::Mul: 1183 case Instruction::FMul: 1184 case Instruction::FDiv: 1185 case Instruction::FRem: 1186 case Instruction::Shl: 1187 case Instruction::LShr: 1188 case Instruction::AShr: 1189 case Instruction::And: 1190 case Instruction::Or: 1191 case Instruction::Xor: 1192 case Instruction::ICmp: 1193 case Instruction::FCmp: 1194 case Instruction::Trunc: 1195 case Instruction::ZExt: 1196 case Instruction::SExt: 1197 case Instruction::FPToUI: 1198 case Instruction::FPToSI: 1199 case Instruction::UIToFP: 1200 case Instruction::SIToFP: 1201 case Instruction::FPTrunc: 1202 case Instruction::FPExt: 1203 case Instruction::GetElementPtr: { 1204 // Bail out if we would create longer vector ops. We could allow creating 1205 // longer vector ops, but that may result in more expensive codegen. 1206 Type *ITy = I->getType(); 1207 if (ITy->isVectorTy() && 1208 Mask.size() > cast<VectorType>(ITy)->getNumElements()) 1209 return false; 1210 for (Value *Operand : I->operands()) { 1211 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1212 return false; 1213 } 1214 return true; 1215 } 1216 case Instruction::InsertElement: { 1217 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1218 if (!CI) return false; 1219 int ElementNumber = CI->getLimitedValue(); 1220 1221 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1222 // can't put an element into multiple indices. 1223 bool SeenOnce = false; 1224 for (int i = 0, e = Mask.size(); i != e; ++i) { 1225 if (Mask[i] == ElementNumber) { 1226 if (SeenOnce) 1227 return false; 1228 SeenOnce = true; 1229 } 1230 } 1231 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1232 } 1233 } 1234 return false; 1235 } 1236 1237 /// Rebuild a new instruction just like 'I' but with the new operands given. 1238 /// In the event of type mismatch, the type of the operands is correct. 1239 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1240 // We don't want to use the IRBuilder here because we want the replacement 1241 // instructions to appear next to 'I', not the builder's insertion point. 1242 switch (I->getOpcode()) { 1243 case Instruction::Add: 1244 case Instruction::FAdd: 1245 case Instruction::Sub: 1246 case Instruction::FSub: 1247 case Instruction::Mul: 1248 case Instruction::FMul: 1249 case Instruction::UDiv: 1250 case Instruction::SDiv: 1251 case Instruction::FDiv: 1252 case Instruction::URem: 1253 case Instruction::SRem: 1254 case Instruction::FRem: 1255 case Instruction::Shl: 1256 case Instruction::LShr: 1257 case Instruction::AShr: 1258 case Instruction::And: 1259 case Instruction::Or: 1260 case Instruction::Xor: { 1261 BinaryOperator *BO = cast<BinaryOperator>(I); 1262 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1263 BinaryOperator *New = 1264 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1265 NewOps[0], NewOps[1], "", BO); 1266 if (isa<OverflowingBinaryOperator>(BO)) { 1267 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1268 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1269 } 1270 if (isa<PossiblyExactOperator>(BO)) { 1271 New->setIsExact(BO->isExact()); 1272 } 1273 if (isa<FPMathOperator>(BO)) 1274 New->copyFastMathFlags(I); 1275 return New; 1276 } 1277 case Instruction::ICmp: 1278 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1279 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1280 NewOps[0], NewOps[1]); 1281 case Instruction::FCmp: 1282 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1283 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1284 NewOps[0], NewOps[1]); 1285 case Instruction::Trunc: 1286 case Instruction::ZExt: 1287 case Instruction::SExt: 1288 case Instruction::FPToUI: 1289 case Instruction::FPToSI: 1290 case Instruction::UIToFP: 1291 case Instruction::SIToFP: 1292 case Instruction::FPTrunc: 1293 case Instruction::FPExt: { 1294 // It's possible that the mask has a different number of elements from 1295 // the original cast. We recompute the destination type to match the mask. 1296 Type *DestTy = VectorType::get( 1297 I->getType()->getScalarType(), 1298 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1299 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1300 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1301 "", I); 1302 } 1303 case Instruction::GetElementPtr: { 1304 Value *Ptr = NewOps[0]; 1305 ArrayRef<Value*> Idx = NewOps.slice(1); 1306 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1307 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1308 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1309 return GEP; 1310 } 1311 } 1312 llvm_unreachable("failed to rebuild vector instructions"); 1313 } 1314 1315 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1316 // Mask.size() does not need to be equal to the number of vector elements. 1317 1318 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1319 Type *EltTy = V->getType()->getScalarType(); 1320 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1321 if (isa<UndefValue>(V)) 1322 return UndefValue::get(VectorType::get(EltTy, Mask.size())); 1323 1324 if (isa<ConstantAggregateZero>(V)) 1325 return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size())); 1326 1327 if (Constant *C = dyn_cast<Constant>(V)) 1328 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 1329 Mask); 1330 1331 Instruction *I = cast<Instruction>(V); 1332 switch (I->getOpcode()) { 1333 case Instruction::Add: 1334 case Instruction::FAdd: 1335 case Instruction::Sub: 1336 case Instruction::FSub: 1337 case Instruction::Mul: 1338 case Instruction::FMul: 1339 case Instruction::UDiv: 1340 case Instruction::SDiv: 1341 case Instruction::FDiv: 1342 case Instruction::URem: 1343 case Instruction::SRem: 1344 case Instruction::FRem: 1345 case Instruction::Shl: 1346 case Instruction::LShr: 1347 case Instruction::AShr: 1348 case Instruction::And: 1349 case Instruction::Or: 1350 case Instruction::Xor: 1351 case Instruction::ICmp: 1352 case Instruction::FCmp: 1353 case Instruction::Trunc: 1354 case Instruction::ZExt: 1355 case Instruction::SExt: 1356 case Instruction::FPToUI: 1357 case Instruction::FPToSI: 1358 case Instruction::UIToFP: 1359 case Instruction::SIToFP: 1360 case Instruction::FPTrunc: 1361 case Instruction::FPExt: 1362 case Instruction::Select: 1363 case Instruction::GetElementPtr: { 1364 SmallVector<Value*, 8> NewOps; 1365 bool NeedsRebuild = 1366 (Mask.size() != cast<VectorType>(I->getType())->getNumElements()); 1367 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1368 Value *V; 1369 // Recursively call evaluateInDifferentElementOrder on vector arguments 1370 // as well. E.g. GetElementPtr may have scalar operands even if the 1371 // return value is a vector, so we need to examine the operand type. 1372 if (I->getOperand(i)->getType()->isVectorTy()) 1373 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1374 else 1375 V = I->getOperand(i); 1376 NewOps.push_back(V); 1377 NeedsRebuild |= (V != I->getOperand(i)); 1378 } 1379 if (NeedsRebuild) { 1380 return buildNew(I, NewOps); 1381 } 1382 return I; 1383 } 1384 case Instruction::InsertElement: { 1385 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1386 1387 // The insertelement was inserting at Element. Figure out which element 1388 // that becomes after shuffling. The answer is guaranteed to be unique 1389 // by CanEvaluateShuffled. 1390 bool Found = false; 1391 int Index = 0; 1392 for (int e = Mask.size(); Index != e; ++Index) { 1393 if (Mask[Index] == Element) { 1394 Found = true; 1395 break; 1396 } 1397 } 1398 1399 // If element is not in Mask, no need to handle the operand 1 (element to 1400 // be inserted). Just evaluate values in operand 0 according to Mask. 1401 if (!Found) 1402 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1403 1404 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1405 return InsertElementInst::Create(V, I->getOperand(1), 1406 ConstantInt::get(I32Ty, Index), "", I); 1407 } 1408 } 1409 llvm_unreachable("failed to reorder elements of vector instruction!"); 1410 } 1411 1412 // Returns true if the shuffle is extracting a contiguous range of values from 1413 // LHS, for example: 1414 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1415 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1416 // Shuffles to: |EE|FF|GG|HH| 1417 // +--+--+--+--+ 1418 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1419 ArrayRef<int> Mask) { 1420 unsigned LHSElems = 1421 cast<VectorType>(SVI.getOperand(0)->getType())->getNumElements(); 1422 unsigned MaskElems = Mask.size(); 1423 unsigned BegIdx = Mask.front(); 1424 unsigned EndIdx = Mask.back(); 1425 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1426 return false; 1427 for (unsigned I = 0; I != MaskElems; ++I) 1428 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1429 return false; 1430 return true; 1431 } 1432 1433 /// These are the ingredients in an alternate form binary operator as described 1434 /// below. 1435 struct BinopElts { 1436 BinaryOperator::BinaryOps Opcode; 1437 Value *Op0; 1438 Value *Op1; 1439 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1440 Value *V0 = nullptr, Value *V1 = nullptr) : 1441 Opcode(Opc), Op0(V0), Op1(V1) {} 1442 operator bool() const { return Opcode != 0; } 1443 }; 1444 1445 /// Binops may be transformed into binops with different opcodes and operands. 1446 /// Reverse the usual canonicalization to enable folds with the non-canonical 1447 /// form of the binop. If a transform is possible, return the elements of the 1448 /// new binop. If not, return invalid elements. 1449 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1450 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1451 Type *Ty = BO->getType(); 1452 switch (BO->getOpcode()) { 1453 case Instruction::Shl: { 1454 // shl X, C --> mul X, (1 << C) 1455 Constant *C; 1456 if (match(BO1, m_Constant(C))) { 1457 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1458 return { Instruction::Mul, BO0, ShlOne }; 1459 } 1460 break; 1461 } 1462 case Instruction::Or: { 1463 // or X, C --> add X, C (when X and C have no common bits set) 1464 const APInt *C; 1465 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1466 return { Instruction::Add, BO0, BO1 }; 1467 break; 1468 } 1469 default: 1470 break; 1471 } 1472 return {}; 1473 } 1474 1475 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1476 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1477 1478 // Are we shuffling together some value and that same value after it has been 1479 // modified by a binop with a constant? 1480 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1481 Constant *C; 1482 bool Op0IsBinop; 1483 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1484 Op0IsBinop = true; 1485 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1486 Op0IsBinop = false; 1487 else 1488 return nullptr; 1489 1490 // The identity constant for a binop leaves a variable operand unchanged. For 1491 // a vector, this is a splat of something like 0, -1, or 1. 1492 // If there's no identity constant for this binop, we're done. 1493 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1494 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1495 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1496 if (!IdC) 1497 return nullptr; 1498 1499 // Shuffle identity constants into the lanes that return the original value. 1500 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1501 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1502 // The existing binop constant vector remains in the same operand position. 1503 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1504 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1505 ConstantExpr::getShuffleVector(IdC, C, Mask); 1506 1507 bool MightCreatePoisonOrUB = 1508 is_contained(Mask, UndefMaskElem) && 1509 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1510 if (MightCreatePoisonOrUB) 1511 NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true); 1512 1513 // shuf (bop X, C), X, M --> bop X, C' 1514 // shuf X, (bop X, C), M --> bop X, C' 1515 Value *X = Op0IsBinop ? Op1 : Op0; 1516 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1517 NewBO->copyIRFlags(BO); 1518 1519 // An undef shuffle mask element may propagate as an undef constant element in 1520 // the new binop. That would produce poison where the original code might not. 1521 // If we already made a safe constant, then there's no danger. 1522 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1523 NewBO->dropPoisonGeneratingFlags(); 1524 return NewBO; 1525 } 1526 1527 /// If we have an insert of a scalar to a non-zero element of an undefined 1528 /// vector and then shuffle that value, that's the same as inserting to the zero 1529 /// element and shuffling. Splatting from the zero element is recognized as the 1530 /// canonical form of splat. 1531 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 1532 InstCombiner::BuilderTy &Builder) { 1533 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1534 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1535 Value *X; 1536 uint64_t IndexC; 1537 1538 // Match a shuffle that is a splat to a non-zero element. 1539 if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X), 1540 m_ConstantInt(IndexC)))) || 1541 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 1542 return nullptr; 1543 1544 // Insert into element 0 of an undef vector. 1545 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 1546 Constant *Zero = Builder.getInt32(0); 1547 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 1548 1549 // Splat from element 0. Any mask element that is undefined remains undefined. 1550 // For example: 1551 // shuf (inselt undef, X, 2), undef, <2,2,undef> 1552 // --> shuf (inselt undef, X, 0), undef, <0,0,undef> 1553 unsigned NumMaskElts = Shuf.getType()->getNumElements(); 1554 SmallVector<int, 16> NewMask(NumMaskElts, 0); 1555 for (unsigned i = 0; i != NumMaskElts; ++i) 1556 if (Mask[i] == UndefMaskElem) 1557 NewMask[i] = Mask[i]; 1558 1559 return new ShuffleVectorInst(NewIns, UndefVec, NewMask); 1560 } 1561 1562 /// Try to fold shuffles that are the equivalent of a vector select. 1563 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, 1564 InstCombiner::BuilderTy &Builder, 1565 const DataLayout &DL) { 1566 if (!Shuf.isSelect()) 1567 return nullptr; 1568 1569 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 1570 // Commuting undef to operand 0 conflicts with another canonicalization. 1571 unsigned NumElts = Shuf.getType()->getNumElements(); 1572 if (!isa<UndefValue>(Shuf.getOperand(1)) && 1573 Shuf.getMaskValue(0) >= (int)NumElts) { 1574 // TODO: Can we assert that both operands of a shuffle-select are not undef 1575 // (otherwise, it would have been folded by instsimplify? 1576 Shuf.commute(); 1577 return &Shuf; 1578 } 1579 1580 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 1581 return I; 1582 1583 BinaryOperator *B0, *B1; 1584 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 1585 !match(Shuf.getOperand(1), m_BinOp(B1))) 1586 return nullptr; 1587 1588 Value *X, *Y; 1589 Constant *C0, *C1; 1590 bool ConstantsAreOp1; 1591 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 1592 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 1593 ConstantsAreOp1 = true; 1594 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 1595 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 1596 ConstantsAreOp1 = false; 1597 else 1598 return nullptr; 1599 1600 // We need matching binops to fold the lanes together. 1601 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 1602 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 1603 bool DropNSW = false; 1604 if (ConstantsAreOp1 && Opc0 != Opc1) { 1605 // TODO: We drop "nsw" if shift is converted into multiply because it may 1606 // not be correct when the shift amount is BitWidth - 1. We could examine 1607 // each vector element to determine if it is safe to keep that flag. 1608 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 1609 DropNSW = true; 1610 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 1611 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 1612 Opc0 = AltB0.Opcode; 1613 C0 = cast<Constant>(AltB0.Op1); 1614 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 1615 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 1616 Opc1 = AltB1.Opcode; 1617 C1 = cast<Constant>(AltB1.Op1); 1618 } 1619 } 1620 1621 if (Opc0 != Opc1) 1622 return nullptr; 1623 1624 // The opcodes must be the same. Use a new name to make that clear. 1625 BinaryOperator::BinaryOps BOpc = Opc0; 1626 1627 // Select the constant elements needed for the single binop. 1628 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1629 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 1630 1631 // We are moving a binop after a shuffle. When a shuffle has an undefined 1632 // mask element, the result is undefined, but it is not poison or undefined 1633 // behavior. That is not necessarily true for div/rem/shift. 1634 bool MightCreatePoisonOrUB = 1635 is_contained(Mask, UndefMaskElem) && 1636 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 1637 if (MightCreatePoisonOrUB) 1638 NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1); 1639 1640 Value *V; 1641 if (X == Y) { 1642 // Remove a binop and the shuffle by rearranging the constant: 1643 // shuffle (op V, C0), (op V, C1), M --> op V, C' 1644 // shuffle (op C0, V), (op C1, V), M --> op C', V 1645 V = X; 1646 } else { 1647 // If there are 2 different variable operands, we must create a new shuffle 1648 // (select) first, so check uses to ensure that we don't end up with more 1649 // instructions than we started with. 1650 if (!B0->hasOneUse() && !B1->hasOneUse()) 1651 return nullptr; 1652 1653 // If we use the original shuffle mask and op1 is *variable*, we would be 1654 // putting an undef into operand 1 of div/rem/shift. This is either UB or 1655 // poison. We do not have to guard against UB when *constants* are op1 1656 // because safe constants guarantee that we do not overflow sdiv/srem (and 1657 // there's no danger for other opcodes). 1658 // TODO: To allow this case, create a new shuffle mask with no undefs. 1659 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 1660 return nullptr; 1661 1662 // Note: In general, we do not create new shuffles in InstCombine because we 1663 // do not know if a target can lower an arbitrary shuffle optimally. In this 1664 // case, the shuffle uses the existing mask, so there is no additional risk. 1665 1666 // Select the variable vectors first, then perform the binop: 1667 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 1668 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 1669 V = Builder.CreateShuffleVector(X, Y, Mask); 1670 } 1671 1672 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : 1673 BinaryOperator::Create(BOpc, NewC, V); 1674 1675 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 1676 // 1. If we changed an opcode, poison conditions might have changed. 1677 // 2. If the shuffle had undef mask elements, the new binop might have undefs 1678 // where the original code did not. But if we already made a safe constant, 1679 // then there's no danger. 1680 NewBO->copyIRFlags(B0); 1681 NewBO->andIRFlags(B1); 1682 if (DropNSW) 1683 NewBO->setHasNoSignedWrap(false); 1684 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1685 NewBO->dropPoisonGeneratingFlags(); 1686 return NewBO; 1687 } 1688 1689 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 1690 /// Example (little endian): 1691 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 1692 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 1693 bool IsBigEndian) { 1694 // This must be a bitcasted shuffle of 1 vector integer operand. 1695 Type *DestType = Shuf.getType(); 1696 Value *X; 1697 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 1698 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 1699 return nullptr; 1700 1701 // The source type must have the same number of elements as the shuffle, 1702 // and the source element type must be larger than the shuffle element type. 1703 Type *SrcType = X->getType(); 1704 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 1705 cast<VectorType>(SrcType)->getNumElements() != 1706 cast<VectorType>(DestType)->getNumElements() || 1707 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 1708 return nullptr; 1709 1710 assert(Shuf.changesLength() && !Shuf.increasesLength() && 1711 "Expected a shuffle that decreases length"); 1712 1713 // Last, check that the mask chooses the correct low bits for each narrow 1714 // element in the result. 1715 uint64_t TruncRatio = 1716 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 1717 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1718 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 1719 if (Mask[i] == UndefMaskElem) 1720 continue; 1721 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 1722 assert(LSBIndex <= std::numeric_limits<int32_t>::max() && 1723 "Overflowed 32-bits"); 1724 if (Mask[i] != (int)LSBIndex) 1725 return nullptr; 1726 } 1727 1728 return new TruncInst(X, DestType); 1729 } 1730 1731 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 1732 /// narrowing (concatenating with undef and extracting back to the original 1733 /// length). This allows replacing the wide select with a narrow select. 1734 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 1735 InstCombiner::BuilderTy &Builder) { 1736 // This must be a narrowing identity shuffle. It extracts the 1st N elements 1737 // of the 1st vector operand of a shuffle. 1738 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 1739 return nullptr; 1740 1741 // The vector being shuffled must be a vector select that we can eliminate. 1742 // TODO: The one-use requirement could be eased if X and/or Y are constants. 1743 Value *Cond, *X, *Y; 1744 if (!match(Shuf.getOperand(0), 1745 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 1746 return nullptr; 1747 1748 // We need a narrow condition value. It must be extended with undef elements 1749 // and have the same number of elements as this shuffle. 1750 unsigned NarrowNumElts = Shuf.getType()->getNumElements(); 1751 Value *NarrowCond; 1752 if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef()))) || 1753 cast<VectorType>(NarrowCond->getType())->getNumElements() != 1754 NarrowNumElts || 1755 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 1756 return nullptr; 1757 1758 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 1759 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 1760 Value *Undef = UndefValue::get(X->getType()); 1761 Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getShuffleMask()); 1762 Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getShuffleMask()); 1763 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 1764 } 1765 1766 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 1767 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 1768 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1769 if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1)) 1770 return nullptr; 1771 1772 Value *X, *Y; 1773 ArrayRef<int> Mask; 1774 if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Mask(Mask)))) 1775 return nullptr; 1776 1777 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 1778 // then combining may result in worse codegen. 1779 if (!Op0->hasOneUse()) 1780 return nullptr; 1781 1782 // We are extracting a subvector from a shuffle. Remove excess elements from 1783 // the 1st shuffle mask to eliminate the extract. 1784 // 1785 // This transform is conservatively limited to identity extracts because we do 1786 // not allow arbitrary shuffle mask creation as a target-independent transform 1787 // (because we can't guarantee that will lower efficiently). 1788 // 1789 // If the extracting shuffle has an undef mask element, it transfers to the 1790 // new shuffle mask. Otherwise, copy the original mask element. Example: 1791 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 1792 // shuf X, Y, <C0, undef, C2, undef> 1793 unsigned NumElts = Shuf.getType()->getNumElements(); 1794 SmallVector<int, 16> NewMask(NumElts); 1795 assert(NumElts < Mask.size() && 1796 "Identity with extract must have less elements than its inputs"); 1797 1798 for (unsigned i = 0; i != NumElts; ++i) { 1799 int ExtractMaskElt = Shuf.getMaskValue(i); 1800 int MaskElt = Mask[i]; 1801 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 1802 } 1803 return new ShuffleVectorInst(X, Y, NewMask); 1804 } 1805 1806 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 1807 /// operand with the operand of an insertelement. 1808 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 1809 InstCombiner &IC) { 1810 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 1811 SmallVector<int, 16> Mask; 1812 Shuf.getShuffleMask(Mask); 1813 1814 // The shuffle must not change vector sizes. 1815 // TODO: This restriction could be removed if the insert has only one use 1816 // (because the transform would require a new length-changing shuffle). 1817 int NumElts = Mask.size(); 1818 if (NumElts != (int)(cast<VectorType>(V0->getType())->getNumElements())) 1819 return nullptr; 1820 1821 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 1822 // not be able to handle it there if the insertelement has >1 use. 1823 // If the shuffle has an insertelement operand but does not choose the 1824 // inserted scalar element from that value, then we can replace that shuffle 1825 // operand with the source vector of the insertelement. 1826 Value *X; 1827 uint64_t IdxC; 1828 if (match(V0, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 1829 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 1830 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 1831 return IC.replaceOperand(Shuf, 0, X); 1832 } 1833 if (match(V1, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 1834 // Offset the index constant by the vector width because we are checking for 1835 // accesses to the 2nd vector input of the shuffle. 1836 IdxC += NumElts; 1837 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 1838 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 1839 return IC.replaceOperand(Shuf, 1, X); 1840 } 1841 1842 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 1843 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 1844 // We need an insertelement with a constant index. 1845 if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar), 1846 m_ConstantInt(IndexC)))) 1847 return false; 1848 1849 // Test the shuffle mask to see if it splices the inserted scalar into the 1850 // operand 1 vector of the shuffle. 1851 int NewInsIndex = -1; 1852 for (int i = 0; i != NumElts; ++i) { 1853 // Ignore undef mask elements. 1854 if (Mask[i] == -1) 1855 continue; 1856 1857 // The shuffle takes elements of operand 1 without lane changes. 1858 if (Mask[i] == NumElts + i) 1859 continue; 1860 1861 // The shuffle must choose the inserted scalar exactly once. 1862 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 1863 return false; 1864 1865 // The shuffle is placing the inserted scalar into element i. 1866 NewInsIndex = i; 1867 } 1868 1869 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 1870 1871 // Index is updated to the potentially translated insertion lane. 1872 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 1873 return true; 1874 }; 1875 1876 // If the shuffle is unnecessary, insert the scalar operand directly into 1877 // operand 1 of the shuffle. Example: 1878 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 1879 Value *Scalar; 1880 ConstantInt *IndexC; 1881 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1882 return InsertElementInst::Create(V1, Scalar, IndexC); 1883 1884 // Try again after commuting shuffle. Example: 1885 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 1886 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 1887 std::swap(V0, V1); 1888 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 1889 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1890 return InsertElementInst::Create(V1, Scalar, IndexC); 1891 1892 return nullptr; 1893 } 1894 1895 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 1896 // Match the operands as identity with padding (also known as concatenation 1897 // with undef) shuffles of the same source type. The backend is expected to 1898 // recreate these concatenations from a shuffle of narrow operands. 1899 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 1900 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 1901 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 1902 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 1903 return nullptr; 1904 1905 // We limit this transform to power-of-2 types because we expect that the 1906 // backend can convert the simplified IR patterns to identical nodes as the 1907 // original IR. 1908 // TODO: If we can verify the same behavior for arbitrary types, the 1909 // power-of-2 checks can be removed. 1910 Value *X = Shuffle0->getOperand(0); 1911 Value *Y = Shuffle1->getOperand(0); 1912 if (X->getType() != Y->getType() || 1913 !isPowerOf2_32(Shuf.getType()->getNumElements()) || 1914 !isPowerOf2_32(Shuffle0->getType()->getNumElements()) || 1915 !isPowerOf2_32(cast<VectorType>(X->getType())->getNumElements()) || 1916 isa<UndefValue>(X) || isa<UndefValue>(Y)) 1917 return nullptr; 1918 assert(isa<UndefValue>(Shuffle0->getOperand(1)) && 1919 isa<UndefValue>(Shuffle1->getOperand(1)) && 1920 "Unexpected operand for identity shuffle"); 1921 1922 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 1923 // operands directly by adjusting the shuffle mask to account for the narrower 1924 // types: 1925 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 1926 int NarrowElts = cast<VectorType>(X->getType())->getNumElements(); 1927 int WideElts = Shuffle0->getType()->getNumElements(); 1928 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 1929 1930 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1931 SmallVector<int, 16> NewMask(Mask.size(), -1); 1932 for (int i = 0, e = Mask.size(); i != e; ++i) { 1933 if (Mask[i] == -1) 1934 continue; 1935 1936 // If this shuffle is choosing an undef element from 1 of the sources, that 1937 // element is undef. 1938 if (Mask[i] < WideElts) { 1939 if (Shuffle0->getMaskValue(Mask[i]) == -1) 1940 continue; 1941 } else { 1942 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 1943 continue; 1944 } 1945 1946 // If this shuffle is choosing from the 1st narrow op, the mask element is 1947 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 1948 // element is offset down to adjust for the narrow vector widths. 1949 if (Mask[i] < WideElts) { 1950 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 1951 NewMask[i] = Mask[i]; 1952 } else { 1953 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 1954 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 1955 } 1956 } 1957 return new ShuffleVectorInst(X, Y, NewMask); 1958 } 1959 1960 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 1961 Value *LHS = SVI.getOperand(0); 1962 Value *RHS = SVI.getOperand(1); 1963 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 1964 if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 1965 SVI.getType(), ShufQuery)) 1966 return replaceInstUsesWith(SVI, V); 1967 1968 // shuffle x, x, mask --> shuffle x, undef, mask' 1969 unsigned VWidth = SVI.getType()->getNumElements(); 1970 unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements(); 1971 ArrayRef<int> Mask = SVI.getShuffleMask(); 1972 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 1973 1974 // Peek through a bitcasted shuffle operand by scaling the mask. If the 1975 // simulated shuffle can simplify, then this shuffle is unnecessary: 1976 // shuf (bitcast X), undef, Mask --> bitcast X' 1977 // TODO: This could be extended to allow length-changing shuffles. 1978 // The transform might also be obsoleted if we allowed canonicalization 1979 // of bitcasted shuffles. 1980 Value *X; 1981 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 1982 X->getType()->isVectorTy() && VWidth == LHSWidth) { 1983 // Try to create a scaled mask constant. 1984 auto *XType = cast<VectorType>(X->getType()); 1985 unsigned XNumElts = XType->getNumElements(); 1986 SmallVector<int, 16> ScaledMask; 1987 if (XNumElts >= VWidth) { 1988 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 1989 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); 1990 } else { 1991 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); 1992 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) 1993 ScaledMask.clear(); 1994 } 1995 if (!ScaledMask.empty()) { 1996 // If the shuffled source vector simplifies, cast that value to this 1997 // shuffle's type. 1998 if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType), 1999 ScaledMask, XType, ShufQuery)) 2000 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 2001 } 2002 } 2003 2004 if (LHS == RHS) { 2005 assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?"); 2006 // Remap any references to RHS to use LHS. 2007 SmallVector<int, 16> Elts; 2008 for (unsigned i = 0; i != VWidth; ++i) { 2009 // Propagate undef elements or force mask to LHS. 2010 if (Mask[i] < 0) 2011 Elts.push_back(UndefMaskElem); 2012 else 2013 Elts.push_back(Mask[i] % LHSWidth); 2014 } 2015 return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts); 2016 } 2017 2018 // shuffle undef, x, mask --> shuffle x, undef, mask' 2019 if (isa<UndefValue>(LHS)) { 2020 SVI.commute(); 2021 return &SVI; 2022 } 2023 2024 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2025 return I; 2026 2027 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) 2028 return I; 2029 2030 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2031 return I; 2032 2033 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2034 return I; 2035 2036 APInt UndefElts(VWidth, 0); 2037 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 2038 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2039 if (V != &SVI) 2040 return replaceInstUsesWith(SVI, V); 2041 return &SVI; 2042 } 2043 2044 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2045 return I; 2046 2047 // These transforms have the potential to lose undef knowledge, so they are 2048 // intentionally placed after SimplifyDemandedVectorElts(). 2049 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2050 return I; 2051 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2052 return I; 2053 2054 if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) { 2055 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 2056 return replaceInstUsesWith(SVI, V); 2057 } 2058 2059 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2060 // a non-vector type. We can instead bitcast the original vector followed by 2061 // an extract of the desired element: 2062 // 2063 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2064 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2065 // %1 = bitcast <4 x i8> %sroa to i32 2066 // Becomes: 2067 // %bc = bitcast <16 x i8> %in to <4 x i32> 2068 // %ext = extractelement <4 x i32> %bc, i32 0 2069 // 2070 // If the shuffle is extracting a contiguous range of values from the input 2071 // vector then each use which is a bitcast of the extracted size can be 2072 // replaced. This will work if the vector types are compatible, and the begin 2073 // index is aligned to a value in the casted vector type. If the begin index 2074 // isn't aligned then we can shuffle the original vector (keeping the same 2075 // vector type) before extracting. 2076 // 2077 // This code will bail out if the target type is fundamentally incompatible 2078 // with vectors of the source type. 2079 // 2080 // Example of <16 x i8>, target type i32: 2081 // Index range [4,8): v-----------v Will work. 2082 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2083 // <16 x i8>: | | | | | | | | | | | | | | | | | 2084 // <4 x i32>: | | | | | 2085 // +-----------+-----------+-----------+-----------+ 2086 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2087 // Target type i40: ^--------------^ Won't work, bail. 2088 bool MadeChange = false; 2089 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2090 Value *V = LHS; 2091 unsigned MaskElems = Mask.size(); 2092 VectorType *SrcTy = cast<VectorType>(V->getType()); 2093 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize(); 2094 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2095 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2096 unsigned SrcNumElems = SrcTy->getNumElements(); 2097 SmallVector<BitCastInst *, 8> BCs; 2098 DenseMap<Type *, Value *> NewBCs; 2099 for (User *U : SVI.users()) 2100 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2101 if (!BC->use_empty()) 2102 // Only visit bitcasts that weren't previously handled. 2103 BCs.push_back(BC); 2104 for (BitCastInst *BC : BCs) { 2105 unsigned BegIdx = Mask.front(); 2106 Type *TgtTy = BC->getDestTy(); 2107 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2108 if (!TgtElemBitWidth) 2109 continue; 2110 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2111 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2112 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2113 if (!VecBitWidthsEqual) 2114 continue; 2115 if (!VectorType::isValidElementType(TgtTy)) 2116 continue; 2117 VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems); 2118 if (!BegIsAligned) { 2119 // Shuffle the input so [0,NumElements) contains the output, and 2120 // [NumElems,SrcNumElems) is undef. 2121 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 2122 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2123 ShuffleMask[I] = Idx; 2124 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 2125 ShuffleMask, 2126 SVI.getName() + ".extract"); 2127 BegIdx = 0; 2128 } 2129 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2130 assert(SrcElemsPerTgtElem); 2131 BegIdx /= SrcElemsPerTgtElem; 2132 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2133 auto *NewBC = 2134 BCAlreadyExists 2135 ? NewBCs[CastSrcTy] 2136 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2137 if (!BCAlreadyExists) 2138 NewBCs[CastSrcTy] = NewBC; 2139 auto *Ext = Builder.CreateExtractElement( 2140 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2141 // The shufflevector isn't being replaced: the bitcast that used it 2142 // is. InstCombine will visit the newly-created instructions. 2143 replaceInstUsesWith(*BC, Ext); 2144 MadeChange = true; 2145 } 2146 } 2147 2148 // If the LHS is a shufflevector itself, see if we can combine it with this 2149 // one without producing an unusual shuffle. 2150 // Cases that might be simplified: 2151 // 1. 2152 // x1=shuffle(v1,v2,mask1) 2153 // x=shuffle(x1,undef,mask) 2154 // ==> 2155 // x=shuffle(v1,undef,newMask) 2156 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2157 // 2. 2158 // x1=shuffle(v1,undef,mask1) 2159 // x=shuffle(x1,x2,mask) 2160 // where v1.size() == mask1.size() 2161 // ==> 2162 // x=shuffle(v1,x2,newMask) 2163 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2164 // 3. 2165 // x2=shuffle(v2,undef,mask2) 2166 // x=shuffle(x1,x2,mask) 2167 // where v2.size() == mask2.size() 2168 // ==> 2169 // x=shuffle(x1,v2,newMask) 2170 // newMask[i] = (mask[i] < x1.size()) 2171 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2172 // 4. 2173 // x1=shuffle(v1,undef,mask1) 2174 // x2=shuffle(v2,undef,mask2) 2175 // x=shuffle(x1,x2,mask) 2176 // where v1.size() == v2.size() 2177 // ==> 2178 // x=shuffle(v1,v2,newMask) 2179 // newMask[i] = (mask[i] < x1.size()) 2180 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2181 // 2182 // Here we are really conservative: 2183 // we are absolutely afraid of producing a shuffle mask not in the input 2184 // program, because the code gen may not be smart enough to turn a merged 2185 // shuffle into two specific shuffles: it may produce worse code. As such, 2186 // we only merge two shuffles if the result is either a splat or one of the 2187 // input shuffle masks. In this case, merging the shuffles just removes 2188 // one instruction, which we know is safe. This is good for things like 2189 // turning: (splat(splat)) -> splat, or 2190 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2191 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2192 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2193 if (LHSShuffle) 2194 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) 2195 LHSShuffle = nullptr; 2196 if (RHSShuffle) 2197 if (!isa<UndefValue>(RHSShuffle->getOperand(1))) 2198 RHSShuffle = nullptr; 2199 if (!LHSShuffle && !RHSShuffle) 2200 return MadeChange ? &SVI : nullptr; 2201 2202 Value* LHSOp0 = nullptr; 2203 Value* LHSOp1 = nullptr; 2204 Value* RHSOp0 = nullptr; 2205 unsigned LHSOp0Width = 0; 2206 unsigned RHSOp0Width = 0; 2207 if (LHSShuffle) { 2208 LHSOp0 = LHSShuffle->getOperand(0); 2209 LHSOp1 = LHSShuffle->getOperand(1); 2210 LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements(); 2211 } 2212 if (RHSShuffle) { 2213 RHSOp0 = RHSShuffle->getOperand(0); 2214 RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements(); 2215 } 2216 Value* newLHS = LHS; 2217 Value* newRHS = RHS; 2218 if (LHSShuffle) { 2219 // case 1 2220 if (isa<UndefValue>(RHS)) { 2221 newLHS = LHSOp0; 2222 newRHS = LHSOp1; 2223 } 2224 // case 2 or 4 2225 else if (LHSOp0Width == LHSWidth) { 2226 newLHS = LHSOp0; 2227 } 2228 } 2229 // case 3 or 4 2230 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2231 newRHS = RHSOp0; 2232 } 2233 // case 4 2234 if (LHSOp0 == RHSOp0) { 2235 newLHS = LHSOp0; 2236 newRHS = nullptr; 2237 } 2238 2239 if (newLHS == LHS && newRHS == RHS) 2240 return MadeChange ? &SVI : nullptr; 2241 2242 ArrayRef<int> LHSMask; 2243 ArrayRef<int> RHSMask; 2244 if (newLHS != LHS) 2245 LHSMask = LHSShuffle->getShuffleMask(); 2246 if (RHSShuffle && newRHS != RHS) 2247 RHSMask = RHSShuffle->getShuffleMask(); 2248 2249 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2250 SmallVector<int, 16> newMask; 2251 bool isSplat = true; 2252 int SplatElt = -1; 2253 // Create a new mask for the new ShuffleVectorInst so that the new 2254 // ShuffleVectorInst is equivalent to the original one. 2255 for (unsigned i = 0; i < VWidth; ++i) { 2256 int eltMask; 2257 if (Mask[i] < 0) { 2258 // This element is an undef value. 2259 eltMask = -1; 2260 } else if (Mask[i] < (int)LHSWidth) { 2261 // This element is from left hand side vector operand. 2262 // 2263 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2264 // new mask value for the element. 2265 if (newLHS != LHS) { 2266 eltMask = LHSMask[Mask[i]]; 2267 // If the value selected is an undef value, explicitly specify it 2268 // with a -1 mask value. 2269 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2270 eltMask = -1; 2271 } else 2272 eltMask = Mask[i]; 2273 } else { 2274 // This element is from right hand side vector operand 2275 // 2276 // If the value selected is an undef value, explicitly specify it 2277 // with a -1 mask value. (case 1) 2278 if (isa<UndefValue>(RHS)) 2279 eltMask = -1; 2280 // If RHS is going to be replaced (case 3 or 4), calculate the 2281 // new mask value for the element. 2282 else if (newRHS != RHS) { 2283 eltMask = RHSMask[Mask[i]-LHSWidth]; 2284 // If the value selected is an undef value, explicitly specify it 2285 // with a -1 mask value. 2286 if (eltMask >= (int)RHSOp0Width) { 2287 assert(isa<UndefValue>(RHSShuffle->getOperand(1)) 2288 && "should have been check above"); 2289 eltMask = -1; 2290 } 2291 } else 2292 eltMask = Mask[i]-LHSWidth; 2293 2294 // If LHS's width is changed, shift the mask value accordingly. 2295 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2296 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2297 // If newRHS == newLHS, we want to remap any references from newRHS to 2298 // newLHS so that we can properly identify splats that may occur due to 2299 // obfuscation across the two vectors. 2300 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2301 eltMask += newLHSWidth; 2302 } 2303 2304 // Check if this could still be a splat. 2305 if (eltMask >= 0) { 2306 if (SplatElt >= 0 && SplatElt != eltMask) 2307 isSplat = false; 2308 SplatElt = eltMask; 2309 } 2310 2311 newMask.push_back(eltMask); 2312 } 2313 2314 // If the result mask is equal to one of the original shuffle masks, 2315 // or is a splat, do the replacement. 2316 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2317 SmallVector<Constant*, 16> Elts; 2318 for (unsigned i = 0, e = newMask.size(); i != e; ++i) { 2319 if (newMask[i] < 0) { 2320 Elts.push_back(UndefValue::get(Int32Ty)); 2321 } else { 2322 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); 2323 } 2324 } 2325 if (!newRHS) 2326 newRHS = UndefValue::get(newLHS->getType()); 2327 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); 2328 } 2329 2330 return MadeChange ? &SVI : nullptr; 2331 } 2332